xref: /titanic_41/usr/src/uts/sun4u/io/px/px_hlib.c (revision 42cac157f878fbb7ae190eb0339c6932f3192b87)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/cmn_err.h>
28 #include <sys/vmsystm.h>
29 #include <sys/vmem.h>
30 #include <sys/machsystm.h>	/* lddphys() */
31 #include <sys/iommutsb.h>
32 #include <px_obj.h>
33 #include <sys/hotplug/pci/pcie_hp.h>
34 #include "px_regs.h"
35 #include "oberon_regs.h"
36 #include "px_csr.h"
37 #include "px_lib4u.h"
38 #include "px_err.h"
39 
40 /*
41  * Registers that need to be saved and restored during suspend/resume.
42  */
43 
44 /*
45  * Registers in the PEC Module.
46  * LPU_RESET should be set to 0ull during resume
47  *
48  * This array is in reg,chip form. PX_CHIP_UNIDENTIFIED is for all chips
49  * or PX_CHIP_FIRE for Fire only, or PX_CHIP_OBERON for Oberon only.
50  */
51 static struct px_pec_regs {
52 	uint64_t reg;
53 	uint64_t chip;
54 } pec_config_state_regs[] = {
55 	{PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
56 	{ILU_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
57 	{ILU_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
58 	{TLU_CONTROL, PX_CHIP_UNIDENTIFIED},
59 	{TLU_OTHER_EVENT_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
60 	{TLU_OTHER_EVENT_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
61 	{TLU_DEVICE_CONTROL, PX_CHIP_UNIDENTIFIED},
62 	{TLU_LINK_CONTROL, PX_CHIP_UNIDENTIFIED},
63 	{TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
64 	{TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
65 	{TLU_CORRECTABLE_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
66 	{TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
67 	{DLU_LINK_LAYER_CONFIG, PX_CHIP_OBERON},
68 	{DLU_FLOW_CONTROL_UPDATE_CONTROL, PX_CHIP_OBERON},
69 	{DLU_TXLINK_REPLAY_TIMER_THRESHOLD, PX_CHIP_OBERON},
70 	{LPU_LINK_LAYER_INTERRUPT_MASK, PX_CHIP_FIRE},
71 	{LPU_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
72 	{LPU_RECEIVE_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
73 	{LPU_TRANSMIT_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
74 	{LPU_GIGABLAZE_GLUE_INTERRUPT_MASK, PX_CHIP_FIRE},
75 	{LPU_LTSSM_INTERRUPT_MASK, PX_CHIP_FIRE},
76 	{LPU_RESET, PX_CHIP_FIRE},
77 	{LPU_DEBUG_CONFIG, PX_CHIP_FIRE},
78 	{LPU_INTERRUPT_MASK, PX_CHIP_FIRE},
79 	{LPU_LINK_LAYER_CONFIG, PX_CHIP_FIRE},
80 	{LPU_FLOW_CONTROL_UPDATE_CONTROL, PX_CHIP_FIRE},
81 	{LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD, PX_CHIP_FIRE},
82 	{LPU_TXLINK_REPLAY_TIMER_THRESHOLD, PX_CHIP_FIRE},
83 	{LPU_REPLAY_BUFFER_MAX_ADDRESS, PX_CHIP_FIRE},
84 	{LPU_TXLINK_RETRY_FIFO_POINTER, PX_CHIP_FIRE},
85 	{LPU_LTSSM_CONFIG2, PX_CHIP_FIRE},
86 	{LPU_LTSSM_CONFIG3, PX_CHIP_FIRE},
87 	{LPU_LTSSM_CONFIG4, PX_CHIP_FIRE},
88 	{LPU_LTSSM_CONFIG5, PX_CHIP_FIRE},
89 	{DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
90 	{DMC_DEBUG_SELECT_FOR_PORT_A, PX_CHIP_UNIDENTIFIED},
91 	{DMC_DEBUG_SELECT_FOR_PORT_B, PX_CHIP_UNIDENTIFIED}
92 };
93 
94 #define	PEC_KEYS	\
95 	((sizeof (pec_config_state_regs))/sizeof (struct px_pec_regs))
96 
97 #define	PEC_SIZE	(PEC_KEYS * sizeof (uint64_t))
98 
99 /*
100  * Registers for the MMU module.
101  * MMU_TTE_CACHE_INVALIDATE needs to be cleared. (-1ull)
102  */
103 static uint64_t mmu_config_state_regs[] = {
104 	MMU_TSB_CONTROL,
105 	MMU_CONTROL_AND_STATUS,
106 	MMU_ERROR_LOG_ENABLE,
107 	MMU_INTERRUPT_ENABLE
108 };
109 #define	MMU_SIZE (sizeof (mmu_config_state_regs))
110 #define	MMU_KEYS (MMU_SIZE / sizeof (uint64_t))
111 
112 /*
113  * Registers for the IB Module
114  */
115 static uint64_t ib_config_state_regs[] = {
116 	IMU_ERROR_LOG_ENABLE,
117 	IMU_INTERRUPT_ENABLE
118 };
119 #define	IB_SIZE (sizeof (ib_config_state_regs))
120 #define	IB_KEYS (IB_SIZE / sizeof (uint64_t))
121 #define	IB_MAP_SIZE (INTERRUPT_MAPPING_ENTRIES * sizeof (uint64_t))
122 
123 /*
124  * Registers for the JBC module.
125  * JBC_ERROR_STATUS_CLEAR needs to be cleared. (-1ull)
126  */
127 static uint64_t	jbc_config_state_regs[] = {
128 	JBUS_PARITY_CONTROL,
129 	JBC_FATAL_RESET_ENABLE,
130 	JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE,
131 	JBC_ERROR_LOG_ENABLE,
132 	JBC_INTERRUPT_ENABLE
133 };
134 #define	JBC_SIZE (sizeof (jbc_config_state_regs))
135 #define	JBC_KEYS (JBC_SIZE / sizeof (uint64_t))
136 
137 /*
138  * Registers for the UBC module.
139  * UBC_ERROR_STATUS_CLEAR needs to be cleared. (-1ull)
140  */
141 static uint64_t	ubc_config_state_regs[] = {
142 	UBC_ERROR_LOG_ENABLE,
143 	UBC_INTERRUPT_ENABLE
144 };
145 #define	UBC_SIZE (sizeof (ubc_config_state_regs))
146 #define	UBC_KEYS (UBC_SIZE / sizeof (uint64_t))
147 
148 static uint64_t	msiq_config_other_regs[] = {
149 	ERR_COR_MAPPING,
150 	ERR_NONFATAL_MAPPING,
151 	ERR_FATAL_MAPPING,
152 	PM_PME_MAPPING,
153 	PME_TO_ACK_MAPPING,
154 	MSI_32_BIT_ADDRESS,
155 	MSI_64_BIT_ADDRESS
156 };
157 #define	MSIQ_OTHER_SIZE	(sizeof (msiq_config_other_regs))
158 #define	MSIQ_OTHER_KEYS	(MSIQ_OTHER_SIZE / sizeof (uint64_t))
159 
160 #define	MSIQ_STATE_SIZE		(EVENT_QUEUE_STATE_ENTRIES * sizeof (uint64_t))
161 #define	MSIQ_MAPPING_SIZE	(MSI_MAPPING_ENTRIES * sizeof (uint64_t))
162 
163 /* OPL tuning variables for link unstable issue */
164 int wait_perst = 5000000; 	/* step 9, default: 5s */
165 int wait_enable_port = 30000;	/* step 11, default: 30ms */
166 int link_retry_count = 2; 	/* step 11, default: 2 */
167 int link_status_check = 400000;	/* step 11, default: 400ms */
168 
169 static uint64_t msiq_suspend(devhandle_t dev_hdl, pxu_t *pxu_p);
170 static void msiq_resume(devhandle_t dev_hdl, pxu_t *pxu_p);
171 static void jbc_init(caddr_t xbc_csr_base, pxu_t *pxu_p);
172 static void ubc_init(caddr_t xbc_csr_base, pxu_t *pxu_p);
173 
174 extern int px_acknak_timer_table[LINK_MAX_PKT_ARR_SIZE][LINK_WIDTH_ARR_SIZE];
175 extern int px_replay_timer_table[LINK_MAX_PKT_ARR_SIZE][LINK_WIDTH_ARR_SIZE];
176 
177 /*
178  * Initialize the bus, but do not enable interrupts.
179  */
180 /* ARGSUSED */
181 void
182 hvio_cb_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
183 {
184 	switch (PX_CHIP_TYPE(pxu_p)) {
185 	case PX_CHIP_OBERON:
186 		ubc_init(xbc_csr_base, pxu_p);
187 		break;
188 	case PX_CHIP_FIRE:
189 		jbc_init(xbc_csr_base, pxu_p);
190 		break;
191 	default:
192 		DBG(DBG_CB, NULL, "hvio_cb_init - unknown chip type: 0x%x\n",
193 		    PX_CHIP_TYPE(pxu_p));
194 		break;
195 	}
196 }
197 
198 /*
199  * Initialize the JBC module, but do not enable interrupts.
200  */
201 /* ARGSUSED */
202 static void
203 jbc_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
204 {
205 	uint64_t val;
206 
207 	/* Check if we need to enable inverted parity */
208 	val = (1ULL << JBUS_PARITY_CONTROL_P_EN);
209 	CSR_XS(xbc_csr_base, JBUS_PARITY_CONTROL, val);
210 	DBG(DBG_CB, NULL, "jbc_init, JBUS_PARITY_CONTROL: 0x%llx\n",
211 	    CSR_XR(xbc_csr_base, JBUS_PARITY_CONTROL));
212 
213 	val = (1 << JBC_FATAL_RESET_ENABLE_SPARE_P_INT_EN) |
214 	    (1 << JBC_FATAL_RESET_ENABLE_MB_PEA_P_INT_EN) |
215 	    (1 << JBC_FATAL_RESET_ENABLE_CPE_P_INT_EN) |
216 	    (1 << JBC_FATAL_RESET_ENABLE_APE_P_INT_EN) |
217 	    (1 << JBC_FATAL_RESET_ENABLE_PIO_CPE_INT_EN) |
218 	    (1 << JBC_FATAL_RESET_ENABLE_JTCEEW_P_INT_EN) |
219 	    (1 << JBC_FATAL_RESET_ENABLE_JTCEEI_P_INT_EN) |
220 	    (1 << JBC_FATAL_RESET_ENABLE_JTCEER_P_INT_EN);
221 	CSR_XS(xbc_csr_base, JBC_FATAL_RESET_ENABLE, val);
222 	DBG(DBG_CB, NULL, "jbc_init, JBC_FATAL_RESET_ENABLE: 0x%llx\n",
223 	    CSR_XR(xbc_csr_base, JBC_FATAL_RESET_ENABLE));
224 
225 	/*
226 	 * Enable merge, jbc and dmc interrupts.
227 	 */
228 	CSR_XS(xbc_csr_base, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE, -1ull);
229 	DBG(DBG_CB, NULL,
230 	    "jbc_init, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
231 	    CSR_XR(xbc_csr_base, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
232 
233 	/*
234 	 * CSR_V JBC's interrupt regs (log, enable, status, clear)
235 	 */
236 	DBG(DBG_CB, NULL, "jbc_init, JBC_ERROR_LOG_ENABLE: 0x%llx\n",
237 	    CSR_XR(xbc_csr_base, JBC_ERROR_LOG_ENABLE));
238 
239 	DBG(DBG_CB, NULL, "jbc_init, JBC_INTERRUPT_ENABLE: 0x%llx\n",
240 	    CSR_XR(xbc_csr_base, JBC_INTERRUPT_ENABLE));
241 
242 	DBG(DBG_CB, NULL, "jbc_init, JBC_INTERRUPT_STATUS: 0x%llx\n",
243 	    CSR_XR(xbc_csr_base, JBC_INTERRUPT_STATUS));
244 
245 	DBG(DBG_CB, NULL, "jbc_init, JBC_ERROR_STATUS_CLEAR: 0x%llx\n",
246 	    CSR_XR(xbc_csr_base, JBC_ERROR_STATUS_CLEAR));
247 }
248 
249 /*
250  * Initialize the UBC module, but do not enable interrupts.
251  */
252 /* ARGSUSED */
253 static void
254 ubc_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
255 {
256 	/*
257 	 * Enable Uranus bus error log bits.
258 	 */
259 	CSR_XS(xbc_csr_base, UBC_ERROR_LOG_ENABLE, -1ull);
260 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_LOG_ENABLE: 0x%llx\n",
261 	    CSR_XR(xbc_csr_base, UBC_ERROR_LOG_ENABLE));
262 
263 	/*
264 	 * Clear Uranus bus errors.
265 	 */
266 	CSR_XS(xbc_csr_base, UBC_ERROR_STATUS_CLEAR, -1ull);
267 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_STATUS_CLEAR: 0x%llx\n",
268 	    CSR_XR(xbc_csr_base, UBC_ERROR_STATUS_CLEAR));
269 
270 	/*
271 	 * CSR_V UBC's interrupt regs (log, enable, status, clear)
272 	 */
273 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_LOG_ENABLE: 0x%llx\n",
274 	    CSR_XR(xbc_csr_base, UBC_ERROR_LOG_ENABLE));
275 
276 	DBG(DBG_CB, NULL, "ubc_init, UBC_INTERRUPT_ENABLE: 0x%llx\n",
277 	    CSR_XR(xbc_csr_base, UBC_INTERRUPT_ENABLE));
278 
279 	DBG(DBG_CB, NULL, "ubc_init, UBC_INTERRUPT_STATUS: 0x%llx\n",
280 	    CSR_XR(xbc_csr_base, UBC_INTERRUPT_STATUS));
281 
282 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_STATUS_CLEAR: 0x%llx\n",
283 	    CSR_XR(xbc_csr_base, UBC_ERROR_STATUS_CLEAR));
284 }
285 
286 /*
287  * Initialize the module, but do not enable interrupts.
288  */
289 /* ARGSUSED */
290 void
291 hvio_ib_init(caddr_t csr_base, pxu_t *pxu_p)
292 {
293 	/*
294 	 * CSR_V IB's interrupt regs (log, enable, status, clear)
295 	 */
296 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_ERROR_LOG_ENABLE: 0x%llx\n",
297 	    CSR_XR(csr_base, IMU_ERROR_LOG_ENABLE));
298 
299 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_INTERRUPT_ENABLE: 0x%llx\n",
300 	    CSR_XR(csr_base, IMU_INTERRUPT_ENABLE));
301 
302 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_INTERRUPT_STATUS: 0x%llx\n",
303 	    CSR_XR(csr_base, IMU_INTERRUPT_STATUS));
304 
305 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_ERROR_STATUS_CLEAR: 0x%llx\n",
306 	    CSR_XR(csr_base, IMU_ERROR_STATUS_CLEAR));
307 }
308 
309 /*
310  * Initialize the module, but do not enable interrupts.
311  */
312 /* ARGSUSED */
313 static void
314 ilu_init(caddr_t csr_base, pxu_t *pxu_p)
315 {
316 	/*
317 	 * CSR_V ILU's interrupt regs (log, enable, status, clear)
318 	 */
319 	DBG(DBG_ILU, NULL, "ilu_init - ILU_ERROR_LOG_ENABLE: 0x%llx\n",
320 	    CSR_XR(csr_base, ILU_ERROR_LOG_ENABLE));
321 
322 	DBG(DBG_ILU, NULL, "ilu_init - ILU_INTERRUPT_ENABLE: 0x%llx\n",
323 	    CSR_XR(csr_base, ILU_INTERRUPT_ENABLE));
324 
325 	DBG(DBG_ILU, NULL, "ilu_init - ILU_INTERRUPT_STATUS: 0x%llx\n",
326 	    CSR_XR(csr_base, ILU_INTERRUPT_STATUS));
327 
328 	DBG(DBG_ILU, NULL, "ilu_init - ILU_ERROR_STATUS_CLEAR: 0x%llx\n",
329 	    CSR_XR(csr_base, ILU_ERROR_STATUS_CLEAR));
330 }
331 
332 /*
333  * Initialize the module, but do not enable interrupts.
334  */
335 /* ARGSUSED */
336 static void
337 tlu_init(caddr_t csr_base, pxu_t *pxu_p)
338 {
339 	uint64_t val;
340 
341 	/*
342 	 * CSR_V TLU_CONTROL Expect OBP ???
343 	 */
344 
345 	/*
346 	 * L0s entry default timer value - 7.0 us
347 	 * Completion timeout select default value - 67.1 ms and
348 	 * OBP will set this value.
349 	 *
350 	 * Configuration - Bit 0 should always be 0 for upstream port.
351 	 * Bit 1 is clock - how is this related to the clock bit in TLU
352 	 * Link Control register?  Both are hardware dependent and likely
353 	 * set by OBP.
354 	 *
355 	 * NOTE: Do not set the NPWR_EN bit.  The desired value of this bit
356 	 * will be set by OBP.
357 	 */
358 	val = CSR_XR(csr_base, TLU_CONTROL);
359 	val |= (TLU_CONTROL_L0S_TIM_DEFAULT << TLU_CONTROL_L0S_TIM) |
360 	    TLU_CONTROL_CONFIG_DEFAULT;
361 
362 	/*
363 	 * For Oberon, NPWR_EN is set to 0 to prevent PIO reads from blocking
364 	 * behind non-posted PIO writes. This blocking could cause a master or
365 	 * slave timeout on the host bus if multiple serialized PIOs were to
366 	 * suffer Completion Timeouts because the CTO delays for each PIO ahead
367 	 * of the read would accumulate. Since the Olympus processor can have
368 	 * only 1 PIO outstanding, there is no possibility of PIO accesses from
369 	 * a given CPU to a given device being re-ordered by the PCIe fabric;
370 	 * therefore turning off serialization should be safe from a PCIe
371 	 * ordering perspective.
372 	 */
373 	if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
374 		val &= ~(1ull << TLU_CONTROL_NPWR_EN);
375 
376 	/*
377 	 * Set Detect.Quiet. This will disable automatic link
378 	 * re-training, if the link goes down e.g. power management
379 	 * turns off power to the downstream device. This will enable
380 	 * Fire to go to Drain state, after link down. The drain state
381 	 * forces a reset to the FC state machine, which is required for
382 	 * proper link re-training.
