xref: /titanic_41/usr/src/uts/sun4v/io/vdc.c (revision 69889278ff50c08a6682a39ce6b5d97c5f0c2387)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * LDoms virtual disk client (vdc) device driver
31  *
32  * This driver runs on a guest logical domain and communicates with the virtual
33  * disk server (vds) driver running on the service domain which is exporting
34  * virtualized "disks" to the guest logical domain.
35  *
36  * The driver can be divided into four sections:
37  *
38  * 1) generic device driver housekeeping
39  *	_init, _fini, attach, detach, ops structures, etc.
40  *
41  * 2) communication channel setup
42  *	Setup the communications link over the LDC channel that vdc uses to
43  *	talk to the vDisk server. Initialise the descriptor ring which
44  *	allows the LDC clients to transfer data via memory mappings.
45  *
46  * 3) Support exported to upper layers (filesystems, etc)
47  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
48  *	ioctl calls. vdc will copy the data to be written to the descriptor
49  *	ring or maps the buffer to store the data read by the vDisk
50  *	server into the descriptor ring. It then sends a message to the
51  *	vDisk server requesting it to complete the operation.
52  *
53  * 4) Handling responses from vDisk server.
54  *	The vDisk server will ACK some or all of the messages vdc sends to it
55  *	(this is configured during the handshake). Upon receipt of an ACK
56  *	vdc will check the descriptor ring and signal to the upper layer
57  *	code waiting on the IO.
58  */
59 
60 #include <sys/atomic.h>
61 #include <sys/conf.h>
62 #include <sys/disp.h>
63 #include <sys/ddi.h>
64 #include <sys/dkio.h>
65 #include <sys/efi_partition.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/mach_descrip.h>
69 #include <sys/modctl.h>
70 #include <sys/mdeg.h>
71 #include <sys/note.h>
72 #include <sys/open.h>
73 #include <sys/sdt.h>
74 #include <sys/stat.h>
75 #include <sys/sunddi.h>
76 #include <sys/types.h>
77 #include <sys/promif.h>
78 #include <sys/vtoc.h>
79 #include <sys/archsystm.h>
80 #include <sys/sysmacros.h>
81 
82 #include <sys/cdio.h>
83 #include <sys/dktp/cm.h>
84 #include <sys/dktp/fdisk.h>
85 #include <sys/scsi/generic/sense.h>
86 #include <sys/scsi/impl/uscsi.h>	/* Needed for defn of USCSICMD ioctl */
87 #include <sys/scsi/targets/sddef.h>
88 
89 #include <sys/ldoms.h>
90 #include <sys/ldc.h>
91 #include <sys/vio_common.h>
92 #include <sys/vio_mailbox.h>
93 #include <sys/vdsk_common.h>
94 #include <sys/vdsk_mailbox.h>
95 #include <sys/vdc.h>
96 
97 /*
98  * function prototypes
99  */
100 
101 /* standard driver functions */
102 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
103 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
104 static int	vdc_strategy(struct buf *buf);
105 static int	vdc_print(dev_t dev, char *str);
106 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
107 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
108 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
109 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
110 			cred_t *credp, int *rvalp);
111 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
112 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
113 
114 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
115 			void *arg, void **resultp);
116 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
117 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
118 
119 /* setup */
120 static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
121 static int	vdc_do_ldc_init(vdc_t *vdc);
122 static int	vdc_start_ldc_connection(vdc_t *vdc);
123 static int	vdc_create_device_nodes(vdc_t *vdc);
124 static int	vdc_create_device_nodes_efi(vdc_t *vdc);
125 static int	vdc_create_device_nodes_vtoc(vdc_t *vdc);
126 static int	vdc_create_device_nodes_props(vdc_t *vdc);
127 static int	vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id);
128 static int	vdc_do_ldc_up(vdc_t *vdc);
129 static void	vdc_terminate_ldc(vdc_t *vdc);
130 static int	vdc_init_descriptor_ring(vdc_t *vdc);
131 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
132 static int	vdc_setup_devid(vdc_t *vdc);
133 static void	vdc_store_efi(vdc_t *vdc, struct dk_gpt *efi);
134 
135 /* handshake with vds */
136 static void		vdc_init_handshake_negotiation(void *arg);
137 static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
138 static int		vdc_init_attr_negotiation(vdc_t *vdc);
139 static int		vdc_init_dring_negotiate(vdc_t *vdc);
140 static void		vdc_reset_connection(vdc_t *vdc, boolean_t resetldc);
141 static boolean_t	vdc_is_able_to_tx_data(vdc_t *vdc, int flag);
142 static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
143 
144 /* processing incoming messages from vDisk server */
145 static void	vdc_process_msg_thread(vdc_t *vdc);
146 static void	vdc_process_msg(void *arg);
147 static void	vdc_do_process_msg(vdc_t *vdc);
148 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
149 static int	vdc_process_ctrl_msg(vdc_t *vdc, vio_msg_t msg);
150 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t msg);
151 static int	vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg);
152 static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
153 static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
154 static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
155 static int	vdc_get_next_dring_entry_id(vdc_t *vdc, uint_t needed);
156 static int	vdc_populate_descriptor(vdc_t *vdc, caddr_t addr,
157 			size_t nbytes, int op, uint64_t arg, uint64_t slice);
158 static int	vdc_wait_for_descriptor_update(vdc_t *vdc, uint_t idx,
159 			vio_dring_msg_t dmsg);
160 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
161 static int	vdc_populate_mem_hdl(vdc_t *vdc, uint_t idx,
162 			caddr_t addr, size_t nbytes, int operation);
163 static int	vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg);
164 
165 /* dkio */
166 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode);
167 static int	vdc_create_fake_geometry(vdc_t *vdc);
168 static int	vdc_setup_disk_layout(vdc_t *vdc);
169 static int	vdc_null_copy_func(vdc_t *vdc, void *from, void *to,
170 		    int mode, int dir);
171 static int	vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
172 		    int mode, int dir);
173 static int	vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
174 		    int mode, int dir);
175 static int	vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to,
176 		    int mode, int dir);
177 static int	vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to,
178 		    int mode, int dir);
179 static int	vdc_get_geom_convert(vdc_t *vdc, void *from, void *to,
180 		    int mode, int dir);
181 static int	vdc_set_geom_convert(vdc_t *vdc, void *from, void *to,
182 		    int mode, int dir);
183 static int	vdc_uscsicmd_convert(vdc_t *vdc, void *from, void *to,
184 		    int mode, int dir);
185 static int	vdc_get_efi_convert(vdc_t *vdc, void *from, void *to,
186 		    int mode, int dir);
187 static int	vdc_set_efi_convert(vdc_t *vdc, void *from, void *to,
188 		    int mode, int dir);
189 
190 /*
191  * Module variables
192  */
193 
194 /*
195  * Tunable variables to control how long vdc waits before timing out on
196  * various operations
197  */
198 static int	vdc_retries = 10;
199 
200 /* calculated from 'vdc_usec_timeout' during attach */
201 static uint64_t	vdc_hz_timeout;				/* units: Hz */
202 static uint64_t	vdc_usec_timeout = 30 * MICROSEC;	/* 30s units: ns */
203 
204 static uint64_t	vdc_hz_timeout_ldc;			/* units: Hz */
205 static uint64_t	vdc_usec_timeout_ldc = 10 * MILLISEC;	/* 0.01s units: ns */
206 
207 /* values for dumping - need to run in a tighter loop */
208 static uint64_t	vdc_usec_timeout_dump = 100 * MILLISEC;	/* 0.1s units: ns */
209 static int	vdc_dump_retries = 100;
210 
211 /* Count of the number of vdc instances attached */
212 static volatile uint32_t	vdc_instance_count = 0;
213 
214 /* Soft state pointer */
215 static void	*vdc_state;
216 
217 /* variable level controlling the verbosity of the error/debug messages */
218 int	vdc_msglevel = 0;
219 
220 /*
221  * Supported vDisk protocol version pairs.
222  *
223  * The first array entry is the latest and preferred version.
224  */
225 static const vio_ver_t	vdc_version[] = {{1, 0}};
226 
227 static struct cb_ops vdc_cb_ops = {
228 	vdc_open,	/* cb_open */
229 	vdc_close,	/* cb_close */
230 	vdc_strategy,	/* cb_strategy */
231 	vdc_print,	/* cb_print */
232 	vdc_dump,	/* cb_dump */
233 	vdc_read,	/* cb_read */
234 	vdc_write,	/* cb_write */
235 	vdc_ioctl,	/* cb_ioctl */
236 	nodev,		/* cb_devmap */
237 	nodev,		/* cb_mmap */
238 	nodev,		/* cb_segmap */
239 	nochpoll,	/* cb_chpoll */
240 	ddi_prop_op,	/* cb_prop_op */
241 	NULL,		/* cb_str */
242 	D_MP | D_64BIT,	/* cb_flag */
243 	CB_REV,		/* cb_rev */
244 	vdc_aread,	/* cb_aread */
245 	vdc_awrite	/* cb_awrite */
246 };
247 
248 static struct dev_ops vdc_ops = {
249 	DEVO_REV,	/* devo_rev */
250 	0,		/* devo_refcnt */
251 	vdc_getinfo,	/* devo_getinfo */
252 	nulldev,	/* devo_identify */
253 	nulldev,	/* devo_probe */
254 	vdc_attach,	/* devo_attach */
255 	vdc_detach,	/* devo_detach */
256 	nodev,		/* devo_reset */
257 	&vdc_cb_ops,	/* devo_cb_ops */
258 	NULL,		/* devo_bus_ops */
259 	nulldev		/* devo_power */
260 };
261 
262 static struct modldrv modldrv = {
263 	&mod_driverops,
264 	"virtual disk client %I%",
265 	&vdc_ops,
266 };
267 
268 static struct modlinkage modlinkage = {
269 	MODREV_1,
270 	&modldrv,
271 	NULL
272 };
273 
274 /* -------------------------------------------------------------------------- */
275 
276 /*
277  * Device Driver housekeeping and setup
278  */
279 
280 int
281 _init(void)
282 {
283 	int	status;
284 
285 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
286 		return (status);
287 	if ((status = mod_install(&modlinkage)) != 0)
288 		ddi_soft_state_fini(&vdc_state);
289 	vdc_efi_init(vd_process_ioctl);
290 	return (status);
291 }
292 
293 int
294 _info(struct modinfo *modinfop)
295 {
296 	return (mod_info(&modlinkage, modinfop));
297 }
298 
299 int
300 _fini(void)
301 {
302 	int	status;
303 
304 	if ((status = mod_remove(&modlinkage)) != 0)
305 		return (status);
306 	vdc_efi_fini();
307 	ddi_soft_state_fini(&vdc_state);
308 	return (0);
309 }
310 
311 static int
312 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
313 {
314 	_NOTE(ARGUNUSED(dip))
315 
316 	int	instance = SDUNIT(getminor((dev_t)arg));
317 	vdc_t	*vdc = NULL;
318 
319 	switch (cmd) {
320 	case DDI_INFO_DEVT2DEVINFO:
321 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
322 			*resultp = NULL;
323 			return (DDI_FAILURE);
324 		}
325 		*resultp = vdc->dip;
326 		return (DDI_SUCCESS);
327 	case DDI_INFO_DEVT2INSTANCE:
328 		*resultp = (void *)(uintptr_t)instance;
329 		return (DDI_SUCCESS);
330 	default:
331 		*resultp = NULL;
332 		return (DDI_FAILURE);
333 	}
334 }
335 
336 static int
337 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
338 {
339 	int	instance;
340 	int	rv;
341 	uint_t	retries = 0;
342 	vdc_t	*vdc = NULL;
343 
344 	switch (cmd) {
345 	case DDI_DETACH:
346 		/* the real work happens below */
347 		break;
348 	case DDI_SUSPEND:
349 		/* nothing to do for this non-device */
350 		return (DDI_SUCCESS);
351 	default:
352 		return (DDI_FAILURE);
353 	}
354 
355 	ASSERT(cmd == DDI_DETACH);
356 	instance = ddi_get_instance(dip);
357 	DMSG(1, "[%d] Entered\n", instance);
358 
359 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
360 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
361 		return (DDI_FAILURE);
362 	}
363 
364 	if (vdc->open) {
365 		DMSG(0, "[%d] Cannot detach: device is open", instance);
366 		return (DDI_FAILURE);
367 	}
368 
369 	DMSG(0, "[%d] proceeding...\n", instance);
370 
371 	/*
372 	 * try and disable callbacks to prevent another handshake
373 	 */
374 	rv = ldc_set_cb_mode(vdc->ldc_handle, LDC_CB_DISABLE);
375 	DMSG(0, "[%d] callback disabled (rv=%d)\n", instance, rv);
376 
377 	/*
378 	 * Prevent any more attempts to start a handshake with the vdisk
379 	 * server and tear down the existing connection.
380 	 */
381 	mutex_enter(&vdc->lock);
382 	vdc->initialized |= VDC_HANDSHAKE_STOP;
383 	vdc_reset_connection(vdc, B_TRUE);
384 	mutex_exit(&vdc->lock);
385 
386 	if (vdc->initialized & VDC_THREAD) {
387 		mutex_enter(&vdc->msg_proc_lock);
388 		vdc->msg_proc_thr_state = VDC_THR_STOP;
389 		vdc->msg_pending = B_TRUE;
390 		cv_signal(&vdc->msg_proc_cv);
391 
392 		while (vdc->msg_proc_thr_state != VDC_THR_DONE) {
393 			DMSG(0, "[%d] Waiting for thread to exit\n", instance);
394 			rv = cv_timedwait(&vdc->msg_proc_cv,
395 				&vdc->msg_proc_lock,
396 				VD_GET_TIMEOUT_HZ(vdc_hz_timeout, 1));
397 			if ((rv == -1) && (retries++ > vdc_retries))
398 				break;
399 		}
400 		mutex_exit(&vdc->msg_proc_lock);
401 	}
402 
403 	mutex_enter(&vdc->lock);
404 
405 	if (vdc->initialized & VDC_DRING)
406 		vdc_destroy_descriptor_ring(vdc);
407 
408 	if (vdc->initialized & VDC_LDC)
409 		vdc_terminate_ldc(vdc);
410 
411 	mutex_exit(&vdc->lock);
412 
413 	if (vdc->initialized & VDC_MINOR) {
414 		ddi_prop_remove_all(dip);
415 		ddi_remove_minor_node(dip, NULL);
416 	}
417 
418 	if (vdc->initialized & VDC_LOCKS) {
419 		mutex_destroy(&vdc->lock);
420 		mutex_destroy(&vdc->attach_lock);
421 		mutex_destroy(&vdc->msg_proc_lock);
422 		mutex_destroy(&vdc->dring_lock);
423 		cv_destroy(&vdc->cv);
424 		cv_destroy(&vdc->attach_cv);
425 		cv_destroy(&vdc->msg_proc_cv);
426 	}
427 
428 	if (vdc->minfo)
429 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
430 
431 	if (vdc->cinfo)
432 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
433 
434 	if (vdc->vtoc)
435 		kmem_free(vdc->vtoc, sizeof (struct vtoc));
436 
437 	if (vdc->label)
438 		kmem_free(vdc->label, DK_LABEL_SIZE);
439 
440 	if (vdc->devid) {
441 		ddi_devid_unregister(dip);
442 		ddi_devid_free(vdc->devid);
443 	}
444 
445 	if (vdc->initialized & VDC_SOFT_STATE)
446 		ddi_soft_state_free(vdc_state, instance);
447 
448 	DMSG(0, "[%d] End %p\n", instance, (void *)vdc);
449 
450 	return (DDI_SUCCESS);
451 }
452 
453 
454 static int
455 vdc_do_attach(dev_info_t *dip)
456 {
457 	int		instance;
458 	vdc_t		*vdc = NULL;
459 	int		status;
460 	uint_t		retries = 0;
461 
462 	ASSERT(dip != NULL);
463 
464 	instance = ddi_get_instance(dip);
465 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
466 		cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure",
467 		    instance);
468 		return (DDI_FAILURE);
469 	}
470 
471 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
472 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
473 		return (DDI_FAILURE);
474 	}
475 
476 	/*
477 	 * We assign the value to initialized in this case to zero out the
478 	 * variable and then set bits in it to indicate what has been done
479 	 */
480 	vdc->initialized = VDC_SOFT_STATE;
481 
482 	vdc_hz_timeout = drv_usectohz(vdc_usec_timeout);
483 	vdc_hz_timeout_ldc = drv_usectohz(vdc_usec_timeout_ldc);
484 
485 	vdc->dip	= dip;
486 	vdc->instance	= instance;
487 	vdc->open	= 0;
488 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
489 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
490 	vdc->state	= VD_STATE_INIT;
491 	vdc->ldc_state	= 0;
492 	vdc->session_id = 0;
493 	vdc->block_size = DEV_BSIZE;
494 	vdc->max_xfer_sz = maxphys / DEV_BSIZE;
495 
496 	vdc->vtoc = NULL;
497 	vdc->cinfo = NULL;
498 	vdc->minfo = NULL;
499 
500 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
501 	mutex_init(&vdc->attach_lock, NULL, MUTEX_DRIVER, NULL);
502 	mutex_init(&vdc->msg_proc_lock, NULL, MUTEX_DRIVER, NULL);
503 	mutex_init(&vdc->dring_lock, NULL, MUTEX_DRIVER, NULL);
504 	cv_init(&vdc->cv, NULL, CV_DRIVER, NULL);
505 	cv_init(&vdc->attach_cv, NULL, CV_DRIVER, NULL);
506 	cv_init(&vdc->msg_proc_cv, NULL, CV_DRIVER, NULL);
507 	vdc->initialized |= VDC_LOCKS;
508 
509 	vdc->msg_pending = B_FALSE;
510 	vdc->msg_proc_thr_id = thread_create(NULL, 0, vdc_process_msg_thread,
511 		vdc, 0, &p0, TS_RUN, minclsyspri);
512 	if (vdc->msg_proc_thr_id == NULL) {
513 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
514 				instance);
515 		return (DDI_FAILURE);
516 	}
517 	vdc->initialized |= VDC_THREAD;
518 
519 	/* initialise LDC channel which will be used to communicate with vds */
520 	if (vdc_do_ldc_init(vdc) != 0) {
521 		cmn_err(CE_NOTE, "[%d] Couldn't initialize LDC", instance);
522 		return (DDI_FAILURE);
523 	}
524 
525 	/* Bring up connection with vds via LDC */
526 	status = vdc_start_ldc_connection(vdc);
527 	if (status != 0) {
528 		cmn_err(CE_NOTE, "[%d] Could not start LDC", instance);
529 		return (DDI_FAILURE);
530 	}
531 
532 	/*
533 	 * We need to wait until the handshake has completed before leaving
534 	 * the attach(). If this is the first vdc device attached (i.e. the root
535 	 * filesystem) we will wait much longer in the hope that we can finally
536 	 * communicate with the vDisk server (the service domain may be
537 	 * rebooting, etc.). This wait is necessary so that the device node(s)
538 	 * are created before the attach(9E) return (otherwise the open(9E) will
539 	 * fail and and the root file system will not boot).
