1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * LDoms virtual disk client (vdc) device driver 29 * 30 * This driver runs on a guest logical domain and communicates with the virtual 31 * disk server (vds) driver running on the service domain which is exporting 32 * virtualized "disks" to the guest logical domain. 33 * 34 * The driver can be divided into four sections: 35 * 36 * 1) generic device driver housekeeping 37 * _init, _fini, attach, detach, ops structures, etc. 38 * 39 * 2) communication channel setup 40 * Setup the communications link over the LDC channel that vdc uses to 41 * talk to the vDisk server. Initialise the descriptor ring which 42 * allows the LDC clients to transfer data via memory mappings. 43 * 44 * 3) Support exported to upper layers (filesystems, etc) 45 * The upper layers call into vdc via strategy(9E) and DKIO(7I) 46 * ioctl calls. vdc will copy the data to be written to the descriptor 47 * ring or maps the buffer to store the data read by the vDisk 48 * server into the descriptor ring. It then sends a message to the 49 * vDisk server requesting it to complete the operation. 50 * 51 * 4) Handling responses from vDisk server. 52 * The vDisk server will ACK some or all of the messages vdc sends to it 53 * (this is configured during the handshake). Upon receipt of an ACK 54 * vdc will check the descriptor ring and signal to the upper layer 55 * code waiting on the IO. 56 */ 57 58 #include <sys/atomic.h> 59 #include <sys/conf.h> 60 #include <sys/disp.h> 61 #include <sys/ddi.h> 62 #include <sys/dkio.h> 63 #include <sys/efi_partition.h> 64 #include <sys/fcntl.h> 65 #include <sys/file.h> 66 #include <sys/kstat.h> 67 #include <sys/mach_descrip.h> 68 #include <sys/modctl.h> 69 #include <sys/mdeg.h> 70 #include <sys/note.h> 71 #include <sys/open.h> 72 #include <sys/random.h> 73 #include <sys/sdt.h> 74 #include <sys/stat.h> 75 #include <sys/sunddi.h> 76 #include <sys/types.h> 77 #include <sys/promif.h> 78 #include <sys/var.h> 79 #include <sys/vtoc.h> 80 #include <sys/archsystm.h> 81 #include <sys/sysmacros.h> 82 83 #include <sys/cdio.h> 84 #include <sys/dktp/fdisk.h> 85 #include <sys/dktp/dadkio.h> 86 #include <sys/fs/dv_node.h> 87 #include <sys/mhd.h> 88 #include <sys/scsi/generic/sense.h> 89 #include <sys/scsi/impl/uscsi.h> 90 #include <sys/scsi/impl/services.h> 91 #include <sys/scsi/targets/sddef.h> 92 93 #include <sys/ldoms.h> 94 #include <sys/ldc.h> 95 #include <sys/vio_common.h> 96 #include <sys/vio_mailbox.h> 97 #include <sys/vio_util.h> 98 #include <sys/vdsk_common.h> 99 #include <sys/vdsk_mailbox.h> 100 #include <sys/vdc.h> 101 102 #define VD_OLDVTOC_LIMIT 0x7fffffff 103 104 /* 105 * function prototypes 106 */ 107 108 /* standard driver functions */ 109 static int vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred); 110 static int vdc_close(dev_t dev, int flag, int otyp, cred_t *cred); 111 static int vdc_strategy(struct buf *buf); 112 static int vdc_print(dev_t dev, char *str); 113 static int vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 114 static int vdc_read(dev_t dev, struct uio *uio, cred_t *cred); 115 static int vdc_write(dev_t dev, struct uio *uio, cred_t *cred); 116 static int vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, 117 cred_t *credp, int *rvalp); 118 static int vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred); 119 static int vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred); 120 121 static int vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, 122 void *arg, void **resultp); 123 static int vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 124 static int vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 125 static int vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 126 int mod_flags, char *name, caddr_t valuep, int *lengthp); 127 128 /* setup */ 129 static void vdc_min(struct buf *bufp); 130 static int vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen); 131 static int vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr); 132 static int vdc_start_ldc_connection(vdc_t *vdc); 133 static int vdc_create_device_nodes(vdc_t *vdc); 134 static int vdc_create_device_nodes_efi(vdc_t *vdc); 135 static int vdc_create_device_nodes_vtoc(vdc_t *vdc); 136 static void vdc_create_io_kstats(vdc_t *vdc); 137 static void vdc_create_err_kstats(vdc_t *vdc); 138 static void vdc_set_err_kstats(vdc_t *vdc); 139 static int vdc_get_md_node(dev_info_t *dip, md_t **mdpp, 140 mde_cookie_t *vd_nodep); 141 static int vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep); 142 static void vdc_fini_ports(vdc_t *vdc); 143 static void vdc_switch_server(vdc_t *vdcp); 144 static int vdc_do_ldc_up(vdc_t *vdc); 145 static void vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr); 146 static int vdc_init_descriptor_ring(vdc_t *vdc); 147 static void vdc_destroy_descriptor_ring(vdc_t *vdc); 148 static int vdc_setup_devid(vdc_t *vdc); 149 static void vdc_store_label_efi(vdc_t *, efi_gpt_t *, efi_gpe_t *); 150 static void vdc_store_label_vtoc(vdc_t *, struct dk_geom *, 151 struct extvtoc *); 152 static void vdc_store_label_unk(vdc_t *vdc); 153 static boolean_t vdc_is_opened(vdc_t *vdc); 154 static void vdc_update_size(vdc_t *vdc, size_t, size_t, size_t); 155 static int vdc_update_vio_bsize(vdc_t *vdc, uint32_t); 156 157 /* handshake with vds */ 158 static int vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver); 159 static int vdc_ver_negotiation(vdc_t *vdcp); 160 static int vdc_init_attr_negotiation(vdc_t *vdc); 161 static int vdc_attr_negotiation(vdc_t *vdcp); 162 static int vdc_init_dring_negotiate(vdc_t *vdc); 163 static int vdc_dring_negotiation(vdc_t *vdcp); 164 static int vdc_send_rdx(vdc_t *vdcp); 165 static int vdc_rdx_exchange(vdc_t *vdcp); 166 static boolean_t vdc_is_supported_version(vio_ver_msg_t *ver_msg); 167 168 /* processing incoming messages from vDisk server */ 169 static void vdc_process_msg_thread(vdc_t *vdc); 170 static int vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp); 171 172 static uint_t vdc_handle_cb(uint64_t event, caddr_t arg); 173 static int vdc_process_data_msg(vdc_t *vdc, vio_msg_t *msg); 174 static int vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg); 175 static int vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg); 176 static int vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg); 177 static int vdc_send_request(vdc_t *vdcp, int operation, 178 caddr_t addr, size_t nbytes, int slice, diskaddr_t offset, 179 buf_t *bufp, vio_desc_direction_t dir, int flags); 180 static int vdc_map_to_shared_dring(vdc_t *vdcp, int idx); 181 static int vdc_populate_descriptor(vdc_t *vdcp, int operation, 182 caddr_t addr, size_t nbytes, int slice, diskaddr_t offset, 183 buf_t *bufp, vio_desc_direction_t dir, int flags); 184 static int vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, 185 size_t nbytes, int slice, diskaddr_t offset, 186 vio_desc_direction_t dir, boolean_t); 187 static int vdc_do_op(vdc_t *vdc, int op, caddr_t addr, size_t nbytes, 188 int slice, diskaddr_t offset, struct buf *bufp, 189 vio_desc_direction_t dir, int flags); 190 191 static int vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp); 192 static int vdc_drain_response(vdc_t *vdcp, struct buf *buf); 193 static int vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx); 194 static int vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep); 195 static int vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg); 196 197 /* dkio */ 198 static int vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode, 199 int *rvalp); 200 static int vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg); 201 static void vdc_create_fake_geometry(vdc_t *vdc); 202 static int vdc_validate_geometry(vdc_t *vdc); 203 static void vdc_validate(vdc_t *vdc); 204 static void vdc_validate_task(void *arg); 205 static int vdc_null_copy_func(vdc_t *vdc, void *from, void *to, 206 int mode, int dir); 207 static int vdc_get_wce_convert(vdc_t *vdc, void *from, void *to, 208 int mode, int dir); 209 static int vdc_set_wce_convert(vdc_t *vdc, void *from, void *to, 210 int mode, int dir); 211 static int vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, 212 int mode, int dir); 213 static int vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, 214 int mode, int dir); 215 static int vdc_get_extvtoc_convert(vdc_t *vdc, void *from, void *to, 216 int mode, int dir); 217 static int vdc_set_extvtoc_convert(vdc_t *vdc, void *from, void *to, 218 int mode, int dir); 219 static int vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, 220 int mode, int dir); 221 static int vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, 222 int mode, int dir); 223 static int vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, 224 int mode, int dir); 225 static int vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, 226 int mode, int dir); 227 228 static void vdc_ownership_update(vdc_t *vdc, int ownership_flags); 229 static int vdc_access_set(vdc_t *vdc, uint64_t flags); 230 static vdc_io_t *vdc_eio_queue(vdc_t *vdc, int index); 231 static void vdc_eio_unqueue(vdc_t *vdc, clock_t deadline, 232 boolean_t complete_io); 233 static int vdc_eio_check(vdc_t *vdc, int flags); 234 static void vdc_eio_thread(void *arg); 235 236 /* 237 * Module variables 238 */ 239 240 /* 241 * Tunable variables to control how long vdc waits before timing out on 242 * various operations 243 */ 244 static int vdc_hshake_retries = 3; 245 246 static int vdc_timeout = 0; /* units: seconds */ 247 static int vdc_ldcup_timeout = 1; /* units: seconds */ 248 249 static uint64_t vdc_hz_min_ldc_delay; 250 static uint64_t vdc_min_timeout_ldc = 1 * MILLISEC; 251 static uint64_t vdc_hz_max_ldc_delay; 252 static uint64_t vdc_max_timeout_ldc = 100 * MILLISEC; 253 254 static uint64_t vdc_ldc_read_init_delay = 1 * MILLISEC; 255 static uint64_t vdc_ldc_read_max_delay = 100 * MILLISEC; 256 257 /* values for dumping - need to run in a tighter loop */ 258 static uint64_t vdc_usec_timeout_dump = 100 * MILLISEC; /* 0.1s units: ns */ 259 static int vdc_dump_retries = 100; 260 261 static uint16_t vdc_scsi_timeout = 60; /* 60s units: seconds */ 262 263 static uint64_t vdc_ownership_delay = 6 * MICROSEC; /* 6s units: usec */ 264 265 /* Count of the number of vdc instances attached */ 266 static volatile uint32_t vdc_instance_count = 0; 267 268 /* Tunable to log all SCSI errors */ 269 static boolean_t vdc_scsi_log_error = B_FALSE; 270 271 /* Soft state pointer */ 272 static void *vdc_state; 273 274 /* 275 * Controlling the verbosity of the error/debug messages 276 * 277 * vdc_msglevel - controls level of messages 278 * vdc_matchinst - 64-bit variable where each bit corresponds 279 * to the vdc instance the vdc_msglevel applies. 280 */ 281 int vdc_msglevel = 0x0; 282 uint64_t vdc_matchinst = 0ull; 283 284 /* 285 * Supported vDisk protocol version pairs. 286 * 287 * The first array entry is the latest and preferred version. 288 */ 289 static const vio_ver_t vdc_version[] = {{1, 1}}; 290 291 static struct cb_ops vdc_cb_ops = { 292 vdc_open, /* cb_open */ 293 vdc_close, /* cb_close */ 294 vdc_strategy, /* cb_strategy */ 295 vdc_print, /* cb_print */ 296 vdc_dump, /* cb_dump */ 297 vdc_read, /* cb_read */ 298 vdc_write, /* cb_write */ 299 vdc_ioctl, /* cb_ioctl */ 300 nodev, /* cb_devmap */ 301 nodev, /* cb_mmap */ 302 nodev, /* cb_segmap */ 303 nochpoll, /* cb_chpoll */ 304 vdc_prop_op, /* cb_prop_op */ 305 NULL, /* cb_str */ 306 D_MP | D_64BIT, /* cb_flag */ 307 CB_REV, /* cb_rev */ 308 vdc_aread, /* cb_aread */ 309 vdc_awrite /* cb_awrite */ 310 }; 311 312 static struct dev_ops vdc_ops = { 313 DEVO_REV, /* devo_rev */ 314 0, /* devo_refcnt */ 315 vdc_getinfo, /* devo_getinfo */ 316 nulldev, /* devo_identify */ 317 nulldev, /* devo_probe */ 318 vdc_attach, /* devo_attach */ 319 vdc_detach, /* devo_detach */ 320 nodev, /* devo_reset */ 321 &vdc_cb_ops, /* devo_cb_ops */ 322 NULL, /* devo_bus_ops */ 323 nulldev, /* devo_power */ 324 ddi_quiesce_not_needed, /* devo_quiesce */ 325 }; 326 327 static struct modldrv modldrv = { 328 &mod_driverops, 329 "virtual disk client", 330 &vdc_ops, 331 }; 332 333 static struct modlinkage modlinkage = { 334 MODREV_1, 335 &modldrv, 336 NULL 337 }; 338 339 /* -------------------------------------------------------------------------- */ 340 341 /* 342 * Device Driver housekeeping and setup 343 */ 344 345 int 346 _init(void) 347 { 348 int status; 349 350 if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0) 351 return (status); 352 if ((status = mod_install(&modlinkage)) != 0) 353 ddi_soft_state_fini(&vdc_state); 354 return (status); 355 } 356 357 int 358 _info(struct modinfo *modinfop) 359 { 360 return (mod_info(&modlinkage, modinfop)); 361 } 362 363 int 364 _fini(void) 365 { 366 int status; 367 368 if ((status = mod_remove(&modlinkage)) != 0) 369 return (status); 370 ddi_soft_state_fini(&vdc_state); 371 return (0); 372 } 373 374 static int 375 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp) 376 { 377 _NOTE(ARGUNUSED(dip)) 378 379 int instance = VDCUNIT((dev_t)arg); 380 vdc_t *vdc = NULL; 381 382 switch (cmd) { 383 case DDI_INFO_DEVT2DEVINFO: 384 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 385 *resultp = NULL; 386 return (DDI_FAILURE); 387 } 388 *resultp = vdc->dip; 389 return (DDI_SUCCESS); 390 case DDI_INFO_DEVT2INSTANCE: 391 *resultp = (void *)(uintptr_t)instance; 392 return (DDI_SUCCESS); 393 default: 394 *resultp = NULL; 395 return (DDI_FAILURE); 396 } 397 } 398 399 static int 400 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 401 { 402 kt_did_t eio_tid, ownership_tid; 403 int instance; 404 int rv; 405 vdc_server_t *srvr; 406 vdc_t *vdc = NULL; 407 408 switch (cmd) { 409 case DDI_DETACH: 410 /* the real work happens below */ 411 break; 412 case DDI_SUSPEND: 413 /* nothing to do for this non-device */ 414 return (DDI_SUCCESS); 415 default: 416 return (DDI_FAILURE); 417 } 418 419 ASSERT(cmd == DDI_DETACH); 420 instance = ddi_get_instance(dip); 421 DMSGX(1, "[%d] Entered\n", instance); 422 423 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 424 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 425 return (DDI_FAILURE); 426 } 427 428 if (vdc_is_opened(vdc)) { 429 DMSG(vdc, 0, "[%d] Cannot detach: device is open", instance); 430 return (DDI_FAILURE); 431 } 432 433 if (vdc->dkio_flush_pending) { 434 DMSG(vdc, 0, 435 "[%d] Cannot detach: %d outstanding DKIO flushes\n", 436 instance, vdc->dkio_flush_pending); 437 return (DDI_FAILURE); 438 } 439 440 if (vdc->validate_pending) { 441 DMSG(vdc, 0, 442 "[%d] Cannot detach: %d outstanding validate request\n", 443 instance, vdc->validate_pending); 444 return (DDI_FAILURE); 445 } 446 447 DMSG(vdc, 0, "[%d] proceeding...\n", instance); 448 449 /* If we took ownership, release ownership */ 450 mutex_enter(&vdc->ownership_lock); 451 if (vdc->ownership & VDC_OWNERSHIP_GRANTED) { 452 rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR); 453 if (rv == 0) { 454 vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE); 455 } 456 } 457 mutex_exit(&vdc->ownership_lock); 458 459 /* mark instance as detaching */ 460 vdc->lifecycle = VDC_LC_DETACHING; 461 462 /* 463 * Try and disable callbacks to prevent another handshake. We have to 464 * disable callbacks for all servers. 465 */ 466 for (srvr = vdc->server_list; srvr != NULL; srvr = srvr->next) { 467 rv = ldc_set_cb_mode(srvr->ldc_handle, LDC_CB_DISABLE); 468 DMSG(vdc, 0, "callback disabled (ldc=%lu, rv=%d)\n", 469 srvr->ldc_id, rv); 470 } 471 472 if (vdc->initialized & VDC_THREAD) { 473 mutex_enter(&vdc->read_lock); 474 if ((vdc->read_state == VDC_READ_WAITING) || 475 (vdc->read_state == VDC_READ_RESET)) { 476 vdc->read_state = VDC_READ_RESET; 477 cv_signal(&vdc->read_cv); 478 } 479 480 mutex_exit(&vdc->read_lock); 481 482 /* wake up any thread waiting for connection to come online */ 483 mutex_enter(&vdc->lock); 484 if (vdc->state == VDC_STATE_INIT_WAITING) { 485 DMSG(vdc, 0, 486 "[%d] write reset - move to resetting state...\n", 487 instance); 488 vdc->state = VDC_STATE_RESETTING; 489 cv_signal(&vdc->initwait_cv); 490 } else if (vdc->state == VDC_STATE_FAILED) { 491 vdc->io_pending = B_TRUE; 492 cv_signal(&vdc->io_pending_cv); 493 } 494 mutex_exit(&vdc->lock); 495 496 /* now wait until state transitions to VDC_STATE_DETACH */ 497 thread_join(vdc->msg_proc_thr->t_did); 498 ASSERT(vdc->state == VDC_STATE_DETACH); 499 DMSG(vdc, 0, "[%d] Reset thread exit and join ..\n", 500 vdc->instance); 501 } 502 503 mutex_enter(&vdc->lock); 504 505 if (vdc->initialized & VDC_DRING) 506 vdc_destroy_descriptor_ring(vdc); 507 508 vdc_fini_ports(vdc); 509 510 if (vdc->eio_thread) { 511 eio_tid = vdc->eio_thread->t_did; 512 vdc->failfast_interval = 0; 513 ASSERT(vdc->num_servers == 0); 514 cv_signal(&vdc->eio_cv); 515 } else { 516 eio_tid = 0; 517 } 518 519 if (vdc->ownership & VDC_OWNERSHIP_WANTED) { 520 ownership_tid = vdc->ownership_thread->t_did; 521 vdc->ownership = VDC_OWNERSHIP_NONE; 522 cv_signal(&vdc->ownership_cv); 523 } else { 524 ownership_tid = 0; 525 } 526 527 mutex_exit(&vdc->lock); 528 529 if (eio_tid != 0) 530 thread_join(eio_tid); 531 532 if (ownership_tid != 0) 533 thread_join(ownership_tid); 534 535 if (vdc->initialized & VDC_MINOR) 536 ddi_remove_minor_node(dip, NULL); 537 538 if (vdc->io_stats) { 539 kstat_delete(vdc->io_stats); 540 vdc->io_stats = NULL; 541 } 542 543 if (vdc->err_stats) { 544 kstat_delete(vdc->err_stats); 545 vdc->err_stats = NULL; 546 } 547 548 if (vdc->initialized & VDC_LOCKS) { 549 mutex_destroy(&vdc->lock); 550 mutex_destroy(&vdc->read_lock); 551 mutex_destroy(&vdc->ownership_lock); 552 cv_destroy(&vdc->initwait_cv); 553 cv_destroy(&vdc->dring_free_cv); 554 cv_destroy(&vdc->membind_cv); 555 cv_destroy(&vdc->sync_blocked_cv); 556 cv_destroy(&vdc->read_cv); 557 cv_destroy(&vdc->running_cv); 558 cv_destroy(&vdc->io_pending_cv); 559 cv_destroy(&vdc->ownership_cv); 560 cv_destroy(&vdc->eio_cv); 561 } 562 563 if (vdc->minfo) 564 kmem_free(vdc->minfo, sizeof (struct dk_minfo)); 565 566 if (vdc->cinfo) 567 kmem_free(vdc->cinfo, sizeof (struct dk_cinfo)); 568 569 if (vdc->vtoc) 570 kmem_free(vdc->vtoc, sizeof (struct extvtoc)); 571 572 if (vdc->geom) 573 kmem_free(vdc->geom, sizeof (struct dk_geom)); 574 575 if (vdc->devid) { 576 ddi_devid_unregister(dip); 577 ddi_devid_free(vdc->devid); 578 } 579 580 if (vdc->initialized & VDC_SOFT_STATE) 581 ddi_soft_state_free(vdc_state, instance); 582 583 DMSG(vdc, 0, "[%d] End %p\n", instance, (void *)vdc); 584 585 return (DDI_SUCCESS); 586 } 587 588 589 static int 590 vdc_do_attach(dev_info_t *dip) 591 { 592 int instance; 593 vdc_t *vdc = NULL; 594 int status; 595 md_t *mdp; 596 mde_cookie_t vd_node; 597 598 ASSERT(dip != NULL); 599 600 instance = ddi_get_instance(dip); 601 if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) { 602 cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure", 603 instance); 604 return (DDI_FAILURE); 605 } 606 607 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 608 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 609 return (DDI_FAILURE); 610 } 611 612 /* 613 * We assign the value to initialized in this case to zero out the 614 * variable and then set bits in it to indicate what has been done 615 */ 616 vdc->initialized = VDC_SOFT_STATE; 617 618 vdc_hz_min_ldc_delay = drv_usectohz(vdc_min_timeout_ldc); 619 vdc_hz_max_ldc_delay = drv_usectohz(vdc_max_timeout_ldc); 620 621 vdc->dip = dip; 622 vdc->instance = instance; 623 vdc->vdisk_type = VD_DISK_TYPE_UNK; 624 vdc->vdisk_label = VD_DISK_LABEL_UNK; 625 vdc->state = VDC_STATE_INIT; 626 vdc->lifecycle = VDC_LC_ATTACHING; 627 vdc->session_id = 0; 628 vdc->vdisk_bsize = DEV_BSIZE; 629 vdc->vio_bmask = 0; 630 vdc->vio_bshift = 0; 631 vdc->max_xfer_sz = maxphys / vdc->vdisk_bsize; 632 633 /* 634 * We assume, for now, that the vDisk server will export 'read' 635 * operations to us at a minimum (this is needed because of checks 636 * in vdc for supported operations early in the handshake process). 637 * The vDisk server will return ENOTSUP if this is not the case. 638 * The value will be overwritten during the attribute exchange with 639 * the bitmask of operations exported by server. 640 */ 641 vdc->operations = VD_OP_MASK_READ; 642 643 vdc->vtoc = NULL; 644 vdc->geom = NULL; 645 vdc->cinfo = NULL; 646 vdc->minfo = NULL; 647 648 mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL); 649 cv_init(&vdc->initwait_cv, NULL, CV_DRIVER, NULL); 650 cv_init(&vdc->dring_free_cv, NULL, CV_DRIVER, NULL); 651 cv_init(&vdc->membind_cv, NULL, CV_DRIVER, NULL); 652 cv_init(&vdc->running_cv, NULL, CV_DRIVER, NULL); 653 cv_init(&vdc->io_pending_cv, NULL, CV_DRIVER, NULL); 654 655 vdc->io_pending = B_FALSE; 656 vdc->threads_pending = 0; 657 vdc->sync_op_blocked = B_FALSE; 658 cv_init(&vdc->sync_blocked_cv, NULL, CV_DRIVER, NULL); 659 660 mutex_init(&vdc->ownership_lock, NULL, MUTEX_DRIVER, NULL); 661 cv_init(&vdc->ownership_cv, NULL, CV_DRIVER, NULL); 662 cv_init(&vdc->eio_cv, NULL, CV_DRIVER, NULL); 663 664 /* init blocking msg read functionality */ 665 mutex_init(&vdc->read_lock, NULL, MUTEX_DRIVER, NULL); 666 cv_init(&vdc->read_cv, NULL, CV_DRIVER, NULL); 667 vdc->read_state = VDC_READ_IDLE; 668 669 vdc->initialized |= VDC_LOCKS; 670 671 /* get device and port MD node for this disk instance */ 672 if (vdc_get_md_node(dip, &mdp, &vd_node) != 0) { 673 cmn_err(CE_NOTE, "[%d] Could not get machine description node", 674 instance); 675 return (DDI_FAILURE); 676 } 677 678 if (vdc_init_ports(vdc, mdp, vd_node) != 0) { 679 cmn_err(CE_NOTE, "[%d] Error initialising ports", instance); 680 return (DDI_FAILURE); 681 } 682 683 (void) md_fini_handle(mdp); 684 685 /* Create the kstats for saving the I/O statistics used by iostat(1M) */ 686 vdc_create_io_kstats(vdc); 687 vdc_create_err_kstats(vdc); 688 689 /* Initialize remaining structures before starting the msg thread */ 690 vdc->vdisk_label = VD_DISK_LABEL_UNK; 691 vdc->vtoc = kmem_zalloc(sizeof (struct extvtoc), KM_SLEEP); 692 vdc->geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP); 693 vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP); 694 695 /* initialize the thread responsible for managing state with server */ 696 vdc->msg_proc_thr = thread_create(NULL, 0, vdc_process_msg_thread, 697 vdc, 0, &p0, TS_RUN, minclsyspri); 698 if (vdc->msg_proc_thr == NULL) { 699 cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread", 700 instance); 701 return (DDI_FAILURE); 702 } 703 704 /* 705 * If there are multiple servers then start the eio thread. 706 */ 707 if (vdc->num_servers > 1) { 708 vdc->eio_thread = thread_create(NULL, 0, vdc_eio_thread, vdc, 0, 709 &p0, TS_RUN, v.v_maxsyspri - 2); 710 if (vdc->eio_thread == NULL) { 711 cmn_err(CE_NOTE, "[%d] Failed to create error " 712 "I/O thread", instance); 713 return (DDI_FAILURE); 714 } 715 } 716 717 vdc->initialized |= VDC_THREAD; 718 719 atomic_inc_32(&vdc_instance_count); 720 721 /* 722 * Check the disk label. This will send requests and do the handshake. 723 * We don't really care about the disk label now. What we really need is 724 * the handshake do be done so that we know the type of the disk (slice 725 * or full disk) and the appropriate device nodes can be created. 726 */ 727 728 mutex_enter(&vdc->lock); 729 (void) vdc_validate_geometry(vdc); 730 mutex_exit(&vdc->lock); 731 732 /* 733 * Now that we have the device info we can create the device nodes 734 */ 735 status = vdc_create_device_nodes(vdc); 736 if (status) { 737 DMSG(vdc, 0, "[%d] Failed to create device nodes", 738 instance); 739 goto return_status; 740 } 741 742 /* 743 * Fill in the fields of the error statistics kstat that were not 744 * available when creating the kstat 745 */ 746 vdc_set_err_kstats(vdc); 747 748 ddi_report_dev(dip); 749 vdc->lifecycle = VDC_LC_ONLINE; 750 DMSG(vdc, 0, "[%d] Attach tasks successful\n", instance); 751 752 return_status: 753 DMSG(vdc, 0, "[%d] Attach completed\n", instance); 754 return (status); 755 } 756 757 static int 758 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 759 { 760 int status; 761 762 switch (cmd) { 763 case DDI_ATTACH: 764 if ((status = vdc_do_attach(dip)) != 0) 765 (void) vdc_detach(dip, DDI_DETACH); 766 return (status); 767 case DDI_RESUME: 768 /* nothing to do for this non-device */ 769 return (DDI_SUCCESS); 770 default: 771 return (DDI_FAILURE); 772 } 773 } 774 775 static int 776 vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr) 777 { 778 int status = 0; 779 ldc_status_t ldc_state; 780 ldc_attr_t ldc_attr; 781 782 ASSERT(vdc != NULL); 783 ASSERT(srvr != NULL); 784 785 ldc_attr.devclass = LDC_DEV_BLK; 786 ldc_attr.instance = vdc->instance; 787 ldc_attr.mode = LDC_MODE_UNRELIABLE; /* unreliable transport */ 788 ldc_attr.mtu = VD_LDC_MTU; 789 790 if ((srvr->state & VDC_LDC_INIT) == 0) { 791 status = ldc_init(srvr->ldc_id, &ldc_attr, 792 &srvr->ldc_handle); 793 if (status != 0) { 794 DMSG(vdc, 0, "[%d] ldc_init(chan %ld) returned %d", 795 vdc->instance, srvr->ldc_id, status); 796 return (status); 797 } 798 srvr->state |= VDC_LDC_INIT; 799 } 800 status = ldc_status(srvr->ldc_handle, &ldc_state); 801 if (status != 0) { 802 DMSG(vdc, 0, "[%d] Cannot discover LDC status [err=%d]", 803 vdc->instance, status); 804 goto init_exit; 805 } 806 srvr->ldc_state = ldc_state; 807 808 if ((srvr->state & VDC_LDC_CB) == 0) { 809 status = ldc_reg_callback(srvr->ldc_handle, vdc_handle_cb, 810 (caddr_t)srvr); 811 if (status != 0) { 812 DMSG(vdc, 0, "[%d] LDC callback reg. failed (%d)", 813 vdc->instance, status); 814 goto init_exit; 815 } 816 srvr->state |= VDC_LDC_CB; 817 } 818 819 /* 820 * At this stage we have initialised LDC, we will now try and open 821 * the connection. 822 */ 823 if (srvr->ldc_state == LDC_INIT) { 824 status = ldc_open(srvr->ldc_handle); 825 if (status != 0) { 826 DMSG(vdc, 0, "[%d] ldc_open(chan %ld) returned %d", 827 vdc->instance, srvr->ldc_id, status); 828 goto init_exit; 829 } 830 srvr->state |= VDC_LDC_OPEN; 831 } 832 833 init_exit: 834 if (status) { 835 vdc_terminate_ldc(vdc, srvr); 836 } 837 838 return (status); 839 } 840 841 static int 842 vdc_start_ldc_connection(vdc_t *vdc) 843 { 844 int status = 0; 845 846 ASSERT(vdc != NULL); 847 848 ASSERT(MUTEX_HELD(&vdc->lock)); 849 850 status = vdc_do_ldc_up(vdc); 851 852 DMSG(vdc, 0, "[%d] Finished bringing up LDC\n", vdc->instance); 853 854 return (status); 855 } 856 857 static int 858 vdc_stop_ldc_connection(vdc_t *vdcp) 859 { 860 int status; 861 862 ASSERT(vdcp != NULL); 863 864 ASSERT(MUTEX_HELD(&vdcp->lock)); 865 866 DMSG(vdcp, 0, ": Resetting connection to vDisk server : state %d\n", 867 vdcp->state); 868 869 status = ldc_down(vdcp->curr_server->ldc_handle); 870 DMSG(vdcp, 0, "ldc_down() = %d\n", status); 871 872 vdcp->initialized &= ~VDC_HANDSHAKE; 873 DMSG(vdcp, 0, "initialized=%x\n", vdcp->initialized); 874 875 return (status); 876 } 877 878 static void 879 vdc_create_io_kstats(vdc_t *vdc) 880 { 881 if (vdc->io_stats != NULL) { 882 DMSG(vdc, 0, "[%d] I/O kstat already exists\n", vdc->instance); 883 return; 884 } 885 886 vdc->io_stats = kstat_create(VDC_DRIVER_NAME, vdc->instance, NULL, 887 "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 888 if (vdc->io_stats != NULL) { 889 vdc->io_stats->ks_lock = &vdc->lock; 890 kstat_install(vdc->io_stats); 891 } else { 892 cmn_err(CE_NOTE, "[%d] Failed to create kstat: I/O statistics" 893 " will not be gathered", vdc->instance); 894 } 895 } 896 897 static void 898 vdc_create_err_kstats(vdc_t *vdc) 899 { 900 vd_err_stats_t *stp; 901 char kstatmodule_err[KSTAT_STRLEN]; 902 char kstatname[KSTAT_STRLEN]; 903 int ndata = (sizeof (vd_err_stats_t) / sizeof (kstat_named_t)); 904 int instance = vdc->instance; 905 906 if (vdc->err_stats != NULL) { 907 DMSG(vdc, 0, "[%d] ERR kstat already exists\n", vdc->instance); 908 return; 909 } 910 911 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 912 "%serr", VDC_DRIVER_NAME); 913 (void) snprintf(kstatname, sizeof (kstatname), 914 "%s%d,err", VDC_DRIVER_NAME, instance); 915 916 vdc->err_stats = kstat_create(kstatmodule_err, instance, kstatname, 917 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 918 919 if (vdc->err_stats == NULL) { 920 cmn_err(CE_NOTE, "[%d] Failed to create kstat: Error statistics" 921 " will not be gathered", instance); 922 return; 923 } 924 925 stp = (vd_err_stats_t *)vdc->err_stats->ks_data; 926 kstat_named_init(&stp->vd_softerrs, "Soft Errors", 927 KSTAT_DATA_UINT32); 928 kstat_named_init(&stp->vd_transerrs, "Transport Errors", 929 KSTAT_DATA_UINT32); 930 kstat_named_init(&stp->vd_protoerrs, "Protocol Errors", 931 KSTAT_DATA_UINT32); 932 kstat_named_init(&stp->vd_vid, "Vendor", 933 KSTAT_DATA_CHAR); 934 kstat_named_init(&stp->vd_pid, "Product", 935 KSTAT_DATA_CHAR); 936 kstat_named_init(&stp->vd_capacity, "Size", 937 KSTAT_DATA_ULONGLONG); 938 939 vdc->err_stats->ks_update = nulldev; 940 941 kstat_install(vdc->err_stats); 942 } 943 944 static void 945 vdc_set_err_kstats(vdc_t *vdc) 946 { 947 vd_err_stats_t *stp; 948 949 if (vdc->err_stats == NULL) 950 return; 951 952 mutex_enter(&vdc->lock); 953 954 stp = (vd_err_stats_t *)vdc->err_stats->ks_data; 955 ASSERT(stp != NULL); 956 957 stp->vd_capacity.value.ui64 = vdc->vdisk_size * vdc->vdisk_bsize; 958 (void) strcpy(stp->vd_vid.value.c, "SUN"); 959 (void) strcpy(stp->vd_pid.value.c, "VDSK"); 960 961 mutex_exit(&vdc->lock); 962 } 963 964 static int 965 vdc_create_device_nodes_efi(vdc_t *vdc) 966 { 967 ddi_remove_minor_node(vdc->dip, "h"); 968 ddi_remove_minor_node(vdc->dip, "h,raw"); 969 970 if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK, 971 VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE), 972 DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 973 cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'", 974 vdc->instance); 975 return (EIO); 976 } 977 978 /* if any device node is created we set this flag */ 979 vdc->initialized |= VDC_MINOR; 980 981 if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR, 982 VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE), 983 DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 984 cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'", 985 vdc->instance); 986 return (EIO); 987 } 988 989 return (0); 990 } 991 992 static int 993 vdc_create_device_nodes_vtoc(vdc_t *vdc) 994 { 995 ddi_remove_minor_node(vdc->dip, "wd"); 996 ddi_remove_minor_node(vdc->dip, "wd,raw"); 997 998 if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK, 999 VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE), 1000 DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 1001 cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'", 1002 vdc->instance); 1003 return (EIO); 1004 } 1005 1006 /* if any device node is created we set this flag */ 1007 vdc->initialized |= VDC_MINOR; 1008 1009 if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR, 1010 VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE), 1011 DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 1012 cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'", 1013 vdc->instance); 1014 return (EIO); 1015 } 1016 1017 return (0); 1018 } 1019 1020 /* 1021 * Function: 1022 * vdc_create_device_nodes 1023 * 1024 * Description: 1025 * This function creates the block and character device nodes under 1026 * /devices. It is called as part of the attach(9E) of the instance 1027 * during the handshake with vds after vds has sent the attributes 1028 * to vdc. 1029 * 1030 * If the device is of type VD_DISK_TYPE_SLICE then the minor node 1031 * of 2 is used in keeping with the Solaris convention that slice 2 1032 * refers to a whole disk. Slices start at 'a' 1033 * 1034 * Parameters: 1035 * vdc - soft state pointer 1036 * 1037 * Return Values 1038 * 0 - Success 1039 * EIO - Failed to create node 1040 */ 1041 static int 1042 vdc_create_device_nodes(vdc_t *vdc) 1043 { 1044 char name[sizeof ("s,raw")]; 1045 dev_info_t *dip = NULL; 1046 int instance, status; 1047 int num_slices = 1; 1048 int i; 1049 1050 ASSERT(vdc != NULL); 1051 1052 instance = vdc->instance; 1053 dip = vdc->dip; 1054 1055 switch (vdc->vdisk_type) { 1056 case VD_DISK_TYPE_DISK: 1057 case VD_DISK_TYPE_UNK: 1058 num_slices = V_NUMPAR; 1059 break; 1060 case VD_DISK_TYPE_SLICE: 1061 num_slices = 1; 1062 break; 1063 default: 1064 ASSERT(0); 1065 } 1066 1067 /* 1068 * Minor nodes are different for EFI disks: EFI disks do not have 1069 * a minor node 'g' for the minor number corresponding to slice 1070 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd' 1071 * representing the whole disk. 1072 */ 1073 for (i = 0; i < num_slices; i++) { 1074 1075 if (i == VD_EFI_WD_SLICE) { 1076 if (vdc->vdisk_label == VD_DISK_LABEL_EFI) 1077 status = vdc_create_device_nodes_efi(vdc); 1078 else 1079 status = vdc_create_device_nodes_vtoc(vdc); 1080 if (status != 0) 1081 return (status); 1082 continue; 1083 } 1084 1085 (void) snprintf(name, sizeof (name), "%c", 'a' + i); 1086 if (ddi_create_minor_node(dip, name, S_IFBLK, 1087 VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 1088 cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'", 1089 instance, name); 1090 return (EIO); 1091 } 1092 1093 /* if any device node is created we set this flag */ 1094 vdc->initialized |= VDC_MINOR; 1095 1096 (void) snprintf(name, sizeof (name), "%c%s", 'a' + i, ",raw"); 1097 1098 if (ddi_create_minor_node(dip, name, S_IFCHR, 1099 VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 1100 cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'", 1101 instance, name); 1102 return (EIO); 1103 } 1104 } 1105 1106 return (0); 1107 } 1108 1109 /* 1110 * Driver prop_op(9e) entry point function. Return the number of blocks for 1111 * the partition in question or forward the request to the property facilities. 