383 	 */
384 	val |= (1ull << TLU_REMAIN_DETECT_QUIET);
385 	CSR_XS(csr_base, TLU_CONTROL, val);
386 	DBG(DBG_TLU, NULL, "tlu_init - TLU_CONTROL: 0x%llx\n",
387 	    CSR_XR(csr_base, TLU_CONTROL));
388 
389 	/*
390 	 * CSR_V TLU_STATUS Expect HW 0x4
391 	 */
392 
393 	/*
394 	 * Only bit [7:0] are currently defined.  Bits [2:0]
395 	 * are the state, which should likely be in state active,
396 	 * 100b.  Bit three is 'recovery', which is not understood.
397 	 * All other bits are reserved.
398 	 */
399 	DBG(DBG_TLU, NULL, "tlu_init - TLU_STATUS: 0x%llx\n",
400 	    CSR_XR(csr_base, TLU_STATUS));
401 
402 	/*
403 	 * CSR_V TLU_PME_TURN_OFF_GENERATE Expect HW 0x0
404 	 */
405 	DBG(DBG_TLU, NULL, "tlu_init - TLU_PME_TURN_OFF_GENERATE: 0x%llx\n",
406 	    CSR_XR(csr_base, TLU_PME_TURN_OFF_GENERATE));
407 
408 	/*
409 	 * CSR_V TLU_INGRESS_CREDITS_INITIAL Expect HW 0x10000200C0
410 	 */
411 
412 	/*
413 	 * Ingress credits initial register.  Bits [39:32] should be
414 	 * 0x10, bits [19:12] should be 0x20, and bits [11:0] should
415 	 * be 0xC0.  These are the reset values, and should be set by
416 	 * HW.
417 	 */
418 	DBG(DBG_TLU, NULL, "tlu_init - TLU_INGRESS_CREDITS_INITIAL: 0x%llx\n",
419 	    CSR_XR(csr_base, TLU_INGRESS_CREDITS_INITIAL));
420 
421 	/*
422 	 * CSR_V TLU_DIAGNOSTIC Expect HW 0x0
423 	 */
424 
425 	/*
426 	 * Diagnostic register - always zero unless we are debugging.
427 	 */
428 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DIAGNOSTIC: 0x%llx\n",
429 	    CSR_XR(csr_base, TLU_DIAGNOSTIC));
430 
431 	/*
432 	 * CSR_V TLU_EGRESS_CREDITS_CONSUMED Expect HW 0x0
433 	 */
434 	DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_CREDITS_CONSUMED: 0x%llx\n",
435 	    CSR_XR(csr_base, TLU_EGRESS_CREDITS_CONSUMED));
436 
437 	/*
438 	 * CSR_V TLU_EGRESS_CREDIT_LIMIT Expect HW 0x0
439 	 */
440 	DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_CREDIT_LIMIT: 0x%llx\n",
441 	    CSR_XR(csr_base, TLU_EGRESS_CREDIT_LIMIT));
442 
443 	/*
444 	 * CSR_V TLU_EGRESS_RETRY_BUFFER Expect HW 0x0
445 	 */
446 	DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_RETRY_BUFFER: 0x%llx\n",
447 	    CSR_XR(csr_base, TLU_EGRESS_RETRY_BUFFER));
448 
449 	/*
450 	 * CSR_V TLU_INGRESS_CREDITS_ALLOCATED Expected HW 0x0
451 	 */
452 	DBG(DBG_TLU, NULL,
453 	    "tlu_init - TLU_INGRESS_CREDITS_ALLOCATED: 0x%llx\n",
454 	    CSR_XR(csr_base, TLU_INGRESS_CREDITS_ALLOCATED));
455 
456 	/*
457 	 * CSR_V TLU_INGRESS_CREDITS_RECEIVED Expected HW 0x0
458 	 */
459 	DBG(DBG_TLU, NULL,
460 	    "tlu_init - TLU_INGRESS_CREDITS_RECEIVED: 0x%llx\n",
461 	    CSR_XR(csr_base, TLU_INGRESS_CREDITS_RECEIVED));
462 
463 	/*
464 	 * CSR_V TLU's interrupt regs (log, enable, status, clear)
465 	 */
466 	DBG(DBG_TLU, NULL,
467 	    "tlu_init - TLU_OTHER_EVENT_LOG_ENABLE: 0x%llx\n",
468 	    CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE));
469 
470 	DBG(DBG_TLU, NULL,
471 	    "tlu_init - TLU_OTHER_EVENT_INTERRUPT_ENABLE: 0x%llx\n",
472 	    CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_ENABLE));
473 
474 	DBG(DBG_TLU, NULL,
475 	    "tlu_init - TLU_OTHER_EVENT_INTERRUPT_STATUS: 0x%llx\n",
476 	    CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_STATUS));
477 
478 	DBG(DBG_TLU, NULL,
479 	    "tlu_init - TLU_OTHER_EVENT_STATUS_CLEAR: 0x%llx\n",
480 	    CSR_XR(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR));
481 
482 	/*
483 	 * CSR_V TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG Expect HW 0x0
484 	 */
485 	DBG(DBG_TLU, NULL,
486 	    "tlu_init - TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG: 0x%llx\n",
487 	    CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG));
488 
489 	/*
490 	 * CSR_V TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG Expect HW 0x0
491 	 */
492 	DBG(DBG_TLU, NULL,
493 	    "tlu_init - TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG: 0x%llx\n",
494 	    CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG));
495 
496 	/*
497 	 * CSR_V TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG Expect HW 0x0
498 	 */
499 	DBG(DBG_TLU, NULL,
500 	    "tlu_init - TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG: 0x%llx\n",
501 	    CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG));
502 
503 	/*
504 	 * CSR_V TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG Expect HW 0x0
505 	 */
506 	DBG(DBG_TLU, NULL,
507 	    "tlu_init - TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG: 0x%llx\n",
508 	    CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG));
509 
510 	/*
511 	 * CSR_V TLU_PERFORMANCE_COUNTER_SELECT Expect HW 0x0
512 	 */
513 	DBG(DBG_TLU, NULL,
514 	    "tlu_init - TLU_PERFORMANCE_COUNTER_SELECT: 0x%llx\n",
515 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_SELECT));
516 
517 	/*
518 	 * CSR_V TLU_PERFORMANCE_COUNTER_ZERO Expect HW 0x0
519 	 */
520 	DBG(DBG_TLU, NULL,
521 	    "tlu_init - TLU_PERFORMANCE_COUNTER_ZERO: 0x%llx\n",
522 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_ZERO));
523 
524 	/*
525 	 * CSR_V TLU_PERFORMANCE_COUNTER_ONE Expect HW 0x0
526 	 */
527 	DBG(DBG_TLU, NULL, "tlu_init - TLU_PERFORMANCE_COUNTER_ONE: 0x%llx\n",
528 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_ONE));
529 
530 	/*
531 	 * CSR_V TLU_PERFORMANCE_COUNTER_TWO Expect HW 0x0
532 	 */
533 	DBG(DBG_TLU, NULL, "tlu_init - TLU_PERFORMANCE_COUNTER_TWO: 0x%llx\n",
534 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_TWO));
535 
536 	/*
537 	 * CSR_V TLU_DEBUG_SELECT_A Expect HW 0x0
538 	 */
539 
540 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEBUG_SELECT_A: 0x%llx\n",
541 	    CSR_XR(csr_base, TLU_DEBUG_SELECT_A));
542 
543 	/*
544 	 * CSR_V TLU_DEBUG_SELECT_B Expect HW 0x0
545 	 */
546 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEBUG_SELECT_B: 0x%llx\n",
547 	    CSR_XR(csr_base, TLU_DEBUG_SELECT_B));
548 
549 	/*
550 	 * CSR_V TLU_DEVICE_CAPABILITIES Expect HW 0xFC2
551 	 */
552 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_CAPABILITIES: 0x%llx\n",
553 	    CSR_XR(csr_base, TLU_DEVICE_CAPABILITIES));
554 
555 	/*
556 	 * CSR_V TLU_DEVICE_CONTROL Expect HW 0x0
557 	 */
558 
559 	/*
560 	 * Bits [14:12] are the Max Read Request Size, which is always 64
561 	 * bytes which is 000b.  Bits [7:5] are Max Payload Size, which
562 	 * start at 128 bytes which is 000b.  This may be revisited if
563 	 * init_child finds greater values.
564 	 */
565 	val = 0x0ull;
566 	CSR_XS(csr_base, TLU_DEVICE_CONTROL, val);
567 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_CONTROL: 0x%llx\n",
568 	    CSR_XR(csr_base, TLU_DEVICE_CONTROL));
569 
570 	/*
571 	 * CSR_V TLU_DEVICE_STATUS Expect HW 0x0
572 	 */
573 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_STATUS: 0x%llx\n",
574 	    CSR_XR(csr_base, TLU_DEVICE_STATUS));
575 
576 	/*
577 	 * CSR_V TLU_LINK_CAPABILITIES Expect HW 0x15C81
578 	 */
579 	DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_CAPABILITIES: 0x%llx\n",
580 	    CSR_XR(csr_base, TLU_LINK_CAPABILITIES));
581 
582 	/*
583 	 * CSR_V TLU_LINK_CONTROL Expect OBP 0x40
584 	 */
585 
586 	/*
587 	 * The CLOCK bit should be set by OBP if the hardware dictates,
588 	 * and if it is set then ASPM should be used since then L0s exit
589 	 * latency should be lower than L1 exit latency.
590 	 *
591 	 * Note that we will not enable power management during bringup
592 	 * since it has not been test and is creating some problems in
593 	 * simulation.
594 	 */
595 	val = (1ull << TLU_LINK_CONTROL_CLOCK);
596 
597 	CSR_XS(csr_base, TLU_LINK_CONTROL, val);
598 	DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_CONTROL: 0x%llx\n",
599 	    CSR_XR(csr_base, TLU_LINK_CONTROL));
600 
601 	/*
602 	 * CSR_V TLU_LINK_STATUS Expect OBP 0x1011
603 	 */
604 
605 	/*
606 	 * Not sure if HW or OBP will be setting this read only
607 	 * register.  Bit 12 is Clock, and it should always be 1
608 	 * signifying that the component uses the same physical
609 	 * clock as the platform.  Bits [9:4] are for the width,
610 	 * with the expected value above signifying a x1 width.
611 	 * Bits [3:0] are the speed, with 1b signifying 2.5 Gb/s,
612 	 * the only speed as yet supported by the PCI-E spec.
613 	 */
614 	DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_STATUS: 0x%llx\n",
615 	    CSR_XR(csr_base, TLU_LINK_STATUS));
616 
617 	/*
618 	 * CSR_V TLU_SLOT_CAPABILITIES Expect OBP ???
619 	 */
620 
621 	/*
622 	 * Power Limits for the slots.  Will be platform
623 	 * dependent, and OBP will need to set after consulting
624 	 * with the HW guys.
625 	 *
626 	 * Bits [16:15] are power limit scale, which most likely
627 	 * will be 0b signifying 1x.  Bits [14:7] are the Set
628 	 * Power Limit Value, which is a number which is multiplied
629 	 * by the power limit scale to get the actual power limit.
630 	 */
631 	DBG(DBG_TLU, NULL, "tlu_init - TLU_SLOT_CAPABILITIES: 0x%llx\n",
632 	    CSR_XR(csr_base, TLU_SLOT_CAPABILITIES));
633 
634 	/*
635 	 * CSR_V TLU_UNCORRECTABLE_ERROR_LOG_ENABLE Expect Kernel 0x17F011
636 	 */
637 	DBG(DBG_TLU, NULL,
638 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_LOG_ENABLE: 0x%llx\n",
639 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE));
640 
641 	/*
642 	 * CSR_V TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE Expect
643 	 * Kernel 0x17F0110017F011
644 	 */
645 	DBG(DBG_TLU, NULL,
646 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE: 0x%llx\n",
647 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE));
648 
649 	/*
650 	 * CSR_V TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS Expect HW 0x0
651 	 */
652 	DBG(DBG_TLU, NULL,
653 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS: 0x%llx\n",
654 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS));
655 
656 	/*
657 	 * CSR_V TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR Expect HW 0x0
658 	 */
659 	DBG(DBG_TLU, NULL,
660 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR: 0x%llx\n",
661 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR));
662 
663 	/*
664 	 * CSR_V TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG HW 0x0
665 	 */
666 	DBG(DBG_TLU, NULL,
667 	    "tlu_init - TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG: 0x%llx\n",
668 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG));
669 
670 	/*
671 	 * CSR_V TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG HW 0x0
672 	 */
673 	DBG(DBG_TLU, NULL,
674 	    "tlu_init - TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG: 0x%llx\n",
675 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG));
676 
677 	/*
678 	 * CSR_V TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG HW 0x0
679 	 */
680 	DBG(DBG_TLU, NULL,
681 	    "tlu_init - TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG: 0x%llx\n",
682 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG));
683 
684 	/*
685 	 * CSR_V TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG HW 0x0
686 	 */
687 	DBG(DBG_TLU, NULL,
688 	    "tlu_init - TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG: 0x%llx\n",
689 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG));
690 
691 
692 	/*
693 	 * CSR_V TLU's CE interrupt regs (log, enable, status, clear)
694 	 * Plus header logs
695 	 */
696 
697 	/*
698 	 * CSR_V TLU_CORRECTABLE_ERROR_LOG_ENABLE Expect Kernel 0x11C1
699 	 */
700 	DBG(DBG_TLU, NULL,
701 	    "tlu_init - TLU_CORRECTABLE_ERROR_LOG_ENABLE: 0x%llx\n",
702 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE));
703 
704 	/*
705 	 * CSR_V TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE Kernel 0x11C1000011C1
706 	 */
707 	DBG(DBG_TLU, NULL,
708 	    "tlu_init - TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE: 0x%llx\n",
709 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE));
710 
711 	/*
712 	 * CSR_V TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS Expect HW 0x0
713 	 */
714 	DBG(DBG_TLU, NULL,
715 	    "tlu_init - TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS: 0x%llx\n",
716 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS));
717 
718 	/*
719 	 * CSR_V TLU_CORRECTABLE_ERROR_STATUS_CLEAR Expect HW 0x0
720 	 */
721 	DBG(DBG_TLU, NULL,
722 	    "tlu_init - TLU_CORRECTABLE_ERROR_STATUS_CLEAR: 0x%llx\n",
723 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_STATUS_CLEAR));
724 }
725 
726 /* ARGSUSED */
727 static void
728 lpu_init(caddr_t csr_base, pxu_t *pxu_p)
729 {
730 	/* Variables used to set the ACKNAK Latency Timer and Replay Timer */
731 	int link_width, max_payload;
732 
733 	uint64_t val;
734 
735 	/*
736 	 * Get the Link Width.  See table above LINK_WIDTH_ARR_SIZE #define
737 	 * Only Link Widths of x1, x4, and x8 are supported.
738 	 * If any width is reported other than x8, set default to x8.
739 	 */
740 	link_width = CSR_FR(csr_base, TLU_LINK_STATUS, WIDTH);
741 	DBG(DBG_LPU, NULL, "lpu_init - Link Width: x%d\n", link_width);
742 
743 	/*
744 	 * Convert link_width to match timer array configuration.
745 	 */
746 	switch (link_width) {
747 	case 1:
748 		link_width = 0;
749 		break;
750 	case 4:
751 		link_width = 1;
752 		break;
753 	case 8:
754 		link_width = 2;
755 		break;
756 	case 16:
757 		link_width = 3;
758 		break;
759 	default:
760 		link_width = 0;
761 	}
762 
763 	/*
764 	 * Get the Max Payload Size.
765 	 * See table above LINK_MAX_PKT_ARR_SIZE #define
766 	 */
767 	max_payload = ((CSR_FR(csr_base, TLU_CONTROL, CONFIG) &
768 	    TLU_CONTROL_MPS_MASK) >> TLU_CONTROL_MPS_SHIFT);
769 
770 	DBG(DBG_LPU, NULL, "lpu_init - May Payload: %d\n",
771 	    (0x80 << max_payload));
772 
773 	/* Make sure the packet size is not greater than 4096 */
774 	max_payload = (max_payload >= LINK_MAX_PKT_ARR_SIZE) ?
775 	    (LINK_MAX_PKT_ARR_SIZE - 1) : max_payload;
776 
777 	/*
778 	 * CSR_V LPU_ID Expect HW 0x0
779 	 */
780 
781 	/*
782 	 * This register has link id, phy id and gigablaze id.
783 	 * Should be set by HW.
784 	 */
785 	DBG(DBG_LPU, NULL, "lpu_init - LPU_ID: 0x%llx\n",
786 	    CSR_XR(csr_base, LPU_ID));
787 
788 	/*
789 	 * CSR_V LPU_RESET Expect Kernel 0x0
790 	 */
791 
792 	/*
793 	 * No reason to have any reset bits high until an error is
794 	 * detected on the link.
795 	 */
796 	val = 0ull;
797 	CSR_XS(csr_base, LPU_RESET, val);
798 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RESET: 0x%llx\n",
799 	    CSR_XR(csr_base, LPU_RESET));
800 
801 	/*
802 	 * CSR_V LPU_DEBUG_STATUS Expect HW 0x0
803 	 */
804 
805 	/*
806 	 * Bits [15:8] are Debug B, and bit [7:0] are Debug A.
807 	 * They are read-only.  What do the 8 bits mean, and
808 	 * how do they get set if they are read only?