540 	 */
541 	atomic_inc_32(&vdc_instance_count);
542 	mutex_enter(&vdc->attach_lock);
543 	while ((vdc->ldc_state != LDC_UP) || (vdc->state != VD_STATE_DATA)) {
544 
545 		DMSG(0, "[%d] handshake in progress [VD %d (LDC %d)]\n",
546 			instance, vdc->state, vdc->ldc_state);
547 
548 		status = cv_timedwait(&vdc->attach_cv, &vdc->attach_lock,
549 				VD_GET_TIMEOUT_HZ(vdc_hz_timeout, retries));
550 		if (status == -1) {
551 			/*
552 			 * If this is not the first instance attached or we
553 			 * have exceeeded the max number of retries we give
554 			 * up waiting and do not delay the attach any longer
555 			 */
556 			if ((vdc_instance_count != 1) ||
557 			    (retries >= vdc_retries)) {
558 				DMSG(0, "[%d] Giving up wait for handshake\n",
559 						instance);
560 				mutex_exit(&vdc->attach_lock);
561 				return (DDI_FAILURE);
562 			} else {
563 				DMSG(0, "[%d] Retry #%d for handshake.\n",
564 						instance, retries);
565 				vdc_init_handshake_negotiation(vdc);
566 				retries++;
567 			}
568 		}
569 	}
570 	mutex_exit(&vdc->attach_lock);
571 
572 	/*
573 	 * Once the handshake is complete, we can use the DRing to send
574 	 * requests to the vDisk server to calculate the geometry and
575 	 * VTOC of the "disk"
576 	 */
577 	status = vdc_setup_disk_layout(vdc);
578 	if (status != 0) {
579 		cmn_err(CE_NOTE, "[%d] Failed to discover disk layout (err%d)",
580 				vdc->instance, status);
581 	}
582 
583 	/*
584 	 * Now that we have the device info we can create the
585 	 * device nodes and properties
586 	 */
587 	status = vdc_create_device_nodes(vdc);
588 	if (status) {
589 		cmn_err(CE_NOTE, "[%d] Failed to create device nodes",
590 				instance);
591 		return (status);
592 	}
593 	status = vdc_create_device_nodes_props(vdc);
594 	if (status) {
595 		cmn_err(CE_NOTE, "[%d] Failed to create device nodes"
596 				" properties (%d)", instance, status);
597 		return (status);
598 	}
599 
600 	/*
601 	 * Setup devid
602 	 */
603 	if (vdc_setup_devid(vdc)) {
604 		DMSG(0, "[%d] No device id available\n", instance);
605 	}
606 
607 	ddi_report_dev(dip);
608 
609 	DMSG(0, "[%d] Attach completed\n", instance);
610 	return (status);
611 }
612 
613 static int
614 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
615 {
616 	int	status;
617 
618 	switch (cmd) {
619 	case DDI_ATTACH:
620 		if ((status = vdc_do_attach(dip)) != 0)
621 			(void) vdc_detach(dip, DDI_DETACH);
622 		return (status);
623 	case DDI_RESUME:
624 		/* nothing to do for this non-device */
625 		return (DDI_SUCCESS);
626 	default:
627 		return (DDI_FAILURE);
628 	}
629 }
630 
631 static int
632 vdc_do_ldc_init(vdc_t *vdc)
633 {
634 	int			status = 0;
635 	ldc_status_t		ldc_state;
636 	ldc_attr_t		ldc_attr;
637 	uint64_t		ldc_id = 0;
638 	dev_info_t		*dip = NULL;
639 
640 	ASSERT(vdc != NULL);
641 
642 	dip = vdc->dip;
643 	vdc->initialized |= VDC_LDC;
644 
645 	if ((status = vdc_get_ldc_id(dip, &ldc_id)) != 0) {
646 		cmn_err(CE_NOTE, "[%d] Failed to get LDC channel ID property",
647 				vdc->instance);
648 		return (EIO);
649 	}
650 	vdc->ldc_id = ldc_id;
651 
652 	ldc_attr.devclass = LDC_DEV_BLK;
653 	ldc_attr.instance = vdc->instance;
654 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
655 	ldc_attr.mtu = VD_LDC_MTU;
656 
657 	if ((vdc->initialized & VDC_LDC_INIT) == 0) {
658 		status = ldc_init(ldc_id, &ldc_attr, &vdc->ldc_handle);
659 		if (status != 0) {
660 			cmn_err(CE_NOTE, "[%d] ldc_init(chan %ld) returned %d",
661 					vdc->instance, ldc_id, status);
662 			return (status);
663 		}
664 		vdc->initialized |= VDC_LDC_INIT;
665 	}
666 	status = ldc_status(vdc->ldc_handle, &ldc_state);
667 	if (status != 0) {
668 		cmn_err(CE_NOTE, "[%d] Cannot discover LDC status [err=%d]",
669 				vdc->instance, status);
670 		return (status);
671 	}
672 	vdc->ldc_state = ldc_state;
673 
674 	if ((vdc->initialized & VDC_LDC_CB) == 0) {
675 		status = ldc_reg_callback(vdc->ldc_handle, vdc_handle_cb,
676 		    (caddr_t)vdc);
677 		if (status != 0) {
678 			cmn_err(CE_NOTE, "[%d] LDC callback reg. failed (%d)",
679 					vdc->instance, status);
680 			return (status);
681 		}
682 		vdc->initialized |= VDC_LDC_CB;
683 	}
684 
685 	vdc->initialized |= VDC_LDC;
686 
687 	/*
688 	 * At this stage we have initialised LDC, we will now try and open
689 	 * the connection.
690 	 */
691 	if (vdc->ldc_state == LDC_INIT) {
692 		status = ldc_open(vdc->ldc_handle);
693 		if (status != 0) {
694 			cmn_err(CE_NOTE, "[%d] ldc_open(chan %ld) returned %d",
695 					vdc->instance, vdc->ldc_id, status);
696 			return (status);
697 		}
698 		vdc->initialized |= VDC_LDC_OPEN;
699 	}
700 
701 	return (status);
702 }
703 
704 static int
705 vdc_start_ldc_connection(vdc_t *vdc)
706 {
707 	int		status = 0;
708 
709 	ASSERT(vdc != NULL);
710 
711 	mutex_enter(&vdc->lock);
712 
713 	if (vdc->ldc_state == LDC_UP) {
714 		DMSG(0, "[%d] LDC is already UP ..\n", vdc->instance);
715 		mutex_exit(&vdc->lock);
716 		return (0);
717 	}
718 
719 	status = vdc_do_ldc_up(vdc);
720 
721 	DMSG(0, "[%d] Finished bringing up LDC\n", vdc->instance);
722 
723 	mutex_exit(&vdc->lock);
724 
725 	return (status);
726 }
727 
728 static int
729 vdc_create_device_nodes_efi(vdc_t *vdc)
730 {
731 	ddi_remove_minor_node(vdc->dip, "h");
732 	ddi_remove_minor_node(vdc->dip, "h,raw");
733 
734 	if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK,
735 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
736 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
737 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'",
738 		    vdc->instance);
739 		return (EIO);
740 	}
741 
742 	/* if any device node is created we set this flag */
743 	vdc->initialized |= VDC_MINOR;
744 
745 	if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR,
746 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
747 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
748 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'",
749 		    vdc->instance);
750 		return (EIO);
751 	}
752 
753 	return (0);
754 }
755 
756 static int
757 vdc_create_device_nodes_vtoc(vdc_t *vdc)
758 {
759 	ddi_remove_minor_node(vdc->dip, "wd");
760 	ddi_remove_minor_node(vdc->dip, "wd,raw");
761 
762 	if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK,
763 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
764 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
765 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'",
766 		    vdc->instance);
767 		return (EIO);
768 	}
769 
770 	/* if any device node is created we set this flag */
771 	vdc->initialized |= VDC_MINOR;
772 
773 	if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR,
774 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
775 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
776 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'",
777 		    vdc->instance);
778 		return (EIO);
779 	}
780 
781 	return (0);
782 }
783 
784 /*
785  * Function:
786  *	vdc_create_device_nodes
787  *
788  * Description:
789  *	This function creates the block and character device nodes under
790  *	/devices along with the node properties. It is called as part of
791  *	the attach(9E) of the instance during the handshake with vds after
792  *	vds has sent the attributes to vdc.
793  *
794  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
795  *	of 2 is used in keeping with the Solaris convention that slice 2
796  *	refers to a whole disk. Slices start at 'a'
797  *
798  * Parameters:
799  *	vdc 		- soft state pointer
800  *
801  * Return Values
802  *	0		- Success
803  *	EIO		- Failed to create node
804  *	EINVAL		- Unknown type of disk exported
805  */
806 static int
807 vdc_create_device_nodes(vdc_t *vdc)
808 {
809 	char		name[sizeof ("s,raw")];
810 	dev_info_t	*dip = NULL;
811 	int		instance, status;
812 	int		num_slices = 1;
813 	int		i;
814 
815 	ASSERT(vdc != NULL);
816 
817 	instance = vdc->instance;
818 	dip = vdc->dip;
819 
820 	switch (vdc->vdisk_type) {
821 	case VD_DISK_TYPE_DISK:
822 		num_slices = V_NUMPAR;
823 		break;
824 	case VD_DISK_TYPE_SLICE:
825 		num_slices = 1;
826 		break;
827 	case VD_DISK_TYPE_UNK:
828 	default:
829 		return (EINVAL);
830 	}
831 
832 	/*
833 	 * Minor nodes are different for EFI disks: EFI disks do not have
834 	 * a minor node 'g' for the minor number corresponding to slice
835 	 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd'
836 	 * representing the whole disk.
837 	 */
838 	for (i = 0; i < num_slices; i++) {
839 
840 		if (i == VD_EFI_WD_SLICE) {
841 			if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
842 				status = vdc_create_device_nodes_efi(vdc);
843 			else
844 				status = vdc_create_device_nodes_vtoc(vdc);
845 			if (status != 0)
846 				return (status);
847 			continue;
848 		}
849 
850 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
851 		if (ddi_create_minor_node(dip, name, S_IFBLK,
852 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
853 			cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'",
854 				instance, name);
855 			return (EIO);
856 		}
857 
858 		/* if any device node is created we set this flag */
859 		vdc->initialized |= VDC_MINOR;
860 
861 		(void) snprintf(name, sizeof (name), "%c%s",
862 			'a' + i, ",raw");
863 		if (ddi_create_minor_node(dip, name, S_IFCHR,
864 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
865 			cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'",
866 				instance, name);
867 			return (EIO);
868 		}
869 	}
870 
871 	return (0);
872 }
873 
874 /*
875  * Function:
876  *	vdc_create_device_nodes_props
877  *
878  * Description:
879  *	This function creates the block and character device nodes under
880  *	/devices along with the node properties. It is called as part of
881  *	the attach(9E) of the instance during the handshake with vds after
882  *	vds has sent the attributes to vdc.
883  *
884  * Parameters:
885  *	vdc 		- soft state pointer
886  *
887  * Return Values
888  *	0		- Success
889  *	EIO		- Failed to create device node property
890  *	EINVAL		- Unknown type of disk exported
891  */
892 static int
893 vdc_create_device_nodes_props(vdc_t *vdc)
894 {
895 	dev_info_t	*dip = NULL;
896 	int		instance;
897 	int		num_slices = 1;
898 	int64_t		size = 0;
899 	dev_t		dev;
900 	int		rv;
901 	int		i;
902 
903 	ASSERT(vdc != NULL);
904 
905 	instance = vdc->instance;
906 	dip = vdc->dip;
907 
908 	if ((vdc->vtoc == NULL) || (vdc->vtoc->v_sanity != VTOC_SANE)) {
909 		cmn_err(CE_NOTE, "![%d] Could not create device node property."
910 				" No VTOC available", instance);
911 		return (ENXIO);
912 	}
913 
914 	switch (vdc->vdisk_type) {
915 	case VD_DISK_TYPE_DISK:
916 		num_slices = V_NUMPAR;
917 		break;
918 	case VD_DISK_TYPE_SLICE:
919 		num_slices = 1;
920 		break;
921 	case VD_DISK_TYPE_UNK:
922 	default:
923 		return (EINVAL);
924 	}
925 
926 	for (i = 0; i < num_slices; i++) {
927 		dev = makedevice(ddi_driver_major(dip),
928 			VD_MAKE_DEV(instance, i));
929 
930 		size = vdc->vtoc->v_part[i].p_size * vdc->vtoc->v_sectorsz;
931 		DMSG(0, "[%d] sz %ld (%ld Mb)  p_size %lx\n",
932 				instance, size, size / (1024 * 1024),
933 				vdc->vtoc->v_part[i].p_size);
934 
935 		rv = ddi_prop_update_int64(dev, dip, VDC_SIZE_PROP_NAME, size);
936 		if (rv != DDI_PROP_SUCCESS) {
937 			cmn_err(CE_NOTE, "[%d] Couldn't add '%s' prop of [%ld]",
938 				instance, VDC_SIZE_PROP_NAME, size);
939 			return (EIO);
940 		}
941 
942 		rv = ddi_prop_update_int64(dev, dip, VDC_NBLOCKS_PROP_NAME,
943 			lbtodb(size));
944 		if (rv != DDI_PROP_SUCCESS) {
945 			cmn_err(CE_NOTE, "[%d] Couldn't add '%s' prop [%llu]",
946 				instance, VDC_NBLOCKS_PROP_NAME, lbtodb(size));
947 			return (EIO);
948 		}
949 	}
950 
951 	return (0);
952 }
953 
954 static int
955 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
956 {
957 	_NOTE(ARGUNUSED(cred))
958 
959 	int		instance;
960 	vdc_t		*vdc;
961 
962 	ASSERT(dev != NULL);
963 	instance = SDUNIT(getminor(*dev));
964 
965 	DMSG(0, "[%d] minor = %d flag = %x, otyp = %x\n",
966 			instance, getminor(*dev), flag, otyp);
967 
968 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
969 		return (EINVAL);
970 
971 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
972 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
973 		return (ENXIO);
974 	}
975 
976 	/*
977 	 * Check to see if we can communicate with vds
978 	 */
979 	if (!vdc_is_able_to_tx_data(vdc, flag)) {
980 		DMSG(0, "[%d] Not ready to transmit data (flag=%x)\n",
981 				instance, flag);
982 		return (ENOLINK);
983 	}
984 
985 	mutex_enter(&vdc->lock);
986 	vdc->open++;
987 	mutex_exit(&vdc->lock);
988 
989 	return (0);
990 }
991 
992 static int
993 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
994 {
995 	_NOTE(ARGUNUSED(cred))
996 
997 	int	instance;
998 	vdc_t	*vdc;
999 
1000 	instance = SDUNIT(getminor(dev));
1001 
1002 	DMSG(0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp);
1003 
1004 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
1005 		return (EINVAL);
1006 
1007 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1008 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1009 		return (ENXIO);
1010 	}
1011 
1012 	/*
1013 	 * Check to see if we can communicate with vds
1014 	 */
1015 	if (!vdc_is_able_to_tx_data(vdc, 0)) {
1016 		DMSG(0, "[%d] Not ready to transmit data (flag=%x)\n",
1017 				instance, flag);
1018 		return (ETIMEDOUT);
1019 	}
1020 
1021 	if (vdc->dkio_flush_pending) {
1022 		DMSG(0, "[%d] Cannot detach: %d outstanding DKIO flushes\n",
1023 			instance, vdc->dkio_flush_pending);
1024 		return (EBUSY);
1025 	}
1026 
1027 	/*
1028 	 * Should not need the mutex here, since the framework should protect
1029 	 * against more opens on this device, but just in case.
1030 	 */
1031 	mutex_enter(&vdc->lock);
1032 	vdc->open--;
1033 	mutex_exit(&vdc->lock);
1034 
1035 	return (0);
1036 }
1037 
1038 static int
1039 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1040 {
1041 	_NOTE(ARGUNUSED(credp))
1042 	_NOTE(ARGUNUSED(rvalp))
1043 
1044 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode));
1045 }
1046 
1047 static int
1048 vdc_print(dev_t dev, char *str)
1049 {
1050 	cmn_err(CE_NOTE, "vdc%d:  %s", SDUNIT(getminor(dev)), str);
1051 	return (0);
1052 }
1053 
1054 static int
1055 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1056 {
1057 	buf_t	*buf;	/* BWRITE requests need to be in a buf_t structure */
1058 	int	rv;
1059 	size_t	nbytes = nblk * DEV_BSIZE;
1060 	int	instance = SDUNIT(getminor(dev));
1061 	vdc_t	*vdc = NULL;
1062 
1063 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1064 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1065 		return (ENXIO);
1066 	}
1067 
1068 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
1069 	bioinit(buf);
1070 	buf->b_un.b_addr = addr;
1071 	buf->b_bcount = nbytes;
1072 	buf->b_flags = B_BUSY | B_WRITE;
1073 	buf->b_dev = dev;
1074 	rv = vdc_populate_descriptor(vdc, (caddr_t)buf, nbytes,
1075 			VD_OP_BWRITE, blkno, SDPART(getminor(dev)));
1076 
1077 	/*
1078 	 * If the OS instance is panicking, the call above will ensure that
1079 	 * the descriptor is done before returning. This should always be
1080 	 * case when coming through this function but we check just in case
1081 	 * and wait if necessary for the vDisk server to ACK and trigger
1082 	 * the biodone.
1083 	 */
1084 	if (!ddi_in_panic())
1085 		rv = biowait(buf);
1086 
1087 	biofini(buf);
1088 	kmem_free(buf, sizeof (buf_t));
1089 
1090 	DMSG(1, "[%d] status=%d\n", instance, rv);
1091 
1092 	return (rv);
1093 }
1094 
1095 /* -------------------------------------------------------------------------- */
1096 
1097 /*
1098  * Disk access routines
1099  *
1100  */
1101 
1102 /*
1103  * vdc_strategy()
1104  *
1105  * Return Value:
1106  *	0:	As per strategy(9E), the strategy() function must return 0
1107  *		[ bioerror(9f) sets b_flags to the proper error code ]
1108  */
1109 static int
1110 vdc_strategy(struct buf *buf)
1111 {
1112 	int		rv = -1;
1113 	vdc_t		*vdc = NULL;
1114 	int		instance = SDUNIT(getminor(buf->b_edev));
1115 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
1116 
1117 	DMSG(2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p",
1118 	    instance, (buf->b_flags & B_READ) ? "Read" : "Write",
1119 	    buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr);
1120 
1121 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1122 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1123 		bioerror(buf, ENXIO);
1124 		biodone(buf);
1125 		return (0);
1126 	}
1127 
1128 	DTRACE_IO2(vstart, buf_t *, buf, vdc_t *, vdc);
1129 
1130 	if (!vdc_is_able_to_tx_data(vdc, O_NONBLOCK)) {
1131 		DMSG(0, "[%d] Not ready to transmit data\n", instance);
1132 		bioerror(buf, ENXIO);
1133 		biodone(buf);
1134 		return (0);
1135 	}
1136 	bp_mapin(buf);
1137 
1138 	rv = vdc_populate_descriptor(vdc, (caddr_t)buf, buf->b_bcount, op,
1139 			buf->b_lblkno, SDPART(getminor(buf->b_edev)));
1140 
1141 	/*
1142 	 * If the request was successfully sent, the strategy call returns and
1143 	 * the ACK handler calls the bioxxx functions when the vDisk server is
1144 	 * done.
1145 	 */
1146 	if (rv) {
1147 		DMSG(0, "[%d] Failed to read/write (err=%d)\n", instance, rv);
1148 		bioerror(buf, rv);
1149 		biodone(buf);
1150 	}
1151 
1152 	return (0);
1153 }
1154 
1155 
1156 static int
1157 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1158 {
1159 	_NOTE(ARGUNUSED(cred))
1160 
1161 	DMSG(1, "[%d] Entered", SDUNIT(getminor(dev)));
1162 	return (physio(vdc_strategy, NULL, dev, B_READ, minphys, uio));
1163 }
1164 
1165 static int
1166 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1167 {
1168 	_NOTE(ARGUNUSED(cred))
1169 
1170 	DMSG(1, "[%d] Entered", SDUNIT(getminor(dev)));
1171 	return (physio(vdc_strategy, NULL, dev, B_WRITE, minphys, uio));
1172 }
1173 
1174 static int
1175 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1176 {
1177 	_NOTE(ARGUNUSED(cred))
1178 
1179 	DMSG(1, "[%d] Entered", SDUNIT(getminor(dev)));
1180 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, minphys, aio));
1181 }
1182 
1183 static int
1184 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1185 {
1186 	_NOTE(ARGUNUSED(cred))
1187 
1188 	DMSG(1, "[%d] Entered", SDUNIT(getminor(dev)));
1189 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, minphys, aio));
1190 }
1191 
1192 
1193 /* -------------------------------------------------------------------------- */
1194 
1195 /*
1196  * Handshake support
1197  */
1198 
1199 /*
1200  * vdc_init_handshake_negotiation
1201  *
1202  * Description:
1203  *	This function is called to trigger the handshake negotiations between
1204  *	the client (vdc) and the server (vds). It may be called multiple times.
1205  *
1206  * Parameters:
1207  *	vdc - soft state pointer
1208  */
1209 static void
1210 vdc_init_handshake_negotiation(void *arg)
1211 {
1212 	vdc_t		*vdc = (vdc_t *)(void *)arg;
1213 	ldc_status_t	ldc_state;
1214 	vd_state_t	state;
1215 	int		status;
1216 
1217 	ASSERT(vdc != NULL);
1218 
1219 	DMSG(0, "[%d] Initializing vdc<->vds handshake\n", vdc->instance);
1220 
1221 	/* get LDC state */
1222 	status = ldc_status(vdc->ldc_handle, &ldc_state);
1223 	if (status != 0) {
1224 		cmn_err(CE_NOTE, "[%d] Couldn't get LDC status (err=%d)",
1225 				vdc->instance, status);
1226 		return;
1227 	}
1228 
1229 	/*
1230 	 * If the LDC connection is not UP we bring it up now and return.
1231 	 * The handshake will be started again when the callback is
1232 	 * triggered due to the UP event.
1233 	 */
1234 	if (ldc_state != LDC_UP) {
1235 		DMSG(0, "[%d] Triggering LDC_UP & returning\n", vdc->instance);
1236 		(void) vdc_do_ldc_up(vdc);
1237 		return;
1238 	}
1239 
1240 	mutex_enter(&vdc->lock);
1241 	/*
1242 	 * Do not continue if another thread has triggered a handshake which
1243 	 * has not been reset or detach() has stopped further handshakes.
