1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Starcat PCI SBBC Nexus Driver. 30 * 31 * This source code's compiled binary runs on both a Starcat System 32 * Controller (SSC) and a Starcat Domain. One of the SBBC hardware 33 * registers is read during attach(9e) in order to determine which 34 * environment the driver is executing on. 35 * 36 * On both the SSC and the Domain, this driver provides nexus driver 37 * services to its Device Tree children. Note that the children in 38 * each environment are not necessarily the same. 39 * 40 * This driver allows one concurrent open(2) of its associated device 41 * (/dev/sbbc0). The client uses the file descriptor to issue 42 * ioctl(2)'s in order to read and write from the 2MB (PCI) space 43 * reserved for "SBBC Internal Registers". Among other things, 44 * these registers consist of command/control/status registers for 45 * devices such as Console Bus, I2C, EPLD, IOSRAM, and JTAG. The 2MB 46 * space is very sparse; EINVAL is returned if a reserved or unaligned 47 * address is specified in the ioctl(2). 48 * 49 * Note that the 2MB region reserved for SBBC Internal Registers is 50 * a subset of the 128MB of PCI address space addressable by the SBBC 51 * ASIC. Address space outside of the 2MB (such as the 64MB reserved 52 * for the Console Bus) is not accessible via this driver. 53 * 54 * Also, note that the SBBC Internal Registers are only read and 55 * written by the SSC; no process on the Domain accesses these 56 * registers. As a result, the registers are unmapped (when running 57 * on the Domain) near the end of attach(9e) processing. This conserves 58 * kernel virtual address space resources (as one instance of the driver 59 * is created for each Domain-side IO assembly). (To be complete, only 60 * one instance of the driver is created on the SSC). 61 */ 62 63 #include <sys/types.h> 64 65 #include <sys/conf.h> /* req. by dev_ops flags MTSAFE etc. */ 66 #include <sys/ddi.h> 67 #include <sys/sunddi.h> 68 #include <sys/ddi_impldefs.h> 69 #include <sys/ddi_subrdefs.h> 70 #include <sys/pci.h> 71 #include <sys/pci/pci_nexus.h> 72 #include <sys/autoconf.h> 73 #include <sys/cmn_err.h> 74 #include <sys/param.h> 75 #include <sys/errno.h> 76 #include <sys/kmem.h> 77 #include <sys/debug.h> 78 #include <sys/sysmacros.h> 79 #include <sys/machsystm.h> 80 #include <sys/modctl.h> 81 #include <sys/stat.h> 82 83 84 #include <sys/sbbcreg.h> /* hw description */ 85 #include <sys/sbbcvar.h> /* driver description */ 86 #include <sys/sbbcio.h> /* ioctl description */ 87 88 #define getprop(dip, name, addr, intp) \ 89 ddi_getlongprop(DDI_DEV_T_ANY, (dip), DDI_PROP_DONTPASS, \ 90 (name), (caddr_t)(addr), (intp)) 91 92 /* driver entry point fn definitions */ 93 static int sbbc_open(dev_t *, int, int, cred_t *); 94 static int sbbc_close(dev_t, int, int, cred_t *); 95 static int sbbc_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 96 97 /* configuration entry point fn definitions */ 98 static int sbbc_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 99 static int sbbc_attach(dev_info_t *, ddi_attach_cmd_t); 100 static int sbbc_detach(dev_info_t *, ddi_detach_cmd_t); 101 102 /* local utility routines */ 103 /* 104 * NOTE - sbbc_offset_valid contains detailed address information taken from 105 * the Serengeti Architecture Programmer's Reference Manual. If any 106 * changes are made to the SBBC registers, this routine may need to be 107 * updated. 108 */ 109 static int sbbc_offset_valid(uint32_t offset); 110 111 /* 112 * function prototypes for bus ops routines: 113 */ 114 static int sbbc_busmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 115 off_t offset, off_t len, caddr_t *addrp); 116 static int sbbc_ctlops(dev_info_t *dip, dev_info_t *rdip, 117 ddi_ctl_enum_t op, void *arg, void *result); 118 119 static int sbbc_intr_ops(dev_info_t *dip, dev_info_t *rdip, 120 ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); 121 static int sbbc_add_intr_impl(dev_info_t *dip, dev_info_t *rdip, 122 ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); 123 static int sbbc_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip, 124 ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); 125 static int sbbc_update_intr_state(dev_info_t *dip, dev_info_t *rdip, 126 ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); 127 128 static int sbbc_apply_range(struct sbbcsoft *sbbc_p, dev_info_t *rdip, 129 sbbc_child_regspec_t *child_rp, pci_regspec_t *rp); 130 131 static int sbbc_init(struct sbbcsoft *); 132 133 static uint_t sbbc_intr_wrapper(caddr_t arg); 134 135 static int sbbc_get_ranges(struct sbbcsoft *); 136 static int sbbc_config4pci(struct sbbcsoft *); 137 static int sbbc_initchild(dev_info_t *, dev_info_t *, dev_info_t *); 138 static int sbbc_uninitchild(dev_info_t *, dev_info_t *); 139 static void sbbc_remove_reg_maps(struct sbbcsoft *); 140 141 /* debugging functions */ 142 #ifdef DEBUG 143 uint32_t sbbc_dbg_flags = 0x0; 144 static void sbbc_dbg(uint32_t flag, dev_info_t *dip, char *fmt, 145 uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5); 146 static void sbbc_dump_devid(dev_info_t *, struct sbbcsoft *, int instance); 147 #endif 148 149 /* 150 * For tracing, allocate space for the trace buffer 151 */ 152 #if defined(SBBC_TRACE) 153 struct sbbctrace sbbctrace_buffer[NSBBCTRACE+1]; 154 struct sbbctrace *sbbctrace_ptr; 155 int sbbctrace_count; 156 #endif 157 158 /* 159 * Local declarations and variables 160 */ 161 162 static void *sbbcsoft_statep; 163 164 /* Determines whether driver is executing on System Controller or Domain */ 165 int sbbc_scmode = FALSE; 166 167 /* 168 * ops stuff. 