1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Platform specific implementation code 30 */ 31 32 #define SUNDDI_IMPL 33 34 #include <sys/types.h> 35 #include <sys/promif.h> 36 #include <sys/prom_isa.h> 37 #include <sys/prom_plat.h> 38 #include <sys/mmu.h> 39 #include <vm/hat_sfmmu.h> 40 #include <sys/iommu.h> 41 #include <sys/scb.h> 42 #include <sys/cpuvar.h> 43 #include <sys/intreg.h> 44 #include <sys/pte.h> 45 #include <vm/hat.h> 46 #include <vm/page.h> 47 #include <vm/as.h> 48 #include <sys/cpr.h> 49 #include <sys/kmem.h> 50 #include <sys/clock.h> 51 #include <sys/kmem.h> 52 #include <sys/panic.h> 53 #include <vm/seg_kmem.h> 54 #include <sys/cpu_module.h> 55 #include <sys/callb.h> 56 #include <sys/machsystm.h> 57 #include <sys/vmsystm.h> 58 #include <sys/systm.h> 59 #include <sys/archsystm.h> 60 #include <sys/stack.h> 61 #include <sys/fs/ufs_fs.h> 62 #include <sys/memlist.h> 63 #include <sys/bootconf.h> 64 #include <sys/thread.h> 65 #include <vm/vm_dep.h> 66 67 extern void cpr_clear_bitmaps(void); 68 extern void dtlb_wr_entry(uint_t, tte_t *, uint64_t *); 69 extern void itlb_wr_entry(uint_t, tte_t *, uint64_t *); 70 71 static int i_cpr_storage_desc_alloc(csd_t **, pgcnt_t *, csd_t **, int); 72 static void i_cpr_storage_desc_init(csd_t *, pgcnt_t, csd_t *); 73 static caddr_t i_cpr_storage_data_alloc(pgcnt_t, pgcnt_t *, int); 74 static int cpr_dump_sensitive(vnode_t *, csd_t *); 75 static void i_cpr_clear_entries(uint64_t, uint64_t); 76 static void i_cpr_xcall(xcfunc_t); 77 78 void i_cpr_storage_free(void); 79 80 extern void *i_cpr_data_page; 81 extern int cpr_test_mode; 82 extern int cpr_nbitmaps; 83 extern char cpr_default_path[]; 84 extern caddr_t textva, datava; 85 86 static struct cpr_map_info cpr_prom_retain[CPR_PROM_RETAIN_CNT]; 87 caddr_t cpr_vaddr = NULL; 88 89 static uint_t sensitive_pages_saved; 90 static uint_t sensitive_size_saved; 91 92 caddr_t i_cpr_storage_data_base; 93 caddr_t i_cpr_storage_data_end; 94 csd_t *i_cpr_storage_desc_base; 95 csd_t *i_cpr_storage_desc_end; /* one byte beyond last used descp */ 96 csd_t *i_cpr_storage_desc_last_used; /* last used descriptor */ 97 caddr_t sensitive_write_ptr; /* position for next storage write */ 98 99 size_t i_cpr_sensitive_bytes_dumped; 100 pgcnt_t i_cpr_sensitive_pgs_dumped; 101 pgcnt_t i_cpr_storage_data_sz; /* in pages */ 102 pgcnt_t i_cpr_storage_desc_pgcnt; /* in pages */ 103 104 ushort_t cpr_mach_type = CPR_MACHTYPE_4U; 105 static csu_md_t m_info; 106 107 108 #define MAX_STORAGE_RETRY 3 109 #define MAX_STORAGE_ALLOC_RETRY 3 110 #define INITIAL_ALLOC_PCNT 40 /* starting allocation percentage */ 111 #define INTEGRAL 100 /* to get 1% precision */ 112 113 #define EXTRA_RATE 2 /* add EXTRA_RATE% extra space */ 114 #define EXTRA_DESCS 10 115 116 #define CPR_NO_STORAGE_DESC 1 117 #define CPR_NO_STORAGE_DATA 2 118 119 #define CIF_SPLICE 0 120 #define CIF_UNLINK 1 121 122 123 /* 124 * CPR miscellaneous support routines 125 */ 126 #define cpr_open(path, mode, vpp) (vn_open(path, UIO_SYSSPACE, \ 127 mode, 0600, vpp, CRCREAT, 0)) 128 #define cpr_rdwr(rw, vp, basep, cnt) (vn_rdwr(rw, vp, (caddr_t)(basep), \ 129 cnt, 0LL, UIO_SYSSPACE, 0, (rlim64_t)MAXOFF_T, CRED(), \ 130 (ssize_t *)NULL)) 131 132 /* 133 * definitions for saving/restoring prom pages 134 */ 135 static void *ppage_buf; 136 static pgcnt_t ppage_count; 137 static pfn_t *pphys_list; 138 static size_t pphys_list_size; 139 140 typedef void (*tlb_rw_t)(uint_t, tte_t *, uint64_t *); 141 typedef void (*tlb_filter_t)(int, tte_t *, uint64_t, void *); 142 143 /* 144 * private struct for tlb handling 145 */ 146 struct cpr_trans_info { 147 sutlb_t *dst; 148 sutlb_t *tail; 149 tlb_rw_t reader; 150 tlb_rw_t writer; 151 tlb_filter_t filter; 152 int index; 153 uint64_t skip; /* assumes TLB <= 64 locked entries */ 154 }; 155 typedef struct cpr_trans_info cti_t; 156 157 158 /* 159 * special handling for tlb info 160 */ 161 #define WITHIN_OFW(va) \ 162 (((va) > (uint64_t)OFW_START_ADDR) && ((va) < (uint64_t)OFW_END_ADDR)) 163 164 #define WITHIN_NUCLEUS(va, base) \ 165 (((va) >= (base)) && \ 166 (((va) + MMU_PAGESIZE) <= ((base) + MMU_PAGESIZE4M))) 167 168 #define IS_BIGKTSB(va) \ 169 (enable_bigktsb && \ 170 ((va) >= (uint64_t)ktsb_base) && \ 171 ((va) < (uint64_t)(ktsb_base + ktsb_sz))) 172 173 174 /* 175 * WARNING: 176 * the text from this file is linked to follow cpr_resume_setup.o; 177 * only add text between here and i_cpr_end_jumpback when it needs 178 * to be called during resume before we switch back to the kernel 179 * trap table. all the text in this range must fit within a page. 180 */ 181 182 183 /* 184 * each time a machine is reset, the prom uses an inconsistent set of phys 185 * pages and the cif cookie may differ as well. so prior to restoring the 186 * original prom, we have to use to use the new/tmp prom's translations 187 * when requesting prom services. 188 * 189 * cif_handler starts out as the original prom cookie, and that gets used 190 * by client_handler() to jump into the prom. here we splice-in a wrapper 191 * routine by writing cif_handler; client_handler() will now jump to the 192 * wrapper which switches the %tba to the new/tmp prom's trap table then 193 * jumps to the new cookie. 194 */ 195 void 196 i_cpr_cif_setup(int action) 197 { 198 extern void *i_cpr_orig_cif, *cif_handler; 199 extern int i_cpr_cif_wrapper(void *); 200 201 /* 202 * save the original cookie and change the current cookie to the 203 * wrapper routine. later we just restore the original cookie. 204 */ 205 if (action == CIF_SPLICE) { 206 i_cpr_orig_cif = cif_handler; 207 cif_handler = (void *)i_cpr_cif_wrapper; 208 } else if (action == CIF_UNLINK) 209 cif_handler = i_cpr_orig_cif; 210 } 211 212 213 /* 214 * launch slave cpus into kernel text, pause them, 215 * and restore the original prom pages 216 */ 217 void 218 i_cpr_mp_setup(void) 219 { 220 extern void restart_other_cpu(int); 221 ihandle_t tmpout = 0; 222 char *str; 223 cpu_t *cp; 224 225 uint64_t kctx = kcontextreg; 226 227 /* 228 * Do not allow setting page size codes in MMU primary context 229 * register while using cif wrapper. This is needed to work 230 * arround OBP incorrect handling of this MMU register. 231 */ 232 kcontextreg = 0; 233 234 /* 235 * reset cpu_ready_set so x_calls work properly 236 */ 237 CPUSET_ZERO(cpu_ready_set); 238 CPUSET_ADD(cpu_ready_set, getprocessorid()); 239 240 /* 241 * setup cif to use the cookie from the new/tmp prom 242 * and setup tmp handling for calling prom services. 243 */ 244 i_cpr_cif_setup(CIF_SPLICE); 245 246 /* 247 * at this point, only the nucleus and a few cpr pages are 248 * mapped in. once we switch to the kernel trap table, 249 * we can access the rest of kernel space. 