1244 	 */
1245 	if (vdc->initialized & (VDC_HANDSHAKE | VDC_HANDSHAKE_STOP)) {
1246 		DMSG(0, "[%d] Negotiation not triggered. [init=%x]\n",
1247 			vdc->instance, vdc->initialized);
1248 		mutex_exit(&vdc->lock);
1249 		return;
1250 	}
1251 
1252 	if (vdc->hshake_cnt++ > vdc_retries) {
1253 		cmn_err(CE_NOTE, "[%d] Failed repeatedly to complete handshake"
1254 				"with vDisk server", vdc->instance);
1255 		mutex_exit(&vdc->lock);
1256 		return;
1257 	}
1258 
1259 	vdc->initialized |= VDC_HANDSHAKE;
1260 	vdc->ldc_state = ldc_state;
1261 
1262 	state = vdc->state;
1263 
1264 	if (state == VD_STATE_INIT) {
1265 		/*
1266 		 * Set the desired version parameter to the first entry in the
1267 		 * version array. If this specific version is not supported,
1268 		 * the response handling code will step down the version number
1269 		 * to the next array entry and deal with it accordingly.
1270 		 */
1271 		(void) vdc_init_ver_negotiation(vdc, vdc_version[0]);
1272 	} else if (state == VD_STATE_VER) {
1273 		(void) vdc_init_attr_negotiation(vdc);
1274 	} else if (state == VD_STATE_ATTR) {
1275 		(void) vdc_init_dring_negotiate(vdc);
1276 	} else if (state == VD_STATE_DATA) {
1277 		/*
1278 		 * nothing to do - we have already completed the negotiation
1279 		 * and we can transmit data when ready.
1280 		 */
1281 		DMSG(0, "[%d] Negotiation triggered after handshake completed",
1282 			vdc->instance);
1283 	}
1284 
1285 	mutex_exit(&vdc->lock);
1286 }
1287 
1288 /*
1289  * Function:
1290  *	vdc_init_ver_negotiation()
1291  *
1292  * Description:
1293  *
1294  * Arguments:
1295  *	vdc	- soft state pointer for this instance of the device driver.
1296  *
1297  * Return Code:
1298  *	0	- Success
1299  */
1300 static int
1301 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1302 {
1303 	vio_ver_msg_t	pkt;
1304 	size_t		msglen = sizeof (pkt);
1305 	int		status = -1;
1306 
1307 	ASSERT(vdc != NULL);
1308 	ASSERT(mutex_owned(&vdc->lock));
1309 
1310 	DMSG(0, "[%d] Entered.\n", vdc->instance);
1311 
1312 	/*
1313 	 * set the Session ID to a unique value
1314 	 * (the lower 32 bits of the clock tick)
1315 	 */
1316 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1317 	DMSG(0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id);
1318 
1319 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1320 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1321 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1322 	pkt.tag.vio_sid = vdc->session_id;
1323 	pkt.dev_class = VDEV_DISK;
1324 	pkt.ver_major = ver.major;
1325 	pkt.ver_minor = ver.minor;
1326 
1327 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1328 	DMSG(0, "[%d] Ver info sent (status = %d)\n", vdc->instance, status);
1329 
1330 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1331 		cmn_err(CE_NOTE, "[%d] Failed to send Ver negotiation info: "
1332 				"id(%lx) rv(%d) size(%ld)",
1333 				vdc->instance, vdc->ldc_handle,
1334 				status, msglen);
1335 		if (msglen != sizeof (vio_ver_msg_t))
1336 			status = ENOMSG;
1337 	}
1338 
1339 	return (status);
1340 }
1341 
1342 /*
1343  * Function:
1344  *	vdc_init_attr_negotiation()
1345  *
1346  * Description:
1347  *
1348  * Arguments:
1349  *	vdc	- soft state pointer for this instance of the device driver.
1350  *
1351  * Return Code:
1352  *	0	- Success
1353  */
1354 static int
1355 vdc_init_attr_negotiation(vdc_t *vdc)
1356 {
1357 	vd_attr_msg_t	pkt;
1358 	size_t		msglen = sizeof (pkt);
1359 	int		status;
1360 
1361 	ASSERT(vdc != NULL);
1362 	ASSERT(mutex_owned(&vdc->lock));
1363 
1364 	DMSG(0, "[%d] entered\n", vdc->instance);
1365 
1366 	/* fill in tag */
1367 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1368 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1369 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1370 	pkt.tag.vio_sid = vdc->session_id;
1371 	/* fill in payload */
1372 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1373 	pkt.vdisk_block_size = vdc->block_size;
1374 	pkt.xfer_mode = VIO_DRING_MODE;
1375 	pkt.operations = 0;	/* server will set bits of valid operations */
1376 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1377 	pkt.vdisk_size = 0;	/* server will set to valid size */
1378 
1379 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1380 	DMSG(0, "[%d] Attr info sent (status = %d)\n", vdc->instance, status);
1381 
1382 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1383 		cmn_err(CE_NOTE, "[%d] Failed to send Attr negotiation info: "
1384 				"id(%lx) rv(%d) size(%ld)",
1385 				vdc->instance, vdc->ldc_handle,
1386 				status, msglen);
1387 		if (msglen != sizeof (vio_ver_msg_t))
1388 			status = ENOMSG;
1389 	}
1390 
1391 	return (status);
1392 }
1393 
1394 /*
1395  * Function:
1396  *	vdc_init_dring_negotiate()
1397  *
1398  * Description:
1399  *
1400  * Arguments:
1401  *	vdc	- soft state pointer for this instance of the device driver.
1402  *
1403  * Return Code:
1404  *	0	- Success
1405  */
1406 static int
1407 vdc_init_dring_negotiate(vdc_t *vdc)
1408 {
1409 	vio_dring_reg_msg_t	pkt;
1410 	size_t			msglen = sizeof (pkt);
1411 	int			status = -1;
1412 
1413 	ASSERT(vdc != NULL);
1414 	ASSERT(mutex_owned(&vdc->lock));
1415 
1416 	status = vdc_init_descriptor_ring(vdc);
1417 	if (status != 0) {
1418 		cmn_err(CE_CONT, "[%d] Failed to init DRing (status = %d)\n",
1419 				vdc->instance, status);
1420 		vdc_destroy_descriptor_ring(vdc);
1421 		vdc_reset_connection(vdc, B_TRUE);
1422 		return (status);
1423 	}
1424 	DMSG(0, "[%d] Init of descriptor ring completed (status = %d)\n",
1425 			vdc->instance, status);
1426 
1427 	/* fill in tag */
1428 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1429 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1430 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1431 	pkt.tag.vio_sid = vdc->session_id;
1432 	/* fill in payload */
1433 	pkt.dring_ident = 0;
1434 	pkt.num_descriptors = vdc->dring_len;
1435 	pkt.descriptor_size = vdc->dring_entry_size;
1436 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1437 	pkt.ncookies = vdc->dring_cookie_count;
1438 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1439 
1440 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1441 	if (status != 0) {
1442 		cmn_err(CE_NOTE, "[%d] Failed to register DRing (err = %d)",
1443 				vdc->instance, status);
1444 		vdc_reset_connection(vdc, B_TRUE);
1445 	}
1446 
1447 	return (status);
1448 }
1449 
1450 
1451 /* -------------------------------------------------------------------------- */
1452 
1453 /*
1454  * LDC helper routines
1455  */
1456 
1457 /*
1458  * Function:
1459  *	vdc_send()
1460  *
1461  * Description:
1462  *	The function encapsulates the call to write a message using LDC.
1463  *	If LDC indicates that the call failed due to the queue being full,
1464  *	we retry the ldc_write() [ up to 'vdc_retries' time ], otherwise
1465  *	we return the error returned by LDC.
1466  *
1467  * Arguments:
1468  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
1469  *	pkt		- address of LDC message to be sent
1470  *	msglen		- the size of the message being sent. When the function
1471  *			  returns, this contains the number of bytes written.
1472  *
1473  * Return Code:
1474  *	0		- Success.
1475  *	EINVAL		- pkt or msglen were NULL
1476  *	ECONNRESET	- The connection was not up.
1477  *	EWOULDBLOCK	- LDC queue is full
1478  *	xxx		- other error codes returned by ldc_write
1479  */
1480 static int
1481 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
1482 {
1483 	size_t	size = 0;
1484 	int	retries = 0;
1485 	int	status = 0;
1486 
1487 	ASSERT(vdc != NULL);
1488 	ASSERT(mutex_owned(&vdc->lock));
1489 	ASSERT(msglen != NULL);
1490 	ASSERT(*msglen != 0);
1491 
1492 	do {
1493 		size = *msglen;
1494 		status = ldc_write(vdc->ldc_handle, pkt, &size);
1495 		if (status == EWOULDBLOCK)
1496 			delay(vdc_hz_timeout_ldc);
1497 	} while (status == EWOULDBLOCK && retries++ < vdc_retries);
1498 
1499 	/* if LDC had serious issues --- reset vdc state */
1500 	if (status == EIO || status == ECONNRESET) {
1501 		vdc_reset_connection(vdc, B_TRUE);
1502 	}
1503 
1504 	/* return the last size written */
1505 	*msglen = size;
1506 
1507 	return (status);
1508 }
1509 
1510 /*
1511  * Function:
1512  *	vdc_get_ldc_id()
1513  *
1514  * Description:
1515  *	This function gets the 'ldc-id' for this particular instance of vdc.
1516  *	The id returned is the guest domain channel endpoint LDC uses for
1517  *	communication with vds.
1518  *
1519  * Arguments:
1520  *	dip	- dev info pointer for this instance of the device driver.
1521  *	ldc_id	- pointer to variable used to return the 'ldc-id' found.
1522  *
1523  * Return Code:
1524  *	0	- Success.
1525  *	ENOENT	- Expected node or property did not exist.
1526  *	ENXIO	- Unexpected error communicating with MD framework
1527  */
1528 static int
1529 vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id)
1530 {
1531 	int		status = ENOENT;
1532 	char		*node_name = NULL;
1533 	md_t		*mdp = NULL;
1534 	int		num_nodes;
1535 	int		num_vdevs;
1536 	int		num_chans;
1537 	mde_cookie_t	rootnode;
1538 	mde_cookie_t	*listp = NULL;
1539 	mde_cookie_t	*chanp = NULL;
1540 	boolean_t	found_inst = B_FALSE;
1541 	int		listsz;
1542 	int		idx;
1543 	uint64_t	md_inst;
1544 	int		obp_inst;
1545 	int		instance = ddi_get_instance(dip);
1546 
1547 	ASSERT(ldc_id != NULL);
1548 	*ldc_id = 0;
1549 
1550 	/*
1551 	 * Get the OBP instance number for comparison with the MD instance
1552 	 *
1553 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
1554 	 * notion of "instance", or unique identifier, for that node; OBP
1555 	 * stores the value of the "cfg-handle" MD property as the value of
1556 	 * the "reg" property on the node in the device tree it builds from
1557 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
1558 	 * "reg" property value to uniquely identify this device instance.
1559 	 * If the "reg" property cannot be found, the device tree state is
1560 	 * presumably so broken that there is no point in continuing.
1561 	 */
1562 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
1563 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
1564 		return (ENOENT);
1565 	}
1566 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1567 			OBP_REG, -1);
1568 	DMSG(1, "[%d] OBP inst=%d\n", instance, obp_inst);
1569 
1570 	/*
1571 	 * We now walk the MD nodes and if an instance of a vdc node matches
1572 	 * the instance got from OBP we get the ldc-id property.
1573 	 */
1574 	if ((mdp = md_get_handle()) == NULL) {
1575 		cmn_err(CE_WARN, "unable to init machine description");
1576 		return (ENXIO);
1577 	}
1578 
1579 	num_nodes = md_node_count(mdp);
1580 	ASSERT(num_nodes > 0);
1581 
1582 	listsz = num_nodes * sizeof (mde_cookie_t);
1583 
1584 	/* allocate memory for nodes */
1585 	listp = kmem_zalloc(listsz, KM_SLEEP);
1586 	chanp = kmem_zalloc(listsz, KM_SLEEP);
1587 
1588 	rootnode = md_root_node(mdp);
1589 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
1590 
1591 	/*
1592 	 * Search for all the virtual devices, we will then check to see which
1593 	 * ones are disk nodes.
1594 	 */
1595 	num_vdevs = md_scan_dag(mdp, rootnode,
1596 			md_find_name(mdp, VDC_MD_VDEV_NAME),
1597 			md_find_name(mdp, "fwd"), listp);
1598 
1599 	if (num_vdevs <= 0) {
1600 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
1601 		status = ENOENT;
1602 		goto done;
1603 	}
1604 
1605 	DMSG(1, "[%d] num_vdevs=%d\n", instance, num_vdevs);
1606 	for (idx = 0; idx < num_vdevs; idx++) {
1607 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
1608 		if ((status != 0) || (node_name == NULL)) {
1609 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
1610 					": err %d", VDC_MD_VDEV_NAME, status);
1611 			continue;
1612 		}
1613 
1614 		DMSG(1, "[%d] Found node '%s'\n", instance, node_name);
1615 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
1616 			status = md_get_prop_val(mdp, listp[idx],
1617 					VDC_MD_CFG_HDL, &md_inst);
1618 			DMSG(1, "[%d] vdc inst in MD=%lx\n", instance, md_inst);
1619 			if ((status == 0) && (md_inst == obp_inst)) {
1620 				found_inst = B_TRUE;
1621 				break;
1622 			}
1623 		}
1624 	}
1625 
1626 	if (!found_inst) {
1627 		cmn_err(CE_NOTE, "Unable to find correct '%s' node",
1628 				VDC_MD_DISK_NAME);
1629 		status = ENOENT;
1630 		goto done;
1631 	}
1632 	DMSG(0, "[%d] MD inst=%lx\n", instance, md_inst);
1633 
1634 	/* get the channels for this node */
1635 	num_chans = md_scan_dag(mdp, listp[idx],
1636 			md_find_name(mdp, VDC_MD_CHAN_NAME),
1637 			md_find_name(mdp, "fwd"), chanp);
1638 
1639 	/* expecting at least one channel */
1640 	if (num_chans <= 0) {
1641 		cmn_err(CE_NOTE, "No '%s' node for '%s' port",
1642 				VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
1643 		status = ENOENT;
1644 		goto done;
1645 
1646 	} else if (num_chans != 1) {
1647 		DMSG(0, "[%d] Expected 1 '%s' node for '%s' port, found %d\n",
1648 			instance, VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
1649 			num_chans);
1650 	}
1651 
1652 	/*
1653 	 * We use the first channel found (index 0), irrespective of how
1654 	 * many are there in total.
1655 	 */
1656 	if (md_get_prop_val(mdp, chanp[0], VDC_ID_PROP, ldc_id) != 0) {
1657 		cmn_err(CE_NOTE, "Channel '%s' property not found",
1658 				VDC_ID_PROP);
1659 		status = ENOENT;
1660 	}
1661 
1662 	DMSG(0, "[%d] LDC id is 0x%lx\n", instance, *ldc_id);
1663 
1664 done:
1665 	if (chanp)
1666 		kmem_free(chanp, listsz);
1667 	if (listp)
1668 		kmem_free(listp, listsz);
1669 
1670 	(void) md_fini_handle(mdp);
1671 
1672 	return (status);
1673 }
1674 
1675 static int
1676 vdc_do_ldc_up(vdc_t *vdc)
1677 {
1678 	int	status;
1679 
1680 	DMSG(0, "[%d] Bringing up channel %lx\n", vdc->instance, vdc->ldc_id);
1681 
1682 	if ((status = ldc_up(vdc->ldc_handle)) != 0) {
1683 		switch (status) {
1684 		case ECONNREFUSED:	/* listener not ready at other end */
1685 			DMSG(0, "[%d] ldc_up(%lx,...) return %d\n",
1686 					vdc->instance, vdc->ldc_id, status);
1687 			status = 0;
1688 			break;
1689 		default:
1690 			cmn_err(CE_NOTE, "[%d] Failed to bring up LDC: "
1691 					"channel=%ld, err=%d",
1692 					vdc->instance, vdc->ldc_id, status);
1693 		}
1694 	}
1695 
1696 	return (status);
1697 }
1698 
1699 
1700 /*
1701  * vdc_is_able_to_tx_data()
1702  *
1703  * Description:
1704  *	This function checks if we are able to send data to the
1705  *	vDisk server (vds). The LDC connection needs to be up and
1706  *	vdc & vds need to have completed the handshake negotiation.
1707  *
1708  * Parameters:
1709  *	vdc 		- soft state pointer
1710  *	flag		- flag to indicate if we can block or not
1711  *			  [ If O_NONBLOCK or O_NDELAY (which are defined in
1712  *			    open(2)) are set then do not block)
1713  *
1714  * Return Values
1715  *	B_TRUE		- can talk to vds
1716  *	B_FALSE		- unable to talk to vds
1717  */
1718 static boolean_t
1719 vdc_is_able_to_tx_data(vdc_t *vdc, int flag)
1720 {
1721 	vd_state_t	state;
1722 	uint32_t	ldc_state;
1723 	uint_t		retries = 0;
1724 	int		rv = -1;
1725 
1726 	ASSERT(vdc != NULL);
1727 
1728 	mutex_enter(&vdc->lock);
1729 	state = vdc->state;
1730 	ldc_state = vdc->ldc_state;
1731 	mutex_exit(&vdc->lock);
1732 
1733 	if ((state == VD_STATE_DATA) && (ldc_state == LDC_UP))
1734 		return (B_TRUE);
1735 
1736 	if ((flag & O_NONBLOCK) || (flag & O_NDELAY)) {
1737 		DMSG(0, "[%d] Not ready to tx - state %d LDC state %d\n",
1738 			vdc->instance, state, ldc_state);
1739 		return (B_FALSE);
1740 	}
1741 
1742 	/*
1743 	 * We want to check and see if any negotiations triggered earlier
1744 	 * have succeeded. We are prepared to wait a little while in case
1745 	 * they are still in progress.
1746 	 */
1747 	mutex_enter(&vdc->lock);
1748 	while ((vdc->ldc_state != LDC_UP) || (vdc->state != VD_STATE_DATA)) {
1749 		DMSG(0, "[%d] Waiting for connection. (state %d : LDC %d)\n",
1750 			vdc->instance, vdc->state, vdc->ldc_state);
1751 
1752 		rv = cv_timedwait(&vdc->cv, &vdc->lock,
1753 			VD_GET_TIMEOUT_HZ(vdc_hz_timeout, retries));
1754 
1755 		/*
1756 		 * An rv of -1 indicates that we timed out without the LDC
1757 		 * state changing so it looks like the other side (vdc) is
1758 		 * not yet ready/responding.
1759 		 *
1760 		 * Any other value of rv indicates that the LDC triggered an
1761 		 * interrupt so we just loop again, check the handshake state
1762 		 * and keep waiting if necessary.
1763 		 */
1764 		if (rv == -1) {
1765 			if (retries >= vdc_retries) {
1766 				DMSG(0, "[%d] handshake wait timed out\n",
1767 						vdc->instance);
1768 				mutex_exit(&vdc->lock);
1769 				return (B_FALSE);
1770 			} else {
1771 				DMSG(1, "[%d] Handshake retry #%d timed out\n",
1772 					vdc->instance, retries);
1773 				retries++;
1774 			}
1775 		}
1776 	}
1777 
1778 	ASSERT(vdc->ldc_state == LDC_UP);
1779 	ASSERT(vdc->state == VD_STATE_DATA);
1780 
1781 	mutex_exit(&vdc->lock);
1782 
1783 	return (B_TRUE);
1784 }
1785 
1786 
1787 /*
1788  * Function:
1789  *	vdc_terminate_ldc()
1790  *
1791  * Description:
1792  *
1793  * Arguments:
1794  *	vdc	- soft state pointer for this instance of the device driver.
1795  *
1796  * Return Code:
1797  *	None
1798  */
1799 static void
1800 vdc_terminate_ldc(vdc_t *vdc)
1801 {
1802 	int	instance = ddi_get_instance(vdc->dip);
1803 
1804 	ASSERT(vdc != NULL);
1805 	ASSERT(mutex_owned(&vdc->lock));
1806 
1807 	DMSG(0, "[%d] initialized=%x\n", instance, vdc->initialized);
1808 
1809 	if (vdc->initialized & VDC_LDC_OPEN) {
1810 		DMSG(0, "[%d] ldc_close()\n", instance);
1811 		(void) ldc_close(vdc->ldc_handle);
1812 	}
1813 	if (vdc->initialized & VDC_LDC_CB) {
1814 		DMSG(0, "[%d] ldc_unreg_callback()\n", instance);
1815 		(void) ldc_unreg_callback(vdc->ldc_handle);
1816 	}
1817 	if (vdc->initialized & VDC_LDC) {
1818 		DMSG(0, "[%d] ldc_fini()\n", instance);
1819 		(void) ldc_fini(vdc->ldc_handle);
1820 		vdc->ldc_handle = NULL;
1821 	}
1822 
1823 	vdc->initialized &= ~(VDC_LDC | VDC_LDC_CB | VDC_LDC_OPEN);
1824 }
1825 
1826 /*
1827  * Function:
1828  *	vdc_reset_connection()
1829  *
1830  * Description:
1831  *
1832  * Arguments:
1833  *	vdc	- soft state pointer for this instance of the device driver.
