xref: /titanic_41/usr/src/uts/sun4u/io/px/px_err.c (revision 367465ce950f5f1a473af64bee70ca08cf355fe5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * sun4u Fire Error Handling
30  */
31 
32 #include <sys/types.h>
33 #include <sys/ddi.h>
34 #include <sys/sunddi.h>
35 #include <sys/fm/protocol.h>
36 #include <sys/fm/util.h>
37 #include <sys/pcie.h>
38 #include <sys/pcie_impl.h>
39 #include "px_obj.h"
40 #include <px_regs.h>
41 #include <px_csr.h>
42 #include <sys/membar.h>
43 #include <sys/machcpuvar.h>
44 #include <sys/platform_module.h>
45 #include "pcie_pwr.h"
46 #include "px_lib4u.h"
47 #include "px_err.h"
48 #include "px_err_impl.h"
49 #include "oberon_regs.h"
50 
51 uint64_t px_tlu_ue_intr_mask	= PX_ERR_EN_ALL;
52 uint64_t px_tlu_ue_log_mask	= PX_ERR_EN_ALL;
53 uint64_t px_tlu_ue_count_mask	= PX_ERR_EN_ALL;
54 
55 uint64_t px_tlu_ce_intr_mask	= PX_ERR_MASK_NONE;
56 uint64_t px_tlu_ce_log_mask	= PX_ERR_MASK_NONE;
57 uint64_t px_tlu_ce_count_mask	= PX_ERR_MASK_NONE;
58 
59 /*
60  * Do not enable Link Interrupts
61  */
62 uint64_t px_tlu_oe_intr_mask	= PX_ERR_EN_ALL & ~0x80000000800;
63 uint64_t px_tlu_oe_log_mask	= PX_ERR_EN_ALL & ~0x80000000800;
64 uint64_t px_tlu_oe_count_mask	= PX_ERR_EN_ALL;
65 
66 uint64_t px_mmu_intr_mask	= PX_ERR_EN_ALL;
67 uint64_t px_mmu_log_mask	= PX_ERR_EN_ALL;
68 uint64_t px_mmu_count_mask	= PX_ERR_EN_ALL;
69 
70 uint64_t px_imu_intr_mask	= PX_ERR_EN_ALL;
71 uint64_t px_imu_log_mask	= PX_ERR_EN_ALL;
72 uint64_t px_imu_count_mask	= PX_ERR_EN_ALL;
73 
74 /*
75  * (1ull << ILU_INTERRUPT_ENABLE_IHB_PE_S) |
76  * (1ull << ILU_INTERRUPT_ENABLE_IHB_PE_P);
77  */
78 uint64_t px_ilu_intr_mask	= (((uint64_t)0x10 << 32) | 0x10);
79 uint64_t px_ilu_log_mask	= (((uint64_t)0x10 << 32) | 0x10);
80 uint64_t px_ilu_count_mask	= PX_ERR_EN_ALL;
81 
82 uint64_t px_ubc_intr_mask	= PX_ERR_EN_ALL;
83 uint64_t px_ubc_log_mask		= PX_ERR_EN_ALL;
84 uint64_t px_ubc_count_mask	= PX_ERR_EN_ALL;
85 
86 uint64_t px_jbc_intr_mask	= PX_ERR_EN_ALL;
87 uint64_t px_jbc_log_mask		= PX_ERR_EN_ALL;
88 uint64_t px_jbc_count_mask	= PX_ERR_EN_ALL;
89 
90 /*
91  * LPU Intr Registers are reverse encoding from the registers above.
92  * 1 = disable
93  * 0 = enable
94  *
95  * Log and Count are however still the same.