169 */ 170 static struct bus_ops sbbc_bus_ops = { 171 BUSO_REV, 172 sbbc_busmap, 173 0, 174 0, 175 0, 176 NULL, /* (*bus_map_fault)() */ 177 ddi_no_dma_map, 178 ddi_no_dma_allochdl, 179 ddi_no_dma_freehdl, /* (*bus_dma_freehdl)() */ 180 ddi_no_dma_bindhdl, /* (*bus_dma_bindhdl)() */ 181 ddi_no_dma_unbindhdl, /* (*bus_dma_unbindhdl)() */ 182 ddi_no_dma_flush, /* (*bus_dma_flush)() */ 183 ddi_no_dma_win, /* (*bus_dma_win)() */ 184 ddi_no_dma_mctl, /* (*bus_dma_ctl)() */ 185 sbbc_ctlops, 186 ddi_bus_prop_op, 187 0, /* (*bus_get_eventcookie)(); */ 188 0, /* (*bus_add_eventcall)(); */ 189 0, /* (*bus_remove_eventcall)(); */ 190 0, /* (*bus_post_event)(); */ 191 0, /* (*bus_intr_ctl)(); */ 192 0, /* (*bus_config)(); */ 193 0, /* (*bus_unconfig)(); */ 194 0, /* (*bus_fm_init)(); */ 195 0, /* (*bus_fm_fini)(); */ 196 0, /* (*bus_fm_access_enter)(); */ 197 0, /* (*bus_fm_access_exit)(); */ 198 0, /* (*bus_power)(); */ 199 sbbc_intr_ops /* (*bus_intr_op)(); */ 200 }; 201 202 /* 203 * cb_ops 204 */ 205 static struct cb_ops sbbc_cb_ops = { 206 sbbc_open, /* cb_open */ 207 sbbc_close, /* cb_close */ 208 nodev, /* cb_strategy */ 209 nodev, /* cb_print */ 210 nodev, /* cb_dump */ 211 nodev, /* cb_read */ 212 nodev, /* cb_write */ 213 sbbc_ioctl, /* cb_ioctl */ 214 nodev, /* cb_devmap */ 215 nodev, /* cb_mmap */ 216 nodev, /* cb_segmap */ 217 nochpoll, /* cb_chpoll */ 218 ddi_prop_op, /* cb_prop_op */ 219 NULL, /* cb_stream */ 220 (int)(D_NEW | D_MP) /* cb_flag */ 221 }; 222 223 /* 224 * Declare ops vectors for auto configuration. 225 */ 226 struct dev_ops sbbc_ops = { 227 DEVO_REV, /* devo_rev */ 228 0, /* devo_refcnt */ 229 sbbc_getinfo, /* devo_getinfo */ 230 nulldev, /* devo_identify */ 231 nulldev, /* devo_probe */ 232 sbbc_attach, /* devo_attach */ 233 sbbc_detach, /* devo_detach */ 234 nodev, /* devo_reset */ 235 &sbbc_cb_ops, /* devo_cb_ops */ 236 &sbbc_bus_ops, /* devo_bus_ops */ 237 nulldev /* devo_power */ 238 }; 239 240 /* 241 * Loadable module support. 242 */ 243 extern struct mod_ops mod_driverops; 244 245 static struct modldrv sbbcmodldrv = { 246 &mod_driverops, /* type of module - driver */ 247 "PCI Sbbc Nexus Driver v%I%", 248 &sbbc_ops, 249 }; 250 251 static struct modlinkage sbbcmodlinkage = { 252 MODREV_1, 253 &sbbcmodldrv, 254 NULL 255 }; 256 257 int 258 _init(void) 259 { 260 int error; 261 262 if ((error = ddi_soft_state_init(&sbbcsoft_statep, 263 sizeof (struct sbbcsoft), 1)) != 0) 264 return (error); 265 if ((error = mod_install(&sbbcmodlinkage)) != 0) 266 ddi_soft_state_fini(&sbbcsoft_statep); 267 268 return (error); 269 } 270 271 int 272 _fini(void) 273 { 274 int error; 275 276 if ((error = mod_remove(&sbbcmodlinkage)) == 0) 277 ddi_soft_state_fini(&sbbcsoft_statep); 278 279 return (error); 280 } 281 282 int 283 _info(struct modinfo *modinfop) 284 { 285 return (mod_info(&sbbcmodlinkage, modinfop)); 286 } 287 288 static int 289 sbbc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 290 { 291 int instance; 292 char name[32]; 293 struct sbbcsoft *sbbcsoftp; 294 struct ddi_device_acc_attr attr; 295 uint32_t sbbc_id_reg; 296 297 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 298 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 299 attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; 300 301 /* initialize tracing */ 302 SBBCTRACEINIT(); 303 304 SBBC_DBG0(SBBC_DBG_ATTACH, dip, "Attaching\n"); 305 306 instance = ddi_get_instance(dip); 307 switch (cmd) { 308 case DDI_ATTACH: 309 break; 310 case DDI_RESUME: 311 if (!(sbbcsoftp = 312 ddi_get_soft_state(sbbcsoft_statep, instance))) { 313 cmn_err(CE_WARN, "sbbc_attach:resume: unable " 314 "to acquire sbbcsoftp for instance %d", 315 instance); 316 return (DDI_FAILURE); 317 } 318 mutex_enter(&sbbcsoftp->umutex); 319 if (!sbbcsoftp->suspended) { 320 mutex_exit(&sbbcsoftp->umutex); 321 return (DDI_FAILURE); 322 } 323 sbbcsoftp->suspended = 0; 324 mutex_exit(&sbbcsoftp->umutex); 325 return (DDI_SUCCESS); 326 327 default: 328 return (DDI_FAILURE); 329 } 330 331 if (ddi_soft_state_zalloc(sbbcsoft_statep, instance) != 0) { 332 cmn_err(CE_WARN, "sbbc_attach: Unable to allocate statep " 333 "for instance %d", instance); 334 return (DDI_FAILURE); 335 } 336 337 sbbcsoftp = ddi_get_soft_state(sbbcsoft_statep, instance); 338 339 if (sbbcsoftp == NULL) { 340 cmn_err(CE_WARN, "sbbc_attach: Unable to acquire " 341 "sbbcsoftp for instance %d", instance); 342 ddi_soft_state_free(sbbcsoft_statep, instance); 343 return (DDI_FAILURE); 344 } 345 346 sbbcsoftp->instance = instance; 347 sbbcsoftp->dip = dip; 348 sbbcsoftp->oflag = FALSE; 349 350 /* 351 * Read our ranges property from OBP to map children space. 352 * And setup the internal structure for a later use when 353 * a child gets initialized. 