1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/systm.h> 30 #include <sys/archsystm.h> 31 #include <sys/machparam.h> 32 #include <sys/machsystm.h> 33 #include <sys/cpu.h> 34 #include <sys/elf_SPARC.h> 35 #include <vm/hat_sfmmu.h> 36 #include <vm/page.h> 37 #include <vm/vm_dep.h> 38 #include <sys/cpuvar.h> 39 #include <sys/async.h> 40 #include <sys/cmn_err.h> 41 #include <sys/debug.h> 42 #include <sys/dditypes.h> 43 #include <sys/sunddi.h> 44 #include <sys/cpu_module.h> 45 #include <sys/prom_debug.h> 46 #include <sys/vmsystm.h> 47 #include <sys/prom_plat.h> 48 #include <sys/sysmacros.h> 49 #include <sys/intreg.h> 50 #include <sys/machtrap.h> 51 #include <sys/ontrap.h> 52 #include <sys/ivintr.h> 53 #include <sys/atomic.h> 54 #include <sys/panic.h> 55 #include <sys/dtrace.h> 56 #include <sys/simulate.h> 57 #include <sys/fault.h> 58 #include <sys/niagara2regs.h> 59 #include <sys/hsvc.h> 60 #include <sys/trapstat.h> 61 62 uint_t root_phys_addr_lo_mask = 0xffffffffU; 63 char cpu_module_name[] = "SUNW,UltraSPARC-T2"; 64 65 /* 66 * Hypervisor services information for the NIAGARA2 CPU module 67 */ 68 static boolean_t niagara2_hsvc_available = B_TRUE; 69 static uint64_t niagara2_sup_minor; /* Supported minor number */ 70 static hsvc_info_t niagara2_hsvc = { 71 HSVC_REV_1, NULL, HSVC_GROUP_NIAGARA2_CPU, NIAGARA2_HSVC_MAJOR, 72 NIAGARA2_HSVC_MINOR, cpu_module_name 73 }; 74 75 void 76 cpu_setup(void) 77 { 78 extern int mmu_exported_pagesize_mask; 79 extern int cpc_has_overflow_intr; 80 int status; 81 82 /* 83 * Negotiate the API version for Niagara2 specific hypervisor 84 * services. 85 */ 86 status = hsvc_register(&niagara2_hsvc, &niagara2_sup_minor); 87 if (status != 0) { 88 cmn_err(CE_WARN, "%s: cannot negotiate hypervisor services " 89 "group: 0x%lx major: 0x%lx minor: 0x%lx errno: %d", 90 niagara2_hsvc.hsvc_modname, niagara2_hsvc.hsvc_group, 91 niagara2_hsvc.hsvc_major, niagara2_hsvc.hsvc_minor, status); 92 niagara2_hsvc_available = B_FALSE; 93 } 94 95 /* 96 * The setup common to all CPU modules is done in cpu_setup_common 97 * routine. 98 */ 99 cpu_setup_common(NULL); 100 101 cache |= (CACHE_PTAG | CACHE_IOCOHERENT); 102 103 if ((mmu_exported_pagesize_mask & 104 DEFAULT_SUN4V_MMU_PAGESIZE_MASK) != 105 DEFAULT_SUN4V_MMU_PAGESIZE_MASK) 106 cmn_err(CE_PANIC, "machine description" 107 " does not have required sun4v page sizes" 108 " 8K, 64K and 4M: MD mask is 0x%x", 109 mmu_exported_pagesize_mask); 110 111 cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2 | AV_SPARC_ASI_BLK_INIT; 112 113 /* 114 * Niagara2 supports a 48-bit subset of the full 64-bit virtual 115 * address space. Virtual addresses between 0x0000800000000000 116 * and 0xffff.7fff.ffff.ffff inclusive lie within a "VA Hole" 117 * and must never be mapped. In addition, software must not use 118 * pages within 4GB of the VA hole as instruction pages to 119 * avoid problems with prefetching into the VA hole. 120 */ 121 hole_start = (caddr_t)((1ull << (va_bits - 1)) - (1ull << 32)); 122 hole_end = (caddr_t)((0ull - (1ull << (va_bits - 1))) + (1ull << 32)); 123 124 /* 125 * Niagara2 has a performance counter overflow interrupt 126 */ 127 cpc_has_overflow_intr = 1; 128 129 /* 130 * Enable 4M pages for OOB. 131 */ 132 max_uheap_lpsize = MMU_PAGESIZE4M; 133 max_ustack_lpsize = MMU_PAGESIZE4M; 134 max_privmap_lpsize = MMU_PAGESIZE4M; 135 } 136 137 /* 138 * Set the magic constants of the implementation. 