250 */ 251 prom_set_traptable(&trap_table); 252 253 if (ncpus > 1) { 254 sfmmu_init_tsbs(); 255 256 if (cpr_debug & CPR_DEBUG1) { 257 prom_interpret("stdout @ swap l!", (uintptr_t)&tmpout, 258 0, 0, 0, 0); 259 str = "MP startup...\r\n"; 260 (void) prom_write(tmpout, str, strlen(str), 0, 0); 261 } 262 263 mutex_enter(&cpu_lock); 264 /* 265 * All of the slave cpus are not ready at this time, 266 * yet the cpu structures have various cpu_flags set; 267 * clear cpu_flags and mutex_ready. 268 * Since we are coming up from a CPU suspend, the slave cpus 269 * are frozen. 270 */ 271 for (cp = CPU->cpu_next; cp != CPU; cp = cp->cpu_next) { 272 cp->cpu_flags = CPU_FROZEN; 273 cp->cpu_m.mutex_ready = 0; 274 } 275 276 for (cp = CPU->cpu_next; cp != CPU; cp = cp->cpu_next) 277 restart_other_cpu(cp->cpu_id); 278 279 pause_cpus(NULL); 280 mutex_exit(&cpu_lock); 281 282 if (cpr_debug & CPR_DEBUG1) { 283 str = "MP paused...\r\n"; 284 (void) prom_write(tmpout, str, strlen(str), 0, 0); 285 } 286 287 i_cpr_xcall(i_cpr_clear_entries); 288 } else 289 i_cpr_clear_entries(0, 0); 290 291 /* 292 * now unlink the cif wrapper; WARNING: do not call any 293 * prom_xxx() routines until after prom pages are restored. 294 */ 295 i_cpr_cif_setup(CIF_UNLINK); 296 297 if (!cpr_reusable_mode) 298 (void) i_cpr_prom_pages(CPR_PROM_RESTORE); 299 300 /* allow setting page size codes in MMU primary context register */ 301 kcontextreg = kctx; 302 } 303 304 305 /* 306 * end marker for jumpback page; 307 * this symbol is used to check the size of i_cpr_resume_setup() 308 * and the above text. For simplicity, the Makefile needs to 309 * link i_cpr_resume_setup.o and cpr_impl.o consecutively. 310 */ 311 void 312 i_cpr_end_jumpback(void) 313 { 314 } 315 316 317 /* 318 * scan tlb entries with reader; when valid entries are found, 319 * the filter routine will selectively save/clear them 320 */ 321 static void 322 i_cpr_scan_tlb(cti_t *ctip) 323 { 324 uint64_t va_tag; 325 int tlb_index; 326 tte_t tte; 327 328 for (tlb_index = ctip->index; tlb_index >= 0; tlb_index--) { 329 (*ctip->reader)((uint_t)tlb_index, &tte, &va_tag); 330 if (va_tag && TTE_IS_VALID(&tte)) 331 (*ctip->filter)(tlb_index, &tte, va_tag, ctip); 332 } 333 } 334 335 336 /* 337 * filter for locked tlb entries that reference the text/data nucleus 338 * and any bigktsb's; these will be reinstalled by cprboot on all cpus 339 */ 340 /* ARGSUSED */ 341 static void 342 i_cpr_lnb(int index, tte_t *ttep, uint64_t va_tag, void *ctrans) 343 { 344 cti_t *ctip; 345 346 /* 347 * record tlb data at ctip->dst; the target tlb index starts 348 * at the highest tlb offset and moves towards 0. the prom 349 * reserves both dtlb and itlb index 0. any selected entry 350 * also gets marked to prevent being flushed during resume 351 */ 352 if (TTE_IS_LOCKED(ttep) && (va_tag == (uint64_t)textva || 353 va_tag == (uint64_t)datava || IS_BIGKTSB(va_tag))) { 354 ctip = ctrans; 355 while ((1 << ctip->index) & ctip->skip) 356 ctip->index--; 357 ASSERT(ctip->index > 0); 358 ASSERT(ctip->dst < ctip->tail); 359 ctip->dst->tte.ll = ttep->ll; 360 ctip->dst->va_tag = va_tag; 361 ctip->dst->index = ctip->index--; 362 ctip->dst->tmp = 0; 363 ctip->dst++; 364 } 365 } 366 367 368 /* 369 * some tlb entries are stale, filter for unlocked entries 370 * within the prom virt range and clear them 371 */ 372 static void 373 i_cpr_ufw(int index, tte_t *ttep, uint64_t va_tag, void *ctrans) 374 { 375 sutlb_t clr; 376 cti_t *ctip; 377 378 if (!TTE_IS_LOCKED(ttep) && WITHIN_OFW(va_tag)) { 379 ctip = ctrans; 380 bzero(&clr, sizeof (clr)); 381 (*ctip->writer)((uint_t)index, &clr.tte, &clr.va_tag); 382 } 383 } 384 385 386 /* 387 * some of the entries installed by cprboot are needed only on a 388 * short-term basis and need to be flushed to avoid clogging the tlbs. 389 * scan the dtte/itte arrays for items marked as temporary and clear 390 * dtlb/itlb entries using wrfunc. 391 */ 392 static void 393 i_cpr_clear_tmp(sutlb_t *listp, int max, tlb_rw_t wrfunc) 394 { 395 sutlb_t clr, *tail; 396 397 bzero(&clr, sizeof (clr)); 398 for (tail = listp + max; listp < tail && listp->va_tag; listp++) { 399 if (listp->tmp) 400 (*wrfunc)((uint_t)listp->index, &clr.tte, &clr.va_tag); 401 } 402 } 403 404 405 /* ARGSUSED */ 406 static void 407 i_cpr_clear_entries(uint64_t arg1, uint64_t arg2) 408 { 409 extern void demap_all(void); 410 cti_t cti; 411 412 i_cpr_clear_tmp(m_info.dtte, CPR_MAX_TLB, dtlb_wr_entry); 413 i_cpr_clear_tmp(m_info.itte, CPR_MAX_TLB, itlb_wr_entry); 414 415 /* 416 * for newer cpus that implement DEMAP_ALL_TYPE, demap_all is 417 * a second label for vtag_flushall. the call is made using 418 * vtag_flushall() instead of demap_all() due to runtime and 419 * krtld results with both older and newer cpu modules. 420 */ 421 if (&demap_all != 0) { 422 vtag_flushall(); 423 return; 424 } 425 426 /* 427 * for older V9 cpus, scan tlbs and clear stale entries 428 */ 429 bzero(&cti, sizeof (cti)); 430 cti.filter = i_cpr_ufw; 431 432 cti.index = cpunodes[CPU->cpu_id].dtlb_size - 1; 433 cti.reader = dtlb_rd_entry; 434 cti.writer = dtlb_wr_entry; 435 i_cpr_scan_tlb(&cti); 436 437 cti.index = cpunodes[CPU->cpu_id].itlb_size - 1; 438 cti.reader = itlb_rd_entry; 439 cti.writer = itlb_wr_entry; 440 i_cpr_scan_tlb(&cti); 441 } 442 443 444 /* 445 * craft tlb info for tmp use during resume; this data gets used by 446 * cprboot to install tlb entries. we also mark each struct as tmp 447 * so those tlb entries will get flushed after switching to the kernel 448 * trap table. no data needs to be recorded for vaddr when it falls 449 * within the nucleus since we've already recorded nucleus ttes and 450 * a 8K tte would conflict with a 4MB tte. eg: the cpr module 451 * text/data may have been loaded into the text/data nucleus. 452 */ 453 static void 454 i_cpr_make_tte(cti_t *ctip, void *vaddr, caddr_t nbase) 455 { 456 pfn_t ppn; 457 uint_t rw; 458 459 if (WITHIN_NUCLEUS((caddr_t)vaddr, nbase)) 460 return; 461 462 while ((1 << ctip->index) & ctip->skip) 463 ctip->index--; 464 ASSERT(ctip->index > 0); 465 ASSERT(ctip->dst < ctip->tail); 466 467 /* 468 * without any global service available to lookup 469 * a tte by vaddr, we craft our own here: 470 */ 471 ppn = va_to_pfn(vaddr); 472 rw = (nbase == datava) ? TTE_HWWR_INT : 0; 473 ctip->dst->tte.tte_inthi = TTE_VALID_INT | TTE_PFN_INTHI(ppn); 474 ctip->dst->tte.tte_intlo = TTE_PFN_INTLO(ppn) | TTE_LCK_INT | 475 TTE_CP_INT | TTE_PRIV_INT | rw; 476 ctip->dst->va_tag = ((uintptr_t)vaddr & MMU_PAGEMASK); 477 ctip->dst->index = ctip->index--; 478 ctip->dst->tmp = 1; 479 ctip->dst++; 480 } 481 482 483 static void 484 i_cpr_xcall(xcfunc_t func) 485 { 486 uint_t pil, reset_pil; 487 488 pil = getpil(); 489 if (pil < XCALL_PIL) 490 reset_pil = 0; 491 else { 492 reset_pil = 1; 493 setpil(XCALL_PIL - 1); 494 } 495 xc_some(cpu_ready_set, func, 0, 0); 496 if (reset_pil) 497 setpil(pil); 498 } 499 500 501 /* 502 * restart paused slave cpus 503 */ 504 void 505 i_cpr_machdep_setup(void) 506 { 507 if (ncpus > 1) { 508 CPR_DEBUG(CPR_DEBUG1, "MP restarted...