96  */
97 uint64_t px_lpul_intr_mask	= LPU_INTR_DISABLE;
98 uint64_t px_lpul_log_mask	= PX_ERR_EN_ALL;
99 uint64_t px_lpul_count_mask	= PX_ERR_EN_ALL;
100 
101 uint64_t px_lpup_intr_mask	= LPU_INTR_DISABLE;
102 uint64_t px_lpup_log_mask	= PX_ERR_EN_ALL;
103 uint64_t px_lpup_count_mask	= PX_ERR_EN_ALL;
104 
105 uint64_t px_lpur_intr_mask	= LPU_INTR_DISABLE;
106 uint64_t px_lpur_log_mask	= PX_ERR_EN_ALL;
107 uint64_t px_lpur_count_mask	= PX_ERR_EN_ALL;
108 
109 uint64_t px_lpux_intr_mask	= LPU_INTR_DISABLE;
110 uint64_t px_lpux_log_mask	= PX_ERR_EN_ALL;
111 uint64_t px_lpux_count_mask	= PX_ERR_EN_ALL;
112 
113 uint64_t px_lpus_intr_mask	= LPU_INTR_DISABLE;
114 uint64_t px_lpus_log_mask	= PX_ERR_EN_ALL;
115 uint64_t px_lpus_count_mask	= PX_ERR_EN_ALL;
116 
117 uint64_t px_lpug_intr_mask	= LPU_INTR_DISABLE;
118 uint64_t px_lpug_log_mask	= PX_ERR_EN_ALL;
119 uint64_t px_lpug_count_mask	= PX_ERR_EN_ALL;
120 
121 /*
122  * JBC error bit table
123  */
124 #define	JBC_BIT_DESC(bit, hdl, erpt) \
125 	JBC_INTERRUPT_STATUS_ ## bit ## _P, \
126 	0, \
127 	PX_ERR_BIT_HANDLE(hdl), \
128 	PX_ERPT_SEND(erpt), \
129 	PX_ERR_JBC_CLASS(bit) }, \
130 	{ JBC_INTERRUPT_STATUS_ ## bit ## _S, \
131 	0, \
132 	PX_ERR_BIT_HANDLE(hdl), \
133 	PX_ERPT_SEND(erpt), \
134 	PX_ERR_JBC_CLASS(bit)
135 px_err_bit_desc_t px_err_jbc_tbl[] = {
136 	/* JBC FATAL */
137 	{ JBC_BIT_DESC(MB_PEA,	hw_reset,	jbc_fatal) },
138 	{ JBC_BIT_DESC(CPE,	hw_reset,	jbc_fatal) },
139 	{ JBC_BIT_DESC(APE,	hw_reset,	jbc_fatal) },
140 	{ JBC_BIT_DESC(PIO_CPE,	hw_reset,	jbc_fatal) },
141 	{ JBC_BIT_DESC(JTCEEW,	hw_reset,	jbc_fatal) },
142 	{ JBC_BIT_DESC(JTCEEI,	hw_reset,	jbc_fatal) },
143 	{ JBC_BIT_DESC(JTCEER,	hw_reset,	jbc_fatal) },
144 
145 	/* JBC MERGE */
146 	{ JBC_BIT_DESC(MB_PER,	jbc_merge,	jbc_merge) },
147 	{ JBC_BIT_DESC(MB_PEW,	jbc_merge,	jbc_merge) },
148 
149 	/* JBC Jbusint IN */
150 	{ JBC_BIT_DESC(UE_ASYN,	panic,		jbc_in) },
151 	{ JBC_BIT_DESC(CE_ASYN,	no_error,	jbc_in) },
152 	{ JBC_BIT_DESC(JTE,	panic,		jbc_in) },
153 	{ JBC_BIT_DESC(JBE,	panic,		jbc_in) },
154 	{ JBC_BIT_DESC(JUE,	panic,		jbc_in) },
155 	{ JBC_BIT_DESC(ICISE,	panic,		jbc_in) },
156 	{ JBC_BIT_DESC(WR_DPE,	jbc_jbusint_in,	jbc_in) },
157 	{ JBC_BIT_DESC(RD_DPE,	jbc_jbusint_in,	jbc_in) },
158 	{ JBC_BIT_DESC(ILL_BMW,	panic,		jbc_in) },
159 	{ JBC_BIT_DESC(ILL_BMR,	panic,		jbc_in) },
160 	{ JBC_BIT_DESC(BJC,	panic,		jbc_in) },
161 
162 	/* JBC Jbusint Out */
163 	{ JBC_BIT_DESC(IJP,	panic,		jbc_out) },
164 
165 	/*
166 	 * JBC Dmcint ODCD
167 	 *
168 	 * Error bits which can be set via a bad PCItool access go through
169 	 * jbc_safe_acc instead.