354 */ 355 if (sbbc_get_ranges(sbbcsoftp)) { 356 cmn_err(CE_WARN, "sbbc_attach: Unable to read sbbc " 357 "ranges from OBP %d", instance); 358 ddi_soft_state_free(sbbcsoft_statep, instance); 359 return (DDI_FAILURE); 360 } 361 362 if (sbbc_config4pci(sbbcsoftp)) { 363 cmn_err(CE_WARN, "sbbc_attach: Unable to configure " 364 "sbbc on PCI %d", instance); 365 kmem_free(sbbcsoftp->rangep, sbbcsoftp->range_len); 366 ddi_soft_state_free(sbbcsoft_statep, instance); 367 return (DDI_FAILURE); 368 } 369 370 mutex_init(&sbbcsoftp->umutex, NULL, MUTEX_DRIVER, (void *)NULL); 371 mutex_init(&sbbcsoftp->sbbc_intr_mutex, NULL, 372 MUTEX_DRIVER, (void *)NULL); 373 374 /* Map SBBC's Internal Registers */ 375 if (ddi_regs_map_setup(dip, 1, (caddr_t *)&sbbcsoftp->pci_sbbc_map, 376 offsetof(struct pci_sbbc, sbbc_internal_regs), 377 sizeof (struct sbbc_regs_map), &attr, 378 &sbbcsoftp->pci_sbbc_map_handle) != DDI_SUCCESS) { 379 cmn_err(CE_WARN, "(%d):sbbc_attach failed to map sbbc_reg", 380 instance); 381 goto failed; 382 } 383 384 SBBC_DBG1(SBBC_DBG_ATTACH, dip, "Mapped sbbc at %lx\n", 385 sbbcsoftp->pci_sbbc_map); 386 #ifdef DEBUG 387 sbbc_dump_devid(dip, sbbcsoftp, instance); 388 #endif 389 /* 390 * Read a hardware register to determine if we are executing on 391 * a Starcat System Controller or a Starcat Domain. 392 */ 393 sbbc_id_reg = ddi_get32(sbbcsoftp->pci_sbbc_map_handle, 394 &sbbcsoftp->pci_sbbc_map->device_conf); 395 396 if (sbbc_id_reg & SBBC_SC_MODE) { 397 sbbc_scmode = TRUE; 398 SBBC_DBG1(SBBC_DBG_ATTACH, dip, "SBBC(%d) nexus running " 399 "in System Controller Mode.\n", instance); 400 401 /* initialize SBBC ASIC */ 402 if (!sbbc_init(sbbcsoftp)) { 403 goto failed; 404 } 405 } else { 406 sbbc_scmode = FALSE; 407 SBBC_DBG1(SBBC_DBG_ATTACH, dip, "SBBC(%d) nexus " 408 "running in Domain Mode.\n", instance); 409 410 /* initialize SBBC ASIC before we unmap registers */ 411 if (!sbbc_init(sbbcsoftp)) { 412 goto failed; 413 } 414 415 /* 416 * Access to SBBC registers is no longer needed. Unmap 417 * the registers to conserve kernel virtual address space. 418 */ 419 SBBC_DBG1(SBBC_DBG_ATTACH, dip, "SBBC(%d): unmap " 420 "SBBC registers\n", instance); 421 sbbc_remove_reg_maps(sbbcsoftp); 422 sbbcsoftp->pci_sbbc_map = NULL; 423 } 424 425 (void) sprintf(name, "sbbc%d", instance); 426 427 if (ddi_create_minor_node(dip, name, S_IFCHR, instance, NULL, 428 NULL) == DDI_FAILURE) { 429 ddi_remove_minor_node(dip, NULL); 430 goto failed; 431 } 432 433 ddi_report_dev(dip); 434 435 SBBC_DBG0(SBBC_DBG_ATTACH, dip, "Attached successfully\n"); 436 437 return (DDI_SUCCESS); 438 439 failed: 440 mutex_destroy(&sbbcsoftp->sbbc_intr_mutex); 441 mutex_destroy(&sbbcsoftp->umutex); 442 443 sbbc_remove_reg_maps(sbbcsoftp); 444 kmem_free(sbbcsoftp->rangep, sbbcsoftp->range_len); 445 ddi_soft_state_free(sbbcsoft_statep, instance); 446 447 SBBC_DBG0(SBBC_DBG_ATTACH, dip, "Attach failed\n"); 448 449 return (DDI_FAILURE); 450 } 451 452 static int 453 sbbc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 454 { 455 int instance; 456 struct sbbcsoft *sbbcsoftp; 457 458 SBBCTRACE(sbbc_detach, 'DETA', dip); 459 460 instance = ddi_get_instance(dip); 461 462 switch (cmd) { 463 case DDI_DETACH: 464 break; 465 466 case DDI_SUSPEND: 467 if (!(sbbcsoftp = 468 ddi_get_soft_state(sbbcsoft_statep, instance))) { 469 cmn_err(CE_WARN, 470 "sbbc_detach: unable to get softstate %p", 471 (void *)sbbcsoftp); 472 return (DDI_FAILURE); 473 } 474 mutex_enter(&sbbcsoftp->umutex); 475 if (sbbcsoftp->suspended) { 476 mutex_exit(&sbbcsoftp->umutex); 477 return (DDI_FAILURE); 478 } 479 sbbcsoftp->suspended = 1; 480 mutex_exit(&sbbcsoftp->umutex); 481 return (DDI_SUCCESS); 482 483 default: 484 return (DDI_FAILURE); 485 } 486 487 if (!(sbbcsoftp = ddi_get_soft_state(sbbcsoft_statep, instance))) { 488 cmn_err(CE_WARN, "sbbc_detach: unable to get softstate %p", 489 (void *)sbbcsoftp); 490 return (DDI_FAILURE); 491 } 492 493 ddi_remove_minor_node(dip, NULL); 494 495 mutex_destroy(&sbbcsoftp->sbbc_intr_mutex); 496 mutex_destroy(&sbbcsoftp->umutex); 497 498 sbbc_remove_reg_maps(sbbcsoftp); 499 kmem_free(sbbcsoftp->rangep, sbbcsoftp->range_len); 500 501 ddi_soft_state_free(sbbcsoft_statep, instance); 502 503 return (DDI_SUCCESS); 504 505 } 506 507 508 /* 509 * Translate child's address into parents. 510 */ 511 static int 512 sbbc_busmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 513 off_t off, off_t len, caddr_t *addrp) 514 { 515 struct sbbcsoft *sbbcsoftp; 516 sbbc_child_regspec_t *child_rp, *child_regs; 517 pci_regspec_t pci_reg; 518 ddi_map_req_t p_map_request; 519 int rnumber, i, n; 520 int rval = DDI_SUCCESS; 521 int instance; 522 523 SBBC_DBG4(SBBC_DBG_BUSMAP, dip, 524 "mapping child %s, type %llx, off %llx, len %llx\n", 525 ddi_driver_name(rdip), mp->map_type, off, len); 526 527 SBBCTRACE(sbbc_busmap, 'BMAP', mp); 528 529 /* 530 * Handle the mapping according to its type. 531 */ 532 instance = ddi_get_instance(dip); 533 if (!(sbbcsoftp = ddi_get_soft_state(sbbcsoft_statep, instance))) 534 return (DDI_FAILURE); 535 536 switch (mp->map_type) { 537 case DDI_MT_REGSPEC: 538 539 /* 540 * We assume the register specification is in sbbc format. 541 * We must convert it into a PCI format regspec and pass 542 * the request to our parent. 