\n"); 509 mutex_enter(&cpu_lock); 510 start_cpus(); 511 mutex_exit(&cpu_lock); 512 } 513 } 514 515 516 /* 517 * Stop all interrupt activities in the system 518 */ 519 void 520 i_cpr_stop_intr(void) 521 { 522 (void) spl7(); 523 } 524 525 /* 526 * Set machine up to take interrupts 527 */ 528 void 529 i_cpr_enable_intr(void) 530 { 531 (void) spl0(); 532 } 533 534 535 /* 536 * record cpu nodes and ids 537 */ 538 static void 539 i_cpr_save_cpu_info(void) 540 { 541 struct sun4u_cpu_info *scip; 542 cpu_t *cp; 543 544 scip = m_info.sci; 545 cp = CPU; 546 do { 547 ASSERT(scip < &m_info.sci[NCPU]); 548 scip->cpu_id = cp->cpu_id; 549 scip->node = cpunodes[cp->cpu_id].nodeid; 550 scip++; 551 } while ((cp = cp->cpu_next) != CPU); 552 } 553 554 555 /* 556 * Write necessary machine dependent information to cpr state file, 557 * eg. sun4u mmu ctx secondary for the current running process (cpr) ... 558 */ 559 int 560 i_cpr_write_machdep(vnode_t *vp) 561 { 562 extern uint_t getpstate(), getwstate(); 563 extern uint_t i_cpr_tstack_size; 564 const char ustr[] = ": unix-tte 2drop false ;"; 565 uintptr_t tinfo; 566 label_t *ltp; 567 cmd_t cmach; 568 char *fmt; 569 int rc; 570 571 /* 572 * ustr[] is used as temporary forth words during 573 * slave startup sequence, see sfmmu_mp_startup() 574 */ 575 576 cmach.md_magic = (uint_t)CPR_MACHDEP_MAGIC; 577 cmach.md_size = sizeof (m_info) + sizeof (ustr); 578 579 if (rc = cpr_write(vp, (caddr_t)&cmach, sizeof (cmach))) { 580 cpr_err(CE_WARN, "Failed to write descriptor."); 581 return (rc); 582 } 583 584 /* 585 * m_info is now cleared in i_cpr_dump_setup() 586 */ 587 m_info.ksb = (uint32_t)STACK_BIAS; 588 m_info.kpstate = (uint16_t)getpstate(); 589 m_info.kwstate = (uint16_t)getwstate(); 590 CPR_DEBUG(CPR_DEBUG1, "stack bias 0x%x, pstate 0x%x, wstate 0x%x\n", 591 m_info.ksb, m_info.kpstate, m_info.kwstate); 592 593 ltp = &ttolwp(curthread)->lwp_qsav; 594 m_info.qsav_pc = (cpr_ext)ltp->val[0]; 595 m_info.qsav_sp = (cpr_ext)ltp->val[1]; 596 597 /* 598 * Set secondary context to INVALID_CONTEXT to force the HAT 599 * to re-setup the MMU registers and locked TTEs it needs for 600 * TLB miss handling. 601 */ 602 m_info.mmu_ctx_sec = INVALID_CONTEXT; 603 m_info.mmu_ctx_pri = KCONTEXT; 604 605 tinfo = (uintptr_t)curthread; 606 m_info.thrp = (cpr_ptr)tinfo; 607 608 tinfo = (uintptr_t)i_cpr_resume_setup; 609 m_info.func = (cpr_ptr)tinfo; 610 611 /* 612 * i_cpr_data_page is comprised of a 4K stack area and a few 613 * trailing data symbols; the page is shared by the prom and 614 * kernel during resume. the stack size is recorded here 615 * and used by cprboot to set %sp 616 */ 617 tinfo = (uintptr_t)&i_cpr_data_page; 618 m_info.tmp_stack = (cpr_ptr)tinfo; 619 m_info.tmp_stacksize = i_cpr_tstack_size; 620 621 m_info.test_mode = cpr_test_mode; 622 623 i_cpr_save_cpu_info(); 624 625 if (rc = cpr_write(vp, (caddr_t)&m_info, sizeof (m_info))) { 626 cpr_err(CE_WARN, "Failed to write machdep info."); 627 return (rc); 628 } 629 630 fmt = "error writing %s forth info"; 631 if (rc = cpr_write(vp, (caddr_t)ustr, sizeof (ustr))) 632 cpr_err(CE_WARN, fmt, "unix-tte"); 633 634 return (rc); 635 } 636 637 638 /* 639 * Save miscellaneous information which needs to be written to the 640 * state file. This information is required to re-initialize 641 * kernel/prom handshaking. 642 */ 643 void 644 i_cpr_save_machdep_info(void) 645 { 646 CPR_DEBUG(CPR_DEBUG5, "jumpback size = 0x%lx\n", 647 (uintptr_t)&i_cpr_end_jumpback - 648 (uintptr_t)i_cpr_resume_setup); 649 650 /* 651 * Verify the jumpback code all falls in one page. 652 */ 653 if (((uintptr_t)&i_cpr_end_jumpback & MMU_PAGEMASK) != 654 ((uintptr_t)i_cpr_resume_setup & MMU_PAGEMASK)) 655 cpr_err(CE_PANIC, "jumpback code exceeds one page."); 656 } 657 658 659 void 660 i_cpr_set_tbr(void) 661 { 662 } 663 664 665 /* 666 * cpu0 should contain bootcpu info 667 */ 668 cpu_t * 669 i_cpr_bootcpu(void) 670 { 671 return (&cpu0); 672 } 673 674 675 /* 676 * Return the virtual address of the mapping area 677 */ 678 caddr_t 679 i_cpr_map_setup(void) 680 { 681 /* 682 * Allocate a virtual memory range spanned by an hmeblk. 683 * This would be 8 hments or 64k bytes. Starting VA 684 * must be 64k (8-page) aligned. 685 */ 686 cpr_vaddr = vmem_xalloc(heap_arena, 687 mmu_ptob(NHMENTS), mmu_ptob(NHMENTS), 688 0, 0, NULL, NULL, VM_NOSLEEP); 689 return (cpr_vaddr); 690 } 691 692 /* 693 * create tmp locked tlb entries for a group of phys pages; 694 * 695 * i_cpr_mapin/i_cpr_mapout should always be called in pairs, 696 * otherwise would fill up a tlb with locked entries 697 */ 698 void 699 i_cpr_mapin(caddr_t vaddr, uint_t pages, pfn_t ppn) 700 { 701 tte_t tte; 702 extern pfn_t curthreadpfn; 703 extern int curthreadremapped; 704 705 curthreadremapped = (ppn <= curthreadpfn && curthreadpfn < ppn + pages); 706 707 for (; pages--; ppn++, vaddr += MMU_PAGESIZE) { 708 tte.tte_inthi = TTE_VALID_INT | TTE_PFN_INTHI(ppn); 709 tte.tte_intlo = TTE_PFN_INTLO(ppn) | TTE_LCK_INT | 710 TTE_CP_INT | TTE_PRIV_INT | TTE_HWWR_INT; 711 sfmmu_dtlb_ld_kva(vaddr, &tte); 712 } 713 } 714 715 void 716 i_cpr_mapout(caddr_t vaddr, uint_t pages) 717 { 718 extern int curthreadremapped; 719 720 if (curthreadremapped && vaddr <= (caddr_t)curthread && 721 (caddr_t)curthread < vaddr + pages * MMU_PAGESIZE) 722 curthreadremapped = 0; 723 724 for (; pages--; vaddr += MMU_PAGESIZE) 725 vtag_flushpage(vaddr, (uint64_t)ksfmmup); 726 } 727 728 /* 729 * We're done using the mapping area; release virtual space 730 */ 731 void 732 i_cpr_map_destroy(void) 733 { 734 vmem_free(heap_arena, cpr_vaddr, mmu_ptob(NHMENTS)); 735 cpr_vaddr = NULL; 736 } 737 738 /* ARGSUSED */ 739 void 740 i_cpr_handle_xc(int flag) 741 { 742 } 743 744 745 /* 746 * This function takes care of pages which are not in kas or need to be 747 * taken care of in a special way. For example, panicbuf pages are not 748 * in kas and their pages are allocated via prom_retain(). 749 */ 750 pgcnt_t 751 i_cpr_count_special_kpages(int mapflag, bitfunc_t bitfunc) 752 { 753 struct cpr_map_info *pri, *tail; 754 pgcnt_t pages, total = 0; 755 pfn_t pfn; 756 757 /* 758 * Save information about prom retained panicbuf pages 759 */ 760 if (bitfunc == cpr_setbit) { 761 pri = &cpr_prom_retain[CPR_PANICBUF]; 762 pri->virt = (cpr_ptr)panicbuf; 763 pri->phys = va_to_pa(panicbuf); 764 pri->size = sizeof (panicbuf); 765 } 766 767 /* 768 * Go through the prom_retain array to tag those pages. 