1112 */ 1113 static int 1114 vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 1115 char *name, caddr_t valuep, int *lengthp) 1116 { 1117 int instance = ddi_get_instance(dip); 1118 vdc_t *vdc; 1119 uint64_t nblocks; 1120 uint_t blksize; 1121 1122 vdc = ddi_get_soft_state(vdc_state, instance); 1123 1124 if (dev == DDI_DEV_T_ANY || vdc == NULL) { 1125 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 1126 name, valuep, lengthp)); 1127 } 1128 1129 mutex_enter(&vdc->lock); 1130 (void) vdc_validate_geometry(vdc); 1131 if (vdc->vdisk_label == VD_DISK_LABEL_UNK) { 1132 mutex_exit(&vdc->lock); 1133 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 1134 name, valuep, lengthp)); 1135 } 1136 nblocks = vdc->slice[VDCPART(dev)].nblocks; 1137 blksize = vdc->vdisk_bsize; 1138 mutex_exit(&vdc->lock); 1139 1140 return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags, 1141 name, valuep, lengthp, nblocks, blksize)); 1142 } 1143 1144 /* 1145 * Function: 1146 * vdc_is_opened 1147 * 1148 * Description: 1149 * This function checks if any slice of a given virtual disk is 1150 * currently opened. 1151 * 1152 * Parameters: 1153 * vdc - soft state pointer 1154 * 1155 * Return Values 1156 * B_TRUE - at least one slice is opened. 1157 * B_FALSE - no slice is opened. 1158 */ 1159 static boolean_t 1160 vdc_is_opened(vdc_t *vdc) 1161 { 1162 int i; 1163 1164 /* check if there's any layered open */ 1165 for (i = 0; i < V_NUMPAR; i++) { 1166 if (vdc->open_lyr[i] > 0) 1167 return (B_TRUE); 1168 } 1169 1170 /* check if there is any other kind of open */ 1171 for (i = 0; i < OTYPCNT; i++) { 1172 if (vdc->open[i] != 0) 1173 return (B_TRUE); 1174 } 1175 1176 return (B_FALSE); 1177 } 1178 1179 static int 1180 vdc_mark_opened(vdc_t *vdc, int slice, int flag, int otyp) 1181 { 1182 uint8_t slicemask; 1183 int i; 1184 1185 ASSERT(otyp < OTYPCNT); 1186 ASSERT(slice < V_NUMPAR); 1187 ASSERT(MUTEX_HELD(&vdc->lock)); 1188 1189 slicemask = 1 << slice; 1190 1191 /* 1192 * If we have a single-slice disk which was unavailable during the 1193 * attach then a device was created for each 8 slices. Now that 1194 * the type is known, we prevent opening any slice other than 0 1195 * even if a device still exists. 1196 */ 1197 if (vdc->vdisk_type == VD_DISK_TYPE_SLICE && slice != 0) 1198 return (EIO); 1199 1200 /* check if slice is already exclusively opened */ 1201 if (vdc->open_excl & slicemask) 1202 return (EBUSY); 1203 1204 /* if open exclusive, check if slice is already opened */ 1205 if (flag & FEXCL) { 1206 if (vdc->open_lyr[slice] > 0) 1207 return (EBUSY); 1208 for (i = 0; i < OTYPCNT; i++) { 1209 if (vdc->open[i] & slicemask) 1210 return (EBUSY); 1211 } 1212 vdc->open_excl |= slicemask; 1213 } 1214 1215 /* mark slice as opened */ 1216 if (otyp == OTYP_LYR) { 1217 vdc->open_lyr[slice]++; 1218 } else { 1219 vdc->open[otyp] |= slicemask; 1220 } 1221 1222 return (0); 1223 } 1224 1225 static void 1226 vdc_mark_closed(vdc_t *vdc, int slice, int flag, int otyp) 1227 { 1228 uint8_t slicemask; 1229 1230 ASSERT(otyp < OTYPCNT); 1231 ASSERT(slice < V_NUMPAR); 1232 ASSERT(MUTEX_HELD(&vdc->lock)); 1233 1234 slicemask = 1 << slice; 1235 1236 if (otyp == OTYP_LYR) { 1237 ASSERT(vdc->open_lyr[slice] > 0); 1238 vdc->open_lyr[slice]--; 1239 } else { 1240 vdc->open[otyp] &= ~slicemask; 1241 } 1242 1243 if (flag & FEXCL) 1244 vdc->open_excl &= ~slicemask; 1245 } 1246 1247 static int 1248 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred) 1249 { 1250 _NOTE(ARGUNUSED(cred)) 1251 1252 int instance, nodelay; 1253 int slice, status = 0; 1254 vdc_t *vdc; 1255 1256 ASSERT(dev != NULL); 1257 instance = VDCUNIT(*dev); 1258 1259 if (otyp >= OTYPCNT) 1260 return (EINVAL); 1261 1262 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 1263 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 1264 return (ENXIO); 1265 } 1266 1267 DMSG(vdc, 0, "minor = %d flag = %x, otyp = %x\n", 1268 getminor(*dev), flag, otyp); 1269 1270 slice = VDCPART(*dev); 1271 1272 nodelay = flag & (FNDELAY | FNONBLOCK); 1273 1274 if ((flag & FWRITE) && (!nodelay) && 1275 !(VD_OP_SUPPORTED(vdc->operations, VD_OP_BWRITE))) { 1276 return (EROFS); 1277 } 1278 1279 mutex_enter(&vdc->lock); 1280 1281 status = vdc_mark_opened(vdc, slice, flag, otyp); 1282 1283 if (status != 0) { 1284 mutex_exit(&vdc->lock); 1285 return (status); 1286 } 1287 1288 /* 1289 * If the disk type is unknown then we have to wait for the 1290 * handshake to complete because we don't know if the slice 1291 * device we are opening effectively exists. 1292 */ 1293 if (vdc->vdisk_type != VD_DISK_TYPE_UNK && nodelay) { 1294 1295 /* don't resubmit a validate request if there's already one */ 1296 if (vdc->validate_pending > 0) { 1297 mutex_exit(&vdc->lock); 1298 return (0); 1299 } 1300 1301 /* call vdc_validate() asynchronously to avoid blocking */ 1302 if (taskq_dispatch(system_taskq, vdc_validate_task, 1303 (void *)vdc, TQ_NOSLEEP) == NULL) { 1304 vdc_mark_closed(vdc, slice, flag, otyp); 1305 mutex_exit(&vdc->lock); 1306 return (ENXIO); 1307 } 1308 1309 vdc->validate_pending++; 1310 mutex_exit(&vdc->lock); 1311 return (0); 1312 } 1313 1314 mutex_exit(&vdc->lock); 1315 1316 vdc_validate(vdc); 1317 1318 mutex_enter(&vdc->lock); 1319 1320 if (vdc->vdisk_type == VD_DISK_TYPE_UNK || 1321 (vdc->vdisk_type == VD_DISK_TYPE_SLICE && slice != 0) || 1322 (!nodelay && (vdc->vdisk_label == VD_DISK_LABEL_UNK || 1323 vdc->slice[slice].nblocks == 0))) { 1324 vdc_mark_closed(vdc, slice, flag, otyp); 1325 status = EIO; 1326 } 1327 1328 mutex_exit(&vdc->lock); 1329 1330 return (status); 1331 } 1332 1333 static int 1334 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred) 1335 { 1336 _NOTE(ARGUNUSED(cred)) 1337 1338 int instance; 1339 int slice; 1340 int rv, rval; 1341 vdc_t *vdc; 1342 1343 instance = VDCUNIT(dev); 1344 1345 if (otyp >= OTYPCNT) 1346 return (EINVAL); 1347 1348 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 1349 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 1350 return (ENXIO); 1351 } 1352 1353 DMSG(vdc, 0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp); 1354 1355 slice = VDCPART(dev); 1356 1357 /* 1358 * Attempt to flush the W$ on a close operation. If this is 1359 * not a supported IOCTL command or the backing device is read-only 1360 * do not fail the close operation. 1361 */ 1362 rv = vd_process_ioctl(dev, DKIOCFLUSHWRITECACHE, NULL, FKIOCTL, &rval); 1363 1364 if (rv != 0 && rv != ENOTSUP && rv != ENOTTY && rv != EROFS) { 1365 DMSG(vdc, 0, "[%d] flush failed with error %d on close\n", 1366 instance, rv); 1367 return (EIO); 1368 } 1369 1370 mutex_enter(&vdc->lock); 1371 vdc_mark_closed(vdc, slice, flag, otyp); 1372 mutex_exit(&vdc->lock); 1373 1374 return (0); 1375 } 1376 1377 static int 1378 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) 1379 { 1380 _NOTE(ARGUNUSED(credp)) 1381 1382 return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode, rvalp)); 1383 } 1384 1385 static int 1386 vdc_print(dev_t dev, char *str) 1387 { 1388 cmn_err(CE_NOTE, "vdc%d: %s", VDCUNIT(dev), str); 1389 return (0); 1390 } 1391 1392 static int 1393 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 1394 { 1395 int rv, flags; 1396 size_t nbytes = nblk * DEV_BSIZE; 1397 int instance = VDCUNIT(dev); 1398 vdc_t *vdc = NULL; 1399 diskaddr_t vio_blkno; 1400 1401 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 1402 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 1403 return (ENXIO); 1404 } 1405 1406 DMSG(vdc, 2, "[%d] dump %ld bytes at block 0x%lx : addr=0x%p\n", 1407 instance, nbytes, blkno, (void *)addr); 1408 1409 /* convert logical block to vio block */ 1410 if ((blkno & vdc->vio_bmask) != 0) { 1411 DMSG(vdc, 0, "Misaligned block number (%lu)\n", blkno); 1412 return (EINVAL); 1413 } 1414 vio_blkno = blkno >> vdc->vio_bshift; 1415 1416 /* 1417 * If we are panicking, we need the state to be "running" so that we 1418 * can submit I/Os, but we don't want to check for any backend error. 1419 */ 1420 flags = (ddi_in_panic())? VDC_OP_STATE_RUNNING : VDC_OP_NORMAL; 1421 1422 rv = vdc_do_op(vdc, VD_OP_BWRITE, addr, nbytes, VDCPART(dev), 1423 vio_blkno, NULL, VIO_write_dir, flags); 1424 1425 if (rv) { 1426 DMSG(vdc, 0, "Failed to do a disk dump (err=%d)\n", rv); 1427 return (rv); 1428 } 1429 1430 DMSG(vdc, 0, "[%d] End\n", instance); 1431 1432 return (0); 1433 } 1434 1435 /* -------------------------------------------------------------------------- */ 1436 1437 /* 1438 * Disk access routines 1439 * 1440 */ 1441 1442 /* 1443 * vdc_strategy() 1444 * 1445 * Return Value: 1446 * 0: As per strategy(9E), the strategy() function must return 0 1447 * [ bioerror(9f) sets b_flags to the proper error code ] 1448 */ 1449 static int 1450 vdc_strategy(struct buf *buf) 1451 { 1452 diskaddr_t vio_blkno; 1453 vdc_t *vdc = NULL; 1454 int instance = VDCUNIT(buf->b_edev); 1455 int op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE; 1456 int slice; 1457 1458 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 1459 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 1460 bioerror(buf, ENXIO); 1461 biodone(buf); 1462 return (0); 1463 } 1464 1465 DMSG(vdc, 2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p\n", 1466 instance, (buf->b_flags & B_READ) ? "Read" : "Write", 1467 buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr); 1468 1469 bp_mapin(buf); 1470 1471 if ((long)buf->b_private == VD_SLICE_NONE) { 1472 /* I/O using an absolute disk offset */ 1473 slice = VD_SLICE_NONE; 1474 } else { 1475 slice = VDCPART(buf->b_edev); 1476 } 1477 1478 /* 1479 * In the buf structure, b_lblkno represents a logical block number 1480 * using a block size of 512 bytes. For the VIO request, this block 1481 * number has to be converted to be represented with the block size 1482 * used by the VIO protocol. 1483 */ 1484 if ((buf->b_lblkno & vdc->vio_bmask) != 0) { 1485 bioerror(buf, EINVAL); 1486 biodone(buf); 1487 return (0); 1488 } 1489 vio_blkno = buf->b_lblkno >> vdc->vio_bshift; 1490 1491 /* submit the I/O, any error will be reported in the buf structure */ 1492 (void) vdc_do_op(vdc, op, (caddr_t)buf->b_un.b_addr, 1493 buf->b_bcount, slice, vio_blkno, 1494 buf, (op == VD_OP_BREAD) ? VIO_read_dir : VIO_write_dir, 1495 VDC_OP_NORMAL); 1496 1497 return (0); 1498 } 1499 1500 /* 1501 * Function: 1502 * vdc_min 1503 * 1504 * Description: 1505 * Routine to limit the size of a data transfer. Used in 1506 * conjunction with physio(9F). 1507 * 1508 * Arguments: 1509 * bp - pointer to the indicated buf(9S) struct. 1510 * 1511 */ 1512 static void 1513 vdc_min(struct buf *bufp) 1514 { 1515 vdc_t *vdc = NULL; 1516 int instance = VDCUNIT(bufp->b_edev); 1517 1518 vdc = ddi_get_soft_state(vdc_state, instance); 1519 VERIFY(vdc != NULL); 1520 1521 if (bufp->b_bcount > (vdc->max_xfer_sz * vdc->vdisk_bsize)) { 1522 bufp->b_bcount = vdc->max_xfer_sz * vdc->vdisk_bsize; 1523 } 1524 } 1525 1526 static int 1527 vdc_read(dev_t dev, struct uio *uio, cred_t *cred) 1528 { 1529 _NOTE(ARGUNUSED(cred)) 1530 1531 DMSGX(1, "[%d] Entered", VDCUNIT(dev)); 1532 return (physio(vdc_strategy, NULL, dev, B_READ, vdc_min, uio)); 1533 } 1534 1535 static int 1536 vdc_write(dev_t dev, struct uio *uio, cred_t *cred) 1537 { 1538 _NOTE(ARGUNUSED(cred)) 1539 1540 DMSGX(1, "[%d] Entered", VDCUNIT(dev)); 1541 return (physio(vdc_strategy, NULL, dev, B_WRITE, vdc_min, uio)); 1542 } 1543 1544 static int 1545 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred) 1546 { 1547 _NOTE(ARGUNUSED(cred)) 1548 1549 DMSGX(1, "[%d] Entered", VDCUNIT(dev)); 1550 return (aphysio(vdc_strategy, anocancel, dev, B_READ, vdc_min, aio)); 1551 } 1552 1553 static int 1554 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred) 1555 { 1556 _NOTE(ARGUNUSED(cred)) 1557 1558 DMSGX(1, "[%d] Entered", VDCUNIT(dev)); 1559 return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, vdc_min, aio)); 1560 } 1561 1562 1563 /* -------------------------------------------------------------------------- */ 1564 1565 /* 1566 * Handshake support 1567 */ 1568 1569 1570 /* 1571 * Function: 1572 * vdc_init_ver_negotiation() 1573 * 1574 * Description: 1575 * 1576 * Arguments: 1577 * vdc - soft state pointer for this instance of the device driver. 1578 * 1579 * Return Code: 1580 * 0 - Success 1581 */ 1582 static int 1583 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver) 1584 { 1585 vio_ver_msg_t pkt; 1586 size_t msglen = sizeof (pkt); 1587 int status = -1; 1588 1589 ASSERT(vdc != NULL); 1590 ASSERT(mutex_owned(&vdc->lock)); 1591 1592 DMSG(vdc, 0, "[%d] Entered.\n", vdc->instance); 1593 1594 /* 1595 * set the Session ID to a unique value 1596 * (the lower 32 bits of the clock tick) 1597 */ 1598 vdc->session_id = ((uint32_t)gettick() & 0xffffffff); 1599 DMSG(vdc, 0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id); 1600 1601 pkt.tag.vio_msgtype = VIO_TYPE_CTRL; 1602 pkt.tag.vio_subtype = VIO_SUBTYPE_INFO; 1603 pkt.tag.vio_subtype_env = VIO_VER_INFO; 1604 pkt.tag.vio_sid = vdc->session_id; 1605 pkt.dev_class = VDEV_DISK; 1606 pkt.ver_major = ver.major; 1607 pkt.ver_minor = ver.minor; 1608 1609 status = vdc_send(vdc, (caddr_t)&pkt, &msglen); 1610 DMSG(vdc, 0, "[%d] Ver info sent (status = %d)\n", 1611 vdc->instance, status); 1612 if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) { 1613 DMSG(vdc, 0, "[%d] Failed to send Ver negotiation info: " 1614 "id(%lx) rv(%d) size(%ld)", vdc->instance, 1615 vdc->curr_server->ldc_handle, status, msglen); 1616 if (msglen != sizeof (vio_ver_msg_t)) 1617 status = ENOMSG; 1618 } 1619 1620 return (status); 1621 } 1622 1623 /* 1624 * Function: 1625 * vdc_ver_negotiation() 1626 * 1627 * Description: 1628 * 1629 * Arguments: 1630 * vdcp - soft state pointer for this instance of the device driver. 1631 * 1632 * Return Code: 1633 * 0 - Success 1634 */ 1635 static int 1636 vdc_ver_negotiation(vdc_t *vdcp) 1637 { 1638 vio_msg_t vio_msg; 1639 int status; 1640 1641 if (status = vdc_init_ver_negotiation(vdcp, vdc_version[0])) 1642 return (status); 1643 1644 /* release lock and wait for response */ 1645 mutex_exit(&vdcp->lock); 1646 status = vdc_wait_for_response(vdcp, &vio_msg); 1647 mutex_enter(&vdcp->lock); 1648 if (status) { 1649 DMSG(vdcp, 0, 1650 "[%d] Failed waiting for Ver negotiation response, rv(%d)", 1651 vdcp->instance, status); 1652 return (status); 1653 } 1654 1655 /* check type and sub_type ... */ 1656 if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL || 1657 vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) { 1658 DMSG(vdcp, 0, "[%d] Invalid ver negotiation response\n", 1659 vdcp->instance); 1660 return (EPROTO); 1661 } 1662 1663 return (vdc_handle_ver_msg(vdcp, (vio_ver_msg_t *)&vio_msg)); 1664 } 1665 1666 /* 1667 * Function: 1668 * vdc_init_attr_negotiation() 1669 * 1670 * Description: 1671 * 1672 * Arguments: 1673 * vdc - soft state pointer for this instance of the device driver. 1674 * 1675 * Return Code: 1676 * 0 - Success 1677 */ 1678 static int 1679 vdc_init_attr_negotiation(vdc_t *vdc) 1680 { 1681 vd_attr_msg_t pkt; 1682 size_t msglen = sizeof (pkt); 1683 int status; 1684 1685 ASSERT(vdc != NULL); 1686 ASSERT(mutex_owned(&vdc->lock)); 1687 1688 DMSG(vdc, 0, "[%d] entered\n", vdc->instance); 1689 1690 /* fill in tag */ 1691 pkt.tag.vio_msgtype = VIO_TYPE_CTRL; 1692 pkt.tag.vio_subtype = VIO_SUBTYPE_INFO; 1693 pkt.tag.vio_subtype_env = VIO_ATTR_INFO; 1694 pkt.tag.vio_sid = vdc->session_id; 1695 /* fill in payload */ 1696 pkt.max_xfer_sz = vdc->max_xfer_sz; 1697 pkt.vdisk_block_size = vdc->vdisk_bsize; 1698 pkt.xfer_mode = VIO_DRING_MODE_V1_0; 1699 pkt.operations = 0; /* server will set bits of valid operations */ 1700 pkt.vdisk_type = 0; /* server will set to valid device type */ 1701 pkt.vdisk_media = 0; /* server will set to valid media type */ 1702 pkt.vdisk_size = 0; /* server will set to valid size */ 1703 1704 status = vdc_send(vdc, (caddr_t)&pkt, &msglen); 1705 DMSG(vdc, 0, "Attr info sent (status = %d)\n", status); 1706 1707 if ((status != 0) || (msglen != sizeof (vd_attr_msg_t))) { 1708 DMSG(vdc, 0, "[%d] Failed to send Attr negotiation info: " 1709 "id(%lx) rv(%d) size(%ld)", vdc->instance, 1710 vdc->curr_server->ldc_handle, status, msglen); 1711 if (msglen != sizeof (vd_attr_msg_t)) 1712 status = ENOMSG; 1713 } 1714 1715 return (status); 1716 } 1717 1718 /* 1719 * Function: 1720 * vdc_attr_negotiation() 1721 * 1722 * Description: 1723 * 1724 * Arguments: 1725 * vdc - soft state pointer for this instance of the device driver. 1726 * 1727 * Return Code: 1728 * 0 - Success 1729 */ 1730 static int 1731 vdc_attr_negotiation(vdc_t *vdcp) 1732 { 1733 int status; 1734 vio_msg_t vio_msg; 1735 1736 if (status = vdc_init_attr_negotiation(vdcp)) 1737 return (status); 1738 1739 /* release lock and wait for response */ 1740 mutex_exit(&vdcp->lock); 1741 status = vdc_wait_for_response(vdcp, &vio_msg); 1742 mutex_enter(&vdcp->lock); 1743 if (status) { 1744 DMSG(vdcp, 0, 1745 "[%d] Failed waiting for Attr negotiation response, rv(%d)", 1746 vdcp->instance, status); 1747 return (status); 1748 } 1749 1750 /* check type and sub_type ... */ 1751 if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL || 1752 vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) { 1753 DMSG(vdcp, 0, "[%d] Invalid attr negotiation response\n", 1754 vdcp->instance); 1755 return (EPROTO); 1756 } 1757 1758 return (vdc_handle_attr_msg(vdcp, (vd_attr_msg_t *)&vio_msg)); 1759 } 1760 1761 1762 /* 1763 * Function: 1764 * vdc_init_dring_negotiate() 1765 * 1766 * Description: 1767 * 1768 * Arguments: 1769 * vdc - soft state pointer for this instance of the device driver. 1770 * 1771 * Return Code: 1772 * 0 - Success 1773 */ 1774 static int 1775 vdc_init_dring_negotiate(vdc_t *vdc) 1776 { 1777 vio_dring_reg_msg_t pkt; 1778 size_t msglen = sizeof (pkt); 1779 int status = -1; 1780 int retry; 1781 int nretries = 10; 1782 1783 ASSERT(vdc != NULL); 1784 ASSERT(mutex_owned(&vdc->lock)); 1785 1786 for (retry = 0; retry < nretries; retry++) { 1787 status = vdc_init_descriptor_ring(vdc); 1788 if (status != EAGAIN) 1789 break; 1790 drv_usecwait(vdc_min_timeout_ldc); 1791 } 1792 1793 if (status != 0) { 1794 DMSG(vdc, 0, "[%d] Failed to init DRing (status = %d)\n", 1795 vdc->instance, status); 1796 return (status); 1797 } 1798 1799 DMSG(vdc, 0, "[%d] Init of descriptor ring completed (status = %d)\n", 1800 vdc->instance, status); 1801 1802 /* fill in tag */ 1803 pkt.tag.vio_msgtype = VIO_TYPE_CTRL; 1804 pkt.tag.vio_subtype = VIO_SUBTYPE_INFO; 1805 pkt.tag.vio_subtype_env = VIO_DRING_REG; 1806 pkt.tag.vio_sid = vdc->session_id; 1807 /* fill in payload */ 1808 pkt.dring_ident = 0; 1809 pkt.num_descriptors = vdc->dring_len; 1810 pkt.descriptor_size = vdc->dring_entry_size; 1811 pkt.options = (VIO_TX_DRING | VIO_RX_DRING); 1812 pkt.ncookies = vdc->dring_cookie_count; 1813 pkt.cookie[0] = vdc->dring_cookie[0]; /* for now just one cookie */ 1814 1815 status = vdc_send(vdc, (caddr_t)&pkt, &msglen); 1816 if (status != 0) { 1817 DMSG(vdc, 0, "[%d] Failed to register DRing (err = %d)", 1818 vdc->instance, status); 1819 } 1820 1821 return (status); 1822 } 1823 1824 1825 /* 1826 * Function: 1827 * vdc_dring_negotiation() 1828 * 1829 * Description: 1830 * 1831 * Arguments: 1832 * vdc - soft state pointer for this instance of the device driver. 1833 * 1834 * Return Code: 1835 * 0 - Success 1836 */ 1837 static int 1838 vdc_dring_negotiation(vdc_t *vdcp) 1839 { 1840 int status; 1841 vio_msg_t vio_msg; 1842 1843 if (status = vdc_init_dring_negotiate(vdcp)) 1844 return (status); 1845 1846 /* release lock and wait for response */ 1847 mutex_exit(&vdcp->lock); 1848 status = vdc_wait_for_response(vdcp, &vio_msg); 1849 mutex_enter(&vdcp->lock); 1850 if (status) { 1851 DMSG(vdcp, 0, 1852 "[%d] Failed waiting for Dring negotiation response," 1853 " rv(%d)", vdcp->instance, status); 1854 return (status); 1855 } 1856 1857 /* check type and sub_type ... */ 1858 if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL || 1859 vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) { 1860 DMSG(vdcp, 0, "[%d] Invalid Dring negotiation response\n", 1861 vdcp->instance); 1862 return (EPROTO); 1863 } 1864 1865 return (vdc_handle_dring_reg_msg(vdcp, 1866 (vio_dring_reg_msg_t *)&vio_msg)); 1867 } 1868 1869 1870 /* 1871 * Function: 1872 * vdc_send_rdx() 1873 * 1874 * Description: 1875 * 1876 * Arguments: 1877 * vdc - soft state pointer for this instance of the device driver. 1878 * 1879 * Return Code: 1880 * 0 - Success 1881 */ 1882 static int 1883 vdc_send_rdx(vdc_t *vdcp) 1884 { 1885 vio_msg_t msg; 1886 size_t msglen = sizeof (vio_msg_t); 1887 int status; 1888 1889 /* 1890 * Send an RDX message to vds to indicate we are ready 1891 * to send data 1892 */ 1893 msg.tag.vio_msgtype = VIO_TYPE_CTRL; 1894 msg.tag.vio_subtype = VIO_SUBTYPE_INFO; 1895 msg.tag.vio_subtype_env = VIO_RDX; 1896 msg.tag.vio_sid = vdcp->session_id; 1897 status = vdc_send(vdcp, (caddr_t)&msg, &msglen); 1898 if (status != 0) { 1899 DMSG(vdcp, 0, "[%d] Failed to send RDX message (%d)", 1900 vdcp->instance, status); 1901 } 1902 1903 return (status); 1904 } 1905 1906 /* 1907 * Function: 1908 * vdc_handle_rdx() 1909 * 1910 * Description: 1911 * 1912 * Arguments: 1913 * vdc - soft state pointer for this instance of the device driver. 1914 * msgp - received msg 1915 * 1916 * Return Code: 1917 * 0 - Success 1918 */ 1919 static int 1920 vdc_handle_rdx(vdc_t *vdcp, vio_rdx_msg_t *msgp) 1921 { 1922 _NOTE(ARGUNUSED(vdcp)) 1923 _NOTE(ARGUNUSED(msgp)) 1924 1925 ASSERT(msgp->tag.vio_msgtype == VIO_TYPE_CTRL); 1926 ASSERT(msgp->tag.vio_subtype == VIO_SUBTYPE_ACK); 1927 ASSERT(msgp->tag.vio_subtype_env == VIO_RDX); 1928 1929 DMSG(vdcp, 1, "[%d] Got an RDX msg", vdcp->instance); 1930 1931 return (0); 1932 } 1933 1934 /* 1935 * Function: 1936 * vdc_rdx_exchange() 1937 * 1938 * Description: 1939 * 1940 * Arguments: 1941 * vdc - soft state pointer for this instance of the device driver. 1942 * 1943 * Return Code: 1944 * 0 - Success 1945 */ 1946 static int 1947 vdc_rdx_exchange(vdc_t *vdcp) 1948 { 1949 int status; 1950 vio_msg_t vio_msg; 1951 1952 if (status = vdc_send_rdx(vdcp)) 1953 return (status); 1954 1955 /* release lock and wait for response */ 1956 mutex_exit(&vdcp->lock); 1957 status = vdc_wait_for_response(vdcp, &vio_msg); 1958 mutex_enter(&vdcp->lock); 1959 if (status) { 1960 DMSG(vdcp, 0, "[%d] Failed waiting for RDX response, rv(%d)", 1961 vdcp->instance, status); 1962 return (status); 1963 } 1964 1965 /* check type and sub_type ... */ 1966 if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL || 1967 vio_msg.tag.vio_subtype != VIO_SUBTYPE_ACK) { 1968 DMSG(vdcp, 0, "[%d] Invalid RDX response\n", vdcp->instance); 1969 return (EPROTO); 1970 } 1971 1972 return (vdc_handle_rdx(vdcp, (vio_rdx_msg_t *)&vio_msg)); 1973 } 1974 1975 1976 /* -------------------------------------------------------------------------- */ 1977 1978 /* 1979 * LDC helper routines 1980 */ 1981 1982 static int 1983 vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp) 1984 { 1985 int status; 1986 uint64_t delay_time; 1987 size_t len; 1988 1989 /* 1990 * Until we get a blocking ldc read we have to retry until the entire 1991 * LDC message has arrived before ldc_read() will return that message. 1992 * If ldc_read() succeed but returns a zero length message then that 1993 * means that the LDC queue is empty and we have to wait for a 1994 * notification from the LDC callback which will set the read_state to 1995 * VDC_READ_PENDING. Note we also bail out if the channel is reset or 1996 * goes away. 1997 */ 1998 delay_time = vdc_ldc_read_init_delay; 1999 2000 for (;;) { 2001 2002 len = *nbytesp; 2003 /* 2004 * vdc->curr_server is protected by vdc->lock but to avoid 2005 * contentions we don't take the lock here. We can do this 2006 * safely because vdc_recv() is only called from thread 2007 * process_msg_thread() which is also the only thread that 2008 * can change vdc->curr_server. 2009 */ 2010 status = ldc_read(vdc->curr_server->ldc_handle, 2011 (caddr_t)msgp, &len); 2012 2013 if (status == EAGAIN) { 2014 delay_time *= 2; 2015 if (delay_time >= vdc_ldc_read_max_delay) 2016 delay_time = vdc_ldc_read_max_delay; 2017 delay(delay_time); 2018 continue; 2019 } 2020 2021 if (status != 0) { 2022 DMSG(vdc, 0, "ldc_read returned %d\n", status); 2023 break; 2024 } 2025 2026 if (len != 0) { 2027 *nbytesp = len; 2028 break; 2029 } 2030 2031 mutex_enter(&vdc->read_lock); 2032 2033 while (vdc->read_state != VDC_READ_PENDING) { 2034 2035 /* detect if the connection has been reset */ 2036 if (vdc->read_state == VDC_READ_RESET) { 2037 mutex_exit(&vdc->read_lock); 2038 return (ECONNRESET); 2039 } 2040 2041 vdc->read_state = VDC_READ_WAITING; 2042 cv_wait(&vdc->read_cv, &vdc->read_lock); 2043 } 2044 2045 vdc->read_state = VDC_READ_IDLE; 2046 mutex_exit(&vdc->read_lock); 2047 2048 delay_time = vdc_ldc_read_init_delay; 2049 } 2050 2051 return (status); 2052 } 2053 2054 2055 2056 #ifdef DEBUG 2057 void 2058 vdc_decode_tag(vdc_t *vdcp, vio_msg_t *msg) 2059 { 2060 char *ms, *ss, *ses; 2061 switch (msg->tag.vio_msgtype) { 2062 #define Q(_s) case _s : ms = #_s; break; 2063 Q(VIO_TYPE_CTRL) 2064 Q(VIO_TYPE_DATA) 2065 Q(VIO_TYPE_ERR) 2066 #undef Q 2067 default: ms = "unknown"; break; 2068 } 2069 2070 switch (msg->tag.vio_subtype) { 2071 #define Q(_s) case _s : ss = #_s; break; 2072 Q(VIO_SUBTYPE_INFO) 2073 Q(VIO_SUBTYPE_ACK) 2074 Q(VIO_SUBTYPE_NACK) 2075 #undef Q 2076 default: ss = "unknown"; break; 2077 } 2078 2079 switch (msg->tag.vio_subtype_env) { 2080 #define Q(_s) case _s : ses = #_s; break; 2081 Q(VIO_VER_INFO) 2082 Q(VIO_ATTR_INFO) 2083 Q(VIO_DRING_REG) 2084 Q(VIO_DRING_UNREG) 2085 Q(VIO_RDX) 2086 Q(VIO_PKT_DATA) 2087 Q(VIO_DESC_DATA) 2088 Q(VIO_DRING_DATA) 2089 #undef Q 2090 default: ses = "unknown"; break; 2091 } 2092 2093 DMSG(vdcp, 3, "(%x/%x/%x) message : (%s/%s/%s)\n", 2094 msg->tag.vio_msgtype, msg->tag.vio_subtype, 2095 msg->tag.vio_subtype_env, ms, ss, ses); 2096 } 2097 #endif 2098 2099 /* 2100 * Function: 2101 * vdc_send() 2102 * 2103 * Description: 2104 * The function encapsulates the call to write a message using LDC. 2105 * If LDC indicates that the call failed due to the queue being full, 2106 * we retry the ldc_write(), otherwise we return the error returned by LDC. 2107 * 2108 * Arguments: 2109 * ldc_handle - LDC handle for the channel this instance of vdc uses 2110 * pkt - address of LDC message to be sent 2111 * msglen - the size of the message being sent. When the function 2112 * returns, this contains the number of bytes written. 2113 * 2114 * Return Code: 2115 * 0 - Success. 2116 * EINVAL - pkt or msglen were NULL 2117 * ECONNRESET - The connection was not up. 2118 * EWOULDBLOCK - LDC queue is full 2119 * xxx - other error codes returned by ldc_write 2120 */ 2121 static int 2122 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen) 2123 { 2124 size_t size = 0; 2125 int status = 0; 2126 clock_t delay_ticks; 2127 2128 ASSERT(vdc != NULL); 2129 ASSERT(mutex_owned(&vdc->lock)); 2130 ASSERT(msglen != NULL); 2131 ASSERT(*msglen != 0); 2132 2133 #ifdef DEBUG 2134 vdc_decode_tag(vdc, (vio_msg_t *)(uintptr_t)pkt); 2135 #endif 2136 /* 2137 * Wait indefinitely to send if channel 2138 * is busy, but bail out if we succeed or 2139 * if the channel closes or is reset. 