170 	 */
171 	{ JBC_BIT_DESC(PIO_UNMAP_RD,	jbc_safe_acc,		jbc_odcd) },
172 	{ JBC_BIT_DESC(ILL_ACC_RD,	jbc_safe_acc,		jbc_odcd) },
173 	{ JBC_BIT_DESC(PIO_UNMAP,	jbc_safe_acc,		jbc_odcd) },
174 	{ JBC_BIT_DESC(PIO_DPE,		jbc_dmcint_odcd,	jbc_odcd) },
175 	{ JBC_BIT_DESC(PIO_CPE,		hw_reset,		jbc_odcd) },
176 	{ JBC_BIT_DESC(ILL_ACC,		jbc_safe_acc,		jbc_odcd) },
177 
178 	/* JBC Dmcint IDC */
179 	{ JBC_BIT_DESC(UNSOL_RD,	no_panic,	jbc_idc) },
180 	{ JBC_BIT_DESC(UNSOL_INTR,	no_panic,	jbc_idc) },
181 
182 	/* JBC CSR */
183 	{ JBC_BIT_DESC(EBUS_TO,		panic,		jbc_csr) }
184 };
185 
186 #define	px_err_jbc_keys \
187 	(sizeof (px_err_jbc_tbl)) / (sizeof (px_err_bit_desc_t))
188 
189 /*
190  * UBC error bit table
191  */
192 #define	UBC_BIT_DESC(bit, hdl, erpt) \
193 	UBC_INTERRUPT_STATUS_ ## bit ## _P, \
194 	0, \
195 	PX_ERR_BIT_HANDLE(hdl), \
196 	PX_ERPT_SEND(erpt), \
197 	PX_ERR_UBC_CLASS(bit) }, \
198 	{ UBC_INTERRUPT_STATUS_ ## bit ## _S, \
199 	0, \
200 	PX_ERR_BIT_HANDLE(hdl), \
201 	PX_ERPT_SEND(erpt), \
202 	PX_ERR_UBC_CLASS(bit)
203 px_err_bit_desc_t px_err_ubc_tbl[] = {
204 	/* UBC FATAL  */
205 	{ UBC_BIT_DESC(DMARDUEA,	no_panic,	ubc_fatal) },
206 	{ UBC_BIT_DESC(DMAWTUEA,	panic,		ubc_fatal) },
207 	{ UBC_BIT_DESC(MEMRDAXA,	panic,		ubc_fatal) },
208 	{ UBC_BIT_DESC(MEMWTAXA,	panic,		ubc_fatal) },
209 	{ UBC_BIT_DESC(DMARDUEB,	no_panic,	ubc_fatal) },
210 	{ UBC_BIT_DESC(DMAWTUEB,	panic,		ubc_fatal) },
211 	{ UBC_BIT_DESC(MEMRDAXB,	panic,		ubc_fatal) },
212 	{ UBC_BIT_DESC(MEMWTAXB,	panic,		ubc_fatal) },
213 	{ UBC_BIT_DESC(PIOWTUE,		panic,		ubc_fatal) },
214 	{ UBC_BIT_DESC(PIOWBEUE,	panic,		ubc_fatal) },
215 	{ UBC_BIT_DESC(PIORBEUE,	panic,		ubc_fatal) }
216 };
217 
218 #define	px_err_ubc_keys \
219 	(sizeof (px_err_ubc_tbl)) / (sizeof (px_err_bit_desc_t))
220 
221 
222 char *ubc_class_eid_qualifier[] = {
223 	"-mem",
224 	"-channel",
225 	"-cpu",
226 	"-path"
227 };
228 
229 
230 /*
231  * DMC error bit tables
232  */
233 #define	IMU_BIT_DESC(bit, hdl, erpt) \
234 	IMU_INTERRUPT_STATUS_ ## bit ## _P, \
235 	0, \
236 	PX_ERR_BIT_HANDLE(hdl), \
237 	PX_ERPT_SEND(erpt), \
238 	PX_ERR_DMC_CLASS(bit) }, \
239 	{ IMU_INTERRUPT_STATUS_ ## bit ## _S, \
240 	0, \
241 	PX_ERR_BIT_HANDLE(hdl), \
242 	PX_ERPT_SEND(erpt), \
243 	PX_ERR_DMC_CLASS(bit)
244 px_err_bit_desc_t px_err_imu_tbl[] = {
245 	/* DMC IMU RDS */
246 	{ IMU_BIT_DESC(MSI_MAL_ERR,		panic,		imu_rds) },
247 	{ IMU_BIT_DESC(MSI_PAR_ERR,		panic,		imu_rds) },
248 	{ IMU_BIT_DESC(PMEACK_MES_NOT_EN,	panic,		imu_rds) },