809 	 */
810 	DBG(DBG_LPU, NULL, "lpu_init - LPU_DEBUG_STATUS: 0x%llx\n",
811 	    CSR_XR(csr_base, LPU_DEBUG_STATUS));
812 
813 	/*
814 	 * CSR_V LPU_DEBUG_CONFIG Expect Kernel 0x0
815 	 */
816 	DBG(DBG_LPU, NULL, "lpu_init - LPU_DEBUG_CONFIG: 0x%llx\n",
817 	    CSR_XR(csr_base, LPU_DEBUG_CONFIG));
818 
819 	/*
820 	 * CSR_V LPU_LTSSM_CONTROL Expect HW 0x0
821 	 */
822 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONTROL: 0x%llx\n",
823 	    CSR_XR(csr_base, LPU_LTSSM_CONTROL));
824 
825 	/*
826 	 * CSR_V LPU_LINK_STATUS Expect HW 0x101
827 	 */
828 
829 	/*
830 	 * This register has bits [9:4] for link width, and the
831 	 * default 0x10, means a width of x16.  The problem is
832 	 * this width is not supported according to the TLU
833 	 * link status register.
834 	 */
835 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_STATUS: 0x%llx\n",
836 	    CSR_XR(csr_base, LPU_LINK_STATUS));
837 
838 	/*
839 	 * CSR_V LPU_INTERRUPT_STATUS Expect HW 0x0
840 	 */
841 	DBG(DBG_LPU, NULL, "lpu_init - LPU_INTERRUPT_STATUS: 0x%llx\n",
842 	    CSR_XR(csr_base, LPU_INTERRUPT_STATUS));
843 
844 	/*
845 	 * CSR_V LPU_INTERRUPT_MASK Expect HW 0x0
846 	 */
847 	DBG(DBG_LPU, NULL, "lpu_init - LPU_INTERRUPT_MASK: 0x%llx\n",
848 	    CSR_XR(csr_base, LPU_INTERRUPT_MASK));
849 
850 	/*
851 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER_SELECT Expect HW 0x0
852 	 */
853 	DBG(DBG_LPU, NULL,
854 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER_SELECT: 0x%llx\n",
855 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER_SELECT));
856 
857 	/*
858 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER_CONTROL Expect HW 0x0
859 	 */
860 	DBG(DBG_LPU, NULL,
861 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER_CONTROL: 0x%llx\n",
862 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER_CONTROL));
863 
864 	/*
865 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER1 Expect HW 0x0
866 	 */
867 	DBG(DBG_LPU, NULL,
868 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER1: 0x%llx\n",
869 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER1));
870 
871 	/*
872 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER1_TEST Expect HW 0x0
873 	 */
874 	DBG(DBG_LPU, NULL,
875 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER1_TEST: 0x%llx\n",
876 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER1_TEST));
877 
878 	/*
879 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER2 Expect HW 0x0
880 	 */
881 	DBG(DBG_LPU, NULL,
882 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER2: 0x%llx\n",
883 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER2));
884 
885 	/*
886 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER2_TEST Expect HW 0x0
887 	 */
888 	DBG(DBG_LPU, NULL,
889 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER2_TEST: 0x%llx\n",
890 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER2_TEST));
891 
892 	/*
893 	 * CSR_V LPU_LINK_LAYER_CONFIG Expect HW 0x100
894 	 */
895 
896 	/*
897 	 * This is another place where Max Payload can be set,
898 	 * this time for the link layer.  It will be set to
899 	 * 128B, which is the default, but this will need to
900 	 * be revisited.
901 	 */
902 	val = (1ull << LPU_LINK_LAYER_CONFIG_VC0_EN);
903 	CSR_XS(csr_base, LPU_LINK_LAYER_CONFIG, val);
904 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_LAYER_CONFIG: 0x%llx\n",
905 	    CSR_XR(csr_base, LPU_LINK_LAYER_CONFIG));
906 
907 	/*
908 	 * CSR_V LPU_LINK_LAYER_STATUS Expect OBP 0x5
909 	 */
910 
911 	/*
912 	 * Another R/W status register.  Bit 3, DL up Status, will
913 	 * be set high.  The link state machine status bits [2:0]
914 	 * are set to 0x1, but the status bits are not defined in the
915 	 * PRM.  What does 0x1 mean, what others values are possible
916 	 * and what are thier meanings?
917 	 *
918 	 * This register has been giving us problems in simulation.
919 	 * It has been mentioned that software should not program
920 	 * any registers with WE bits except during debug.  So
921 	 * this register will no longer be programmed.
922 	 */
923 
924 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_LAYER_STATUS: 0x%llx\n",
925 	    CSR_XR(csr_base, LPU_LINK_LAYER_STATUS));
926 
927 	/*
928 	 * CSR_V LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
929 	 */
930 	DBG(DBG_LPU, NULL,
931 	    "lpu_init - LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
932 	    CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST));
933 
934 	/*
935 	 * CSR_V LPU Link Layer interrupt regs (mask, status)
936 	 */
937 	DBG(DBG_LPU, NULL,
938 	    "lpu_init - LPU_LINK_LAYER_INTERRUPT_MASK: 0x%llx\n",
939 	    CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_MASK));
940 
941 	DBG(DBG_LPU, NULL,
942 	    "lpu_init - LPU_LINK_LAYER_INTERRUPT_AND_STATUS: 0x%llx\n",
943 	    CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_AND_STATUS));
944 
945 	/*
946 	 * CSR_V LPU_FLOW_CONTROL_UPDATE_CONTROL Expect OBP 0x7
947 	 */
948 
949 	/*
950 	 * The PRM says that only the first two bits will be set
951 	 * high by default, which will enable flow control for
952 	 * posted and non-posted updates, but NOT completetion
953 	 * updates.
954 	 */
955 	val = (1ull << LPU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_NP_EN) |
956 	    (1ull << LPU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_P_EN);
957 	CSR_XS(csr_base, LPU_FLOW_CONTROL_UPDATE_CONTROL, val);
958 	DBG(DBG_LPU, NULL,
959 	    "lpu_init - LPU_FLOW_CONTROL_UPDATE_CONTROL: 0x%llx\n",
960 	    CSR_XR(csr_base, LPU_FLOW_CONTROL_UPDATE_CONTROL));
961 
962 	/*
963 	 * CSR_V LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE
964 	 * Expect OBP 0x1D4C
965 	 */
966 
967 	/*
968 	 * This should be set by OBP.  We'll check to make sure.
969 	 */
970 	DBG(DBG_LPU, NULL, "lpu_init - "
971 	    "LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE: 0x%llx\n",
972 	    CSR_XR(csr_base,
973 	    LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE));
974 
975 	/*
976 	 * CSR_V LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0 Expect OBP ???
977 	 */
978 
979 	/*
980 	 * This register has Flow Control Update Timer values for
981 	 * non-posted and posted requests, bits [30:16] and bits
982 	 * [14:0], respectively.  These are read-only to SW so
983 	 * either HW or OBP needs to set them.
984 	 */
985 	DBG(DBG_LPU, NULL, "lpu_init - "
986 	    "LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0: 0x%llx\n",
987 	    CSR_XR(csr_base,
988 	    LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0));
989 
990 	/*
991 	 * CSR_V LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1 Expect OBP ???
992 	 */
993 
994 	/*
995 	 * Same as timer0 register above, except for bits [14:0]
996 	 * have the timer values for completetions.  Read-only to
997 	 * SW; OBP or HW need to set it.
998 	 */
999 	DBG(DBG_LPU, NULL, "lpu_init - "
1000 	    "LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1: 0x%llx\n",
1001 	    CSR_XR(csr_base,
1002 	    LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1));
1003 
1004 	/*
1005 	 * CSR_V LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD
1006 	 */
1007 	val = px_acknak_timer_table[max_payload][link_width];
1008 	CSR_XS(csr_base, LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD, val);
1009 
1010 	DBG(DBG_LPU, NULL, "lpu_init - "
1011 	    "LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD: 0x%llx\n",
1012 	    CSR_XR(csr_base, LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD));
1013 
1014 	/*
1015 	 * CSR_V LPU_TXLINK_ACKNAK_LATENCY_TIMER Expect HW 0x0
1016 	 */
1017 	DBG(DBG_LPU, NULL,
1018 	    "lpu_init - LPU_TXLINK_ACKNAK_LATENCY_TIMER: 0x%llx\n",
1019 	    CSR_XR(csr_base, LPU_TXLINK_ACKNAK_LATENCY_TIMER));
1020 
1021 	/*
1022 	 * CSR_V LPU_TXLINK_REPLAY_TIMER_THRESHOLD
1023 	 */
1024 	val = px_replay_timer_table[max_payload][link_width];
1025 	CSR_XS(csr_base, LPU_TXLINK_REPLAY_TIMER_THRESHOLD, val);
1026 
1027 	DBG(DBG_LPU, NULL,
1028 	    "lpu_init - LPU_TXLINK_REPLAY_TIMER_THRESHOLD: 0x%llx\n",
1029 	    CSR_XR(csr_base, LPU_TXLINK_REPLAY_TIMER_THRESHOLD));
1030 
1031 	/*
1032 	 * CSR_V LPU_TXLINK_REPLAY_TIMER Expect HW 0x0
1033 	 */
1034 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_REPLAY_TIMER: 0x%llx\n",
1035 	    CSR_XR(csr_base, LPU_TXLINK_REPLAY_TIMER));
1036 
1037 	/*
1038 	 * CSR_V LPU_TXLINK_REPLAY_NUMBER_STATUS Expect OBP 0x3
1039 	 */
1040 	DBG(DBG_LPU, NULL,
1041 	    "lpu_init - LPU_TXLINK_REPLAY_NUMBER_STATUS: 0x%llx\n",
1042 	    CSR_XR(csr_base, LPU_TXLINK_REPLAY_NUMBER_STATUS));
1043 
1044 	/*
1045 	 * CSR_V LPU_REPLAY_BUFFER_MAX_ADDRESS Expect OBP 0xB3F
1046 	 */
1047 	DBG(DBG_LPU, NULL,
1048 	    "lpu_init - LPU_REPLAY_BUFFER_MAX_ADDRESS: 0x%llx\n",
1049 	    CSR_XR(csr_base, LPU_REPLAY_BUFFER_MAX_ADDRESS));
1050 
1051 	/*
1052 	 * CSR_V LPU_TXLINK_RETRY_FIFO_POINTER Expect OBP 0xFFFF0000
1053 	 */
1054 	val = ((LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_TLPTR_DEFAULT <<
1055 	    LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_TLPTR) |
1056 	    (LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_HDPTR_DEFAULT <<
1057 	    LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_HDPTR));
1058 
1059 	CSR_XS(csr_base, LPU_TXLINK_RETRY_FIFO_POINTER, val);
1060 	DBG(DBG_LPU, NULL,
1061 	    "lpu_init - LPU_TXLINK_RETRY_FIFO_POINTER: 0x%llx\n",
1062 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_POINTER));
1063 
1064 	/*
1065 	 * CSR_V LPU_TXLINK_RETRY_FIFO_R_W_POINTER Expect OBP 0x0
1066 	 */
1067 	DBG(DBG_LPU, NULL,
1068 	    "lpu_init - LPU_TXLINK_RETRY_FIFO_R_W_POINTER: 0x%llx\n",
1069 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_R_W_POINTER));
1070 
1071 	/*
1072 	 * CSR_V LPU_TXLINK_RETRY_FIFO_CREDIT Expect HW 0x1580
1073 	 */
1074 	DBG(DBG_LPU, NULL,
1075 	    "lpu_init - LPU_TXLINK_RETRY_FIFO_CREDIT: 0x%llx\n",
1076 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_CREDIT));
1077 
1078 	/*
1079 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNTER Expect OBP 0xFFF0000
1080 	 */
1081 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_SEQUENCE_COUNTER: 0x%llx\n",
1082 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNTER));
1083 
1084 	/*
1085 	 * CSR_V LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER Expect HW 0xFFF
1086 	 */
1087 	DBG(DBG_LPU, NULL,
1088 	    "lpu_init - LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER: 0x%llx\n",
1089 	    CSR_XR(csr_base, LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER));
1090 
1091 	/*
1092 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR Expect OBP 0x157
1093 	 */
1094 
1095 	/*
1096 	 * Test only register.  Will not be programmed.
1097 	 */
1098 	DBG(DBG_LPU, NULL,
1099 	    "lpu_init - LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR: 0x%llx\n",
1100 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR));
1101 
1102 	/*
1103 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS Expect HW 0xFFF0000
1104 	 */
1105 
1106 	/*
1107 	 * Test only register.  Will not be programmed.
1108 	 */
1109 	DBG(DBG_LPU, NULL,
1110 	    "lpu_init - LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS: 0x%llx\n",
1111 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS));
1112 
1113 	/*
1114 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS Expect HW 0x0
1115 	 */
1116 	DBG(DBG_LPU, NULL,
1117 	    "lpu_init - LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS: 0x%llx\n",
1118 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS));
1119 
1120 	/*
1121 	 * CSR_V LPU_TXLINK_TEST_CONTROL Expect HW 0x0
1122 	 */
1123 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_TEST_CONTROL: 0x%llx\n",
1124 	    CSR_XR(csr_base, LPU_TXLINK_TEST_CONTROL));
1125 
1126 	/*
1127 	 * CSR_V LPU_TXLINK_MEMORY_ADDRESS_CONTROL Expect HW 0x0
1128 	 */
1129 
1130 	/*
1131 	 * Test only register.  Will not be programmed.
1132 	 */
1133 	DBG(DBG_LPU, NULL,
1134 	    "lpu_init - LPU_TXLINK_MEMORY_ADDRESS_CONTROL: 0x%llx\n",
1135 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_ADDRESS_CONTROL));
1136 
1137 	/*
1138 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD0 Expect HW 0x0
1139 	 */
1140 	DBG(DBG_LPU, NULL,
1141 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD0: 0x%llx\n",
1142 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD0));
1143 
1144 	/*
1145 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD1 Expect HW 0x0
1146 	 */
1147 	DBG(DBG_LPU, NULL,
1148 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD1: 0x%llx\n",
1149 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD1));
1150 
1151 	/*
1152 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD2 Expect HW 0x0
1153 	 */
1154 	DBG(DBG_LPU, NULL,
1155 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD2: 0x%llx\n",
1156 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD2));
1157 
1158 	/*
1159 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD3 Expect HW 0x0
1160 	 */
1161 	DBG(DBG_LPU, NULL,
1162 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD3: 0x%llx\n",
1163 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD3));
1164 
1165 	/*
1166 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD4 Expect HW 0x0
1167 	 */
1168 	DBG(DBG_LPU, NULL,
1169 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD4: 0x%llx\n",
1170 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD4));
1171 
1172 	/*
1173 	 * CSR_V LPU_TXLINK_RETRY_DATA_COUNT Expect HW 0x0
1174 	 */
1175 
1176 	/*
1177 	 * Test only register.  Will not be programmed.
1178 	 */
1179 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_RETRY_DATA_COUNT: 0x%llx\n",
1180 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_DATA_COUNT));
1181 
1182 	/*
1183 	 * CSR_V LPU_TXLINK_SEQUENCE_BUFFER_COUNT Expect HW 0x0
1184 	 */
1185 
1186 	/*
1187 	 * Test only register.  Will not be programmed.
1188 	 */
1189 	DBG(DBG_LPU, NULL,
1190 	    "lpu_init - LPU_TXLINK_SEQUENCE_BUFFER_COUNT: 0x%llx\n",
1191 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_BUFFER_COUNT));
1192 
1193 	/*
1194 	 * CSR_V LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA Expect HW 0x0
1195 	 */
1196 
1197 	/*
1198 	 * Test only register.
1199 	 */
1200 	DBG(DBG_LPU, NULL,
1201 	    "lpu_init - LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA: 0x%llx\n",
1202 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA));
1203 
1204 	/*
1205 	 * CSR_V LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER Expect HW 0x0
1206 	 */
1207 	DBG(DBG_LPU, NULL, "lpu_init - "
1208 	    "LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER: 0x%llx\n",
1209 	    CSR_XR(csr_base, LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER));
1210 
1211 	/*
1212 	 * CSR_V LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED Expect HW 0x0
1213 	 */
1214 
1215 	/*
1216 	 * test only register.
1217 	 */
1218 	DBG(DBG_LPU, NULL,
1219 	    "lpu_init - LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED: 0x%llx\n",
1220 	    CSR_XR(csr_base, LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED));
1221 
1222 	/*
1223 	 * CSR_V LPU_RXLINK_TEST_CONTROL Expect HW 0x0
1224 	 */
1225 
1226 	/*
1227 	 * test only register.
1228 	 */
1229 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RXLINK_TEST_CONTROL: 0x%llx\n",
1230 	    CSR_XR(csr_base, LPU_RXLINK_TEST_CONTROL));
1231 
1232 	/*
1233 	 * CSR_V LPU_PHYSICAL_LAYER_CONFIGURATION Expect HW 0x10
1234 	 */
1235 	DBG(DBG_LPU, NULL,
1236 	    "lpu_init - LPU_PHYSICAL_LAYER_CONFIGURATION: 0x%llx\n",
1237 	    CSR_XR(csr_base, LPU_PHYSICAL_LAYER_CONFIGURATION));
1238 
1239 	/*
1240 	 * CSR_V LPU_PHY_LAYER_STATUS Expect HW 0x0
1241 	 */
1242 	DBG(DBG_LPU, NULL, "lpu_init - LPU_PHY_LAYER_STATUS: 0x%llx\n",
1243 	    CSR_XR(csr_base, LPU_PHY_LAYER_STATUS));
1244 
1245 	/*
1246 	 * CSR_V LPU_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1247 	 */
1248 	DBG(DBG_LPU, NULL,
1249 	    "lpu_init - LPU_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1250 	    CSR_XR(csr_base, LPU_PHY_INTERRUPT_AND_STATUS_TEST));
1251 
1252 	/*
1253 	 * CSR_V LPU PHY LAYER interrupt regs (mask, status)
1254 	 */
1255 	DBG(DBG_LPU, NULL, "lpu_init - LPU_PHY_INTERRUPT_MASK: 0x%llx\n",
1256 	    CSR_XR(csr_base, LPU_PHY_INTERRUPT_MASK));
1257 
1258 	DBG(DBG_LPU, NULL,
1259 	    "lpu_init - LPU_PHY_LAYER_INTERRUPT_AND_STATUS: 0x%llx\n",
1260 	    CSR_XR(csr_base, LPU_PHY_LAYER_INTERRUPT_AND_STATUS));
1261 
1262 	/*
1263 	 * CSR_V LPU_RECEIVE_PHY_CONFIG Expect HW 0x0
1264 	 */
1265 
1266 	/*
1267 	 * This also needs some explanation.  What is the best value
1268 	 * for the water mark?  Test mode enables which test mode?