2140 */ 2141 delay_ticks = vdc_hz_min_ldc_delay; 2142 do { 2143 size = *msglen; 2144 status = ldc_write(vdc->curr_server->ldc_handle, pkt, &size); 2145 if (status == EWOULDBLOCK) { 2146 delay(delay_ticks); 2147 /* geometric backoff */ 2148 delay_ticks *= 2; 2149 if (delay_ticks > vdc_hz_max_ldc_delay) 2150 delay_ticks = vdc_hz_max_ldc_delay; 2151 } 2152 } while (status == EWOULDBLOCK); 2153 2154 /* if LDC had serious issues --- reset vdc state */ 2155 if (status == EIO || status == ECONNRESET) { 2156 /* LDC had serious issues --- reset vdc state */ 2157 mutex_enter(&vdc->read_lock); 2158 if ((vdc->read_state == VDC_READ_WAITING) || 2159 (vdc->read_state == VDC_READ_RESET)) 2160 cv_signal(&vdc->read_cv); 2161 vdc->read_state = VDC_READ_RESET; 2162 mutex_exit(&vdc->read_lock); 2163 2164 /* wake up any waiters in the reset thread */ 2165 if (vdc->state == VDC_STATE_INIT_WAITING) { 2166 DMSG(vdc, 0, "[%d] write reset - " 2167 "vdc is resetting ..\n", vdc->instance); 2168 vdc->state = VDC_STATE_RESETTING; 2169 cv_signal(&vdc->initwait_cv); 2170 } 2171 2172 return (ECONNRESET); 2173 } 2174 2175 /* return the last size written */ 2176 *msglen = size; 2177 2178 return (status); 2179 } 2180 2181 /* 2182 * Function: 2183 * vdc_get_md_node 2184 * 2185 * Description: 2186 * Get the MD, the device node for the given disk instance. The 2187 * caller is responsible for cleaning up the reference to the 2188 * returned MD (mdpp) by calling md_fini_handle(). 2189 * 2190 * Arguments: 2191 * dip - dev info pointer for this instance of the device driver. 2192 * mdpp - the returned MD. 2193 * vd_nodep - the returned device node. 2194 * 2195 * Return Code: 2196 * 0 - Success. 2197 * ENOENT - Expected node or property did not exist. 2198 * ENXIO - Unexpected error communicating with MD framework 2199 */ 2200 static int 2201 vdc_get_md_node(dev_info_t *dip, md_t **mdpp, mde_cookie_t *vd_nodep) 2202 { 2203 int status = ENOENT; 2204 char *node_name = NULL; 2205 md_t *mdp = NULL; 2206 int num_nodes; 2207 int num_vdevs; 2208 mde_cookie_t rootnode; 2209 mde_cookie_t *listp = NULL; 2210 boolean_t found_inst = B_FALSE; 2211 int listsz; 2212 int idx; 2213 uint64_t md_inst; 2214 int obp_inst; 2215 int instance = ddi_get_instance(dip); 2216 2217 /* 2218 * Get the OBP instance number for comparison with the MD instance 2219 * 2220 * The "cfg-handle" property of a vdc node in an MD contains the MD's 2221 * notion of "instance", or unique identifier, for that node; OBP 2222 * stores the value of the "cfg-handle" MD property as the value of 2223 * the "reg" property on the node in the device tree it builds from 2224 * the MD and passes to Solaris. Thus, we look up the devinfo node's 2225 * "reg" property value to uniquely identify this device instance. 2226 * If the "reg" property cannot be found, the device tree state is 2227 * presumably so broken that there is no point in continuing. 2228 */ 2229 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) { 2230 cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG); 2231 return (ENOENT); 2232 } 2233 obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2234 OBP_REG, -1); 2235 DMSGX(1, "[%d] OBP inst=%d\n", instance, obp_inst); 2236 2237 /* 2238 * We now walk the MD nodes to find the node for this vdisk. 2239 */ 2240 if ((mdp = md_get_handle()) == NULL) { 2241 cmn_err(CE_WARN, "unable to init machine description"); 2242 return (ENXIO); 2243 } 2244 2245 num_nodes = md_node_count(mdp); 2246 ASSERT(num_nodes > 0); 2247 2248 listsz = num_nodes * sizeof (mde_cookie_t); 2249 2250 /* allocate memory for nodes */ 2251 listp = kmem_zalloc(listsz, KM_SLEEP); 2252 2253 rootnode = md_root_node(mdp); 2254 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 2255 2256 /* 2257 * Search for all the virtual devices, we will then check to see which 2258 * ones are disk nodes. 2259 */ 2260 num_vdevs = md_scan_dag(mdp, rootnode, 2261 md_find_name(mdp, VDC_MD_VDEV_NAME), 2262 md_find_name(mdp, "fwd"), listp); 2263 2264 if (num_vdevs <= 0) { 2265 cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME); 2266 status = ENOENT; 2267 goto done; 2268 } 2269 2270 DMSGX(1, "[%d] num_vdevs=%d\n", instance, num_vdevs); 2271 for (idx = 0; idx < num_vdevs; idx++) { 2272 status = md_get_prop_str(mdp, listp[idx], "name", &node_name); 2273 if ((status != 0) || (node_name == NULL)) { 2274 cmn_err(CE_NOTE, "Unable to get name of node type '%s'" 2275 ": err %d", VDC_MD_VDEV_NAME, status); 2276 continue; 2277 } 2278 2279 DMSGX(1, "[%d] Found node '%s'\n", instance, node_name); 2280 if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) { 2281 status = md_get_prop_val(mdp, listp[idx], 2282 VDC_MD_CFG_HDL, &md_inst); 2283 DMSGX(1, "[%d] vdc inst in MD=%lx\n", 2284 instance, md_inst); 2285 if ((status == 0) && (md_inst == obp_inst)) { 2286 found_inst = B_TRUE; 2287 break; 2288 } 2289 } 2290 } 2291 2292 if (!found_inst) { 2293 DMSGX(0, "Unable to find correct '%s' node", VDC_MD_DISK_NAME); 2294 status = ENOENT; 2295 goto done; 2296 } 2297 DMSGX(0, "[%d] MD inst=%lx\n", instance, md_inst); 2298 2299 *vd_nodep = listp[idx]; 2300 *mdpp = mdp; 2301 done: 2302 kmem_free(listp, listsz); 2303 return (status); 2304 } 2305 2306 /* 2307 * Function: 2308 * vdc_init_ports 2309 * 2310 * Description: 2311 * Initialize all the ports for this vdisk instance. 2312 * 2313 * Arguments: 2314 * vdc - soft state pointer for this instance of the device driver. 2315 * mdp - md pointer 2316 * vd_nodep - device md node. 2317 * 2318 * Return Code: 2319 * 0 - Success. 2320 * ENOENT - Expected node or property did not exist. 2321 */ 2322 static int 2323 vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep) 2324 { 2325 int status = 0; 2326 int idx; 2327 int num_nodes; 2328 int num_vports; 2329 int num_chans; 2330 int listsz; 2331 mde_cookie_t vd_port; 2332 mde_cookie_t *chanp = NULL; 2333 mde_cookie_t *portp = NULL; 2334 vdc_server_t *srvr; 2335 vdc_server_t *prev_srvr = NULL; 2336 2337 /* 2338 * We now walk the MD nodes to find the port nodes for this vdisk. 2339 */ 2340 num_nodes = md_node_count(mdp); 2341 ASSERT(num_nodes > 0); 2342 2343 listsz = num_nodes * sizeof (mde_cookie_t); 2344 2345 /* allocate memory for nodes */ 2346 portp = kmem_zalloc(listsz, KM_SLEEP); 2347 chanp = kmem_zalloc(listsz, KM_SLEEP); 2348 2349 num_vports = md_scan_dag(mdp, vd_nodep, 2350 md_find_name(mdp, VDC_MD_PORT_NAME), 2351 md_find_name(mdp, "fwd"), portp); 2352 if (num_vports == 0) { 2353 DMSGX(0, "Found no '%s' node for '%s' port\n", 2354 VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME); 2355 status = ENOENT; 2356 goto done; 2357 } 2358 2359 DMSGX(1, "Found %d '%s' node(s) for '%s' port\n", 2360 num_vports, VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME); 2361 2362 vdc->num_servers = 0; 2363 for (idx = 0; idx < num_vports; idx++) { 2364 2365 /* initialize this port */ 2366 vd_port = portp[idx]; 2367 srvr = kmem_zalloc(sizeof (vdc_server_t), KM_SLEEP); 2368 srvr->vdcp = vdc; 2369 srvr->svc_state = VDC_SERVICE_OFFLINE; 2370 srvr->log_state = VDC_SERVICE_NONE; 2371 2372 /* get port id */ 2373 if (md_get_prop_val(mdp, vd_port, VDC_MD_ID, &srvr->id) != 0) { 2374 cmn_err(CE_NOTE, "vDisk port '%s' property not found", 2375 VDC_MD_ID); 2376 kmem_free(srvr, sizeof (vdc_server_t)); 2377 continue; 2378 } 2379 2380 /* set the connection timeout */ 2381 if (md_get_prop_val(mdp, vd_port, VDC_MD_TIMEOUT, 2382 &srvr->ctimeout) != 0) { 2383 srvr->ctimeout = 0; 2384 } 2385 2386 /* get the ldc id */ 2387 num_chans = md_scan_dag(mdp, vd_port, 2388 md_find_name(mdp, VDC_MD_CHAN_NAME), 2389 md_find_name(mdp, "fwd"), chanp); 2390 2391 /* expecting at least one channel */ 2392 if (num_chans <= 0) { 2393 cmn_err(CE_NOTE, "No '%s' node for '%s' port", 2394 VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME); 2395 kmem_free(srvr, sizeof (vdc_server_t)); 2396 continue; 2397 } else if (num_chans != 1) { 2398 DMSGX(0, "Expected 1 '%s' node for '%s' port, " 2399 "found %d\n", VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME, 2400 num_chans); 2401 } 2402 2403 /* 2404 * We use the first channel found (index 0), irrespective of how 2405 * many are there in total. 2406 */ 2407 if (md_get_prop_val(mdp, chanp[0], VDC_MD_ID, 2408 &srvr->ldc_id) != 0) { 2409 cmn_err(CE_NOTE, "Channel '%s' property not found", 2410 VDC_MD_ID); 2411 kmem_free(srvr, sizeof (vdc_server_t)); 2412 continue; 2413 } 2414 2415 /* 2416 * now initialise LDC channel which will be used to 2417 * communicate with this server 2418 */ 2419 if (vdc_do_ldc_init(vdc, srvr) != 0) { 2420 kmem_free(srvr, sizeof (vdc_server_t)); 2421 continue; 2422 } 2423 2424 /* add server to list */ 2425 if (prev_srvr) 2426 prev_srvr->next = srvr; 2427 else 2428 vdc->server_list = srvr; 2429 2430 prev_srvr = srvr; 2431 2432 /* inc numbers of servers */ 2433 vdc->num_servers++; 2434 } 2435 2436 /* 2437 * Adjust the max number of handshake retries to match 2438 * the number of vdisk servers. 2439 */ 2440 if (vdc_hshake_retries < vdc->num_servers) 2441 vdc_hshake_retries = vdc->num_servers; 2442 2443 /* pick first server as current server */ 2444 if (vdc->server_list != NULL) { 2445 vdc->curr_server = vdc->server_list; 2446 status = 0; 2447 } else { 2448 status = ENOENT; 2449 } 2450 2451 done: 2452 kmem_free(chanp, listsz); 2453 kmem_free(portp, listsz); 2454 return (status); 2455 } 2456 2457 2458 /* 2459 * Function: 2460 * vdc_do_ldc_up 2461 * 2462 * Description: 2463 * Bring the channel for the current server up. 2464 * 2465 * Arguments: 2466 * vdc - soft state pointer for this instance of the device driver. 2467 * 2468 * Return Code: 2469 * 0 - Success. 2470 * EINVAL - Driver is detaching / LDC error 2471 * ECONNREFUSED - Other end is not listening 2472 */ 2473 static int 2474 vdc_do_ldc_up(vdc_t *vdc) 2475 { 2476 int status; 2477 ldc_status_t ldc_state; 2478 2479 ASSERT(MUTEX_HELD(&vdc->lock)); 2480 2481 DMSG(vdc, 0, "[%d] Bringing up channel %lx\n", 2482 vdc->instance, vdc->curr_server->ldc_id); 2483 2484 if (vdc->lifecycle == VDC_LC_DETACHING) 2485 return (EINVAL); 2486 2487 if ((status = ldc_up(vdc->curr_server->ldc_handle)) != 0) { 2488 switch (status) { 2489 case ECONNREFUSED: /* listener not ready at other end */ 2490 DMSG(vdc, 0, "[%d] ldc_up(%lx,...) return %d\n", 2491 vdc->instance, vdc->curr_server->ldc_id, status); 2492 status = 0; 2493 break; 2494 default: 2495 DMSG(vdc, 0, "[%d] Failed to bring up LDC: " 2496 "channel=%ld, err=%d", vdc->instance, 2497 vdc->curr_server->ldc_id, status); 2498 break; 2499 } 2500 } 2501 2502 if (ldc_status(vdc->curr_server->ldc_handle, &ldc_state) == 0) { 2503 vdc->curr_server->ldc_state = ldc_state; 2504 if (ldc_state == LDC_UP) { 2505 DMSG(vdc, 0, "[%d] LDC channel already up\n", 2506 vdc->instance); 2507 vdc->seq_num = 1; 2508 vdc->seq_num_reply = 0; 2509 } 2510 } 2511 2512 return (status); 2513 } 2514 2515 /* 2516 * Function: 2517 * vdc_terminate_ldc() 2518 * 2519 * Description: 2520 * 2521 * Arguments: 2522 * vdc - soft state pointer for this instance of the device driver. 2523 * srvr - vdc per-server info structure 2524 * 2525 * Return Code: 2526 * None 2527 */ 2528 static void 2529 vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr) 2530 { 2531 int instance = ddi_get_instance(vdc->dip); 2532 2533 if (srvr->state & VDC_LDC_OPEN) { 2534 DMSG(vdc, 0, "[%d] ldc_close()\n", instance); 2535 (void) ldc_close(srvr->ldc_handle); 2536 } 2537 if (srvr->state & VDC_LDC_CB) { 2538 DMSG(vdc, 0, "[%d] ldc_unreg_callback()\n", instance); 2539 (void) ldc_unreg_callback(srvr->ldc_handle); 2540 } 2541 if (srvr->state & VDC_LDC_INIT) { 2542 DMSG(vdc, 0, "[%d] ldc_fini()\n", instance); 2543 (void) ldc_fini(srvr->ldc_handle); 2544 srvr->ldc_handle = NULL; 2545 } 2546 2547 srvr->state &= ~(VDC_LDC_INIT | VDC_LDC_CB | VDC_LDC_OPEN); 2548 } 2549 2550 /* 2551 * Function: 2552 * vdc_fini_ports() 2553 * 2554 * Description: 2555 * Finalize all ports by closing the channel associated with each 2556 * port and also freeing the server structure. 2557 * 2558 * Arguments: 2559 * vdc - soft state pointer for this instance of the device driver. 2560 * 2561 * Return Code: 2562 * None 2563 */ 2564 static void 2565 vdc_fini_ports(vdc_t *vdc) 2566 { 2567 int instance = ddi_get_instance(vdc->dip); 2568 vdc_server_t *srvr, *prev_srvr; 2569 2570 ASSERT(vdc != NULL); 2571 ASSERT(mutex_owned(&vdc->lock)); 2572 2573 DMSG(vdc, 0, "[%d] initialized=%x\n", instance, vdc->initialized); 2574 2575 srvr = vdc->server_list; 2576 2577 while (srvr) { 2578 2579 vdc_terminate_ldc(vdc, srvr); 2580 2581 /* next server */ 2582 prev_srvr = srvr; 2583 srvr = srvr->next; 2584 2585 /* free server */ 2586 kmem_free(prev_srvr, sizeof (vdc_server_t)); 2587 } 2588 2589 vdc->server_list = NULL; 2590 vdc->num_servers = 0; 2591 } 2592 2593 /* -------------------------------------------------------------------------- */ 2594 2595 /* 2596 * Descriptor Ring helper routines 2597 */ 2598 2599 /* 2600 * Function: 2601 * vdc_init_descriptor_ring() 2602 * 2603 * Description: 2604 * 2605 * Arguments: 2606 * vdc - soft state pointer for this instance of the device driver. 2607 * 2608 * Return Code: 2609 * 0 - Success 2610 */ 2611 static int 2612 vdc_init_descriptor_ring(vdc_t *vdc) 2613 { 2614 vd_dring_entry_t *dep = NULL; /* DRing Entry pointer */ 2615 int status = 0; 2616 int i; 2617 2618 DMSG(vdc, 0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized); 2619 2620 ASSERT(vdc != NULL); 2621 ASSERT(mutex_owned(&vdc->lock)); 2622 2623 /* ensure we have enough room to store max sized block */ 2624 ASSERT(maxphys <= VD_MAX_BLOCK_SIZE); 2625 2626 if ((vdc->initialized & VDC_DRING_INIT) == 0) { 2627 DMSG(vdc, 0, "[%d] ldc_mem_dring_create\n", vdc->instance); 2628 /* 2629 * Calculate the maximum block size we can transmit using one 2630 * Descriptor Ring entry from the attributes returned by the 2631 * vDisk server. This is subject to a minimum of 'maxphys' 2632 * as we do not have the capability to split requests over 2633 * multiple DRing entries. 2634 */ 2635 if ((vdc->max_xfer_sz * vdc->vdisk_bsize) < maxphys) { 2636 DMSG(vdc, 0, "[%d] using minimum DRing size\n", 2637 vdc->instance); 2638 vdc->dring_max_cookies = maxphys / PAGESIZE; 2639 } else { 2640 vdc->dring_max_cookies = 2641 (vdc->max_xfer_sz * vdc->vdisk_bsize) / PAGESIZE; 2642 } 2643 vdc->dring_entry_size = (sizeof (vd_dring_entry_t) + 2644 (sizeof (ldc_mem_cookie_t) * 2645 (vdc->dring_max_cookies - 1))); 2646 vdc->dring_len = VD_DRING_LEN; 2647 2648 status = ldc_mem_dring_create(vdc->dring_len, 2649 vdc->dring_entry_size, &vdc->dring_hdl); 2650 if ((vdc->dring_hdl == NULL) || (status != 0)) { 2651 DMSG(vdc, 0, "[%d] Descriptor ring creation failed", 2652 vdc->instance); 2653 return (status); 2654 } 2655 vdc->initialized |= VDC_DRING_INIT; 2656 } 2657 2658 if ((vdc->initialized & VDC_DRING_BOUND) == 0) { 2659 DMSG(vdc, 0, "[%d] ldc_mem_dring_bind\n", vdc->instance); 2660 vdc->dring_cookie = 2661 kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP); 2662 2663 status = ldc_mem_dring_bind(vdc->curr_server->ldc_handle, 2664 vdc->dring_hdl, 2665 LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW, 2666 &vdc->dring_cookie[0], 2667 &vdc->dring_cookie_count); 2668 if (status != 0) { 2669 DMSG(vdc, 0, "[%d] Failed to bind descriptor ring " 2670 "(%lx) to channel (%lx) status=%d\n", 2671 vdc->instance, vdc->dring_hdl, 2672 vdc->curr_server->ldc_handle, status); 2673 return (status); 2674 } 2675 ASSERT(vdc->dring_cookie_count == 1); 2676 vdc->initialized |= VDC_DRING_BOUND; 2677 } 2678 2679 status = ldc_mem_dring_info(vdc->dring_hdl, &vdc->dring_mem_info); 2680 if (status != 0) { 2681 DMSG(vdc, 0, 2682 "[%d] Failed to get info for descriptor ring (%lx)\n", 2683 vdc->instance, vdc->dring_hdl); 2684 return (status); 2685 } 2686 2687 if ((vdc->initialized & VDC_DRING_LOCAL) == 0) { 2688 DMSG(vdc, 0, "[%d] local dring\n", vdc->instance); 2689 2690 /* Allocate the local copy of this dring */ 2691 vdc->local_dring = 2692 kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t), 2693 KM_SLEEP); 2694 vdc->initialized |= VDC_DRING_LOCAL; 2695 } 2696 2697 /* 2698 * Mark all DRing entries as free and initialize the private 2699 * descriptor's memory handles. If any entry is initialized, 2700 * we need to free it later so we set the bit in 'initialized' 2701 * at the start. 2702 */ 2703 vdc->initialized |= VDC_DRING_ENTRY; 2704 for (i = 0; i < vdc->dring_len; i++) { 2705 dep = VDC_GET_DRING_ENTRY_PTR(vdc, i); 2706 dep->hdr.dstate = VIO_DESC_FREE; 2707 2708 status = ldc_mem_alloc_handle(vdc->curr_server->ldc_handle, 2709 &vdc->local_dring[i].desc_mhdl); 2710 if (status != 0) { 2711 DMSG(vdc, 0, "![%d] Failed to alloc mem handle for" 2712 " descriptor %d", vdc->instance, i); 2713 return (status); 2714 } 2715 vdc->local_dring[i].is_free = B_TRUE; 2716 vdc->local_dring[i].dep = dep; 2717 } 2718 2719 /* Initialize the starting index */ 2720 vdc->dring_curr_idx = 0; 2721 2722 return (status); 2723 } 2724 2725 /* 2726 * Function: 2727 * vdc_destroy_descriptor_ring() 2728 * 2729 * Description: 2730 * 2731 * Arguments: 2732 * vdc - soft state pointer for this instance of the device driver. 2733 * 2734 * Return Code: 2735 * None 2736 */ 2737 static void 2738 vdc_destroy_descriptor_ring(vdc_t *vdc) 2739 { 2740 vdc_local_desc_t *ldep = NULL; /* Local Dring Entry Pointer */ 2741 ldc_mem_handle_t mhdl = NULL; 2742 ldc_mem_info_t minfo; 2743 int status = -1; 2744 int i; /* loop */ 2745 2746 ASSERT(vdc != NULL); 2747 ASSERT(mutex_owned(&vdc->lock)); 2748 2749 DMSG(vdc, 0, "[%d] Entered\n", vdc->instance); 2750 2751 if (vdc->initialized & VDC_DRING_ENTRY) { 2752 DMSG(vdc, 0, 2753 "[%d] Removing Local DRing entries\n", vdc->instance); 2754 for (i = 0; i < vdc->dring_len; i++) { 2755 ldep = &vdc->local_dring[i]; 2756 mhdl = ldep->desc_mhdl; 2757 2758 if (mhdl == NULL) 2759 continue; 2760 2761 if ((status = ldc_mem_info(mhdl, &minfo)) != 0) { 2762 DMSG(vdc, 0, 2763 "ldc_mem_info returned an error: %d\n", 2764 status); 2765 2766 /* 2767 * This must mean that the mem handle 2768 * is not valid. Clear it out so that 2769 * no one tries to use it. 2770 */ 2771 ldep->desc_mhdl = NULL; 2772 continue; 2773 } 2774 2775 if (minfo.status == LDC_BOUND) { 2776 (void) ldc_mem_unbind_handle(mhdl); 2777 } 2778 2779 (void) ldc_mem_free_handle(mhdl); 2780 2781 ldep->desc_mhdl = NULL; 2782 } 2783 vdc->initialized &= ~VDC_DRING_ENTRY; 2784 } 2785 2786 if (vdc->initialized & VDC_DRING_LOCAL) { 2787 DMSG(vdc, 0, "[%d] Freeing Local DRing\n", vdc->instance); 2788 kmem_free(vdc->local_dring, 2789 vdc->dring_len * sizeof (vdc_local_desc_t)); 2790 vdc->initialized &= ~VDC_DRING_LOCAL; 2791 } 2792 2793 if (vdc->initialized & VDC_DRING_BOUND) { 2794 DMSG(vdc, 0, "[%d] Unbinding DRing\n", vdc->instance); 2795 status = ldc_mem_dring_unbind(vdc->dring_hdl); 2796 if (status == 0) { 2797 vdc->initialized &= ~VDC_DRING_BOUND; 2798 } else { 2799 DMSG(vdc, 0, "[%d] Error %d unbinding DRing %lx", 2800 vdc->instance, status, vdc->dring_hdl); 2801 } 2802 kmem_free(vdc->dring_cookie, sizeof (ldc_mem_cookie_t)); 2803 } 2804 2805 if (vdc->initialized & VDC_DRING_INIT) { 2806 DMSG(vdc, 0, "[%d] Destroying DRing\n", vdc->instance); 2807 status = ldc_mem_dring_destroy(vdc->dring_hdl); 2808 if (status == 0) { 2809 vdc->dring_hdl = NULL; 2810 bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t)); 2811 vdc->initialized &= ~VDC_DRING_INIT; 2812 } else { 2813 DMSG(vdc, 0, "[%d] Error %d destroying DRing (%lx)", 2814 vdc->instance, status, vdc->dring_hdl); 2815 } 2816 } 2817 } 2818 2819 /* 2820 * Function: 2821 * vdc_map_to_shared_dring() 2822 * 2823 * Description: 2824 * Copy contents of the local descriptor to the shared 2825 * memory descriptor. 2826 * 2827 * Arguments: 2828 * vdcp - soft state pointer for this instance of the device driver. 2829 * idx - descriptor ring index 2830 * 2831 * Return Code: 2832 * None 2833 */ 2834 static int 2835 vdc_map_to_shared_dring(vdc_t *vdcp, int idx) 2836 { 2837 vdc_local_desc_t *ldep; 2838 vd_dring_entry_t *dep; 2839 int rv; 2840 2841 ldep = &(vdcp->local_dring[idx]); 2842 2843 /* for now leave in the old pop_mem_hdl stuff */ 2844 if (ldep->nbytes > 0) { 2845 rv = vdc_populate_mem_hdl(vdcp, ldep); 2846 if (rv) { 2847 DMSG(vdcp, 0, "[%d] Cannot populate mem handle\n", 2848 vdcp->instance); 2849 return (rv); 2850 } 2851 } 2852 2853 /* 2854 * fill in the data details into the DRing 2855 */ 2856 dep = ldep->dep; 2857 ASSERT(dep != NULL); 2858 2859 dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdcp); 2860 dep->payload.operation = ldep->operation; 2861 dep->payload.addr = ldep->offset; 2862 dep->payload.nbytes = ldep->nbytes; 2863 dep->payload.status = (uint32_t)-1; /* vds will set valid value */ 2864 dep->payload.slice = ldep->slice; 2865 dep->hdr.dstate = VIO_DESC_READY; 2866 dep->hdr.ack = 1; /* request an ACK for every message */ 2867 2868 return (0); 2869 } 2870 2871 /* 2872 * Function: 2873 * vdc_send_request 2874 * 2875 * Description: 2876 * This routine writes the data to be transmitted to vds into the 2877 * descriptor, notifies vds that the ring has been updated and 2878 * then waits for the request to be processed. 2879 * 2880 * Arguments: 2881 * vdcp - the soft state pointer 2882 * operation - operation we want vds to perform (VD_OP_XXX) 2883 * addr - address of data buf to be read/written. 2884 * nbytes - number of bytes to read/write 2885 * slice - the disk slice this request is for 2886 * offset - relative disk offset 2887 * bufp - buf of operation 2888 * dir - direction of operation (READ/WRITE/BOTH) 2889 * 2890 * Return Codes: 2891 * 0 2892 * ENXIO 2893 */ 2894 static int 2895 vdc_send_request(vdc_t *vdcp, int operation, caddr_t addr, 2896 size_t nbytes, int slice, diskaddr_t offset, buf_t *bufp, 2897 vio_desc_direction_t dir, int flags) 2898 { 2899 int rv = 0; 2900 2901 ASSERT(vdcp != NULL); 2902 ASSERT(slice == VD_SLICE_NONE || slice < V_NUMPAR); 2903 2904 mutex_enter(&vdcp->lock); 2905 2906 /* 2907 * If this is a block read/write operation we update the I/O statistics 2908 * to indicate that the request is being put on the waitq to be 2909 * serviced. 2910 * 2911 * We do it here (a common routine for both synchronous and strategy 2912 * calls) for performance reasons - we are already holding vdc->lock 2913 * so there is no extra locking overhead. We would have to explicitly 2914 * grab the 'lock' mutex to update the stats if we were to do this 2915 * higher up the stack in vdc_strategy() et. al. 2916 */ 2917 if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) { 2918 DTRACE_IO1(start, buf_t *, bufp); 2919 VD_KSTAT_WAITQ_ENTER(vdcp); 2920 } 2921 2922 /* 2923 * If the request does not expect the state to be VDC_STATE_RUNNING 2924 * then we just try to populate the descriptor ring once. 2925 */ 2926 if (!(flags & VDC_OP_STATE_RUNNING)) { 2927 rv = vdc_populate_descriptor(vdcp, operation, addr, 2928 nbytes, slice, offset, bufp, dir, flags); 2929 goto done; 2930 } 2931 2932 do { 2933 while (vdcp->state != VDC_STATE_RUNNING) { 2934 2935 /* return error if detaching */ 2936 if (vdcp->state == VDC_STATE_DETACH) { 2937 rv = ENXIO; 2938 goto done; 2939 } 2940 2941 /* 2942 * If we are panicking and the disk is not ready then 2943 * we can't send any request because we can't complete 2944 * the handshake now. 2945 */ 2946 if (ddi_in_panic()) { 2947 rv = EIO; 2948 goto done; 2949 } 2950 2951 /* 2952 * If the state is faulted, notify that a new I/O is 2953 * being submitted to force the system to check if any 2954 * server has recovered. 2955 */ 2956 if (vdcp->state == VDC_STATE_FAILED) { 2957 vdcp->io_pending = B_TRUE; 2958 cv_signal(&vdcp->io_pending_cv); 2959 } 2960 2961 cv_wait(&vdcp->running_cv, &vdcp->lock); 2962 2963 /* if service is still faulted then fail the request */ 2964 if (vdcp->state == VDC_STATE_FAILED) { 2965 rv = EIO; 2966 goto done; 2967 } 2968 } 2969 2970 } while (vdc_populate_descriptor(vdcp, operation, addr, 2971 nbytes, slice, offset, bufp, dir, flags)); 2972 2973 done: 2974 /* 2975 * If this is a block read/write we update the I/O statistics kstat 2976 * to indicate that this request has been placed on the queue for 2977 * processing (i.e sent to the vDisk server) - iostat(1M) will 2978 * report the time waiting for the vDisk server under the %b column 2979 * In the case of an error we simply take it off the wait queue. 2980 */ 2981 if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) { 2982 if (rv == 0) { 2983 VD_KSTAT_WAITQ_TO_RUNQ(vdcp); 2984 DTRACE_PROBE1(send, buf_t *, bufp); 2985 } else { 2986 VD_UPDATE_ERR_STATS(vdcp, vd_transerrs); 2987 VD_KSTAT_WAITQ_EXIT(vdcp); 2988 DTRACE_IO1(done, buf_t *, bufp); 2989 } 2990 } 2991 2992 mutex_exit(&vdcp->lock); 2993 2994 return (rv); 2995 } 2996 2997 2998 /* 2999 * Function: 3000 * vdc_populate_descriptor 3001 * 3002 * Description: 3003 * This routine writes the data to be transmitted to vds into the 3004 * descriptor, notifies vds that the ring has been updated and 3005 * then waits for the request to be processed. 3006 * 3007 * Arguments: 3008 * vdcp - the soft state pointer 3009 * operation - operation we want vds to perform (VD_OP_XXX) 3010 * addr - address of data buf to be read/written. 3011 * nbytes - number of bytes to read/write 3012 * slice - the disk slice this request is for 3013 * offset - relative disk offset 3014 * bufp - buf of operation 3015 * dir - direction of operation (READ/WRITE/BOTH) 3016 * 3017 * Return Codes: 3018 * 0 3019 * EAGAIN 3020 * ECONNRESET 3021 * ENXIO 3022 */ 3023 static int 3024 vdc_populate_descriptor(vdc_t *vdcp, int operation, caddr_t addr, 3025 size_t nbytes, int slice, diskaddr_t offset, 3026 buf_t *bufp, vio_desc_direction_t dir, int flags) 3027 { 3028 vdc_local_desc_t *local_dep = NULL; /* Local Dring Pointer */ 3029 int idx; /* Index of DRing entry used */ 3030 int next_idx; 3031 vio_dring_msg_t dmsg; 3032 size_t msglen; 3033 int rv; 3034 3035 ASSERT(MUTEX_HELD(&vdcp->lock)); 3036 vdcp->threads_pending++; 3037 loop: 3038 DMSG(vdcp, 2, ": dring_curr_idx = %d\n", vdcp->dring_curr_idx); 3039 3040 /* Get next available D-Ring entry */ 3041 idx = vdcp->dring_curr_idx; 3042 local_dep = &(vdcp->local_dring[idx]); 3043 3044 if (!local_dep->is_free) { 3045 DMSG(vdcp, 2, "[%d]: dring full - waiting for space\n", 3046 vdcp->instance); 3047 cv_wait(&vdcp->dring_free_cv, &vdcp->lock); 3048 if (vdcp->state == VDC_STATE_RUNNING || 3049 vdcp->state == VDC_STATE_HANDLE_PENDING) { 3050 goto loop; 3051 } 3052 vdcp->threads_pending--; 3053 return (ECONNRESET); 3054 } 3055 3056 next_idx = idx + 1; 3057 if (next_idx >= vdcp->dring_len) 3058 next_idx = 0; 3059 vdcp->dring_curr_idx = next_idx; 3060 3061 ASSERT(local_dep->is_free); 3062 3063 local_dep->operation = operation; 3064 local_dep->addr = addr; 3065 local_dep->nbytes = nbytes; 3066 local_dep->slice = slice; 3067 local_dep->offset = offset; 3068 local_dep->buf = bufp; 3069 local_dep->dir = dir; 3070 local_dep->flags = flags; 3071 3072 local_dep->is_free = B_FALSE; 3073 3074 rv = vdc_map_to_shared_dring(vdcp, idx); 3075 if (rv) { 3076 DMSG(vdcp, 0, "[%d]: cannot bind memory - waiting ..\n", 3077 vdcp->instance); 3078 /* free the descriptor */ 3079 local_dep->is_free = B_TRUE; 3080 vdcp->dring_curr_idx = idx; 3081 cv_wait(&vdcp->membind_cv, &vdcp->lock); 3082 if (vdcp->state == VDC_STATE_RUNNING || 3083 vdcp->state == VDC_STATE_HANDLE_PENDING) { 3084 goto loop; 3085 } 3086 vdcp->threads_pending--; 3087 return (ECONNRESET); 3088 } 3089 3090 /* 3091 * Send a msg with the DRing details to vds 3092 */ 3093 VIO_INIT_DRING_DATA_TAG(dmsg); 3094 VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdcp); 3095 dmsg.dring_ident = vdcp->dring_ident; 3096 dmsg.start_idx = idx; 3097 dmsg.end_idx = idx; 3098 vdcp->seq_num++; 3099 3100 DTRACE_PROBE2(populate, int, vdcp->instance, 3101 vdc_local_desc_t *, local_dep); 3102 DMSG(vdcp, 2, "ident=0x%lx, st=%u, end=%u, seq=%ld\n", 3103 vdcp->dring_ident, dmsg.start_idx, dmsg.end_idx, dmsg.seq_num); 3104 3105 /* 3106 * note we're still holding the lock here to 3107 * make sure the message goes out in order !!!... 3108 */ 3109 msglen = sizeof (dmsg); 3110 rv = vdc_send(vdcp, (caddr_t)&dmsg, &msglen); 3111 switch (rv) { 3112 case ECONNRESET: 3113 /* 3114 * vdc_send initiates the reset on failure. 3115 * Since the transaction has already been put 3116 * on the local dring, it will automatically get 3117 * retried when the channel is reset. Given that, 3118 * it is ok to just return success even though the 3119 * send failed. 3120 */ 3121 rv = 0; 3122 break; 3123 3124 case 0: /* EOK */ 3125 DMSG(vdcp, 1, "sent via LDC: rv=%d\n", rv); 3126 break; 3127 3128 default: 3129 goto cleanup_and_exit; 3130 } 3131 3132 vdcp->threads_pending--; 3133 return (rv); 3134 3135 cleanup_and_exit: 3136 DMSG(vdcp, 0, "unexpected error, rv=%d\n", rv); 3137 return (ENXIO); 3138 } 3139 3140 /* 3141 * Function: 3142 * vdc_do_op 3143 * 3144 * Description: 3145 * Wrapper around vdc_submit_request(). Each request is associated with a 3146 * buf structure. If a buf structure is provided (bufp != NULL) then the 3147 * request will be submitted with that buf, and the caller can wait for 3148 * completion of the request with biowait(). If a buf structure is not 3149 * provided (bufp == NULL) then a buf structure is created and the function 3150 * waits for the completion of the request. 3151 * 3152 * If the flag VD_OP_STATE_RUNNING is set then vdc_submit_request() will 3153 * submit the request only when the vdisk is in state VD_STATE_RUNNING. 3154 * If the vdisk is not in that state then the vdc_submit_request() will 3155 * wait for that state to be reached. After the request is submitted, the 3156 * reply will be processed asynchronously by the vdc_process_msg_thread() 3157 * thread. 3158 * 3159 * If the flag VD_OP_STATE_RUNNING is not set then vdc_submit_request() 3160 * submit the request whatever the state of the vdisk is. Then vdc_do_op() 3161 * will wait for a reply message, process the reply and complete the 3162 * request. 