249 	{ IMU_BIT_DESC(PMPME_MES_NOT_EN,	panic,		imu_rds) },
250 	{ IMU_BIT_DESC(FATAL_MES_NOT_EN,	panic,		imu_rds) },
251 	{ IMU_BIT_DESC(NONFATAL_MES_NOT_EN,	panic,		imu_rds) },
252 	{ IMU_BIT_DESC(COR_MES_NOT_EN,		panic,		imu_rds) },
253 	{ IMU_BIT_DESC(MSI_NOT_EN,		panic,		imu_rds) },
254 
255 	/* DMC IMU SCS */
256 	{ IMU_BIT_DESC(EQ_NOT_EN,		panic,		imu_rds) },
257 
258 	/* DMC IMU */
259 	{ IMU_BIT_DESC(EQ_OVER,			imu_eq_ovfl,	imu) }
260 };
261 
262 #define	px_err_imu_keys (sizeof (px_err_imu_tbl)) / (sizeof (px_err_bit_desc_t))
263 
264 /* mmu errors */
265 #define	MMU_BIT_DESC(bit, hdl, erpt) \
266 	MMU_INTERRUPT_STATUS_ ## bit ## _P, \
267 	0, \
268 	PX_ERR_BIT_HANDLE(hdl), \
269 	PX_ERPT_SEND(erpt), \
270 	PX_ERR_DMC_CLASS(bit) }, \
271 	{ MMU_INTERRUPT_STATUS_ ## bit ## _S, \
272 	0, \
273 	PX_ERR_BIT_HANDLE(hdl), \
274 	PX_ERPT_SEND(erpt), \
275 	PX_ERR_DMC_CLASS(bit)
276 px_err_bit_desc_t px_err_mmu_tbl[] = {
277 	/* DMC MMU TFAR/TFSR */
278 	{ MMU_BIT_DESC(BYP_ERR,		mmu_rbne,	mmu_tfar_tfsr) },
279 	{ MMU_BIT_DESC(BYP_OOR,		mmu_tfa,	mmu_tfar_tfsr) },
280 	{ MMU_BIT_DESC(TRN_ERR,		panic,		mmu_tfar_tfsr) },
281 	{ MMU_BIT_DESC(TRN_OOR,		mmu_tfa,	mmu_tfar_tfsr) },
282 	{ MMU_BIT_DESC(TTE_INV,		mmu_tfa,	mmu_tfar_tfsr) },
283 	{ MMU_BIT_DESC(TTE_PRT,		mmu_tfa,	mmu_tfar_tfsr) },
284 	{ MMU_BIT_DESC(TTC_DPE,		mmu_parity,	mmu_tfar_tfsr) },
285 	{ MMU_BIT_DESC(TBW_DME,		panic,		mmu_tfar_tfsr) },
286 	{ MMU_BIT_DESC(TBW_UDE,		panic,		mmu_tfar_tfsr) },
287 	{ MMU_BIT_DESC(TBW_ERR,		panic,		mmu_tfar_tfsr) },
288 	{ MMU_BIT_DESC(TBW_DPE,		mmu_parity,	mmu_tfar_tfsr) },
289 
290 	/* DMC MMU */
291 	{ MMU_BIT_DESC(TTC_CAE,		panic,		mmu) }
292 };
293 #define	px_err_mmu_keys (sizeof (px_err_mmu_tbl)) / (sizeof (px_err_bit_desc_t))
294 
295 
296 /*
297  * PEC error bit tables
298  */
299 #define	ILU_BIT_DESC(bit, hdl, erpt) \
300 	ILU_INTERRUPT_STATUS_ ## bit ## _P, \
301 	0, \
302 	PX_ERR_BIT_HANDLE(hdl), \
303 	PX_ERPT_SEND(erpt), \
304 	PX_ERR_PEC_CLASS(bit) }, \
305 	{ ILU_INTERRUPT_STATUS_ ## bit ## _S, \
306 	0, \
307 	PX_ERR_BIT_HANDLE(hdl), \
308 	PX_ERPT_SEND(erpt), \
309 	PX_ERR_PEC_CLASS(bit)
310 px_err_bit_desc_t px_err_ilu_tbl[] = {
311 	/* PEC ILU none */
312 	{ ILU_BIT_DESC(IHB_PE,		panic,		pec_ilu) }
313 };
314 #define	px_err_ilu_keys \
315 	(sizeof (px_err_ilu_tbl)) / (sizeof (px_err_bit_desc_t))
316 
317 /*
318  * PEC UE errors implementation is incomplete pending PCIE generic
319  * fabric rules.  Must handle both PRIMARY and SECONDARY errors.