1269 	 * Programming model needed for the Receiver Reset Lane N
1270 	 * bits.
1271 	 */
1272 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_CONFIG: 0x%llx\n",
1273 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_CONFIG));
1274 
1275 	/*
1276 	 * CSR_V LPU_RECEIVE_PHY_STATUS1 Expect HW 0x0
1277 	 */
1278 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS1: 0x%llx\n",
1279 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS1));
1280 
1281 	/*
1282 	 * CSR_V LPU_RECEIVE_PHY_STATUS2 Expect HW 0x0
1283 	 */
1284 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS2: 0x%llx\n",
1285 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS2));
1286 
1287 	/*
1288 	 * CSR_V LPU_RECEIVE_PHY_STATUS3 Expect HW 0x0
1289 	 */
1290 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS3: 0x%llx\n",
1291 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS3));
1292 
1293 	/*
1294 	 * CSR_V LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1295 	 */
1296 	DBG(DBG_LPU, NULL,
1297 	    "lpu_init - LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1298 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST));
1299 
1300 	/*
1301 	 * CSR_V LPU RX LAYER interrupt regs (mask, status)
1302 	 */
1303 	DBG(DBG_LPU, NULL,
1304 	    "lpu_init - LPU_RECEIVE_PHY_INTERRUPT_MASK: 0x%llx\n",
1305 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_MASK));
1306 
1307 	DBG(DBG_LPU, NULL,
1308 	    "lpu_init - LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS: 0x%llx\n",
1309 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS));
1310 
1311 	/*
1312 	 * CSR_V LPU_TRANSMIT_PHY_CONFIG Expect HW 0x0
1313 	 */
1314 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_CONFIG: 0x%llx\n",
1315 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_CONFIG));
1316 
1317 	/*
1318 	 * CSR_V LPU_TRANSMIT_PHY_STATUS Expect HW 0x0
1319 	 */
1320 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_STATUS: 0x%llx\n",
1321 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_STATUS));
1322 
1323 	/*
1324 	 * CSR_V LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1325 	 */
1326 	DBG(DBG_LPU, NULL,
1327 	    "lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1328 	    CSR_XR(csr_base,
1329 	    LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST));
1330 
1331 	/*
1332 	 * CSR_V LPU TX LAYER interrupt regs (mask, status)
1333 	 */
1334 	DBG(DBG_LPU, NULL,
1335 	    "lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_MASK: 0x%llx\n",
1336 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_INTERRUPT_MASK));
1337 
1338 	DBG(DBG_LPU, NULL,
1339 	    "lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS: 0x%llx\n",
1340 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS));
1341 
1342 	/*
1343 	 * CSR_V LPU_TRANSMIT_PHY_STATUS_2 Expect HW 0x0
1344 	 */
1345 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_STATUS_2: 0x%llx\n",
1346 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_STATUS_2));
1347 
1348 	/*
1349 	 * CSR_V LPU_LTSSM_CONFIG1 Expect OBP 0x205
1350 	 */
1351 
1352 	/*
1353 	 * The new PRM has values for LTSSM 8 ns timeout value and
1354 	 * LTSSM 20 ns timeout value.  But what do these values mean?
1355 	 * Most of the other bits are questions as well.
1356 	 *
1357 	 * As such we will use the reset value.
1358 	 */
1359 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG1: 0x%llx\n",
1360 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG1));
1361 
1362 	/*
1363 	 * CSR_V LPU_LTSSM_CONFIG2 Expect OBP 0x2DC6C0
1364 	 */
1365 
1366 	/*
1367 	 * Again, what does '12 ms timeout value mean'?
1368 	 */
1369 	val = (LPU_LTSSM_CONFIG2_LTSSM_12_TO_DEFAULT <<
1370 	    LPU_LTSSM_CONFIG2_LTSSM_12_TO);
1371 	CSR_XS(csr_base, LPU_LTSSM_CONFIG2, val);
1372 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG2: 0x%llx\n",
1373 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG2));
1374 
1375 	/*
1376 	 * CSR_V LPU_LTSSM_CONFIG3 Expect OBP 0x7A120
1377 	 */
1378 	val = (LPU_LTSSM_CONFIG3_LTSSM_2_TO_DEFAULT <<
1379 	    LPU_LTSSM_CONFIG3_LTSSM_2_TO);
1380 	CSR_XS(csr_base, LPU_LTSSM_CONFIG3, val);
1381 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG3: 0x%llx\n",
1382 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG3));
1383 
1384 	/*
1385 	 * CSR_V LPU_LTSSM_CONFIG4 Expect OBP 0x21300
1386 	 */
1387 	val = ((LPU_LTSSM_CONFIG4_DATA_RATE_DEFAULT <<
1388 	    LPU_LTSSM_CONFIG4_DATA_RATE) |
1389 	    (LPU_LTSSM_CONFIG4_N_FTS_DEFAULT <<
1390 	    LPU_LTSSM_CONFIG4_N_FTS));
1391 
1392 	CSR_XS(csr_base, LPU_LTSSM_CONFIG4, val);
1393 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG4: 0x%llx\n",
1394 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG4));
1395 
1396 	/*
1397 	 * CSR_V LPU_LTSSM_CONFIG5 Expect OBP 0x0
1398 	 */
1399 	val = 0ull;
1400 	CSR_XS(csr_base, LPU_LTSSM_CONFIG5, val);
1401 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG5: 0x%llx\n",
1402 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG5));
1403 
1404 	/*
1405 	 * CSR_V LPU_LTSSM_STATUS1 Expect OBP 0x0
1406 	 */
1407 
1408 	/*
1409 	 * LTSSM Status registers are test only.
1410 	 */
1411 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_STATUS1: 0x%llx\n",
1412 	    CSR_XR(csr_base, LPU_LTSSM_STATUS1));
1413 
1414 	/*
1415 	 * CSR_V LPU_LTSSM_STATUS2 Expect OBP 0x0
1416 	 */
1417 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_STATUS2: 0x%llx\n",
1418 	    CSR_XR(csr_base, LPU_LTSSM_STATUS2));
1419 
1420 	/*
1421 	 * CSR_V LPU_LTSSM_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1422 	 */
1423 	DBG(DBG_LPU, NULL,
1424 	    "lpu_init - LPU_LTSSM_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1425 	    CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_AND_STATUS_TEST));
1426 
1427 	/*
1428 	 * CSR_V LPU LTSSM  LAYER interrupt regs (mask, status)
1429 	 */
1430 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_INTERRUPT_MASK: 0x%llx\n",
1431 	    CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_MASK));
1432 
1433 	DBG(DBG_LPU, NULL,
1434 	    "lpu_init - LPU_LTSSM_INTERRUPT_AND_STATUS: 0x%llx\n",
1435 	    CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_AND_STATUS));
1436 
1437 	/*
1438 	 * CSR_V LPU_LTSSM_STATUS_WRITE_ENABLE Expect OBP 0x0
1439 	 */
1440 	DBG(DBG_LPU, NULL,
1441 	    "lpu_init - LPU_LTSSM_STATUS_WRITE_ENABLE: 0x%llx\n",
1442 	    CSR_XR(csr_base, LPU_LTSSM_STATUS_WRITE_ENABLE));
1443 
1444 	/*
1445 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG1 Expect OBP 0x88407
1446 	 */
1447 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG1: 0x%llx\n",
1448 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG1));
1449 
1450 	/*
1451 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG2 Expect OBP 0x35
1452 	 */
1453 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG2: 0x%llx\n",
1454 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG2));
1455 
1456 	/*
1457 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG3 Expect OBP 0x4400FA
1458 	 */
1459 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG3: 0x%llx\n",
1460 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG3));
1461 
1462 	/*
1463 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG4 Expect OBP 0x1E848
1464 	 */
1465 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG4: 0x%llx\n",
1466 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG4));
1467 
1468 	/*
1469 	 * CSR_V LPU_GIGABLAZE_GLUE_STATUS Expect OBP 0x0
1470 	 */
1471 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_STATUS: 0x%llx\n",
1472 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_STATUS));
1473 
1474 	/*
1475 	 * CSR_V LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST Expect OBP 0x0
1476 	 */
1477 	DBG(DBG_LPU, NULL, "lpu_init - "
1478 	    "LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1479 	    CSR_XR(csr_base,
1480 	    LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST));
1481 
1482 	/*
1483 	 * CSR_V LPU GIGABLASE LAYER interrupt regs (mask, status)
1484 	 */
1485 	DBG(DBG_LPU, NULL,
1486 	    "lpu_init - LPU_GIGABLAZE_GLUE_INTERRUPT_MASK: 0x%llx\n",
1487 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_INTERRUPT_MASK));
1488 
1489 	DBG(DBG_LPU, NULL,
1490 	    "lpu_init - LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS: 0x%llx\n",
1491 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS));
1492 
1493 	/*
1494 	 * CSR_V LPU_GIGABLAZE_GLUE_POWER_DOWN1 Expect HW 0x0
1495 	 */
1496 	DBG(DBG_LPU, NULL,
1497 	    "lpu_init - LPU_GIGABLAZE_GLUE_POWER_DOWN1: 0x%llx\n",
1498 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_POWER_DOWN1));
1499 
1500 	/*
1501 	 * CSR_V LPU_GIGABLAZE_GLUE_POWER_DOWN2 Expect HW 0x0
1502 	 */
1503 	DBG(DBG_LPU, NULL,
1504 	    "lpu_init - LPU_GIGABLAZE_GLUE_POWER_DOWN2: 0x%llx\n",
1505 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_POWER_DOWN2));
1506 
1507 	/*
1508 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG5 Expect OBP 0x0
1509 	 */
1510 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG5: 0x%llx\n",
1511 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG5));
1512 }
1513 
1514 /* ARGSUSED */
1515 static void
1516 dlu_init(caddr_t csr_base, pxu_t *pxu_p)
1517 {
1518 uint64_t val;
1519 
1520 	CSR_XS(csr_base, DLU_INTERRUPT_MASK, 0ull);
1521 	DBG(DBG_TLU, NULL, "dlu_init - DLU_INTERRUPT_MASK: 0x%llx\n",
1522 	    CSR_XR(csr_base, DLU_INTERRUPT_MASK));
1523 
1524 	val = (1ull << DLU_LINK_LAYER_CONFIG_VC0_EN);
1525 	CSR_XS(csr_base, DLU_LINK_LAYER_CONFIG, val);
1526 	DBG(DBG_TLU, NULL, "dlu_init - DLU_LINK_LAYER_CONFIG: 0x%llx\n",
1527 	    CSR_XR(csr_base, DLU_LINK_LAYER_CONFIG));
1528 
1529 	val = (1ull << DLU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_NP_EN) |
1530 	    (1ull << DLU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_P_EN);
1531 
1532 	CSR_XS(csr_base, DLU_FLOW_CONTROL_UPDATE_CONTROL, val);
1533 	DBG(DBG_TLU, NULL, "dlu_init - DLU_FLOW_CONTROL_UPDATE_CONTROL: "
1534 	    "0x%llx\n", CSR_XR(csr_base, DLU_FLOW_CONTROL_UPDATE_CONTROL));
1535 
1536 	val = (DLU_TXLINK_REPLAY_TIMER_THRESHOLD_DEFAULT <<
1537 	    DLU_TXLINK_REPLAY_TIMER_THRESHOLD_RPLAY_TMR_THR);
1538 
1539 	CSR_XS(csr_base, DLU_TXLINK_REPLAY_TIMER_THRESHOLD, val);
1540 
1541 	DBG(DBG_TLU, NULL, "dlu_init - DLU_TXLINK_REPLAY_TIMER_THRESHOLD: "
1542 	    "0x%llx\n", CSR_XR(csr_base, DLU_TXLINK_REPLAY_TIMER_THRESHOLD));
1543 }
1544 
1545 /* ARGSUSED */
1546 static void
1547 dmc_init(caddr_t csr_base, pxu_t *pxu_p)
1548 {
1549 	uint64_t val;
1550 
1551 /*
1552  * CSR_V DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE Expect OBP 0x8000000000000003
1553  */
1554 
1555 	val = -1ull;
1556 	CSR_XS(csr_base, DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE, val);
1557 	DBG(DBG_DMC, NULL,
1558 	    "dmc_init - DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
1559 	    CSR_XR(csr_base, DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
1560 
1561 	/*
1562 	 * CSR_V DMC_CORE_AND_BLOCK_ERROR_STATUS Expect HW 0x0
1563 	 */
1564 	DBG(DBG_DMC, NULL,
1565 	    "dmc_init - DMC_CORE_AND_BLOCK_ERROR_STATUS: 0x%llx\n",
1566 	    CSR_XR(csr_base, DMC_CORE_AND_BLOCK_ERROR_STATUS));
1567 
1568 	/*
1569 	 * CSR_V DMC_DEBUG_SELECT_FOR_PORT_A Expect HW 0x0
1570 	 */
1571 	val = 0x0ull;
1572 	CSR_XS(csr_base, DMC_DEBUG_SELECT_FOR_PORT_A, val);
1573 	DBG(DBG_DMC, NULL, "dmc_init - DMC_DEBUG_SELECT_FOR_PORT_A: 0x%llx\n",
1574 	    CSR_XR(csr_base, DMC_DEBUG_SELECT_FOR_PORT_A));
1575 
1576 	/*
1577 	 * CSR_V DMC_DEBUG_SELECT_FOR_PORT_B Expect HW 0x0
1578 	 */
1579 	val = 0x0ull;
1580 	CSR_XS(csr_base, DMC_DEBUG_SELECT_FOR_PORT_B, val);
1581 	DBG(DBG_DMC, NULL, "dmc_init - DMC_DEBUG_SELECT_FOR_PORT_B: 0x%llx\n",
1582 	    CSR_XR(csr_base, DMC_DEBUG_SELECT_FOR_PORT_B));
1583 }
1584 
1585 void
1586 hvio_pec_init(caddr_t csr_base, pxu_t *pxu_p)
1587 {
1588 	uint64_t val;
1589 
1590 	ilu_init(csr_base, pxu_p);
1591 	tlu_init(csr_base, pxu_p);
1592 
1593 	switch (PX_CHIP_TYPE(pxu_p)) {
1594 	case PX_CHIP_OBERON:
1595 		dlu_init(csr_base, pxu_p);
1596 		break;
1597 	case PX_CHIP_FIRE:
1598 		lpu_init(csr_base, pxu_p);
1599 		break;
1600 	default:
1601 		DBG(DBG_PEC, NULL, "hvio_pec_init - unknown chip type: 0x%x\n",
1602 		    PX_CHIP_TYPE(pxu_p));
1603 		break;
1604 	}
1605 
1606 	dmc_init(csr_base, pxu_p);
1607 
1608 /*
1609  * CSR_V PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE Expect Kernel 0x800000000000000F
1610  */
1611 
1612 	val = -1ull;
1613 	CSR_XS(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE, val);
1614 	DBG(DBG_PEC, NULL,
1615 	    "hvio_pec_init - PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
1616 	    CSR_XR(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
1617 
1618 	/*
1619 	 * CSR_V PEC_CORE_AND_BLOCK_INTERRUPT_STATUS Expect HW 0x0
1620 	 */
1621 	DBG(DBG_PEC, NULL,
1622 	    "hvio_pec_init - PEC_CORE_AND_BLOCK_INTERRUPT_STATUS: 0x%llx\n",
1623 	    CSR_XR(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_STATUS));
1624 }
1625 
1626 /*
1627  * Convert a TTE to physical address
1628  */
1629 static r_addr_t
1630 mmu_tte_to_pa(uint64_t tte, pxu_t *pxu_p)
1631 {
1632 	uint64_t pa_mask;
1633 
1634 	switch (PX_CHIP_TYPE(pxu_p)) {
1635 	case PX_CHIP_OBERON:
1636 		pa_mask = MMU_OBERON_PADDR_MASK;
1637 		break;
1638 	case PX_CHIP_FIRE:
1639 		pa_mask = MMU_FIRE_PADDR_MASK;
1640 		break;
1641 	default:
1642 		DBG(DBG_MMU, NULL, "mmu_tte_to_pa - unknown chip type: 0x%x\n",
1643 		    PX_CHIP_TYPE(pxu_p));
1644 		pa_mask = 0;
1645 		break;
1646 	}
1647 	return ((tte & pa_mask) >> MMU_PAGE_SHIFT);
1648 }
1649 
1650 /*
1651  * Return MMU bypass noncache bit for chip
1652  */
1653 static r_addr_t
1654 mmu_bypass_noncache(pxu_t *pxu_p)
1655 {
1656 	r_addr_t bypass_noncache_bit;
1657 
1658 	switch (PX_CHIP_TYPE(pxu_p)) {
1659 	case PX_CHIP_OBERON:
1660 		bypass_noncache_bit = MMU_OBERON_BYPASS_NONCACHE;
1661 		break;
1662 	case PX_CHIP_FIRE:
1663 		bypass_noncache_bit = MMU_FIRE_BYPASS_NONCACHE;
1664 		break;
1665 	default:
1666 		DBG(DBG_MMU, NULL,
1667 		    "mmu_bypass_nocache - unknown chip type: 0x%x\n",
1668 		    PX_CHIP_TYPE(pxu_p));
1669 		bypass_noncache_bit = 0;
1670 		break;
1671 	}
1672 	return (bypass_noncache_bit);
1673 }
1674 
1675 /*
1676  * Calculate number of TSB entries for the chip.