3163 * 3164 * Arguments: 3165 * vdc - the soft state pointer 3166 * op - operation we want vds to perform (VD_OP_XXX) 3167 * addr - address of data buf to be read/written. 3168 * nbytes - number of bytes to read/write 3169 * slice - the disk slice this request is for 3170 * offset - relative disk offset 3171 * bufp - buf structure associated with the request (can be NULL). 3172 * dir - direction of operation (READ/WRITE/BOTH) 3173 * flags - flags for the request. 3174 * 3175 * Return Codes: 3176 * 0 - the request has been succesfully submitted and completed. 3177 * != 0 - the request has failed. In that case, if a buf structure 3178 * was provided (bufp != NULL) then the B_ERROR flag is set 3179 * and the b_error field of the buf structure is set to EIO. 3180 */ 3181 static int 3182 vdc_do_op(vdc_t *vdc, int op, caddr_t addr, size_t nbytes, int slice, 3183 diskaddr_t offset, struct buf *bufp, vio_desc_direction_t dir, int flags) 3184 { 3185 vio_msg_t vio_msg; 3186 struct buf buf; 3187 int rv; 3188 3189 if (bufp == NULL) { 3190 /* 3191 * We use buf just as a convenient way to get a notification 3192 * that the request is completed, so we initialize buf to the 3193 * minimum we need. 3194 */ 3195 bioinit(&buf); 3196 buf.b_bcount = nbytes; 3197 buf.b_flags = B_BUSY; 3198 bufp = &buf; 3199 } 3200 3201 rv = vdc_send_request(vdc, op, addr, nbytes, slice, offset, bufp, 3202 dir, flags); 3203 3204 if (rv != 0) 3205 goto done; 3206 3207 /* 3208 * If the request should be done in VDC_STATE_RUNNING state then the 3209 * reply will be received and processed by vdc_process_msg_thread() 3210 * and we just have to handle the panic case. Otherwise we have to 3211 * wait for the reply message and process it. 3212 */ 3213 if (flags & VDC_OP_STATE_RUNNING) { 3214 3215 if (ddi_in_panic()) { 3216 rv = vdc_drain_response(vdc, bufp); 3217 goto done; 3218 } 3219 3220 } else { 3221 /* wait for the response message */ 3222 rv = vdc_wait_for_response(vdc, &vio_msg); 3223 if (rv) { 3224 /* 3225 * If this is a block read/write we update the I/O 3226 * statistics kstat to take it off the run queue. 3227 */ 3228 mutex_enter(&vdc->lock); 3229 if (op == VD_OP_BREAD || op == VD_OP_BWRITE) { 3230 VD_UPDATE_ERR_STATS(vdc, vd_transerrs); 3231 VD_KSTAT_RUNQ_EXIT(vdc); 3232 DTRACE_IO1(done, buf_t *, bufp); 3233 } 3234 mutex_exit(&vdc->lock); 3235 goto done; 3236 } 3237 3238 rv = vdc_process_data_msg(vdc, &vio_msg); 3239 if (rv) 3240 goto done; 3241 } 3242 3243 if (bufp == &buf) 3244 rv = biowait(bufp); 3245 3246 done: 3247 if (bufp == &buf) { 3248 biofini(bufp); 3249 } else if (rv != 0) { 3250 bioerror(bufp, EIO); 3251 biodone(bufp); 3252 } 3253 3254 return (rv); 3255 } 3256 3257 /* 3258 * Function: 3259 * vdc_do_sync_op 3260 * 3261 * Description: 3262 * Wrapper around vdc_do_op that serializes requests. 3263 * 3264 * Arguments: 3265 * vdcp - the soft state pointer 3266 * operation - operation we want vds to perform (VD_OP_XXX) 3267 * addr - address of data buf to be read/written. 3268 * nbytes - number of bytes to read/write 3269 * slice - the disk slice this request is for 3270 * offset - relative disk offset 3271 * dir - direction of operation (READ/WRITE/BOTH) 3272 * rconflict - check for reservation conflict in case of failure 3273 * 3274 * rconflict should be set to B_TRUE by most callers. Callers invoking the 3275 * VD_OP_SCSICMD operation can set rconflict to B_FALSE if they check the 3276 * result of a successful operation with vdc_scsi_status(). 3277 * 3278 * Return Codes: 3279 * 0 3280 * EAGAIN 3281 * EFAULT 3282 * ENXIO 3283 * EIO 3284 */ 3285 static int 3286 vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, size_t nbytes, 3287 int slice, diskaddr_t offset, vio_desc_direction_t dir, boolean_t rconflict) 3288 { 3289 int status; 3290 int flags = VDC_OP_NORMAL; 3291 3292 /* 3293 * Grab the lock, if blocked wait until the server 3294 * response causes us to wake up again. 3295 */ 3296 mutex_enter(&vdcp->lock); 3297 vdcp->sync_op_cnt++; 3298 while (vdcp->sync_op_blocked && vdcp->state != VDC_STATE_DETACH) { 3299 if (ddi_in_panic()) { 3300 /* don't block if we are panicking */ 3301 vdcp->sync_op_cnt--; 3302 mutex_exit(&vdcp->lock); 3303 return (EIO); 3304 } else { 3305 cv_wait(&vdcp->sync_blocked_cv, &vdcp->lock); 3306 } 3307 } 3308 3309 if (vdcp->state == VDC_STATE_DETACH) { 3310 cv_broadcast(&vdcp->sync_blocked_cv); 3311 vdcp->sync_op_cnt--; 3312 mutex_exit(&vdcp->lock); 3313 return (ENXIO); 3314 } 3315 3316 /* now block anyone other thread entering after us */ 3317 vdcp->sync_op_blocked = B_TRUE; 3318 3319 mutex_exit(&vdcp->lock); 3320 3321 if (!rconflict) 3322 flags &= ~VDC_OP_ERRCHK_CONFLICT; 3323 3324 status = vdc_do_op(vdcp, operation, addr, nbytes, slice, offset, 3325 NULL, dir, flags); 3326 3327 mutex_enter(&vdcp->lock); 3328 3329 DMSG(vdcp, 2, ": operation returned %d\n", status); 3330 3331 if (vdcp->state == VDC_STATE_DETACH) { 3332 status = ENXIO; 3333 } 3334 3335 vdcp->sync_op_blocked = B_FALSE; 3336 vdcp->sync_op_cnt--; 3337 3338 /* signal the next waiting thread */ 3339 cv_signal(&vdcp->sync_blocked_cv); 3340 3341 mutex_exit(&vdcp->lock); 3342 3343 return (status); 3344 } 3345 3346 3347 /* 3348 * Function: 3349 * vdc_drain_response() 3350 * 3351 * Description: 3352 * When a guest is panicking, the completion of requests needs to be 3353 * handled differently because interrupts are disabled and vdc 3354 * will not get messages. We have to poll for the messages instead. 3355 * 3356 * Note: since we are panicking we don't implement the io:::done 3357 * DTrace probe or update the I/O statistics kstats. 3358 * 3359 * Arguments: 3360 * vdc - soft state pointer for this instance of the device driver. 3361 * buf - if buf is NULL then we drain all responses, otherwise we 3362 * poll until we receive a ACK/NACK for the specific I/O 3363 * described by buf. 3364 * 3365 * Return Code: 3366 * 0 - Success. If we were expecting a response to a particular 3367 * request then this means that a response has been received. 3368 */ 3369 static int 3370 vdc_drain_response(vdc_t *vdc, struct buf *buf) 3371 { 3372 int rv, idx, retries; 3373 size_t msglen; 3374 vdc_local_desc_t *ldep = NULL; /* Local Dring Entry Pointer */ 3375 vio_dring_msg_t dmsg; 3376 struct buf *mbuf; 3377 boolean_t ack; 3378 3379 mutex_enter(&vdc->lock); 3380 3381 retries = 0; 3382 for (;;) { 3383 msglen = sizeof (dmsg); 3384 rv = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)&dmsg, 3385 &msglen); 3386 if (rv) { 3387 rv = EINVAL; 3388 break; 3389 } 3390 3391 /* 3392 * if there are no packets wait and check again 3393 */ 3394 if ((rv == 0) && (msglen == 0)) { 3395 if (retries++ > vdc_dump_retries) { 3396 rv = EAGAIN; 3397 break; 3398 } 3399 3400 drv_usecwait(vdc_usec_timeout_dump); 3401 continue; 3402 } 3403 3404 /* 3405 * Ignore all messages that are not ACKs/NACKs to 3406 * DRing requests. 3407 */ 3408 if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) || 3409 (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) { 3410 DMSG(vdc, 0, "discard pkt: type=%d sub=%d env=%d\n", 3411 dmsg.tag.vio_msgtype, 3412 dmsg.tag.vio_subtype, 3413 dmsg.tag.vio_subtype_env); 3414 continue; 3415 } 3416 3417 /* 3418 * Record if the packet was ACK'ed or not. If the packet was not 3419 * ACK'ed then we will just mark the request as failed; we don't 3420 * want to reset the connection at this point. 3421 */ 3422 switch (dmsg.tag.vio_subtype) { 3423 case VIO_SUBTYPE_ACK: 3424 ack = B_TRUE; 3425 break; 3426 case VIO_SUBTYPE_NACK: 3427 ack = B_FALSE; 3428 break; 3429 default: 3430 continue; 3431 } 3432 3433 idx = dmsg.start_idx; 3434 if (idx >= vdc->dring_len) { 3435 DMSG(vdc, 0, "[%d] Bogus ack data : start %d\n", 3436 vdc->instance, idx); 3437 continue; 3438 } 3439 ldep = &vdc->local_dring[idx]; 3440 if (ldep->dep->hdr.dstate != VIO_DESC_DONE) { 3441 DMSG(vdc, 0, "[%d] Entry @ %d - state !DONE %d\n", 3442 vdc->instance, idx, ldep->dep->hdr.dstate); 3443 continue; 3444 } 3445 3446 mbuf = ldep->buf; 3447 ASSERT(mbuf != NULL); 3448 mbuf->b_resid = mbuf->b_bcount - ldep->dep->payload.nbytes; 3449 bioerror(mbuf, ack ? ldep->dep->payload.status : EIO); 3450 biodone(mbuf); 3451 3452 rv = vdc_depopulate_descriptor(vdc, idx); 3453 if (buf != NULL && buf == mbuf) { 3454 rv = 0; 3455 goto done; 3456 } 3457 3458 /* if this is the last descriptor - break out of loop */ 3459 if ((idx + 1) % vdc->dring_len == vdc->dring_curr_idx) { 3460 /* 3461 * If we were expecting a response for a particular 3462 * request then we return with an error otherwise we 3463 * have successfully completed the drain. 3464 */ 3465 rv = (buf != NULL)? ESRCH: 0; 3466 break; 3467 } 3468 } 3469 3470 done: 3471 mutex_exit(&vdc->lock); 3472 DMSG(vdc, 0, "End idx=%d\n", idx); 3473 3474 return (rv); 3475 } 3476 3477 3478 /* 3479 * Function: 3480 * vdc_depopulate_descriptor() 3481 * 3482 * Description: 3483 * 3484 * Arguments: 3485 * vdc - soft state pointer for this instance of the device driver. 3486 * idx - Index of the Descriptor Ring entry being modified 3487 * 3488 * Return Code: 3489 * 0 - Success 3490 */ 3491 static int 3492 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx) 3493 { 3494 vd_dring_entry_t *dep = NULL; /* Dring Entry Pointer */ 3495 vdc_local_desc_t *ldep = NULL; /* Local Dring Entry Pointer */ 3496 int status = ENXIO; 3497 int rv = 0; 3498 3499 ASSERT(vdc != NULL); 3500 ASSERT(idx < vdc->dring_len); 3501 ldep = &vdc->local_dring[idx]; 3502 ASSERT(ldep != NULL); 3503 ASSERT(MUTEX_HELD(&vdc->lock)); 3504 3505 DTRACE_PROBE2(depopulate, int, vdc->instance, vdc_local_desc_t *, ldep); 3506 DMSG(vdc, 2, ": idx = %d\n", idx); 3507 3508 dep = ldep->dep; 3509 ASSERT(dep != NULL); 3510 ASSERT((dep->hdr.dstate == VIO_DESC_DONE) || 3511 (dep->payload.status == ECANCELED)); 3512 3513 VDC_MARK_DRING_ENTRY_FREE(vdc, idx); 3514 3515 ldep->is_free = B_TRUE; 3516 status = dep->payload.status; 3517 DMSG(vdc, 2, ": is_free = %d : status = %d\n", ldep->is_free, status); 3518 3519 /* 3520 * If no buffers were used to transfer information to the server when 3521 * populating the descriptor then no memory handles need to be unbound 3522 * and we can return now. 3523 */ 3524 if (ldep->nbytes == 0) { 3525 cv_signal(&vdc->dring_free_cv); 3526 return (status); 3527 } 3528 3529 /* 3530 * If the upper layer passed in a misaligned address we copied the 3531 * data into an aligned buffer before sending it to LDC - we now 3532 * copy it back to the original buffer. 3533 */ 3534 if (ldep->align_addr) { 3535 ASSERT(ldep->addr != NULL); 3536 3537 if (dep->payload.nbytes > 0) 3538 bcopy(ldep->align_addr, ldep->addr, 3539 dep->payload.nbytes); 3540 kmem_free(ldep->align_addr, 3541 sizeof (caddr_t) * P2ROUNDUP(ldep->nbytes, 8)); 3542 ldep->align_addr = NULL; 3543 } 3544 3545 rv = ldc_mem_unbind_handle(ldep->desc_mhdl); 3546 if (rv != 0) { 3547 DMSG(vdc, 0, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)", 3548 vdc->instance, ldep->desc_mhdl, idx, rv); 3549 /* 3550 * The error returned by the vDisk server is more informative 3551 * and thus has a higher priority but if it isn't set we ensure 3552 * that this function returns an error. 3553 */ 3554 if (status == 0) 3555 status = EINVAL; 3556 } 3557 3558 cv_signal(&vdc->membind_cv); 3559 cv_signal(&vdc->dring_free_cv); 3560 3561 return (status); 3562 } 3563 3564 /* 3565 * Function: 3566 * vdc_populate_mem_hdl() 3567 * 3568 * Description: 3569 * 3570 * Arguments: 3571 * vdc - soft state pointer for this instance of the device driver. 3572 * idx - Index of the Descriptor Ring entry being modified 3573 * addr - virtual address being mapped in 3574 * nybtes - number of bytes in 'addr' 3575 * operation - the vDisk operation being performed (VD_OP_xxx) 3576 * 3577 * Return Code: 3578 * 0 - Success 3579 */ 3580 static int 3581 vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep) 3582 { 3583 vd_dring_entry_t *dep = NULL; 3584 ldc_mem_handle_t mhdl; 3585 caddr_t vaddr; 3586 size_t nbytes; 3587 uint8_t perm = LDC_MEM_RW; 3588 uint8_t maptype; 3589 int rv = 0; 3590 int i; 3591 3592 ASSERT(vdcp != NULL); 3593 3594 dep = ldep->dep; 3595 mhdl = ldep->desc_mhdl; 3596 3597 switch (ldep->dir) { 3598 case VIO_read_dir: 3599 perm = LDC_MEM_W; 3600 break; 3601 3602 case VIO_write_dir: 3603 perm = LDC_MEM_R; 3604 break; 3605 3606 case VIO_both_dir: 3607 perm = LDC_MEM_RW; 3608 break; 3609 3610 default: 3611 ASSERT(0); /* catch bad programming in vdc */ 3612 } 3613 3614 /* 3615 * LDC expects any addresses passed in to be 8-byte aligned. We need 3616 * to copy the contents of any misaligned buffers to a newly allocated 3617 * buffer and bind it instead (and copy the the contents back to the 3618 * original buffer passed in when depopulating the descriptor) 3619 */ 3620 vaddr = ldep->addr; 3621 nbytes = ldep->nbytes; 3622 if (((uint64_t)vaddr & 0x7) != 0) { 3623 ASSERT(ldep->align_addr == NULL); 3624 ldep->align_addr = 3625 kmem_alloc(sizeof (caddr_t) * 3626 P2ROUNDUP(nbytes, 8), KM_SLEEP); 3627 DMSG(vdcp, 0, "[%d] Misaligned address %p reallocating " 3628 "(buf=%p nb=%ld op=%d)\n", 3629 vdcp->instance, (void *)vaddr, (void *)ldep->align_addr, 3630 nbytes, ldep->operation); 3631 if (perm != LDC_MEM_W) 3632 bcopy(vaddr, ldep->align_addr, nbytes); 3633 vaddr = ldep->align_addr; 3634 } 3635 3636 maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP; 3637 rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8), 3638 maptype, perm, &dep->payload.cookie[0], &dep->payload.ncookies); 3639 DMSG(vdcp, 2, "[%d] bound mem handle; ncookies=%d\n", 3640 vdcp->instance, dep->payload.ncookies); 3641 if (rv != 0) { 3642 DMSG(vdcp, 0, "[%d] Failed to bind LDC memory handle " 3643 "(mhdl=%p, buf=%p, err=%d)\n", 3644 vdcp->instance, (void *)mhdl, (void *)vaddr, rv); 3645 if (ldep->align_addr) { 3646 kmem_free(ldep->align_addr, 3647 sizeof (caddr_t) * P2ROUNDUP(nbytes, 8)); 3648 ldep->align_addr = NULL; 3649 } 3650 return (EAGAIN); 3651 } 3652 3653 /* 3654 * Get the other cookies (if any). 3655 */ 3656 for (i = 1; i < dep->payload.ncookies; i++) { 3657 rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]); 3658 if (rv != 0) { 3659 (void) ldc_mem_unbind_handle(mhdl); 3660 DMSG(vdcp, 0, "?[%d] Failed to get next cookie " 3661 "(mhdl=%lx cnum=%d), err=%d", 3662 vdcp->instance, mhdl, i, rv); 3663 if (ldep->align_addr) { 3664 kmem_free(ldep->align_addr, 3665 sizeof (caddr_t) * ldep->nbytes); 3666 ldep->align_addr = NULL; 3667 } 3668 return (EAGAIN); 3669 } 3670 } 3671 3672 return (rv); 3673 } 3674 3675 /* 3676 * Interrupt handlers for messages from LDC 3677 */ 3678 3679 /* 3680 * Function: 3681 * vdc_handle_cb() 3682 * 3683 * Description: 3684 * 3685 * Arguments: 3686 * event - Type of event (LDC_EVT_xxx) that triggered the callback 3687 * arg - soft state pointer for this instance of the device driver. 3688 * 3689 * Return Code: 3690 * 0 - Success 3691 */ 3692 static uint_t 3693 vdc_handle_cb(uint64_t event, caddr_t arg) 3694 { 3695 ldc_status_t ldc_state; 3696 int rv = 0; 3697 vdc_server_t *srvr = (vdc_server_t *)(void *)arg; 3698 vdc_t *vdc = srvr->vdcp; 3699 3700 ASSERT(vdc != NULL); 3701 3702 DMSG(vdc, 1, "evt=%lx seqID=%ld\n", event, vdc->seq_num); 3703 3704 /* If callback is not for the current server, ignore it */ 3705 mutex_enter(&vdc->lock); 3706 3707 if (vdc->curr_server != srvr) { 3708 DMSG(vdc, 0, "[%d] Ignoring event 0x%lx for port@%ld\n", 3709 vdc->instance, event, srvr->id); 3710 mutex_exit(&vdc->lock); 3711 return (LDC_SUCCESS); 3712 } 3713 3714 /* 3715 * Depending on the type of event that triggered this callback, 3716 * we modify the handshake state or read the data. 3717 * 3718 * NOTE: not done as a switch() as event could be triggered by 3719 * a state change and a read request. Also the ordering of the 3720 * check for the event types is deliberate. 3721 */ 3722 if (event & LDC_EVT_UP) { 3723 DMSG(vdc, 0, "[%d] Received LDC_EVT_UP\n", vdc->instance); 3724 3725 /* get LDC state */ 3726 rv = ldc_status(srvr->ldc_handle, &ldc_state); 3727 if (rv != 0) { 3728 DMSG(vdc, 0, "[%d] Couldn't get LDC status %d", 3729 vdc->instance, rv); 3730 mutex_exit(&vdc->lock); 3731 return (LDC_SUCCESS); 3732 } 3733 if (srvr->ldc_state != LDC_UP && 3734 ldc_state == LDC_UP) { 3735 /* 3736 * Reset the transaction sequence numbers when 3737 * LDC comes up. We then kick off the handshake 3738 * negotiation with the vDisk server. 3739 */ 3740 vdc->seq_num = 1; 3741 vdc->seq_num_reply = 0; 3742 vdc->io_pending = B_TRUE; 3743 srvr->ldc_state = ldc_state; 3744 cv_signal(&vdc->initwait_cv); 3745 cv_signal(&vdc->io_pending_cv); 3746 } 3747 } 3748 3749 if (event & LDC_EVT_READ) { 3750 DMSG(vdc, 1, "[%d] Received LDC_EVT_READ\n", vdc->instance); 3751 mutex_enter(&vdc->read_lock); 3752 cv_signal(&vdc->read_cv); 3753 vdc->read_state = VDC_READ_PENDING; 3754 mutex_exit(&vdc->read_lock); 3755 mutex_exit(&vdc->lock); 3756 3757 /* that's all we have to do - no need to handle DOWN/RESET */ 3758 return (LDC_SUCCESS); 3759 } 3760 3761 if (event & (LDC_EVT_RESET|LDC_EVT_DOWN)) { 3762 3763 DMSG(vdc, 0, "[%d] Received LDC RESET event\n", vdc->instance); 3764 3765 /* 3766 * Need to wake up any readers so they will 3767 * detect that a reset has occurred. 3768 */ 3769 mutex_enter(&vdc->read_lock); 3770 if ((vdc->read_state == VDC_READ_WAITING) || 3771 (vdc->read_state == VDC_READ_RESET)) 3772 cv_signal(&vdc->read_cv); 3773 vdc->read_state = VDC_READ_RESET; 3774 mutex_exit(&vdc->read_lock); 3775 3776 /* wake up any threads waiting for connection to come up */ 3777 if (vdc->state == VDC_STATE_INIT_WAITING) { 3778 vdc->state = VDC_STATE_RESETTING; 3779 cv_signal(&vdc->initwait_cv); 3780 } else if (vdc->state == VDC_STATE_FAILED) { 3781 vdc->io_pending = B_TRUE; 3782 cv_signal(&vdc->io_pending_cv); 3783 } 3784 3785 } 3786 3787 mutex_exit(&vdc->lock); 3788 3789 if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ)) 3790 DMSG(vdc, 0, "![%d] Unexpected LDC event (%lx) received", 3791 vdc->instance, event); 3792 3793 return (LDC_SUCCESS); 3794 } 3795 3796 /* 3797 * Function: 3798 * vdc_wait_for_response() 3799 * 3800 * Description: 3801 * Block waiting for a response from the server. If there is 3802 * no data the thread block on the read_cv that is signalled 3803 * by the callback when an EVT_READ occurs. 3804 * 3805 * Arguments: 3806 * vdcp - soft state pointer for this instance of the device driver. 3807 * 3808 * Return Code: 3809 * 0 - Success 3810 */ 3811 static int 3812 vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp) 3813 { 3814 size_t nbytes = sizeof (*msgp); 3815 int status; 3816 3817 ASSERT(vdcp != NULL); 3818 3819 DMSG(vdcp, 1, "[%d] Entered\n", vdcp->instance); 3820 3821 status = vdc_recv(vdcp, msgp, &nbytes); 3822 DMSG(vdcp, 3, "vdc_read() done.. status=0x%x size=0x%x\n", 3823 status, (int)nbytes); 3824 if (status) { 3825 DMSG(vdcp, 0, "?[%d] Error %d reading LDC msg\n", 3826 vdcp->instance, status); 3827 return (status); 3828 } 3829 3830 if (nbytes < sizeof (vio_msg_tag_t)) { 3831 DMSG(vdcp, 0, "?[%d] Expect %lu bytes; recv'd %lu\n", 3832 vdcp->instance, sizeof (vio_msg_tag_t), nbytes); 3833 return (ENOMSG); 3834 } 3835 3836 DMSG(vdcp, 2, "[%d] (%x/%x/%x)\n", vdcp->instance, 3837 msgp->tag.vio_msgtype, 3838 msgp->tag.vio_subtype, 3839 msgp->tag.vio_subtype_env); 3840 3841 /* 3842 * Verify the Session ID of the message 3843 * 3844 * Every message after the Version has been negotiated should 3845 * have the correct session ID set. 3846 */ 3847 if ((msgp->tag.vio_sid != vdcp->session_id) && 3848 (msgp->tag.vio_subtype_env != VIO_VER_INFO)) { 3849 DMSG(vdcp, 0, "[%d] Invalid SID: received 0x%x, " 3850 "expected 0x%lx [seq num %lx @ %d]", 3851 vdcp->instance, msgp->tag.vio_sid, 3852 vdcp->session_id, 3853 ((vio_dring_msg_t *)msgp)->seq_num, 3854 ((vio_dring_msg_t *)msgp)->start_idx); 3855 return (ENOMSG); 3856 } 3857 return (0); 3858 } 3859 3860 3861 /* 3862 * Function: 3863 * vdc_resubmit_backup_dring() 3864 * 3865 * Description: 3866 * Resubmit each descriptor in the backed up dring to 3867 * vDisk server. The Dring was backed up during connection 3868 * reset. 3869 * 3870 * Arguments: 3871 * vdcp - soft state pointer for this instance of the device driver. 3872 * 3873 * Return Code: 3874 * 0 - Success 3875 */ 3876 static int 3877 vdc_resubmit_backup_dring(vdc_t *vdcp) 3878 { 3879 int processed = 0; 3880 int count; 3881 int b_idx; 3882 int rv = 0; 3883 int dring_size; 3884 vdc_local_desc_t *curr_ldep; 3885 3886 ASSERT(MUTEX_NOT_HELD(&vdcp->lock)); 3887 ASSERT(vdcp->state == VDC_STATE_HANDLE_PENDING); 3888 3889 if (vdcp->local_dring_backup == NULL) { 3890 /* the pending requests have already been processed */ 3891 return (0); 3892 } 3893 3894 DMSG(vdcp, 1, "restoring pending dring entries (len=%d, tail=%d)\n", 3895 vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail); 3896 3897 /* 3898 * Walk the backup copy of the local descriptor ring and 3899 * resubmit all the outstanding transactions. 3900 */ 3901 b_idx = vdcp->local_dring_backup_tail; 3902 for (count = 0; count < vdcp->local_dring_backup_len; count++) { 3903 3904 curr_ldep = &(vdcp->local_dring_backup[b_idx]); 3905 3906 /* only resubmit outstanding transactions */ 3907 if (!curr_ldep->is_free) { 3908 3909 DMSG(vdcp, 1, "resubmitting entry idx=%x\n", b_idx); 3910 3911 rv = vdc_do_op(vdcp, curr_ldep->operation, 3912 curr_ldep->addr, curr_ldep->nbytes, 3913 curr_ldep->slice, curr_ldep->offset, 3914 curr_ldep->buf, curr_ldep->dir, 3915 curr_ldep->flags & ~VDC_OP_STATE_RUNNING); 3916 3917 if (rv) { 3918 DMSG(vdcp, 1, "[%d] resubmit entry %d failed\n", 3919 vdcp->instance, b_idx); 3920 goto done; 3921 } 3922 3923 /* 3924 * Mark this entry as free so that we will not resubmit 3925 * this "done" request again, if we were to use the same 3926 * backup_dring again in future. This could happen when 3927 * a reset happens while processing the backup_dring. 3928 */ 3929 curr_ldep->is_free = B_TRUE; 3930 processed++; 3931 } 3932 3933 /* get the next element to submit */ 3934 if (++b_idx >= vdcp->local_dring_backup_len) 3935 b_idx = 0; 3936 } 3937 3938 /* all done - now clear up pending dring copy */ 3939 dring_size = vdcp->local_dring_backup_len * 3940 sizeof (vdcp->local_dring_backup[0]); 3941 3942 (void) kmem_free(vdcp->local_dring_backup, dring_size); 3943 3944 vdcp->local_dring_backup = NULL; 3945 3946 done: 3947 DTRACE_PROBE2(processed, int, processed, vdc_t *, vdcp); 3948 3949 return (rv); 3950 } 3951 3952 /* 3953 * Function: 3954 * vdc_cancel_backup_dring 3955 * 3956 * Description: 3957 * Cancel each descriptor in the backed up dring to vDisk server. 3958 * The Dring was backed up during connection reset. 3959 * 3960 * Arguments: 3961 * vdcp - soft state pointer for this instance of the device driver. 3962 * 3963 * Return Code: 3964 * None 3965 */ 3966 void 3967 vdc_cancel_backup_dring(vdc_t *vdcp) 3968 { 3969 vdc_local_desc_t *ldep; 3970 struct buf *bufp; 3971 int count; 3972 int b_idx; 3973 int dring_size; 3974 int cancelled = 0; 3975 3976 ASSERT(MUTEX_HELD(&vdcp->lock)); 3977 ASSERT(vdcp->state == VDC_STATE_FAILED); 3978 3979 if (vdcp->local_dring_backup == NULL) { 3980 /* the pending requests have already been processed */ 3981 return; 3982 } 3983 3984 DMSG(vdcp, 1, "cancelling pending dring entries (len=%d, tail=%d)\n", 3985 vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail); 3986 3987 /* 3988 * Walk the backup copy of the local descriptor ring and 3989 * cancel all the outstanding transactions. 3990 */ 3991 b_idx = vdcp->local_dring_backup_tail; 3992 for (count = 0; count < vdcp->local_dring_backup_len; count++) { 3993 3994 ldep = &(vdcp->local_dring_backup[b_idx]); 3995 3996 /* only cancel outstanding transactions */ 3997 if (!ldep->is_free) { 3998 3999 DMSG(vdcp, 1, "cancelling entry idx=%x\n", b_idx); 4000 cancelled++; 4001 4002 /* 4003 * All requests have already been cleared from the 4004 * local descriptor ring and the LDC channel has been 4005 * reset so we will never get any reply for these 4006 * requests. Now we just have to notify threads waiting 4007 * for replies that the request has failed. 4008 */ 4009 bufp = ldep->buf; 4010 ASSERT(bufp != NULL); 4011 bufp->b_resid = bufp->b_bcount; 4012 if (ldep->operation == VD_OP_BREAD || 4013 ldep->operation == VD_OP_BWRITE) { 4014 VD_UPDATE_ERR_STATS(vdcp, vd_softerrs); 4015 VD_KSTAT_RUNQ_EXIT(vdcp); 4016 DTRACE_IO1(done, buf_t *, bufp); 4017 } 4018 bioerror(bufp, EIO); 4019 biodone(bufp); 4020 } 4021 4022 /* get the next element to cancel */ 4023 if (++b_idx >= vdcp->local_dring_backup_len) 4024 b_idx = 0; 4025 } 4026 4027 /* all done - now clear up pending dring copy */ 4028 dring_size = vdcp->local_dring_backup_len * 4029 sizeof (vdcp->local_dring_backup[0]); 4030 4031 (void) kmem_free(vdcp->local_dring_backup, dring_size); 4032 4033 vdcp->local_dring_backup = NULL; 4034 4035 DTRACE_PROBE2(cancelled, int, cancelled, vdc_t *, vdcp); 4036 } 4037 4038 /* 4039 * Function: 4040 * vdc_connection_timeout 4041 * 4042 * Description: 4043 * This function is invoked if the timeout set to establish the connection 4044 * with vds expires. This will happen if we spend too much time in the 4045 * VDC_STATE_INIT_WAITING or VDC_STATE_NEGOTIATE states. 4046 * 4047 * If the timeout does not expire, it will be cancelled when we reach the 4048 * VDC_STATE_HANDLE_PENDING, VDC_STATE_FAILED or VDC_STATE_DETACH state. 4049 * This function can also be invoked while we are in those states, in 4050 * which case we do nothing because the timeout is being cancelled. 4051 * 4052 * Arguments: 4053 * arg - argument of the timeout function actually a soft state 4054 * pointer for the instance of the device driver. 4055 * 4056 * Return Code: 4057 * None 4058 */ 4059 void 4060 vdc_connection_timeout(void *arg) 4061 { 4062 vdc_t *vdcp = (vdc_t *)arg; 4063 4064 mutex_enter(&vdcp->lock); 4065 4066 if (vdcp->state == VDC_STATE_HANDLE_PENDING || 4067 vdcp->state == VDC_STATE_DETACH || 4068 vdcp->state == VDC_STATE_FAILED) { 4069 /* 4070 * The connection has just been re-established, has failed or 4071 * we are detaching. 4072 */ 4073 vdcp->ctimeout_reached = B_FALSE; 4074 } else { 4075 vdcp->ctimeout_reached = B_TRUE; 4076 } 4077 4078 mutex_exit(&vdcp->lock); 4079 } 4080 4081 /* 4082 * Function: 4083 * vdc_backup_local_dring() 4084 * 4085 * Description: 4086 * Backup the current dring in the event of a reset. The Dring 4087 * transactions will be resubmitted to the server when the 4088 * connection is restored. 4089 * 4090 * Arguments: 4091 * vdcp - soft state pointer for this instance of the device driver. 4092 * 4093 * Return Code: 4094 * NONE 4095 */ 4096 static void 4097 vdc_backup_local_dring(vdc_t *vdcp) 4098 { 4099 int dring_size; 4100 4101 ASSERT(MUTEX_HELD(&vdcp->lock)); 4102 ASSERT(vdcp->state == VDC_STATE_RESETTING); 4103 4104 /* 4105 * If the backup dring is stil around, it means 4106 * that the last restore did not complete. However, 4107 * since we never got back into the running state, 4108 * the backup copy we have is still valid. 4109 */ 4110 if (vdcp->local_dring_backup != NULL) { 4111 DMSG(vdcp, 1, "reusing local descriptor ring backup " 4112 "(len=%d, tail=%d)\n", vdcp->local_dring_backup_len, 4113 vdcp->local_dring_backup_tail); 4114 return; 4115 } 4116 4117 /* 4118 * The backup dring can be NULL and the local dring may not be 4119 * initialized. This can happen if we had a reset while establishing 4120 * a new connection but after the connection has timed out. In that 4121 * case the backup dring is NULL because the requests have been 4122 * cancelled and the request occured before the local dring is 4123 * initialized. 4124 */ 4125 if (!(vdcp->initialized & VDC_DRING_LOCAL)) 4126 return; 4127 4128 DMSG(vdcp, 1, "backing up the local descriptor ring (len=%d, " 4129 "tail=%d)\n", vdcp->dring_len, vdcp->dring_curr_idx); 4130 4131 dring_size = vdcp->dring_len * sizeof (vdcp->local_dring[0]); 4132 4133 vdcp->local_dring_backup = kmem_alloc(dring_size, KM_SLEEP); 4134 bcopy(vdcp->local_dring, vdcp->local_dring_backup, dring_size); 4135 4136 vdcp->local_dring_backup_tail = vdcp->dring_curr_idx; 4137 vdcp->local_dring_backup_len = vdcp->dring_len; 4138 } 4139 4140 static void 4141 vdc_switch_server(vdc_t *vdcp) 4142 { 4143 int rv; 4144 vdc_server_t *curr_server, *new_server; 4145 4146 ASSERT(MUTEX_HELD(&vdcp->lock)); 4147 4148 /* if there is only one server return back */ 4149 if (vdcp->num_servers == 1) { 4150 return; 4151 } 4152 4153 /* Get current and next server */ 4154 curr_server = vdcp->curr_server; 4155 new_server = 4156 (curr_server->next) ? curr_server->next : vdcp->server_list; 4157 ASSERT(curr_server != new_server); 4158 4159 /* bring current server's channel down */ 4160 rv = ldc_down(curr_server->ldc_handle); 4161 if (rv) { 4162 DMSG(vdcp, 0, "[%d] Cannot bring channel down, port %ld\n", 4163 vdcp->instance, curr_server->id); 4164 return; 4165 } 4166 4167 /* switch the server */ 4168 vdcp->curr_server = new_server; 4169 4170 DMSG(vdcp, 0, "[%d] Switched to next vdisk server, port@%ld, ldc@%ld\n", 4171 vdcp->instance, vdcp->curr_server->id, vdcp->curr_server->ldc_id); 4172 } 4173 4174 static void 4175 vdc_print_svc_status(vdc_t *vdcp) 4176 { 4177 int instance; 4178 uint64_t ldc_id, port_id; 4179 vdc_service_state_t svc_state; 4180 4181 ASSERT(mutex_owned(&vdcp->lock)); 4182 4183 svc_state = vdcp->curr_server->svc_state; 4184 4185 if (vdcp->curr_server->log_state == svc_state) 4186 return; 4187 4188 instance = vdcp->instance; 4189 ldc_id = vdcp->curr_server->ldc_id; 4190 port_id = vdcp->curr_server->id; 4191 4192 switch (svc_state) { 4193 4194 case VDC_SERVICE_OFFLINE: 4195 cmn_err(CE_CONT, "?vdisk@%d is offline\n", instance); 4196 break; 4197 4198 case VDC_SERVICE_CONNECTED: 4199 cmn_err(CE_CONT, "?vdisk@%d is connected using ldc@%ld,%ld\n", 4200 instance, ldc_id, port_id); 4201 break; 4202 4203 case VDC_SERVICE_ONLINE: 4204 cmn_err(CE_CONT, "?vdisk@%d is online using ldc@%ld,%ld\n", 4205 instance, ldc_id, port_id); 4206 break; 4207 4208 case VDC_SERVICE_FAILED: 4209 cmn_err(CE_CONT, "?vdisk@%d access to service failed " 4210 "using ldc@%ld,%ld\n", instance, ldc_id, port_id); 4211 break; 4212 4213 case VDC_SERVICE_FAULTED: 4214 cmn_err(CE_CONT, "?vdisk@%d access to backend failed " 4215 "using ldc@%ld,%ld\n", instance, ldc_id, port_id); 4216 break; 4217 4218 default: 4219 ASSERT(0); 4220 break; 4221 } 4222 4223 vdcp->curr_server->log_state = svc_state; 4224 } 4225 4226 /* -------------------------------------------------------------------------- */ 4227 4228 /* 4229 * The following functions process the incoming messages from vds 4230 */ 4231 4232 /* 4233 * Function: 4234 * vdc_process_msg_thread() 4235 * 4236 * Description: 4237 * 4238 * Main VDC message processing thread. Each vDisk instance 4239 * consists of a copy of this thread. This thread triggers 4240 * all the handshakes and data exchange with the server. It 4241 * also handles all channel resets 4242 * 4243 * Arguments: 4244 * vdc - soft state pointer for this instance of the device driver. 