769 */ 770 tail = &cpr_prom_retain[CPR_PROM_RETAIN_CNT]; 771 for (pri = cpr_prom_retain; pri < tail; pri++) { 772 pages = mmu_btopr(pri->size); 773 for (pfn = ADDR_TO_PN(pri->phys); pages--; pfn++) { 774 if (pf_is_memory(pfn)) { 775 if (bitfunc == cpr_setbit) { 776 if ((*bitfunc)(pfn, mapflag) == 0) 777 total++; 778 } else 779 total++; 780 } 781 } 782 } 783 784 return (total); 785 } 786 787 788 /* 789 * Free up memory-related resources here. We start by freeing buffers 790 * allocated during suspend initialization. Also, free up the mapping 791 * resources allocated in cpr_init(). 792 */ 793 void 794 i_cpr_free_memory_resources(void) 795 { 796 (void) i_cpr_prom_pages(CPR_PROM_FREE); 797 i_cpr_map_destroy(); 798 i_cpr_storage_free(); 799 } 800 801 802 /* 803 * Derived from cpr_write_statefile(). 804 * Save the sensitive pages to the storage area and do bookkeeping 805 * using the sensitive descriptors. Each descriptor will contain no more 806 * than CPR_MAXCONTIG amount of contiguous pages to match the max amount 807 * of pages that statefile gets written to disk at each write. 808 * XXX The CPR_MAXCONTIG can be changed to the size of the compression 809 * scratch area. 810 */ 811 static int 812 i_cpr_save_to_storage(void) 813 { 814 sensitive_size_saved = 0; 815 sensitive_pages_saved = 0; 816 sensitive_write_ptr = i_cpr_storage_data_base; 817 return (cpr_contig_pages(NULL, SAVE_TO_STORAGE)); 818 } 819 820 821 /* 822 * This routine allocates space to save the sensitive kernel pages, 823 * i.e. kernel data nucleus, kvalloc and kvseg segments. 824 * It's assumed that those segments are the only areas that can be 825 * contaminated by memory allocations during statefile dumping. 826 * The space allocated here contains: 827 * A list of descriptors describing the saved sensitive pages. 828 * The storage area for saving the compressed sensitive kernel pages. 829 * Since storage pages are allocated from segkmem, they need to be 830 * excluded when saving. 831 */ 832 int 833 i_cpr_save_sensitive_kpages(void) 834 { 835 static const char pages_fmt[] = "\n%s %s allocs\n" 836 " spages %ld, vpages %ld, diff %ld\n"; 837 int retry_cnt; 838 int error = 0; 839 pgcnt_t pages, spages, vpages; 840 caddr_t addr; 841 char *str; 842 843 /* 844 * Tag sensitive kpages. Allocate space for storage descriptors 845 * and storage data area based on the resulting bitmaps. 846 * Note: The storage space will be part of the sensitive 847 * segment, so we need to tag kpages here before the storage 848 * is actually allocated just so their space won't be accounted 849 * for. They will not be part of the statefile although those 850 * pages will be claimed by cprboot. 851 */ 852 cpr_clear_bitmaps(); 853 854 spages = i_cpr_count_sensitive_kpages(REGULAR_BITMAP, cpr_setbit); 855 vpages = cpr_count_volatile_pages(REGULAR_BITMAP, cpr_clrbit); 856 pages = spages - vpages; 857 858 str = "i_cpr_save_sensitive_kpages:"; 859 CPR_DEBUG(CPR_DEBUG7, pages_fmt, "before", str, spages, vpages, pages); 860 861 /* 862 * Allocate space to save the clean sensitive kpages 863 */ 864 for (retry_cnt = 0; retry_cnt < MAX_STORAGE_ALLOC_RETRY; retry_cnt++) { 865 /* 866 * Alloc on first pass or realloc if we are retrying because 867 * of insufficient storage for sensitive pages 868 */ 869 if (retry_cnt == 0 || error == ENOMEM) { 870 if (i_cpr_storage_data_base) { 871 kmem_free(i_cpr_storage_data_base, 872 mmu_ptob(i_cpr_storage_data_sz)); 873 i_cpr_storage_data_base = NULL; 874 i_cpr_storage_data_sz = 0; 875 } 876 addr = i_cpr_storage_data_alloc(pages, 877 &i_cpr_storage_data_sz, retry_cnt); 878 if (addr == NULL) { 879 CPR_DEBUG(CPR_DEBUG7, 880 "\n%s can't allocate data storage space!\n", 881 str); 882 return (ENOMEM); 883 } 884 i_cpr_storage_data_base = addr; 885 i_cpr_storage_data_end = 886 addr + mmu_ptob(i_cpr_storage_data_sz); 887 } 888 889 /* 890 * Allocate on first pass, only realloc if retry is because of 891 * insufficient descriptors, but reset contents on each pass 892 * (desc_alloc resets contents as well) 893 */ 894 if (retry_cnt == 0 || error == -1) { 895 error = i_cpr_storage_desc_alloc( 896 &i_cpr_storage_desc_base, &i_cpr_storage_desc_pgcnt, 897 &i_cpr_storage_desc_end, retry_cnt); 898 if (error != 0) 899 return (error); 900 } else { 901 i_cpr_storage_desc_init(i_cpr_storage_desc_base, 902 i_cpr_storage_desc_pgcnt, i_cpr_storage_desc_end); 903 } 904 905 /* 906 * We are ready to save the sensitive kpages to storage. 907 * We cannot trust what's tagged in the bitmaps anymore 908 * after storage allocations. Clear up the bitmaps and 909 * retag the sensitive kpages again. The storage pages 910 * should be untagged. 911 */ 912 cpr_clear_bitmaps(); 913 914 spages = 915 i_cpr_count_sensitive_kpages(REGULAR_BITMAP, cpr_setbit); 916 vpages = cpr_count_volatile_pages(REGULAR_BITMAP, cpr_clrbit); 917 918 CPR_DEBUG(CPR_DEBUG7, pages_fmt, "after ", str, 919 spages, vpages, spages - vpages); 920 921 /* 922 * Returns 0 on success, -1 if too few descriptors, and 923 * ENOMEM if not enough space to save sensitive pages 924 */ 925 CPR_DEBUG(CPR_DEBUG1, "compressing pages to storage...\n"); 926 error = i_cpr_save_to_storage(); 927 if (error == 0) { 928 /* Saving to storage succeeded */ 929 CPR_DEBUG(CPR_DEBUG1, "compressed %d pages\n", 930 sensitive_pages_saved); 931 break; 932 } else if (error == -1) 933 CPR_DEBUG(CPR_DEBUG1, "%s too few descriptors\n", str); 934 } 935 if (error == -1) 936 error = ENOMEM; 937 return (error); 938 } 939 940 941 /* 942 * Estimate how much memory we will need to save 943 * the sensitive pages with compression. 944 */ 945 static caddr_t 946 i_cpr_storage_data_alloc(pgcnt_t pages, pgcnt_t *alloc_pages, int retry_cnt) 947 { 948 pgcnt_t alloc_pcnt, last_pcnt; 949 caddr_t addr; 950 char *str; 951 952 str = "i_cpr_storage_data_alloc:"; 953 if (retry_cnt == 0) { 954 /* 955 * common compression ratio is about 3:1 956 * initial storage allocation is estimated at 40% 957 * to cover the majority of cases 958 */ 959 alloc_pcnt = INITIAL_ALLOC_PCNT; 960 *alloc_pages = (pages * alloc_pcnt) / INTEGRAL; 961 CPR_DEBUG(CPR_DEBUG7, "%s sensitive pages: %ld\n", str, pages); 962 CPR_DEBUG(CPR_DEBUG7, 963 "%s initial est pages: %ld, alloc %ld%%\n", 964 str, *alloc_pages, alloc_pcnt); 965 } else { 966 /* 967 * calculate the prior compression percentage (x100) 968 * from the last attempt to save sensitive pages 969 */ 970 ASSERT(sensitive_pages_saved != 0); 971 last_pcnt = (mmu_btopr(sensitive_size_saved) * INTEGRAL) / 972 sensitive_pages_saved; 973 CPR_DEBUG(CPR_DEBUG7, "%s last ratio %ld%%\n", str, last_pcnt); 974 975 /* 976 * new estimated storage size is based on 977 * the larger ratio + 5% for each retry: 978 * pages * (last + [5%, 10%]) 979 */ 980 alloc_pcnt = MAX(last_pcnt, INITIAL_ALLOC_PCNT) + 981 (retry_cnt * 5); 982 *alloc_pages = (pages * alloc_pcnt) / INTEGRAL; 983 CPR_DEBUG(CPR_DEBUG7, "%s Retry est pages: %ld, alloc %ld%%\n", 984 str, *alloc_pages, alloc_pcnt); 985 } 986 987 addr = kmem_alloc(mmu_ptob(*alloc_pages), KM_NOSLEEP); 988 CPR_DEBUG(CPR_DEBUG7, "%s alloc %ld pages\n", str, *alloc_pages); 989 return (addr); 990 } 991 992 993 void 994 i_cpr_storage_free(void) 995 { 996 /* Free descriptors */ 997 if (i_cpr_storage_desc_base) { 998 kmem_free(i_cpr_storage_desc_base, 999 mmu_ptob(i_cpr_storage_desc_pgcnt)); 1000 i_cpr_storage_desc_base = NULL; 1001 i_cpr_storage_desc_pgcnt = 0; 1002 } 1003 1004 1005 /* Data storage */ 1006 if (i_cpr_storage_data_base) { 1007 kmem_free(i_cpr_storage_data_base, 1008 mmu_ptob(i_cpr_storage_data_sz)); 1009 i_cpr_storage_data_base = NULL; 1010 i_cpr_storage_data_sz = 0; 1011 } 1012 } 1013 1014 1015 /* 1016 * This routine is derived from cpr_compress_and_write(). 