1677  */
1678 /* ARGSUSED */
1679 static uint_t
1680 mmu_tsb_entries(caddr_t csr_base, pxu_t *pxu_p)
1681 {
1682 	uint64_t tsb_ctrl;
1683 	uint_t obp_tsb_entries, obp_tsb_size;
1684 
1685 	tsb_ctrl = CSR_XR(csr_base, MMU_TSB_CONTROL);
1686 
1687 	obp_tsb_size = tsb_ctrl & 0xF;
1688 
1689 	obp_tsb_entries = MMU_TSBSIZE_TO_TSBENTRIES(obp_tsb_size);
1690 
1691 	return (obp_tsb_entries);
1692 }
1693 
1694 /*
1695  * Initialize the module, but do not enable interrupts.
1696  */
1697 void
1698 hvio_mmu_init(caddr_t csr_base, pxu_t *pxu_p)
1699 {
1700 	uint64_t	val, i, obp_tsb_pa, *base_tte_addr;
1701 	uint_t obp_tsb_entries;
1702 
1703 	bzero(pxu_p->tsb_vaddr, pxu_p->tsb_size);
1704 
1705 	/*
1706 	 * Preserve OBP's TSB
1707 	 */
1708 	obp_tsb_pa = CSR_XR(csr_base, MMU_TSB_CONTROL) & MMU_TSB_PA_MASK;
1709 
1710 	obp_tsb_entries = mmu_tsb_entries(csr_base, pxu_p);
1711 
1712 	base_tte_addr = pxu_p->tsb_vaddr +
1713 	    ((pxu_p->tsb_size >> 3) - obp_tsb_entries);
1714 
1715 	for (i = 0; i < obp_tsb_entries; i++) {
1716 		uint64_t tte = lddphys(obp_tsb_pa + i * 8);
1717 
1718 		if (!MMU_TTE_VALID(tte))
1719 			continue;
1720 
1721 		base_tte_addr[i] = tte;
1722 	}
1723 
1724 	/*
1725 	 * Invalidate the TLB through the diagnostic register.
1726 	 */
1727 
1728 	CSR_XS(csr_base, MMU_TTE_CACHE_INVALIDATE, -1ull);
1729 
1730 	/*
1731 	 * Configure the Fire MMU TSB Control Register.  Determine
1732 	 * the encoding for either 8KB pages (0) or 64KB pages (1).
1733 	 *
1734 	 * Write the most significant 30 bits of the TSB physical address
1735 	 * and the encoded TSB table size.
1736 	 */
1737 	for (i = 8; i && (pxu_p->tsb_size < (0x2000 << i)); i--)
1738 		;
1739 
1740 	val = (((((va_to_pa(pxu_p->tsb_vaddr)) >> 13) << 13) |
1741 	    ((MMU_PAGE_SHIFT == 13) ? 0 : 1) << 8) | i);
1742 
1743 	CSR_XS(csr_base, MMU_TSB_CONTROL, val);
1744 
1745 	/*
1746 	 * Enable the MMU, set the "TSB Cache Snoop Enable",
1747 	 * the "Cache Mode", the "Bypass Enable" and
1748 	 * the "Translation Enable" bits.
1749 	 */
1750 	val = CSR_XR(csr_base, MMU_CONTROL_AND_STATUS);
1751 	val |= ((1ull << MMU_CONTROL_AND_STATUS_SE)
1752 	    |  (MMU_CONTROL_AND_STATUS_ROE_BIT63_ENABLE <<
1753 	    MMU_CONTROL_AND_STATUS_ROE)
1754 	    | (MMU_CONTROL_AND_STATUS_CM_MASK << MMU_CONTROL_AND_STATUS_CM)
1755 	    | (1ull << MMU_CONTROL_AND_STATUS_BE)
1756 	    | (1ull << MMU_CONTROL_AND_STATUS_TE));
1757 
1758 	CSR_XS(csr_base, MMU_CONTROL_AND_STATUS, val);
1759 
1760 	/*
1761 	 * Read the register here to ensure that the previous writes to
1762 	 * the Fire MMU registers have been flushed.  (Technically, this
1763 	 * is not entirely necessary here as we will likely do later reads
1764 	 * during Fire initialization, but it is a small price to pay for
1765 	 * more modular code.)
1766 	 */
1767 	(void) CSR_XR(csr_base, MMU_CONTROL_AND_STATUS);
1768 
1769 	/*
1770 	 * CSR_V TLU's UE interrupt regs (log, enable, status, clear)
1771 	 * Plus header logs
1772 	 */
1773 	DBG(DBG_MMU, NULL, "mmu_init - MMU_ERROR_LOG_ENABLE: 0x%llx\n",
1774 	    CSR_XR(csr_base, MMU_ERROR_LOG_ENABLE));
1775 
1776 	DBG(DBG_MMU, NULL, "mmu_init - MMU_INTERRUPT_ENABLE: 0x%llx\n",
1777 	    CSR_XR(csr_base, MMU_INTERRUPT_ENABLE));
1778 
1779 	DBG(DBG_MMU, NULL, "mmu_init - MMU_INTERRUPT_STATUS: 0x%llx\n",
1780 	    CSR_XR(csr_base, MMU_INTERRUPT_STATUS));
1781 
1782 	DBG(DBG_MMU, NULL, "mmu_init - MMU_ERROR_STATUS_CLEAR: 0x%llx\n",
1783 	    CSR_XR(csr_base, MMU_ERROR_STATUS_CLEAR));
1784 }
1785 
1786 /*
1787  * Generic IOMMU Servies
1788  */
1789 
1790 /* ARGSUSED */
1791 uint64_t
1792 hvio_iommu_map(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid, pages_t pages,
1793     io_attributes_t io_attr, void *addr, size_t pfn_index, int flags)
1794 {
1795 	tsbindex_t	tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
1796 	uint64_t	attr = MMU_TTE_V;
1797 	int		i;
1798 
1799 	if (io_attr & PCI_MAP_ATTR_WRITE)
1800 		attr |= MMU_TTE_W;
1801 
1802 	if ((PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) &&
1803 	    (io_attr & PCI_MAP_ATTR_RO))
1804 		attr |= MMU_TTE_RO;
1805 
1806 	if (attr & MMU_TTE_RO) {
1807 		DBG(DBG_MMU, NULL, "hvio_iommu_map: pfn_index=0x%x "
1808 		    "pages=0x%x attr = 0x%lx\n", pfn_index, pages, attr);
1809 	}
1810 
1811 	if (flags & MMU_MAP_PFN) {
1812 		ddi_dma_impl_t	*mp = (ddi_dma_impl_t *)addr;
1813 		for (i = 0; i < pages; i++, pfn_index++, tsb_index++) {
1814 			px_iopfn_t pfn = PX_GET_MP_PFN(mp, pfn_index);
1815 			pxu_p->tsb_vaddr[tsb_index] = MMU_PTOB(pfn) | attr;
1816 
1817 			/*
1818 			 * Oberon will need to flush the corresponding TTEs in
1819 			 * Cache. We only need to flush every cache line.
1820 			 * Extra PIO's are expensive.
1821 			 */
1822 			if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
1823 				if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
1824 					CSR_XS(dev_hdl,
1825 					    MMU_TTE_CACHE_FLUSH_ADDRESS,
1826 					    (pxu_p->tsb_paddr+
1827 					    (tsb_index*MMU_TTE_SIZE)));
1828 				}
1829 			}
1830 		}
1831 	} else {
1832 		caddr_t	a = (caddr_t)addr;
1833 		for (i = 0; i < pages; i++, a += MMU_PAGE_SIZE, tsb_index++) {
1834 			px_iopfn_t pfn = hat_getpfnum(kas.a_hat, a);
1835 			pxu_p->tsb_vaddr[tsb_index] = MMU_PTOB(pfn) | attr;
1836 
1837 			/*
1838 			 * Oberon will need to flush the corresponding TTEs in
1839 			 * Cache. We only need to flush every cache line.
1840 			 * Extra PIO's are expensive.
1841 			 */
1842 			if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
1843 				if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
1844 					CSR_XS(dev_hdl,
1845 					    MMU_TTE_CACHE_FLUSH_ADDRESS,
1846 					    (pxu_p->tsb_paddr+
1847 					    (tsb_index*MMU_TTE_SIZE)));
1848 				}
1849 			}
1850 		}
1851 	}
1852 
1853 	return (H_EOK);
1854 }
1855 
1856 /* ARGSUSED */
1857 uint64_t
1858 hvio_iommu_demap(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid,
1859     pages_t pages)
1860 {
1861 	tsbindex_t	tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
1862 	int		i;
1863 
1864 	for (i = 0; i < pages; i++, tsb_index++) {
1865 		pxu_p->tsb_vaddr[tsb_index] = MMU_INVALID_TTE;
1866 
1867 			/*
1868 			 * Oberon will need to flush the corresponding TTEs in
1869 			 * Cache. We only need to flush every cache line.
1870 			 * Extra PIO's are expensive.
1871 			 */
1872 			if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
1873 				if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
1874 					CSR_XS(dev_hdl,
1875 					    MMU_TTE_CACHE_FLUSH_ADDRESS,
1876 					    (pxu_p->tsb_paddr+
1877 					    (tsb_index*MMU_TTE_SIZE)));
1878 				}
1879 			}
1880 	}
1881 
1882 	return (H_EOK);
1883 }
1884 
1885 /* ARGSUSED */
1886 uint64_t
1887 hvio_iommu_getmap(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid,
1888     io_attributes_t *attr_p, r_addr_t *r_addr_p)
1889 {
1890 	tsbindex_t	tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
1891 	uint64_t	*tte_addr;
1892 	uint64_t	ret = H_EOK;
1893 
1894 	tte_addr = (uint64_t *)(pxu_p->tsb_vaddr) + tsb_index;
1895 
1896 	if (*tte_addr & MMU_TTE_V) {
1897 		*r_addr_p = mmu_tte_to_pa(*tte_addr, pxu_p);
1898 		*attr_p = (*tte_addr & MMU_TTE_W) ?
1899 		    PCI_MAP_ATTR_WRITE:PCI_MAP_ATTR_READ;
1900 	} else {
1901 		*r_addr_p = 0;
1902 		*attr_p = 0;
1903 		ret = H_ENOMAP;
1904 	}
1905 
1906 	return (ret);
1907 }
1908 
1909 /* ARGSUSED */
1910 uint64_t
1911 hvio_get_bypass_base(pxu_t *pxu_p)
1912 {
1913 	uint64_t base;
1914 
1915 	switch (PX_CHIP_TYPE(pxu_p)) {
1916 	case PX_CHIP_OBERON:
1917 		base = MMU_OBERON_BYPASS_BASE;
1918 		break;
1919 	case PX_CHIP_FIRE:
1920 		base = MMU_FIRE_BYPASS_BASE;
1921 		break;
1922 	default:
1923 		DBG(DBG_MMU, NULL,
1924 		    "hvio_get_bypass_base - unknown chip type: 0x%x\n",
1925 		    PX_CHIP_TYPE(pxu_p));
1926 		base = 0;
1927 		break;
1928 	}
1929 	return (base);
1930 }
1931 
1932 /* ARGSUSED */
1933 uint64_t
1934 hvio_get_bypass_end(pxu_t *pxu_p)
1935 {
1936 	uint64_t end;
1937 
1938 	switch (PX_CHIP_TYPE(pxu_p)) {
1939 	case PX_CHIP_OBERON:
1940 		end = MMU_OBERON_BYPASS_END;
1941 		break;
1942 	case PX_CHIP_FIRE:
1943 		end = MMU_FIRE_BYPASS_END;
1944 		break;
1945 	default:
1946 		DBG(DBG_MMU, NULL,
1947 		    "hvio_get_bypass_end - unknown chip type: 0x%x\n",
1948 		    PX_CHIP_TYPE(pxu_p));
1949 		end = 0;
1950 		break;
1951 	}
1952 	return (end);
1953 }
1954 
1955 /* ARGSUSED */
1956 uint64_t
1957 hvio_iommu_getbypass(devhandle_t dev_hdl, pxu_t *pxu_p, r_addr_t ra,
1958     io_attributes_t attr, io_addr_t *io_addr_p)
1959 {
1960 	uint64_t	pfn = MMU_BTOP(ra);
1961 
1962 	*io_addr_p = hvio_get_bypass_base(pxu_p) | ra |
1963 	    (pf_is_memory(pfn) ? 0 : mmu_bypass_noncache(pxu_p));
1964 
1965 	return (H_EOK);
1966 }
1967 
1968 /*
1969  * Generic IO Interrupt Servies
1970  */
1971 
1972 /*
1973  * Converts a device specific interrupt number given by the
1974  * arguments devhandle and devino into a system specific ino.
1975  */
1976 /* ARGSUSED */
1977 uint64_t
1978 hvio_intr_devino_to_sysino(devhandle_t dev_hdl, pxu_t *pxu_p, devino_t devino,
1979     sysino_t *sysino)
1980 {
1981 	if (devino > INTERRUPT_MAPPING_ENTRIES) {
1982 		DBG(DBG_IB, NULL, "ino %x is invalid\n", devino);
1983 		return (H_ENOINTR);
1984 	}
1985 
1986 	*sysino = DEVINO_TO_SYSINO(pxu_p->portid, devino);
1987 
1988 	return (H_EOK);
1989 }
1990 
1991 /*
1992  * Returns state in intr_valid_state if the interrupt defined by sysino
1993  * is valid (enabled) or not-valid (disabled).
1994  */
1995 uint64_t
1996 hvio_intr_getvalid(devhandle_t dev_hdl, sysino_t sysino,
1997     intr_valid_state_t *intr_valid_state)
1998 {
1999 	if (CSRA_BR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2000 	    SYSINO_TO_DEVINO(sysino), ENTRIES_V)) {
2001 		*intr_valid_state = INTR_VALID;
2002 	} else {
2003 		*intr_valid_state = INTR_NOTVALID;
2004 	}
2005 
2006 	return (H_EOK);
2007 }
2008 
2009 /*
2010  * Sets the 'valid' state of the interrupt defined by
2011  * the argument sysino to the state defined by the
2012  * argument intr_valid_state.
2013  */
2014 uint64_t
2015 hvio_intr_setvalid(devhandle_t dev_hdl, sysino_t sysino,
2016     intr_valid_state_t intr_valid_state)
2017 {
2018 	switch (intr_valid_state) {
2019 	case INTR_VALID:
2020 		CSRA_BS((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2021 		    SYSINO_TO_DEVINO(sysino), ENTRIES_V);
2022 		break;
2023 	case INTR_NOTVALID:
2024 		CSRA_BC((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2025 		    SYSINO_TO_DEVINO(sysino), ENTRIES_V);
2026 		break;
2027 	default:
2028 		return (EINVAL);
2029 	}
2030 
2031 	return (H_EOK);
2032 }
2033 
2034 /*
2035  * Returns the current state of the interrupt given by the sysino
2036  * argument.
2037  */
2038 uint64_t
2039 hvio_intr_getstate(devhandle_t dev_hdl, sysino_t sysino,
2040     intr_state_t *intr_state)
2041 {
2042 	intr_state_t state;
2043 
2044 	state = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_CLEAR,
2045 	    SYSINO_TO_DEVINO(sysino), ENTRIES_INT_STATE);
2046 
2047 	switch (state) {
2048 	case INTERRUPT_IDLE_STATE:
2049 		*intr_state = INTR_IDLE_STATE;
2050 		break;
2051 	case INTERRUPT_RECEIVED_STATE:
2052 		*intr_state = INTR_RECEIVED_STATE;
2053 		break;
2054 	case INTERRUPT_PENDING_STATE:
2055 		*intr_state = INTR_DELIVERED_STATE;
2056 		break;
2057 	default:
2058 		return (EINVAL);
2059 	}
2060 
2061 	return (H_EOK);
2062 
2063 }
2064 
2065 /*
2066  * Sets the current state of the interrupt given by the sysino
2067  * argument to the value given in the argument intr_state.
2068  *
2069  * Note: Setting the state to INTR_IDLE clears any pending
2070  * interrupt for sysino.
2071  */
2072 uint64_t
2073 hvio_intr_setstate(devhandle_t dev_hdl, sysino_t sysino,
2074     intr_state_t intr_state)
2075 {
2076 	intr_state_t state;
2077 
2078 	switch (intr_state) {
2079 	case INTR_IDLE_STATE:
2080 		state = INTERRUPT_IDLE_STATE;
2081 		break;
2082 	case INTR_DELIVERED_STATE:
2083 		state = INTERRUPT_PENDING_STATE;
2084 		break;
2085 	default:
2086 		return (EINVAL);
2087 	}
2088 
2089 	CSRA_FS((caddr_t)dev_hdl, INTERRUPT_CLEAR,
2090 	    SYSINO_TO_DEVINO(sysino), ENTRIES_INT_STATE, state);
2091 
2092 	return (H_EOK);
2093 }
2094 
2095 /*
2096  * Returns the cpuid that is the current target of the
2097  * interrupt given by the sysino argument.
2098  *
2099  * The cpuid value returned is undefined if the target
2100  * has not been set via intr_settarget.
2101  */
2102 uint64_t
2103 hvio_intr_gettarget(devhandle_t dev_hdl, pxu_t *pxu_p, sysino_t sysino,
2104     cpuid_t *cpuid)
2105 {
2106 	switch (PX_CHIP_TYPE(pxu_p)) {
2107 	case PX_CHIP_OBERON:
2108 		*cpuid = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2109 		    SYSINO_TO_DEVINO(sysino), ENTRIES_T_DESTID);
2110 		break;
2111 	case PX_CHIP_FIRE:
2112 		*cpuid = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2113 		    SYSINO_TO_DEVINO(sysino), ENTRIES_T_JPID);
2114 		break;
2115 	default:
2116 		DBG(DBG_CB, NULL, "hvio_intr_gettarget - "
2117 		    "unknown chip type: 0x%x\n", PX_CHIP_TYPE(pxu_p));
2118 		return (EINVAL);
2119 	}
2120 
2121 	return (H_EOK);
2122 }
2123 
2124 /*
2125  * Set the target cpu for the interrupt defined by the argument
2126  * sysino to the target cpu value defined by the argument cpuid.