1834  *	reset_ldc - Flag whether or not to reset the LDC connection also.
1835  *
1836  * Return Code:
1837  *	None
1838  */
1839 static void
1840 vdc_reset_connection(vdc_t *vdc, boolean_t reset_ldc)
1841 {
1842 	int	status;
1843 
1844 	ASSERT(vdc != NULL);
1845 	ASSERT(mutex_owned(&vdc->lock));
1846 
1847 	cmn_err(CE_CONT, "?[%d] Resetting connection to vDisk server\n",
1848 			vdc->instance);
1849 
1850 	vdc->state = VD_STATE_INIT;
1851 
1852 	if (reset_ldc) {
1853 		status = ldc_down(vdc->ldc_handle);
1854 		DMSG(0, "[%d]  ldc_down() = %d\n", vdc->instance, status);
1855 	}
1856 
1857 	vdc->initialized &= ~VDC_HANDSHAKE;
1858 	DMSG(0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized);
1859 }
1860 
1861 /* -------------------------------------------------------------------------- */
1862 
1863 /*
1864  * Descriptor Ring helper routines
1865  */
1866 
1867 /*
1868  * Function:
1869  *	vdc_init_descriptor_ring()
1870  *
1871  * Description:
1872  *
1873  * Arguments:
1874  *	vdc	- soft state pointer for this instance of the device driver.
1875  *
1876  * Return Code:
1877  *	0	- Success
1878  */
1879 static int
1880 vdc_init_descriptor_ring(vdc_t *vdc)
1881 {
1882 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
1883 	int	status = 0;
1884 	int	i;
1885 
1886 	DMSG(0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized);
1887 
1888 	ASSERT(vdc != NULL);
1889 	ASSERT(mutex_owned(&vdc->lock));
1890 	ASSERT(vdc->ldc_handle != NULL);
1891 
1892 	/* ensure we have enough room to store max sized block */
1893 	ASSERT(maxphys <= VD_MAX_BLOCK_SIZE);
1894 
1895 	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
1896 		DMSG(0, "[%d] ldc_mem_dring_create\n", vdc->instance);
1897 		/*
1898 		 * Calculate the maximum block size we can transmit using one
1899 		 * Descriptor Ring entry from the attributes returned by the
1900 		 * vDisk server. This is subject to a minimum of 'maxphys'
1901 		 * as we do not have the capability to split requests over
1902 		 * multiple DRing entries.
1903 		 */
1904 		if ((vdc->max_xfer_sz * vdc->block_size) < maxphys) {
1905 			DMSG(0, "[%d] using minimum DRing size\n",
1906 					vdc->instance);
1907 			vdc->dring_max_cookies = maxphys / PAGESIZE;
1908 		} else {
1909 			vdc->dring_max_cookies =
1910 				(vdc->max_xfer_sz * vdc->block_size) / PAGESIZE;
1911 		}
1912 		vdc->dring_entry_size = (sizeof (vd_dring_entry_t) +
1913 				(sizeof (ldc_mem_cookie_t) *
1914 					(vdc->dring_max_cookies - 1)));
1915 		vdc->dring_len = VD_DRING_LEN;
1916 
1917 		status = ldc_mem_dring_create(vdc->dring_len,
1918 				vdc->dring_entry_size, &vdc->ldc_dring_hdl);
1919 		if ((vdc->ldc_dring_hdl == NULL) || (status != 0)) {
1920 			cmn_err(CE_NOTE, "[%d] Descriptor ring creation failed",
1921 					vdc->instance);
1922 			return (status);
1923 		}
1924 		vdc->initialized |= VDC_DRING_INIT;
1925 	}
1926 
1927 	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
1928 		DMSG(0, "[%d] ldc_mem_dring_bind\n", vdc->instance);
1929 		vdc->dring_cookie =
1930 			kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
1931 
1932 		status = ldc_mem_dring_bind(vdc->ldc_handle, vdc->ldc_dring_hdl,
1933 				LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW,
1934 				&vdc->dring_cookie[0],
1935 				&vdc->dring_cookie_count);
1936 		if (status != 0) {
1937 			cmn_err(CE_NOTE, "[%d] Failed to bind descriptor ring "
1938 				"(%lx) to channel (%lx)\n", vdc->instance,
1939 				vdc->ldc_dring_hdl, vdc->ldc_handle);
1940 			return (status);
1941 		}
1942 		ASSERT(vdc->dring_cookie_count == 1);
1943 		vdc->initialized |= VDC_DRING_BOUND;
1944 	}
1945 
1946 	status = ldc_mem_dring_info(vdc->ldc_dring_hdl, &vdc->dring_mem_info);
1947 	if (status != 0) {
1948 		DMSG(0, "[%d] Failed to get info for descriptor ring (%lx)\n",
1949 			vdc->instance, vdc->ldc_dring_hdl);
1950 		return (status);
1951 	}
1952 
1953 	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
1954 		DMSG(0, "[%d] local dring\n", vdc->instance);
1955 
1956 		/* Allocate the local copy of this dring */
1957 		vdc->local_dring =
1958 			kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t),
1959 						KM_SLEEP);
1960 		vdc->initialized |= VDC_DRING_LOCAL;
1961 	}
1962 
1963 	/*
1964 	 * Mark all DRing entries as free and initialize the private
1965 	 * descriptor's memory handles. If any entry is initialized,
1966 	 * we need to free it later so we set the bit in 'initialized'
1967 	 * at the start.
1968 	 */
1969 	vdc->initialized |= VDC_DRING_ENTRY;
1970 	for (i = 0; i < vdc->dring_len; i++) {
1971 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
1972 		dep->hdr.dstate = VIO_DESC_FREE;
1973 
1974 		status = ldc_mem_alloc_handle(vdc->ldc_handle,
1975 				&vdc->local_dring[i].desc_mhdl);
1976 		if (status != 0) {
1977 			cmn_err(CE_NOTE, "![%d] Failed to alloc mem handle for"
1978 					" descriptor %d", vdc->instance, i);
1979 			return (status);
1980 		}
1981 		vdc->local_dring[i].flags = VIO_DESC_FREE;
1982 		vdc->local_dring[i].dep = dep;
1983 
1984 		mutex_init(&vdc->local_dring[i].lock, NULL, MUTEX_DRIVER, NULL);
1985 		cv_init(&vdc->local_dring[i].cv, NULL, CV_DRIVER, NULL);
1986 	}
1987 
1988 	/*
1989 	 * We init the index of the last DRing entry used. Since the code to
1990 	 * get the next available entry increments it before selecting one,
1991 	 * we set it to the last DRing entry so that it wraps around to zero
1992 	 * for the 1st entry to be used.
1993 	 */
1994 	vdc->dring_curr_idx = vdc->dring_len - 1;
1995 
1996 	vdc->dring_notify_server = B_TRUE;
1997 
1998 	return (status);
1999 }
2000 
2001 /*
2002  * Function:
2003  *	vdc_destroy_descriptor_ring()
2004  *
2005  * Description:
2006  *
2007  * Arguments:
2008  *	vdc	- soft state pointer for this instance of the device driver.
2009  *
2010  * Return Code:
2011  *	None
2012  */
2013 static void
2014 vdc_destroy_descriptor_ring(vdc_t *vdc)
2015 {
2016 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2017 	ldc_mem_handle_t	mhdl = NULL;
2018 	int			status = -1;
2019 	int			i;	/* loop */
2020 
2021 	ASSERT(vdc != NULL);
2022 	ASSERT(mutex_owned(&vdc->lock));
2023 	ASSERT(vdc->state == VD_STATE_INIT);
2024 
2025 	DMSG(0, "[%d] Entered\n", vdc->instance);
2026 
2027 	if (vdc->initialized & VDC_DRING_ENTRY) {
2028 		DMSG(0, "[%d] Removing Local DRing entries\n", vdc->instance);
2029 		for (i = 0; i < vdc->dring_len; i++) {
2030 			ldep = &vdc->local_dring[i];
2031 			mhdl = ldep->desc_mhdl;
2032 
2033 			if (mhdl == NULL)
2034 				continue;
2035 
2036 			(void) ldc_mem_free_handle(mhdl);
2037 			mutex_destroy(&ldep->lock);
2038 			cv_destroy(&ldep->cv);
2039 		}
2040 		vdc->initialized &= ~VDC_DRING_ENTRY;
2041 	}
2042 
2043 	if (vdc->initialized & VDC_DRING_LOCAL) {
2044 		DMSG(0, "[%d] Freeing Local DRing\n", vdc->instance);
2045 		kmem_free(vdc->local_dring,
2046 				vdc->dring_len * sizeof (vdc_local_desc_t));
2047 		vdc->initialized &= ~VDC_DRING_LOCAL;
2048 	}
2049 
2050 	if (vdc->initialized & VDC_DRING_BOUND) {
2051 		DMSG(0, "[%d] Unbinding DRing\n", vdc->instance);
2052 		status = ldc_mem_dring_unbind(vdc->ldc_dring_hdl);
2053 		if (status == 0) {
2054 			vdc->initialized &= ~VDC_DRING_BOUND;
2055 		} else {
2056 			cmn_err(CE_NOTE, "[%d] Error %d unbinding DRing %lx",
2057 				vdc->instance, status, vdc->ldc_dring_hdl);
2058 		}
2059 	}
2060 
2061 	if (vdc->initialized & VDC_DRING_INIT) {
2062 		DMSG(0, "[%d] Destroying DRing\n", vdc->instance);
2063 		status = ldc_mem_dring_destroy(vdc->ldc_dring_hdl);
2064 		if (status == 0) {
2065 			vdc->ldc_dring_hdl = NULL;
2066 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
2067 			vdc->initialized &= ~VDC_DRING_INIT;
2068 		} else {
2069 			cmn_err(CE_NOTE, "[%d] Error %d destroying DRing (%lx)",
2070 				vdc->instance, status, vdc->ldc_dring_hdl);
2071 		}
2072 	}
2073 }
2074 
2075 /*
2076  * vdc_get_next_dring_entry_idx()
2077  *
2078  * Description:
2079  *	This function gets the index of the next Descriptor Ring entry available
2080  *	If the ring is full, it will back off and wait for the next entry to be
2081  *	freed (the ACK handler will signal).
2082  *
2083  * Return Value:
2084  *	0 <= rv < vdc->dring_len		Next available slot
2085  *	-1 				DRing is full
2086  */
2087 static int
2088 vdc_get_next_dring_entry_idx(vdc_t *vdc, uint_t num_slots_needed)
2089 {
2090 	_NOTE(ARGUNUSED(num_slots_needed))
2091 
2092 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry Pointer */
2093 	vdc_local_desc_t	*ldep = NULL;	/* Local DRing Entry Pointer */
2094 	int			idx = -1;
2095 
2096 	ASSERT(vdc != NULL);
2097 	ASSERT(vdc->dring_len == vdc->dring_len);
2098 	ASSERT(vdc->dring_curr_idx >= 0);
2099 	ASSERT(vdc->dring_curr_idx < vdc->dring_len);
2100 	ASSERT(mutex_owned(&vdc->dring_lock));
2101 
2102 	/* pick the next descriptor after the last one used */
2103 	idx = (vdc->dring_curr_idx + 1) % vdc->dring_len;
2104 	ldep = &vdc->local_dring[idx];
2105 	ASSERT(ldep != NULL);
2106 	dep = ldep->dep;
2107 	ASSERT(dep != NULL);
2108 
2109 	mutex_enter(&ldep->lock);
2110 	if (dep->hdr.dstate == VIO_DESC_FREE) {
2111 		vdc->dring_curr_idx = idx;
2112 	} else {
2113 		DTRACE_PROBE(full);
2114 		(void) cv_timedwait(&ldep->cv, &ldep->lock,
2115 					VD_GET_TIMEOUT_HZ(vdc_hz_timeout, 1));
2116 		if (dep->hdr.dstate == VIO_DESC_FREE) {
2117 			vdc->dring_curr_idx = idx;
2118 		} else {
2119 			DMSG(0, "[%d] Entry %d unavailable still in state %d\n",
2120 					vdc->instance, idx, dep->hdr.dstate);
2121 			idx = -1; /* indicate that the ring is full */
2122 		}
2123 	}
2124 	mutex_exit(&ldep->lock);
2125 
2126 	return (idx);
2127 }
2128 
2129 /*
2130  * Function:
2131  *	vdc_populate_descriptor
2132  *
2133  * Description:
2134  *	This routine writes the data to be transmitted to vds into the
2135  *	descriptor, notifies vds that the ring has been updated and
2136  *	then waits for the request to be processed.
2137  *
2138  * Arguments:
2139  *	vdc	- the soft state pointer
2140  *	addr	- address of structure to be written. In the case of block
2141  *		  reads and writes this structure will be a buf_t and the
2142  *		  address of the data to be written will be in the b_un.b_addr
2143  *		  field. Otherwise the value of addr will be the address
2144  *		  to be written.
2145  *	nbytes	- number of bytes to read/write
2146  *	operation - operation we want vds to perform (VD_OP_XXX)
2147  *	arg	- parameter to be sent to server (depends on VD_OP_XXX type)
2148  *			. mode for ioctl(9e)
2149  *			. LP64 diskaddr_t (block I/O)
2150  *	slice	- the disk slice this request is for
2151  *
2152  * Return Codes:
2153  *	0
2154  *	EAGAIN
2155  *		EFAULT
2156  *		ENXIO
2157  *		EIO
2158  */
2159 static int
2160 vdc_populate_descriptor(vdc_t *vdc, caddr_t addr, size_t nbytes, int operation,
2161 				uint64_t arg, uint64_t slice)
2162 {
2163 	vdc_local_desc_t *local_dep = NULL;	/* Local Dring Entry Pointer */
2164 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2165 	int			idx = 0;	/* Index of DRing entry used */
2166 	vio_dring_msg_t		dmsg;
2167 	size_t			msglen = sizeof (dmsg);
2168 	int			retries = 0;
2169 	int			rv;
2170 
2171 	ASSERT(vdc != NULL);
2172 	ASSERT(slice < V_NUMPAR);
2173 
2174 	/*
2175 	 * Get next available DRing entry.
2176 	 */
2177 	mutex_enter(&vdc->dring_lock);
2178 	idx = vdc_get_next_dring_entry_idx(vdc, 1);
2179 	if (idx == -1) {
2180 		mutex_exit(&vdc->dring_lock);
2181 		DMSG(0, "[%d] no descriptor ring entry avail, last seq=%ld\n",
2182 				vdc->instance, vdc->seq_num - 1);
2183 
2184 		/*
2185 		 * Since strategy should not block we don't wait for the DRing
2186 		 * to empty and instead return
2187 		 */
2188 		return (EAGAIN);
2189 	}
2190 
2191 	ASSERT(idx < vdc->dring_len);
2192 	local_dep = &vdc->local_dring[idx];
2193 	dep = local_dep->dep;
2194 	ASSERT(dep != NULL);
2195 
2196 	/*
2197 	 * We now get the lock for this descriptor before dropping the overall
2198 	 * DRing lock. This prevents a race condition where another vdc thread
2199 	 * could grab the descriptor we selected.
2200 	 */
2201 	ASSERT(MUTEX_NOT_HELD(&local_dep->lock));
2202 	mutex_enter(&local_dep->lock);
2203 	mutex_exit(&vdc->dring_lock);
2204 
2205 	switch (operation) {
2206 	case VD_OP_BREAD:
2207 	case VD_OP_BWRITE:
2208 		local_dep->buf = (struct buf *)addr;
2209 		local_dep->addr = local_dep->buf->b_un.b_addr;
2210 		DMSG(2, "[%d] buf=%p, block=%lx, nbytes=%lu\n",
2211 				vdc->instance, (void *)addr, arg, nbytes);
2212 		dep->payload.addr = (diskaddr_t)arg;
2213 		rv = vdc_populate_mem_hdl(vdc, idx, local_dep->addr,
2214 						nbytes, operation);
2215 		break;
2216 
2217 	case VD_OP_GET_WCE:
2218 	case VD_OP_SET_WCE:
2219 	case VD_OP_GET_VTOC:
2220 	case VD_OP_SET_VTOC:
2221 	case VD_OP_GET_DISKGEOM:
2222 	case VD_OP_SET_DISKGEOM:
2223 	case VD_OP_SCSICMD:
2224 	case VD_OP_GET_DEVID:
2225 	case VD_OP_GET_EFI:
2226 	case VD_OP_SET_EFI:
2227 		local_dep->addr = addr;
2228 		if (nbytes > 0) {
2229 			rv = vdc_populate_mem_hdl(vdc, idx, addr, nbytes,
2230 							operation);
2231 		}
2232 		break;
2233 
2234 	case VD_OP_FLUSH:
2235 		rv = 0;		/* nothing to bind */
2236 		break;
2237 
2238 	default:
2239 		cmn_err(CE_CONT, "?[%d] Unsupported vDisk operation [%d]\n",
2240 				vdc->instance, operation);
2241 		rv = EINVAL;
2242 	}
2243 
2244 	if (rv != 0) {
2245 		mutex_exit(&local_dep->lock);
2246 		return (rv);
2247 	}
2248 
2249 	/*
2250 	 * fill in the data details into the DRing
2251 	 */
2252 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdc);
2253 	dep->payload.operation = operation;
2254 	dep->payload.nbytes = nbytes;
2255 	dep->payload.status = -1;	/* vds will set valid value */
2256 	dep->payload.slice = slice;
2257 	dep->hdr.dstate = VIO_DESC_READY;
2258 	dep->hdr.ack = 1;		/* request an ACK for every message */
2259 
2260 	local_dep->flags = VIO_DESC_READY;
2261 
2262 	/*
2263 	 * Send a msg with the DRing details to vds
2264 	 */
2265 	mutex_enter(&vdc->lock);
2266 	VIO_INIT_DRING_DATA_TAG(dmsg);
2267 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdc);
2268 	dmsg.dring_ident = vdc->dring_ident;
2269 	dmsg.start_idx = idx;
2270 	dmsg.end_idx = idx;
2271 
2272 	DTRACE_IO2(send, vio_dring_msg_t *, &dmsg, vdc_t *, vdc);
2273 
2274 	DMSG(2, "[%d] ident=0x%lx, st=%u, end=%u, seq=%ld req=%ld dep=%p\n",
2275 			vdc->instance, vdc->dring_ident,
2276 			dmsg.start_idx, dmsg.end_idx,
2277 			dmsg.seq_num, dep->payload.req_id, (void *)dep);
2278 
2279 	rv = vdc_send(vdc, (caddr_t)&dmsg, &msglen);
2280 	DMSG(1, "[%d] send via LDC: rv=%d\n", vdc->instance, rv);
2281 	if (rv != 0) {
2282 		DMSG(0, "[%d] err (%d) sending DRing data msg via LDC",
2283 				vdc->instance, rv);
2284 
2285 		/* Clear the DRing entry */
2286 		rv = vdc_depopulate_descriptor(vdc, idx);
2287 
2288 		mutex_exit(&vdc->lock);
2289 		mutex_exit(&local_dep->lock);
2290 
2291 		return (rv ? rv : EAGAIN);
2292 	}
2293 
2294 	/*
2295 	 * If the message was successfully sent, we increment the sequence
2296 	 * number to be used by the next message
2297 	 */
2298 	vdc->seq_num++;
2299 	mutex_exit(&vdc->lock);
2300 
2301 	/*
2302 	 * When a guest is panicking, the completion of requests needs to be
2303 	 * handled differently because interrupts are disabled and vdc
2304 	 * will not get messages. We have to poll for the messages instead.
2305 	 */
2306 	if (ddi_in_panic()) {
2307 		int start = 0;
2308 		retries = 0;
2309 		for (;;) {
2310 			msglen = sizeof (dmsg);
2311 			rv = ldc_read(vdc->ldc_handle, (caddr_t)&dmsg,
2312 					&msglen);
2313 			if (rv) {
2314 				rv = EINVAL;
2315 				break;
2316 			}
2317 
2318 			/*
2319 			 * if there are no packets wait and check again
2320 			 */
2321 			if ((rv == 0) && (msglen == 0)) {
2322 				if (retries++ > vdc_dump_retries) {
2323 					DMSG(0, "[%d] Stopping wait, idx %d\n",
2324 							vdc->instance, idx);
2325 					rv = EAGAIN;
2326 					break;
2327 				}
2328 
2329 				DMSG(1, "Waiting for next packet @ %d\n", idx);
2330 				drv_usecwait(vdc_usec_timeout_dump);
2331 				continue;
2332 			}
2333 
2334 			/*
2335 			 * Ignore all messages that are not ACKs/NACKs to
2336 			 * DRing requests.
2337 			 */
2338 			if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
2339 			    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
2340 				DMSG(0, "discard pkt: type=%d sub=%d env=%d\n",
2341 					dmsg.tag.vio_msgtype,
2342 					dmsg.tag.vio_subtype,
2343 					dmsg.tag.vio_subtype_env);
2344 				continue;
2345 			}
2346 
2347 			/*
2348 			 * set the appropriate return value for the
2349 			 * current request.