139 */ 140 void 141 cpu_fiximp(struct cpu_node *cpunode) 142 { 143 /* 144 * The Cache node is optional in MD. Therefore in case "Cache" 145 * node does not exists in MD, set the default L2 cache associativity, 146 * size, linesize. 147 */ 148 if (cpunode->ecache_size == 0) 149 cpunode->ecache_size = L2CACHE_SIZE; 150 if (cpunode->ecache_linesize == 0) 151 cpunode->ecache_linesize = L2CACHE_LINESIZE; 152 if (cpunode->ecache_associativity == 0) 153 cpunode->ecache_associativity = L2CACHE_ASSOCIATIVITY; 154 } 155 156 static int niagara2_cpucnt; 157 158 void 159 cpu_init_private(struct cpu *cp) 160 { 161 extern int niagara_kstat_init(void); 162 163 /* 164 * The cpu_ipipe and cpu_fpu fields are initialized based on 165 * the execution unit sharing information from the MD. They default 166 * to the virtual CPU id in the absence of such information. 167 */ 168 cp->cpu_m.cpu_ipipe = cpunodes[cp->cpu_id].exec_unit_mapping; 169 if (cp->cpu_m.cpu_ipipe == NO_EU_MAPPING_FOUND) 170 cp->cpu_m.cpu_ipipe = (id_t)(cp->cpu_id); 171 172 cp->cpu_m.cpu_fpu = cpunodes[cp->cpu_id].fpu_mapping; 173 if (cp->cpu_m.cpu_fpu == NO_EU_MAPPING_FOUND) 174 cp->cpu_m.cpu_fpu = (id_t)(cp->cpu_id); 175 176 /* 177 * Niagara 2 defines the core to be at the FPU level 178 */ 179 cp->cpu_m.cpu_core = cp->cpu_m.cpu_fpu; 180 181 ASSERT(MUTEX_HELD(&cpu_lock)); 182 if ((niagara2_cpucnt++ == 0) && (niagara2_hsvc_available == B_TRUE)) 183 (void) niagara_kstat_init(); 184 } 185 186 /*ARGSUSED*/ 187 void 188 cpu_uninit_private(struct cpu *cp) 189 { 190 extern int niagara_kstat_fini(void); 191 192 ASSERT(MUTEX_HELD(&cpu_lock)); 193 if ((--niagara2_cpucnt == 0) && (niagara2_hsvc_available == B_TRUE)) 194 (void) niagara_kstat_fini(); 195 } 196 197 /* 198 * On Niagara2, any flush will cause all preceding stores to be 199 * synchronized wrt the i$, regardless of address or ASI. In fact, 200 * the address is ignored, so we always flush address 0. 201 */ 202 /*ARGSUSED*/ 203 void 204 dtrace_flush_sec(uintptr_t addr) 205 { 206 doflush(0); 207 } 208 209 /* 210 * Trapstat support for Niagara2 processor 211 * The Niagara2 provides HWTW support for TSB lookup and with HWTW 212 * enabled no TSB hit information will be available. Therefore setting 213 * the time spent in TLB miss handler for TSB hits to 0. 214 */ 215 int 216 cpu_trapstat_conf(int cmd) 217 { 218 int status = 0; 219 220 switch (cmd) { 221 case CPU_TSTATCONF_INIT: 222 case CPU_TSTATCONF_FINI: 223 case CPU_TSTATCONF_ENABLE: 224 case CPU_TSTATCONF_DISABLE: 225 break; 226 default: 227 status = EINVAL; 228 break; 229 } 230 return (status); 231 } 232 233 void 234 cpu_trapstat_data(void *buf, uint_t tstat_pgszs) 235 { 236 tstat_pgszdata_t *tstatp = (tstat_pgszdata_t *)buf; 237 int i; 238 239 for (i = 0; i < tstat_pgszs; i++, tstatp++) { 240 tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_count = 0; 241 tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_time = 0; 242 tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_count = 0; 243 tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_time = 0; 244 tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_count = 0; 245 tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_time = 0; 246 tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_count = 0; 247 tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_time = 0; 248 } 249 } 250 251 /* NI2 L2$ index is pa[32:28]^pa[17:13].pa[19:18]^pa[12:11].pa[10:6] */ 252 uint_t 253 page_pfn_2_color_cpu(pfn_t pfn, uchar_t szc) 254 { 255 uint_t color; 256 257 ASSERT(szc <= TTE256M); 258 259 pfn = PFN_BASE(pfn, szc); 260 color = ((pfn >> 15) ^ pfn) & 0x1f; 261 if (szc >= TTE4M) 262 return (color); 263 264 color = (color << 2) | ((pfn >> 5) & 0x3); 265 266 return (szc <= TTE64K ? color : (color >> 1)); 267 } 268 269 #if TTE256M != 5 270 #error TTE256M is not 5 271 #endif 272 273 uint_t 274 page_get_nsz_color_mask_cpu(uchar_t szc, uint_t mask) 275 { 276 static uint_t ni2_color_masks[5] = {0x63, 0x1e, 0x3e, 0x1f, 0x1f}; 277 ASSERT(szc < TTE256M); 278 279 mask &= ni2_color_masks[szc]; 280 return ((szc == TTE64K || szc == TTE512K) ? (mask >> 1) : mask); 281 } 282 283 uint_t 284 page_get_nsz_color_cpu(uchar_t szc, uint_t color) 285 { 286 ASSERT(szc < TTE256M); 287 return ((szc == TTE64K || szc == TTE512K) ? (color >> 1) : color); 288 } 289 290 uint_t 291 page_get_color_shift_cpu(uchar_t szc, uchar_t nszc) 292 { 293 ASSERT(nszc > szc); 294 ASSERT(nszc <= TTE256M); 295 296 if (szc <= TTE64K) 297 return ((nszc >= TTE4M) ? 2 : ((nszc >= TTE512K) ? 1 : 0)); 298 if (szc == TTE512K) 299 return (1); 300 301 return (0); 302 } 303 304 /*ARGSUSED*/ 305 pfn_t 306 page_next_pfn_for_color_cpu(pfn_t pfn, uchar_t szc, uint_t color, 307 uint_t ceq_mask, uint_t color_mask) 308 { 309 pfn_t pstep = PNUM_SIZE(szc); 310 pfn_t npfn, pfn_ceq_mask, pfn_color; 311 pfn_t tmpmask, mask = (pfn_t)-1; 312 313 ASSERT((color & ~ceq_mask) == 0); 314 315 if (((page_pfn_2_color_cpu(pfn, szc) ^ color) & ceq_mask) == 0) { 316 317 /* we start from the page with correct color */ 318 if (szc >= TTE512K) { 319 if (szc >= TTE4M) { 320 /* page color is PA[32:28] */ 321 pfn_ceq_mask = ceq_mask << 15; 322 } else { 323 /* page color is PA[32:28].PA[19:19] */ 324 pfn_ceq_mask = ((ceq_mask & 1) << 6) | 325 ((ceq_mask >> 1) << 15); 326 } 327 pfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask); 328 return (pfn); 329 } else { 330 /* 331 * We deal 64K or 8K page. Check if we could the 332 * satisfy the request without changing PA[32:28] 333 */ 334 pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2); 335 npfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask); 336 337 if ((((npfn ^ pfn) >> 15) & 0x1f) == 0) 338 return (npfn); 339 340 /* 341 * for next pfn we have to change bits PA[32:28] 342 * set PA[63:28] and PA[19:18] of the next pfn 343 */ 344 npfn = (pfn >> 15) << 15; 345 npfn |= (ceq_mask & color & 3) << 5; 346 pfn_ceq_mask = (szc == TTE8K) ? 