4245 * 4246 * Return Code: 4247 * None 4248 */ 4249 static void 4250 vdc_process_msg_thread(vdc_t *vdcp) 4251 { 4252 int status; 4253 int ctimeout; 4254 timeout_id_t tmid = 0; 4255 clock_t ldcup_timeout = 0; 4256 vdc_server_t *srvr; 4257 vdc_service_state_t svc_state; 4258 4259 mutex_enter(&vdcp->lock); 4260 4261 for (;;) { 4262 4263 #define Q(_s) (vdcp->state == _s) ? #_s : 4264 DMSG(vdcp, 3, "state = %d (%s)\n", vdcp->state, 4265 Q(VDC_STATE_INIT) 4266 Q(VDC_STATE_INIT_WAITING) 4267 Q(VDC_STATE_NEGOTIATE) 4268 Q(VDC_STATE_HANDLE_PENDING) 4269 Q(VDC_STATE_FAULTED) 4270 Q(VDC_STATE_FAILED) 4271 Q(VDC_STATE_RUNNING) 4272 Q(VDC_STATE_RESETTING) 4273 Q(VDC_STATE_DETACH) 4274 "UNKNOWN"); 4275 4276 switch (vdcp->state) { 4277 case VDC_STATE_INIT: 4278 4279 /* 4280 * If requested, start a timeout to check if the 4281 * connection with vds is established in the 4282 * specified delay. If the timeout expires, we 4283 * will cancel any pending request. 4284 * 4285 * If some reset have occurred while establishing 4286 * the connection, we already have a timeout armed 4287 * and in that case we don't need to arm a new one. 4288 * 4289 * The same rule applies when there are multiple vds'. 4290 * If either a connection cannot be established or 4291 * the handshake times out, the connection thread will 4292 * try another server. The 'ctimeout' will report 4293 * back an error after it expires irrespective of 4294 * whether the vdisk is trying to connect to just 4295 * one or multiple servers. 4296 */ 4297 ctimeout = (vdc_timeout != 0)? 4298 vdc_timeout : vdcp->curr_server->ctimeout; 4299 4300 if (ctimeout != 0 && tmid == 0) { 4301 tmid = timeout(vdc_connection_timeout, vdcp, 4302 ctimeout * drv_usectohz(MICROSEC)); 4303 } 4304 4305 /* Switch to STATE_DETACH if drv is detaching */ 4306 if (vdcp->lifecycle == VDC_LC_DETACHING) { 4307 vdcp->state = VDC_STATE_DETACH; 4308 break; 4309 } 4310 4311 /* Check if the timeout has been reached */ 4312 if (vdcp->ctimeout_reached) { 4313 ASSERT(tmid != 0); 4314 tmid = 0; 4315 vdcp->state = VDC_STATE_FAILED; 4316 break; 4317 } 4318 4319 /* Check if we are re-initializing repeatedly */ 4320 if (vdcp->hshake_cnt > vdc_hshake_retries && 4321 vdcp->lifecycle != VDC_LC_ONLINE) { 4322 4323 DMSG(vdcp, 0, "[%d] too many handshakes,cnt=%d", 4324 vdcp->instance, vdcp->hshake_cnt); 4325 vdcp->state = VDC_STATE_FAILED; 4326 break; 4327 } 4328 4329 /* Switch server */ 4330 if (vdcp->hshake_cnt > 0) 4331 vdc_switch_server(vdcp); 4332 vdcp->hshake_cnt++; 4333 4334 /* Bring up connection with vds via LDC */ 4335 status = vdc_start_ldc_connection(vdcp); 4336 if (status != EINVAL) { 4337 vdcp->state = VDC_STATE_INIT_WAITING; 4338 } else { 4339 vdcp->curr_server->svc_state = 4340 VDC_SERVICE_FAILED; 4341 vdc_print_svc_status(vdcp); 4342 } 4343 break; 4344 4345 case VDC_STATE_INIT_WAITING: 4346 4347 /* if channel is UP, start negotiation */ 4348 if (vdcp->curr_server->ldc_state == LDC_UP) { 4349 vdcp->state = VDC_STATE_NEGOTIATE; 4350 break; 4351 } 4352 4353 /* 4354 * Wait for LDC_UP. If it times out and we have multiple 4355 * servers then we will retry using a different server. 4356 */ 4357 ldcup_timeout = ddi_get_lbolt() + (vdc_ldcup_timeout * 4358 drv_usectohz(MICROSEC)); 4359 status = cv_timedwait(&vdcp->initwait_cv, &vdcp->lock, 4360 ldcup_timeout); 4361 if (status == -1 && 4362 vdcp->state == VDC_STATE_INIT_WAITING && 4363 vdcp->curr_server->ldc_state != LDC_UP) { 4364 /* timed out & still waiting */ 4365 vdcp->curr_server->svc_state = 4366 VDC_SERVICE_FAILED; 4367 vdc_print_svc_status(vdcp); 4368 vdcp->state = VDC_STATE_INIT; 4369 break; 4370 } 4371 4372 if (vdcp->state != VDC_STATE_INIT_WAITING) { 4373 DMSG(vdcp, 0, 4374 "state moved to %d out from under us...\n", 4375 vdcp->state); 4376 } 4377 break; 4378 4379 case VDC_STATE_NEGOTIATE: 4380 switch (status = vdc_ver_negotiation(vdcp)) { 4381 case 0: 4382 break; 4383 default: 4384 DMSG(vdcp, 0, "ver negotiate failed (%d)..\n", 4385 status); 4386 goto reset; 4387 } 4388 4389 switch (status = vdc_attr_negotiation(vdcp)) { 4390 case 0: 4391 break; 4392 default: 4393 DMSG(vdcp, 0, "attr negotiate failed (%d)..\n", 4394 status); 4395 goto reset; 4396 } 4397 4398 switch (status = vdc_dring_negotiation(vdcp)) { 4399 case 0: 4400 break; 4401 default: 4402 DMSG(vdcp, 0, "dring negotiate failed (%d)..\n", 4403 status); 4404 goto reset; 4405 } 4406 4407 switch (status = vdc_rdx_exchange(vdcp)) { 4408 case 0: 4409 vdcp->state = VDC_STATE_HANDLE_PENDING; 4410 goto done; 4411 default: 4412 DMSG(vdcp, 0, "RDX xchg failed ..(%d)\n", 4413 status); 4414 goto reset; 4415 } 4416 reset: 4417 DMSG(vdcp, 0, "negotiation failed: resetting (%d)\n", 4418 status); 4419 vdcp->state = VDC_STATE_RESETTING; 4420 vdcp->self_reset = B_TRUE; 4421 vdcp->curr_server->svc_state = VDC_SERVICE_FAILED; 4422 vdc_print_svc_status(vdcp); 4423 done: 4424 DMSG(vdcp, 0, "negotiation complete (state=0x%x)...\n", 4425 vdcp->state); 4426 break; 4427 4428 case VDC_STATE_HANDLE_PENDING: 4429 4430 DMSG(vdcp, 0, "[%d] connection to service domain is up", 4431 vdcp->instance); 4432 vdcp->curr_server->svc_state = VDC_SERVICE_CONNECTED; 4433 4434 mutex_exit(&vdcp->lock); 4435 4436 /* 4437 * If we have multiple servers, check that the backend 4438 * is effectively available before resubmitting any IO. 4439 */ 4440 if (vdcp->num_servers > 1 && 4441 vdc_eio_check(vdcp, 0) != 0) { 4442 mutex_enter(&vdcp->lock); 4443 vdcp->curr_server->svc_state = 4444 VDC_SERVICE_FAULTED; 4445 vdcp->state = VDC_STATE_FAULTED; 4446 break; 4447 } 4448 4449 if (tmid != 0) { 4450 (void) untimeout(tmid); 4451 tmid = 0; 4452 vdcp->ctimeout_reached = B_FALSE; 4453 } 4454 4455 /* 4456 * Setup devid 4457 */ 4458 (void) vdc_setup_devid(vdcp); 4459 4460 status = vdc_resubmit_backup_dring(vdcp); 4461 4462 mutex_enter(&vdcp->lock); 4463 4464 if (status) { 4465 vdcp->state = VDC_STATE_RESETTING; 4466 vdcp->self_reset = B_TRUE; 4467 vdcp->curr_server->svc_state = 4468 VDC_SERVICE_FAILED; 4469 vdc_print_svc_status(vdcp); 4470 } else { 4471 vdcp->state = VDC_STATE_RUNNING; 4472 } 4473 break; 4474 4475 case VDC_STATE_FAULTED: 4476 /* 4477 * Server is faulted because the backend is unavailable. 4478 * If all servers are faulted then we mark the service 4479 * as failed, otherwise we reset to switch to another 4480 * server. 4481 */ 4482 vdc_print_svc_status(vdcp); 4483 4484 /* check if all servers are faulted */ 4485 for (srvr = vdcp->server_list; srvr != NULL; 4486 srvr = srvr->next) { 4487 svc_state = srvr->svc_state; 4488 if (svc_state != VDC_SERVICE_FAULTED) 4489 break; 4490 } 4491 4492 if (srvr != NULL) { 4493 vdcp->state = VDC_STATE_RESETTING; 4494 vdcp->self_reset = B_TRUE; 4495 } else { 4496 vdcp->state = VDC_STATE_FAILED; 4497 } 4498 break; 4499 4500 case VDC_STATE_FAILED: 4501 /* 4502 * We reach this state when we are unable to access the 4503 * backend from any server, either because of a maximum 4504 * connection retries or timeout, or because the backend 4505 * is unavailable. 4506 * 4507 * Then we cancel the backup DRing so that errors get 4508 * reported and we wait for a new I/O before attempting 4509 * another connection. 4510 */ 4511 cmn_err(CE_NOTE, "vdisk@%d disk access failed", 4512 vdcp->instance); 4513 4514 /* cancel any timeout */ 4515 if (tmid != 0) { 4516 (void) untimeout(tmid); 4517 tmid = 0; 4518 } 4519 4520 /* cancel pending I/Os */ 4521 cv_broadcast(&vdcp->running_cv); 4522 vdc_cancel_backup_dring(vdcp); 4523 4524 /* wait for new I/O */ 4525 while (!vdcp->io_pending) 4526 cv_wait(&vdcp->io_pending_cv, &vdcp->lock); 4527 4528 /* 4529 * There's a new IO pending. Try to re-establish a 4530 * connection. Mark all services as offline, so that 4531 * we don't stop again before having retried all 4532 * servers. 4533 */ 4534 for (srvr = vdcp->server_list; srvr != NULL; 4535 srvr = srvr->next) { 4536 srvr->svc_state = VDC_SERVICE_OFFLINE; 4537 } 4538 4539 /* reset variables */ 4540 vdcp->hshake_cnt = 0; 4541 vdcp->ctimeout_reached = B_FALSE; 4542 4543 vdcp->state = VDC_STATE_RESETTING; 4544 vdcp->self_reset = B_TRUE; 4545 break; 4546 4547 /* enter running state */ 4548 case VDC_STATE_RUNNING: 4549 /* 4550 * Signal anyone waiting for the connection 4551 * to come on line. 4552 */ 4553 vdcp->hshake_cnt = 0; 4554 cv_broadcast(&vdcp->running_cv); 4555 4556 /* backend has to be checked after reset */ 4557 if (vdcp->failfast_interval != 0 || 4558 vdcp->num_servers > 1) 4559 cv_signal(&vdcp->eio_cv); 4560 4561 /* ownership is lost during reset */ 4562 if (vdcp->ownership & VDC_OWNERSHIP_WANTED) 4563 vdcp->ownership |= VDC_OWNERSHIP_RESET; 4564 cv_signal(&vdcp->ownership_cv); 4565 4566 vdcp->curr_server->svc_state = VDC_SERVICE_ONLINE; 4567 vdc_print_svc_status(vdcp); 4568 4569 mutex_exit(&vdcp->lock); 4570 4571 for (;;) { 4572 vio_msg_t msg; 4573 status = vdc_wait_for_response(vdcp, &msg); 4574 if (status) break; 4575 4576 DMSG(vdcp, 1, "[%d] new pkt(s) available\n", 4577 vdcp->instance); 4578 status = vdc_process_data_msg(vdcp, &msg); 4579 if (status) { 4580 DMSG(vdcp, 1, "[%d] process_data_msg " 4581 "returned err=%d\n", vdcp->instance, 4582 status); 4583 break; 4584 } 4585 4586 } 4587 4588 mutex_enter(&vdcp->lock); 4589 4590 /* all servers are now offline */ 4591 for (srvr = vdcp->server_list; srvr != NULL; 4592 srvr = srvr->next) { 4593 srvr->svc_state = VDC_SERVICE_OFFLINE; 4594 srvr->log_state = VDC_SERVICE_NONE; 4595 } 4596 4597 vdc_print_svc_status(vdcp); 4598 4599 vdcp->state = VDC_STATE_RESETTING; 4600 vdcp->self_reset = B_TRUE; 4601 break; 4602 4603 case VDC_STATE_RESETTING: 4604 /* 4605 * When we reach this state, we either come from the 4606 * VDC_STATE_RUNNING state and we can have pending 4607 * request but no timeout is armed; or we come from 4608 * the VDC_STATE_INIT_WAITING, VDC_NEGOTIATE or 4609 * VDC_HANDLE_PENDING state and there is no pending 4610 * request or pending requests have already been copied 4611 * into the backup dring. So we can safely keep the 4612 * connection timeout armed while we are in this state. 4613 */ 4614 4615 DMSG(vdcp, 0, "Initiating channel reset " 4616 "(pending = %d)\n", (int)vdcp->threads_pending); 4617 4618 if (vdcp->self_reset) { 4619 DMSG(vdcp, 0, 4620 "[%d] calling stop_ldc_connection.\n", 4621 vdcp->instance); 4622 status = vdc_stop_ldc_connection(vdcp); 4623 vdcp->self_reset = B_FALSE; 4624 } 4625 4626 /* 4627 * Wait for all threads currently waiting 4628 * for a free dring entry to use. 4629 */ 4630 while (vdcp->threads_pending) { 4631 cv_broadcast(&vdcp->membind_cv); 4632 cv_broadcast(&vdcp->dring_free_cv); 4633 mutex_exit(&vdcp->lock); 4634 /* give the waiters enough time to wake up */ 4635 delay(vdc_hz_min_ldc_delay); 4636 mutex_enter(&vdcp->lock); 4637 } 4638 4639 ASSERT(vdcp->threads_pending == 0); 4640 4641 /* Sanity check that no thread is receiving */ 4642 ASSERT(vdcp->read_state != VDC_READ_WAITING); 4643 4644 vdcp->read_state = VDC_READ_IDLE; 4645 vdcp->io_pending = B_FALSE; 4646 4647 /* 4648 * Cleanup any pending eio. These I/Os are going to 4649 * be resubmitted. 4650 */ 4651 vdc_eio_unqueue(vdcp, 0, B_FALSE); 4652 4653 vdc_backup_local_dring(vdcp); 4654 4655 /* cleanup the old d-ring */ 4656 vdc_destroy_descriptor_ring(vdcp); 4657 4658 /* go and start again */ 4659 vdcp->state = VDC_STATE_INIT; 4660 4661 break; 4662 4663 case VDC_STATE_DETACH: 4664 DMSG(vdcp, 0, "[%d] Reset thread exit cleanup ..\n", 4665 vdcp->instance); 4666 4667 /* cancel any pending timeout */ 4668 mutex_exit(&vdcp->lock); 4669 if (tmid != 0) { 4670 (void) untimeout(tmid); 4671 tmid = 0; 4672 } 4673 mutex_enter(&vdcp->lock); 4674 4675 /* 4676 * Signal anyone waiting for connection 4677 * to come online 4678 */ 4679 cv_broadcast(&vdcp->running_cv); 4680 4681 while (vdcp->sync_op_cnt > 0) { 4682 cv_broadcast(&vdcp->sync_blocked_cv); 4683 mutex_exit(&vdcp->lock); 4684 /* give the waiters enough time to wake up */ 4685 delay(vdc_hz_min_ldc_delay); 4686 mutex_enter(&vdcp->lock); 4687 } 4688 4689 mutex_exit(&vdcp->lock); 4690 4691 DMSG(vdcp, 0, "[%d] Msg processing thread exiting ..\n", 4692 vdcp->instance); 4693 thread_exit(); 4694 break; 4695 } 4696 } 4697 } 4698 4699 4700 /* 4701 * Function: 4702 * vdc_process_data_msg() 4703 * 4704 * Description: 4705 * This function is called by the message processing thread each time 4706 * a message with a msgtype of VIO_TYPE_DATA is received. It will either 4707 * be an ACK or NACK from vds[1] which vdc handles as follows. 4708 * ACK - wake up the waiting thread 4709 * NACK - resend any messages necessary 4710 * 4711 * [1] Although the message format allows it, vds should not send a 4712 * VIO_SUBTYPE_INFO message to vdc asking it to read data; if for 4713 * some bizarre reason it does, vdc will reset the connection. 4714 * 4715 * Arguments: 4716 * vdc - soft state pointer for this instance of the device driver. 4717 * msg - the LDC message sent by vds 4718 * 4719 * Return Code: 4720 * 0 - Success. 4721 * > 0 - error value returned by LDC 4722 */ 4723 static int 4724 vdc_process_data_msg(vdc_t *vdcp, vio_msg_t *msg) 4725 { 4726 int status = 0; 4727 vio_dring_msg_t *dring_msg; 4728 vdc_local_desc_t *ldep = NULL; 4729 int start, end; 4730 int idx; 4731 int op; 4732 4733 dring_msg = (vio_dring_msg_t *)msg; 4734 4735 ASSERT(msg->tag.vio_msgtype == VIO_TYPE_DATA); 4736 ASSERT(vdcp != NULL); 4737 4738 mutex_enter(&vdcp->lock); 4739 4740 /* 4741 * Check to see if the message has bogus data 4742 */ 4743 idx = start = dring_msg->start_idx; 4744 end = dring_msg->end_idx; 4745 if ((start >= vdcp->dring_len) || 4746 (end >= vdcp->dring_len) || (end < -1)) { 4747 /* 4748 * Update the I/O statistics to indicate that an error ocurred. 4749 * No need to update the wait/run queues as no specific read or 4750 * write request is being completed in response to this 'msg'. 4751 */ 4752 VD_UPDATE_ERR_STATS(vdcp, vd_softerrs); 4753 DMSG(vdcp, 0, "[%d] Bogus ACK data : start %d, end %d\n", 4754 vdcp->instance, start, end); 4755 mutex_exit(&vdcp->lock); 4756 return (EINVAL); 4757 } 4758 4759 /* 4760 * Verify that the sequence number is what vdc expects. 4761 */ 4762 switch (vdc_verify_seq_num(vdcp, dring_msg)) { 4763 case VDC_SEQ_NUM_TODO: 4764 break; /* keep processing this message */ 4765 case VDC_SEQ_NUM_SKIP: 4766 mutex_exit(&vdcp->lock); 4767 return (0); 4768 case VDC_SEQ_NUM_INVALID: 4769 /* 4770 * Update the I/O statistics to indicate that an error ocurred. 4771 * No need to update the wait/run queues as no specific read or 4772 * write request is being completed in response to this 'msg'. 4773 */ 4774 VD_UPDATE_ERR_STATS(vdcp, vd_softerrs); 4775 DMSG(vdcp, 0, "[%d] invalid seqno\n", vdcp->instance); 4776 mutex_exit(&vdcp->lock); 4777 return (ENXIO); 4778 } 4779 4780 if (msg->tag.vio_subtype == VIO_SUBTYPE_NACK) { 4781 /* 4782 * Update the I/O statistics to indicate that an error ocurred. 4783 * 4784 * We need to update the run queue if a read or write request 4785 * is being NACKed - otherwise there will appear to be an 4786 * indefinite outstanding request and statistics reported by 4787 * iostat(1M) will be incorrect. The transaction will be 4788 * resubmitted from the backup DRing following the reset 4789 * and the wait/run queues will be entered again. 4790 */ 4791 ldep = &vdcp->local_dring[idx]; 4792 op = ldep->operation; 4793 if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) { 4794 DTRACE_IO1(done, buf_t *, ldep->buf); 4795 VD_KSTAT_RUNQ_EXIT(vdcp); 4796 } 4797 VD_UPDATE_ERR_STATS(vdcp, vd_softerrs); 4798 VDC_DUMP_DRING_MSG(dring_msg); 4799 DMSG(vdcp, 0, "[%d] DATA NACK\n", vdcp->instance); 4800 mutex_exit(&vdcp->lock); 4801 return (EIO); 4802 4803 } else if (msg->tag.vio_subtype == VIO_SUBTYPE_INFO) { 4804 /* 4805 * Update the I/O statistics to indicate that an error occurred. 4806 * No need to update the wait/run queues as no specific read or 4807 * write request is being completed in response to this 'msg'. 4808 */ 4809 VD_UPDATE_ERR_STATS(vdcp, vd_protoerrs); 4810 mutex_exit(&vdcp->lock); 4811 return (EPROTO); 4812 } 4813 4814 DMSG(vdcp, 1, ": start %d end %d\n", start, end); 4815 ASSERT(start == end); 4816 4817 ldep = &vdcp->local_dring[idx]; 4818 4819 DMSG(vdcp, 1, ": state 0x%x\n", ldep->dep->hdr.dstate); 4820 4821 if (ldep->dep->hdr.dstate == VIO_DESC_DONE) { 4822 struct buf *bufp; 4823 4824 status = ldep->dep->payload.status; 4825 4826 bufp = ldep->buf; 4827 ASSERT(bufp != NULL); 4828 4829 bufp->b_resid = bufp->b_bcount - ldep->dep->payload.nbytes; 4830 bioerror(bufp, status); 4831 4832 if (status != 0) { 4833 DMSG(vdcp, 1, "I/O status=%d\n", status); 4834 } 4835 4836 DMSG(vdcp, 1, 4837 "I/O complete req=%ld bytes resp=%ld bytes\n", 4838 bufp->b_bcount, ldep->dep->payload.nbytes); 4839 4840 /* 4841 * If the request has failed and we have multiple servers or 4842 * failfast is enabled then we will have to defer the completion 4843 * of the request until we have checked that the vdisk backend 4844 * is effectively available (if multiple server) or that there 4845 * is no reservation conflict (if failfast). 4846 */ 4847 if ((status != 0 && 4848 (vdcp->num_servers > 1 && 4849 (ldep->flags & VDC_OP_ERRCHK_BACKEND)) || 4850 (vdcp->failfast_interval != 0 && 4851 (ldep->flags & VDC_OP_ERRCHK_CONFLICT)))) { 4852 /* 4853 * The I/O has failed and we need to check the error. 4854 */ 4855 (void) vdc_eio_queue(vdcp, idx); 4856 } else { 4857 op = ldep->operation; 4858 if (op == VD_OP_BREAD || op == VD_OP_BWRITE) { 4859 if (status == 0) { 4860 VD_UPDATE_IO_STATS(vdcp, op, 4861 ldep->dep->payload.nbytes); 4862 } else { 4863 VD_UPDATE_ERR_STATS(vdcp, vd_softerrs); 4864 } 4865 VD_KSTAT_RUNQ_EXIT(vdcp); 4866 DTRACE_IO1(done, buf_t *, bufp); 4867 } 4868 (void) vdc_depopulate_descriptor(vdcp, idx); 4869 biodone(bufp); 4870 } 4871 } 4872 4873 /* let the arrival signal propogate */ 4874 mutex_exit(&vdcp->lock); 4875 4876 /* probe gives the count of how many entries were processed */ 4877 DTRACE_PROBE2(processed, int, 1, vdc_t *, vdcp); 4878 4879 return (0); 4880 } 4881 4882 4883 /* 4884 * Function: 4885 * vdc_handle_ver_msg() 4886 * 4887 * Description: 4888 * 4889 * Arguments: 4890 * vdc - soft state pointer for this instance of the device driver. 4891 * ver_msg - LDC message sent by vDisk server 4892 * 4893 * Return Code: 4894 * 0 - Success 4895 */ 4896 static int 4897 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg) 4898 { 4899 int status = 0; 4900 4901 ASSERT(vdc != NULL); 4902 ASSERT(mutex_owned(&vdc->lock)); 4903 4904 if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) { 4905 return (EPROTO); 4906 } 4907 4908 if (ver_msg->dev_class != VDEV_DISK_SERVER) { 4909 return (EINVAL); 4910 } 4911 4912 switch (ver_msg->tag.vio_subtype) { 4913 case VIO_SUBTYPE_ACK: 4914 /* 4915 * We check to see if the version returned is indeed supported 4916 * (The server may have also adjusted the minor number downwards 4917 * and if so 'ver_msg' will contain the actual version agreed) 4918 */ 4919 if (vdc_is_supported_version(ver_msg)) { 4920 vdc->ver.major = ver_msg->ver_major; 4921 vdc->ver.minor = ver_msg->ver_minor; 4922 ASSERT(vdc->ver.major > 0); 4923 } else { 4924 status = EPROTO; 4925 } 4926 break; 4927 4928 case VIO_SUBTYPE_NACK: 4929 /* 4930 * call vdc_is_supported_version() which will return the next 4931 * supported version (if any) in 'ver_msg' 4932 */ 4933 (void) vdc_is_supported_version(ver_msg); 4934 if (ver_msg->ver_major > 0) { 4935 size_t len = sizeof (*ver_msg); 4936 4937 ASSERT(vdc->ver.major > 0); 4938 4939 /* reset the necessary fields and resend */ 4940 ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO; 4941 ver_msg->dev_class = VDEV_DISK; 4942 4943 status = vdc_send(vdc, (caddr_t)ver_msg, &len); 4944 DMSG(vdc, 0, "[%d] Resend VER info (LDC status = %d)\n", 4945 vdc->instance, status); 4946 if (len != sizeof (*ver_msg)) 4947 status = EBADMSG; 4948 } else { 4949 DMSG(vdc, 0, "[%d] No common version with vDisk server", 4950 vdc->instance); 4951 status = ENOTSUP; 4952 } 4953 4954 break; 4955 case VIO_SUBTYPE_INFO: 4956 /* 4957 * Handle the case where vds starts handshake 4958 * (for now only vdc is the instigator) 4959 */ 4960 status = ENOTSUP; 4961 break; 4962 4963 default: 4964 status = EINVAL; 4965 break; 4966 } 4967 4968 return (status); 4969 } 4970 4971 /* 4972 * Function: 4973 * vdc_handle_attr_msg() 4974 * 4975 * Description: 4976 * 4977 * Arguments: 4978 * vdc - soft state pointer for this instance of the device driver. 4979 * attr_msg - LDC message sent by vDisk server 4980 * 4981 * Return Code: 4982 * 0 - Success 4983 */ 4984 static int 4985 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg) 4986 { 4987 int status = 0; 4988 vd_disk_type_t old_type; 4989 4990 ASSERT(vdc != NULL); 4991 ASSERT(mutex_owned(&vdc->lock)); 4992 4993 if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) { 4994 return (EPROTO); 4995 } 4996 4997 switch (attr_msg->tag.vio_subtype) { 4998 case VIO_SUBTYPE_ACK: 4999 /* 5000 * We now verify the attributes sent by vds. 5001 */ 5002 if (attr_msg->vdisk_size == 0) { 5003 DMSG(vdc, 0, "[%d] Invalid disk size from vds", 5004 vdc->instance); 5005 status = EINVAL; 5006 break; 5007 } 5008 5009 if (attr_msg->max_xfer_sz == 0) { 5010 DMSG(vdc, 0, "[%d] Invalid transfer size from vds", 5011 vdc->instance); 5012 status = EINVAL; 5013 break; 5014 } 5015 5016 if (attr_msg->vdisk_size == VD_SIZE_UNKNOWN) { 5017 DMSG(vdc, 0, "[%d] Unknown disk size from vds", 5018 vdc->instance); 5019 attr_msg->vdisk_size = 0; 5020 } 5021 5022 /* update the VIO block size */ 5023 if (attr_msg->vdisk_block_size > 0 && 5024 vdc_update_vio_bsize(vdc, 5025 attr_msg->vdisk_block_size) != 0) { 5026 DMSG(vdc, 0, "[%d] Invalid block size (%u) from vds", 5027 vdc->instance, attr_msg->vdisk_block_size); 5028 status = EINVAL; 5029 break; 5030 } 5031 5032 /* update disk, block and transfer sizes */ 5033 old_type = vdc->vdisk_type; 5034 vdc_update_size(vdc, attr_msg->vdisk_size, 5035 attr_msg->vdisk_block_size, attr_msg->max_xfer_sz); 5036 vdc->vdisk_type = attr_msg->vdisk_type; 5037 vdc->operations = attr_msg->operations; 5038 if (vio_ver_is_supported(vdc->ver, 1, 1)) 5039 vdc->vdisk_media = attr_msg->vdisk_media; 5040 else 5041 vdc->vdisk_media = 0; 5042 5043 DMSG(vdc, 0, "[%d] max_xfer_sz: sent %lx acked %lx\n", 5044 vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz); 5045 DMSG(vdc, 0, "[%d] vdisk_block_size: sent %lx acked %x\n", 5046 vdc->instance, vdc->vdisk_bsize, 5047 attr_msg->vdisk_block_size); 5048 5049 if ((attr_msg->xfer_mode != VIO_DRING_MODE_V1_0) || 5050 (attr_msg->vdisk_size > INT64_MAX) || 5051 (attr_msg->operations == 0) || 5052 (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) { 5053 DMSG(vdc, 0, "[%d] Invalid attributes from vds", 5054 vdc->instance); 5055 status = EINVAL; 5056 break; 5057 } 5058 5059 /* 5060 * Now that we have received all attributes we can create a 5061 * fake geometry for the disk. 5062 */ 5063 vdc_create_fake_geometry(vdc); 5064 5065 /* 5066 * If the disk type was previously unknown and device nodes 5067 * were created then the driver would have created 8 device 5068 * nodes. If we now find out that this is a single-slice disk 5069 * then we need to re-create the appropriate device nodes. 5070 */ 5071 if (old_type == VD_DISK_TYPE_UNK && 5072 (vdc->initialized & VDC_MINOR) && 5073 vdc->vdisk_type == VD_DISK_TYPE_SLICE) { 5074 ddi_remove_minor_node(vdc->dip, NULL); 5075 (void) devfs_clean(ddi_get_parent(vdc->dip), 5076 NULL, DV_CLEAN_FORCE); 5077 if (vdc_create_device_nodes(vdc) != 0) { 5078 DMSG(vdc, 0, "![%d] Failed to update " 5079 "device nodes", vdc->instance); 5080 } 5081 } 5082 5083 break; 5084 5085 case VIO_SUBTYPE_NACK: 5086 /* 5087 * vds could not handle the attributes we sent so we 5088 * stop negotiating. 5089 */ 5090 status = EPROTO; 5091 break; 5092 5093 case VIO_SUBTYPE_INFO: 5094 /* 5095 * Handle the case where vds starts the handshake 5096 * (for now; vdc is the only supported instigatior) 5097 */ 5098 status = ENOTSUP; 5099 break; 5100 5101 default: 5102 status = ENOTSUP; 5103 break; 5104 } 5105 5106 return (status); 5107 } 5108 5109 /* 5110 * Function: 5111 * vdc_handle_dring_reg_msg() 5112 * 5113 * Description: 5114 * 5115 * Arguments: 5116 * vdc - soft state pointer for this instance of the driver. 5117 * dring_msg - LDC message sent by vDisk server 5118 * 5119 * Return Code: 5120 * 0 - Success 5121 */ 5122 static int 5123 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg) 5124 { 5125 int status = 0; 5126 5127 ASSERT(vdc != NULL); 5128 ASSERT(mutex_owned(&vdc->lock)); 5129 5130 if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) { 5131 return (EPROTO); 5132 } 5133 5134 switch (dring_msg->tag.vio_subtype) { 5135 case VIO_SUBTYPE_ACK: 5136 /* save the received dring_ident */ 5137 vdc->dring_ident = dring_msg->dring_ident; 5138 DMSG(vdc, 0, "[%d] Received dring ident=0x%lx\n", 5139 vdc->instance, vdc->dring_ident); 5140 break; 5141 5142 case VIO_SUBTYPE_NACK: 5143 /* 5144 * vds could not handle the DRing info we sent so we 5145 * stop negotiating. 5146 */ 5147 DMSG(vdc, 0, "[%d] server could not register DRing\n", 5148 vdc->instance); 5149 status = EPROTO; 5150 break; 5151 5152 case VIO_SUBTYPE_INFO: 5153 /* 5154 * Handle the case where vds starts handshake 5155 * (for now only vdc is the instigatior) 5156 */ 5157 status = ENOTSUP; 5158 break; 5159 default: 5160 status = ENOTSUP; 5161 } 5162 5163 return (status); 5164 } 5165 5166 /* 5167 * Function: 5168 * vdc_verify_seq_num() 5169 * 5170 * Description: 5171 * This functions verifies that the sequence number sent back by the vDisk 5172 * server with the latest message is what is expected (i.e. it is greater 5173 * than the last seq num sent by the vDisk server and less than or equal 5174 * to the last seq num generated by vdc). 5175 * 5176 * It then checks the request ID to see if any requests need processing 5177 * in the DRing. 5178 * 5179 * Arguments: 5180 * vdc - soft state pointer for this instance of the driver. 5181 * dring_msg - pointer to the LDC message sent by vds 5182 * 5183 * Return Code: 5184 * VDC_SEQ_NUM_TODO - Message needs to be processed 5185 * VDC_SEQ_NUM_SKIP - Message has already been processed 5186 * VDC_SEQ_NUM_INVALID - The seq numbers are so out of sync, 5187 * vdc cannot deal with them 5188 */ 5189 static int 5190 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg) 5191 { 5192 ASSERT(vdc != NULL); 5193 ASSERT(dring_msg != NULL); 5194 ASSERT(mutex_owned(&vdc->lock)); 5195 5196 /* 5197 * Check to see if the messages were responded to in the correct 5198 * order by vds. 5199 */ 5200 if ((dring_msg->seq_num <= vdc->seq_num_reply) || 5201 (dring_msg->seq_num > vdc->seq_num)) { 5202 DMSG(vdc, 0, "?[%d] Bogus sequence_number %lu: " 5203 "%lu > expected <= %lu (last proc req %lu sent %lu)\n", 5204 vdc->instance, dring_msg->seq_num, 5205 vdc->seq_num_reply, vdc->seq_num, 5206 vdc->req_id_proc, vdc->req_id); 5207 return (VDC_SEQ_NUM_INVALID); 5208 } 5209 vdc->seq_num_reply = dring_msg->seq_num; 5210 5211 if (vdc->req_id_proc < vdc->req_id) 5212 return (VDC_SEQ_NUM_TODO); 5213 else 5214 return (VDC_SEQ_NUM_SKIP); 5215 } 5216 5217 5218 /* 5219 * Function: 5220 * vdc_is_supported_version() 5221 * 5222 * Description: 5223 * This routine checks if the major/minor version numbers specified in 5224 * 'ver_msg' are supported. If not it finds the next version that is 5225 * in the supported version list 'vdc_version[]' and sets the fields in 5226 * 'ver_msg' to those values 5227 * 5228 * Arguments: 5229 * ver_msg - LDC message sent by vDisk server 5230 * 5231 * Return Code: 5232 * B_TRUE - Success 5233 * B_FALSE - Version not supported 5234 */ 5235 static boolean_t 5236 vdc_is_supported_version(vio_ver_msg_t *ver_msg) 5237 { 5238 int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]); 5239 5240 for (int i = 0; i < vdc_num_versions; i++) { 5241 ASSERT(vdc_version[i].major > 0); 5242 ASSERT((i == 0) || 5243 (vdc_version[i].major < vdc_version[i-1].major)); 5244 5245 /* 5246 * If the major versions match, adjust the minor version, if 5247 * necessary, down to the highest value supported by this 5248 * client. The server should support all minor versions lower 5249 * than the value it sent 5250 */ 5251 if (ver_msg->ver_major == vdc_version[i].major) { 5252 if (ver_msg->ver_minor > vdc_version[i].minor) { 5253 DMSGX(0, 5254 "Adjusting minor version from %u to %u", 5255 ver_msg->ver_minor, vdc_version[i].minor); 5256 ver_msg->ver_minor = vdc_version[i].minor; 5257 } 5258 return (B_TRUE); 5259 } 5260 5261 /* 5262 * If the message contains a higher major version number, set 5263 * the message's major/minor versions to the current values 5264 * and return false, so this message will get resent with 5265 * these values, and the server will potentially try again 5266 * with the same or a lower version 5267 */ 5268 if (ver_msg->ver_major > vdc_version[i].major) { 5269 ver_msg->ver_major = vdc_version[i].major; 5270 ver_msg->ver_minor = vdc_version[i].minor; 5271 DMSGX(0, "Suggesting major/minor (0x%x/0x%x)\n", 5272 ver_msg->ver_major, ver_msg->ver_minor); 5273 5274 return (B_FALSE); 5275 } 5276 5277 /* 5278 * Otherwise, the message's major version is less than the 5279 * current major version, so continue the loop to the next 5280 * (lower) supported version 5281 */ 5282 } 5283 5284 /* 5285 * No common version was found; "ground" the version pair in the 5286 * message to terminate negotiation 5287 */ 5288 ver_msg->ver_major = 0; 5289 ver_msg->ver_minor = 0; 5290 5291 return (B_FALSE); 5292 } 5293 /* -------------------------------------------------------------------------- */ 5294 5295 /* 5296 * DKIO(7) support 5297 */ 5298 5299 typedef struct vdc_dk_arg { 5300 struct dk_callback dkc; 5301 int mode; 5302 dev_t dev; 5303 vdc_t *vdc; 5304 } vdc_dk_arg_t; 5305 5306 /* 5307 * Function: 5308 * vdc_dkio_flush_cb() 5309 * 5310 * Description: 5311 * This routine is a callback for DKIOCFLUSHWRITECACHE which can be called 5312 * by kernel code. 5313 * 5314 * Arguments: 5315 * arg - a pointer to a vdc_dk_arg_t structure. 