2350 			 */
2351 			switch (dmsg.tag.vio_subtype) {
2352 			case VIO_SUBTYPE_ACK:
2353 				rv = 0;
2354 				break;
2355 			case VIO_SUBTYPE_NACK:
2356 				rv = EAGAIN;
2357 				break;
2358 			default:
2359 				continue;
2360 			}
2361 
2362 			start = dmsg.start_idx;
2363 			if (start >= vdc->dring_len) {
2364 				DMSG(0, "[%d] Bogus ack data : start %d\n",
2365 					vdc->instance, start);
2366 				continue;
2367 			}
2368 
2369 			dep = VDC_GET_DRING_ENTRY_PTR(vdc, start);
2370 
2371 			DMSG(1, "[%d] Dumping start=%d idx=%d state=%d\n",
2372 				vdc->instance, start, idx, dep->hdr.dstate);
2373 
2374 			if (dep->hdr.dstate != VIO_DESC_DONE) {
2375 				DMSG(0, "[%d] Entry @ %d - state !DONE %d\n",
2376 					vdc->instance, start, dep->hdr.dstate);
2377 				continue;
2378 			}
2379 
2380 			(void) vdc_depopulate_descriptor(vdc, start);
2381 
2382 			/*
2383 			 * We want to process all Dring entries up to
2384 			 * the current one so that we can return an
2385 			 * error with the correct request.
2386 			 */
2387 			if (idx > start) {
2388 				DMSG(0, "[%d] Looping: start %d, idx %d\n",
2389 						vdc->instance, idx, start);
2390 				continue;
2391 			}
2392 
2393 			/* exit - all outstanding requests are completed */
2394 			break;
2395 		}
2396 
2397 		mutex_exit(&local_dep->lock);
2398 
2399 		return (rv);
2400 	}
2401 
2402 	/*
2403 	 * In the case of calls from strategy and dump (in the non-panic case),
2404 	 * instead of waiting for a response from the vDisk server return now.
2405 	 * They will be processed asynchronously and the vdc ACK handling code
2406 	 * will trigger the biodone(9F)
2407 	 */
2408 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2409 		mutex_exit(&local_dep->lock);
2410 		return (rv);
2411 	}
2412 
2413 	/*
2414 	 * In the case of synchronous calls we watch the DRing entries we
2415 	 * modified and await the response from vds.
2416 	 */
2417 	rv = vdc_wait_for_descriptor_update(vdc, idx, dmsg);
2418 	if (rv == ETIMEDOUT) {
2419 		/* debug info when dumping state on vds side */
2420 		dep->payload.status = ECANCELED;
2421 	}
2422 
2423 	rv = vdc_depopulate_descriptor(vdc, idx);
2424 	DMSG(0, "[%d] Exiting: status=%d\n", vdc->instance, rv);
2425 
2426 	mutex_exit(&local_dep->lock);
2427 
2428 	return (rv);
2429 }
2430 
2431 /*
2432  * Function:
2433  *	vdc_wait_for_descriptor_update()
2434  *
2435  * Description:
2436  *
2437  * Arguments:
2438  *	vdc	- soft state pointer for this instance of the device driver.
2439  *	idx	- Index of the Descriptor Ring entry being modified
2440  *	dmsg	- LDC message sent by vDisk server
2441  *
2442  * Return Code:
2443  *	0	- Success
2444  */
2445 static int
2446 vdc_wait_for_descriptor_update(vdc_t *vdc, uint_t idx, vio_dring_msg_t dmsg)
2447 {
2448 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2449 	vdc_local_desc_t *local_dep = NULL;	/* Local Dring Entry Pointer */
2450 	size_t	msglen = sizeof (dmsg);
2451 	int	retries = 0;
2452 	int	status = 0;
2453 	int	rv = 0;
2454 
2455 	ASSERT(vdc != NULL);
2456 	ASSERT(idx < vdc->dring_len);
2457 	local_dep = &vdc->local_dring[idx];
2458 	ASSERT(local_dep != NULL);
2459 	ASSERT(MUTEX_HELD(&local_dep->lock));
2460 	dep = local_dep->dep;
2461 	ASSERT(dep != NULL);
2462 
2463 	while (dep->hdr.dstate != VIO_DESC_DONE) {
2464 		rv = cv_timedwait(&local_dep->cv, &local_dep->lock,
2465 			VD_GET_TIMEOUT_HZ(vdc_hz_timeout, retries));
2466 		if (rv == -1) {
2467 			/*
2468 			 * If they persist in ignoring us we'll storm off in a
2469 			 * huff and return ETIMEDOUT to the upper layers.
2470 			 */
2471 			if (retries >= vdc_retries) {
2472 				DMSG(0, "[%d] Finished waiting on entry %d\n",
2473 					vdc->instance, idx);
2474 				status = ETIMEDOUT;
2475 				break;
2476 			} else {
2477 				retries++;
2478 				DMSG(0, "[%d] Timeout #%d on entry %d "
2479 				    "[seq %lu][req %lu]\n", vdc->instance,
2480 				    retries, idx, dmsg.seq_num,
2481 				    dep->payload.req_id);
2482 			}
2483 
2484 			if (dep->hdr.dstate & VIO_DESC_ACCEPTED) {
2485 				DMSG(0, "[%d] entry %d ACCEPTED [seq %lu]"
2486 				    "[req %lu] but not ACK'ed by vds yet\n",
2487 				    vdc->instance, idx, dmsg.seq_num,
2488 				    dep->payload.req_id);
2489 				continue;
2490 			}
2491 
2492 			/*
2493 			 * we resend the message as it may have been dropped
2494 			 * and have never made it to the other side (vds).
2495 			 * (We reuse the original message but update seq ID)
2496 			 */
2497 			mutex_enter(&vdc->lock);
2498 			VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdc);
2499 			retries = 0;
2500 			status = vdc_send(vdc, (caddr_t)&dmsg, &msglen);
2501 			if (status != 0) {
2502 				mutex_exit(&vdc->lock);
2503 				cmn_err(CE_NOTE, "[%d] Error (%d) while sending"
2504 						" after timeout",
2505 						vdc->instance, status);
2506 				status = ETIMEDOUT;
2507 				break;
2508 			}
2509 			/*
2510 			 * If the message was successfully sent, we increment
2511 			 * the sequence number to be used by the next message.
2512 			 */
2513 			vdc->seq_num++;
2514 			mutex_exit(&vdc->lock);
2515 		}
2516 	}
2517 
2518 	return (status);
2519 }
2520 
2521 
2522 /*
2523  * Function:
2524  *	vdc_depopulate_descriptor()
2525  *
2526  * Description:
2527  *
2528  * Arguments:
2529  *	vdc	- soft state pointer for this instance of the device driver.
2530  *	idx	- Index of the Descriptor Ring entry being modified
2531  *
2532  * Return Code:
2533  *	0	- Success
2534  */
2535 static int
2536 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
2537 {
2538 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2539 	vdc_local_desc_t *ldep = NULL;		/* Local Dring Entry Pointer */
2540 	int		status = ENXIO;
2541 	int		operation;
2542 	int		rv = 0;
2543 
2544 	ASSERT(vdc != NULL);
2545 	ASSERT(idx < vdc->dring_len);
2546 	ldep = &vdc->local_dring[idx];
2547 	ASSERT(ldep != NULL);
2548 	ASSERT(MUTEX_HELD(&ldep->lock));
2549 	dep = ldep->dep;
2550 	ASSERT(dep != NULL);
2551 	ASSERT((dep->hdr.dstate == VIO_DESC_DONE) ||
2552 			(dep->payload.status == ECANCELED));
2553 
2554 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
2555 	VIO_SET_DESC_STATE(ldep->flags, VIO_DESC_FREE);
2556 	status = dep->payload.status;
2557 	operation = dep->payload.operation;
2558 
2559 	/* the DKIO FLUSH operation never bind handles so we can return now */
2560 	if (operation == VD_OP_FLUSH)
2561 		return (status);
2562 
2563 	/*
2564 	 * If the upper layer passed in a misaligned address we copied the
2565 	 * data into an aligned buffer before sending it to LDC - we now
2566 	 * copy it back to the original buffer.
2567 	 */
2568 	if (ldep->align_addr) {
2569 		ASSERT(ldep->addr != NULL);
2570 		ASSERT(dep->payload.nbytes > 0);
2571 
2572 		bcopy(ldep->align_addr, ldep->addr, dep->payload.nbytes);
2573 		kmem_free(ldep->align_addr,
2574 			sizeof (caddr_t) * P2ROUNDUP(dep->payload.nbytes, 8));
2575 		ldep->align_addr = NULL;
2576 	}
2577 
2578 	rv = ldc_mem_unbind_handle(ldep->desc_mhdl);
2579 	if (rv != 0) {
2580 		cmn_err(CE_CONT, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)",
2581 				vdc->instance, ldep->desc_mhdl, idx, rv);
2582 		/*
2583 		 * The error returned by the vDisk server is more informative
2584 		 * and thus has a higher priority but if it isn't set we ensure
2585 		 * that this function returns an error.
2586 		 */
2587 		if (status == 0)
2588 			status = EINVAL;
2589 	}
2590 
2591 	return (status);
2592 }
2593 
2594 /*
2595  * Function:
2596  *	vdc_populate_mem_hdl()
2597  *
2598  * Description:
2599  *
2600  * Arguments:
2601  *	vdc	- soft state pointer for this instance of the device driver.
2602  *	idx	- Index of the Descriptor Ring entry being modified
2603  *	addr	- virtual address being mapped in
2604  *	nybtes	- number of bytes in 'addr'
2605  *	operation - the vDisk operation being performed (VD_OP_xxx)
2606  *
2607  * Return Code:
2608  *	0	- Success
2609  */
2610 static int
2611 vdc_populate_mem_hdl(vdc_t *vdc, uint_t idx, caddr_t addr, size_t nbytes,
2612 			int operation)
2613 {
2614 	vd_dring_entry_t	*dep = NULL;
2615 	vdc_local_desc_t	*ldep = NULL;
2616 	ldc_mem_handle_t	mhdl;
2617 	caddr_t			vaddr;
2618 	uint8_t			perm = LDC_MEM_RW;
2619 	uint8_t			maptype;
2620 	int			rv = 0;
2621 	int			i;
2622 
2623 	ASSERT(vdc != NULL);
2624 	ASSERT(idx < vdc->dring_len);
2625 
2626 	dep = VDC_GET_DRING_ENTRY_PTR(vdc, idx);
2627 	ldep = &vdc->local_dring[idx];
2628 	mhdl = ldep->desc_mhdl;
2629 
2630 	switch (operation) {
2631 	case VD_OP_BREAD:
2632 		perm = LDC_MEM_W;
2633 		break;
2634 
2635 	case VD_OP_BWRITE:
2636 		perm = LDC_MEM_R;
2637 		break;
2638 
2639 	case VD_OP_GET_WCE:
2640 	case VD_OP_SET_WCE:
2641 	case VD_OP_GET_VTOC:
2642 	case VD_OP_SET_VTOC:
2643 	case VD_OP_GET_DISKGEOM:
2644 	case VD_OP_SET_DISKGEOM:
2645 	case VD_OP_SCSICMD:
2646 	case VD_OP_GET_DEVID:
2647 	case VD_OP_GET_EFI:
2648 	case VD_OP_SET_EFI:
2649 		perm = LDC_MEM_RW;
2650 		break;
2651 
2652 	default:
2653 		ASSERT(0);	/* catch bad programming in vdc */
2654 	}
2655 
2656 	/*
2657 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
2658 	 * to copy the contents of any misaligned buffers to a newly allocated
2659 	 * buffer and bind it instead (and copy the the contents back to the
2660 	 * original buffer passed in when depopulating the descriptor)
2661 	 */
2662 	vaddr = addr;
2663 	if (((uint64_t)addr & 0x7) != 0) {
2664 		ASSERT(ldep->align_addr == NULL);
2665 		ldep->align_addr =
2666 			kmem_zalloc(sizeof (caddr_t) * P2ROUNDUP(nbytes, 8),
2667 					KM_SLEEP);
2668 		DMSG(0, "[%d] Misaligned address %p reallocating "
2669 		    "(buf=%p nb=%ld op=%d entry=%d)\n",
2670 		    vdc->instance, (void *)addr, (void *)ldep->align_addr,
2671 		    nbytes, operation, idx);
2672 		bcopy(addr, ldep->align_addr, nbytes);
2673 		vaddr = ldep->align_addr;
2674 	}
2675 
2676 	maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP;
2677 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
2678 		maptype, perm, &dep->payload.cookie[0],
2679 		&dep->payload.ncookies);
2680 	DMSG(2, "[%d] bound mem handle; ncookies=%d\n",
2681 			vdc->instance, dep->payload.ncookies);
2682 	if (rv != 0) {
2683 		cmn_err(CE_CONT, "?[%d] Failed to bind LDC memory handle "
2684 		    "(mhdl=%p, buf=%p entry=%u err=%d)\n",
2685 		    vdc->instance, (void *)mhdl, (void *)addr, idx, rv);
2686 		if (ldep->align_addr) {
2687 			kmem_free(ldep->align_addr,
2688 				sizeof (caddr_t) * P2ROUNDUP(nbytes, 8));
2689 			ldep->align_addr = NULL;
2690 		}
2691 		return (EAGAIN);
2692 	}
2693 
2694 	/*
2695 	 * Get the other cookies (if any).
2696 	 */
2697 	for (i = 1; i < dep->payload.ncookies; i++) {
2698 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
2699 		if (rv != 0) {
2700 			(void) ldc_mem_unbind_handle(mhdl);
2701 			cmn_err(CE_CONT, "?[%d] Failed to get next cookie "
2702 					"(mhdl=%lx cnum=%d), err=%d",
2703 					vdc->instance, mhdl, i, rv);
2704 			if (ldep->align_addr) {
2705 				kmem_free(ldep->align_addr,
2706 					sizeof (caddr_t) * dep->payload.nbytes);
2707 				ldep->align_addr = NULL;
2708 			}
2709 			return (EAGAIN);
2710 		}
2711 	}
2712 
2713 	return (rv);
2714 }
2715 
2716 /*
2717  * Interrupt handlers for messages from LDC
2718  */
2719 
2720 /*
2721  * Function:
2722  *	vdc_handle_cb()
2723  *
2724  * Description:
2725  *
2726  * Arguments:
2727  *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
2728  *	arg	- soft state pointer for this instance of the device driver.
2729  *
2730  * Return Code:
2731  *	0	- Success
2732  */
2733 static uint_t
2734 vdc_handle_cb(uint64_t event, caddr_t arg)
2735 {
2736 	ldc_status_t	ldc_state;
2737 	int		rv = 0;
2738 
2739 	vdc_t	*vdc = (vdc_t *)(void *)arg;
2740 
2741 	ASSERT(vdc != NULL);
2742 
2743 	DMSG(1, "[%d] evt=%lx seqID=%ld\n", vdc->instance, event, vdc->seq_num);
2744 
2745 	/*
2746 	 * Depending on the type of event that triggered this callback,
2747 	 * we modify the handhske state or read the data.
2748 	 *
2749 	 * NOTE: not done as a switch() as event could be triggered by
2750 	 * a state change and a read request. Also the ordering	of the
2751 	 * check for the event types is deliberate.
2752 	 */
2753 	if (event & LDC_EVT_UP) {
2754 		DMSG(0, "[%d] Received LDC_EVT_UP\n", vdc->instance);
2755 
2756 		/* get LDC state */
2757 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2758 		if (rv != 0) {
2759 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2760 					vdc->instance, rv);
2761 			mutex_enter(&vdc->lock);
2762 			vdc_reset_connection(vdc, B_TRUE);
2763 			mutex_exit(&vdc->lock);
2764 			return (LDC_SUCCESS);
2765 		}
2766 
2767 		/*
2768 		 * Reset the transaction sequence numbers when LDC comes up.
2769 		 * We then kick off the handshake negotiation with the vDisk
2770 		 * server.
2771 		 */
2772 		mutex_enter(&vdc->lock);
2773 		vdc->seq_num = 1;
2774 		vdc->seq_num_reply = 0;
2775 		vdc->ldc_state = ldc_state;
2776 		ASSERT(ldc_state == LDC_UP);
2777 		mutex_exit(&vdc->lock);
2778 
2779 		vdc_init_handshake_negotiation(vdc);
2780 
2781 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
2782 	}
2783 
2784 	if (event & LDC_EVT_READ) {
2785 		/*
2786 		 * Wake up the worker thread to process the message
2787 		 */
2788 		mutex_enter(&vdc->msg_proc_lock);
2789 		vdc->msg_pending = B_TRUE;
2790 		cv_signal(&vdc->msg_proc_cv);
2791 		mutex_exit(&vdc->msg_proc_lock);
2792 
2793 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
2794 
2795 		/* that's all we have to do - no need to handle DOWN/RESET */
2796 		return (LDC_SUCCESS);
2797 	}
2798 
2799 	if (event & LDC_EVT_RESET) {
2800 		DMSG(0, "[%d] Received LDC RESET event\n", vdc->instance);
2801 
2802 		/* get LDC state */
2803 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2804 		if (rv != 0) {
2805 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2806 					vdc->instance, rv);
2807 			ldc_state = LDC_OPEN;
2808 		}
2809 		mutex_enter(&vdc->lock);
2810 		vdc->ldc_state = ldc_state;
2811 		vdc_reset_connection(vdc, B_TRUE);
2812 		mutex_exit(&vdc->lock);
2813 
2814 		vdc_init_handshake_negotiation(vdc);
2815 	}
2816 
2817 	if (event & LDC_EVT_DOWN) {
2818 		DMSG(0, "[%d] Received LDC DOWN event\n", vdc->instance);
2819 
2820 		/* get LDC state */
2821 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2822 		if (rv != 0) {
2823 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2824 					vdc->instance, rv);
2825 			ldc_state = LDC_OPEN;
2826 		}
2827 		mutex_enter(&vdc->lock);
2828 		vdc->ldc_state = ldc_state;
2829 		vdc_reset_connection(vdc, B_TRUE);
2830 		mutex_exit(&vdc->lock);
2831 	}
2832 
2833 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
2834 		cmn_err(CE_NOTE, "![%d] Unexpected LDC event (%lx) received",
2835 				vdc->instance, event);
2836 
2837 	return (LDC_SUCCESS);
2838 }
2839 
2840 /* -------------------------------------------------------------------------- */
2841 
2842 /*
2843  * The following functions process the incoming messages from vds
2844  */
2845 
2846 
2847 /*
2848  * Function:
2849  *	vdc_process_msg_thread()
2850  *
2851  * Description:
2852  *
2853  * Arguments:
2854  *	vdc	- soft state pointer for this instance of the device driver.
2855  *
2856  * Return Code:
2857  *	None
2858  */
2859 static void
2860 vdc_process_msg_thread(vdc_t *vdc)
2861 {
2862 	int		status = 0;
2863 	boolean_t	q_has_pkts = B_FALSE;
2864 
2865 	ASSERT(vdc != NULL);
2866 
2867 	mutex_enter(&vdc->msg_proc_lock);
2868 	DMSG(0, "[%d] Starting\n", vdc->instance);
2869 
2870 	vdc->msg_proc_thr_state = VDC_THR_RUNNING;
2871 
2872 	while (vdc->msg_proc_thr_state == VDC_THR_RUNNING) {
2873 
2874 		DMSG(2, "[%d] Waiting\n", vdc->instance);
2875 		while (!vdc->msg_pending)
2876 			cv_wait(&vdc->msg_proc_cv, &vdc->msg_proc_lock);
2877 
2878 		DMSG(2, "[%d] Message Received\n", vdc->instance);
2879 
2880 		/* check if there is data */
2881 		status = ldc_chkq(vdc->ldc_handle, &q_has_pkts);
2882 		if ((status != 0) &&
2883 		    (vdc->msg_proc_thr_state == VDC_THR_RUNNING)) {
2884 			cmn_err(CE_NOTE, "[%d] Unable to communicate with vDisk"
2885 					" server. Cannot check LDC queue: %d",
2886 					vdc->instance, status);
2887 			mutex_enter(&vdc->lock);
2888 			vdc_reset_connection(vdc, B_TRUE);
2889 			mutex_exit(&vdc->lock);
2890 			vdc->msg_proc_thr_state = VDC_THR_STOP;
2891 			continue;
2892 		}
2893 
2894 		if (q_has_pkts) {
2895 			DMSG(2, "[%d] new pkt(s) available\n", vdc->instance);
2896 			vdc_process_msg(vdc);
2897 		}
2898 
2899 		vdc->msg_pending = B_FALSE;
2900 	}
2901 
2902 	DMSG(0, "[%d] Message processing thread stopped\n", vdc->instance);
2903 	vdc->msg_pending = B_FALSE;
2904 	vdc->msg_proc_thr_state = VDC_THR_DONE;
2905 	cv_signal(&vdc->msg_proc_cv);
2906 	mutex_exit(&vdc->msg_proc_lock);
2907 	thread_exit();
2908 }
2909 
2910 
2911 /*
2912  * Function:
2913  *	vdc_process_msg()
2914  *
2915  * Description:
2916  *	This function is called by the message processing thread each time it
2917  *	is triggered when LDC sends an interrupt to indicate that there are
2918  *	more packets on the queue. When it is called it will continue to loop
2919  *	and read the messages until there are no more left of the queue. If it
2920  *	encounters an invalid sized message it will drop it and check the next
2921  *	message.