543 */ 544 child_rp = (sbbc_child_regspec_t *)mp->map_obj.rp; 545 break; 546 547 case DDI_MT_RNUMBER: 548 549 /* 550 * map_type 0 551 * Get the "reg" property from the device node and convert 552 * it to our parent's format. 553 */ 554 rnumber = mp->map_obj.rnumber; 555 556 /* get the requester's reg property */ 557 if (ddi_getlongprop(DDI_DEV_T_ANY, rdip, DDI_PROP_DONTPASS, 558 "reg", (caddr_t)&child_regs, &i) != DDI_SUCCESS) { 559 cmn_err(CE_WARN, 560 "SBBC: couldn't get %s ranges property %d", 561 ddi_get_name(sbbcsoftp->dip), instance); 562 return (DDI_ME_RNUMBER_RANGE); 563 } 564 n = i / sizeof (sbbc_child_regspec_t); 565 566 if (rnumber < 0 || rnumber >= n) { 567 kmem_free(child_regs, i); 568 return (DDI_ME_RNUMBER_RANGE); 569 } 570 child_rp = &child_regs[rnumber]; 571 break; 572 573 default: 574 return (DDI_ME_INVAL); 575 576 } 577 578 /* Adjust our reg property with offset and length */ 579 child_rp->addr_low += off; 580 581 if (len) 582 child_rp->size = len; 583 584 /* 585 * Combine this reg prop. into our parents PCI address using the ranges 586 * property. 587 */ 588 rval = sbbc_apply_range(sbbcsoftp, rdip, child_rp, &pci_reg); 589 590 if (mp->map_type == DDI_MT_RNUMBER) 591 kmem_free(child_regs, i); 592 593 if (rval != DDI_SUCCESS) 594 return (rval); 595 596 p_map_request = *mp; 597 p_map_request.map_type = DDI_MT_REGSPEC; 598 p_map_request.map_obj.rp = (struct regspec *)&pci_reg; 599 600 /* Send it to PCI nexus to map into the PCI space */ 601 rval = ddi_map(dip, &p_map_request, 0, 0, addrp); 602 603 return (rval); 604 605 } 606 607 608 /* new intr_ops structure */ 609 static int 610 sbbc_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, 611 ddi_intr_handle_impl_t *hdlp, void *result) 612 { 613 int ret = DDI_SUCCESS; 614 615 switch (intr_op) { 616 case DDI_INTROP_GETCAP: 617 *(int *)result = DDI_INTR_FLAG_LEVEL; 618 break; 619 case DDI_INTROP_ALLOC: 620 *(int *)result = hdlp->ih_scratch1; 621 break; 622 case DDI_INTROP_FREE: 623 break; 624 case DDI_INTROP_GETPRI: 625 if (hdlp->ih_pri == 0) { 626 hdlp->ih_pri = 0x1; 627 628 cmn_err(CE_WARN, "%s%d assigning default interrupt " 629 "level %d for device %s%d", ddi_driver_name(dip), 630 ddi_get_instance(dip), hdlp->ih_pri, 631 ddi_driver_name(rdip), ddi_get_instance(rdip)); 632 } 633 634 *(int *)result = hdlp->ih_pri; 635 636 break; 637 case DDI_INTROP_ADDISR: 638 ret = sbbc_add_intr_impl(dip, rdip, intr_op, hdlp, result); 639 break; 640 case DDI_INTROP_REMISR: 641 ret = sbbc_remove_intr_impl(dip, rdip, intr_op, hdlp, result); 642 break; 643 case DDI_INTROP_ENABLE: 644 ret = sbbc_update_intr_state(dip, rdip, intr_op, hdlp, &result); 645 break; 646 case DDI_INTROP_DISABLE: 647 ret = sbbc_update_intr_state(dip, rdip, intr_op, hdlp, &result); 648 break; 649 case DDI_INTROP_NINTRS: 650 case DDI_INTROP_NAVAIL: 651 *(int *)result = i_ddi_get_intx_nintrs(rdip); 652 break; 653 case DDI_INTROP_SUPPORTED_TYPES: 654 /* PCI nexus driver supports only fixed interrupts */ 655 *(int *)result = i_ddi_get_intx_nintrs(rdip) ? 656 DDI_INTR_TYPE_FIXED : 0; 657 break; 658 default: 659 ret = DDI_ENOTSUP; 660 break; 661 } 662 663 return (ret); 664 } 665 666 667 static int 668 sbbc_add_intr_impl(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, 669 ddi_intr_handle_impl_t *hdlp, void *result) 670 { 671 sbbcsoft_t *sbbcsoftp; 672 sbbc_child_intr_t *childintr; 673 int instance, i, rval = DDI_SUCCESS; 674 675 SBBC_DBG2(SBBC_DBG_INTR, dip, 676 "add: rdip 0x%llx hdlp 0x%llx\n", rdip, hdlp); 677 678 /* insert the sbbc isr wrapper instead */ 679 instance = ddi_get_instance(dip); 680 if (!(sbbcsoftp = ddi_get_soft_state(sbbcsoft_statep, instance))) 681 return (DDI_FAILURE); 682 683 childintr = kmem_zalloc(sizeof (struct sbbc_child_intr), KM_SLEEP); 684 685 childintr->name = ddi_get_name(rdip); 686 childintr->inum = hdlp->ih_inum; 687 childintr->intr_handler = hdlp->ih_cb_func; 688 childintr->arg1 = hdlp->ih_cb_arg1; 689 childintr->arg2 = hdlp->ih_cb_arg2; 690 childintr->status = SBBC_INTR_STATE_DISABLE; 691 692 for (i = 0; i < MAX_SBBC_DEVICES; i++) { 693 if (sbbcsoftp->child_intr[i] == 0) { 694 sbbcsoftp->child_intr[i] = childintr; 695 break; 696 } 697 } 698 699 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, 700 (ddi_intr_handler_t *)sbbc_intr_wrapper, 701 (caddr_t)sbbcsoftp, NULL); 702 703 if ((rval = i_ddi_intr_ops(dip, rdip, intr_op, 704 hdlp, result)) != DDI_SUCCESS) { 705 cmn_err(CE_WARN, "sbbc%d: failed to add intr for %s", 706 instance, ddi_get_name(rdip)); 707 kmem_free(childintr, sizeof (struct sbbc_child_intr)); 708 sbbcsoftp->child_intr[i] = NULL; 709 } 710 711 /* 712 * Restore original interrupt handler 713 * and arguments in interrupt handle. 714 */ 715 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, childintr->intr_handler, 716 childintr->arg1, childintr->arg2); 717 718 return (rval); 719 } 720 721 static int 722 sbbc_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, 723 ddi_intr_handle_impl_t *hdlp, void *result) 724 { 725 sbbcsoft_t *sbbcsoftp; 726 sbbc_child_intr_t *childintr; 727 int instance, i, rval = DDI_SUCCESS; 728 729 SBBC_DBG2(SBBC_DBG_INTR, dip, 730 "remove: rdip 0x%llx hdlp 0x%llx\n", rdip, hdlp); 731 732 instance = ddi_get_instance(dip); 733 if (!