5316 */ 5317 void 5318 vdc_dkio_flush_cb(void *arg) 5319 { 5320 struct vdc_dk_arg *dk_arg = (struct vdc_dk_arg *)arg; 5321 struct dk_callback *dkc = NULL; 5322 vdc_t *vdc = NULL; 5323 int rv; 5324 5325 if (dk_arg == NULL) { 5326 cmn_err(CE_NOTE, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n"); 5327 return; 5328 } 5329 dkc = &dk_arg->dkc; 5330 vdc = dk_arg->vdc; 5331 ASSERT(vdc != NULL); 5332 5333 rv = vdc_do_sync_op(vdc, VD_OP_FLUSH, NULL, 0, 5334 VDCPART(dk_arg->dev), 0, VIO_both_dir, B_TRUE); 5335 if (rv != 0) { 5336 DMSG(vdc, 0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n", 5337 vdc->instance, rv, 5338 ddi_model_convert_from(dk_arg->mode & FMODELS)); 5339 } 5340 5341 /* 5342 * Trigger the call back to notify the caller the the ioctl call has 5343 * been completed. 5344 */ 5345 if ((dk_arg->mode & FKIOCTL) && 5346 (dkc != NULL) && 5347 (dkc->dkc_callback != NULL)) { 5348 ASSERT(dkc->dkc_cookie != NULL); 5349 (*dkc->dkc_callback)(dkc->dkc_cookie, rv); 5350 } 5351 5352 /* Indicate that one less DKIO write flush is outstanding */ 5353 mutex_enter(&vdc->lock); 5354 vdc->dkio_flush_pending--; 5355 ASSERT(vdc->dkio_flush_pending >= 0); 5356 mutex_exit(&vdc->lock); 5357 5358 /* free the mem that was allocated when the callback was dispatched */ 5359 kmem_free(arg, sizeof (vdc_dk_arg_t)); 5360 } 5361 5362 /* 5363 * Function: 5364 * vdc_dkio_gapart() 5365 * 5366 * Description: 5367 * This function implements the DKIOCGAPART ioctl. 5368 * 5369 * Arguments: 5370 * vdc - soft state pointer 5371 * arg - a pointer to a dk_map[NDKMAP] or dk_map32[NDKMAP] structure 5372 * flag - ioctl flags 5373 */ 5374 static int 5375 vdc_dkio_gapart(vdc_t *vdc, caddr_t arg, int flag) 5376 { 5377 struct dk_geom *geom; 5378 struct extvtoc *vtoc; 5379 union { 5380 struct dk_map map[NDKMAP]; 5381 struct dk_map32 map32[NDKMAP]; 5382 } data; 5383 int i, rv, size; 5384 5385 mutex_enter(&vdc->lock); 5386 5387 if ((rv = vdc_validate_geometry(vdc)) != 0) { 5388 mutex_exit(&vdc->lock); 5389 return (rv); 5390 } 5391 5392 if (vdc->vdisk_size > VD_OLDVTOC_LIMIT) { 5393 mutex_exit(&vdc->lock); 5394 return (EOVERFLOW); 5395 } 5396 5397 vtoc = vdc->vtoc; 5398 geom = vdc->geom; 5399 5400 if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) { 5401 5402 for (i = 0; i < vtoc->v_nparts; i++) { 5403 data.map32[i].dkl_cylno = vtoc->v_part[i].p_start / 5404 (geom->dkg_nhead * geom->dkg_nsect); 5405 data.map32[i].dkl_nblk = vtoc->v_part[i].p_size; 5406 } 5407 size = NDKMAP * sizeof (struct dk_map32); 5408 5409 } else { 5410 5411 for (i = 0; i < vtoc->v_nparts; i++) { 5412 data.map[i].dkl_cylno = vtoc->v_part[i].p_start / 5413 (geom->dkg_nhead * geom->dkg_nsect); 5414 data.map[i].dkl_nblk = vtoc->v_part[i].p_size; 5415 } 5416 size = NDKMAP * sizeof (struct dk_map); 5417 5418 } 5419 5420 mutex_exit(&vdc->lock); 5421 5422 if (ddi_copyout(&data, arg, size, flag) != 0) 5423 return (EFAULT); 5424 5425 return (0); 5426 } 5427 5428 /* 5429 * Function: 5430 * vdc_dkio_partition() 5431 * 5432 * Description: 5433 * This function implements the DKIOCPARTITION ioctl. 5434 * 5435 * Arguments: 5436 * vdc - soft state pointer 5437 * arg - a pointer to a struct partition64 structure 5438 * flag - ioctl flags 5439 */ 5440 static int 5441 vdc_dkio_partition(vdc_t *vdc, caddr_t arg, int flag) 5442 { 5443 struct partition64 p64; 5444 efi_gpt_t *gpt; 5445 efi_gpe_t *gpe; 5446 vd_efi_dev_t edev; 5447 uint_t partno; 5448 int rv; 5449 5450 if (ddi_copyin(arg, &p64, sizeof (struct partition64), flag)) { 5451 return (EFAULT); 5452 } 5453 5454 VDC_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl); 5455 5456 if ((rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe)) != 0) { 5457 return (rv); 5458 } 5459 5460 partno = p64.p_partno; 5461 5462 if (partno >= gpt->efi_gpt_NumberOfPartitionEntries) { 5463 vd_efi_free(&edev, gpt, gpe); 5464 return (ESRCH); 5465 } 5466 5467 bcopy(&gpe[partno].efi_gpe_PartitionTypeGUID, &p64.p_type, 5468 sizeof (struct uuid)); 5469 p64.p_start = gpe[partno].efi_gpe_StartingLBA; 5470 p64.p_size = gpe[partno].efi_gpe_EndingLBA - p64.p_start + 1; 5471 5472 if (ddi_copyout(&p64, arg, sizeof (struct partition64), flag)) { 5473 vd_efi_free(&edev, gpt, gpe); 5474 return (EFAULT); 5475 } 5476 5477 vd_efi_free(&edev, gpt, gpe); 5478 return (0); 5479 } 5480 5481 /* 5482 * Function: 5483 * vdc_dioctl_rwcmd() 5484 * 5485 * Description: 5486 * This function implements the DIOCTL_RWCMD ioctl. This ioctl is used 5487 * for DKC_DIRECT disks to read or write at an absolute disk offset. 5488 * 5489 * Arguments: 5490 * dev - device 5491 * arg - a pointer to a dadkio_rwcmd or dadkio_rwcmd32 structure 5492 * flag - ioctl flags 5493 */ 5494 static int 5495 vdc_dioctl_rwcmd(vdc_t *vdc, caddr_t arg, int flag) 5496 { 5497 struct dadkio_rwcmd32 rwcmd32; 5498 struct dadkio_rwcmd rwcmd; 5499 struct iovec aiov; 5500 struct uio auio; 5501 int rw, status; 5502 struct buf *buf; 5503 5504 if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) { 5505 if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd32, 5506 sizeof (struct dadkio_rwcmd32), flag)) { 5507 return (EFAULT); 5508 } 5509 rwcmd.cmd = rwcmd32.cmd; 5510 rwcmd.flags = rwcmd32.flags; 5511 rwcmd.blkaddr = (daddr_t)rwcmd32.blkaddr; 5512 rwcmd.buflen = rwcmd32.buflen; 5513 rwcmd.bufaddr = (caddr_t)(uintptr_t)rwcmd32.bufaddr; 5514 } else { 5515 if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd, 5516 sizeof (struct dadkio_rwcmd), flag)) { 5517 return (EFAULT); 5518 } 5519 } 5520 5521 switch (rwcmd.cmd) { 5522 case DADKIO_RWCMD_READ: 5523 rw = B_READ; 5524 break; 5525 case DADKIO_RWCMD_WRITE: 5526 rw = B_WRITE; 5527 break; 5528 default: 5529 return (EINVAL); 5530 } 5531 5532 bzero((caddr_t)&aiov, sizeof (struct iovec)); 5533 aiov.iov_base = rwcmd.bufaddr; 5534 aiov.iov_len = rwcmd.buflen; 5535 5536 bzero((caddr_t)&auio, sizeof (struct uio)); 5537 auio.uio_iov = &aiov; 5538 auio.uio_iovcnt = 1; 5539 auio.uio_loffset = rwcmd.blkaddr * vdc->vdisk_bsize; 5540 auio.uio_resid = rwcmd.buflen; 5541 auio.uio_segflg = flag & FKIOCTL ? UIO_SYSSPACE : UIO_USERSPACE; 5542 5543 buf = kmem_alloc(sizeof (buf_t), KM_SLEEP); 5544 bioinit(buf); 5545 /* 5546 * We use the private field of buf to specify that this is an 5547 * I/O using an absolute offset. 5548 */ 5549 buf->b_private = (void *)VD_SLICE_NONE; 5550 5551 status = physio(vdc_strategy, buf, VD_MAKE_DEV(vdc->instance, 0), 5552 rw, vdc_min, &auio); 5553 5554 biofini(buf); 5555 kmem_free(buf, sizeof (buf_t)); 5556 5557 return (status); 5558 } 5559 5560 /* 5561 * Allocate a buffer for a VD_OP_SCSICMD operation. The size of the allocated 5562 * buffer is returned in alloc_len. 5563 */ 5564 static vd_scsi_t * 5565 vdc_scsi_alloc(int cdb_len, int sense_len, int datain_len, int dataout_len, 5566 int *alloc_len) 5567 { 5568 vd_scsi_t *vd_scsi; 5569 int vd_scsi_len = VD_SCSI_SIZE; 5570 5571 vd_scsi_len += P2ROUNDUP(cdb_len, sizeof (uint64_t)); 5572 vd_scsi_len += P2ROUNDUP(sense_len, sizeof (uint64_t)); 5573 vd_scsi_len += P2ROUNDUP(datain_len, sizeof (uint64_t)); 5574 vd_scsi_len += P2ROUNDUP(dataout_len, sizeof (uint64_t)); 5575 5576 ASSERT(vd_scsi_len % sizeof (uint64_t) == 0); 5577 5578 vd_scsi = kmem_zalloc(vd_scsi_len, KM_SLEEP); 5579 5580 vd_scsi->cdb_len = cdb_len; 5581 vd_scsi->sense_len = sense_len; 5582 vd_scsi->datain_len = datain_len; 5583 vd_scsi->dataout_len = dataout_len; 5584 5585 *alloc_len = vd_scsi_len; 5586 5587 return (vd_scsi); 5588 } 5589 5590 /* 5591 * Convert the status of a SCSI command to a Solaris return code. 5592 * 5593 * Arguments: 5594 * vd_scsi - The SCSI operation buffer. 5595 * log_error - indicate if an error message should be logged. 5596 * 5597 * Note that our SCSI error messages are rather primitive for the moment 5598 * and could be improved by decoding some data like the SCSI command and 5599 * the sense key. 5600 * 5601 * Return value: 5602 * 0 - Status is good. 5603 * EACCES - Status reports a reservation conflict. 5604 * ENOTSUP - Status reports a check condition and sense key 5605 * reports an illegal request. 5606 * EIO - Any other status. 5607 */ 5608 static int 5609 vdc_scsi_status(vdc_t *vdc, vd_scsi_t *vd_scsi, boolean_t log_error) 5610 { 5611 int rv; 5612 char path_str[MAXPATHLEN]; 5613 char panic_str[VDC_RESV_CONFLICT_FMT_LEN + MAXPATHLEN]; 5614 union scsi_cdb *cdb; 5615 struct scsi_extended_sense *sense; 5616 5617 if (vd_scsi->cmd_status == STATUS_GOOD) 5618 /* no error */ 5619 return (0); 5620 5621 /* when the tunable vdc_scsi_log_error is true we log all errors */ 5622 if (vdc_scsi_log_error) 5623 log_error = B_TRUE; 5624 5625 if (log_error) { 5626 cmn_err(CE_WARN, "%s (vdc%d):\tError for Command: 0x%x)\n", 5627 ddi_pathname(vdc->dip, path_str), vdc->instance, 5628 GETCMD(VD_SCSI_DATA_CDB(vd_scsi))); 5629 } 5630 5631 /* default returned value */ 5632 rv = EIO; 5633 5634 switch (vd_scsi->cmd_status) { 5635 5636 case STATUS_CHECK: 5637 case STATUS_TERMINATED: 5638 if (log_error) 5639 cmn_err(CE_CONT, "\tCheck Condition Error\n"); 5640 5641 /* check sense buffer */ 5642 if (vd_scsi->sense_len == 0 || 5643 vd_scsi->sense_status != STATUS_GOOD) { 5644 if (log_error) 5645 cmn_err(CE_CONT, "\tNo Sense Data Available\n"); 5646 break; 5647 } 5648 5649 sense = VD_SCSI_DATA_SENSE(vd_scsi); 5650 5651 if (log_error) { 5652 cmn_err(CE_CONT, "\tSense Key: 0x%x\n" 5653 "\tASC: 0x%x, ASCQ: 0x%x\n", 5654 scsi_sense_key((uint8_t *)sense), 5655 scsi_sense_asc((uint8_t *)sense), 5656 scsi_sense_ascq((uint8_t *)sense)); 5657 } 5658 5659 if (scsi_sense_key((uint8_t *)sense) == KEY_ILLEGAL_REQUEST) 5660 rv = ENOTSUP; 5661 break; 5662 5663 case STATUS_BUSY: 5664 if (log_error) 5665 cmn_err(CE_NOTE, "\tDevice Busy\n"); 5666 break; 5667 5668 case STATUS_RESERVATION_CONFLICT: 5669 /* 5670 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then 5671 * reservation conflict could be due to various reasons like 5672 * incorrect keys, not registered or not reserved etc. So, 5673 * we should not panic in that case. 5674 */ 5675 cdb = VD_SCSI_DATA_CDB(vd_scsi); 5676 if (vdc->failfast_interval != 0 && 5677 cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_IN && 5678 cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_OUT) { 5679 /* failfast is enabled so we have to panic */ 5680 (void) snprintf(panic_str, sizeof (panic_str), 5681 VDC_RESV_CONFLICT_FMT_STR "%s", 5682 ddi_pathname(vdc->dip, path_str)); 5683 panic(panic_str); 5684 } 5685 if (log_error) 5686 cmn_err(CE_NOTE, "\tReservation Conflict\n"); 5687 rv = EACCES; 5688 break; 5689 5690 case STATUS_QFULL: 5691 if (log_error) 5692 cmn_err(CE_NOTE, "\tQueue Full\n"); 5693 break; 5694 5695 case STATUS_MET: 5696 case STATUS_INTERMEDIATE: 5697 case STATUS_SCSI2: 5698 case STATUS_INTERMEDIATE_MET: 5699 case STATUS_ACA_ACTIVE: 5700 if (log_error) 5701 cmn_err(CE_CONT, 5702 "\tUnexpected SCSI status received: 0x%x\n", 5703 vd_scsi->cmd_status); 5704 break; 5705 5706 default: 5707 if (log_error) 5708 cmn_err(CE_CONT, 5709 "\tInvalid SCSI status received: 0x%x\n", 5710 vd_scsi->cmd_status); 5711 break; 5712 } 5713 5714 return (rv); 5715 } 5716 5717 /* 5718 * Implemented the USCSICMD uscsi(7I) ioctl. This ioctl is converted to 5719 * a VD_OP_SCSICMD operation which is sent to the vdisk server. If a SCSI 5720 * reset is requested (i.e. a flag USCSI_RESET* is set) then the ioctl is 5721 * converted to a VD_OP_RESET operation. 5722 */ 5723 static int 5724 vdc_uscsi_cmd(vdc_t *vdc, caddr_t arg, int mode) 5725 { 5726 struct uscsi_cmd uscsi; 5727 struct uscsi_cmd32 uscsi32; 5728 vd_scsi_t *vd_scsi; 5729 int vd_scsi_len; 5730 union scsi_cdb *cdb; 5731 struct scsi_extended_sense *sense; 5732 char *datain, *dataout; 5733 size_t cdb_len, datain_len, dataout_len, sense_len; 5734 int rv; 5735 5736 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 5737 if (ddi_copyin(arg, &uscsi32, sizeof (struct uscsi_cmd32), 5738 mode) != 0) 5739 return (EFAULT); 5740 uscsi_cmd32touscsi_cmd((&uscsi32), (&uscsi)); 5741 } else { 5742 if (ddi_copyin(arg, &uscsi, sizeof (struct uscsi_cmd), 5743 mode) != 0) 5744 return (EFAULT); 5745 } 5746 5747 /* a uscsi reset is converted to a VD_OP_RESET operation */ 5748 if (uscsi.uscsi_flags & (USCSI_RESET | USCSI_RESET_LUN | 5749 USCSI_RESET_ALL)) { 5750 rv = vdc_do_sync_op(vdc, VD_OP_RESET, NULL, 0, 0, 0, 5751 VIO_both_dir, B_TRUE); 5752 return (rv); 5753 } 5754 5755 /* cdb buffer length */ 5756 cdb_len = uscsi.uscsi_cdblen; 5757 5758 /* data in and out buffers length */ 5759 if (uscsi.uscsi_flags & USCSI_READ) { 5760 datain_len = uscsi.uscsi_buflen; 5761 dataout_len = 0; 5762 } else { 5763 datain_len = 0; 5764 dataout_len = uscsi.uscsi_buflen; 5765 } 5766 5767 /* sense buffer length */ 5768 if (uscsi.uscsi_flags & USCSI_RQENABLE) 5769 sense_len = uscsi.uscsi_rqlen; 5770 else 5771 sense_len = 0; 5772 5773 /* allocate buffer for the VD_SCSICMD_OP operation */ 5774 vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len, 5775 &vd_scsi_len); 5776 5777 /* 5778 * The documentation of USCSI_ISOLATE and USCSI_DIAGNOSE is very vague, 5779 * but basically they prevent a SCSI command from being retried in case 5780 * of an error. 5781 */ 5782 if ((uscsi.uscsi_flags & USCSI_ISOLATE) || 5783 (uscsi.uscsi_flags & USCSI_DIAGNOSE)) 5784 vd_scsi->options |= VD_SCSI_OPT_NORETRY; 5785 5786 /* set task attribute */ 5787 if (uscsi.uscsi_flags & USCSI_NOTAG) { 5788 vd_scsi->task_attribute = 0; 5789 } else { 5790 if (uscsi.uscsi_flags & USCSI_HEAD) 5791 vd_scsi->task_attribute = VD_SCSI_TASK_ACA; 5792 else if (uscsi.uscsi_flags & USCSI_HTAG) 5793 vd_scsi->task_attribute = VD_SCSI_TASK_HQUEUE; 5794 else if (uscsi.uscsi_flags & USCSI_OTAG) 5795 vd_scsi->task_attribute = VD_SCSI_TASK_ORDERED; 5796 else 5797 vd_scsi->task_attribute = 0; 5798 } 5799 5800 /* set timeout */ 5801 vd_scsi->timeout = uscsi.uscsi_timeout; 5802 5803 /* copy-in cdb data */ 5804 cdb = VD_SCSI_DATA_CDB(vd_scsi); 5805 if (ddi_copyin(uscsi.uscsi_cdb, cdb, cdb_len, mode) != 0) { 5806 rv = EFAULT; 5807 goto done; 5808 } 5809 5810 /* keep a pointer to the sense buffer */ 5811 sense = VD_SCSI_DATA_SENSE(vd_scsi); 5812 5813 /* keep a pointer to the data-in buffer */ 5814 datain = (char *)VD_SCSI_DATA_IN(vd_scsi); 5815 5816 /* copy-in request data to the data-out buffer */ 5817 dataout = (char *)VD_SCSI_DATA_OUT(vd_scsi); 5818 if (!(uscsi.uscsi_flags & USCSI_READ)) { 5819 if (ddi_copyin(uscsi.uscsi_bufaddr, dataout, dataout_len, 5820 mode)) { 5821 rv = EFAULT; 5822 goto done; 5823 } 5824 } 5825 5826 /* submit the request */ 5827 rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len, 5828 0, 0, VIO_both_dir, B_FALSE); 5829 5830 if (rv != 0) 5831 goto done; 5832 5833 /* update scsi status */ 5834 uscsi.uscsi_status = vd_scsi->cmd_status; 5835 5836 /* update sense data */ 5837 if ((uscsi.uscsi_flags & USCSI_RQENABLE) && 5838 (uscsi.uscsi_status == STATUS_CHECK || 5839 uscsi.uscsi_status == STATUS_TERMINATED)) { 5840 5841 uscsi.uscsi_rqstatus = vd_scsi->sense_status; 5842 5843 if (uscsi.uscsi_rqstatus == STATUS_GOOD) { 5844 uscsi.uscsi_rqresid = uscsi.uscsi_rqlen - 5845 vd_scsi->sense_len; 5846 if (ddi_copyout(sense, uscsi.uscsi_rqbuf, 5847 vd_scsi->sense_len, mode) != 0) { 5848 rv = EFAULT; 5849 goto done; 5850 } 5851 } 5852 } 5853 5854 /* update request data */ 5855 if (uscsi.uscsi_status == STATUS_GOOD) { 5856 if (uscsi.uscsi_flags & USCSI_READ) { 5857 uscsi.uscsi_resid = uscsi.uscsi_buflen - 5858 vd_scsi->datain_len; 5859 if (ddi_copyout(datain, uscsi.uscsi_bufaddr, 5860 vd_scsi->datain_len, mode) != 0) { 5861 rv = EFAULT; 5862 goto done; 5863 } 5864 } else { 5865 uscsi.uscsi_resid = uscsi.uscsi_buflen - 5866 vd_scsi->dataout_len; 5867 } 5868 } 5869 5870 /* copy-out result */ 5871 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 5872 uscsi_cmdtouscsi_cmd32((&uscsi), (&uscsi32)); 5873 if (ddi_copyout(&uscsi32, arg, sizeof (struct uscsi_cmd32), 5874 mode) != 0) { 5875 rv = EFAULT; 5876 goto done; 5877 } 5878 } else { 5879 if (ddi_copyout(&uscsi, arg, sizeof (struct uscsi_cmd), 5880 mode) != 0) { 5881 rv = EFAULT; 5882 goto done; 5883 } 5884 } 5885 5886 /* get the return code from the SCSI command status */ 5887 rv = vdc_scsi_status(vdc, vd_scsi, 5888 !(uscsi.uscsi_flags & USCSI_SILENT)); 5889 5890 done: 5891 kmem_free(vd_scsi, vd_scsi_len); 5892 return (rv); 5893 } 5894 5895 /* 5896 * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT IN command. 5897 * 5898 * Arguments: 5899 * cmd - SCSI PERSISTENT IN command 5900 * len - length of the SCSI input buffer 5901 * vd_scsi_len - return the length of the allocated buffer 5902 * 5903 * Returned Value: 5904 * a pointer to the allocated VD_OP_SCSICMD buffer. 5905 */ 5906 static vd_scsi_t * 5907 vdc_scsi_alloc_persistent_in(uchar_t cmd, int len, int *vd_scsi_len) 5908 { 5909 int cdb_len, sense_len, datain_len, dataout_len; 5910 vd_scsi_t *vd_scsi; 5911 union scsi_cdb *cdb; 5912 5913 cdb_len = CDB_GROUP1; 5914 sense_len = sizeof (struct scsi_extended_sense); 5915 datain_len = len; 5916 dataout_len = 0; 5917 5918 vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len, 5919 vd_scsi_len); 5920 5921 cdb = VD_SCSI_DATA_CDB(vd_scsi); 5922 5923 /* set cdb */ 5924 cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 5925 cdb->cdb_opaque[1] = cmd; 5926 FORMG1COUNT(cdb, datain_len); 5927 5928 vd_scsi->timeout = vdc_scsi_timeout; 5929 5930 return (vd_scsi); 5931 } 5932 5933 /* 5934 * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT OUT command. 5935 * 5936 * Arguments: 5937 * cmd - SCSI PERSISTENT OUT command 5938 * len - length of the SCSI output buffer 5939 * vd_scsi_len - return the length of the allocated buffer 5940 * 5941 * Returned Code: 5942 * a pointer to the allocated VD_OP_SCSICMD buffer. 5943 */ 5944 static vd_scsi_t * 5945 vdc_scsi_alloc_persistent_out(uchar_t cmd, int len, int *vd_scsi_len) 5946 { 5947 int cdb_len, sense_len, datain_len, dataout_len; 5948 vd_scsi_t *vd_scsi; 5949 union scsi_cdb *cdb; 5950 5951 cdb_len = CDB_GROUP1; 5952 sense_len = sizeof (struct scsi_extended_sense); 5953 datain_len = 0; 5954 dataout_len = len; 5955 5956 vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len, 5957 vd_scsi_len); 5958 5959 cdb = VD_SCSI_DATA_CDB(vd_scsi); 5960 5961 /* set cdb */ 5962 cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 5963 cdb->cdb_opaque[1] = cmd; 5964 FORMG1COUNT(cdb, dataout_len); 5965 5966 vd_scsi->timeout = vdc_scsi_timeout; 5967 5968 return (vd_scsi); 5969 } 5970 5971 /* 5972 * Implement the MHIOCGRP_INKEYS mhd(7i) ioctl. The ioctl is converted 5973 * to a SCSI PERSISTENT IN READ KEYS command which is sent to the vdisk 5974 * server with a VD_OP_SCSICMD operation. 5975 */ 5976 static int 5977 vdc_mhd_inkeys(vdc_t *vdc, caddr_t arg, int mode) 5978 { 5979 vd_scsi_t *vd_scsi; 5980 mhioc_inkeys_t inkeys; 5981 mhioc_key_list_t klist; 5982 struct mhioc_inkeys32 inkeys32; 5983 struct mhioc_key_list32 klist32; 5984 sd_prin_readkeys_t *scsi_keys; 5985 void *user_keys; 5986 int vd_scsi_len; 5987 int listsize, listlen, rv; 5988 5989 /* copyin arguments */ 5990 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 5991 rv = ddi_copyin(arg, &inkeys32, sizeof (inkeys32), mode); 5992 if (rv != 0) 5993 return (EFAULT); 5994 5995 rv = ddi_copyin((caddr_t)(uintptr_t)inkeys32.li, &klist32, 5996 sizeof (klist32), mode); 5997 if (rv != 0) 5998 return (EFAULT); 5999 6000 listsize = klist32.listsize; 6001 } else { 6002 rv = ddi_copyin(arg, &inkeys, sizeof (inkeys), mode); 6003 if (rv != 0) 6004 return (EFAULT); 6005 6006 rv = ddi_copyin(inkeys.li, &klist, sizeof (klist), mode); 6007 if (rv != 0) 6008 return (EFAULT); 6009 6010 listsize = klist.listsize; 6011 } 6012 6013 /* build SCSI VD_OP request */ 6014 vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_KEYS, 6015 sizeof (sd_prin_readkeys_t) - sizeof (caddr_t) + 6016 (sizeof (mhioc_resv_key_t) * listsize), &vd_scsi_len); 6017 6018 scsi_keys = (sd_prin_readkeys_t *)VD_SCSI_DATA_IN(vd_scsi); 6019 6020 /* submit the request */ 6021 rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len, 6022 0, 0, VIO_both_dir, B_FALSE); 6023 6024 if (rv != 0) 6025 goto done; 6026 6027 listlen = scsi_keys->len / MHIOC_RESV_KEY_SIZE; 6028 6029 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 6030 inkeys32.generation = scsi_keys->generation; 6031 rv = ddi_copyout(&inkeys32, arg, sizeof (inkeys32), mode); 6032 if (rv != 0) { 6033 rv = EFAULT; 6034 goto done; 6035 } 6036 6037 klist32.listlen = listlen; 6038 rv = ddi_copyout(&klist32, (caddr_t)(uintptr_t)inkeys32.li, 6039 sizeof (klist32), mode); 6040 if (rv != 0) { 6041 rv = EFAULT; 6042 goto done; 6043 } 6044 6045 user_keys = (caddr_t)(uintptr_t)klist32.list; 6046 } else { 6047 inkeys.generation = scsi_keys->generation; 6048 rv = ddi_copyout(&inkeys, arg, sizeof (inkeys), mode); 6049 if (rv != 0) { 6050 rv = EFAULT; 6051 goto done; 6052 } 6053 6054 klist.listlen = listlen; 6055 rv = ddi_copyout(&klist, inkeys.li, sizeof (klist), mode); 6056 if (rv != 0) { 6057 rv = EFAULT; 6058 goto done; 6059 } 6060 6061 user_keys = klist.list; 6062 } 6063 6064 /* copy out keys */ 6065 if (listlen > 0 && listsize > 0) { 6066 if (listsize < listlen) 6067 listlen = listsize; 6068 rv = ddi_copyout(&scsi_keys->keylist, user_keys, 6069 listlen * MHIOC_RESV_KEY_SIZE, mode); 6070 if (rv != 0) 6071 rv = EFAULT; 6072 } 6073 6074 if (rv == 0) 6075 rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE); 6076 6077 done: 6078 kmem_free(vd_scsi, vd_scsi_len); 6079 6080 return (rv); 6081 } 6082 6083 /* 6084 * Implement the MHIOCGRP_INRESV mhd(7i) ioctl. The ioctl is converted 6085 * to a SCSI PERSISTENT IN READ RESERVATION command which is sent to 6086 * the vdisk server with a VD_OP_SCSICMD operation. 6087 */ 6088 static int 6089 vdc_mhd_inresv(vdc_t *vdc, caddr_t arg, int mode) 6090 { 6091 vd_scsi_t *vd_scsi; 6092 mhioc_inresvs_t inresv; 6093 mhioc_resv_desc_list_t rlist; 6094 struct mhioc_inresvs32 inresv32; 6095 struct mhioc_resv_desc_list32 rlist32; 6096 mhioc_resv_desc_t mhd_resv; 6097 sd_prin_readresv_t *scsi_resv; 6098 sd_readresv_desc_t *resv; 6099 mhioc_resv_desc_t *user_resv; 6100 int vd_scsi_len; 6101 int listsize, listlen, i, rv; 6102 6103 /* copyin arguments */ 6104 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 6105 rv = ddi_copyin(arg, &inresv32, sizeof (inresv32), mode); 6106 if (rv != 0) 6107 return (EFAULT); 6108 6109 rv = ddi_copyin((caddr_t)(uintptr_t)inresv32.li, &rlist32, 6110 sizeof (rlist32), mode); 6111 if (rv != 0) 6112 return (EFAULT); 6113 6114 listsize = rlist32.listsize; 6115 } else { 6116 rv = ddi_copyin(arg, &inresv, sizeof (inresv), mode); 6117 if (rv != 0) 6118 return (EFAULT); 6119 6120 rv = ddi_copyin(inresv.li, &rlist, sizeof (rlist), mode); 6121 if (rv != 0) 6122 return (EFAULT); 6123 6124 listsize = rlist.listsize; 6125 } 6126 6127 /* build SCSI VD_OP request */ 6128 vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_RESV, 6129 sizeof (sd_prin_readresv_t) - sizeof (caddr_t) + 6130 (SCSI3_RESV_DESC_LEN * listsize), &vd_scsi_len); 6131 6132 scsi_resv = (sd_prin_readresv_t *)VD_SCSI_DATA_IN(vd_scsi); 6133 6134 /* submit the request */ 6135 rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len, 6136 0, 0, VIO_both_dir, B_FALSE); 6137 6138 if (rv != 0) 6139 goto done; 6140 6141 listlen = scsi_resv->len / SCSI3_RESV_DESC_LEN; 6142 6143 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 6144 inresv32.generation = scsi_resv->generation; 6145 rv = ddi_copyout(&inresv32, arg, sizeof (inresv32), mode); 6146 if (rv != 0) { 6147 rv = EFAULT; 6148 goto done; 6149 } 6150 6151 rlist32.listlen = listlen; 6152 rv = ddi_copyout(&rlist32, (caddr_t)(uintptr_t)inresv32.li, 6153 sizeof (rlist32), mode); 6154 if (rv != 0) { 6155 rv = EFAULT; 6156 goto done; 6157 } 6158 6159 user_resv = (mhioc_resv_desc_t *)(uintptr_t)rlist32.list; 6160 } else { 6161 inresv.generation = scsi_resv->generation; 6162 rv = ddi_copyout(&inresv, arg, sizeof (inresv), mode); 6163 if (rv != 0) { 6164 rv = EFAULT; 6165 goto done; 6166 } 6167 6168 rlist.listlen = listlen; 6169 rv = ddi_copyout(&rlist, inresv.li, sizeof (rlist), mode); 6170 if (rv != 0) { 6171 rv = EFAULT; 6172 goto done; 6173 } 6174 6175 user_resv = rlist.list; 6176 } 6177 6178 /* copy out reservations */ 6179 if (listsize > 0 && listlen > 0) { 6180 if (listsize < listlen) 6181 listlen = listsize; 6182 resv = (sd_readresv_desc_t *)&scsi_resv->readresv_desc; 6183 6184 for (i = 0; i < listlen; i++) { 6185 mhd_resv.type = resv->type; 6186 mhd_resv.scope = resv->scope; 6187 mhd_resv.scope_specific_addr = 6188 BE_32(resv->scope_specific_addr); 6189 bcopy(&resv->resvkey, &mhd_resv.key, 6190 MHIOC_RESV_KEY_SIZE); 6191 6192 rv = ddi_copyout(&mhd_resv, user_resv, 6193 sizeof (mhd_resv), mode); 6194 if (rv != 0) { 6195 rv = EFAULT; 6196 goto done; 6197 } 6198 resv++; 6199 user_resv++; 6200 } 6201 } 6202 6203 if (rv == 0) 6204 rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE); 6205 6206 done: 6207 kmem_free(vd_scsi, vd_scsi_len); 6208 return (rv); 6209 } 6210 6211 /* 6212 * Implement the MHIOCGRP_REGISTER mhd(7i) ioctl. The ioctl is converted 6213 * to a SCSI PERSISTENT OUT REGISTER command which is sent to the vdisk 6214 * server with a VD_OP_SCSICMD operation. 6215 */ 6216 static int 6217 vdc_mhd_register(vdc_t *vdc, caddr_t arg, int mode) 6218 { 6219 vd_scsi_t *vd_scsi; 6220 sd_prout_t *scsi_prout; 6221 mhioc_register_t mhd_reg; 6222 int vd_scsi_len, rv; 6223 6224 /* copyin arguments */ 6225 rv = ddi_copyin(arg, &mhd_reg, sizeof (mhd_reg), mode); 6226 if (rv != 0) 6227 return (EFAULT); 6228 6229 /* build SCSI VD_OP request */ 6230 vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTER, 6231 sizeof (sd_prout_t), &vd_scsi_len); 6232 6233 /* set parameters */ 6234 scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi); 6235 bcopy(mhd_reg.oldkey.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE); 6236 bcopy(mhd_reg.newkey.key, scsi_prout->service_key, MHIOC_RESV_KEY_SIZE); 6237 scsi_prout->aptpl = (uchar_t)mhd_reg.aptpl; 6238 6239 /* submit the request */ 6240 rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len, 6241 0, 0, VIO_both_dir, B_FALSE); 6242 6243 if (rv == 0) 6244 rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE); 6245 6246 kmem_free(vd_scsi, vd_scsi_len); 6247 return (rv); 6248 } 6249 6250 /* 6251 * Implement the MHIOCGRP_RESERVE mhd(7i) ioctl. The ioctl is converted 6252 * to a SCSI PERSISTENT OUT RESERVE command which is sent to the vdisk 6253 * server with a VD_OP_SCSICMD operation. 6254 */ 6255 static int 6256 vdc_mhd_reserve(vdc_t *vdc, caddr_t arg, int mode) 6257 { 6258 union scsi_cdb *cdb; 6259 vd_scsi_t *vd_scsi; 6260 sd_prout_t *scsi_prout; 6261 mhioc_resv_desc_t mhd_resv; 6262 int vd_scsi_len, rv; 6263 6264 /* copyin arguments */ 6265 rv = ddi_copyin(arg, &mhd_resv, sizeof (mhd_resv), mode); 6266 if (rv != 0) 6267 return (EFAULT); 6268 6269 /* build SCSI VD_OP request */ 6270 vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_RESERVE, 6271 sizeof (sd_prout_t), &vd_scsi_len); 6272 6273 /* set parameters */ 6274 cdb = VD_SCSI_DATA_CDB(vd_scsi); 6275 scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi); 6276 bcopy(mhd_resv.key.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE); 6277 scsi_prout->scope_address = mhd_resv.scope_specific_addr; 6278 cdb->cdb_opaque[2] = mhd_resv.type; 6279 6280 /* submit the request */ 6281 rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len, 6282 0, 0, VIO_both_dir, B_FALSE); 6283 6284 if (rv == 0) 6285 rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE); 6286 6287 kmem_free(vd_scsi, vd_scsi_len); 6288 return (rv); 6289 } 6290 6291 /* 6292 * Implement the MHIOCGRP_PREEMPTANDABORT mhd(7i) ioctl. The ioctl is 6293 * converted to a SCSI PERSISTENT OUT PREEMPT AND ABORT command which 6294 * is sent to the vdisk server with a VD_OP_SCSICMD operation. 6295 */ 6296 static int 6297 vdc_mhd_preemptabort(vdc_t *vdc, caddr_t arg, int mode) 6298 { 6299 union scsi_cdb *cdb; 6300 vd_scsi_t *vd_scsi; 6301 sd_prout_t *scsi_prout; 6302 mhioc_preemptandabort_t mhd_preempt; 6303 int vd_scsi_len, rv; 6304 6305 /* copyin arguments */ 6306 rv = ddi_copyin(arg, &mhd_preempt, sizeof (mhd_preempt), mode); 6307 if (rv != 0) 6308 return (EFAULT); 6309 6310 /* build SCSI VD_OP request */ 6311 vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_PREEMPTANDABORT, 6312 sizeof (sd_prout_t), &vd_scsi_len); 6313 6314 /* set parameters */ 6315 vd_scsi->task_attribute = VD_SCSI_TASK_ACA; 6316 cdb = VD_SCSI_DATA_CDB(vd_scsi); 6317 scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi); 6318 bcopy(mhd_preempt.resvdesc.key.key, scsi_prout->res_key, 6319 MHIOC_RESV_KEY_SIZE); 6320 bcopy(mhd_preempt.victim_key.key, scsi_prout->service_key, 6321 MHIOC_RESV_KEY_SIZE); 6322 scsi_prout->scope_address = mhd_preempt.resvdesc.scope_specific_addr; 6323 cdb->cdb_opaque[2] = mhd_preempt.resvdesc.type; 6324 6325 /* submit the request */ 6326 rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len, 6327 0, 0, VIO_both_dir, B_FALSE); 6328 6329 if (rv == 0) 6330 rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE); 6331 6332 kmem_free(vd_scsi, vd_scsi_len); 6333 return (rv); 6334 } 6335 6336 /* 6337 * Implement the MHIOCGRP_REGISTERANDIGNOREKEY mhd(7i) ioctl. The ioctl 6338 * is converted to a SCSI PERSISTENT OUT REGISTER AND IGNORE EXISTING KEY 6339 * command which is sent to the vdisk server with a VD_OP_SCSICMD operation. 6340 */ 6341 static int 6342 vdc_mhd_registerignore(vdc_t *vdc, caddr_t arg, int mode) 6343 { 6344 vd_scsi_t *vd_scsi; 6345 sd_prout_t *scsi_prout; 6346 mhioc_registerandignorekey_t mhd_regi; 6347 int vd_scsi_len, rv; 6348 6349 /* copyin arguments */ 6350 rv = ddi_copyin(arg, &mhd_regi, sizeof (mhd_regi), mode); 6351 if (rv != 0) 6352 return (EFAULT); 6353 6354 /* build SCSI VD_OP request */ 6355 vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTERANDIGNOREKEY, 6356 sizeof (sd_prout_t), &vd_scsi_len); 6357 6358 /* set parameters */ 6359 scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi); 6360 bcopy(mhd_regi.newkey.key, scsi_prout->service_key, 6361 MHIOC_RESV_KEY_SIZE); 6362 scsi_prout->aptpl = (uchar_t)mhd_regi.aptpl; 6363 6364 /* submit the request */ 6365 rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len, 6366 0, 0, VIO_both_dir, B_FALSE); 6367 6368 if (rv == 0) 6369 rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE); 6370 6371 kmem_free(vd_scsi, vd_scsi_len); 6372 return (rv); 6373 } 6374 6375 /* 6376 * This function is used to send a (simple) SCSI command and check errors. 