1017 * 1. Do bookkeeping in the descriptor for the contiguous sensitive chunk. 1018 * 2. Compress and save the clean sensitive pages into the storage area. 1019 */ 1020 int 1021 i_cpr_compress_and_save(int chunks, pfn_t spfn, pgcnt_t pages) 1022 { 1023 extern char *cpr_compress_pages(cpd_t *, pgcnt_t, int); 1024 extern caddr_t i_cpr_storage_data_end; 1025 uint_t remaining, datalen; 1026 uint32_t test_usum; 1027 char *datap; 1028 csd_t *descp; 1029 cpd_t cpd; 1030 int error; 1031 1032 /* 1033 * Fill next empty storage descriptor 1034 */ 1035 descp = i_cpr_storage_desc_base + chunks - 1; 1036 if (descp >= i_cpr_storage_desc_end) { 1037 CPR_DEBUG(CPR_DEBUG1, "ran out of descriptors, base 0x%p, " 1038 "chunks %d, end 0x%p, descp 0x%p\n", 1039 i_cpr_storage_desc_base, chunks, 1040 i_cpr_storage_desc_end, descp); 1041 return (-1); 1042 } 1043 ASSERT(descp->csd_dirty_spfn == (uint_t)-1); 1044 i_cpr_storage_desc_last_used = descp; 1045 1046 descp->csd_dirty_spfn = spfn; 1047 descp->csd_dirty_npages = pages; 1048 1049 i_cpr_mapin(CPR->c_mapping_area, pages, spfn); 1050 1051 /* 1052 * try compressing pages and copy cpd fields 1053 * pfn is copied for debug use 1054 */ 1055 cpd.cpd_pfn = spfn; 1056 datap = cpr_compress_pages(&cpd, pages, C_COMPRESSING); 1057 datalen = cpd.cpd_length; 1058 descp->csd_clean_compressed = (cpd.cpd_flag & CPD_COMPRESS); 1059 #ifdef DEBUG 1060 descp->csd_usum = cpd.cpd_usum; 1061 descp->csd_csum = cpd.cpd_csum; 1062 #endif 1063 1064 error = 0; 1065 1066 /* 1067 * Save the raw or compressed data to the storage area pointed to by 1068 * sensitive_write_ptr. Make sure the storage space is big enough to 1069 * hold the result. Otherwise roll back to increase the storage space. 1070 */ 1071 descp->csd_clean_sva = (cpr_ptr)sensitive_write_ptr; 1072 descp->csd_clean_sz = datalen; 1073 if ((sensitive_write_ptr + datalen) < i_cpr_storage_data_end) { 1074 extern void cprbcopy(void *, void *, size_t); 1075 1076 cprbcopy(datap, sensitive_write_ptr, datalen); 1077 sensitive_size_saved += datalen; 1078 sensitive_pages_saved += descp->csd_dirty_npages; 1079 sensitive_write_ptr += datalen; 1080 } else { 1081 remaining = (i_cpr_storage_data_end - sensitive_write_ptr); 1082 CPR_DEBUG(CPR_DEBUG1, "i_cpr_compress_and_save: The storage " 1083 "space is too small!\ngot %d, want %d\n\n", 1084 remaining, (remaining + datalen)); 1085 #ifdef DEBUG 1086 /* 1087 * Check to see if the content of the sensitive pages that we 1088 * just copied have changed during this small time window. 1089 */ 1090 test_usum = checksum32(CPR->c_mapping_area, mmu_ptob(pages)); 1091 descp->csd_usum = cpd.cpd_usum; 1092 if (test_usum != descp->csd_usum) { 1093 CPR_DEBUG(CPR_DEBUG1, "\nWARNING: " 1094 "i_cpr_compress_and_save: " 1095 "Data in the range of pfn 0x%lx to pfn " 1096 "0x%lx has changed after they are saved " 1097 "into storage.", spfn, (spfn + pages - 1)); 1098 } 1099 #endif 1100 error = ENOMEM; 1101 } 1102 1103 i_cpr_mapout(CPR->c_mapping_area, pages); 1104 return (error); 1105 } 1106 1107 1108 /* 1109 * This routine is derived from cpr_count_kpages(). 1110 * It goes through kernel data nucleus and segkmem segments to select 1111 * pages in use and mark them in the corresponding bitmap. 1112 */ 1113 pgcnt_t 1114 i_cpr_count_sensitive_kpages(int mapflag, bitfunc_t bitfunc) 1115 { 1116 pgcnt_t kdata_cnt = 0, segkmem_cnt = 0; 1117 extern caddr_t e_moddata; 1118 extern struct seg kvalloc; 1119 extern struct seg kmem64; 1120 size_t size; 1121 1122 /* 1123 * Kernel data nucleus pages 1124 */ 1125 size = e_moddata - s_data; 1126 kdata_cnt += cpr_count_pages(s_data, size, 1127 mapflag, bitfunc, DBG_SHOWRANGE); 1128 1129 /* 1130 * kvseg and kvalloc pages 1131 */ 1132 segkmem_cnt += cpr_scan_kvseg(mapflag, bitfunc, &kvseg); 1133 segkmem_cnt += cpr_count_pages(kvalloc.s_base, kvalloc.s_size, 1134 mapflag, bitfunc, DBG_SHOWRANGE); 1135 1136 /* segment to support kernel memory usage above 32-bit space (4GB) */ 1137 if (kmem64.s_base) 1138 segkmem_cnt += cpr_count_pages(kmem64.s_base, kmem64.s_size, 1139 mapflag, bitfunc, DBG_SHOWRANGE); 1140 1141 CPR_DEBUG(CPR_DEBUG7, "\ni_cpr_count_sensitive_kpages:\n" 1142 "\tkdata_cnt %ld + segkmem_cnt %ld = %ld pages\n", 1143 kdata_cnt, segkmem_cnt, kdata_cnt + segkmem_cnt); 1144 1145 return (kdata_cnt + segkmem_cnt); 1146 } 1147 1148 1149 pgcnt_t 1150 i_cpr_count_storage_pages(int mapflag, bitfunc_t bitfunc) 1151 { 1152 pgcnt_t count = 0; 1153 1154 if (i_cpr_storage_desc_base) { 1155 count += cpr_count_pages((caddr_t)i_cpr_storage_desc_base, 1156 (size_t)mmu_ptob(i_cpr_storage_desc_pgcnt), 1157 mapflag, bitfunc, DBG_SHOWRANGE); 1158 } 1159 if (i_cpr_storage_data_base) { 1160 count += cpr_count_pages(i_cpr_storage_data_base, 1161 (size_t)mmu_ptob(i_cpr_storage_data_sz), 1162 mapflag, bitfunc, DBG_SHOWRANGE); 1163 } 1164 return (count); 1165 } 1166 1167 1168 /* 1169 * Derived from cpr_write_statefile(). 1170 * Allocate (or reallocate after exhausting the supply) descriptors for each 1171 * chunk of contiguous sensitive kpages. 1172 */ 1173 static int 1174 i_cpr_storage_desc_alloc(csd_t **basepp, pgcnt_t *pgsp, csd_t **endpp, 1175 int retry) 1176 { 1177 pgcnt_t npages; 1178 int chunks; 1179 csd_t *descp, *end; 1180 size_t len; 1181 char *str = "i_cpr_storage_desc_alloc:"; 1182 1183 /* 1184 * On initial allocation, add some extra to cover overhead caused 1185 * by the allocation for the storage area later. 1186 */ 1187 if (retry == 0) { 1188 chunks = cpr_contig_pages(NULL, STORAGE_DESC_ALLOC) + 1189 EXTRA_DESCS; 1190 npages = mmu_btopr(sizeof (**basepp) * (pgcnt_t)chunks); 1191 CPR_DEBUG(CPR_DEBUG7, "%s chunks %d, ", str, chunks); 1192 } else { 1193 CPR_DEBUG(CPR_DEBUG7, "%s retry %d: ", str, retry); 1194 npages = *pgsp + 1; 1195 } 1196 /* Free old descriptors, if any */ 1197 if (*basepp) 1198 kmem_free((caddr_t)*basepp, mmu_ptob(*pgsp)); 1199 1200 descp = *basepp = kmem_alloc(mmu_ptob(npages), KM_NOSLEEP); 1201 if (descp == NULL) { 1202 CPR_DEBUG(CPR_DEBUG7, "%s no space for descriptors!