(sbbcsoftp = ddi_get_soft_state(sbbcsoft_statep, instance))) 734 return (DDI_FAILURE); 735 736 /* remove the sbbc isr wrapper instead */ 737 for (i = 0; i < MAX_SBBC_DEVICES; i++) { 738 if (sbbcsoftp->child_intr[i]) { 739 childintr = sbbcsoftp->child_intr[i]; 740 if (childintr->status == SBBC_INTR_STATE_DISABLE && 741 childintr->name == ddi_get_name(rdip)) { 742 /* put back child's inum */ 743 hdlp->ih_inum = childintr->inum; 744 break; 745 } 746 } 747 } 748 749 if (i >= MAX_SBBC_DEVICES) { 750 cmn_err(CE_WARN, "sbbc%d:obound failed to remove intr for %s", 751 instance, ddi_get_name(rdip)); 752 return (DDI_FAILURE); 753 } 754 755 if ((rval = i_ddi_intr_ops(dip, rdip, intr_op, 756 hdlp, result)) != DDI_SUCCESS) { 757 cmn_err(CE_WARN, "sbbc%d: failed to remove intr for %s", 758 instance, ddi_get_name(rdip)); 759 return (rval); 760 } 761 762 kmem_free(childintr, sizeof (struct sbbc_child_intr)); 763 sbbcsoftp->child_intr[i] = NULL; 764 765 return (rval); 766 } 767 768 769 static int 770 sbbc_update_intr_state(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, 771 ddi_intr_handle_impl_t *hdlp, void *result) 772 { 773 sbbcsoft_t *sbbcsoftp; 774 sbbc_child_intr_t *childintr; 775 int instance, i; 776 int ret = DDI_SUCCESS; 777 778 SBBC_DBG2(SBBC_DBG_INTR, dip, "sbbc_update_intr_state: " 779 "rdip 0x%llx hdlp 0x%llx state 0x%x\n", rdip, hdlp); 780 781 instance = ddi_get_instance(dip); 782 if (!(sbbcsoftp = ddi_get_soft_state(sbbcsoft_statep, instance))) 783 return (DDI_FAILURE); 784 785 for (i = 0; i < MAX_SBBC_DEVICES; i++) { 786 if (sbbcsoftp->child_intr[i]) { 787 childintr = sbbcsoftp->child_intr[i]; 788 if (childintr->name == ddi_get_name(rdip)) 789 break; 790 } 791 } 792 793 if (i >= MAX_SBBC_DEVICES) { 794 cmn_err(CE_WARN, "sbbc%d: failed to update intr state for %s", 795 instance, ddi_get_name(rdip)); 796 return (DDI_FAILURE); 797 } 798 799 if ((ret = i_ddi_intr_ops(dip, rdip, intr_op, 800 hdlp, result)) != DDI_SUCCESS) { 801 cmn_err(CE_WARN, "sbbc%d: failed to update intr state for %s", 802 instance, ddi_get_name(rdip)); 803 return (ret); 804 } 805 806 /* Update the interrupt state */ 807 childintr->status = (intr_op == DDI_INTROP_ENABLE) ? 808 SBBC_INTR_STATE_ENABLE : SBBC_INTR_STATE_DISABLE; 809 810 return (ret); 811 } 812 813 814 /* 815 * This entry point is called before a child's probe or attach is called. 816 * The arg pointer points to child's dev_info_t structure. 817 */ 818 static int 819 sbbc_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t op, 820 void *arg, void *result) 821 { 822 sbbc_child_regspec_t *child_rp; 823 int i, n; 824 825 SBBC_DBG3(SBBC_DBG_CTLOPS, dip, 826 "Initializing %s, arg %x, op %x\n", 827 ddi_driver_name(rdip), arg, op); 828 829 SBBCTRACE(sbbc_ctlops, 'CTLO', arg); 830 831 switch (op) { 832 case DDI_CTLOPS_INITCHILD: { 833 return (sbbc_initchild(dip, rdip, (dev_info_t *)arg)); 834 } 835 836 case DDI_CTLOPS_UNINITCHILD: { 837 return (sbbc_uninitchild(rdip, (dev_info_t *)arg)); 838 } 839 840 case DDI_CTLOPS_REPORTDEV: 841 842 cmn_err(CE_CONT, "?%s%d at %s%d: offset %s\n", 843 ddi_driver_name(rdip), ddi_get_instance(rdip), 844 ddi_driver_name(dip), ddi_get_instance(dip), 845 ddi_get_name_addr(rdip)); 846 return (DDI_SUCCESS); 847 848 case DDI_CTLOPS_REGSIZE: 849 850 if (getprop(rdip, "reg", &child_rp, &i) != DDI_SUCCESS) { 851 return (DDI_FAILURE); 852 } 853 n = i / sizeof (sbbc_child_regspec_t); 854 if (*(int *)arg < 0 || *(int *)arg >= n) { 855 kmem_free(child_rp, i); 856 return (DDI_FAILURE); 857 } 858 *((off_t *)result) = child_rp[*(int *)arg].size; 859 kmem_free(child_rp, i); 860 return (DDI_SUCCESS); 861 862 case DDI_CTLOPS_NREGS: 863 864 if (getprop(rdip, "reg", &child_rp, &i) != DDI_SUCCESS) { 865 return (DDI_FAILURE); 866 } 867 *((uint_t *)result) = i / sizeof (sbbc_child_regspec_t); 868 kmem_free(child_rp, i); 869 return (DDI_SUCCESS); 870 } 871 872 /* 873 * Now pass the request up to our parent. 874 */ 875 SBBC_DBG0(SBBC_DBG_CTLOPS, dip, "Calling ddi_ctlops\n"); 876 877 return (ddi_ctlops(dip, rdip, op, arg, result)); 878 } 879 880 881 /* 882 * The following routine uses ranges property, that was read earlier, and 883 * takes child's reg property, and computes the complete address and size 884 * for the PCI parent to map. 885 */ 886 static int 887 sbbc_apply_range(struct sbbcsoft *sbbc_p, dev_info_t *rdip, 888 sbbc_child_regspec_t *child_rp, pci_regspec_t *rp) 889 { 890 int b; 891 int rval = DDI_SUCCESS; 892 struct sbbc_pci_rangespec *rangep = sbbc_p->rangep; 893 int nrange = sbbc_p->range_cnt; 894 895 SBBC_DBG4(SBBC_DBG_MAPRANGES, rdip, 896 "Applying ranges for %s, rangep %llx, child_rp %llx, range %x\n", 897 ddi_driver_name(rdip), sbbc_p->rangep, child_rp, nrange); 898 899 SBBCTRACE(sbbc_apply_range, 'APPL', sbbc_p); 900 901 for (b = 0; b < nrange; ++b, ++rangep) { 902 903 /* Make sure the correct range is being mapped */ 904 if (child_rp->addr_hi == rangep->sbbc_phys_hi) 905 /* See if we fit in this range */ 906 if ((child_rp->addr_low >= 907 rangep->sbbc_phys_low) && 908 ((child_rp->addr_low + child_rp->size - 1) 909 <= (rangep->sbbc_phys_low + 910 rangep->rng_size - 1))) { 911 uint_t addr_offset = child_rp->addr_low - 912 rangep->sbbc_phys_low; 913 /* 914 * Use the range entry to translate 915 * the SBBC physical address into the 916 * parents PCI space. 