6377 */ 6378 static int 6379 vdc_eio_scsi_cmd(vdc_t *vdc, uchar_t scmd, int flags) 6380 { 6381 int cdb_len, sense_len, vd_scsi_len; 6382 vd_scsi_t *vd_scsi; 6383 union scsi_cdb *cdb; 6384 int rv; 6385 6386 ASSERT(scmd == SCMD_TEST_UNIT_READY || scmd == SCMD_WRITE_G1); 6387 6388 if (scmd == SCMD_WRITE_G1) 6389 cdb_len = CDB_GROUP1; 6390 else 6391 cdb_len = CDB_GROUP0; 6392 6393 sense_len = sizeof (struct scsi_extended_sense); 6394 6395 vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, 0, 0, &vd_scsi_len); 6396 6397 /* set cdb */ 6398 cdb = VD_SCSI_DATA_CDB(vd_scsi); 6399 cdb->scc_cmd = scmd; 6400 6401 vd_scsi->timeout = vdc_scsi_timeout; 6402 6403 /* 6404 * Submit the request. Note the operation should not request that any 6405 * error is checked because this function is precisely called when 6406 * checking errors. 6407 */ 6408 ASSERT((flags & VDC_OP_ERRCHK) == 0); 6409 6410 rv = vdc_do_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len, 6411 0, 0, NULL, VIO_both_dir, flags); 6412 6413 if (rv == 0) 6414 rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE); 6415 6416 kmem_free(vd_scsi, vd_scsi_len); 6417 return (rv); 6418 } 6419 6420 /* 6421 * This function is used to check if a SCSI backend is accessible. It will 6422 * also detect reservation conflict if failfast is enabled, and panic the 6423 * system in that case. 6424 * 6425 * Returned Code: 6426 * 0 - disk is accessible 6427 * != 0 - disk is inaccessible or unable to check if disk is accessible 6428 */ 6429 static int 6430 vdc_eio_scsi_check(vdc_t *vdc, int flags) 6431 { 6432 int failure = 0; 6433 int rv; 6434 6435 /* 6436 * Send a TEST UNIT READY command. The command will panic 6437 * the system if it fails with a reservation conflict and 6438 * failfast is enabled. If there is a reservation conflict 6439 * and failfast is not enabled then the function will return 6440 * EACCES. In that case, there's no problem with accessing 6441 * the backend, it is just reserved. 6442 */ 6443 rv = vdc_eio_scsi_cmd(vdc, SCMD_TEST_UNIT_READY, flags); 6444 if (rv != 0 && rv != EACCES) 6445 failure++; 6446 6447 /* we don't need to do more checking if failfast is not enabled */ 6448 if (vdc->failfast_interval == 0) 6449 return (failure); 6450 6451 /* 6452 * With SPC-3 compliant devices TEST UNIT READY will succeed on 6453 * a reserved device, so we also do a WRITE(10) of zero byte in 6454 * order to provoke a Reservation Conflict status on those newer 6455 * devices. 6456 */ 6457 if (vdc_eio_scsi_cmd(vdc, SCMD_WRITE_G1, flags) != 0) 6458 failure++; 6459 6460 return (failure); 6461 } 6462 6463 /* 6464 * This function is used to check if a backend is effectively accessible. 6465 * 6466 * Returned Code: 6467 * 0 - disk is accessible 6468 * != 0 - disk is inaccessible or unable to check if disk is accessible 6469 */ 6470 static int 6471 vdc_eio_check(vdc_t *vdc, int flags) 6472 { 6473 char *buffer; 6474 diskaddr_t blkno; 6475 int rv; 6476 6477 ASSERT((flags & VDC_OP_ERRCHK) == 0); 6478 6479 if (VD_OP_SUPPORTED(vdc->operations, VD_OP_SCSICMD)) 6480 return (vdc_eio_scsi_check(vdc, flags)); 6481 6482 ASSERT(vdc->failfast_interval == 0); 6483 6484 /* 6485 * If the backend does not support SCSI operations then we simply 6486 * check if the backend is accessible by reading some data blocks. 6487 * We first try to read a random block, to try to avoid getting 6488 * a block that might have been cached on the service domain. Then 6489 * we try the last block, and finally the first block. 6490 * 6491 * We return success as soon as we are able to read any block. 6492 */ 6493 buffer = kmem_alloc(vdc->vdisk_bsize, KM_SLEEP); 6494 6495 if (vdc->vdisk_size > 0) { 6496 6497 /* try a random block */ 6498 (void) random_get_pseudo_bytes((uint8_t *)&blkno, 6499 sizeof (diskaddr_t)); 6500 blkno = blkno % vdc->vdisk_size; 6501 rv = vdc_do_op(vdc, VD_OP_BREAD, (caddr_t)buffer, 6502 vdc->vdisk_bsize, VD_SLICE_NONE, blkno, NULL, 6503 VIO_read_dir, flags); 6504 6505 if (rv == 0) 6506 goto done; 6507 6508 /* try the last block */ 6509 blkno = vdc->vdisk_size - 1; 6510 rv = vdc_do_op(vdc, VD_OP_BREAD, (caddr_t)buffer, 6511 vdc->vdisk_bsize, VD_SLICE_NONE, blkno, NULL, 6512 VIO_read_dir, flags); 6513 6514 if (rv == 0) 6515 goto done; 6516 } 6517 6518 /* try block 0 */ 6519 blkno = 0; 6520 rv = vdc_do_op(vdc, VD_OP_BREAD, (caddr_t)buffer, vdc->vdisk_bsize, 6521 VD_SLICE_NONE, blkno, NULL, VIO_read_dir, flags); 6522 6523 done: 6524 kmem_free(buffer, vdc->vdisk_bsize); 6525 return (rv); 6526 } 6527 6528 /* 6529 * Add a pending I/O to the eio queue. An I/O is added to this queue 6530 * when it has failed and failfast is enabled or the vdisk has multiple 6531 * servers. It will then be handled by the eio thread (vdc_eio_thread). 6532 * The eio queue is ordered starting with the most recent I/O added. 6533 */ 6534 static vdc_io_t * 6535 vdc_eio_queue(vdc_t *vdc, int index) 6536 { 6537 vdc_io_t *vio; 6538 6539 ASSERT(MUTEX_HELD(&vdc->lock)); 6540 6541 vio = kmem_alloc(sizeof (vdc_io_t), KM_SLEEP); 6542 vio->vio_next = vdc->eio_queue; 6543 vio->vio_index = index; 6544 vio->vio_qtime = ddi_get_lbolt(); 6545 6546 vdc->eio_queue = vio; 6547 6548 /* notify the eio thread that a new I/O is queued */ 6549 cv_signal(&vdc->eio_cv); 6550 6551 return (vio); 6552 } 6553 6554 /* 6555 * Remove I/Os added before the indicated deadline from the eio queue. A 6556 * deadline of 0 means that all I/Os have to be unqueued. The complete_io 6557 * boolean specifies if unqueued I/Os should be marked as completed or not. 6558 */ 6559 static void 6560 vdc_eio_unqueue(vdc_t *vdc, clock_t deadline, boolean_t complete_io) 6561 { 6562 struct buf *buf; 6563 vdc_io_t *vio, *vio_tmp; 6564 int index, op; 6565 6566 ASSERT(MUTEX_HELD(&vdc->lock)); 6567 6568 vio_tmp = NULL; 6569 vio = vdc->eio_queue; 6570 6571 if (deadline != 0) { 6572 /* 6573 * Skip any io queued after the deadline. The eio queue is 6574 * ordered starting with the last I/O added to the queue. 6575 */ 6576 while (vio != NULL && vio->vio_qtime > deadline) { 6577 vio_tmp = vio; 6578 vio = vio->vio_next; 6579 } 6580 } 6581 6582 if (vio == NULL) 6583 /* nothing to unqueue */ 6584 return; 6585 6586 /* update the queue */ 6587 if (vio_tmp == NULL) 6588 vdc->eio_queue = NULL; 6589 else 6590 vio_tmp->vio_next = NULL; 6591 6592 /* 6593 * Free and complete unqueued I/Os if this was requested. All I/Os 6594 * have a block I/O data transfer structure (buf) and they are 6595 * completed by calling biodone(). 6596 */ 6597 while (vio != NULL) { 6598 vio_tmp = vio->vio_next; 6599 6600 if (complete_io) { 6601 index = vio->vio_index; 6602 op = vdc->local_dring[index].operation; 6603 buf = vdc->local_dring[index].buf; 6604 (void) vdc_depopulate_descriptor(vdc, index); 6605 ASSERT(buf->b_flags & B_ERROR); 6606 if (op == VD_OP_BREAD || op == VD_OP_BWRITE) { 6607 VD_UPDATE_ERR_STATS(vdc, vd_softerrs); 6608 VD_KSTAT_RUNQ_EXIT(vdc); 6609 DTRACE_IO1(done, buf_t *, buf); 6610 } 6611 biodone(buf); 6612 } 6613 6614 kmem_free(vio, sizeof (vdc_io_t)); 6615 vio = vio_tmp; 6616 } 6617 } 6618 6619 /* 6620 * Error I/O Thread. There is one eio thread for each virtual disk that 6621 * has multiple servers or for which failfast is enabled. Failfast can only 6622 * be enabled for vdisk supporting SCSI commands. 6623 * 6624 * While failfast is enabled, the eio thread sends a TEST UNIT READY 6625 * and a zero size WRITE(10) SCSI commands on a regular basis to check that 6626 * we still have access to the disk. If a command fails with a RESERVATION 6627 * CONFLICT error then the system will immediatly panic. 6628 * 6629 * The eio thread is also woken up when an I/O has failed. It then checks 6630 * the access to the disk to ensure that the I/O failure was not due to a 6631 * reservation conflict or to the backend been inaccessible. 6632 * 6633 */ 6634 static void 6635 vdc_eio_thread(void *arg) 6636 { 6637 int status; 6638 vdc_t *vdc = (vdc_t *)arg; 6639 clock_t starttime, timeout = drv_usectohz(vdc->failfast_interval); 6640 6641 mutex_enter(&vdc->lock); 6642 6643 while (vdc->failfast_interval != 0 || vdc->num_servers > 1) { 6644 /* 6645 * Wait if there is nothing in the eio queue or if the state 6646 * is not VDC_STATE_RUNNING. 6647 */ 6648 if (vdc->eio_queue == NULL || vdc->state != VDC_STATE_RUNNING) { 6649 if (vdc->failfast_interval != 0) { 6650 timeout = ddi_get_lbolt() + 6651 drv_usectohz(vdc->failfast_interval); 6652 (void) cv_timedwait(&vdc->eio_cv, &vdc->lock, 6653 timeout); 6654 } else { 6655 ASSERT(vdc->num_servers > 1); 6656 (void) cv_wait(&vdc->eio_cv, &vdc->lock); 6657 } 6658 6659 if (vdc->state != VDC_STATE_RUNNING) 6660 continue; 6661 } 6662 6663 mutex_exit(&vdc->lock); 6664 6665 starttime = ddi_get_lbolt(); 6666 6667 /* check error */ 6668 status = vdc_eio_check(vdc, VDC_OP_STATE_RUNNING); 6669 6670 mutex_enter(&vdc->lock); 6671 /* 6672 * We have dropped the lock to check the backend so we have 6673 * to check that the eio thread is still enabled. 6674 */ 6675 if (vdc->failfast_interval == 0 && vdc->num_servers <= 1) 6676 break; 6677 6678 /* 6679 * If the eio queue is empty or we are not in running state 6680 * anymore then there is nothing to do. 6681 */ 6682 if (vdc->state != VDC_STATE_RUNNING || vdc->eio_queue == NULL) 6683 continue; 6684 6685 if (status == 0) { 6686 /* 6687 * The backend access has been successfully checked, 6688 * we can complete any I/O queued before the last check. 6689 */ 6690 vdc_eio_unqueue(vdc, starttime, B_TRUE); 6691 6692 } else if (vdc->num_servers > 1) { 6693 /* 6694 * The backend is inaccessible for a disk with multiple 6695 * servers. So we force a reset to switch to another 6696 * server. The reset will also clear the eio queue and 6697 * resubmit all pending I/Os. 6698 */ 6699 mutex_enter(&vdc->read_lock); 6700 vdc->read_state = VDC_READ_RESET; 6701 cv_signal(&vdc->read_cv); 6702 mutex_exit(&vdc->read_lock); 6703 } 6704 } 6705 6706 /* 6707 * The thread is being stopped so we can complete any queued I/O. 6708 */ 6709 vdc_eio_unqueue(vdc, 0, B_TRUE); 6710 vdc->eio_thread = NULL; 6711 mutex_exit(&vdc->lock); 6712 thread_exit(); 6713 } 6714 6715 /* 6716 * Implement the MHIOCENFAILFAST mhd(7i) ioctl. 6717 */ 6718 static int 6719 vdc_failfast(vdc_t *vdc, caddr_t arg, int mode) 6720 { 6721 unsigned int mh_time; 6722 6723 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), mode)) 6724 return (EFAULT); 6725 6726 mutex_enter(&vdc->lock); 6727 if (mh_time != 0 && vdc->eio_thread == NULL) { 6728 vdc->eio_thread = thread_create(NULL, 0, 6729 vdc_eio_thread, vdc, 0, &p0, TS_RUN, 6730 v.v_maxsyspri - 2); 6731 } 6732 6733 vdc->failfast_interval = ((long)mh_time) * MILLISEC; 6734 cv_signal(&vdc->eio_cv); 6735 mutex_exit(&vdc->lock); 6736 6737 return (0); 6738 } 6739 6740 /* 6741 * Implement the MHIOCTKOWN and MHIOCRELEASE mhd(7i) ioctls. These ioctls are 6742 * converted to VD_OP_SET_ACCESS operations. 6743 */ 6744 static int 6745 vdc_access_set(vdc_t *vdc, uint64_t flags) 6746 { 6747 int rv; 6748 6749 /* submit owership command request */ 6750 rv = vdc_do_sync_op(vdc, VD_OP_SET_ACCESS, (caddr_t)&flags, 6751 sizeof (uint64_t), 0, 0, VIO_both_dir, B_TRUE); 6752 6753 return (rv); 6754 } 6755 6756 /* 6757 * Implement the MHIOCSTATUS mhd(7i) ioctl. This ioctl is converted to a 6758 * VD_OP_GET_ACCESS operation. 6759 */ 6760 static int 6761 vdc_access_get(vdc_t *vdc, uint64_t *status) 6762 { 6763 int rv; 6764 6765 /* submit owership command request */ 6766 rv = vdc_do_sync_op(vdc, VD_OP_GET_ACCESS, (caddr_t)status, 6767 sizeof (uint64_t), 0, 0, VIO_both_dir, B_TRUE); 6768 6769 return (rv); 6770 } 6771 6772 /* 6773 * Disk Ownership Thread. 6774 * 6775 * When we have taken the ownership of a disk, this thread waits to be 6776 * notified when the LDC channel is reset so that it can recover the 6777 * ownership. 6778 * 6779 * Note that the thread handling the LDC reset (vdc_process_msg_thread()) 6780 * can not be used to do the ownership recovery because it has to be 6781 * running to handle the reply message to the ownership operation. 6782 */ 6783 static void 6784 vdc_ownership_thread(void *arg) 6785 { 6786 vdc_t *vdc = (vdc_t *)arg; 6787 clock_t timeout; 6788 uint64_t status; 6789 6790 mutex_enter(&vdc->ownership_lock); 6791 mutex_enter(&vdc->lock); 6792 6793 while (vdc->ownership & VDC_OWNERSHIP_WANTED) { 6794 6795 if ((vdc->ownership & VDC_OWNERSHIP_RESET) || 6796 !(vdc->ownership & VDC_OWNERSHIP_GRANTED)) { 6797 /* 6798 * There was a reset so the ownership has been lost, 6799 * try to recover. We do this without using the preempt 6800 * option so that we don't steal the ownership from 6801 * someone who has preempted us. 6802 */ 6803 DMSG(vdc, 0, "[%d] Ownership lost, recovering", 6804 vdc->instance); 6805 6806 vdc->ownership &= ~(VDC_OWNERSHIP_RESET | 6807 VDC_OWNERSHIP_GRANTED); 6808 6809 mutex_exit(&vdc->lock); 6810 6811 status = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE | 6812 VD_ACCESS_SET_PRESERVE); 6813 6814 mutex_enter(&vdc->lock); 6815 6816 if (status == 0) { 6817 DMSG(vdc, 0, "[%d] Ownership recovered", 6818 vdc->instance); 6819 vdc->ownership |= VDC_OWNERSHIP_GRANTED; 6820 } else { 6821 DMSG(vdc, 0, "[%d] Fail to recover ownership", 6822 vdc->instance); 6823 } 6824 6825 } 6826 6827 /* 6828 * If we have the ownership then we just wait for an event 6829 * to happen (LDC reset), otherwise we will retry to recover 6830 * after a delay. 6831 */ 6832 if (vdc->ownership & VDC_OWNERSHIP_GRANTED) 6833 timeout = 0; 6834 else 6835 timeout = drv_usectohz(vdc_ownership_delay); 6836 6837 /* Release the ownership_lock and wait on the vdc lock */ 6838 mutex_exit(&vdc->ownership_lock); 6839 6840 if (timeout == 0) 6841 (void) cv_wait(&vdc->ownership_cv, &vdc->lock); 6842 else 6843 (void) cv_reltimedwait(&vdc->ownership_cv, &vdc->lock, 6844 timeout, TR_CLOCK_TICK); 6845 6846 mutex_exit(&vdc->lock); 6847 6848 mutex_enter(&vdc->ownership_lock); 6849 mutex_enter(&vdc->lock); 6850 } 6851 6852 vdc->ownership_thread = NULL; 6853 mutex_exit(&vdc->lock); 6854 mutex_exit(&vdc->ownership_lock); 6855 6856 thread_exit(); 6857 } 6858 6859 static void 6860 vdc_ownership_update(vdc_t *vdc, int ownership_flags) 6861 { 6862 ASSERT(MUTEX_HELD(&vdc->ownership_lock)); 6863 6864 mutex_enter(&vdc->lock); 6865 vdc->ownership = ownership_flags; 6866 if ((vdc->ownership & VDC_OWNERSHIP_WANTED) && 6867 vdc->ownership_thread == NULL) { 6868 /* start ownership thread */ 6869 vdc->ownership_thread = thread_create(NULL, 0, 6870 vdc_ownership_thread, vdc, 0, &p0, TS_RUN, 6871 v.v_maxsyspri - 2); 6872 } else { 6873 /* notify the ownership thread */ 6874 cv_signal(&vdc->ownership_cv); 6875 } 6876 mutex_exit(&vdc->lock); 6877 } 6878 6879 /* 6880 * Get the size and the block size of a virtual disk from the vdisk server. 6881 */ 6882 static int 6883 vdc_get_capacity(vdc_t *vdc, size_t *dsk_size, size_t *blk_size) 6884 { 6885 int rv = 0; 6886 size_t alloc_len; 6887 vd_capacity_t *vd_cap; 6888 6889 ASSERT(MUTEX_NOT_HELD(&vdc->lock)); 6890 6891 alloc_len = P2ROUNDUP(sizeof (vd_capacity_t), sizeof (uint64_t)); 6892 6893 vd_cap = kmem_zalloc(alloc_len, KM_SLEEP); 6894 6895 rv = vdc_do_sync_op(vdc, VD_OP_GET_CAPACITY, (caddr_t)vd_cap, alloc_len, 6896 0, 0, VIO_both_dir, B_TRUE); 6897 6898 *dsk_size = vd_cap->vdisk_size; 6899 *blk_size = vd_cap->vdisk_block_size; 6900 6901 kmem_free(vd_cap, alloc_len); 6902 return (rv); 6903 } 6904 6905 /* 6906 * Check the disk capacity. Disk size information is updated if size has 6907 * changed. 6908 * 6909 * Return 0 if the disk capacity is available, or non-zero if it is not. 6910 */ 6911 static int 6912 vdc_check_capacity(vdc_t *vdc) 6913 { 6914 size_t dsk_size, blk_size; 6915 int rv; 6916 6917 /* 6918 * If the vdisk does not support the VD_OP_GET_CAPACITY operation 6919 * then the disk capacity has been retrieved during the handshake 6920 * and there's nothing more to do here. 6921 */ 6922 if (!VD_OP_SUPPORTED(vdc->operations, VD_OP_GET_CAPACITY)) 6923 return (0); 6924 6925 if ((rv = vdc_get_capacity(vdc, &dsk_size, &blk_size)) != 0) 6926 return (rv); 6927 6928 if (dsk_size == VD_SIZE_UNKNOWN || dsk_size == 0 || blk_size == 0) 6929 return (EINVAL); 6930 6931 mutex_enter(&vdc->lock); 6932 /* 6933 * First try to update the VIO block size (which is the same as the 6934 * vdisk block size). If this returns an error then that means that 6935 * we can not use that block size so basically the vdisk is unusable 6936 * and we return an error. 6937 */ 6938 rv = vdc_update_vio_bsize(vdc, blk_size); 6939 if (rv == 0) 6940 vdc_update_size(vdc, dsk_size, blk_size, vdc->max_xfer_sz); 6941 6942 mutex_exit(&vdc->lock); 6943 6944 return (rv); 6945 } 6946 6947 /* 6948 * This structure is used in the DKIO(7I) array below. 6949 */ 6950 typedef struct vdc_dk_ioctl { 6951 uint8_t op; /* VD_OP_XXX value */ 6952 int cmd; /* Solaris ioctl operation number */ 6953 size_t nbytes; /* size of structure to be copied */ 6954 6955 /* function to convert between vDisk and Solaris structure formats */ 6956 int (*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg, 6957 int mode, int dir); 6958 } vdc_dk_ioctl_t; 6959 6960 /* 6961 * Subset of DKIO(7I) operations currently supported 6962 */ 6963 static vdc_dk_ioctl_t dk_ioctl[] = { 6964 {VD_OP_FLUSH, DKIOCFLUSHWRITECACHE, 0, 6965 vdc_null_copy_func}, 6966 {VD_OP_GET_WCE, DKIOCGETWCE, sizeof (int), 6967 vdc_get_wce_convert}, 6968 {VD_OP_SET_WCE, DKIOCSETWCE, sizeof (int), 6969 vdc_set_wce_convert}, 6970 {VD_OP_GET_VTOC, DKIOCGVTOC, sizeof (vd_vtoc_t), 6971 vdc_get_vtoc_convert}, 6972 {VD_OP_SET_VTOC, DKIOCSVTOC, sizeof (vd_vtoc_t), 6973 vdc_set_vtoc_convert}, 6974 {VD_OP_GET_VTOC, DKIOCGEXTVTOC, sizeof (vd_vtoc_t), 6975 vdc_get_extvtoc_convert}, 6976 {VD_OP_SET_VTOC, DKIOCSEXTVTOC, sizeof (vd_vtoc_t), 6977 vdc_set_extvtoc_convert}, 6978 {VD_OP_GET_DISKGEOM, DKIOCGGEOM, sizeof (vd_geom_t), 6979 vdc_get_geom_convert}, 6980 {VD_OP_GET_DISKGEOM, DKIOCG_PHYGEOM, sizeof (vd_geom_t), 6981 vdc_get_geom_convert}, 6982 {VD_OP_GET_DISKGEOM, DKIOCG_VIRTGEOM, sizeof (vd_geom_t), 6983 vdc_get_geom_convert}, 6984 {VD_OP_SET_DISKGEOM, DKIOCSGEOM, sizeof (vd_geom_t), 6985 vdc_set_geom_convert}, 6986 {VD_OP_GET_EFI, DKIOCGETEFI, 0, 6987 vdc_get_efi_convert}, 6988 {VD_OP_SET_EFI, DKIOCSETEFI, 0, 6989 vdc_set_efi_convert}, 6990 6991 /* DIOCTL_RWCMD is converted to a read or a write */ 6992 {0, DIOCTL_RWCMD, sizeof (struct dadkio_rwcmd), NULL}, 6993 6994 /* mhd(7I) non-shared multihost disks ioctls */ 6995 {0, MHIOCTKOWN, 0, vdc_null_copy_func}, 6996 {0, MHIOCRELEASE, 0, vdc_null_copy_func}, 6997 {0, MHIOCSTATUS, 0, vdc_null_copy_func}, 6998 {0, MHIOCQRESERVE, 0, vdc_null_copy_func}, 6999 7000 /* mhd(7I) shared multihost disks ioctls */ 7001 {0, MHIOCGRP_INKEYS, 0, vdc_null_copy_func}, 7002 {0, MHIOCGRP_INRESV, 0, vdc_null_copy_func}, 7003 {0, MHIOCGRP_REGISTER, 0, vdc_null_copy_func}, 7004 {0, MHIOCGRP_RESERVE, 0, vdc_null_copy_func}, 7005 {0, MHIOCGRP_PREEMPTANDABORT, 0, vdc_null_copy_func}, 7006 {0, MHIOCGRP_REGISTERANDIGNOREKEY, 0, vdc_null_copy_func}, 7007 7008 /* mhd(7I) failfast ioctl */ 7009 {0, MHIOCENFAILFAST, 0, vdc_null_copy_func}, 7010 7011 /* 7012 * These particular ioctls are not sent to the server - vdc fakes up 7013 * the necessary info. 7014 */ 7015 {0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func}, 7016 {0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func}, 7017 {0, USCSICMD, sizeof (struct uscsi_cmd), vdc_null_copy_func}, 7018 {0, DKIOCPARTITION, 0, vdc_null_copy_func }, 7019 {0, DKIOCGAPART, 0, vdc_null_copy_func }, 7020 {0, DKIOCREMOVABLE, 0, vdc_null_copy_func}, 7021 {0, CDROMREADOFFSET, 0, vdc_null_copy_func} 7022 }; 7023 7024 /* 7025 * This function handles ioctl requests from the vd_efi_alloc_and_read() 7026 * function and forward them to the vdisk. 7027 */ 7028 static int 7029 vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg) 7030 { 7031 vdc_t *vdc = (vdc_t *)vdisk; 7032 dev_t dev; 7033 int rval; 7034 7035 dev = makedevice(ddi_driver_major(vdc->dip), 7036 VD_MAKE_DEV(vdc->instance, 0)); 7037 7038 return (vd_process_ioctl(dev, cmd, (caddr_t)arg, FKIOCTL, &rval)); 7039 } 7040 7041 /* 7042 * Function: 7043 * vd_process_ioctl() 7044 * 7045 * Description: 7046 * This routine processes disk specific ioctl calls 7047 * 7048 * Arguments: 7049 * dev - the device number 7050 * cmd - the operation [dkio(7I)] to be processed 7051 * arg - pointer to user provided structure 7052 * (contains data to be set or reference parameter for get) 7053 * mode - bit flag, indicating open settings, 32/64 bit type, etc 7054 * rvalp - pointer to return value for calling process. 7055 * 7056 * Return Code: 7057 * 0 7058 * EFAULT 7059 * ENXIO 7060 * EIO 7061 * ENOTSUP 7062 */ 7063 static int 7064 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode, int *rvalp) 7065 { 7066 int instance = VDCUNIT(dev); 7067 vdc_t *vdc = NULL; 7068 int rv = -1; 7069 int idx = 0; /* index into dk_ioctl[] */ 7070 size_t len = 0; /* #bytes to send to vds */ 7071 size_t alloc_len = 0; /* #bytes to allocate mem for */ 7072 caddr_t mem_p = NULL; 7073 size_t nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0])); 7074 vdc_dk_ioctl_t *iop; 7075 7076 vdc = ddi_get_soft_state(vdc_state, instance); 7077 if (vdc == NULL) { 7078 cmn_err(CE_NOTE, "![%d] Could not get soft state structure", 7079 instance); 7080 return (ENXIO); 7081 } 7082 7083 DMSG(vdc, 0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n", 7084 instance, cmd, dev, ddi_model_convert_from(mode & FMODELS)); 7085 7086 if (rvalp != NULL) { 7087 /* the return value of the ioctl is 0 by default */ 7088 *rvalp = 0; 7089 } 7090 7091 /* 7092 * Validate the ioctl operation to be performed. 7093 * 7094 * If we have looped through the array without finding a match then we 7095 * don't support this ioctl. 7096 */ 7097 for (idx = 0; idx < nioctls; idx++) { 7098 if (cmd == dk_ioctl[idx].cmd) 7099 break; 7100 } 7101 7102 if (idx >= nioctls) { 7103 DMSG(vdc, 0, "[%d] Unsupported ioctl (0x%x)\n", 7104 vdc->instance, cmd); 7105 return (ENOTSUP); 7106 } 7107 7108 iop = &(dk_ioctl[idx]); 7109 7110 if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) { 7111 /* size is not fixed for EFI ioctls, it depends on ioctl arg */ 7112 dk_efi_t dk_efi; 7113 7114 rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode); 7115 if (rv != 0) 7116 return (EFAULT); 7117 7118 len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length; 7119 } else { 7120 len = iop->nbytes; 7121 } 7122 7123 /* check if the ioctl is applicable */ 7124 switch (cmd) { 7125 case CDROMREADOFFSET: 7126 case DKIOCREMOVABLE: 7127 return (ENOTTY); 7128 7129 case USCSICMD: 7130 case MHIOCTKOWN: 7131 case MHIOCSTATUS: 7132 case MHIOCQRESERVE: 7133 case MHIOCRELEASE: 7134 case MHIOCGRP_INKEYS: 7135 case MHIOCGRP_INRESV: 7136 case MHIOCGRP_REGISTER: 7137 case MHIOCGRP_RESERVE: 7138 case MHIOCGRP_PREEMPTANDABORT: 7139 case MHIOCGRP_REGISTERANDIGNOREKEY: 7140 case MHIOCENFAILFAST: 7141 if (vdc->cinfo == NULL) 7142 return (ENXIO); 7143 if (vdc->cinfo->dki_ctype != DKC_SCSI_CCS) 7144 return (ENOTTY); 7145 break; 7146 7147 case DIOCTL_RWCMD: 7148 if (vdc->cinfo == NULL) 7149 return (ENXIO); 7150 if (vdc->cinfo->dki_ctype != DKC_DIRECT) 7151 return (ENOTTY); 7152 break; 7153 7154 case DKIOCINFO: 7155 if (vdc->cinfo == NULL) 7156 return (ENXIO); 7157 break; 7158 7159 case DKIOCGMEDIAINFO: 7160 if (vdc->minfo == NULL) 7161 return (ENXIO); 7162 if (vdc_check_capacity(vdc) != 0) 7163 /* disk capacity is not available */ 7164 return (EIO); 7165 break; 7166 } 7167 7168 /* 7169 * Deal with ioctls which require a processing different than 7170 * converting ioctl arguments and sending a corresponding 7171 * VD operation. 7172 */ 7173 switch (cmd) { 7174 7175 case USCSICMD: 7176 { 7177 return (vdc_uscsi_cmd(vdc, arg, mode)); 7178 } 7179 7180 case MHIOCTKOWN: 7181 { 7182 mutex_enter(&vdc->ownership_lock); 7183 /* 7184 * We have to set VDC_OWNERSHIP_WANTED now so that the ownership 7185 * can be flagged with VDC_OWNERSHIP_RESET if the LDC is reset 7186 * while we are processing the ioctl. 7187 */ 7188 vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED); 7189 7190 rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE | 7191 VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE); 7192 if (rv == 0) { 7193 vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED | 7194 VDC_OWNERSHIP_GRANTED); 7195 } else { 7196 vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE); 7197 } 7198 mutex_exit(&vdc->ownership_lock); 7199 return (rv); 7200 } 7201 7202 case MHIOCRELEASE: 7203 { 7204 mutex_enter(&vdc->ownership_lock); 7205 rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR); 7206 if (rv == 0) { 7207 vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE); 7208 } 7209 mutex_exit(&vdc->ownership_lock); 7210 return (rv); 7211 } 7212 7213 case MHIOCSTATUS: 7214 { 7215 uint64_t status; 7216 7217 rv = vdc_access_get(vdc, &status); 7218 if (rv == 0 && rvalp != NULL) 7219 *rvalp = (status & VD_ACCESS_ALLOWED)? 0 : 1; 7220 return (rv); 7221 } 7222 7223 case MHIOCQRESERVE: 7224 { 7225 rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE); 7226 return (rv); 7227 } 7228 7229 case MHIOCGRP_INKEYS: 7230 { 7231 return (vdc_mhd_inkeys(vdc, arg, mode)); 7232 } 7233 7234 case MHIOCGRP_INRESV: 7235 { 7236 return (vdc_mhd_inresv(vdc, arg, mode)); 7237 } 7238 7239 case MHIOCGRP_REGISTER: 7240 { 7241 return (vdc_mhd_register(vdc, arg, mode)); 7242 } 7243 7244 case MHIOCGRP_RESERVE: 7245 { 7246 return (vdc_mhd_reserve(vdc, arg, mode)); 7247 } 7248 7249 case MHIOCGRP_PREEMPTANDABORT: 7250 { 7251 return (vdc_mhd_preemptabort(vdc, arg, mode)); 7252 } 7253 7254 case MHIOCGRP_REGISTERANDIGNOREKEY: 7255 { 7256 return (vdc_mhd_registerignore(vdc, arg, mode)); 7257 } 7258 7259 case MHIOCENFAILFAST: 7260 { 7261 rv = vdc_failfast(vdc, arg, mode); 7262 return (rv); 7263 } 7264 7265 case DIOCTL_RWCMD: 7266 { 7267 return (vdc_dioctl_rwcmd(vdc, arg, mode)); 7268 } 7269 7270 case DKIOCGAPART: 7271 { 7272 return (vdc_dkio_gapart(vdc, arg, mode)); 7273 } 7274 7275 case DKIOCPARTITION: 7276 { 7277 return (vdc_dkio_partition(vdc, arg, mode)); 7278 } 7279 7280 case DKIOCINFO: 7281 { 7282 struct dk_cinfo cinfo; 7283 7284 bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo)); 7285 cinfo.dki_partition = VDCPART(dev); 7286 7287 rv = ddi_copyout(&cinfo, (void *)arg, 7288 sizeof (struct dk_cinfo), mode); 7289 if (rv != 0) 7290 return (EFAULT); 7291 7292 return (0); 7293 } 7294 7295 case DKIOCGMEDIAINFO: 7296 { 7297 ASSERT(vdc->vdisk_size != 0); 7298 ASSERT(vdc->minfo->dki_capacity != 0); 7299 rv = ddi_copyout(vdc->minfo, (void *)arg, 7300 sizeof (struct dk_minfo), mode); 7301 if (rv != 0) 7302 return (EFAULT); 7303 7304 return (0); 7305 } 7306 7307 case DKIOCFLUSHWRITECACHE: 7308 { 7309 struct dk_callback *dkc = 7310 (struct dk_callback *)(uintptr_t)arg; 7311 vdc_dk_arg_t *dkarg = NULL; 7312 7313 DMSG(vdc, 1, "[%d] Flush W$: mode %x\n", 7314 instance, mode); 7315 7316 /* 7317 * If arg is NULL, then there is no callback function 7318 * registered and the call operates synchronously; we 7319 * break and continue with the rest of the function and 7320 * wait for vds to return (i.e. after the request to 7321 * vds returns successfully, all writes completed prior 7322 * to the ioctl will have been flushed from the disk 7323 * write cache to persistent media. 7324 * 7325 * If a callback function is registered, we dispatch 7326 * the request on a task queue and return immediately. 7327 * The callback will deal with informing the calling 7328 * thread that the flush request is completed. 7329 */ 7330 if (dkc == NULL) 7331 break; 7332 7333 /* 7334 * the asynchronous callback is only supported if 7335 * invoked from within the kernel 7336 */ 7337 if ((mode & FKIOCTL) == 0) 7338 return (ENOTSUP); 7339 7340 dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP); 7341 7342 dkarg->mode = mode; 7343 dkarg->dev = dev; 7344 bcopy(dkc, &dkarg->dkc, sizeof (*dkc)); 7345 7346 mutex_enter(&vdc->lock); 7347 vdc->dkio_flush_pending++; 7348 dkarg->vdc = vdc; 7349 mutex_exit(&vdc->lock); 7350 7351 /* put the request on a task queue */ 7352 rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb, 7353 (void *)dkarg, DDI_SLEEP); 7354 if (rv == NULL) { 7355 /* clean up if dispatch fails */ 7356 mutex_enter(&vdc->lock); 7357 vdc->dkio_flush_pending--; 7358 mutex_exit(&vdc->lock); 7359 kmem_free(dkarg, sizeof (vdc_dk_arg_t)); 7360 } 7361 7362 return (rv == NULL ? ENOMEM : 0); 7363 } 7364 } 7365 7366 /* catch programming error in vdc - should be a VD_OP_XXX ioctl */ 7367 ASSERT(iop->op != 0); 7368 7369 /* check if the vDisk server handles the operation for this vDisk */ 7370 if (VD_OP_SUPPORTED(vdc->operations, iop->op) == B_FALSE) { 7371 DMSG(vdc, 0, "[%d] Unsupported VD_OP operation (0x%x)\n", 7372 vdc->instance, iop->op); 7373 return (ENOTSUP); 7374 } 7375 7376 /* LDC requires that the memory being mapped is 8-byte aligned */ 7377 alloc_len = P2ROUNDUP(len, sizeof (uint64_t)); 7378 DMSG(vdc, 1, "[%d] struct size %ld alloc %ld\n", 7379 instance, len, alloc_len); 7380 7381 if (alloc_len > 0) 7382 mem_p = kmem_zalloc(alloc_len, KM_SLEEP); 7383 7384 /* 7385 * Call the conversion function for this ioctl which, if necessary, 7386 * converts from the Solaris format to the format ARC'ed 7387 * as part of the vDisk protocol (FWARC 2006/195) 7388 */ 7389 ASSERT(iop->convert != NULL); 7390 rv = (iop->convert)(vdc, arg, mem_p, mode, VD_COPYIN); 7391 if (rv != 0) { 7392 DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n", 7393 instance, rv, cmd); 7394 if (mem_p != NULL) 7395 kmem_free(mem_p, alloc_len); 7396 return (rv); 7397 } 7398 7399 /* 7400 * send request to vds to service the ioctl. 7401 */ 7402 rv = vdc_do_sync_op(vdc, iop->op, mem_p, alloc_len, 7403 VDCPART(dev), 0, VIO_both_dir, B_TRUE); 7404 7405 if (rv != 0) { 7406 /* 7407 * This is not necessarily an error. The ioctl could 7408 * be returning a value such as ENOTTY to indicate 7409 * that the ioctl is not applicable. 