320  */
321 /* pec ue errors */
322 #define	TLU_UC_BIT_DESC(bit, hdl, erpt) \
323 	TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR_ ## bit ## _P, \
324 	0, \
325 	PX_ERR_BIT_HANDLE(hdl), \
326 	PX_ERPT_SEND(erpt), \
327 	PX_ERR_PEC_CLASS(bit) }, \
328 	{ TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR_ ## bit ## _S, \
329 	0, \
330 	PX_ERR_BIT_HANDLE(hdl), \
331 	PX_ERPT_SEND(erpt), \
332 	PX_ERR_PEC_CLASS(bit)
333 #define	TLU_UC_OB_BIT_DESC(bit, hdl, erpt) \
334 	TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR_ ## bit ## _P, \
335 	0, \
336 	PX_ERR_BIT_HANDLE(hdl), \
337 	PX_ERPT_SEND(erpt), \
338 	PX_ERR_PEC_OB_CLASS(bit) }, \
339 	{ TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR_ ## bit ## _S, \
340 	0, \
341 	PX_ERR_BIT_HANDLE(hdl), \
342 	PX_ERPT_SEND(erpt), \
343 	PX_ERR_PEC_CLASS(bit)
344 px_err_bit_desc_t px_err_tlu_ue_tbl[] = {
345 	/* PCI-E Receive Uncorrectable Errors */
346 	{ TLU_UC_BIT_DESC(UR,		pciex_ue,	pciex_rx_ue) },
347 	{ TLU_UC_BIT_DESC(UC,		pciex_ue,	pciex_rx_ue) },
348 
349 	/* PCI-E Transmit Uncorrectable Errors */
350 	{ TLU_UC_OB_BIT_DESC(ECRC,	pciex_ue,	pciex_rx_ue) },
351 	{ TLU_UC_BIT_DESC(CTO,		pciex_ue,	pciex_tx_ue) },
352 	{ TLU_UC_BIT_DESC(ROF,		pciex_ue,	pciex_tx_ue) },
353 
354 	/* PCI-E Rx/Tx Uncorrectable Errors */
355 	{ TLU_UC_BIT_DESC(MFP,		pciex_ue,	pciex_rx_tx_ue) },
356 	{ TLU_UC_BIT_DESC(PP,		pciex_ue,	pciex_rx_tx_ue) },
357 
358 	/* Other PCI-E Uncorrectable Errors */
359 	{ TLU_UC_BIT_DESC(FCP,		pciex_ue,	pciex_ue) },
360 	{ TLU_UC_BIT_DESC(DLP,		pciex_ue,	pciex_ue) },
361 	{ TLU_UC_BIT_DESC(TE,		pciex_ue,	pciex_ue) },
362 
363 	/* Not used */
364 	{ TLU_UC_BIT_DESC(CA,		pciex_ue,	do_not) }
365 };
366 #define	px_err_tlu_ue_keys \
367 	(sizeof (px_err_tlu_ue_tbl)) / (sizeof (px_err_bit_desc_t))
368 
369 
370 /*
371  * PEC CE errors implementation is incomplete pending PCIE generic
372  * fabric rules.