\n", str); 1203 return (ENOMEM); 1204 } 1205 1206 *pgsp = npages; 1207 len = mmu_ptob(npages); 1208 end = *endpp = descp + (len / (sizeof (**basepp))); 1209 CPR_DEBUG(CPR_DEBUG7, "npages 0x%lx, len 0x%lx, items 0x%lx\n\t*basepp " 1210 "%p, *endpp %p\n", npages, len, (len / (sizeof (**basepp))), 1211 *basepp, *endpp); 1212 i_cpr_storage_desc_init(descp, npages, end); 1213 return (0); 1214 } 1215 1216 static void 1217 i_cpr_storage_desc_init(csd_t *descp, pgcnt_t npages, csd_t *end) 1218 { 1219 size_t len = mmu_ptob(npages); 1220 1221 /* Initialize the descriptors to something impossible. */ 1222 bzero(descp, len); 1223 #ifdef DEBUG 1224 /* 1225 * This condition is tested by an ASSERT 1226 */ 1227 for (; descp < end; descp++) 1228 descp->csd_dirty_spfn = (uint_t)-1; 1229 #endif 1230 } 1231 1232 int 1233 i_cpr_dump_sensitive_kpages(vnode_t *vp) 1234 { 1235 int error = 0; 1236 uint_t spin_cnt = 0; 1237 csd_t *descp; 1238 1239 /* 1240 * These following two variables need to be reinitialized 1241 * for each cpr cycle. 1242 */ 1243 i_cpr_sensitive_bytes_dumped = 0; 1244 i_cpr_sensitive_pgs_dumped = 0; 1245 1246 if (i_cpr_storage_desc_base) { 1247 for (descp = i_cpr_storage_desc_base; 1248 descp <= i_cpr_storage_desc_last_used; descp++) { 1249 if (error = cpr_dump_sensitive(vp, descp)) 1250 return (error); 1251 spin_cnt++; 1252 if ((spin_cnt & 0x5F) == 1) 1253 cpr_spinning_bar(); 1254 } 1255 prom_printf(" \b"); 1256 } 1257 1258 CPR_DEBUG(CPR_DEBUG7, "\ni_cpr_dump_sensitive_kpages: dumped %ld\n", 1259 i_cpr_sensitive_pgs_dumped); 1260 return (0); 1261 } 1262 1263 1264 /* 1265 * 1. Fill the cpr page descriptor with the info of the dirty pages 1266 * and 1267 * write the descriptor out. It will be used at resume. 1268 * 2. Write the clean data in stead of the dirty data out. 1269 * Note: to save space, the clean data is already compressed. 1270 */ 1271 static int 1272 cpr_dump_sensitive(vnode_t *vp, csd_t *descp) 1273 { 1274 int error = 0; 1275 caddr_t datap; 1276 cpd_t cpd; /* cpr page descriptor */ 1277 pfn_t dirty_spfn; 1278 pgcnt_t dirty_npages; 1279 size_t clean_sz; 1280 caddr_t clean_sva; 1281 int clean_compressed; 1282 extern uchar_t cpr_pagecopy[]; 1283 1284 dirty_spfn = descp->csd_dirty_spfn; 1285 dirty_npages = descp->csd_dirty_npages; 1286 clean_sva = (caddr_t)descp->csd_clean_sva; 1287 clean_sz = descp->csd_clean_sz; 1288 clean_compressed = descp->csd_clean_compressed; 1289 1290 /* Fill cpr page descriptor. */ 1291 cpd.cpd_magic = (uint_t)CPR_PAGE_MAGIC; 1292 cpd.cpd_pfn = dirty_spfn; 1293 cpd.cpd_flag = 0; /* must init to zero */ 1294 cpd.cpd_pages = dirty_npages; 1295 1296 #ifdef DEBUG 1297 if ((cpd.cpd_usum = descp->csd_usum) != 0) 1298 cpd.cpd_flag |= CPD_USUM; 1299 if ((cpd.cpd_csum = descp->csd_csum) != 0) 1300 cpd.cpd_flag |= CPD_CSUM; 1301 #endif 1302 1303 STAT->cs_dumped_statefsz += mmu_ptob(dirty_npages); 1304 1305 /* 1306 * The sensitive kpages are usually saved with compression 1307 * unless compression could not reduce the size of the data. 1308 * If user choose not to have the statefile compressed, 1309 * we need to decompress the data back before dumping it to disk. 1310 */ 1311 if (CPR->c_flags & C_COMPRESSING) { 1312 cpd.cpd_length = clean_sz; 1313 datap = clean_sva; 1314 if (clean_compressed) 1315 cpd.cpd_flag |= CPD_COMPRESS; 1316 } else { 1317 if (clean_compressed) { 1318 cpd.cpd_length = decompress(clean_sva, cpr_pagecopy, 1319 clean_sz, mmu_ptob(dirty_npages)); 1320 datap = (caddr_t)cpr_pagecopy; 1321 ASSERT(cpd.cpd_length == mmu_ptob(dirty_npages)); 1322 } else { 1323 cpd.cpd_length = clean_sz; 1324 datap = clean_sva; 1325 } 1326 cpd.cpd_csum = 0; 1327 } 1328 1329 /* Write cpr page descriptor */ 1330 error = cpr_write(vp, (caddr_t)&cpd, sizeof (cpd)); 1331 if (error) { 1332 CPR_DEBUG(CPR_DEBUG7, "descp: %p\n", descp); 1333 #ifdef DEBUG 1334 debug_enter("cpr_dump_sensitive: cpr_write() page " 1335 "descriptor failed!\n"); 1336 #endif 1337 return (error); 1338 } 1339 1340 i_cpr_sensitive_bytes_dumped += sizeof (cpd_t); 1341 1342 /* Write page data */ 1343 error = cpr_write(vp, (caddr_t)datap, cpd.cpd_length); 1344 if (error) { 1345 CPR_DEBUG(CPR_DEBUG7, "error: %x\n", error); 1346 CPR_DEBUG(CPR_DEBUG7, "descp: %p\n", descp); 1347 CPR_DEBUG(CPR_DEBUG7, "cpr_write(%p, %p , %lx)\n", vp, datap, 1348 cpd.cpd_length); 1349 #ifdef DEBUG 1350 debug_enter("cpr_dump_sensitive: cpr_write() data failed!\n"); 1351 #endif 1352 return (error); 1353 } 1354 1355 i_cpr_sensitive_bytes_dumped += cpd.cpd_length; 1356 i_cpr_sensitive_pgs_dumped += dirty_npages; 1357 1358 return (error); 1359 } 1360 1361 1362 /* 1363 * Sanity check to make sure that we have dumped right amount 1364 * of pages from different sources to statefile. 1365 */ 1366 int 1367 i_cpr_check_pgs_dumped(uint_t pgs_expected, uint_t regular_pgs_dumped) 1368 { 1369 uint_t total_pgs_dumped; 1370 1371 total_pgs_dumped = regular_pgs_dumped + i_cpr_sensitive_pgs_dumped; 1372 1373 CPR_DEBUG(CPR_DEBUG7, "\ncheck_pgs: reg %d + sens %ld = %d, " 1374 "expect %d\n\n", regular_pgs_dumped, i_cpr_sensitive_pgs_dumped, 1375 total_pgs_dumped, pgs_expected); 1376 1377 if (pgs_expected == total_pgs_dumped) 1378 return (0); 1379 1380 return (EINVAL); 1381 } 1382 1383 1384 int 1385 i_cpr_reusefini(void) 1386 { 1387 struct vnode *vp; 1388 cdef_t *cdef; 1389 size_t size; 1390 char *bufp; 1391 int rc; 1392 1393 if (cpr_reusable_mode) 1394 cpr_reusable_mode = 0; 1395 1396 if (rc = cpr_open_deffile(FREAD|FWRITE, &vp)) { 1397 if (rc == EROFS) { 1398 cpr_err(CE_CONT, "uadmin A_FREEZE AD_REUSEFINI " 1399 "(uadmin %d %d)\nmust be done with / mounted " 1400 "writeable.\n", A_FREEZE, AD_REUSEFINI); 1401 } 1402 return (rc); 1403 } 1404 1405 cdef = kmem_alloc(sizeof (*cdef), KM_SLEEP); 1406 rc = cpr_rdwr(UIO_READ, vp, cdef, sizeof (*cdef)); 1407 1408 if (rc) { 1409 cpr_err(CE_WARN, "Failed reading %s, errno = %d", 1410 cpr_default_path, rc); 1411 } else if (cdef->mini.magic != CPR_DEFAULT_MAGIC) { 1412 cpr_err(CE_WARN, "bad magic number in %s, cannot restore " 1413 "prom values for %s", cpr_default_path, 1414 cpr_enumerate_promprops(&bufp, &size)); 1415 kmem_free(bufp, size); 1416 rc = EINVAL; 1417 } else { 1418 /* 1419 * clean up prom properties 1420 */ 1421 rc = cpr_update_nvram(cdef->props); 1422 if (rc == 0) { 1423 /* 1424 * invalidate the disk copy and turn off reusable 1425 */ 1426 cdef->mini.magic = 0; 1427 cdef->mini.reusable = 0; 1428 if (rc = cpr_rdwr(UIO_WRITE, vp, 1429 &cdef->mini, sizeof (cdef->mini))) { 1430 cpr_err(CE_WARN, "Failed writing %s, errno %d", 1431 cpr_default_path, rc); 1432 } 1433 } 1434 } 1435 1436 (void) VOP_CLOSE(vp, FREAD|FWRITE, 1, (offset_t)0, CRED()); 1437 VN_RELE(vp); 1438 kmem_free(cdef, sizeof (*cdef)); 1439 1440 return (rc); 1441 } 1442 1443 1444 int 1445 i_cpr_reuseinit(void) 1446 { 1447 int rc = 0; 1448 1449 if (rc = cpr_default_setup(1)) 1450 return (rc); 1451 1452 /* 1453 * We need to validate default file 1454 */ 1455 rc = cpr_validate_definfo(1); 1456 if (rc == 0) 1457 cpr_reusable_mode = 1; 1458 else if (rc == EROFS) { 1459 cpr_err(CE_NOTE, "reuseinit must be performed " 1460 "while / is mounted writeable"); 1461 } 1462 1463 (void) cpr_default_setup(0); 1464 1465 return (rc); 1466 } 1467 1468 1469 int 1470 i_cpr_check_cprinfo(void) 1471 { 1472 struct vnode *vp; 1473 cmini_t mini; 1474 int rc = 0; 1475 1476 if (rc = cpr_open_deffile(FREAD, &vp)) { 1477 if (rc == ENOENT) 1478 cpr_err(CE_NOTE, "cprinfo file does not " 1479 "exist. You must run 'uadmin %d %d' " 1480 "command while / is mounted writeable,\n" 1481 "then reboot and run 'uadmin %d %d' " 1482 "to create a reusable statefile", 1483 A_FREEZE, AD_REUSEINIT, A_FREEZE, AD_REUSABLE); 1484 return (rc); 1485 } 1486 1487 rc = cpr_rdwr(UIO_READ, vp, &mini, sizeof (mini)); 1488 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED()); 1489 VN_RELE(vp); 1490 1491 if (rc) { 1492 cpr_err(CE_WARN, "Failed reading %s, errno = %d", 1493 cpr_default_path, rc); 1494 } else if (mini.magic != CPR_DEFAULT_MAGIC) { 1495 cpr_err(CE_CONT, "bad magic number in cprinfo file.\n" 1496 "You must run 'uadmin %d %d' while / is mounted " 1497 "writeable, then reboot and run 'uadmin %d %d' " 1498 "to create a reusable statefile\n", 1499 A_FREEZE, AD_REUSEINIT, A_FREEZE, AD_REUSABLE); 1500 rc = EINVAL; 1501 } 1502 1503 return (rc); 1504 } 1505 1506 1507 int 1508 i_cpr_reusable_supported(void) 1509 { 1510 return (1); 1511 } 1512 1513 1514 /* 1515 * find prom phys pages and alloc space for a tmp copy 1516 */ 1517 static int 1518 i_cpr_find_ppages(void) 1519 { 1520 extern struct vnode prom_ppages; 1521 struct page *pp; 1522 struct memlist *pmem; 1523 pgcnt_t npages, pcnt, scnt, vcnt; 1524 pfn_t ppn, plast, *dst; 1525 int mapflag; 1526 1527 cpr_clear_bitmaps(); 1528 mapflag = REGULAR_BITMAP; 1529 1530 /* 1531 * there should be a page_t for each phys page used by the kernel; 1532 * set a bit for each phys page not tracked by a page_t 1533 */ 1534 pcnt = 0; 1535 memlist_read_lock(); 1536 for (pmem = phys_install; pmem; pmem = pmem->next) { 1537 npages = mmu_btop(pmem->size); 1538 ppn = mmu_btop(pmem->address); 1539 for (plast = ppn + npages; ppn < plast; ppn++) { 1540 if (page_numtopp_nolock(ppn)) 1541 continue; 1542 (void) cpr_setbit(ppn, mapflag); 1543 pcnt++; 1544 } 1545 } 1546 memlist_read_unlock(); 1547 1548 /* 1549 * clear bits for phys pages in each segment 1550 */ 1551 scnt = cpr_count_seg_pages(mapflag, cpr_clrbit); 1552 1553 /* 1554 * set bits for phys pages referenced by the prom_ppages vnode; 1555 * these pages are mostly comprised of forthdebug words 1556 */ 1557 vcnt = 0; 1558 for (pp = prom_ppages.v_pages; pp; ) { 1559 if (cpr_setbit(pp->p_offset, mapflag) == 0) 1560 vcnt++; 1561 pp = pp->p_vpnext; 1562 if (pp == prom_ppages.v_pages) 1563 break; 1564 } 1565 1566 /* 1567 * total number of prom pages are: 1568 * (non-page_t pages - seg pages + vnode pages) 1569 */ 1570 ppage_count = pcnt - scnt + vcnt; 1571 CPR_DEBUG(CPR_DEBUG1, 1572 "find_ppages: pcnt %ld - scnt %ld + vcnt %ld = %ld\n", 1573 pcnt, scnt, vcnt, ppage_count); 1574 1575 /* 1576 * alloc array of pfn_t to store phys page list 1577 */ 1578 pphys_list_size = ppage_count * sizeof (pfn_t); 1579 pphys_list = kmem_alloc(pphys_list_size, KM_NOSLEEP); 1580 if (pphys_list == NULL) { 1581 cpr_err(CE_WARN, "cannot alloc pphys_list"); 1582 return (ENOMEM); 1583 } 1584 1585 /* 1586 * phys pages referenced in the bitmap should be 1587 * those used by the prom; scan bitmap and save 1588 * a list of prom phys page numbers 1589 */ 1590 dst = pphys_list; 1591 memlist_read_lock(); 1592 for (pmem = phys_install; pmem; pmem = pmem->next) { 1593 npages = mmu_btop(pmem->size); 1594 ppn = mmu_btop(pmem->address); 1595 for (plast = ppn + npages; ppn < plast; ppn++) { 1596 if (cpr_isset(ppn, mapflag)) { 1597 ASSERT(dst < (pphys_list + ppage_count)); 1598 *dst++ = ppn; 1599 } 1600 } 1601 } 1602 memlist_read_unlock(); 1603 1604 /* 1605 * allocate space to store prom pages 1606 */ 1607 ppage_buf = kmem_alloc(mmu_ptob(ppage_count), KM_NOSLEEP); 1608 if (ppage_buf == NULL) { 1609 kmem_free(pphys_list, pphys_list_size); 1610 pphys_list = NULL; 1611 cpr_err(CE_WARN, "cannot alloc ppage_buf"); 1612 return (ENOMEM); 1613 } 1614 1615 return (0); 1616 } 1617 1618 1619 /* 1620 * save prom pages to kmem pages 1621 */ 1622 static void 1623 i_cpr_save_ppages(void) 1624 { 1625 pfn_t *pphys, *plast; 1626 caddr_t dst; 1627 1628 /* 1629 * map in each prom page and copy to a kmem page 1630 */ 1631 dst = ppage_buf; 1632 plast = pphys_list + ppage_count; 1633 for (pphys = pphys_list; pphys < plast; pphys++) { 1634 i_cpr_mapin(cpr_vaddr, 1, *pphys); 1635 bcopy(cpr_vaddr, dst, MMU_PAGESIZE); 1636 i_cpr_mapout(cpr_vaddr, 1); 1637 dst += MMU_PAGESIZE; 1638 } 1639 1640 CPR_DEBUG(CPR_DEBUG1, "saved %ld prom pages\n", ppage_count); 1641 } 1642 1643 1644 /* 1645 * restore prom pages from kmem pages 1646 */ 1647 static void 1648 i_cpr_restore_ppages(void) 1649 { 1650 pfn_t *pphys, *plast; 1651 caddr_t src; 1652 1653 dcache_flushall(); 1654 1655 /* 1656 * map in each prom page and copy from a kmem page 1657 */ 1658 src = ppage_buf; 1659 plast = pphys_list + ppage_count; 1660 for (pphys = pphys_list; pphys < plast; pphys++) { 1661 i_cpr_mapin(cpr_vaddr, 1, *pphys); 1662 bcopy(src, cpr_vaddr, MMU_PAGESIZE); 1663 i_cpr_mapout(cpr_vaddr, 1); 1664 src += MMU_PAGESIZE; 1665 } 1666 1667 dcache_flushall(); 1668 1669 CPR_DEBUG(CPR_DEBUG1, "restored %ld prom pages\n", ppage_count); 1670 } 1671 1672 1673 /* 1674 * save/restore prom pages or free related allocs 1675 */ 1676 int 1677 i_cpr_prom_pages(int action) 1678 { 1679 int error; 1680 1681 if (action == CPR_PROM_SAVE) { 1682 if (ppage_buf == NULL) { 1683 ASSERT(pphys_list == NULL); 1684 if (error = i_cpr_find_ppages()) 1685 return (error); 1686 i_cpr_save_ppages(); 1687 } 1688 } else if (action == CPR_PROM_RESTORE) { 1689 i_cpr_restore_ppages(); 1690 } else if (action == CPR_PROM_FREE) { 1691 if (pphys_list) { 1692 ASSERT(pphys_list_size); 1693 kmem_free(pphys_list, pphys_list_size); 1694 pphys_list = NULL; 1695 pphys_list_size = 0; 1696 } 1697 if (ppage_buf) { 1698 ASSERT(ppage_count); 1699 kmem_free(ppage_buf, mmu_ptob(ppage_count)); 1700 CPR_DEBUG(CPR_DEBUG1, "freed %ld prom pages\n", 1701 ppage_count); 1702 ppage_buf = NULL; 1703 ppage_count = 0; 1704 } 1705 } 1706 return (0); 1707 } 1708 1709 1710 /* 1711 * record tlb data for the nucleus, bigktsb's, and the cpr module; 1712 * this data is later used by cprboot to install dtlb/itlb entries. 1713 * when we jump into the cpr module during the resume phase, those 1714 * mappings are needed until switching to the kernel trap table. 