917 */ 918 rp->pci_phys_hi = 919 rangep->pci_phys_hi; 920 rp->pci_phys_mid = rangep->pci_phys_mid; 921 rp->pci_phys_low = 922 rangep->pci_phys_low + addr_offset; 923 rp->pci_size_hi = 0; 924 rp->pci_size_low = 925 min(child_rp->size, (rangep->rng_size - 926 addr_offset)); 927 928 break; 929 } 930 } 931 932 if (b == nrange) { 933 cmn_err(CE_WARN, "out_of_range %s", ddi_get_name(rdip)); 934 return (DDI_ME_REGSPEC_RANGE); 935 } 936 937 return (rval); 938 } 939 940 941 /* 942 * The following routine reads sbbc's ranges property from OBP and sets up 943 * its soft structure with it. 944 */ 945 static int 946 sbbc_get_ranges(struct sbbcsoft *sbbcsoftp) 947 { 948 struct sbbc_pci_rangespec *rangep; 949 int range_len, nrange; 950 951 if (ddi_getlongprop(DDI_DEV_T_ANY, sbbcsoftp->dip, DDI_PROP_DONTPASS, 952 "ranges", (caddr_t)&rangep, &range_len) != DDI_SUCCESS) { 953 cmn_err(CE_WARN, "SBBC: couldn't get %s ranges property %d", 954 ddi_get_name(sbbcsoftp->dip), sbbcsoftp->instance); 955 return (DDI_ME_REGSPEC_RANGE); 956 } 957 958 nrange = range_len / sizeof (struct sbbc_pci_rangespec); 959 960 if (!nrange) { 961 kmem_free(rangep, range_len); 962 return (DDI_FAILURE); 963 } 964 965 /* setup the soft structure with ranges info. */ 966 sbbcsoftp->rangep = rangep; 967 sbbcsoftp->range_cnt = nrange; 968 sbbcsoftp->range_len = range_len; 969 970 return (DDI_SUCCESS); 971 } 972 973 974 /* 975 * Configure the SBBC for PCI 976 */ 977 static int 978 sbbc_config4pci(struct sbbcsoft *sbbcsoftp) 979 { 980 ddi_acc_handle_t conf_handle; 981 uint16_t comm, vendid, devid, stat; 982 uint8_t revid; 983 984 #ifdef DEBUG 985 if (sbbc_dbg_flags & SBBC_DBG_PCICONF) { 986 cmn_err(CE_CONT, 987 "sbbc_config4pci: sbbcsoftp %p\n", (void *)sbbcsoftp); 988 } 989 #endif 990 if (pci_config_setup(sbbcsoftp->dip, &conf_handle) != DDI_SUCCESS) 991 return (1); 992 993 vendid = pci_config_get16(conf_handle, PCI_CONF_VENID); 994 devid = pci_config_get16(conf_handle, PCI_CONF_DEVID); 995 comm = pci_config_get16(conf_handle, PCI_CONF_COMM); 996 stat = pci_config_get16(conf_handle, PCI_CONF_STAT); 997 revid = pci_config_get8(conf_handle, PCI_CONF_REVID); 998 999 #ifdef DEBUG 1000 if (sbbc_dbg_flags & SBBC_DBG_PCICONF) { 1001 cmn_err(CE_CONT, 1002 "SBBC vendid %x, devid %x, comm %x, stat %x, revid %x\n", 1003 vendid, devid, comm, stat, revid); 1004 } 1005 #endif 1006 comm = (PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_SERR_ENABLE | 1007 PCI_COMM_PARITY_DETECT); 1008 1009 pci_config_put16(conf_handle, PCI_CONF_COMM, comm); 1010 1011 comm = pci_config_get16(conf_handle, PCI_CONF_COMM); 1012 1013 #ifdef DEBUG 1014 if (sbbc_dbg_flags & SBBC_DBG_PCICONF) { 1015 cmn_err(CE_CONT, "comm %x\n", comm); 1016 } 1017 #endif 1018 pci_config_teardown(&conf_handle); 1019 1020 return (0); 1021 } 1022 1023 1024 /* ARGSUSED0 */ 1025 int 1026 sbbc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 1027 { 1028 dev_t dev = (dev_t)arg; 1029 struct sbbcsoft *sbbcsoftp; 1030 int instance, ret; 1031 1032 instance = getminor(dev); 1033 1034 SBBCTRACE(sbbc_getinfo, 'GINF', instance); 1035 1036 switch (infocmd) { 1037 case DDI_INFO_DEVT2DEVINFO: 1038 sbbcsoftp = (struct sbbcsoft *) 1039 ddi_get_soft_state(sbbcsoft_statep, instance); 1040 if (sbbcsoftp == NULL) { 1041 *result = (void *) NULL; 1042 ret = DDI_FAILURE; 1043 } else { 1044 *result = sbbcsoftp->dip; 1045 ret = DDI_SUCCESS; 1046 } 1047 break; 1048 case DDI_INFO_DEVT2INSTANCE: 1049 *result = (void *)(uintptr_t)instance; 1050 ret = DDI_SUCCESS; 1051 break; 1052 default: 1053 ret = DDI_FAILURE; 1054 break; 1055 } 1056 1057 return (ret); 1058 } 1059 1060 /*ARGSUSED1*/ 1061 static int 1062 sbbc_open(dev_t *dev, int flag, int otype, cred_t *credp) 1063 { 1064 struct sbbcsoft *sbbcsoftp; 1065 int instance; 1066 1067 /* check privilege of caller process */ 1068 if (drv_priv(credp)) { 1069 return (EPERM); 1070 } 1071 1072 instance = getminor(*dev); 1073 if (instance < 0) 1074 return (ENXIO); 1075 sbbcsoftp = (struct sbbcsoft *)ddi_get_soft_state(sbbcsoft_statep, 1076 instance); 1077 SBBCTRACE(sbbc_open, 'OPEN', sbbcsoftp); 1078 1079 if (sbbcsoftp == NULL) 1080 return (ENXIO); 1081 1082 mutex_enter(&sbbcsoftp->umutex); 1083 1084 /* check for exclusive access */ 1085 if ((sbbcsoftp->oflag == TRUE)) { 1086 mutex_exit(&sbbcsoftp->umutex); 1087 return (EBUSY); 1088 } 1089 sbbcsoftp->oflag = TRUE; 1090 1091 mutex_exit(&sbbcsoftp->umutex); 1092 1093 return (0); 1094 } 1095 1096 /*ARGSUSED1*/ 1097 static int 1098 sbbc_close(dev_t dev, int flag, int otype, cred_t *credp) 1099 { 1100 struct sbbcsoft *sbbcsoftp; 1101 int instance; 1102 1103 instance = getminor(dev); 1104 if (instance < 0) 1105 return (ENXIO); 1106 sbbcsoftp = (struct sbbcsoft *)ddi_get_soft_state(sbbcsoft_statep, 1107 instance); 1108 /* wait till all output activity has ceased */ 1109 1110 mutex_enter(&sbbcsoftp->umutex); 1111 1112 SBBCTRACE(sbbc_close, 'CLOS', sbbcsoftp); 1113 1114 sbbcsoftp->oflag = FALSE; 1115 1116 mutex_exit(&sbbcsoftp->umutex); 1117 1118 return (0); 1119 } 1120 1121 /*ARGSUSED2*/ 1122 static int 1123 sbbc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 1124 int *rvalp) 1125 { 1126 struct sbbcsoft *sbbcsoftp; 1127 1128 