2127  */
2128 uint64_t
2129 hvio_intr_settarget(devhandle_t dev_hdl, pxu_t *pxu_p, sysino_t sysino,
2130     cpuid_t cpuid)
2131 {
2132 	uint64_t	val, intr_controller;
2133 	uint32_t	ino = SYSINO_TO_DEVINO(sysino);
2134 
2135 	/*
2136 	 * For now, we assign interrupt controller in a round
2137 	 * robin fashion.  Later, we may need to come up with
2138 	 * a more efficient assignment algorithm.
2139 	 */
2140 	intr_controller = 0x1ull << (cpuid % 4);
2141 
2142 	switch (PX_CHIP_TYPE(pxu_p)) {
2143 	case PX_CHIP_OBERON:
2144 		val = (((cpuid &
2145 		    INTERRUPT_MAPPING_ENTRIES_T_DESTID_MASK) <<
2146 		    INTERRUPT_MAPPING_ENTRIES_T_DESTID) |
2147 		    ((intr_controller &
2148 		    INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM_MASK)
2149 		    << INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM));
2150 		break;
2151 	case PX_CHIP_FIRE:
2152 		val = (((cpuid & INTERRUPT_MAPPING_ENTRIES_T_JPID_MASK) <<
2153 		    INTERRUPT_MAPPING_ENTRIES_T_JPID) |
2154 		    ((intr_controller &
2155 		    INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM_MASK)
2156 		    << INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM));
2157 		break;
2158 	default:
2159 		DBG(DBG_CB, NULL, "hvio_intr_settarget - "
2160 		    "unknown chip type: 0x%x\n", PX_CHIP_TYPE(pxu_p));
2161 		return (EINVAL);
2162 	}
2163 
2164 	/* For EQ interrupts, set DATA MONDO bit */
2165 	if ((ino >= EQ_1ST_DEVINO) && (ino < (EQ_1ST_DEVINO + EQ_CNT)))
2166 		val |= (0x1ull << INTERRUPT_MAPPING_ENTRIES_MDO_MODE);
2167 
2168 	CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MAPPING, ino, val);
2169 
2170 	return (H_EOK);
2171 }
2172 
2173 /*
2174  * MSIQ Functions:
2175  */
2176 uint64_t
2177 hvio_msiq_init(devhandle_t dev_hdl, pxu_t *pxu_p)
2178 {
2179 	CSRA_XS((caddr_t)dev_hdl, EVENT_QUEUE_BASE_ADDRESS, 0,
2180 	    (uint64_t)pxu_p->msiq_mapped_p);
2181 	DBG(DBG_IB, NULL,
2182 	    "hvio_msiq_init: EVENT_QUEUE_BASE_ADDRESS 0x%llx\n",
2183 	    CSR_XR((caddr_t)dev_hdl, EVENT_QUEUE_BASE_ADDRESS));
2184 
2185 	CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MONDO_DATA_0, 0,
2186 	    (uint64_t)ID_TO_IGN(PX_CHIP_TYPE(pxu_p),
2187 	    pxu_p->portid) << INO_BITS);
2188 	DBG(DBG_IB, NULL, "hvio_msiq_init: "
2189 	    "INTERRUPT_MONDO_DATA_0: 0x%llx\n",
2190 	    CSR_XR((caddr_t)dev_hdl, INTERRUPT_MONDO_DATA_0));
2191 
2192 	return (H_EOK);
2193 }
2194 
2195 uint64_t
2196 hvio_msiq_getvalid(devhandle_t dev_hdl, msiqid_t msiq_id,
2197     pci_msiq_valid_state_t *msiq_valid_state)
2198 {
2199 	uint32_t	eq_state;
2200 	uint64_t	ret = H_EOK;
2201 
2202 	eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
2203 	    msiq_id, ENTRIES_STATE);
2204 
2205 	switch (eq_state) {
2206 	case EQ_IDLE_STATE:
2207 		*msiq_valid_state = PCI_MSIQ_INVALID;
2208 		break;
2209 	case EQ_ACTIVE_STATE:
2210 	case EQ_ERROR_STATE:
2211 		*msiq_valid_state = PCI_MSIQ_VALID;
2212 		break;
2213 	default:
2214 		ret = H_EIO;
2215 		break;
2216 	}
2217 
2218 	return (ret);
2219 }
2220 
2221 uint64_t
2222 hvio_msiq_setvalid(devhandle_t dev_hdl, msiqid_t msiq_id,
2223     pci_msiq_valid_state_t msiq_valid_state)
2224 {
2225 	uint64_t	ret = H_EOK;
2226 
2227 	switch (msiq_valid_state) {
2228 	case PCI_MSIQ_INVALID:
2229 		CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_CLEAR,
2230 		    msiq_id, ENTRIES_DIS);
2231 		break;
2232 	case PCI_MSIQ_VALID:
2233 		CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
2234 		    msiq_id, ENTRIES_EN);
2235 		break;
2236 	default:
2237 		ret = H_EINVAL;
2238 		break;
2239 	}
2240 
2241 	return (ret);
2242 }
2243 
2244 uint64_t
2245 hvio_msiq_getstate(devhandle_t dev_hdl, msiqid_t msiq_id,
2246     pci_msiq_state_t *msiq_state)
2247 {
2248 	uint32_t	eq_state;
2249 	uint64_t	ret = H_EOK;
2250 
2251 	eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
2252 	    msiq_id, ENTRIES_STATE);
2253 
2254 	switch (eq_state) {
2255 	case EQ_IDLE_STATE:
2256 	case EQ_ACTIVE_STATE:
2257 		*msiq_state = PCI_MSIQ_STATE_IDLE;
2258 		break;
2259 	case EQ_ERROR_STATE:
2260 		*msiq_state = PCI_MSIQ_STATE_ERROR;
2261 		break;
2262 	default:
2263 		ret = H_EIO;
2264 	}
2265 
2266 	return (ret);
2267 }
2268 
2269 uint64_t
2270 hvio_msiq_setstate(devhandle_t dev_hdl, msiqid_t msiq_id,
2271     pci_msiq_state_t msiq_state)
2272 {
2273 	uint32_t	eq_state;
2274 	uint64_t	ret = H_EOK;
2275 
2276 	eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
2277 	    msiq_id, ENTRIES_STATE);
2278 
2279 	switch (eq_state) {
2280 	case EQ_IDLE_STATE:
2281 		if (msiq_state == PCI_MSIQ_STATE_ERROR)
2282 			ret = H_EIO;
2283 		break;
2284 	case EQ_ACTIVE_STATE:
2285 		if (msiq_state == PCI_MSIQ_STATE_ERROR)
2286 			CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
2287 			    msiq_id, ENTRIES_ENOVERR);
2288 		else
2289 			ret = H_EIO;
2290 		break;
2291 	case EQ_ERROR_STATE:
2292 		if (msiq_state == PCI_MSIQ_STATE_IDLE)
2293 			CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_CLEAR,
2294 			    msiq_id, ENTRIES_E2I);
2295 		else
2296 			ret = H_EIO;
2297 		break;
2298 	default:
2299 		ret = H_EIO;
2300 	}
2301 
2302 	return (ret);
2303 }
2304 
2305 uint64_t
2306 hvio_msiq_gethead(devhandle_t dev_hdl, msiqid_t msiq_id,
2307     msiqhead_t *msiq_head)
2308 {
2309 	*msiq_head = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_HEAD,
2310 	    msiq_id, ENTRIES_HEAD);
2311 
2312 	return (H_EOK);
2313 }
2314 
2315 uint64_t
2316 hvio_msiq_sethead(devhandle_t dev_hdl, msiqid_t msiq_id,
2317     msiqhead_t msiq_head)
2318 {
2319 	CSRA_FS((caddr_t)dev_hdl, EVENT_QUEUE_HEAD, msiq_id,
2320 	    ENTRIES_HEAD, msiq_head);
2321 
2322 	return (H_EOK);
2323 }
2324 
2325 uint64_t
2326 hvio_msiq_gettail(devhandle_t dev_hdl, msiqid_t msiq_id,
2327     msiqtail_t *msiq_tail)
2328 {
2329 	*msiq_tail = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_TAIL,
2330 	    msiq_id, ENTRIES_TAIL);
2331 
2332 	return (H_EOK);
2333 }
2334 
2335 /*
2336  * MSI Functions:
2337  */
2338 uint64_t
2339 hvio_msi_init(devhandle_t dev_hdl, uint64_t addr32, uint64_t addr64)
2340 {
2341 	/* PCI MEM 32 resources to perform 32 bit MSI transactions */
2342 	CSRA_FS((caddr_t)dev_hdl, MSI_32_BIT_ADDRESS, 0,
2343 	    ADDR, (uint64_t)addr32 >> MSI_32_BIT_ADDRESS_ADDR);
2344 	DBG(DBG_IB, NULL, "hvio_msi_init: MSI_32_BIT_ADDRESS: 0x%llx\n",
2345 	    CSR_XR((caddr_t)dev_hdl, MSI_32_BIT_ADDRESS));
2346 
2347 	/* Reserve PCI MEM 64 resources to perform 64 bit MSI transactions */
2348 	CSRA_FS((caddr_t)dev_hdl, MSI_64_BIT_ADDRESS, 0,
2349 	    ADDR, (uint64_t)addr64 >> MSI_64_BIT_ADDRESS_ADDR);
2350 	DBG(DBG_IB, NULL, "hvio_msi_init: MSI_64_BIT_ADDRESS: 0x%llx\n",
2351 	    CSR_XR((caddr_t)dev_hdl, MSI_64_BIT_ADDRESS));
2352 
2353 	return (H_EOK);
2354 }
2355 
2356 uint64_t
2357 hvio_msi_getmsiq(devhandle_t dev_hdl, msinum_t msi_num,
2358     msiqid_t *msiq_id)
2359 {
2360 	*msiq_id = CSRA_FR((caddr_t)dev_hdl, MSI_MAPPING,
2361 	    msi_num, ENTRIES_EQNUM);
2362 
2363 	return (H_EOK);
2364 }
2365 
2366 uint64_t
2367 hvio_msi_setmsiq(devhandle_t dev_hdl, msinum_t msi_num,
2368     msiqid_t msiq_id)
2369 {
2370 	CSRA_FS((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
2371 	    ENTRIES_EQNUM, msiq_id);
2372 
2373 	return (H_EOK);
2374 }
2375 
2376 uint64_t
2377 hvio_msi_getvalid(devhandle_t dev_hdl, msinum_t msi_num,
2378     pci_msi_valid_state_t *msi_valid_state)
2379 {
2380 	*msi_valid_state = CSRA_BR((caddr_t)dev_hdl, MSI_MAPPING,
2381 	    msi_num, ENTRIES_V);
2382 
2383 	return (H_EOK);
2384 }
2385 
2386 uint64_t
2387 hvio_msi_setvalid(devhandle_t dev_hdl, msinum_t msi_num,
2388     pci_msi_valid_state_t msi_valid_state)
2389 {
2390 	uint64_t	ret = H_EOK;
2391 
2392 	switch (msi_valid_state) {
2393 	case PCI_MSI_VALID:
2394 		CSRA_BS((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
2395 		    ENTRIES_V);
2396 		break;
2397 	case PCI_MSI_INVALID:
2398 		CSRA_BC((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
2399 		    ENTRIES_V);
2400 		break;
2401 	default:
2402 		ret = H_EINVAL;
2403 	}
2404 
2405 	return (ret);
2406 }
2407 
2408 uint64_t
2409 hvio_msi_getstate(devhandle_t dev_hdl, msinum_t msi_num,
2410     pci_msi_state_t *msi_state)
2411 {
2412 	*msi_state = CSRA_BR((caddr_t)dev_hdl, MSI_MAPPING,
2413 	    msi_num, ENTRIES_EQWR_N);
2414 
2415 	return (H_EOK);
2416 }
2417 
2418 uint64_t
2419 hvio_msi_setstate(devhandle_t dev_hdl, msinum_t msi_num,
2420     pci_msi_state_t msi_state)
2421 {
2422 	uint64_t	ret = H_EOK;
2423 
2424 	switch (msi_state) {
2425 	case PCI_MSI_STATE_IDLE:
2426 		CSRA_BS((caddr_t)dev_hdl, MSI_CLEAR, msi_num,
2427 		    ENTRIES_EQWR_N);
2428 		break;
2429 	case PCI_MSI_STATE_DELIVERED:
2430 	default:
2431 		ret = H_EINVAL;
2432 		break;
2433 	}
2434 
2435 	return (ret);
2436 }
2437 
2438 /*
2439  * MSG Functions:
2440  */
2441 uint64_t
2442 hvio_msg_getmsiq(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2443     msiqid_t *msiq_id)
2444 {
2445 	uint64_t	ret = H_EOK;
2446 
2447 	switch (msg_type) {
2448 	case PCIE_PME_MSG:
2449 		*msiq_id = CSR_FR((caddr_t)dev_hdl, PM_PME_MAPPING, EQNUM);
2450 		break;
2451 	case PCIE_PME_ACK_MSG:
2452 		*msiq_id = CSR_FR((caddr_t)dev_hdl, PME_TO_ACK_MAPPING,
2453 		    EQNUM);
2454 		break;
2455 	case PCIE_CORR_MSG:
2456 		*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_COR_MAPPING, EQNUM);
2457 		break;
2458 	case PCIE_NONFATAL_MSG:
2459 		*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING,
2460 		    EQNUM);
2461 		break;
2462 	case PCIE_FATAL_MSG:
2463 		*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_FATAL_MAPPING, EQNUM);
2464 		break;
2465 	default:
2466 		ret = H_EINVAL;
2467 		break;
2468 	}
2469 
2470 	return (ret);
2471 }
2472 
2473 uint64_t
2474 hvio_msg_setmsiq(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2475     msiqid_t msiq_id)
2476 {
2477 	uint64_t	ret = H_EOK;
2478 
2479 	switch (msg_type) {
2480 	case PCIE_PME_MSG:
2481 		CSR_FS((caddr_t)dev_hdl, PM_PME_MAPPING, EQNUM, msiq_id);
2482 		break;
2483 	case PCIE_PME_ACK_MSG:
2484 		CSR_FS((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, EQNUM, msiq_id);
2485 		break;
2486 	case PCIE_CORR_MSG:
2487 		CSR_FS((caddr_t)dev_hdl, ERR_COR_MAPPING, EQNUM, msiq_id);
2488 		break;
2489 	case PCIE_NONFATAL_MSG:
2490 		CSR_FS((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, EQNUM, msiq_id);
2491 		break;
2492 	case PCIE_FATAL_MSG:
2493 		CSR_FS((caddr_t)dev_hdl, ERR_FATAL_MAPPING, EQNUM, msiq_id);
2494 		break;
2495 	default:
2496 		ret = H_EINVAL;
2497 		break;
2498 	}
2499 
2500 	return (ret);
2501 }
2502 
2503 uint64_t
2504 hvio_msg_getvalid(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2505     pcie_msg_valid_state_t *msg_valid_state)
2506 {
2507 	uint64_t	ret = H_EOK;
2508 
2509 	switch (msg_type) {
2510 	case PCIE_PME_MSG:
2511 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl, PM_PME_MAPPING, V);
2512 		break;
2513 	case PCIE_PME_ACK_MSG:
2514 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl,
2515 		    PME_TO_ACK_MAPPING, V);
2516 		break;
2517 	case PCIE_CORR_MSG:
2518 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
2519 		break;
2520 	case PCIE_NONFATAL_MSG:
2521 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl,
2522 		    ERR_NONFATAL_MAPPING, V);
2523 		break;
2524 	case PCIE_FATAL_MSG:
2525 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl, ERR_FATAL_MAPPING,
2526 		    V);
2527 		break;
2528 	default:
2529 		ret = H_EINVAL;
2530 		break;
2531 	}
2532 
2533 	return (ret);
2534 }
2535 
2536 uint64_t
2537 hvio_msg_setvalid(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2538     pcie_msg_valid_state_t msg_valid_state)
2539 {
2540 	uint64_t	ret = H_EOK;
2541 
2542 	switch (msg_valid_state) {
2543 	case PCIE_MSG_VALID:
2544 		switch (msg_type) {
2545 		case PCIE_PME_MSG:
2546 			CSR_BS((caddr_t)dev_hdl, PM_PME_MAPPING, V);
2547 			break;
2548 		case PCIE_PME_ACK_MSG:
2549 			CSR_BS((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, V);
2550 			break;
2551 		case PCIE_CORR_MSG:
2552 			CSR_BS((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
2553 			break;
2554 		case PCIE_NONFATAL_MSG:
2555 			CSR_BS((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, V);
2556 			break;
2557 		case PCIE_FATAL_MSG:
2558 			CSR_BS((caddr_t)dev_hdl, ERR_FATAL_MAPPING, V);
2559 			break;
2560 		default:
2561 			ret = H_EINVAL;
2562 			break;
2563 		}
2564 
2565 		break;
2566 	case PCIE_MSG_INVALID:
2567 		switch (msg_type) {
2568 		case PCIE_PME_MSG:
2569 			CSR_BC((caddr_t)dev_hdl, PM_PME_MAPPING, V);
2570 			break;
2571 		case PCIE_PME_ACK_MSG:
2572 			CSR_BC((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, V);
2573 			break;
2574 		case PCIE_CORR_MSG:
2575 			CSR_BC((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
2576 			break;
2577 		case PCIE_NONFATAL_MSG:
2578 			CSR_BC((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, V);
2579 			break;
2580 		case PCIE_FATAL_MSG:
2581 			CSR_BC((caddr_t)dev_hdl, ERR_FATAL_MAPPING, V);
2582 			break;
2583 		default:
2584 			ret = H_EINVAL;
2585 			break;
2586 		}
2587 		break;
2588 	default:
2589 		ret = H_EINVAL;
2590 	}
2591 
2592 	return (ret);
2593 }
2594 
2595 /*
2596  * Suspend/Resume Functions:
2597  *	(pec, mmu, ib)
2598  *	cb
2599  * Registers saved have all been touched in the XXX_init functions.