0 : 347 (ceq_mask & 0x1c) << 13; 348 npfn = ADD_MASKED(npfn, (1 << 15), pfn_ceq_mask, mask); 349 350 /* 351 * set bits PA[17:13] to match the color 352 */ 353 ceq_mask >>= 2; 354 color = (color >> 2) & ceq_mask; 355 npfn |= ((npfn >> 15) ^ color) & ceq_mask; 356 return (npfn); 357 } 358 } 359 360 /* 361 * we start from the page with incorrect color - rare case 362 */ 363 if (szc >= TTE512K) { 364 if (szc >= TTE4M) { 365 /* page color is in bits PA[32:28] */ 366 npfn = ((pfn >> 20) << 20) | (color << 15); 367 pfn_ceq_mask = (ceq_mask << 15) | 0x7fff; 368 } else { 369 /* try get the right color by changing bit PA[19:19] */ 370 npfn = pfn + pstep; 371 if (((page_pfn_2_color_cpu(npfn, szc) ^ color) & 372 ceq_mask) == 0) 373 return (npfn); 374 375 /* page color is PA[32:28].PA[19:19] */ 376 pfn_ceq_mask = ((ceq_mask & 1) << 6) | 377 ((ceq_mask >> 1) << 15) | (0xff << 7); 378 pfn_color = ((color & 1) << 6) | ((color >> 1) << 15); 379 npfn = ((pfn >> 20) << 20) | pfn_color; 380 } 381 382 while (npfn <= pfn) { 383 npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask, mask); 384 } 385 return (npfn); 386 } 387 388 /* 389 * We deal 64K or 8K page of incorrect color. 390 * Try correcting color without changing PA[32:28] 391 */ 392 393 pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2); 394 pfn_color = ((color & 3) << 5) | (color >> 2); 395 npfn = (pfn & ~(pfn_t)0x7f); 396 npfn |= (((pfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask; 397 npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn; 398 399 if (((page_pfn_2_color_cpu(npfn, szc) ^ color) & ceq_mask) == 0) { 400 401 /* the color is fixed - find the next page */ 402 while (npfn <= pfn) { 403 npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask, mask); 404 } 405 if ((((npfn ^ pfn) >> 15) & 0x1f) == 0) 406 return (npfn); 407 } 408 409 /* to fix the color need to touch PA[32:28] */ 410 npfn = (szc == TTE8K) ? ((pfn >> 15) << 15) : 411 (((pfn >> 18) << 18) | ((color & 0x1c) << 13)); 412 tmpmask = (szc == TTE8K) ? 0 : (ceq_mask & 0x1c) << 13; 413 414 while (npfn <= pfn) { 415 npfn = ADD_MASKED(npfn, (1 << 15), tmpmask, mask); 416 } 417 418 /* set bits PA[19:13] to match the color */ 419 npfn |= (((npfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask; 420 npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn; 421 422 ASSERT(((page_pfn_2_color_cpu(npfn, szc) ^ color) & ceq_mask) == 0); 423 424 return (npfn); 425 } 426 427 /* 428 * init page coloring 429 */ 430 void 431 page_coloring_init_cpu() 432 { 433 int i; 434 uint_t colors; 435 436 hw_page_array[0].hp_colors = 1 << 7; 437 hw_page_array[1].hp_colors = 1 << 7; 438 hw_page_array[2].hp_colors = 1 << 6; 439 440 for (i = 3; i < mmu_page_sizes; i++) { 441 hw_page_array[i].hp_colors = 1 << 5; 442 } 443 444 if (colorequiv > 1) { 445 int a = lowbit(colorequiv) - 1; 446 447 if (a > 15) 448 a = 15; 449 450 for (i = 0; i < mmu_page_sizes; i++) { 451 if ((colors = hw_page_array[i].hp_colors) <= 1) { 452 continue; 453 } 454 while ((colors >> a) == 0) 455 a--; 456 colorequivszc[i] = (a << 4); 457 } 458 } 459 } 460