SBBCTRACE(sbbc_ioctl, 'IOCT', arg); 1129 1130 sbbcsoftp = ddi_get_soft_state(sbbcsoft_statep, getminor(dev)); 1131 1132 if (sbbcsoftp == NULL) { 1133 return (ENXIO); 1134 } 1135 1136 switch (cmd) { 1137 case SBBC_SBBCREG_WR: 1138 { 1139 struct ssc_sbbc_regio sbbcregs; 1140 uint64_t offset; 1141 1142 if (sbbc_scmode == FALSE) { 1143 /* then we're executing on Domain; Writes not allowed */ 1144 return (EINVAL); 1145 } 1146 1147 if (arg == NULL) { 1148 return (ENXIO); 1149 } 1150 1151 if (ddi_copyin((caddr_t)arg, (caddr_t)&sbbcregs, 1152 sizeof (struct ssc_sbbc_regio), mode)) { 1153 cmn_err(CE_WARN, "sbbc_ioctl: copyin failed arg %p", 1154 (void *)arg); 1155 return (EFAULT); 1156 } 1157 1158 /* 1159 * Bug #4287186: SBBC driver on cp1500 doesn't check length for 1160 * reads or writes 1161 * Note that I've also added a check to make sure the offset is 1162 * valid, since misaligned (i.e. not on 16-byte boundary) 1163 * accesses or accesses to "Reserved" register offsets are 1164 * treated as unmapped by the SBBC. 1165 */ 1166 if ((sbbcregs.len != 4) || 1167 !sbbc_offset_valid(sbbcregs.offset)) { 1168 return (EINVAL); 1169 } 1170 1171 offset = (uint64_t)sbbcsoftp->pci_sbbc_map; 1172 offset += sbbcregs.offset; 1173 ddi_put32(sbbcsoftp->pci_sbbc_map_handle, (uint32_t *)offset, 1174 sbbcregs.value); 1175 } 1176 break; 1177 case SBBC_SBBCREG_RD: 1178 { 1179 struct ssc_sbbc_regio sbbcregs; 1180 uint64_t offset; 1181 1182 if (sbbc_scmode == FALSE) { 1183 /* then we're executing on Domain; Reads not allowed */ 1184 return (EINVAL); 1185 } 1186 1187 if (arg == NULL) { 1188 return (ENXIO); 1189 } 1190 1191 if (ddi_copyin((caddr_t)arg, (caddr_t)&sbbcregs, 1192 sizeof (struct ssc_sbbc_regio), mode)) { 1193 cmn_err(CE_WARN, "sbbc_ioctl: copyin failed arg %p", 1194 (void *)arg); 1195 return (EFAULT); 1196 } 1197 1198 /* 1199 * Bug #4287186: SBBC driver on cp1500 doesn't check length for 1200 * reads or writes 1201 * Note that I've also added a check to make sure the offset is 1202 * valid, since misaligned (i.e. not on 16-byte boundary) 1203 * accesses or accesses to "Reserved" register offsets are 1204 * treated as unmapped by the SBBC. 1205 */ 1206 if ((sbbcregs.len != 4) || 1207 !sbbc_offset_valid(sbbcregs.offset)) { 1208 return (EINVAL); 1209 } 1210 1211 offset = (uint64_t)sbbcsoftp->pci_sbbc_map; 1212 offset += sbbcregs.offset; 1213 1214 sbbcregs.value = ddi_get32(sbbcsoftp->pci_sbbc_map_handle, 1215 (uint32_t *)offset); 1216 1217 if (ddi_copyout((caddr_t)&sbbcregs.value, 1218 &((struct ssc_sbbc_regio *)arg)->value, sbbcregs.len, mode)) { 1219 cmn_err(CE_WARN, "sbbc_ioctl:copyout failed arg %p", 1220 (void *)arg); 1221 return (EFAULT); 1222 } 1223 } 1224 break; 1225 default: 1226 cmn_err(CE_WARN, "sbbc_ioctl:Illegal command 0x%08x", cmd); 1227 return (ENOTTY); 1228 } 1229 1230 return (DDI_SUCCESS); 1231 } 1232 1233 static void 1234 sbbc_remove_reg_maps(struct sbbcsoft *sbbcsoftp) 1235 { 1236 SBBCTRACE(sbbc_remove_reg_maps, 'RMAP', sbbcsoftp); 1237 if (sbbcsoftp->pci_sbbc_map_handle) 1238 ddi_regs_map_free(&sbbcsoftp->pci_sbbc_map_handle); 1239 } 1240 1241 1242 static int 1243 sbbc_init(struct sbbcsoft *sbbcsoftp) 1244 { 1245 /* Mask all the interrupts until we are ready. */ 1246 ddi_put32(sbbcsoftp->pci_sbbc_map_handle, 1247 &sbbcsoftp->pci_sbbc_map->sys_intr_enable, 1248 0x00000000); 1249 1250 return (1); 1251 } 1252 1253 /* 1254 * The following routine is a generic routine to initialize any child of 1255 * sbbc nexus driver information into parent private data structure. 1256 */ 1257 /* ARGSUSED0 */ 1258 static int 1259 sbbc_initchild(dev_info_t *dip, dev_info_t *rdip, dev_info_t *child) 1260 { 1261 sbbc_child_regspec_t *child_rp; 1262 int reglen, slot; 1263 char name[10]; 1264 1265 SBBC_DBG1(SBBC_DBG_INITCHILD, dip, "Initializing %s\n", 1266 ddi_driver_name(rdip)); 1267 1268 /* 1269 * Initialize a child 1270 * Set the address portion of the node name based on the 1271 * address/offset. 1272 */ 1273 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 1274 "reg", (caddr_t)&child_rp, ®len) != DDI_SUCCESS) { 1275 if (strcmp(ddi_node_name(child), "hotplug-controller") == 0) { 1276 slot = 1; 1277 (void) sprintf(name, "%x", slot); 1278 ddi_set_name_addr(child, name); 1279 return (DDI_SUCCESS); 1280 } 1281 return (DDI_FAILURE); 1282 } 1283 1284 SBBC_DBG3(SBBC_DBG_INITCHILD, dip, "hi 0x%x, low 0x%x, size 0x%x\n", 1285 child_rp->addr_hi, child_rp->addr_low, child_rp->size); 1286 1287 (void) sprintf(name, "%x,%x", child_rp->addr_hi, child_rp->addr_low); 1288 1289 /* 1290 * set child's addresses from the reg property into parent private 1291 * data structure. 1292 */ 1293 ddi_set_name_addr(child, name); 1294 kmem_free(child_rp, reglen); 1295 1296 ddi_set_parent_data(child, NULL); 1297 1298 return (DDI_SUCCESS); 1299 } 1300 1301 1302 /* ARGSUSED0 */ 1303 static int 1304 sbbc_uninitchild(dev_info_t *rdip, dev_info_t *child) 1305 { 1306 1307 SBBC_DBG1(SBBC_DBG_UNINITCHILD, rdip, "Uninitializing %s\n", 1308 ddi_driver_name(rdip)); 1309 1310 ddi_set_name_addr(child, NULL); 1311 ddi_remove_minor_node(child, NULL); 1312 impl_rem_dev_props(child); 1313 1314 return (DDI_SUCCESS); 1315 1316 } 1317 1318 1319 /* 1320 * The following routine is an interrupt service routine that is used 1321 * as a wrapper to all the children requiring interrupt services. 