2600  */
2601 uint64_t
2602 hvio_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
2603 {
2604 	uint64_t	*config_state;
2605 	int		total_size;
2606 	int		i;
2607 
2608 	if (msiq_suspend(dev_hdl, pxu_p) != H_EOK)
2609 		return (H_EIO);
2610 
2611 	total_size = PEC_SIZE + MMU_SIZE + IB_SIZE + IB_MAP_SIZE;
2612 	config_state = kmem_zalloc(total_size, KM_NOSLEEP);
2613 
2614 	if (config_state == NULL) {
2615 		return (H_EIO);
2616 	}
2617 
2618 	/*
2619 	 * Soft state for suspend/resume  from pxu_t
2620 	 * uint64_t	*pec_config_state;
2621 	 * uint64_t	*mmu_config_state;
2622 	 * uint64_t	*ib_intr_map;
2623 	 * uint64_t	*ib_config_state;
2624 	 * uint64_t	*xcb_config_state;
2625 	 */
2626 
2627 	/* Save the PEC configuration states */
2628 	pxu_p->pec_config_state = config_state;
2629 	for (i = 0; i < PEC_KEYS; i++) {
2630 		if ((pec_config_state_regs[i].chip == PX_CHIP_TYPE(pxu_p)) ||
2631 		    (pec_config_state_regs[i].chip == PX_CHIP_UNIDENTIFIED)) {
2632 			pxu_p->pec_config_state[i] =
2633 			    CSR_XR((caddr_t)dev_hdl,
2634 			    pec_config_state_regs[i].reg);
2635 		}
2636 	}
2637 
2638 	/* Save the MMU configuration states */
2639 	pxu_p->mmu_config_state = pxu_p->pec_config_state + PEC_KEYS;
2640 	for (i = 0; i < MMU_KEYS; i++) {
2641 		pxu_p->mmu_config_state[i] =
2642 		    CSR_XR((caddr_t)dev_hdl, mmu_config_state_regs[i]);
2643 	}
2644 
2645 	/* Save the interrupt mapping registers */
2646 	pxu_p->ib_intr_map = pxu_p->mmu_config_state + MMU_KEYS;
2647 	for (i = 0; i < INTERRUPT_MAPPING_ENTRIES; i++) {
2648 		pxu_p->ib_intr_map[i] =
2649 		    CSRA_XR((caddr_t)dev_hdl, INTERRUPT_MAPPING, i);
2650 	}
2651 
2652 	/* Save the IB configuration states */
2653 	pxu_p->ib_config_state = pxu_p->ib_intr_map + INTERRUPT_MAPPING_ENTRIES;
2654 	for (i = 0; i < IB_KEYS; i++) {
2655 		pxu_p->ib_config_state[i] =
2656 		    CSR_XR((caddr_t)dev_hdl, ib_config_state_regs[i]);
2657 	}
2658 
2659 	return (H_EOK);
2660 }
2661 
2662 void
2663 hvio_resume(devhandle_t dev_hdl, devino_t devino, pxu_t *pxu_p)
2664 {
2665 	int		total_size;
2666 	sysino_t	sysino;
2667 	int		i;
2668 	uint64_t	ret;
2669 
2670 	/* Make sure that suspend actually did occur */
2671 	if (!pxu_p->pec_config_state) {
2672 		return;
2673 	}
2674 
2675 	/* Restore IB configuration states */
2676 	for (i = 0; i < IB_KEYS; i++) {
2677 		CSR_XS((caddr_t)dev_hdl, ib_config_state_regs[i],
2678 		    pxu_p->ib_config_state[i]);
2679 	}
2680 
2681 	/*
2682 	 * Restore the interrupt mapping registers
2683 	 * And make sure the intrs are idle.
2684 	 */
2685 	for (i = 0; i < INTERRUPT_MAPPING_ENTRIES; i++) {
2686 		CSRA_FS((caddr_t)dev_hdl, INTERRUPT_CLEAR, i,
2687 		    ENTRIES_INT_STATE, INTERRUPT_IDLE_STATE);
2688 		CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MAPPING, i,
2689 		    pxu_p->ib_intr_map[i]);
2690 	}
2691 
2692 	/* Restore MMU configuration states */
2693 	/* Clear the cache. */
2694 	CSR_XS((caddr_t)dev_hdl, MMU_TTE_CACHE_INVALIDATE, -1ull);
2695 
2696 	for (i = 0; i < MMU_KEYS; i++) {
2697 		CSR_XS((caddr_t)dev_hdl, mmu_config_state_regs[i],
2698 		    pxu_p->mmu_config_state[i]);
2699 	}
2700 
2701 	/* Restore PEC configuration states */
2702 	/* Make sure all reset bits are low until error is detected */
2703 	CSR_XS((caddr_t)dev_hdl, LPU_RESET, 0ull);
2704 
2705 	for (i = 0; i < PEC_KEYS; i++) {
2706 		if ((pec_config_state_regs[i].chip == PX_CHIP_TYPE(pxu_p)) ||
2707 		    (pec_config_state_regs[i].chip == PX_CHIP_UNIDENTIFIED)) {
2708 			CSR_XS((caddr_t)dev_hdl, pec_config_state_regs[i].reg,
2709 			    pxu_p->pec_config_state[i]);
2710 		}
2711 	}
2712 
2713 	/* Enable PCI-E interrupt */
2714 	if ((ret = hvio_intr_devino_to_sysino(dev_hdl, pxu_p, devino,
2715 	    &sysino)) != H_EOK) {
2716 		cmn_err(CE_WARN,
2717 		    "hvio_resume: hvio_intr_devino_to_sysino failed, "
2718 		    "ret 0x%lx", ret);
2719 	}
2720 
2721 	if ((ret =  hvio_intr_setstate(dev_hdl, sysino, INTR_IDLE_STATE))
2722 	    != H_EOK) {
2723 		cmn_err(CE_WARN,
2724 		    "hvio_resume: hvio_intr_setstate failed, "
2725 		    "ret 0x%lx", ret);
2726 	}
2727 
2728 	total_size = PEC_SIZE + MMU_SIZE + IB_SIZE + IB_MAP_SIZE;
2729 	kmem_free(pxu_p->pec_config_state, total_size);
2730 
2731 	pxu_p->pec_config_state = NULL;
2732 	pxu_p->mmu_config_state = NULL;
2733 	pxu_p->ib_config_state = NULL;
2734 	pxu_p->ib_intr_map = NULL;
2735 
2736 	msiq_resume(dev_hdl, pxu_p);
2737 }
2738 
2739 uint64_t
2740 hvio_cb_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
2741 {
2742 	uint64_t *config_state, *cb_regs;
2743 	int i, cb_size, cb_keys;
2744 
2745 	switch (PX_CHIP_TYPE(pxu_p)) {
2746 	case PX_CHIP_OBERON:
2747 		cb_size = UBC_SIZE;
2748 		cb_keys = UBC_KEYS;
2749 		cb_regs = ubc_config_state_regs;
2750 		break;
2751 	case PX_CHIP_FIRE:
2752 		cb_size = JBC_SIZE;
2753 		cb_keys = JBC_KEYS;
2754 		cb_regs = jbc_config_state_regs;
2755 		break;
2756 	default:
2757 		DBG(DBG_CB, NULL, "hvio_cb_suspend - unknown chip type: 0x%x\n",
2758 		    PX_CHIP_TYPE(pxu_p));
2759 		break;
2760 	}
2761 
2762 	config_state = kmem_zalloc(cb_size, KM_NOSLEEP);
2763 
2764 	if (config_state == NULL) {
2765 		return (H_EIO);
2766 	}
2767 
2768 	/* Save the configuration states */
2769 	pxu_p->xcb_config_state = config_state;
2770 	for (i = 0; i < cb_keys; i++) {
2771 		pxu_p->xcb_config_state[i] =
2772 		    CSR_XR((caddr_t)dev_hdl, cb_regs[i]);
2773 	}
2774 
2775 	return (H_EOK);
2776 }
2777 
2778 void
2779 hvio_cb_resume(devhandle_t pci_dev_hdl, devhandle_t xbus_dev_hdl,
2780     devino_t devino, pxu_t *pxu_p)
2781 {
2782 	sysino_t sysino;
2783 	uint64_t *cb_regs;
2784 	int i, cb_size, cb_keys;
2785 	uint64_t ret;
2786 
2787 	switch (PX_CHIP_TYPE(pxu_p)) {
2788 	case PX_CHIP_OBERON:
2789 		cb_size = UBC_SIZE;
2790 		cb_keys = UBC_KEYS;
2791 		cb_regs = ubc_config_state_regs;
2792 		/*
2793 		 * No reason to have any reset bits high until an error is
2794 		 * detected on the link.
2795 		 */
2796 		CSR_XS((caddr_t)xbus_dev_hdl, UBC_ERROR_STATUS_CLEAR, -1ull);
2797 		break;
2798 	case PX_CHIP_FIRE:
2799 		cb_size = JBC_SIZE;
2800 		cb_keys = JBC_KEYS;
2801 		cb_regs = jbc_config_state_regs;
2802 		/*
2803 		 * No reason to have any reset bits high until an error is
2804 		 * detected on the link.
2805 		 */
2806 		CSR_XS((caddr_t)xbus_dev_hdl, JBC_ERROR_STATUS_CLEAR, -1ull);
2807 		break;
2808 	default:
2809 		DBG(DBG_CB, NULL, "hvio_cb_resume - unknown chip type: 0x%x\n",
2810 		    PX_CHIP_TYPE(pxu_p));
2811 		break;
2812 	}
2813 
2814 	ASSERT(pxu_p->xcb_config_state);
2815 
2816 	/* Restore the configuration states */
2817 	for (i = 0; i < cb_keys; i++) {
2818 		CSR_XS((caddr_t)xbus_dev_hdl, cb_regs[i],
2819 		    pxu_p->xcb_config_state[i]);
2820 	}
2821 
2822 	/* Enable XBC interrupt */
2823 	if ((ret = hvio_intr_devino_to_sysino(pci_dev_hdl, pxu_p, devino,
2824 	    &sysino)) != H_EOK) {
2825 		cmn_err(CE_WARN,
2826 		    "hvio_cb_resume: hvio_intr_devino_to_sysino failed, "
2827 		    "ret 0x%lx", ret);
2828 	}
2829 
2830 	if ((ret = hvio_intr_setstate(pci_dev_hdl, sysino, INTR_IDLE_STATE))
2831 	    != H_EOK) {
2832 		cmn_err(CE_WARN,
2833 		    "hvio_cb_resume: hvio_intr_setstate failed, "
2834 		    "ret 0x%lx", ret);
2835 	}
2836 
2837 	kmem_free(pxu_p->xcb_config_state, cb_size);
2838 
2839 	pxu_p->xcb_config_state = NULL;
2840 }
2841 
2842 static uint64_t
2843 msiq_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
2844 {
2845 	size_t	bufsz;
2846 	volatile uint64_t *cur_p;
2847 	int i;
2848 
2849 	bufsz = MSIQ_STATE_SIZE + MSIQ_MAPPING_SIZE + MSIQ_OTHER_SIZE;
2850 	if ((pxu_p->msiq_config_state = kmem_zalloc(bufsz, KM_NOSLEEP)) ==
2851 	    NULL)
2852 		return (H_EIO);
2853 
2854 	cur_p = pxu_p->msiq_config_state;
2855 
2856 	/* Save each EQ state */
2857 	for (i = 0; i < EVENT_QUEUE_STATE_ENTRIES; i++, cur_p++)
2858 		*cur_p = CSRA_XR((caddr_t)dev_hdl, EVENT_QUEUE_STATE, i);
2859 
2860 	/* Save MSI mapping registers */
2861 	for (i = 0; i < MSI_MAPPING_ENTRIES; i++, cur_p++)
2862 		*cur_p = CSRA_XR((caddr_t)dev_hdl, MSI_MAPPING, i);
2863 
2864 	/* Save all other MSIQ registers */
2865 	for (i = 0; i < MSIQ_OTHER_KEYS; i++, cur_p++)
2866 		*cur_p = CSR_XR((caddr_t)dev_hdl, msiq_config_other_regs[i]);
2867 	return (H_EOK);
2868 }
2869 
2870 static void
2871 msiq_resume(devhandle_t dev_hdl, pxu_t *pxu_p)
2872 {
2873 	size_t	bufsz;
2874 	uint64_t *cur_p, state;
2875 	int i;
2876 	uint64_t ret;
2877 
2878 	bufsz = MSIQ_STATE_SIZE + MSIQ_MAPPING_SIZE + MSIQ_OTHER_SIZE;
2879 	cur_p = pxu_p->msiq_config_state;
2880 	/*
2881 	 * Initialize EQ base address register and
2882 	 * Interrupt Mondo Data 0 register.
2883 	 */
2884 	if ((ret = hvio_msiq_init(dev_hdl, pxu_p)) != H_EOK) {
2885 		cmn_err(CE_WARN,
2886 		    "msiq_resume: hvio_msiq_init failed, "
2887 		    "ret 0x%lx", ret);
2888 	}
2889 
2890 	/* Restore EQ states */
2891 	for (i = 0; i < EVENT_QUEUE_STATE_ENTRIES; i++, cur_p++) {
2892 		state = (*cur_p) & EVENT_QUEUE_STATE_ENTRIES_STATE_MASK;
2893 		if ((state == EQ_ACTIVE_STATE) || (state == EQ_ERROR_STATE))
2894 			CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
2895 			    i, ENTRIES_EN);
2896 	}
2897 
2898 	/* Restore MSI mapping */
2899 	for (i = 0; i < MSI_MAPPING_ENTRIES; i++, cur_p++)
2900 		CSRA_XS((caddr_t)dev_hdl, MSI_MAPPING, i, *cur_p);
2901 
2902 	/*
2903 	 * Restore all other registers. MSI 32 bit address and
2904 	 * MSI 64 bit address are restored as part of this.
2905 	 */
2906 	for (i = 0; i < MSIQ_OTHER_KEYS; i++, cur_p++)
2907 		CSR_XS((caddr_t)dev_hdl, msiq_config_other_regs[i], *cur_p);
2908 
2909 	kmem_free(pxu_p->msiq_config_state, bufsz);
2910 	pxu_p->msiq_config_state = NULL;
2911 }
2912 
2913 /*
2914  * sends PME_Turn_Off message to put the link in L2/L3 ready state.
2915  * called by px_goto_l23ready.
2916  * returns DDI_SUCCESS or DDI_FAILURE
2917  */
2918 int
2919 px_send_pme_turnoff(caddr_t csr_base)
2920 {
2921 	volatile uint64_t reg;
2922 
2923 	reg = CSR_XR(csr_base, TLU_PME_TURN_OFF_GENERATE);
2924 	/* If already pending, return failure */
2925 	if (reg & (1ull << TLU_PME_TURN_OFF_GENERATE_PTO)) {
2926 		DBG(DBG_PWR, NULL, "send_pme_turnoff: pending PTO bit "
2927 		    "tlu_pme_turn_off_generate = %x\n", reg);
2928 		return (DDI_FAILURE);
2929 	}
2930 
2931 	/* write to PME_Turn_off reg to boradcast */
2932 	reg |= (1ull << TLU_PME_TURN_OFF_GENERATE_PTO);
2933 	CSR_XS(csr_base,  TLU_PME_TURN_OFF_GENERATE, reg);
2934 
2935 	return (DDI_SUCCESS);
2936 }
2937 
2938 /*
2939  * Checks for link being in L1idle state.
2940  * Returns
2941  * DDI_SUCCESS - if the link is in L1idle
2942  * DDI_FAILURE - if the link is not in L1idle
2943  */
2944 int
2945 px_link_wait4l1idle(caddr_t csr_base)
2946 {
2947 	uint8_t ltssm_state;
2948 	int ntries = px_max_l1_tries;
2949 
2950 	while (ntries > 0) {
2951 		ltssm_state = CSR_FR(csr_base, LPU_LTSSM_STATUS1, LTSSM_STATE);
2952 		if (ltssm_state == LPU_LTSSM_L1_IDLE || (--ntries <= 0))
2953 			break;
2954 		delay(1);
2955 	}
2956 	DBG(DBG_PWR, NULL, "check_for_l1idle: ltssm_state %x\n", ltssm_state);
2957 	return ((ltssm_state == LPU_LTSSM_L1_IDLE) ? DDI_SUCCESS : DDI_FAILURE);
2958 }
2959 
2960 /*
2961  * Tranisition the link to L0, after it is down.