2922  *
2923  * Arguments:
2924  *	arg	- soft state pointer for this instance of the device driver.
2925  *
2926  * Return Code:
2927  *	None.
2928  */
2929 static void
2930 vdc_process_msg(void *arg)
2931 {
2932 	vdc_t		*vdc = (vdc_t *)(void *)arg;
2933 	vio_msg_t	vio_msg;
2934 	size_t		nbytes = sizeof (vio_msg);
2935 	int		status;
2936 
2937 	ASSERT(vdc != NULL);
2938 
2939 	mutex_enter(&vdc->lock);
2940 
2941 	DMSG(1, "[%d]\n", vdc->instance);
2942 
2943 	for (;;) {
2944 
2945 		/* read all messages - until no more left */
2946 		status = ldc_read(vdc->ldc_handle, (caddr_t)&vio_msg, &nbytes);
2947 
2948 		if (status) {
2949 			cmn_err(CE_CONT, "?[%d] Error %d reading LDC msg\n",
2950 					vdc->instance, status);
2951 
2952 			/* if status is ECONNRESET --- reset vdc state */
2953 			if (status == EIO || status == ECONNRESET) {
2954 				vdc_reset_connection(vdc, B_TRUE);
2955 			}
2956 
2957 			mutex_exit(&vdc->lock);
2958 			return;
2959 		}
2960 
2961 		if ((nbytes > 0) && (nbytes < sizeof (vio_msg_tag_t))) {
2962 			cmn_err(CE_CONT, "?[%d] Expect %lu bytes; recv'd %lu\n",
2963 				vdc->instance, sizeof (vio_msg_tag_t), nbytes);
2964 			mutex_exit(&vdc->lock);
2965 			return;
2966 		}
2967 
2968 		if (nbytes == 0) {
2969 			DMSG(3, "[%d] ldc_read() done..\n", vdc->instance);
2970 			mutex_exit(&vdc->lock);
2971 			return;
2972 		}
2973 
2974 		DMSG(2, "[%d] (%x/%x/%x)\n", vdc->instance,
2975 		    vio_msg.tag.vio_msgtype,
2976 		    vio_msg.tag.vio_subtype,
2977 		    vio_msg.tag.vio_subtype_env);
2978 
2979 		/*
2980 		 * Verify the Session ID of the message
2981 		 *
2982 		 * Every message after the Version has been negotiated should
2983 		 * have the correct session ID set.
2984 		 */
2985 		if ((vio_msg.tag.vio_sid != vdc->session_id) &&
2986 		    (vio_msg.tag.vio_subtype_env != VIO_VER_INFO)) {
2987 			cmn_err(CE_NOTE, "[%d] Invalid SID: received 0x%x, "
2988 					"expected 0x%lx [seq num %lx @ %d]",
2989 				vdc->instance, vio_msg.tag.vio_sid,
2990 				vdc->session_id,
2991 				((vio_dring_msg_t *)&vio_msg)->seq_num,
2992 				((vio_dring_msg_t *)&vio_msg)->start_idx);
2993 			vdc_reset_connection(vdc, B_TRUE);
2994 			mutex_exit(&vdc->lock);
2995 			return;
2996 		}
2997 
2998 		switch (vio_msg.tag.vio_msgtype) {
2999 		case VIO_TYPE_CTRL:
3000 			status = vdc_process_ctrl_msg(vdc, vio_msg);
3001 			break;
3002 		case VIO_TYPE_DATA:
3003 			status = vdc_process_data_msg(vdc, vio_msg);
3004 			break;
3005 		case VIO_TYPE_ERR:
3006 			status = vdc_process_err_msg(vdc, vio_msg);
3007 			break;
3008 		default:
3009 			cmn_err(CE_NOTE, "[%d] Unknown VIO message type",
3010 					vdc->instance);
3011 			status = EINVAL;
3012 			break;
3013 		}
3014 
3015 		if (status != 0) {
3016 			DMSG(0, "[%d] Error (%d) occurred processing req %lu\n",
3017 					vdc->instance, status,
3018 					vdc->req_id_proc);
3019 			vdc_reset_connection(vdc, B_TRUE);
3020 
3021 			/* we need to drop the lock to trigger the handshake */
3022 			mutex_exit(&vdc->lock);
3023 			vdc_init_handshake_negotiation(vdc);
3024 			mutex_enter(&vdc->lock);
3025 		}
3026 	}
3027 	_NOTE(NOTREACHED)
3028 }
3029 
3030 /*
3031  * Function:
3032  *	vdc_process_ctrl_msg()
3033  *
3034  * Description:
3035  *	This function is called by the message processing thread each time
3036  *	an LDC message with a msgtype of VIO_TYPE_CTRL is received.
3037  *
3038  * Arguments:
3039  *	vdc	- soft state pointer for this instance of the device driver.
3040  *	msg	- the LDC message sent by vds
3041  *
3042  * Return Codes:
3043  *	0	- Success.
3044  *	EPROTO	- A message was received which shouldn't have happened according
3045  *		  to the protocol
3046  *	ENOTSUP	- An action which is allowed according to the protocol but which
3047  *		  isn't (or doesn't need to be) implemented yet.
3048  *	EINVAL	- An invalid value was returned as part of a message.
3049  */
3050 static int
3051 vdc_process_ctrl_msg(vdc_t *vdc, vio_msg_t msg)
3052 {
3053 	int			status = -1;
3054 
3055 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_CTRL);
3056 	ASSERT(vdc != NULL);
3057 	ASSERT(mutex_owned(&vdc->lock));
3058 
3059 	/* Depending on which state we are in; process the message */
3060 	switch (vdc->state) {
3061 	case VD_STATE_INIT:
3062 		status = vdc_handle_ver_msg(vdc, (vio_ver_msg_t *)&msg);
3063 		break;
3064 
3065 	case VD_STATE_VER:
3066 		status = vdc_handle_attr_msg(vdc, (vd_attr_msg_t *)&msg);
3067 		break;
3068 
3069 	case VD_STATE_ATTR:
3070 		status = vdc_handle_dring_reg_msg(vdc,
3071 				(vio_dring_reg_msg_t *)&msg);
3072 		break;
3073 
3074 	case VD_STATE_RDX:
3075 		if (msg.tag.vio_subtype_env != VIO_RDX) {
3076 			status = EPROTO;
3077 			break;
3078 		}
3079 
3080 		DMSG(0, "[%d] Received RDX: handshake done\n", vdc->instance);
3081 
3082 		vdc->hshake_cnt = 0;	/* reset failed handshake count */
3083 		status = 0;
3084 		vdc->state = VD_STATE_DATA;
3085 
3086 		cv_broadcast(&vdc->attach_cv);
3087 		break;
3088 
3089 	case VD_STATE_DATA:
3090 	default:
3091 		cmn_err(CE_NOTE, "[%d] Unexpected handshake state %d",
3092 				vdc->instance, vdc->state);
3093 		status = EPROTO;
3094 		break;
3095 	}
3096 
3097 	return (status);
3098 }
3099 
3100 
3101 /*
3102  * Function:
3103  *	vdc_process_data_msg()
3104  *
3105  * Description:
3106  *	This function is called by the message processing thread each time
3107  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
3108  *	be an ACK or NACK from vds[1] which vdc handles as follows.
3109  *		ACK	- wake up the waiting thread
3110  *		NACK	- resend any messages necessary
3111  *
3112  *	[1] Although the message format allows it, vds should not send a
3113  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
3114  *	    some bizarre reason it does, vdc will reset the connection.
3115  *
3116  * Arguments:
3117  *	vdc	- soft state pointer for this instance of the device driver.
3118  *	msg	- the LDC message sent by vds
3119  *
3120  * Return Code:
3121  *	0	- Success.
3122  *	> 0	- error value returned by LDC
3123  */
3124 static int
3125 vdc_process_data_msg(vdc_t *vdc, vio_msg_t msg)
3126 {
3127 	int			status = 0;
3128 	vdc_local_desc_t	*ldep = NULL;
3129 	vio_dring_msg_t		*dring_msg = NULL;
3130 	uint_t			start;
3131 	int			end;
3132 	uint_t			count = 0;
3133 	uint_t			operation;
3134 	uint_t			idx;
3135 
3136 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_DATA);
3137 	ASSERT(vdc != NULL);
3138 	ASSERT(mutex_owned(&vdc->lock));
3139 
3140 	dring_msg = (vio_dring_msg_t *)&msg;
3141 
3142 	/*
3143 	 * Check to see if the message has bogus data
3144 	 */
3145 	idx = start = dring_msg->start_idx;
3146 	end = dring_msg->end_idx;
3147 	if ((start >= vdc->dring_len) ||
3148 	    (end >= vdc->dring_len) || (end < -1)) {
3149 		cmn_err(CE_CONT, "?[%d] Bogus ACK data : start %d, end %d\n",
3150 			vdc->instance, start, end);
3151 		return (EINVAL);
3152 	}
3153 
3154 	DTRACE_IO2(recv, vio_dring_msg_t, dring_msg, vdc_t *, vdc);
3155 
3156 	/*
3157 	 * Verify that the sequence number is what vdc expects.
3158 	 */
3159 	switch (vdc_verify_seq_num(vdc, dring_msg)) {
3160 	case VDC_SEQ_NUM_TODO:
3161 		break;	/* keep processing this message */
3162 	case VDC_SEQ_NUM_SKIP:
3163 		return (0);
3164 	case VDC_SEQ_NUM_INVALID:
3165 		return (ENXIO);
3166 	}
3167 
3168 	if (msg.tag.vio_subtype == VIO_SUBTYPE_NACK) {
3169 		DMSG(0, "[%d] DATA NACK\n", vdc->instance);
3170 		VDC_DUMP_DRING_MSG(dring_msg);
3171 		return (EIO);
3172 
3173 	} else if (msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
3174 		return (EPROTO);
3175 	}
3176 
3177 	ldep = &vdc->local_dring[start];
3178 	if (ldep->dep->hdr.dstate == VIO_DESC_DONE) {
3179 		mutex_enter(&ldep->lock);
3180 		operation = ldep->dep->payload.operation;
3181 		vdc->req_id_proc = ldep->dep->payload.req_id;
3182 		vdc->dring_proc_idx = idx;
3183 		ASSERT(ldep->dep->hdr.dstate == VIO_DESC_DONE);
3184 
3185 		if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
3186 			bioerror(ldep->buf, ldep->dep->payload.status);
3187 
3188 			/* Clear the DRing entry */
3189 			status = vdc_depopulate_descriptor(vdc, idx);
3190 
3191 			/*
3192 			 * biodone() should be called after clearing the DRing
3193 			 * entry because biodone() will release the IO buffer.
3194 			 */
3195 			biodone(ldep->buf);
3196 			DTRACE_IO2(vdone, buf_t *, ldep->buf, vdc_t *, vdc);
3197 		}
3198 		cv_signal(&ldep->cv);
3199 		mutex_exit(&ldep->lock);
3200 	}
3201 
3202 	/* probe gives the count of how many entries were processed */
3203 	DTRACE_IO2(processed, int, count, vdc_t *, vdc);
3204 
3205 	return (status);
3206 }
3207 
3208 /*
3209  * Function:
3210  *	vdc_process_err_msg()
3211  *
3212  * NOTE: No error messages are used as part of the vDisk protocol
3213  */
3214 static int
3215 vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg)
3216 {
3217 	_NOTE(ARGUNUSED(vdc))
3218 	_NOTE(ARGUNUSED(msg))
3219 
3220 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_ERR);
3221 	cmn_err(CE_NOTE, "[%d] Got an ERR msg", vdc->instance);
3222 
3223 	return (ENOTSUP);
3224 }
3225 
3226 /*
3227  * Function:
3228  *	vdc_handle_ver_msg()
3229  *
3230  * Description:
3231  *
3232  * Arguments:
3233  *	vdc	- soft state pointer for this instance of the device driver.
3234  *	ver_msg	- LDC message sent by vDisk server
3235  *
3236  * Return Code:
3237  *	0	- Success
3238  */
3239 static int
3240 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
3241 {
3242 	int status = 0;
3243 
3244 	ASSERT(vdc != NULL);
3245 	ASSERT(mutex_owned(&vdc->lock));
3246 
3247 	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
3248 		return (EPROTO);
3249 	}
3250 
3251 	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
3252 		return (EINVAL);
3253 	}
3254 
3255 	switch (ver_msg->tag.vio_subtype) {
3256 	case VIO_SUBTYPE_ACK:
3257 		/*
3258 		 * We check to see if the version returned is indeed supported
3259 		 * (The server may have also adjusted the minor number downwards
3260 		 * and if so 'ver_msg' will contain the actual version agreed)
3261 		 */
3262 		if (vdc_is_supported_version(ver_msg)) {
3263 			vdc->ver.major = ver_msg->ver_major;
3264 			vdc->ver.minor = ver_msg->ver_minor;
3265 			ASSERT(vdc->ver.major > 0);
3266 
3267 			vdc->state = VD_STATE_VER;
3268 			status = vdc_init_attr_negotiation(vdc);
3269 		} else {
3270 			status = EPROTO;
3271 		}
3272 		break;
3273 
3274 	case VIO_SUBTYPE_NACK:
3275 		/*
3276 		 * call vdc_is_supported_version() which will return the next
3277 		 * supported version (if any) in 'ver_msg'
3278 		 */
3279 		(void) vdc_is_supported_version(ver_msg);
3280 		if (ver_msg->ver_major > 0) {
3281 			size_t len = sizeof (*ver_msg);
3282 
3283 			ASSERT(vdc->ver.major > 0);
3284 
3285 			/* reset the necessary fields and resend */
3286 			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
3287 			ver_msg->dev_class = VDEV_DISK;
3288 
3289 			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
3290 			DMSG(0, "[%d] Resend VER info (LDC status = %d)\n",
3291 					vdc->instance, status);
3292 			if (len != sizeof (*ver_msg))
3293 				status = EBADMSG;
3294 		} else {
3295 			cmn_err(CE_NOTE, "[%d] No common version with "
3296 					"vDisk server", vdc->instance);
3297 			status = ENOTSUP;
3298 		}
3299 
3300 		break;
3301 	case VIO_SUBTYPE_INFO:
3302 		/*
3303 		 * Handle the case where vds starts handshake
3304 		 * (for now only vdc is the instigatior)
3305 		 */
3306 		status = ENOTSUP;
3307 		break;
3308 
3309 	default:
3310 		status = EINVAL;
3311 		break;
3312 	}
3313 
3314 	return (status);
3315 }
3316 
3317 /*
3318  * Function:
3319  *	vdc_handle_attr_msg()
3320  *
3321  * Description:
3322  *
3323  * Arguments:
3324  *	vdc	- soft state pointer for this instance of the device driver.
3325  *	attr_msg	- LDC message sent by vDisk server
3326  *
3327  * Return Code:
3328  *	0	- Success
3329  */
3330 static int
3331 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
3332 {
3333 	int status = 0;
3334 
3335 	ASSERT(vdc != NULL);
3336 	ASSERT(mutex_owned(&vdc->lock));
3337 
3338 	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
3339 		return (EPROTO);
3340 	}
3341 
3342 	switch (attr_msg->tag.vio_subtype) {
3343 	case VIO_SUBTYPE_ACK:
3344 		/*
3345 		 * We now verify the attributes sent by vds.
3346 		 */
3347 		vdc->vdisk_size = attr_msg->vdisk_size;
3348 		vdc->vdisk_type = attr_msg->vdisk_type;
3349 
3350 		DMSG(0, "[%d] max_xfer_sz: sent %lx acked %lx\n",
3351 			vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz);
3352 		DMSG(0, "[%d] vdisk_block_size: sent %lx acked %x\n",
3353 			vdc->instance, vdc->block_size,
3354 			attr_msg->vdisk_block_size);
3355 
3356 		/*
3357 		 * We don't know at compile time what the vDisk server will
3358 		 * think are good values but we apply an large (arbitrary)
3359 		 * upper bound to prevent memory exhaustion in vdc if it was
3360 		 * allocating a DRing based of huge values sent by the server.
3361 		 * We probably will never exceed this except if the message
3362 		 * was garbage.
3363 		 */
3364 		if ((attr_msg->max_xfer_sz * attr_msg->vdisk_block_size) <=
3365 				(PAGESIZE * DEV_BSIZE)) {
3366 			vdc->max_xfer_sz = attr_msg->max_xfer_sz;
3367 			vdc->block_size = attr_msg->vdisk_block_size;
3368 		} else {
3369 			cmn_err(CE_NOTE, "[%d] vds block transfer size too big;"
3370 				" using max supported by vdc", vdc->instance);
3371 		}
3372 
3373 		if ((attr_msg->xfer_mode != VIO_DRING_MODE) ||
3374 		    (attr_msg->vdisk_size > INT64_MAX) ||
3375 		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
3376 			cmn_err(CE_NOTE, "[%d] Invalid attributes from vds",
3377 					vdc->instance);
3378 			status = EINVAL;
3379 			break;
3380 		}
3381 
3382 		vdc->state = VD_STATE_ATTR;
3383 		status = vdc_init_dring_negotiate(vdc);
3384 		break;
3385 
3386 	case VIO_SUBTYPE_NACK:
3387 		/*
3388 		 * vds could not handle the attributes we sent so we
3389 		 * stop negotiating.
3390 		 */
3391 		status = EPROTO;
3392 		break;
3393 
3394 	case VIO_SUBTYPE_INFO:
3395 		/*
3396 		 * Handle the case where vds starts the handshake
3397 		 * (for now; vdc is the only supported instigatior)
3398 		 */
3399 		status = ENOTSUP;
3400 		break;
3401 
3402 	default:
3403 		status = ENOTSUP;
3404 		break;
3405 	}
3406 
3407 	return (status);
3408 }
3409 
3410 /*
3411  * Function:
3412  *	vdc_handle_dring_reg_msg()
3413  *
3414  * Description:
3415  *
3416  * Arguments:
3417  *	vdc		- soft state pointer for this instance of the driver.
3418  *	dring_msg	- LDC message sent by vDisk server
3419  *
3420  * Return Code:
3421  *	0	- Success
3422  */
3423 static int
3424 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
3425 {
3426 	int		status = 0;
3427 	vio_rdx_msg_t	msg = {0};
3428 	size_t		msglen = sizeof (msg);
3429 
3430 	ASSERT(vdc != NULL);
3431 	ASSERT(mutex_owned(&vdc->lock));
3432 
3433 	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
3434 		return (EPROTO);
3435 	}
3436 
3437 	switch (dring_msg->tag.vio_subtype) {
3438 	case VIO_SUBTYPE_ACK:
3439 		/* save the received dring_ident */
3440 		vdc->dring_ident = dring_msg->dring_ident;
3441 		DMSG(0, "[%d] Received dring ident=0x%lx\n",
3442 			vdc->instance, vdc->dring_ident);
3443 
3444 		/*
3445 		 * Send an RDX message to vds to indicate we are ready
3446 		 * to send data
3447 		 */
3448 		msg.tag.vio_msgtype = VIO_TYPE_CTRL;
3449 		msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
3450 		msg.tag.vio_subtype_env = VIO_RDX;
3451 		msg.tag.vio_sid = vdc->session_id;
3452 		status = vdc_send(vdc, (caddr_t)&msg, &msglen);
3453 		if (status != 0) {
3454 			cmn_err(CE_NOTE, "[%d] Failed to send RDX"
3455 				" message (%d)", vdc->instance, status);
3456 			break;
3457 		}
3458 
3459 		vdc->state = VD_STATE_RDX;
3460 		break;
3461 
3462 	case VIO_SUBTYPE_NACK:
3463 		/*
3464 		 * vds could not handle the DRing info we sent so we
3465 		 * stop negotiating.
3466 		 */
3467 		cmn_err(CE_CONT, "server could not register DRing\n");
3468 		vdc_reset_connection(vdc, B_TRUE);
3469 		vdc_destroy_descriptor_ring(vdc);
3470 		status = EPROTO;
3471 		break;
3472 
3473 	case VIO_SUBTYPE_INFO:
3474 		/*
3475 		 * Handle the case where vds starts handshake
3476 		 * (for now only vdc is the instigatior)
3477 		 */
3478 		status = ENOTSUP;
3479 		break;
3480 	default:
3481 		status = ENOTSUP;
3482 	}
3483 
3484 	return (status);
3485 }
3486 
3487 /*
3488  * Function:
3489  *	vdc_verify_seq_num()
3490  *
3491  * Description:
3492  *	This functions verifies that the sequence number sent back by the vDisk
3493  *	server with the latest message is what is expected (i.e. it is greater
3494  *	than the last seq num sent by the vDisk server and less than or equal
3495  *	to the last seq num generated by vdc).