1322 */ 1323 static uint_t 1324 sbbc_intr_wrapper(caddr_t arg) 1325 { 1326 1327 struct sbbcsoft *sbbcsoftp = (struct sbbcsoft *)arg; 1328 int i, rval; 1329 1330 SBBC_DBG1(SBBC_DBG_INTR, sbbcsoftp->dip, "Isr arg 0x%llx\n", arg); 1331 1332 mutex_enter(&sbbcsoftp->sbbc_intr_mutex); 1333 1334 for (i = 0; i < MAX_SBBC_DEVICES; i++) { 1335 /* 1336 * Check the interrupt status reg. to determine the cause. 1337 */ 1338 /* 1339 * Check the error status reg. to determine the cause. 1340 */ 1341 if (sbbcsoftp->child_intr[i] && 1342 sbbcsoftp->child_intr[i]->status == 1343 SBBC_INTR_STATE_ENABLE) { 1344 /* 1345 * Dispatch the children interrupt service routines and 1346 * look for someone to claim. 1347 */ 1348 rval = sbbcsoftp->child_intr[i]->intr_handler( 1349 sbbcsoftp->child_intr[i]->arg1, 1350 sbbcsoftp->child_intr[i]->arg2); 1351 1352 if (rval == DDI_INTR_CLAIMED) { 1353 mutex_exit(&sbbcsoftp->sbbc_intr_mutex); 1354 return (rval); 1355 } 1356 } 1357 } 1358 1359 mutex_exit(&sbbcsoftp->sbbc_intr_mutex); 1360 1361 /* for now do not claim since we know its not enabled */ 1362 return (DDI_INTR_UNCLAIMED); 1363 } 1364 1365 1366 /* 1367 * This function checks an SBBC register offset to make sure that it is properly 1368 * aligned (i.e. on a 16-byte boundary) and that it corresponds to an accessible 1369 * register. Since the SBBC treates accesses to unaligned or reserved addresses 1370 * as unmapped, failing to check for these would leave a loophole that could be 1371 * used to crash the system. 1372 */ 1373 static int 1374 sbbc_offset_valid(uint32_t offset) { 1375 /* 1376 * Check for proper alignment first. 1377 */ 1378 if ((offset % 16) != 0) { 1379 return (0); 1380 } 1381 1382 /* 1383 * Now start checking for the various reserved ranges. 1384 * While sticking a bunch of constants in the code (rather than 1385 * #define'd values) is usually best avoided, it would probably 1386 * do more harm than good here. These values were taken from the 1387 * Serengeti Architecture Programmer's Reference Manual dated 1388 * August 10, 1999, pages 2-99 through 2-103. While there are 1389 * various "clever" ways this check could be performed that would 1390 * be slightly more efficient, arranging the code in this fashion 1391 * should maximize maintainability. 1392 */ 1393 if (((offset >= 0x001a0) && (offset <= 0x001ff)) || 1394 ((offset >= 0x002a0) && (offset <= 0x002ff)) || 1395 ((offset >= 0x00350) && (offset <= 0x003ff)) || 1396 ((offset >= 0x00500) && (offset <= 0x00fff)) || 1397 ((offset >= 0x01160) && (offset <= 0x011ff)) || 1398 ((offset >= 0x01210) && (offset <= 0x017ff)) || 1399 ((offset >= 0x01810) && (offset <= 0x01fff)) || 1400 ((offset >= 0x02030) && (offset <= 0x022ff)) || 1401 ((offset >= 0x02340) && (offset <= 0x03fff)) || 1402 ((offset >= 0x04030) && (offset <= 0x05fff)) || 1403 ((offset >= 0x060a0) && (offset <= 0x060ff)) || 1404 (offset == 0x06120) || 1405 ((offset >= 0x06190) && (offset <= 0x061ff)) || 1406 ((offset >= 0x06230) && (offset <= 0x062f0)) || 1407 (offset > 0x06320)) { 1408 return (0); 1409 } 1410 1411 return (1); 1412 } 1413 1414 #ifdef DEBUG 1415 void 1416 sbbc_dbg(uint32_t flag, dev_info_t *dip, char *fmt, 1417 uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5) 1418 { 1419 char *s = NULL; 1420 1421 if (sbbc_dbg_flags && ((sbbc_dbg_flags & flag) == flag)) { 1422 switch (flag) { 1423 case SBBC_DBG_ATTACH: 1424 s = "attach"; 1425 break; 1426 case SBBC_DBG_DETACH: 1427 s = "detach"; 1428 break; 1429 case SBBC_DBG_CTLOPS: 1430 s = "ctlops"; 1431 break; 1432 case SBBC_DBG_INITCHILD: 1433 s = "initchild"; 1434 break; 1435 case SBBC_DBG_UNINITCHILD: 1436 s = "uninitchild"; 1437 break; 1438 case SBBC_DBG_BUSMAP: 1439 s = "busmap"; 1440 break; 1441 case SBBC_DBG_INTR: 1442 s = "intr"; 1443 break; 1444 case SBBC_DBG_INTROPS: 1445 s = "intr_ops"; 1446 break; 1447 case SBBC_DBG_PCICONF: 1448 s = "pciconfig"; 1449 break; 1450 case SBBC_DBG_MAPRANGES: 1451 s = "mapranges"; 1452 break; 1453 case SBBC_DBG_PROPERTIES: 1454 s = "properties"; 1455 break; 1456 case SBBC_DBG_OPEN: 1457 s = "open"; 1458 break; 1459 case SBBC_DBG_CLOSE: 1460 s = "close"; 1461 break; 1462 case SBBC_DBG_IOCTL: 1463 s = "ioctl"; 1464 break; 1465 default: 1466 s = "Unknown debug flag"; 1467 break; 1468 } 1469 1470 cmn_err(CE_CONT, "%s_%s(%d): ", ddi_driver_name(dip), s, 1471 ddi_get_instance(dip)); 1472 cmn_err(CE_CONT, fmt, a1, a2, a3, a4, a5); 1473 } 1474 } 1475 1476 /* 1477 * Dump the SBBC chip's Device ID Register 1478 */ 1479 static void sbbc_dump_devid(dev_info_t *dip, struct sbbcsoft *sbbcsoftp, 1480 int instance) 1481 { 1482 uint32_t sbbc_id_reg; 1483 uint16_t sbbc_id_reg_partid; 1484 uint16_t sbbc_id_reg_manfid; 1485 1486 sbbc_id_reg = ddi_get32(sbbcsoftp->pci_sbbc_map_handle, 1487 (uint32_t *)&sbbcsoftp->pci_sbbc_map->devid); 1488 1489 sbbc_id_reg_partid = ((sbbc_id_reg << 4) >> 16); 1490 sbbc_id_reg_manfid = ((sbbc_id_reg << 20) >> 21); 1491 1492 SBBC_DBG4(SBBC_DBG_ATTACH, dip, 1493 "FOUND SBBC(%d) Version %x, Partid %x, Manfid %x\n", 1494 instance, (sbbc_id_reg >> 28), sbbc_id_reg_partid, 1495 sbbc_id_reg_manfid); 1496 } 1497 1498 #endif /* DEBUG */ 1499