2962  */
2963 int
2964 px_link_retrain(caddr_t csr_base)
2965 {
2966 	volatile uint64_t reg;
2967 
2968 	reg = CSR_XR(csr_base, TLU_CONTROL);
2969 	if (!(reg & (1ull << TLU_REMAIN_DETECT_QUIET))) {
2970 		DBG(DBG_PWR, NULL, "retrain_link: detect.quiet bit not set\n");
2971 		return (DDI_FAILURE);
2972 	}
2973 
2974 	/* Clear link down bit in TLU Other Event Clear Status Register. */
2975 	CSR_BS(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR, LDN_P);
2976 
2977 	/* Clear Drain bit in TLU Status Register */
2978 	CSR_BS(csr_base, TLU_STATUS, DRAIN);
2979 
2980 	/* Clear Remain in Detect.Quiet bit in TLU Control Register */
2981 	reg = CSR_XR(csr_base, TLU_CONTROL);
2982 	reg &= ~(1ull << TLU_REMAIN_DETECT_QUIET);
2983 	CSR_XS(csr_base, TLU_CONTROL, reg);
2984 
2985 	return (DDI_SUCCESS);
2986 }
2987 
2988 void
2989 px_enable_detect_quiet(caddr_t csr_base)
2990 {
2991 	volatile uint64_t tlu_ctrl;
2992 
2993 	tlu_ctrl = CSR_XR(csr_base, TLU_CONTROL);
2994 	tlu_ctrl |= (1ull << TLU_REMAIN_DETECT_QUIET);
2995 	CSR_XS(csr_base, TLU_CONTROL, tlu_ctrl);
2996 }
2997 
2998 static uint_t
2999 oberon_hp_pwron(caddr_t csr_base)
3000 {
3001 	volatile uint64_t reg;
3002 	boolean_t link_retry, link_up;
3003 	int loop, i;
3004 
3005 	DBG(DBG_HP, NULL, "oberon_hp_pwron the slot\n");
3006 
3007 	/* Check Leaf Reset status */
3008 	reg = CSR_XR(csr_base, ILU_ERROR_LOG_ENABLE);
3009 	if (!(reg & (1ull << ILU_ERROR_LOG_ENABLE_SPARE3))) {
3010 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: leaf not reset\n");
3011 		goto fail;
3012 	}
3013 
3014 	/* Check HP Capable */
3015 	if (!CSR_BR(csr_base, TLU_SLOT_CAPABILITIES, HP)) {
3016 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: leaf not "
3017 		    "hotplugable\n");
3018 		goto fail;
3019 	}
3020 
3021 	/* Check Slot status */
3022 	reg = CSR_XR(csr_base, TLU_SLOT_STATUS);
3023 	if (!(reg & (1ull << TLU_SLOT_STATUS_PSD)) ||
3024 	    (reg & (1ull << TLU_SLOT_STATUS_MRLS))) {
3025 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: slot status %lx\n",
3026 		    reg);
3027 		goto fail;
3028 	}
3029 
3030 	/* Blink power LED, this is done from pciehpc already */
3031 
3032 	/* Turn on slot power */
3033 	CSR_BS(csr_base, HOTPLUG_CONTROL, PWREN);
3034 
3035 	/* power fault detection */
3036 	delay(drv_usectohz(25000));
3037 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3038 	CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3039 
3040 	/* wait to check power state */
3041 	delay(drv_usectohz(25000));
3042 
3043 	if (!CSR_BR(csr_base, TLU_SLOT_STATUS, PWFD)) {
3044 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: power fault\n");
3045 		goto fail1;
3046 	}
3047 
3048 	/* power is good */
3049 	CSR_BS(csr_base, HOTPLUG_CONTROL, PWREN);
3050 
3051 	delay(drv_usectohz(25000));
3052 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3053 	CSR_BS(csr_base, TLU_SLOT_CONTROL, PWFDEN);
3054 
3055 	/* Turn on slot clock */
3056 	CSR_BS(csr_base, HOTPLUG_CONTROL, CLKEN);
3057 
3058 	link_up = B_FALSE;
3059 	link_retry = B_FALSE;
3060 
3061 	for (loop = 0; (loop < link_retry_count) && (link_up == B_FALSE);
3062 	    loop++) {
3063 		if (link_retry == B_TRUE) {
3064 			DBG(DBG_HP, NULL, "oberon_hp_pwron : retry link loop "
3065 			    "%d\n", loop);
3066 			CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
3067 			CSR_XS(csr_base, FLP_PORT_CONTROL, 0x1);
3068 			delay(drv_usectohz(10000));
3069 			CSR_BC(csr_base, TLU_CONTROL, DRN_TR_DIS);
3070 			CSR_BS(csr_base, TLU_DIAGNOSTIC, IFC_DIS);
3071 			CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
3072 			delay(drv_usectohz(50000));
3073 		}
3074 
3075 		/* Release PCI-E Reset */
3076 		delay(drv_usectohz(wait_perst));
3077 		CSR_BS(csr_base, HOTPLUG_CONTROL, N_PERST);
3078 
3079 		/*
3080 		 * Open events' mask
3081 		 * This should be done from pciehpc already
3082 		 */
3083 
3084 		/* Enable PCIE port */
3085 		delay(drv_usectohz(wait_enable_port));
3086 		CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
3087 		CSR_XS(csr_base, FLP_PORT_CONTROL, 0x20);
3088 
3089 		/* wait for the link up */
3090 		/* BEGIN CSTYLED */
3091 		for (i = 0; (i < 2) && (link_up == B_FALSE); i++) {
3092 			delay(drv_usectohz(link_status_check));
3093 			reg = CSR_XR(csr_base, DLU_LINK_LAYER_STATUS);
3094 
3095 		if ((((reg >> DLU_LINK_LAYER_STATUS_INIT_FC_SM_STS) &
3096 		    DLU_LINK_LAYER_STATUS_INIT_FC_SM_STS_MASK) ==
3097 		    DLU_LINK_LAYER_STATUS_INIT_FC_SM_STS_FC_INIT_DONE) &&
3098 		    (reg & (1ull << DLU_LINK_LAYER_STATUS_DLUP_STS)) &&
3099 		    ((reg &
3100 		    DLU_LINK_LAYER_STATUS_LNK_STATE_MACH_STS_MASK) ==
3101 		    DLU_LINK_LAYER_STATUS_LNK_STATE_MACH_STS_DL_ACTIVE)) {
3102 			DBG(DBG_HP, NULL, "oberon_hp_pwron : "
3103 			    "link is up\n");
3104 			link_up = B_TRUE;
3105 		} else
3106 			link_retry = B_TRUE;
3107 
3108 		}
3109 		/* END CSTYLED */
3110 	}
3111 
3112 	if (link_up == B_FALSE) {
3113 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails to enable "
3114 		    "PCI-E port\n");
3115 		goto fail2;
3116 	}
3117 
3118 	/* link is up */
3119 	CSR_BC(csr_base, TLU_DIAGNOSTIC, IFC_DIS);
3120 	CSR_BS(csr_base, FLP_PORT_ACTIVE_STATUS, TRAIN_ERROR);
3121 	CSR_BS(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR, TE_P);
3122 	CSR_BS(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR, TE_S);
3123 	CSR_BC(csr_base, TLU_CONTROL, DRN_TR_DIS);
3124 
3125 	/* Restore LUP/LDN */
3126 	reg = CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE);
3127 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P))
3128 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P;
3129 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P))
3130 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P;
3131 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S))
3132 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S;
3133 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S))
3134 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S;
3135 	CSR_XS(csr_base, TLU_OTHER_EVENT_LOG_ENABLE, reg);
3136 
3137 	/*
3138 	 * Initialize Leaf
3139 	 * SPLS = 00b, SPLV = 11001b, i.e. 25W
3140 	 */
3141 	reg = CSR_XR(csr_base, TLU_SLOT_CAPABILITIES);
3142 	reg &= ~(TLU_SLOT_CAPABILITIES_SPLS_MASK <<
3143 	    TLU_SLOT_CAPABILITIES_SPLS);
3144 	reg &= ~(TLU_SLOT_CAPABILITIES_SPLV_MASK <<
3145 	    TLU_SLOT_CAPABILITIES_SPLV);
3146 	reg |= (0x19 << TLU_SLOT_CAPABILITIES_SPLV);
3147 	CSR_XS(csr_base, TLU_SLOT_CAPABILITIES, reg);
3148 
3149 	/* Turn on Power LED */
3150 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3151 	reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
3152 	reg = pcie_slotctl_pwr_indicator_set(reg,
3153 	    PCIE_SLOTCTL_INDICATOR_STATE_ON);
3154 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3155 
3156 	/* Notify to SCF */
3157 	if (CSR_BR(csr_base, HOTPLUG_CONTROL, SLOTPON))
3158 		CSR_BC(csr_base, HOTPLUG_CONTROL, SLOTPON);
3159 	else
3160 		CSR_BS(csr_base, HOTPLUG_CONTROL, SLOTPON);
3161 
3162 	/* Wait for one second */
3163 	delay(drv_usectohz(1000000));
3164 
3165 	return (DDI_SUCCESS);
3166 
3167 fail2:
3168 	/* Link up is failed */
3169 	CSR_BS(csr_base, FLP_PORT_CONTROL, PORT_DIS);
3170 	CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
3171 	delay(drv_usectohz(150));
3172 
3173 	CSR_BC(csr_base, HOTPLUG_CONTROL, CLKEN);
3174 	delay(drv_usectohz(100));
3175 
3176 fail1:
3177 	CSR_BC(csr_base, TLU_SLOT_CONTROL, PWFDEN);
3178 
3179 	CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3180 
3181 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3182 	reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
3183 	reg = pcie_slotctl_pwr_indicator_set(reg,
3184 	    PCIE_SLOTCTL_INDICATOR_STATE_OFF);
3185 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3186 
3187 	CSR_BC(csr_base, TLU_SLOT_STATUS, PWFD);
3188 
3189 fail:
3190 	return ((uint_t)DDI_FAILURE);
3191 }
3192 
3193 hrtime_t oberon_leaf_reset_timeout = 120ll * NANOSEC;	/* 120 seconds */
3194 
3195 static uint_t
3196 oberon_hp_pwroff(caddr_t csr_base)
3197 {
3198 	volatile uint64_t reg;
3199 	volatile uint64_t reg_tluue, reg_tluce;
3200 	hrtime_t start_time, end_time;
3201 
3202 	DBG(DBG_HP, NULL, "oberon_hp_pwroff the slot\n");
3203 
3204 	/* Blink power LED, this is done from pciehpc already */
3205 
3206 	/* Clear Slot Event */
3207 	CSR_BS(csr_base, TLU_SLOT_STATUS, PSDC);
3208 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3209 
3210 	/* DRN_TR_DIS on */
3211 	CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
3212 	delay(drv_usectohz(10000));
3213 
3214 	/* Disable LUP/LDN */
3215 	reg = CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE);
3216 	reg &= ~((1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P) |
3217 	    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P) |
3218 	    (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S) |
3219 	    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S));
3220 	CSR_XS(csr_base, TLU_OTHER_EVENT_LOG_ENABLE, reg);
3221 
3222 	/* Save the TLU registers */
3223 	reg_tluue = CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE);
3224 	reg_tluce = CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE);
3225 	/* All clear */
3226 	CSR_XS(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, 0);
3227 	CSR_XS(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE, 0);
3228 
3229 	/* Disable port */
3230 	CSR_BS(csr_base, FLP_PORT_CONTROL, PORT_DIS);
3231 
3232 	/* PCIE reset */
3233 	delay(drv_usectohz(10000));
3234 	CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
3235 
3236 	/* PCIE clock stop */
3237 	delay(drv_usectohz(150));
3238 	CSR_BC(csr_base, HOTPLUG_CONTROL, CLKEN);
3239 
3240 	/* Turn off slot power */
3241 	delay(drv_usectohz(100));
3242 	CSR_BC(csr_base, TLU_SLOT_CONTROL, PWFDEN);
3243 	CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3244 	delay(drv_usectohz(25000));
3245 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3246 
3247 	/* write 0 to bit 7 of ILU Error Log Enable Register */
3248 	CSR_BC(csr_base, ILU_ERROR_LOG_ENABLE, SPARE3);
3249 
3250 	/* Set back TLU registers */
3251 	CSR_XS(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, reg_tluue);
3252 	CSR_XS(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE, reg_tluce);
3253 
3254 	/* Power LED off */
3255 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3256 	reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
3257 	reg = pcie_slotctl_pwr_indicator_set(reg,
3258 	    PCIE_SLOTCTL_INDICATOR_STATE_OFF);
3259 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3260 
3261 	/* Indicator LED blink */
3262 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3263 	reg &= ~PCIE_SLOTCTL_ATTN_INDICATOR_MASK;
3264 	reg = pcie_slotctl_attn_indicator_set(reg,
3265 	    PCIE_SLOTCTL_INDICATOR_STATE_BLINK);
3266 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3267 
3268 	/* Notify to SCF */
3269 	if (CSR_BR(csr_base, HOTPLUG_CONTROL, SLOTPON))
3270 		CSR_BC(csr_base, HOTPLUG_CONTROL, SLOTPON);
3271 	else
3272 		CSR_BS(csr_base, HOTPLUG_CONTROL, SLOTPON);
3273 
3274 	start_time = gethrtime();
3275 	/* Check Leaf Reset status */
3276 	while (!(CSR_BR(csr_base, ILU_ERROR_LOG_ENABLE, SPARE3))) {
3277 		if ((end_time = (gethrtime() - start_time)) >
3278 		    oberon_leaf_reset_timeout) {
3279 			cmn_err(CE_WARN, "Oberon leaf reset is not completed, "
3280 			    "even after waiting %llx ticks", end_time);
3281 
3282 			break;
3283 		}
3284 
3285 		/* Wait for one second */
3286 		delay(drv_usectohz(1000000));
3287 	}
3288 
3289 	/* Indicator LED off */
3290 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3291 	reg &= ~PCIE_SLOTCTL_ATTN_INDICATOR_MASK;
3292 	reg = pcie_slotctl_attn_indicator_set(reg,
3293 	    PCIE_SLOTCTL_INDICATOR_STATE_OFF);
3294 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3295 
3296 	return (DDI_SUCCESS);
3297 }
3298 
3299 static uint_t
3300 oberon_hpreg_get(void *cookie, off_t off)
3301 {
3302 	caddr_t csr_base = *(caddr_t *)cookie;
3303 	volatile uint64_t val = -1ull;
3304 
3305 	switch (off) {
3306 	case PCIE_SLOTCAP:
3307 		val = CSR_XR(csr_base, TLU_SLOT_CAPABILITIES);
3308 		break;
3309 	case PCIE_SLOTCTL:
3310 		val = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3311 
3312 		/* Get the power state */
3313 		val |= (CSR_XR(csr_base, HOTPLUG_CONTROL) &
3314 		    (1ull << HOTPLUG_CONTROL_PWREN)) ?
3315 		    0 : PCIE_SLOTCTL_PWR_CONTROL;
3316 		break;
3317 	case PCIE_SLOTSTS:
3318 		val = CSR_XR(csr_base, TLU_SLOT_STATUS);
3319 		break;
3320 	case PCIE_LINKCAP:
3321 		val = CSR_XR(csr_base, TLU_LINK_CAPABILITIES);
3322 		break;
3323 	case PCIE_LINKSTS:
3324 		val = CSR_XR(csr_base, TLU_LINK_STATUS);
3325 		break;
3326 	default:
3327 		DBG(DBG_HP, NULL, "oberon_hpreg_get(): "
3328 		    "unsupported offset 0x%lx\n", off);
3329 		break;
3330 	}
3331 
3332 	return ((uint_t)val);
3333 }
3334 
3335 static uint_t
3336 oberon_hpreg_put(void *cookie, off_t off, uint_t val)
3337 {
3338 	caddr_t csr_base = *(caddr_t *)cookie;
3339 	volatile uint64_t pwr_state_on, pwr_fault;
3340 	uint_t pwr_off, ret = DDI_SUCCESS;
3341 
3342 	DBG(DBG_HP, NULL, "oberon_hpreg_put 0x%lx: cur %x, new %x\n",
3343 	    off, oberon_hpreg_get(cookie, off), val);
3344 
3345 	switch (off) {
3346 	case PCIE_SLOTCTL:
3347 		/*
3348 		 * Depending on the current state, insertion or removal
3349 		 * will go through their respective sequences.
3350 		 */
3351 		pwr_state_on = CSR_BR(csr_base, HOTPLUG_CONTROL, PWREN);
3352 		pwr_off = val & PCIE_SLOTCTL_PWR_CONTROL;
3353 
3354 		if (!pwr_off && !pwr_state_on)
3355 			ret = oberon_hp_pwron(csr_base);
3356 		else if (pwr_off && pwr_state_on) {
3357 			pwr_fault = CSR_XR(csr_base, TLU_SLOT_STATUS) &
3358 			    (1ull << TLU_SLOT_STATUS_PWFD);
3359 
3360 			if (pwr_fault) {
3361 				DBG(DBG_HP, NULL, "oberon_hpreg_put: power "
3362 				    "off because of power fault\n");
3363 				CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3364 			}
3365 			else
3366 				ret = oberon_hp_pwroff(csr_base);
3367 		} else
3368 			CSR_XS(csr_base, TLU_SLOT_CONTROL, val);
3369 		break;
3370 	case PCIE_SLOTSTS:
3371 		CSR_XS(csr_base, TLU_SLOT_STATUS, val);
3372 		break;
3373 	default:
3374 		DBG(DBG_HP, NULL, "oberon_hpreg_put(): "
3375 		    "unsupported offset 0x%lx\n", off);
3376 		ret = (uint_t)DDI_FAILURE;
3377 		break;
3378 	}
3379 
3380 	return (ret);
3381 }
3382 
3383 int
3384 hvio_hotplug_init(dev_info_t *dip, void *arg)
3385 {
3386 	pcie_hp_regops_t *regops = (pcie_hp_regops_t *)arg;
3387 	px_t	*px_p = DIP_TO_STATE(dip);
3388 	pxu_t	*pxu_p = (pxu_t *)px_p->px_plat_p;
3389 	volatile uint64_t reg;
3390 
3391 	if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
3392 		if (!CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3393 		    TLU_SLOT_CAPABILITIES, HP)) {
3394 			DBG(DBG_HP, NULL, "%s%d: hotplug capabale not set\n",
3395 			    ddi_driver_name(dip), ddi_get_instance(dip));
3396 			return (DDI_FAILURE);
3397 		}
3398 
3399 		/* For empty or disconnected slot, disable LUP/LDN */
3400 		if (!CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3401 		    TLU_SLOT_STATUS, PSD) ||
3402 		    !CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3403 		    HOTPLUG_CONTROL, PWREN)) {
3404 
3405 			reg = CSR_XR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3406 			    TLU_OTHER_EVENT_LOG_ENABLE);
3407 			reg &= ~((1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P) |
3408 			    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P) |
3409 			    (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S) |
3410 			    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S));
3411 			CSR_XS((caddr_t)pxu_p->px_address[PX_REG_CSR],
3412 			    TLU_OTHER_EVENT_LOG_ENABLE, reg);
3413 		}
3414 
3415 		regops->get = oberon_hpreg_get;
3416 		regops->put = oberon_hpreg_put;
3417 
3418 		/* cookie is the csr_base */
3419 		regops->cookie = (void *)&pxu_p->px_address[PX_REG_CSR];
3420 
3421 		return (DDI_SUCCESS);
3422 	}
3423 
3424 	return (DDI_ENOTSUP);
3425 }
3426 
3427 int
3428 hvio_hotplug_uninit(dev_info_t *dip)
3429 {
3430 	px_t	*px_p = DIP_TO_STATE(dip);
3431 	pxu_t	*pxu_p = (pxu_t *)px_p->px_plat_p;
3432 
3433 	if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
3434 		return (DDI_SUCCESS);
3435 
3436 	return (DDI_FAILURE);
3437 }
3438