3496  *
3497  *	It then checks the request ID to see if any requests need processing
3498  *	in the DRing.
3499  *
3500  * Arguments:
3501  *	vdc		- soft state pointer for this instance of the driver.
3502  *	dring_msg	- pointer to the LDC message sent by vds
3503  *
3504  * Return Code:
3505  *	VDC_SEQ_NUM_TODO	- Message needs to be processed
3506  *	VDC_SEQ_NUM_SKIP	- Message has already been processed
3507  *	VDC_SEQ_NUM_INVALID	- The seq numbers are so out of sync,
3508  *				  vdc cannot deal with them
3509  */
3510 static int
3511 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg)
3512 {
3513 	ASSERT(vdc != NULL);
3514 	ASSERT(dring_msg != NULL);
3515 	ASSERT(mutex_owned(&vdc->lock));
3516 
3517 	/*
3518 	 * Check to see if the messages were responded to in the correct
3519 	 * order by vds.
3520 	 */
3521 	if ((dring_msg->seq_num <= vdc->seq_num_reply) ||
3522 	    (dring_msg->seq_num > vdc->seq_num)) {
3523 		cmn_err(CE_CONT, "?[%d] Bogus sequence_number %lu: "
3524 			"%lu > expected <= %lu (last proc req %lu sent %lu)\n",
3525 				vdc->instance, dring_msg->seq_num,
3526 				vdc->seq_num_reply, vdc->seq_num,
3527 				vdc->req_id_proc, vdc->req_id);
3528 		return (VDC_SEQ_NUM_INVALID);
3529 	}
3530 	vdc->seq_num_reply = dring_msg->seq_num;
3531 
3532 	if (vdc->req_id_proc < vdc->req_id)
3533 		return (VDC_SEQ_NUM_TODO);
3534 	else
3535 		return (VDC_SEQ_NUM_SKIP);
3536 }
3537 
3538 
3539 /*
3540  * Function:
3541  *	vdc_is_supported_version()
3542  *
3543  * Description:
3544  *	This routine checks if the major/minor version numbers specified in
3545  *	'ver_msg' are supported. If not it finds the next version that is
3546  *	in the supported version list 'vdc_version[]' and sets the fields in
3547  *	'ver_msg' to those values
3548  *
3549  * Arguments:
3550  *	ver_msg	- LDC message sent by vDisk server
3551  *
3552  * Return Code:
3553  *	B_TRUE	- Success
3554  *	B_FALSE	- Version not supported
3555  */
3556 static boolean_t
3557 vdc_is_supported_version(vio_ver_msg_t *ver_msg)
3558 {
3559 	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
3560 
3561 	for (int i = 0; i < vdc_num_versions; i++) {
3562 		ASSERT(vdc_version[i].major > 0);
3563 		ASSERT((i == 0) ||
3564 		    (vdc_version[i].major < vdc_version[i-1].major));
3565 
3566 		/*
3567 		 * If the major versions match, adjust the minor version, if
3568 		 * necessary, down to the highest value supported by this
3569 		 * client. The server should support all minor versions lower
3570 		 * than the value it sent
3571 		 */
3572 		if (ver_msg->ver_major == vdc_version[i].major) {
3573 			if (ver_msg->ver_minor > vdc_version[i].minor) {
3574 				DMSG(0, "Adjusting minor version from %u to %u",
3575 				    ver_msg->ver_minor, vdc_version[i].minor);
3576 				ver_msg->ver_minor = vdc_version[i].minor;
3577 			}
3578 			return (B_TRUE);
3579 		}
3580 
3581 		/*
3582 		 * If the message contains a higher major version number, set
3583 		 * the message's major/minor versions to the current values
3584 		 * and return false, so this message will get resent with
3585 		 * these values, and the server will potentially try again
3586 		 * with the same or a lower version
3587 		 */
3588 		if (ver_msg->ver_major > vdc_version[i].major) {
3589 			ver_msg->ver_major = vdc_version[i].major;
3590 			ver_msg->ver_minor = vdc_version[i].minor;
3591 			DMSG(0, "Suggesting major/minor (0x%x/0x%x)\n",
3592 				ver_msg->ver_major, ver_msg->ver_minor);
3593 
3594 			return (B_FALSE);
3595 		}
3596 
3597 		/*
3598 		 * Otherwise, the message's major version is less than the
3599 		 * current major version, so continue the loop to the next
3600 		 * (lower) supported version
3601 		 */
3602 	}
3603 
3604 	/*
3605 	 * No common version was found; "ground" the version pair in the
3606 	 * message to terminate negotiation
3607 	 */
3608 	ver_msg->ver_major = 0;
3609 	ver_msg->ver_minor = 0;
3610 
3611 	return (B_FALSE);
3612 }
3613 /* -------------------------------------------------------------------------- */
3614 
3615 /*
3616  * DKIO(7) support
3617  */
3618 
3619 typedef struct vdc_dk_arg {
3620 	struct dk_callback	dkc;
3621 	int			mode;
3622 	dev_t			dev;
3623 	vdc_t			*vdc;
3624 } vdc_dk_arg_t;
3625 
3626 /*
3627  * Function:
3628  * 	vdc_dkio_flush_cb()
3629  *
3630  * Description:
3631  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
3632  *	by kernel code.
3633  *
3634  * Arguments:
3635  *	arg	- a pointer to a vdc_dk_arg_t structure.
3636  */
3637 void
3638 vdc_dkio_flush_cb(void *arg)
3639 {
3640 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
3641 	struct dk_callback	*dkc = NULL;
3642 	vdc_t			*vdc = NULL;
3643 	int			rv;
3644 
3645 	if (dk_arg == NULL) {
3646 		cmn_err(CE_CONT, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n");
3647 		return;
3648 	}
3649 	dkc = &dk_arg->dkc;
3650 	vdc = dk_arg->vdc;
3651 	ASSERT(vdc != NULL);
3652 
3653 	rv = vdc_populate_descriptor(vdc, NULL, 0, VD_OP_FLUSH,
3654 		dk_arg->mode, SDPART(getminor(dk_arg->dev)));
3655 	if (rv != 0) {
3656 		DMSG(0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n",
3657 			vdc->instance, rv,
3658 			ddi_model_convert_from(dk_arg->mode & FMODELS));
3659 	}
3660 
3661 	/*
3662 	 * Trigger the call back to notify the caller the the ioctl call has
3663 	 * been completed.
3664 	 */
3665 	if ((dk_arg->mode & FKIOCTL) &&
3666 	    (dkc != NULL) &&
3667 	    (dkc->dkc_callback != NULL)) {
3668 		ASSERT(dkc->dkc_cookie != NULL);
3669 		(*dkc->dkc_callback)(dkc->dkc_cookie, rv);
3670 	}
3671 
3672 	/* Indicate that one less DKIO write flush is outstanding */
3673 	mutex_enter(&vdc->lock);
3674 	vdc->dkio_flush_pending--;
3675 	ASSERT(vdc->dkio_flush_pending >= 0);
3676 	mutex_exit(&vdc->lock);
3677 
3678 	/* free the mem that was allocated when the callback was dispatched */
3679 	kmem_free(arg, sizeof (vdc_dk_arg_t));
3680 }
3681 
3682 /*
3683  * This structure is used in the DKIO(7I) array below.
3684  */
3685 typedef struct vdc_dk_ioctl {
3686 	uint8_t		op;		/* VD_OP_XXX value */
3687 	int		cmd;		/* Solaris ioctl operation number */
3688 	size_t		nbytes;		/* size of structure to be copied */
3689 
3690 	/* function to convert between vDisk and Solaris structure formats */
3691 	int	(*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg,
3692 	    int mode, int dir);
3693 } vdc_dk_ioctl_t;
3694 
3695 /*
3696  * Subset of DKIO(7I) operations currently supported
3697  */
3698 static vdc_dk_ioctl_t	dk_ioctl[] = {
3699 	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	sizeof (int),
3700 		vdc_null_copy_func},
3701 	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
3702 		vdc_get_wce_convert},
3703 	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
3704 		vdc_set_wce_convert},
3705 	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
3706 		vdc_get_vtoc_convert},
3707 	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
3708 		vdc_set_vtoc_convert},
3709 	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
3710 		vdc_get_geom_convert},
3711 	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
3712 		vdc_get_geom_convert},
3713 	{VD_OP_GET_DISKGEOM, 	DKIOCG_VIRTGEOM,	sizeof (vd_geom_t),
3714 		vdc_get_geom_convert},
3715 	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
3716 		vdc_set_geom_convert},
3717 	{VD_OP_GET_EFI,		DKIOCGETEFI,		0,
3718 		vdc_get_efi_convert},
3719 	{VD_OP_SET_EFI,		DKIOCSETEFI,		0,
3720 		vdc_set_efi_convert},
3721 
3722 	/*
3723 	 * These particular ioctls are not sent to the server - vdc fakes up
3724 	 * the necessary info.
3725 	 */
3726 	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
3727 	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
3728 	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
3729 	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
3730 	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
3731 };
3732 
3733 /*
3734  * Function:
3735  *	vd_process_ioctl()
3736  *
3737  * Description:
3738  *	This routine processes disk specific ioctl calls
3739  *
3740  * Arguments:
3741  *	dev	- the device number
3742  *	cmd	- the operation [dkio(7I)] to be processed
3743  *	arg	- pointer to user provided structure
3744  *		  (contains data to be set or reference parameter for get)
3745  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
3746  *
3747  * Return Code:
3748  *	0
3749  *	EFAULT
3750  *	ENXIO
3751  *	EIO
3752  *	ENOTSUP
3753  */
3754 static int
3755 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode)
3756 {
3757 	int		instance = SDUNIT(getminor(dev));
3758 	vdc_t		*vdc = NULL;
3759 	int		rv = -1;
3760 	int		idx = 0;		/* index into dk_ioctl[] */
3761 	size_t		len = 0;		/* #bytes to send to vds */
3762 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
3763 	caddr_t		mem_p = NULL;
3764 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
3765 	struct vtoc	vtoc_saved;
3766 
3767 	DMSG(0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n",
3768 		instance, cmd, dev, ddi_model_convert_from(mode & FMODELS));
3769 
3770 	vdc = ddi_get_soft_state(vdc_state, instance);
3771 	if (vdc == NULL) {
3772 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
3773 		    instance);
3774 		return (ENXIO);
3775 	}
3776 
3777 	/*
3778 	 * Check to see if we can communicate with the vDisk server
3779 	 */
3780 	if (!vdc_is_able_to_tx_data(vdc, O_NONBLOCK)) {
3781 		DMSG(0, "[%d] Not ready to transmit data\n", instance);
3782 		return (ENOLINK);
3783 	}
3784 
3785 	/*
3786 	 * Validate the ioctl operation to be performed.
3787 	 *
3788 	 * If we have looped through the array without finding a match then we
3789 	 * don't support this ioctl.
3790 	 */
3791 	for (idx = 0; idx < nioctls; idx++) {
3792 		if (cmd == dk_ioctl[idx].cmd)
3793 			break;
3794 	}
3795 
3796 	if (idx >= nioctls) {
3797 		cmn_err(CE_CONT, "?[%d] Unsupported ioctl (0x%x)\n",
3798 				vdc->instance, cmd);
3799 		return (ENOTSUP);
3800 	}
3801 
3802 	if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) {
3803 		/* size is not fixed for EFI ioctls, it depends on ioctl arg */
3804 		dk_efi_t	dk_efi;
3805 
3806 		rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode);
3807 		if (rv != 0)
3808 			return (EFAULT);
3809 
3810 		len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length;
3811 	} else {
3812 		len = dk_ioctl[idx].nbytes;
3813 	}
3814 
3815 	/*
3816 	 * Deal with the ioctls which the server does not provide. vdc can
3817 	 * fake these up and return immediately
3818 	 */
3819 	switch (cmd) {
3820 	case CDROMREADOFFSET:
3821 	case DKIOCREMOVABLE:
3822 	case USCSICMD:
3823 		return (ENOTTY);
3824 
3825 	case DKIOCINFO:
3826 		{
3827 			struct dk_cinfo	cinfo;
3828 			if (vdc->cinfo == NULL)
3829 				return (ENXIO);
3830 
3831 			bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
3832 			cinfo.dki_partition = SDPART(getminor(dev));
3833 
3834 			rv = ddi_copyout(&cinfo, (void *)arg,
3835 					sizeof (struct dk_cinfo), mode);
3836 			if (rv != 0)
3837 				return (EFAULT);
3838 
3839 			return (0);
3840 		}
3841 
3842 	case DKIOCGMEDIAINFO:
3843 		{
3844 			if (vdc->minfo == NULL)
3845 				return (ENXIO);
3846 
3847 			rv = ddi_copyout(vdc->minfo, (void *)arg,
3848 					sizeof (struct dk_minfo), mode);
3849 			if (rv != 0)
3850 				return (EFAULT);
3851 
3852 			return (0);
3853 		}
3854 
3855 	case DKIOCFLUSHWRITECACHE:
3856 		{
3857 			struct dk_callback *dkc = (struct dk_callback *)arg;
3858 			vdc_dk_arg_t	*dkarg = NULL;
3859 
3860 			DMSG(1, "[%d] Flush W$: mode %x\n", instance, mode);
3861 
3862 			/*
3863 			 * If the backing device is not a 'real' disk then the
3864 			 * W$ operation request to the vDisk server will fail
3865 			 * so we might as well save the cycles and return now.
3866 			 */
3867 			if (vdc->vdisk_type != VD_DISK_TYPE_DISK)
3868 				return (ENOTTY);
3869 
3870 			/*
3871 			 * If arg is NULL, then there is no callback function
3872 			 * registered and the call operates synchronously; we
3873 			 * break and continue with the rest of the function and
3874 			 * wait for vds to return (i.e. after the request to
3875 			 * vds returns successfully, all writes completed prior
3876 			 * to the ioctl will have been flushed from the disk
3877 			 * write cache to persistent media.
3878 			 *
3879 			 * If a callback function is registered, we dispatch
3880 			 * the request on a task queue and return immediately.
3881 			 * The callback will deal with informing the calling
3882 			 * thread that the flush request is completed.
3883 			 */
3884 			if (dkc == NULL)
3885 				break;
3886 
3887 			dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP);
3888 
3889 			dkarg->mode = mode;
3890 			dkarg->dev = dev;
3891 			bcopy(dkc, &dkarg->dkc, sizeof (*dkc));
3892 
3893 			mutex_enter(&vdc->lock);
3894 			vdc->dkio_flush_pending++;
3895 			dkarg->vdc = vdc;
3896 			mutex_exit(&vdc->lock);
3897 
3898 			/* put the request on a task queue */
3899 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
3900 				(void *)dkarg, DDI_SLEEP);
3901 
3902 			return (rv == NULL ? ENOMEM : 0);
3903 		}
3904 	}
3905 
3906 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
3907 	ASSERT(dk_ioctl[idx].op != 0);
3908 
3909 	/* LDC requires that the memory being mapped is 8-byte aligned */
3910 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
3911 	DMSG(1, "[%d] struct size %ld alloc %ld\n", instance, len, alloc_len);
3912 
3913 	ASSERT(alloc_len != 0);	/* sanity check */
3914 	mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
3915 
3916 	if (cmd == DKIOCSVTOC) {
3917 		/*
3918 		 * Save a copy of the current VTOC so that we can roll back
3919 		 * if the setting of the new VTOC fails.
3920 		 */
3921 		bcopy(vdc->vtoc, &vtoc_saved, sizeof (struct vtoc));
3922 	}
3923 
3924 	/*
3925 	 * Call the conversion function for this ioctl whhich if necessary
3926 	 * converts from the Solaris format to the format ARC'ed
3927 	 * as part of the vDisk protocol (FWARC 2006/195)
3928 	 */
3929 	ASSERT(dk_ioctl[idx].convert != NULL);
3930 	rv = (dk_ioctl[idx].convert)(vdc, arg, mem_p, mode, VD_COPYIN);
3931 	if (rv != 0) {
3932 		DMSG(0, "[%d] convert func returned %d for ioctl 0x%x\n",
3933 				instance, rv, cmd);
3934 		if (mem_p != NULL)
3935 			kmem_free(mem_p, alloc_len);
3936 		return (rv);
3937 	}
3938 
3939 	/*
3940 	 * send request to vds to service the ioctl.
3941 	 */
3942 	rv = vdc_populate_descriptor(vdc, mem_p, alloc_len, dk_ioctl[idx].op,
3943 			mode, SDPART((getminor(dev))));
3944 	if (rv != 0) {
3945 		/*
3946 		 * This is not necessarily an error. The ioctl could
3947 		 * be returning a value such as ENOTTY to indicate
3948 		 * that the ioctl is not applicable.
3949 		 */
3950 		DMSG(0, "[%d] vds returned %d for ioctl 0x%x\n",
3951 			instance, rv, cmd);
3952 		if (mem_p != NULL)
3953 			kmem_free(mem_p, alloc_len);
3954 
3955 		if (cmd == DKIOCSVTOC) {
3956 			/* update of the VTOC has failed, roll back */
3957 			bcopy(&vtoc_saved, vdc->vtoc, sizeof (struct vtoc));
3958 		}
3959 
3960 		return (rv);
3961 	}
3962 
3963 	if (cmd == DKIOCSVTOC) {
3964 		/*
3965 		 * The VTOC has been changed. We need to update the device
3966 		 * nodes to handle the case where an EFI label has been
3967 		 * changed to a VTOC label. We also try and update the device
3968 		 * node properties. Failing to set the properties should
3969 		 * not cause an error to be return the caller though.
3970 		 */
3971 		vdc->vdisk_label = VD_DISK_LABEL_VTOC;
3972 		(void) vdc_create_device_nodes_vtoc(vdc);
3973 
3974 		if (vdc_create_device_nodes_props(vdc)) {
3975 			cmn_err(CE_NOTE, "![%d] Failed to update device nodes"
3976 			    " properties", vdc->instance);
3977 		}
3978 
3979 	} else if (cmd == DKIOCSETEFI) {
3980 		/*
3981 		 * The EFI has been changed. We need to update the device
3982 		 * nodes to handle the case where a VTOC label has been
3983 		 * changed to an EFI label. We also try and update the device
3984 		 * node properties. Failing to set the properties should
3985 		 * not cause an error to be return the caller though.
3986 		 */
3987 		struct dk_gpt *efi;
3988 		size_t efi_len;
3989 
3990 		vdc->vdisk_label = VD_DISK_LABEL_EFI;
3991 		(void) vdc_create_device_nodes_efi(vdc);
3992 
3993 		rv = vdc_efi_alloc_and_read(dev, &efi, &efi_len);
3994 
3995 		if (rv == 0) {
3996 			vdc_store_efi(vdc, efi);
3997 			rv = vdc_create_device_nodes_props(vdc);
3998 			vd_efi_free(efi, efi_len);
3999 		}
4000 
4001 		if (rv) {
4002 			cmn_err(CE_NOTE, "![%d] Failed to update device nodes"
4003 			    " properties", vdc->instance);
4004 		}
4005 	}
4006 
4007 	/*
4008 	 * Call the conversion function (if it exists) for this ioctl
4009 	 * which converts from the format ARC'ed as part of the vDisk
4010 	 * protocol (FWARC 2006/195) back to a format understood by
4011 	 * the rest of Solaris.
4012 	 */
4013 	rv = (dk_ioctl[idx].convert)(vdc, mem_p, arg, mode, VD_COPYOUT);
4014 	if (rv != 0) {
4015 		DMSG(0, "[%d] convert func returned %d for ioctl 0x%x\n",
4016 				instance, rv, cmd);
4017 		if (mem_p != NULL)
4018 			kmem_free(mem_p, alloc_len);
4019 		return (rv);
4020 	}
4021 
4022 	if (mem_p != NULL)
4023 		kmem_free(mem_p, alloc_len);
4024 
4025 	return (rv);
4026 }
4027 
4028 /*
4029  * Function:
4030  *
4031  * Description:
4032  *	This is an empty conversion function used by ioctl calls which
4033  *	do not need to convert the data being passed in/out to userland
4034  */
4035 static int
4036 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir)
4037 {
4038 	_NOTE(ARGUNUSED(vdc))
4039 	_NOTE(ARGUNUSED(from))
4040 	_NOTE(ARGUNUSED(to))
4041 	_NOTE(ARGUNUSED(mode))
4042 	_NOTE(ARGUNUSED(dir))
4043 
4044 	return (0);
4045 }
4046 
4047 static int
4048 vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
4049     int mode, int dir)
4050 {
4051 	_NOTE(ARGUNUSED(vdc))
4052 
4053 	if (dir == VD_COPYIN)
4054 		return (0);		/* nothing to do */
4055 
4056 	if (ddi_copyout(from, to, sizeof (int), mode) != 0)
4057 		return (EFAULT);
4058 
4059 	return (0);
4060 }
4061 
4062 static int
4063 vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
4064     int mode, int dir)
4065 {
4066 	_NOTE(ARGUNUSED(vdc))
4067 
4068 	if (dir == VD_COPYOUT)
4069 		return (0);		/* nothing to do */
4070 
4071 	if (ddi_copyin(from, to, sizeof (int), mode) != 0)
4072 		return (EFAULT);
4073 
4074 	return (0);
4075 }
4076 
4077 /*
4078  * Function:
4079  *	vdc_get_vtoc_convert()
4080  *
4081  * Description:
4082  *	This routine performs the necessary convertions from the DKIOCGVTOC
4083  *	Solaris structure to the format defined in FWARC 2006/195.