7410 */ 7411 DMSG(vdc, 0, "[%d] vds returned %d for ioctl 0x%x\n", 7412 instance, rv, cmd); 7413 if (mem_p != NULL) 7414 kmem_free(mem_p, alloc_len); 7415 7416 return (rv); 7417 } 7418 7419 /* 7420 * Call the conversion function (if it exists) for this ioctl 7421 * which converts from the format ARC'ed as part of the vDisk 7422 * protocol (FWARC 2006/195) back to a format understood by 7423 * the rest of Solaris. 7424 */ 7425 rv = (iop->convert)(vdc, mem_p, arg, mode, VD_COPYOUT); 7426 if (rv != 0) { 7427 DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n", 7428 instance, rv, cmd); 7429 if (mem_p != NULL) 7430 kmem_free(mem_p, alloc_len); 7431 return (rv); 7432 } 7433 7434 if (mem_p != NULL) 7435 kmem_free(mem_p, alloc_len); 7436 7437 return (rv); 7438 } 7439 7440 /* 7441 * Function: 7442 * 7443 * Description: 7444 * This is an empty conversion function used by ioctl calls which 7445 * do not need to convert the data being passed in/out to userland 7446 */ 7447 static int 7448 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir) 7449 { 7450 _NOTE(ARGUNUSED(vdc)) 7451 _NOTE(ARGUNUSED(from)) 7452 _NOTE(ARGUNUSED(to)) 7453 _NOTE(ARGUNUSED(mode)) 7454 _NOTE(ARGUNUSED(dir)) 7455 7456 return (0); 7457 } 7458 7459 static int 7460 vdc_get_wce_convert(vdc_t *vdc, void *from, void *to, 7461 int mode, int dir) 7462 { 7463 _NOTE(ARGUNUSED(vdc)) 7464 7465 if (dir == VD_COPYIN) 7466 return (0); /* nothing to do */ 7467 7468 if (ddi_copyout(from, to, sizeof (int), mode) != 0) 7469 return (EFAULT); 7470 7471 return (0); 7472 } 7473 7474 static int 7475 vdc_set_wce_convert(vdc_t *vdc, void *from, void *to, 7476 int mode, int dir) 7477 { 7478 _NOTE(ARGUNUSED(vdc)) 7479 7480 if (dir == VD_COPYOUT) 7481 return (0); /* nothing to do */ 7482 7483 if (ddi_copyin(from, to, sizeof (int), mode) != 0) 7484 return (EFAULT); 7485 7486 return (0); 7487 } 7488 7489 /* 7490 * Function: 7491 * vdc_get_vtoc_convert() 7492 * 7493 * Description: 7494 * This routine performs the necessary convertions from the DKIOCGVTOC 7495 * Solaris structure to the format defined in FWARC 2006/195. 7496 * 7497 * In the struct vtoc definition, the timestamp field is marked as not 7498 * supported so it is not part of vDisk protocol (FWARC 2006/195). 7499 * However SVM uses that field to check it can write into the VTOC, 7500 * so we fake up the info of that field. 7501 * 7502 * Arguments: 7503 * vdc - the vDisk client 7504 * from - the buffer containing the data to be copied from 7505 * to - the buffer to be copied to 7506 * mode - flags passed to ioctl() call 7507 * dir - the "direction" of the copy - VD_COPYIN or VD_COPYOUT 7508 * 7509 * Return Code: 7510 * 0 - Success 7511 * ENXIO - incorrect buffer passed in. 7512 * EFAULT - ddi_copyout routine encountered an error. 7513 */ 7514 static int 7515 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 7516 { 7517 int i; 7518 struct vtoc vtoc; 7519 struct vtoc32 vtoc32; 7520 struct extvtoc evtoc; 7521 int rv; 7522 7523 if (dir != VD_COPYOUT) 7524 return (0); /* nothing to do */ 7525 7526 if ((from == NULL) || (to == NULL)) 7527 return (ENXIO); 7528 7529 if (vdc->vdisk_size > VD_OLDVTOC_LIMIT) 7530 return (EOVERFLOW); 7531 7532 VD_VTOC2VTOC((vd_vtoc_t *)from, &evtoc); 7533 7534 /* fake the VTOC timestamp field */ 7535 for (i = 0; i < V_NUMPAR; i++) { 7536 evtoc.timestamp[i] = vdc->vtoc->timestamp[i]; 7537 } 7538 7539 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 7540 /* LINTED E_ASSIGN_NARROW_CONV */ 7541 extvtoctovtoc32(evtoc, vtoc32); 7542 rv = ddi_copyout(&vtoc32, to, sizeof (vtoc32), mode); 7543 if (rv != 0) 7544 rv = EFAULT; 7545 } else { 7546 extvtoctovtoc(evtoc, vtoc); 7547 rv = ddi_copyout(&vtoc, to, sizeof (vtoc), mode); 7548 if (rv != 0) 7549 rv = EFAULT; 7550 } 7551 7552 return (rv); 7553 } 7554 7555 /* 7556 * Function: 7557 * vdc_set_vtoc_convert() 7558 * 7559 * Description: 7560 * This routine performs the necessary convertions from the DKIOCSVTOC 7561 * Solaris structure to the format defined in FWARC 2006/195. 7562 * 7563 * Arguments: 7564 * vdc - the vDisk client 7565 * from - Buffer with data 7566 * to - Buffer where data is to be copied to 7567 * mode - flags passed to ioctl 7568 * dir - direction of copy (in or out) 7569 * 7570 * Return Code: 7571 * 0 - Success 7572 * ENXIO - Invalid buffer passed in 7573 * EFAULT - ddi_copyin of data failed 7574 */ 7575 static int 7576 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 7577 { 7578 void *uvtoc; 7579 struct vtoc vtoc; 7580 struct vtoc32 vtoc32; 7581 struct extvtoc evtoc; 7582 int i, rv; 7583 7584 if ((from == NULL) || (to == NULL)) 7585 return (ENXIO); 7586 7587 if (vdc->vdisk_size > VD_OLDVTOC_LIMIT) 7588 return (EOVERFLOW); 7589 7590 uvtoc = (dir == VD_COPYIN)? from : to; 7591 7592 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 7593 rv = ddi_copyin(uvtoc, &vtoc32, sizeof (vtoc32), mode); 7594 if (rv != 0) 7595 return (EFAULT); 7596 vtoc32toextvtoc(vtoc32, evtoc); 7597 } else { 7598 rv = ddi_copyin(uvtoc, &vtoc, sizeof (vtoc), mode); 7599 if (rv != 0) 7600 return (EFAULT); 7601 vtoctoextvtoc(vtoc, evtoc); 7602 } 7603 7604 if (dir == VD_COPYOUT) { 7605 /* 7606 * The disk label may have changed. Revalidate the disk 7607 * geometry. This will also update the device nodes. 7608 */ 7609 vdc_validate(vdc); 7610 7611 /* 7612 * We also need to keep track of the timestamp fields. 7613 */ 7614 for (i = 0; i < V_NUMPAR; i++) { 7615 vdc->vtoc->timestamp[i] = evtoc.timestamp[i]; 7616 } 7617 7618 } else { 7619 VTOC2VD_VTOC(&evtoc, (vd_vtoc_t *)to); 7620 } 7621 7622 return (0); 7623 } 7624 7625 static int 7626 vdc_get_extvtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 7627 { 7628 int i, rv; 7629 struct extvtoc evtoc; 7630 7631 if (dir != VD_COPYOUT) 7632 return (0); /* nothing to do */ 7633 7634 if ((from == NULL) || (to == NULL)) 7635 return (ENXIO); 7636 7637 VD_VTOC2VTOC((vd_vtoc_t *)from, &evtoc); 7638 7639 /* fake the VTOC timestamp field */ 7640 for (i = 0; i < V_NUMPAR; i++) { 7641 evtoc.timestamp[i] = vdc->vtoc->timestamp[i]; 7642 } 7643 7644 rv = ddi_copyout(&evtoc, to, sizeof (struct extvtoc), mode); 7645 if (rv != 0) 7646 rv = EFAULT; 7647 7648 return (rv); 7649 } 7650 7651 static int 7652 vdc_set_extvtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 7653 { 7654 void *uvtoc; 7655 struct extvtoc evtoc; 7656 int i, rv; 7657 7658 if ((from == NULL) || (to == NULL)) 7659 return (ENXIO); 7660 7661 uvtoc = (dir == VD_COPYIN)? from : to; 7662 7663 rv = ddi_copyin(uvtoc, &evtoc, sizeof (struct extvtoc), mode); 7664 if (rv != 0) 7665 return (EFAULT); 7666 7667 if (dir == VD_COPYOUT) { 7668 /* 7669 * The disk label may have changed. Revalidate the disk 7670 * geometry. This will also update the device nodes. 7671 */ 7672 vdc_validate(vdc); 7673 7674 /* 7675 * We also need to keep track of the timestamp fields. 7676 */ 7677 for (i = 0; i < V_NUMPAR; i++) { 7678 vdc->vtoc->timestamp[i] = evtoc.timestamp[i]; 7679 } 7680 7681 } else { 7682 VTOC2VD_VTOC(&evtoc, (vd_vtoc_t *)to); 7683 } 7684 7685 return (0); 7686 } 7687 7688 /* 7689 * Function: 7690 * vdc_get_geom_convert() 7691 * 7692 * Description: 7693 * This routine performs the necessary convertions from the DKIOCGGEOM, 7694 * DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format 7695 * defined in FWARC 2006/195 7696 * 7697 * Arguments: 7698 * vdc - the vDisk client 7699 * from - Buffer with data 7700 * to - Buffer where data is to be copied to 7701 * mode - flags passed to ioctl 7702 * dir - direction of copy (in or out) 7703 * 7704 * Return Code: 7705 * 0 - Success 7706 * ENXIO - Invalid buffer passed in 7707 * EFAULT - ddi_copyout of data failed 7708 */ 7709 static int 7710 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 7711 { 7712 _NOTE(ARGUNUSED(vdc)) 7713 7714 struct dk_geom geom; 7715 int copy_len = sizeof (struct dk_geom); 7716 int rv = 0; 7717 7718 if (dir != VD_COPYOUT) 7719 return (0); /* nothing to do */ 7720 7721 if ((from == NULL) || (to == NULL)) 7722 return (ENXIO); 7723 7724 VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom); 7725 rv = ddi_copyout(&geom, to, copy_len, mode); 7726 if (rv != 0) 7727 rv = EFAULT; 7728 7729 return (rv); 7730 } 7731 7732 /* 7733 * Function: 7734 * vdc_set_geom_convert() 7735 * 7736 * Description: 7737 * This routine performs the necessary convertions from the DKIOCSGEOM 7738 * Solaris structure to the format defined in FWARC 2006/195. 7739 * 7740 * Arguments: 7741 * vdc - the vDisk client 7742 * from - Buffer with data 7743 * to - Buffer where data is to be copied to 7744 * mode - flags passed to ioctl 7745 * dir - direction of copy (in or out) 7746 * 7747 * Return Code: 7748 * 0 - Success 7749 * ENXIO - Invalid buffer passed in 7750 * EFAULT - ddi_copyin of data failed 7751 */ 7752 static int 7753 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 7754 { 7755 _NOTE(ARGUNUSED(vdc)) 7756 7757 vd_geom_t vdgeom; 7758 void *tmp_mem = NULL; 7759 int copy_len = sizeof (struct dk_geom); 7760 int rv = 0; 7761 7762 if (dir != VD_COPYIN) 7763 return (0); /* nothing to do */ 7764 7765 if ((from == NULL) || (to == NULL)) 7766 return (ENXIO); 7767 7768 tmp_mem = kmem_alloc(copy_len, KM_SLEEP); 7769 7770 rv = ddi_copyin(from, tmp_mem, copy_len, mode); 7771 if (rv != 0) { 7772 kmem_free(tmp_mem, copy_len); 7773 return (EFAULT); 7774 } 7775 DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom); 7776 bcopy(&vdgeom, to, sizeof (vdgeom)); 7777 kmem_free(tmp_mem, copy_len); 7778 7779 return (0); 7780 } 7781 7782 static int 7783 vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 7784 { 7785 _NOTE(ARGUNUSED(vdc)) 7786 7787 vd_efi_t *vd_efi; 7788 dk_efi_t dk_efi; 7789 int rv = 0; 7790 void *uaddr; 7791 7792 if ((from == NULL) || (to == NULL)) 7793 return (ENXIO); 7794 7795 if (dir == VD_COPYIN) { 7796 7797 vd_efi = (vd_efi_t *)to; 7798 7799 rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode); 7800 if (rv != 0) 7801 return (EFAULT); 7802 7803 vd_efi->lba = dk_efi.dki_lba; 7804 vd_efi->length = dk_efi.dki_length; 7805 bzero(vd_efi->data, vd_efi->length); 7806 7807 } else { 7808 7809 rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode); 7810 if (rv != 0) 7811 return (EFAULT); 7812 7813 uaddr = dk_efi.dki_data; 7814 7815 dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP); 7816 7817 VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi); 7818 7819 rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length, 7820 mode); 7821 if (rv != 0) 7822 return (EFAULT); 7823 7824 kmem_free(dk_efi.dki_data, dk_efi.dki_length); 7825 } 7826 7827 return (0); 7828 } 7829 7830 static int 7831 vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 7832 { 7833 _NOTE(ARGUNUSED(vdc)) 7834 7835 dk_efi_t dk_efi; 7836 void *uaddr; 7837 7838 if (dir == VD_COPYOUT) { 7839 /* 7840 * The disk label may have changed. Revalidate the disk 7841 * geometry. This will also update the device nodes. 7842 */ 7843 vdc_validate(vdc); 7844 return (0); 7845 } 7846 7847 if ((from == NULL) || (to == NULL)) 7848 return (ENXIO); 7849 7850 if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0) 7851 return (EFAULT); 7852 7853 uaddr = dk_efi.dki_data; 7854 7855 dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP); 7856 7857 if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0) 7858 return (EFAULT); 7859 7860 DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to); 7861 7862 kmem_free(dk_efi.dki_data, dk_efi.dki_length); 7863 7864 return (0); 7865 } 7866 7867 7868 /* -------------------------------------------------------------------------- */ 7869 7870 /* 7871 * Function: 7872 * vdc_create_fake_geometry() 7873 * 7874 * Description: 7875 * This routine fakes up the disk info needed for some DKIO ioctls such 7876 * as DKIOCINFO and DKIOCGMEDIAINFO [just like lofi(7D) and ramdisk(7D) do] 7877 * 7878 * Note: This function must not be called until the vDisk attributes have 7879 * been exchanged as part of the handshake with the vDisk server. 7880 * 7881 * Arguments: 7882 * vdc - soft state pointer for this instance of the device driver. 7883 * 7884 * Return Code: 7885 * none. 7886 */ 7887 static void 7888 vdc_create_fake_geometry(vdc_t *vdc) 7889 { 7890 ASSERT(vdc != NULL); 7891 ASSERT(vdc->max_xfer_sz != 0); 7892 7893 /* 7894 * DKIOCINFO support 7895 */ 7896 if (vdc->cinfo == NULL) 7897 vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 7898 7899 (void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME); 7900 (void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME); 7901 /* max_xfer_sz is #blocks so we don't need to divide by vdisk_bsize */ 7902 vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz; 7903 7904 /* 7905 * We set the controller type to DKC_SCSI_CCS only if the VD_OP_SCSICMD 7906 * operation is supported, otherwise the controller type is DKC_DIRECT. 7907 * Version 1.0 does not support the VD_OP_SCSICMD operation, so the 7908 * controller type is always DKC_DIRECT in that case. 7909 * 7910 * If the virtual disk is backed by a physical CD/DVD device or 7911 * an ISO image, modify the controller type to indicate this 7912 */ 7913 switch (vdc->vdisk_media) { 7914 case VD_MEDIA_CD: 7915 case VD_MEDIA_DVD: 7916 vdc->cinfo->dki_ctype = DKC_CDROM; 7917 break; 7918 case VD_MEDIA_FIXED: 7919 if (VD_OP_SUPPORTED(vdc->operations, VD_OP_SCSICMD)) 7920 vdc->cinfo->dki_ctype = DKC_SCSI_CCS; 7921 else 7922 vdc->cinfo->dki_ctype = DKC_DIRECT; 7923 break; 7924 default: 7925 /* in the case of v1.0 we default to a fixed disk */ 7926 vdc->cinfo->dki_ctype = DKC_DIRECT; 7927 break; 7928 } 7929 vdc->cinfo->dki_flags = DKI_FMTVOL; 7930 vdc->cinfo->dki_cnum = 0; 7931 vdc->cinfo->dki_addr = 0; 7932 vdc->cinfo->dki_space = 0; 7933 vdc->cinfo->dki_prio = 0; 7934 vdc->cinfo->dki_vec = 0; 7935 vdc->cinfo->dki_unit = vdc->instance; 7936 vdc->cinfo->dki_slave = 0; 7937 /* 7938 * The partition number will be created on the fly depending on the 7939 * actual slice (i.e. minor node) that is used to request the data. 7940 */ 7941 vdc->cinfo->dki_partition = 0; 7942 7943 /* 7944 * DKIOCGMEDIAINFO support 7945 */ 7946 if (vdc->minfo == NULL) 7947 vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP); 7948 7949 if (vio_ver_is_supported(vdc->ver, 1, 1)) { 7950 vdc->minfo->dki_media_type = 7951 VD_MEDIATYPE2DK_MEDIATYPE(vdc->vdisk_media); 7952 } else { 7953 vdc->minfo->dki_media_type = DK_FIXED_DISK; 7954 } 7955 7956 vdc->minfo->dki_capacity = vdc->vdisk_size; 7957 vdc->minfo->dki_lbsize = vdc->vdisk_bsize; 7958 } 7959 7960 static ushort_t 7961 vdc_lbl2cksum(struct dk_label *label) 7962 { 7963 int count; 7964 ushort_t sum, *sp; 7965 7966 count = (sizeof (struct dk_label)) / (sizeof (short)) - 1; 7967 sp = (ushort_t *)label; 7968 sum = 0; 7969 while (count--) { 7970 sum ^= *sp++; 7971 } 7972 7973 return (sum); 7974 } 7975 7976 static void 7977 vdc_update_size(vdc_t *vdc, size_t dsk_size, size_t blk_size, size_t xfr_size) 7978 { 7979 vd_err_stats_t *stp; 7980 7981 ASSERT(MUTEX_HELD(&vdc->lock)); 7982 ASSERT(xfr_size != 0); 7983 7984 /* 7985 * If the disk size is unknown or sizes are unchanged then don't 7986 * update anything. 7987 */ 7988 if (dsk_size == VD_SIZE_UNKNOWN || dsk_size == 0 || 7989 (blk_size == vdc->vdisk_bsize && dsk_size == vdc->vdisk_size && 7990 xfr_size == vdc->max_xfer_sz)) 7991 return; 7992 7993 /* 7994 * We don't know at compile time what the vDisk server will think 7995 * are good values but we apply a large (arbitrary) upper bound to 7996 * prevent memory exhaustion in vdc if it was allocating a DRing 7997 * based of huge values sent by the server. We probably will never 7998 * exceed this except if the message was garbage. 7999 */ 8000 if ((xfr_size * blk_size) > (PAGESIZE * DEV_BSIZE)) { 8001 DMSG(vdc, 0, "[%d] vds block transfer size too big;" 8002 " using max supported by vdc", vdc->instance); 8003 xfr_size = maxphys / blk_size; 8004 } 8005 8006 vdc->max_xfer_sz = xfr_size; 8007 vdc->vdisk_bsize = blk_size; 8008 vdc->vdisk_size = dsk_size; 8009 8010 stp = (vd_err_stats_t *)vdc->err_stats->ks_data; 8011 stp->vd_capacity.value.ui64 = dsk_size * blk_size; 8012 8013 vdc->minfo->dki_capacity = dsk_size; 8014 vdc->minfo->dki_lbsize = (uint_t)blk_size; 8015 } 8016 8017 /* 8018 * Update information about the VIO block size. The VIO block size is the 8019 * same as the vdisk block size which is stored in vdc->vdisk_bsize so we 8020 * do not store that information again. 8021 * 8022 * However, buf structures will always use a logical block size of 512 bytes 8023 * (DEV_BSIZE) and we will need to convert logical block numbers to VIO block 8024 * numbers for each read or write operation using vdc_strategy(). To speed up 8025 * this conversion, we expect the VIO block size to be a power of 2 and a 8026 * multiple 512 bytes (DEV_BSIZE), and we cache some useful information. 8027 * 8028 * The function return EINVAL if the new VIO block size (blk_size) is not a 8029 * power of 2 or not a multiple of 512 bytes, otherwise it returns 0. 8030 */ 8031 static int 8032 vdc_update_vio_bsize(vdc_t *vdc, uint32_t blk_size) 8033 { 8034 uint32_t ratio, n; 8035 int nshift = 0; 8036 8037 vdc->vio_bmask = 0; 8038 vdc->vio_bshift = 0; 8039 8040 ASSERT(blk_size > 0); 8041 8042 if ((blk_size % DEV_BSIZE) != 0) 8043 return (EINVAL); 8044 8045 ratio = blk_size / DEV_BSIZE; 8046 8047 for (n = ratio; n > 1; n >>= 1) { 8048 if ((n & 0x1) != 0) { 8049 /* blk_size is not a power of 2 */ 8050 return (EINVAL); 8051 } 8052 nshift++; 8053 } 8054 8055 vdc->vio_bshift = nshift; 8056 vdc->vio_bmask = ratio - 1; 8057 8058 return (0); 8059 } 8060 8061 /* 8062 * Function: 8063 * vdc_validate_geometry 8064 * 8065 * Description: 8066 * This routine discovers the label and geometry of the disk. It stores 8067 * the disk label and related information in the vdc structure. If it 8068 * fails to validate the geometry or to discover the disk label then 8069 * the label is marked as unknown (VD_DISK_LABEL_UNK). 8070 * 8071 * Arguments: 8072 * vdc - soft state pointer for this instance of the device driver. 8073 * 8074 * Return Code: 8075 * 0 - success. 8076 * EINVAL - unknown disk label. 8077 * ENOTSUP - geometry not applicable (EFI label). 8078 * EIO - error accessing the disk. 8079 */ 8080 static int 8081 vdc_validate_geometry(vdc_t *vdc) 8082 { 8083 dev_t dev; 8084 int rv, rval; 8085 struct dk_label *label; 8086 struct dk_geom geom; 8087 struct extvtoc vtoc; 8088 efi_gpt_t *gpt; 8089 efi_gpe_t *gpe; 8090 vd_efi_dev_t edev; 8091 8092 ASSERT(vdc != NULL); 8093 ASSERT(vdc->vtoc != NULL && vdc->geom != NULL); 8094 ASSERT(MUTEX_HELD(&vdc->lock)); 8095 8096 mutex_exit(&vdc->lock); 8097 /* 8098 * Check the disk capacity in case it has changed. If that fails then 8099 * we proceed and we will be using the disk size we currently have. 8100 */ 8101 (void) vdc_check_capacity(vdc); 8102 dev = makedevice(ddi_driver_major(vdc->dip), 8103 VD_MAKE_DEV(vdc->instance, 0)); 8104 8105 rv = vd_process_ioctl(dev, DKIOCGGEOM, (caddr_t)&geom, FKIOCTL, &rval); 8106 if (rv == 0) 8107 rv = vd_process_ioctl(dev, DKIOCGEXTVTOC, (caddr_t)&vtoc, 8108 FKIOCTL, &rval); 8109 8110 if (rv == ENOTSUP) { 8111 /* 8112 * If the device does not support VTOC then we try 8113 * to read an EFI label. 8114 * 8115 * We need to know the block size and the disk size to 8116 * be able to read an EFI label. 8117 */ 8118 if (vdc->vdisk_size == 0) { 8119 mutex_enter(&vdc->lock); 8120 vdc_store_label_unk(vdc); 8121 return (EIO); 8122 } 8123 8124 VDC_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl); 8125 8126 rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe); 8127 8128 if (rv) { 8129 DMSG(vdc, 0, "[%d] Failed to get EFI (err=%d)", 8130 vdc->instance, rv); 8131 mutex_enter(&vdc->lock); 8132 vdc_store_label_unk(vdc); 8133 return (EIO); 8134 } 8135 8136 mutex_enter(&vdc->lock); 8137 vdc_store_label_efi(vdc, gpt, gpe); 8138 vd_efi_free(&edev, gpt, gpe); 8139 return (ENOTSUP); 8140 } 8141 8142 if (rv != 0) { 8143 DMSG(vdc, 0, "[%d] Failed to get VTOC (err=%d)", 8144 vdc->instance, rv); 8145 mutex_enter(&vdc->lock); 8146 vdc_store_label_unk(vdc); 8147 if (rv != EINVAL) 8148 rv = EIO; 8149 return (rv); 8150 } 8151 8152 /* check that geometry and vtoc are valid */ 8153 if (geom.dkg_nhead == 0 || geom.dkg_nsect == 0 || 8154 vtoc.v_sanity != VTOC_SANE) { 8155 mutex_enter(&vdc->lock); 8156 vdc_store_label_unk(vdc); 8157 return (EINVAL); 8158 } 8159 8160 /* 8161 * We have a disk and a valid VTOC. However this does not mean 8162 * that the disk currently have a VTOC label. The returned VTOC may 8163 * be a default VTOC to be used for configuring the disk (this is 8164 * what is done for disk image). So we read the label from the 8165 * beginning of the disk to ensure we really have a VTOC label. 8166 * 8167 * FUTURE: This could be the default way for reading the VTOC 8168 * from the disk as opposed to sending the VD_OP_GET_VTOC 8169 * to the server. This will be the default if vdc is implemented 8170 * ontop of cmlb. 8171 */ 8172 8173 /* 8174 * Single slice disk does not support read using an absolute disk 8175 * offset so we just rely on the DKIOCGVTOC ioctl in that case. 8176 */ 8177 if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) { 8178 mutex_enter(&vdc->lock); 8179 if (vtoc.v_nparts != 1) { 8180 vdc_store_label_unk(vdc); 8181 return (EINVAL); 8182 } 8183 vdc_store_label_vtoc(vdc, &geom, &vtoc); 8184 return (0); 8185 } 8186 8187 if (vtoc.v_nparts != V_NUMPAR) { 8188 mutex_enter(&vdc->lock); 8189 vdc_store_label_unk(vdc); 8190 return (EINVAL); 8191 } 8192 8193 /* 8194 * Most CD/DVDs do not have a disk label and the label is 8195 * generated by the disk driver. So the on-disk label check 8196 * below may fail and we return now to avoid this problem. 8197 */ 8198 if (vdc->vdisk_media == VD_MEDIA_CD || 8199 vdc->vdisk_media == VD_MEDIA_DVD) { 8200 mutex_enter(&vdc->lock); 8201 vdc_store_label_vtoc(vdc, &geom, &vtoc); 8202 return (0); 8203 } 8204 8205 /* 8206 * Read disk label from start of disk 8207 */ 8208 label = kmem_alloc(vdc->vdisk_bsize, KM_SLEEP); 8209 8210 rv = vdc_do_op(vdc, VD_OP_BREAD, (caddr_t)label, vdc->vdisk_bsize, 8211 VD_SLICE_NONE, 0, NULL, VIO_read_dir, VDC_OP_NORMAL); 8212 8213 if (rv != 0 || label->dkl_magic != DKL_MAGIC || 8214 label->dkl_cksum != vdc_lbl2cksum(label)) { 8215 DMSG(vdc, 1, "[%d] Got VTOC with invalid label\n", 8216 vdc->instance); 8217 kmem_free(label, vdc->vdisk_bsize); 8218 mutex_enter(&vdc->lock); 8219 vdc_store_label_unk(vdc); 8220 return (EINVAL); 8221 } 8222 8223 kmem_free(label, vdc->vdisk_bsize); 8224 mutex_enter(&vdc->lock); 8225 vdc_store_label_vtoc(vdc, &geom, &vtoc); 8226 return (0); 8227 } 8228 8229 /* 8230 * Function: 8231 * vdc_validate 8232 * 8233 * Description: 8234 * This routine discovers the label of the disk and create the 8235 * appropriate device nodes if the label has changed. 8236 * 8237 * Arguments: 8238 * vdc - soft state pointer for this instance of the device driver. 8239 * 8240 * Return Code: 8241 * none. 8242 */ 8243 static void 8244 vdc_validate(vdc_t *vdc) 8245 { 8246 vd_disk_label_t old_label; 8247 vd_slice_t old_slice[V_NUMPAR]; 8248 int rv; 8249 8250 ASSERT(!MUTEX_HELD(&vdc->lock)); 8251 8252 mutex_enter(&vdc->lock); 8253 8254 /* save the current label and vtoc */ 8255 old_label = vdc->vdisk_label; 8256 bcopy(vdc->slice, &old_slice, sizeof (vd_slice_t) * V_NUMPAR); 8257 8258 /* check the geometry */ 8259 (void) vdc_validate_geometry(vdc); 8260 8261 /* if the disk label has changed, update device nodes */ 8262 if (vdc->vdisk_type == VD_DISK_TYPE_DISK && 8263 vdc->vdisk_label != old_label) { 8264 8265 if (vdc->vdisk_label == VD_DISK_LABEL_EFI) 8266 rv = vdc_create_device_nodes_efi(vdc); 8267 else 8268 rv = vdc_create_device_nodes_vtoc(vdc); 8269 8270 if (rv != 0) { 8271 DMSG(vdc, 0, "![%d] Failed to update device nodes", 8272 vdc->instance); 8273 } 8274 } 8275 8276 mutex_exit(&vdc->lock); 8277 } 8278 8279 static void 8280 vdc_validate_task(void *arg) 8281 { 8282 vdc_t *vdc = (vdc_t *)arg; 8283 8284 vdc_validate(vdc); 8285 8286 mutex_enter(&vdc->lock); 8287 ASSERT(vdc->validate_pending > 0); 8288 vdc->validate_pending--; 8289 mutex_exit(&vdc->lock); 8290 } 8291 8292 /* 8293 * Function: 8294 * vdc_setup_devid() 8295 * 8296 * Description: 8297 * This routine discovers the devid of a vDisk. It requests the devid of 8298 * the underlying device from the vDisk server, builds an encapsulated 8299 * devid based on the retrieved devid and registers that new devid to 8300 * the vDisk. 8301 * 8302 * Arguments: 8303 * vdc - soft state pointer for this instance of the device driver. 8304 * 8305 * Return Code: 8306 * 0 - A devid was succesfully registered for the vDisk 8307 */ 8308 static int 8309 vdc_setup_devid(vdc_t *vdc) 8310 { 8311 int rv; 8312 vd_devid_t *vd_devid; 8313 size_t bufsize, bufid_len; 8314 ddi_devid_t vdisk_devid; 8315 char *devid_str; 8316 8317 /* 8318 * At first sight, we don't know the size of the devid that the 8319 * server will return but this size will be encoded into the 8320 * reply. So we do a first request using a default size then we 8321 * check if this size was large enough. If not then we do a second 8322 * request with the correct size returned by the server. Note that 8323 * ldc requires size to be 8-byte aligned. 8324 */ 8325 bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN), 8326 sizeof (uint64_t)); 8327 vd_devid = kmem_zalloc(bufsize, KM_SLEEP); 8328 bufid_len = bufsize - sizeof (vd_efi_t) - 1; 8329 8330 rv = vdc_do_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid, 8331 bufsize, 0, 0, NULL, VIO_both_dir, 0); 8332 8333 DMSG(vdc, 2, "do_op returned %d\n", rv); 8334 8335 if (rv) { 8336 kmem_free(vd_devid, bufsize); 8337 return (rv); 8338 } 8339 8340 if (vd_devid->length > bufid_len) { 8341 /* 8342 * The returned devid is larger than the buffer used. Try again 8343 * with a buffer with the right size. 8344 */ 8345 kmem_free(vd_devid, bufsize); 8346 bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length), 8347 sizeof (uint64_t)); 8348 vd_devid = kmem_zalloc(bufsize, KM_SLEEP); 8349 bufid_len = bufsize - sizeof (vd_efi_t) - 1; 8350 8351 rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid, 8352 bufsize, 0, 0, VIO_both_dir, B_TRUE); 8353 8354 if (rv) { 8355 kmem_free(vd_devid, bufsize); 8356 return (rv); 8357 } 8358 } 8359 8360 /* 8361 * The virtual disk should have the same device id as the one associated 8362 * with the physical disk it is mapped on, otherwise sharing a disk 8363 * between a LDom and a non-LDom may not work (for example for a shared 8364 * SVM disk set). 8365 * 8366 * The DDI framework does not allow creating a device id with any 8367 * type so we first create a device id of type DEVID_ENCAP and then 8368 * we restore the orignal type of the physical device. 8369 */ 8370 8371 DMSG(vdc, 2, ": devid length = %d\n", vd_devid->length); 8372 8373 /* build an encapsulated devid based on the returned devid */ 8374 if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length, 8375 vd_devid->id, &vdisk_devid) != DDI_SUCCESS) { 8376 DMSG(vdc, 1, "[%d] Fail to created devid\n", vdc->instance); 8377 kmem_free(vd_devid, bufsize); 8378 return (1); 8379 } 8380 8381 DEVID_FORMTYPE((impl_devid_t *)vdisk_devid, vd_devid->type); 8382 8383 ASSERT(ddi_devid_valid(vdisk_devid) == DDI_SUCCESS); 8384 8385 kmem_free(vd_devid, bufsize); 8386 8387 if (vdc->devid != NULL) { 8388 /* check that the devid hasn't changed */ 8389 if (ddi_devid_compare(vdisk_devid, vdc->devid) == 0) { 8390 ddi_devid_free(vdisk_devid); 8391 return (0); 8392 } 8393 8394 cmn_err(CE_WARN, "vdisk@%d backend devid has changed", 8395 vdc->instance); 8396 8397 devid_str = ddi_devid_str_encode(vdc->devid, NULL); 8398 8399 cmn_err(CE_CONT, "vdisk@%d backend initial devid: %s", 8400 vdc->instance, 8401 (devid_str)? devid_str : "<encoding error>"); 8402 8403 if (devid_str) 8404 ddi_devid_str_free(devid_str); 8405 8406 devid_str = ddi_devid_str_encode(vdisk_devid, NULL); 8407 8408 cmn_err(CE_CONT, "vdisk@%d backend current devid: %s", 8409 vdc->instance, 8410 (devid_str)? devid_str : "<encoding error>"); 8411 8412 if (devid_str) 8413 ddi_devid_str_free(devid_str); 8414 8415 ddi_devid_free(vdisk_devid); 8416 return (1); 8417 } 8418 8419 if (ddi_devid_register(vdc->dip, vdisk_devid) != DDI_SUCCESS) { 8420 DMSG(vdc, 1, "[%d] Fail to register devid\n", vdc->instance); 8421 ddi_devid_free(vdisk_devid); 8422 return (1); 8423 } 8424 8425 vdc->devid = vdisk_devid; 8426 8427 return (0); 8428 } 8429 8430 static void 8431 vdc_store_label_efi(vdc_t *vdc, efi_gpt_t *gpt, efi_gpe_t *gpe) 8432 { 8433 int i, nparts; 8434 8435 ASSERT(MUTEX_HELD(&vdc->lock)); 8436 8437 vdc->vdisk_label = VD_DISK_LABEL_EFI; 8438 bzero(vdc->vtoc, sizeof (struct extvtoc)); 8439 bzero(vdc->geom, sizeof (struct dk_geom)); 8440 bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR); 8441 8442 nparts = gpt->efi_gpt_NumberOfPartitionEntries; 8443 8444 for (i = 0; i < nparts && i < VD_EFI_WD_SLICE; i++) { 8445 8446 if (gpe[i].efi_gpe_StartingLBA == 0 && 8447 gpe[i].efi_gpe_EndingLBA == 0) { 8448 continue; 8449 } 8450 8451 vdc->slice[i].start = gpe[i].efi_gpe_StartingLBA; 8452 vdc->slice[i].nblocks = gpe[i].efi_gpe_EndingLBA - 8453 gpe[i].efi_gpe_StartingLBA + 1; 8454 } 8455 8456 ASSERT(vdc->vdisk_size != 0); 8457 vdc->slice[VD_EFI_WD_SLICE].start = 0; 8458 vdc->slice[VD_EFI_WD_SLICE].nblocks = vdc->vdisk_size; 8459 8460 } 8461 8462 static void 8463 vdc_store_label_vtoc(vdc_t *vdc, struct dk_geom *geom, struct extvtoc *vtoc) 8464 { 8465 int i; 8466 8467 ASSERT(MUTEX_HELD(&vdc->lock)); 8468 ASSERT(vdc->vdisk_bsize == vtoc->v_sectorsz); 8469 8470 vdc->vdisk_label = VD_DISK_LABEL_VTOC; 8471 bcopy(vtoc, vdc->vtoc, sizeof (struct extvtoc)); 8472 bcopy(geom, vdc->geom, sizeof (struct dk_geom)); 8473 bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR); 8474 8475 for (i = 0; i < vtoc->v_nparts; i++) { 8476 vdc->slice[i].start = vtoc->v_part[i].p_start; 8477 vdc->slice[i].nblocks = vtoc->v_part[i].p_size; 8478 } 8479 } 8480 8481 static void 8482 vdc_store_label_unk(vdc_t *vdc) 8483 { 8484 ASSERT(MUTEX_HELD(&vdc->lock)); 8485 8486 vdc->vdisk_label = VD_DISK_LABEL_UNK; 8487 bzero(vdc->vtoc, sizeof (struct extvtoc)); 8488 bzero(vdc->geom, sizeof (struct dk_geom)); 8489 bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR); 8490 } 8491