1715 * to make the dtte/itte info available during resume, we need 1716 * the info recorded prior to saving sensitive pages, otherwise 1717 * all the data would appear as NULLs. 1718 */ 1719 static void 1720 i_cpr_save_tlbinfo(void) 1721 { 1722 cti_t cti = {0}; 1723 1724 /* 1725 * during resume - shortly after jumping into the cpr module, 1726 * sfmmu_load_mmustate() will overwrite any dtlb entry at any 1727 * index used for TSBs; skip is set so that any saved tte will 1728 * target other tlb offsets and prevent being lost during 1729 * resume. now scan the dtlb and save locked entries, 1730 * then add entries for the tmp stack / data page and the 1731 * cpr thread structure. 1732 */ 1733 cti.dst = m_info.dtte; 1734 cti.tail = cti.dst + CPR_MAX_TLB; 1735 cti.reader = dtlb_rd_entry; 1736 cti.writer = NULL; 1737 cti.filter = i_cpr_lnb; 1738 cti.index = cpunodes[CPU->cpu_id].dtlb_size - 1; 1739 1740 if (utsb_dtlb_ttenum != -1) 1741 cti.skip = (1 << utsb_dtlb_ttenum); 1742 1743 if (utsb4m_dtlb_ttenum != -1) 1744 cti.skip |= (1 << utsb4m_dtlb_ttenum); 1745 1746 i_cpr_scan_tlb(&cti); 1747 i_cpr_make_tte(&cti, &i_cpr_data_page, datava); 1748 i_cpr_make_tte(&cti, curthread, datava); 1749 1750 /* 1751 * scan itlb and save locked entries; add an entry for 1752 * the first text page of the cpr module; cprboot will 1753 * jump to that page after restoring kernel pages. 1754 */ 1755 cti.dst = m_info.itte; 1756 cti.tail = cti.dst + CPR_MAX_TLB; 1757 cti.reader = itlb_rd_entry; 1758 cti.index = cpunodes[CPU->cpu_id].itlb_size - 1; 1759 cti.skip = 0; 1760 i_cpr_scan_tlb(&cti); 1761 i_cpr_make_tte(&cti, (void *)i_cpr_resume_setup, textva); 1762 } 1763 1764 1765 /* ARGSUSED */ 1766 int 1767 i_cpr_dump_setup(vnode_t *vp) 1768 { 1769 /* 1770 * zero out m_info and add info to dtte/itte arrays 1771 */ 1772 bzero(&m_info, sizeof (m_info)); 1773 i_cpr_save_tlbinfo(); 1774 return (0); 1775 } 1776 1777 1778 int 1779 i_cpr_is_supported(void) 1780 { 1781 char es_prop[] = "energystar-v2"; 1782 pnode_t node; 1783 int last; 1784 extern int cpr_supported_override; 1785 extern int cpr_platform_enable; 1786 1787 /* 1788 * The next statement tests if a specific platform has turned off 1789 * cpr support. 1790 */ 1791 if (cpr_supported_override) 1792 return (0); 1793 1794 /* 1795 * Do not inspect energystar-v* property if a platform has 1796 * specifically turned on cpr support 1797 */ 1798 if (cpr_platform_enable) 1799 return (1); 1800 1801 node = prom_rootnode(); 1802 if (prom_getproplen(node, es_prop) != -1) 1803 return (1); 1804 last = strlen(es_prop) - 1; 1805 es_prop[last] = '3'; 1806 return (prom_getproplen(node, es_prop) != -1); 1807 } 1808 1809 1810 /* 1811 * the actual size of the statefile data isn't known until after all the 1812 * compressed pages are written; even the inode size doesn't reflect the 1813 * data size since there are usually many extra fs blocks. for recording 1814 * the actual data size, the first sector of the statefile is copied to 1815 * a tmp buf, and the copy is later updated and flushed to disk. 1816 */ 1817 int 1818 i_cpr_blockzero(char *base, char **bufpp, int *blkno, vnode_t *vp) 1819 { 1820 extern int cpr_flush_write(vnode_t *); 1821 static char cpr_sector[DEV_BSIZE]; 1822 cpr_ext bytes, *dst; 1823 1824 /* 1825 * this routine is called after cdd_t and csu_md_t are copied 1826 * to cpr_buf; mini-hack alert: the save/update method creates 1827 * a dependency on the combined struct size being >= one sector 1828 * or DEV_BSIZE; since introduction in Sol2.7, csu_md_t size is 1829 * over 1K bytes and will probably grow with any changes. 1830 * 1831 * copy when vp is NULL, flush when non-NULL 1832 */ 1833 if (vp == NULL) { 1834 ASSERT((*bufpp - base) >= DEV_BSIZE); 1835 bcopy(base, cpr_sector, sizeof (cpr_sector)); 1836 return (0); 1837 } else { 1838 bytes = dbtob(*blkno); 1839 dst = &((cdd_t *)cpr_sector)->cdd_filesize; 1840 bcopy(&bytes, dst, sizeof (bytes)); 1841 bcopy(cpr_sector, base, sizeof (cpr_sector)); 1842 *bufpp = base + sizeof (cpr_sector); 1843 *blkno = cpr_statefile_offset(); 1844 CPR_DEBUG(CPR_DEBUG1, "statefile data size: %ld\n\n", bytes); 1845 return (cpr_flush_write(vp)); 1846 } 1847 } 1848 1849 1850 /* 1851 * Allocate bitmaps according to the phys_install list. 1852 */ 1853 static int 1854 i_cpr_bitmap_setup(void) 1855 { 1856 struct memlist *pmem; 1857 cbd_t *dp, *tail; 1858 void *space; 1859 size_t size; 1860 1861 /* 1862 * The number of bitmap descriptors will be the count of 1863 * phys_install ranges plus 1 for a trailing NULL struct. 1864 */ 1865 cpr_nbitmaps = 1; 1866 for (pmem = phys_install; pmem; pmem = pmem->next) 1867 cpr_nbitmaps++; 1868 1869 if (cpr_nbitmaps > (CPR_MAX_BMDESC - 1)) { 1870 cpr_err(CE_WARN, "too many physical memory ranges %d, max %d", 1871 cpr_nbitmaps, CPR_MAX_BMDESC - 1); 1872 return (EFBIG); 1873 } 1874 1875 /* Alloc an array of bitmap descriptors. */ 1876 dp = kmem_zalloc(cpr_nbitmaps * sizeof (*dp), KM_NOSLEEP); 1877 if (dp == NULL) { 1878 cpr_nbitmaps = 0; 1879 return (ENOMEM); 1880 } 1881 tail = dp + cpr_nbitmaps; 1882 1883 CPR->c_bmda = dp; 1884 for (pmem = phys_install; pmem; pmem = pmem->next) { 1885 size = BITMAP_BYTES(pmem->size); 1886 space = kmem_zalloc(size * 2, KM_NOSLEEP); 1887 if (space == NULL) 1888 return (ENOMEM); 1889 ASSERT(dp < tail); 1890 dp->cbd_magic = CPR_BITMAP_MAGIC; 1891 dp->cbd_spfn = mmu_btop(pmem->address); 1892 dp->cbd_epfn = mmu_btop(pmem->address + pmem->size) - 1; 1893 dp->cbd_size = size; 1894 dp->cbd_reg_bitmap = (cpr_ptr)space; 1895 dp->cbd_vlt_bitmap = (cpr_ptr)((caddr_t)space + size); 1896 dp++; 1897 } 1898 1899 /* set magic for the last descriptor */ 1900 ASSERT(dp == (tail - 1)); 1901 dp->cbd_magic = CPR_BITMAP_MAGIC; 1902 1903 return (0); 1904 } 1905 1906 1907 void 1908 i_cpr_bitmap_cleanup(void) 1909 { 1910 cbd_t *dp; 1911 1912 if (CPR->c_bmda == NULL) 1913 return; 1914 for (dp = CPR->c_bmda; dp->cbd_size; dp++) 1915 kmem_free((void *)dp->cbd_reg_bitmap, dp->cbd_size * 2); 1916 kmem_free(CPR->c_bmda, cpr_nbitmaps * sizeof (*CPR->c_bmda)); 1917 CPR->c_bmda = NULL; 1918 cpr_nbitmaps = 0; 1919 } 1920 1921 1922 /* 1923 * A "regular" and "volatile" bitmap are created for each range of 1924 * physical memory. The volatile maps are used to count and track pages 1925 * susceptible to heap corruption - caused by drivers that allocate mem 1926 * during VOP_DUMP(); the regular maps are used for all the other non- 1927 * susceptible pages. Before writing the bitmaps to the statefile, 1928 * each bitmap pair gets merged to simplify handling within cprboot. 1929 */ 1930 int 1931 i_cpr_alloc_bitmaps(void) 1932 { 1933 int err; 1934 1935 memlist_read_lock(); 1936 err = i_cpr_bitmap_setup(); 1937 memlist_read_unlock(); 1938 if (err) 1939 i_cpr_bitmap_cleanup(); 1940 return (err); 1941 } 1942