4084  *
4085  *	In the struct vtoc definition, the timestamp field is marked as not
4086  *	supported so it is not part of vDisk protocol (FWARC 2006/195).
4087  *	However SVM uses that field to check it can write into the VTOC,
4088  *	so we fake up the info of that field.
4089  *
4090  * Arguments:
4091  *	vdc	- the vDisk client
4092  *	from	- the buffer containing the data to be copied from
4093  *	to	- the buffer to be copied to
4094  *	mode	- flags passed to ioctl() call
4095  *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
4096  *
4097  * Return Code:
4098  *	0	- Success
4099  *	ENXIO	- incorrect buffer passed in.
4100  *	EFAULT	- ddi_copyout routine encountered an error.
4101  */
4102 static int
4103 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4104 {
4105 	int		i;
4106 	void		*tmp_mem = NULL;
4107 	void		*tmp_memp;
4108 	struct vtoc	vt;
4109 	struct vtoc32	vt32;
4110 	int		copy_len = 0;
4111 	int		rv = 0;
4112 
4113 	if (dir != VD_COPYOUT)
4114 		return (0);	/* nothing to do */
4115 
4116 	if ((from == NULL) || (to == NULL))
4117 		return (ENXIO);
4118 
4119 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
4120 		copy_len = sizeof (struct vtoc32);
4121 	else
4122 		copy_len = sizeof (struct vtoc);
4123 
4124 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4125 
4126 	VD_VTOC2VTOC((vd_vtoc_t *)from, &vt);
4127 
4128 	/* fake the VTOC timestamp field */
4129 	for (i = 0; i < V_NUMPAR; i++) {
4130 		vt.timestamp[i] = vdc->vtoc->timestamp[i];
4131 	}
4132 
4133 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
4134 		vtoctovtoc32(vt, vt32);
4135 		tmp_memp = &vt32;
4136 	} else {
4137 		tmp_memp = &vt;
4138 	}
4139 	rv = ddi_copyout(tmp_memp, to, copy_len, mode);
4140 	if (rv != 0)
4141 		rv = EFAULT;
4142 
4143 	kmem_free(tmp_mem, copy_len);
4144 	return (rv);
4145 }
4146 
4147 /*
4148  * Function:
4149  *	vdc_set_vtoc_convert()
4150  *
4151  * Description:
4152  *	This routine performs the necessary convertions from the DKIOCSVTOC
4153  *	Solaris structure to the format defined in FWARC 2006/195.
4154  *
4155  * Arguments:
4156  *	vdc	- the vDisk client
4157  *	from	- Buffer with data
4158  *	to	- Buffer where data is to be copied to
4159  *	mode	- flags passed to ioctl
4160  *	dir	- direction of copy (in or out)
4161  *
4162  * Return Code:
4163  *	0	- Success
4164  *	ENXIO	- Invalid buffer passed in
4165  *	EFAULT	- ddi_copyin of data failed
4166  */
4167 static int
4168 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4169 {
4170 	void		*tmp_mem = NULL;
4171 	struct vtoc	vt;
4172 	struct vtoc	*vtp = &vt;
4173 	vd_vtoc_t	vtvd;
4174 	int		copy_len = 0;
4175 	int		rv = 0;
4176 
4177 	if (dir != VD_COPYIN)
4178 		return (0);	/* nothing to do */
4179 
4180 	if ((from == NULL) || (to == NULL))
4181 		return (ENXIO);
4182 
4183 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
4184 		copy_len = sizeof (struct vtoc32);
4185 	else
4186 		copy_len = sizeof (struct vtoc);
4187 
4188 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4189 
4190 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
4191 	if (rv != 0) {
4192 		kmem_free(tmp_mem, copy_len);
4193 		return (EFAULT);
4194 	}
4195 
4196 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
4197 		vtoc32tovtoc((*(struct vtoc32 *)tmp_mem), vt);
4198 	} else {
4199 		vtp = tmp_mem;
4200 	}
4201 
4202 	/*
4203 	 * The VTOC is being changed, then vdc needs to update the copy
4204 	 * it saved in the soft state structure.
4205 	 */
4206 	bcopy(vtp, vdc->vtoc, sizeof (struct vtoc));
4207 
4208 	VTOC2VD_VTOC(vtp, &vtvd);
4209 	bcopy(&vtvd, to, sizeof (vd_vtoc_t));
4210 	kmem_free(tmp_mem, copy_len);
4211 
4212 	return (0);
4213 }
4214 
4215 /*
4216  * Function:
4217  *	vdc_get_geom_convert()
4218  *
4219  * Description:
4220  *	This routine performs the necessary convertions from the DKIOCGGEOM,
4221  *	DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format
4222  *	defined in FWARC 2006/195
4223  *
4224  * Arguments:
4225  *	vdc	- the vDisk client
4226  *	from	- Buffer with data
4227  *	to	- Buffer where data is to be copied to
4228  *	mode	- flags passed to ioctl
4229  *	dir	- direction of copy (in or out)
4230  *
4231  * Return Code:
4232  *	0	- Success
4233  *	ENXIO	- Invalid buffer passed in
4234  *	EFAULT	- ddi_copyout of data failed
4235  */
4236 static int
4237 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4238 {
4239 	_NOTE(ARGUNUSED(vdc))
4240 
4241 	struct dk_geom	geom;
4242 	int	copy_len = sizeof (struct dk_geom);
4243 	int	rv = 0;
4244 
4245 	if (dir != VD_COPYOUT)
4246 		return (0);	/* nothing to do */
4247 
4248 	if ((from == NULL) || (to == NULL))
4249 		return (ENXIO);
4250 
4251 	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
4252 	rv = ddi_copyout(&geom, to, copy_len, mode);
4253 	if (rv != 0)
4254 		rv = EFAULT;
4255 
4256 	return (rv);
4257 }
4258 
4259 /*
4260  * Function:
4261  *	vdc_set_geom_convert()
4262  *
4263  * Description:
4264  *	This routine performs the necessary convertions from the DKIOCSGEOM
4265  *	Solaris structure to the format defined in FWARC 2006/195.
4266  *
4267  * Arguments:
4268  *	vdc	- the vDisk client
4269  *	from	- Buffer with data
4270  *	to	- Buffer where data is to be copied to
4271  *	mode	- flags passed to ioctl
4272  *	dir	- direction of copy (in or out)
4273  *
4274  * Return Code:
4275  *	0	- Success
4276  *	ENXIO	- Invalid buffer passed in
4277  *	EFAULT	- ddi_copyin of data failed
4278  */
4279 static int
4280 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4281 {
4282 	_NOTE(ARGUNUSED(vdc))
4283 
4284 	vd_geom_t	vdgeom;
4285 	void		*tmp_mem = NULL;
4286 	int		copy_len = sizeof (struct dk_geom);
4287 	int		rv = 0;
4288 
4289 	if (dir != VD_COPYIN)
4290 		return (0);	/* nothing to do */
4291 
4292 	if ((from == NULL) || (to == NULL))
4293 		return (ENXIO);
4294 
4295 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4296 
4297 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
4298 	if (rv != 0) {
4299 		kmem_free(tmp_mem, copy_len);
4300 		return (EFAULT);
4301 	}
4302 	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
4303 	bcopy(&vdgeom, to, sizeof (vdgeom));
4304 	kmem_free(tmp_mem, copy_len);
4305 
4306 	return (0);
4307 }
4308 
4309 static int
4310 vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4311 {
4312 	_NOTE(ARGUNUSED(vdc))
4313 
4314 	vd_efi_t	*vd_efi;
4315 	dk_efi_t	dk_efi;
4316 	int		rv = 0;
4317 	void		*uaddr;
4318 
4319 	if ((from == NULL) || (to == NULL))
4320 		return (ENXIO);
4321 
4322 	if (dir == VD_COPYIN) {
4323 
4324 		vd_efi = (vd_efi_t *)to;
4325 
4326 		rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode);
4327 		if (rv != 0)
4328 			return (EFAULT);
4329 
4330 		vd_efi->lba = dk_efi.dki_lba;
4331 		vd_efi->length = dk_efi.dki_length;
4332 		bzero(vd_efi->data, vd_efi->length);
4333 
4334 	} else {
4335 
4336 		rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode);
4337 		if (rv != 0)
4338 			return (EFAULT);
4339 
4340 		uaddr = dk_efi.dki_data;
4341 
4342 		dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
4343 
4344 		VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi);
4345 
4346 		rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length,
4347 		    mode);
4348 		if (rv != 0)
4349 			return (EFAULT);
4350 
4351 		kmem_free(dk_efi.dki_data, dk_efi.dki_length);
4352 	}
4353 
4354 	return (0);
4355 }
4356 
4357 static int
4358 vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4359 {
4360 	_NOTE(ARGUNUSED(vdc))
4361 
4362 	dk_efi_t	dk_efi;
4363 	void		*uaddr;
4364 
4365 	if (dir == VD_COPYOUT)
4366 		return (0);	/* nothing to do */
4367 
4368 	if ((from == NULL) || (to == NULL))
4369 		return (ENXIO);
4370 
4371 	if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0)
4372 		return (EFAULT);
4373 
4374 	uaddr = dk_efi.dki_data;
4375 
4376 	dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
4377 
4378 	if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0)
4379 		return (EFAULT);
4380 
4381 	DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to);
4382 
4383 	kmem_free(dk_efi.dki_data, dk_efi.dki_length);
4384 
4385 	return (0);
4386 }
4387 
4388 /*
4389  * Function:
4390  *	vdc_create_fake_geometry()
4391  *
4392  * Description:
4393  *	This routine fakes up the disk info needed for some DKIO ioctls.
4394  *		- DKIOCINFO
4395  *		- DKIOCGMEDIAINFO
4396  *
4397  *	[ just like lofi(7D) and ramdisk(7D) ]
4398  *
4399  * Arguments:
4400  *	vdc	- soft state pointer for this instance of the device driver.
4401  *
4402  * Return Code:
4403  *	0	- Success
4404  */
4405 static int
4406 vdc_create_fake_geometry(vdc_t *vdc)
4407 {
4408 	int	rv = 0;
4409 
4410 	ASSERT(vdc != NULL);
4411 
4412 	/*
4413 	 * DKIOCINFO support
4414 	 */
4415 	vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
4416 
4417 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
4418 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
4419 	/* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */
4420 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz;
4421 	vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
4422 	vdc->cinfo->dki_flags = DKI_FMTVOL;
4423 	vdc->cinfo->dki_cnum = 0;
4424 	vdc->cinfo->dki_addr = 0;
4425 	vdc->cinfo->dki_space = 0;
4426 	vdc->cinfo->dki_prio = 0;
4427 	vdc->cinfo->dki_vec = 0;
4428 	vdc->cinfo->dki_unit = vdc->instance;
4429 	vdc->cinfo->dki_slave = 0;
4430 	/*
4431 	 * The partition number will be created on the fly depending on the
4432 	 * actual slice (i.e. minor node) that is used to request the data.
4433 	 */
4434 	vdc->cinfo->dki_partition = 0;
4435 
4436 	/*
4437 	 * DKIOCGMEDIAINFO support
4438 	 */
4439 	if (vdc->minfo == NULL)
4440 		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
4441 	vdc->minfo->dki_media_type = DK_FIXED_DISK;
4442 	vdc->minfo->dki_capacity = vdc->vdisk_size;
4443 	vdc->minfo->dki_lbsize = DEV_BSIZE;
4444 
4445 	return (rv);
4446 }
4447 
4448 /*
4449  * Function:
4450  *	vdc_setup_disk_layout()
4451  *
4452  * Description:
4453  *	This routine discovers all the necessary details about the "disk"
4454  *	by requesting the data that is available from the vDisk server and by
4455  *	faking up the rest of the data.
4456  *
4457  * Arguments:
4458  *	vdc	- soft state pointer for this instance of the device driver.
4459  *
4460  * Return Code:
4461  *	0	- Success
4462  */
4463 static int
4464 vdc_setup_disk_layout(vdc_t *vdc)
4465 {
4466 	buf_t	*buf;	/* BREAD requests need to be in a buf_t structure */
4467 	dev_t	dev;
4468 	int	slice = 0;
4469 	int	rv;
4470 
4471 	ASSERT(vdc != NULL);
4472 
4473 	rv = vdc_create_fake_geometry(vdc);
4474 	if (rv != 0) {
4475 		cmn_err(CE_NOTE, "[%d] Failed to create disk geometry (err%d)",
4476 				vdc->instance, rv);
4477 	}
4478 
4479 	if (vdc->vtoc == NULL)
4480 		vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP);
4481 
4482 	dev = makedevice(ddi_driver_major(vdc->dip),
4483 				VD_MAKE_DEV(vdc->instance, 0));
4484 	rv = vd_process_ioctl(dev, DKIOCGVTOC, (caddr_t)vdc->vtoc, FKIOCTL);
4485 
4486 	if (rv && rv != ENOTSUP) {
4487 		cmn_err(CE_NOTE, "[%d] Failed to get VTOC (err=%d)",
4488 				vdc->instance, rv);
4489 		return (rv);
4490 	}
4491 
4492 	if (rv == ENOTSUP) {
4493 		/*
4494 		 * If the device does not support VTOC then we try
4495 		 * to read an EFI label.
4496 		 */
4497 		struct dk_gpt *efi;
4498 		size_t efi_len;
4499 
4500 		rv = vdc_efi_alloc_and_read(dev, &efi, &efi_len);
4501 
4502 		if (rv) {
4503 			cmn_err(CE_NOTE, "[%d] Failed to get EFI (err=%d)",
4504 			    vdc->instance, rv);
4505 			return (rv);
4506 		}
4507 
4508 		vdc->vdisk_label = VD_DISK_LABEL_EFI;
4509 		vdc_store_efi(vdc, efi);
4510 		vd_efi_free(efi, efi_len);
4511 
4512 		return (0);
4513 	}
4514 
4515 	vdc->vdisk_label = VD_DISK_LABEL_VTOC;
4516 
4517 	/*
4518 	 * find the slice that represents the entire "disk" and use that to
4519 	 * read the disk label. The convention in Solaris is that slice 2
4520 	 * represents the whole disk so we check that it is, otherwise we
4521 	 * default to slice 0
4522 	 */
4523 	if ((vdc->vdisk_type == VD_DISK_TYPE_DISK) &&
4524 	    (vdc->vtoc->v_part[2].p_tag == V_BACKUP)) {
4525 		slice = 2;
4526 	} else {
4527 		slice = 0;
4528 	}
4529 
4530 	/*
4531 	 * Read disk label from start of disk
4532 	 */
4533 	vdc->label = kmem_zalloc(DK_LABEL_SIZE, KM_SLEEP);
4534 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
4535 	bioinit(buf);
4536 	buf->b_un.b_addr = (caddr_t)vdc->label;
4537 	buf->b_bcount = DK_LABEL_SIZE;
4538 	buf->b_flags = B_BUSY | B_READ;
4539 	buf->b_dev = dev;
4540 	rv = vdc_populate_descriptor(vdc, (caddr_t)buf, DK_LABEL_SIZE,
4541 			VD_OP_BREAD, 0, slice);
4542 	rv = biowait(buf);
4543 	biofini(buf);
4544 	kmem_free(buf, sizeof (buf_t));
4545 
4546 	return (rv);
4547 }
4548 
4549 /*
4550  * Function:
4551  *	vdc_setup_devid()
4552  *
4553  * Description:
4554  *	This routine discovers the devid of a vDisk. It requests the devid of
4555  *	the underlying device from the vDisk server, builds an encapsulated
4556  *	devid based on the retrieved devid and registers that new devid to
4557  *	the vDisk.
4558  *
4559  * Arguments:
4560  *	vdc	- soft state pointer for this instance of the device driver.
4561  *
4562  * Return Code:
4563  *	0	- A devid was succesfully registered for the vDisk
4564  */
4565 static int
4566 vdc_setup_devid(vdc_t *vdc)
4567 {
4568 	int rv;
4569 	vd_devid_t *vd_devid;
4570 	size_t bufsize, bufid_len;
4571 
4572 	/*
4573 	 * At first sight, we don't know the size of the devid that the
4574 	 * server will return but this size will be encoded into the
4575 	 * reply. So we do a first request using a default size then we
4576 	 * check if this size was large enough. If not then we do a second
4577 	 * request with the correct size returned by the server. Note that
4578 	 * ldc requires size to be 8-byte aligned.
4579 	 */
4580 	bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN),
4581 	    sizeof (uint64_t));
4582 	vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
4583 	bufid_len = bufsize - sizeof (vd_efi_t) - 1;
4584 
4585 	rv = vdc_populate_descriptor(vdc, (caddr_t)vd_devid, bufsize,
4586 	    VD_OP_GET_DEVID, 0, 0);
4587 	if (rv) {
4588 		kmem_free(vd_devid, bufsize);
4589 		return (rv);
4590 	}
4591 
4592 	if (vd_devid->length > bufid_len) {
4593 		/*
4594 		 * The returned devid is larger than the buffer used. Try again
4595 		 * with a buffer with the right size.
4596 		 */
4597 		kmem_free(vd_devid, bufsize);
4598 		bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length),
4599 		    sizeof (uint64_t));
4600 		vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
4601 		bufid_len = bufsize - sizeof (vd_efi_t) - 1;
4602 
4603 		rv = vdc_populate_descriptor(vdc, (caddr_t)vd_devid, bufsize,
4604 		    VD_OP_GET_DEVID, 0, 0);
4605 		if (rv) {
4606 			kmem_free(vd_devid, bufsize);
4607 			return (rv);
4608 		}
4609 	}
4610 
4611 	/*
4612 	 * The virtual disk should have the same device id as the one associated
4613 	 * with the physical disk it is mapped on, otherwise sharing a disk
4614 	 * between a LDom and a non-LDom may not work (for example for a shared
4615 	 * SVM disk set).
4616 	 *
4617 	 * The DDI framework does not allow creating a device id with any
4618 	 * type so we first create a device id of type DEVID_ENCAP and then
4619 	 * we restore the orignal type of the physical device.
4620 	 */
4621 
4622 	/* build an encapsulated devid based on the returned devid */
4623 	if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length,
4624 		vd_devid->id, &vdc->devid) != DDI_SUCCESS) {
4625 		DMSG(1, "[%d] Fail to created devid\n", vdc->instance);
4626 		kmem_free(vd_devid, bufsize);
4627 		return (1);
4628 	}
4629 
4630 	DEVID_FORMTYPE((impl_devid_t *)vdc->devid, vd_devid->type);
4631 
4632 	ASSERT(ddi_devid_valid(vdc->devid) == DDI_SUCCESS);
4633 
4634 	kmem_free(vd_devid, bufsize);
4635 
4636 	if (ddi_devid_register(vdc->dip, vdc->devid) != DDI_SUCCESS) {
4637 		DMSG(1, "[%d] Fail to register devid\n", vdc->instance);
4638 		return (1);
4639 	}
4640 
4641 	return (0);
4642 }
4643 
4644 static void
4645 vdc_store_efi(vdc_t *vdc, struct dk_gpt *efi)
4646 {
4647 	struct vtoc *vtoc = vdc->vtoc;
4648 
4649 	vd_efi_to_vtoc(efi, vtoc);
4650 	if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) {
4651 		/*
4652 		 * vd_efi_to_vtoc() will store information about the EFI Sun
4653 		 * reserved partition (representing the entire disk) into
4654 		 * partition 7. However single-slice device will only have
4655 		 * that single partition and the vdc driver expects to find
4656 		 * information about that partition in slice 0. So we need
4657 		 * to copy information from slice 7 to slice 0.
4658 		 */
4659 		vtoc->v_part[0].p_tag = vtoc->v_part[VD_EFI_WD_SLICE].p_tag;
4660 		vtoc->v_part[0].p_flag = vtoc->v_part[VD_EFI_WD_SLICE].p_flag;
4661 		vtoc->v_part[0].p_start = vtoc->v_part[VD_EFI_WD_SLICE].p_start;
4662 		vtoc->v_part[0].p_size =  vtoc->v_part[VD_EFI_WD_SLICE].p_size;
4663 	}
4664 }
4665