373  */
374 /* pec ce errors */
375 #define	TLU_CE_BIT_DESC(bit, hdl, erpt) \
376 	TLU_CORRECTABLE_ERROR_STATUS_CLEAR_ ## bit ## _P, \
377 	0, \
378 	PX_ERR_BIT_HANDLE(hdl), \
379 	PX_ERPT_SEND(erpt), \
380 	PX_ERR_PEC_CLASS(bit) }, \
381 	{ TLU_CORRECTABLE_ERROR_STATUS_CLEAR_ ## bit ## _S, \
382 	0, \
383 	PX_ERR_BIT_HANDLE(hdl), \
384 	PX_ERPT_SEND(erpt), \
385 	PX_ERR_PEC_CLASS(bit)
386 px_err_bit_desc_t px_err_tlu_ce_tbl[] = {
387 	/* PCI-E Correctable Errors */
388 	{ TLU_CE_BIT_DESC(RTO,		pciex_ce,	pciex_ce) },
389 	{ TLU_CE_BIT_DESC(RNR,		pciex_ce,	pciex_ce) },
390 	{ TLU_CE_BIT_DESC(BDP,		pciex_ce,	pciex_ce) },
391 	{ TLU_CE_BIT_DESC(BTP,		pciex_ce,	pciex_ce) },
392 	{ TLU_CE_BIT_DESC(RE,		pciex_ce,	pciex_ce) }
393 };
394 #define	px_err_tlu_ce_keys \
395 	(sizeof (px_err_tlu_ce_tbl)) / (sizeof (px_err_bit_desc_t))
396 
397 
398 /* pec oe errors */
399 #define	TLU_OE_BIT_DESC(bit, hdl, erpt) \
400 	TLU_OTHER_EVENT_STATUS_CLEAR_ ## bit ## _P, \
401 	0, \
402 	PX_ERR_BIT_HANDLE(hdl), \
403 	PX_ERPT_SEND(erpt), \
404 	PX_ERR_PEC_CLASS(bit) }, \
405 	{ TLU_OTHER_EVENT_STATUS_CLEAR_ ## bit ## _S, \
406 	0, \
407 	PX_ERR_BIT_HANDLE(hdl), \
408 	PX_ERPT_SEND(erpt), \
409 	PX_ERR_PEC_CLASS(bit)
410 #define	TLU_OE_OB_BIT_DESC(bit, hdl, erpt) \
411 	TLU_OTHER_EVENT_STATUS_CLEAR_ ## bit ## _P, \
412 	0, \
413 	PX_ERR_BIT_HANDLE(hdl), \
414 	PX_ERPT_SEND(erpt), \
415 	PX_ERR_PEC_OB_CLASS(bit) }, \
416 	{ TLU_OTHER_EVENT_STATUS_CLEAR_ ## bit ## _S, \
417 	0, \
418 	PX_ERR_BIT_HANDLE(hdl), \
419 	PX_ERPT_SEND(erpt), \
420 	PX_ERR_PEC_OB_CLASS(bit)
421 px_err_bit_desc_t px_err_tlu_oe_tbl[] = {
422 	/* TLU Other Event Status (receive only) */
423 	{ TLU_OE_BIT_DESC(MRC,		hw_reset,	pciex_rx_oe) },
424 
425 	/* TLU Other Event Status (rx + tx) */
426 	{ TLU_OE_BIT_DESC(WUC,		wuc_ruc,	pciex_rx_tx_oe) },
427 	{ TLU_OE_BIT_DESC(RUC,		wuc_ruc,	pciex_rx_tx_oe) },
428 	{ TLU_OE_BIT_DESC(CRS,		no_panic,	pciex_rx_tx_oe) },
429 
430 	/* TLU Other Event */
431 	{ TLU_OE_BIT_DESC(IIP,		panic,		pciex_oe) },
432 	{ TLU_OE_BIT_DESC(EDP,		panic,		pciex_oe) },
433 	{ TLU_OE_BIT_DESC(EHP,		panic,		pciex_oe) },
434 	{ TLU_OE_OB_BIT_DESC(TLUEITMO,	panic,		pciex_oe) },
435 	{ TLU_OE_BIT_DESC(LIN,		no_panic,	pciex_oe) },
436 	{ TLU_OE_BIT_DESC(LRS,		no_panic,	pciex_oe) },
437 	{ TLU_OE_BIT_DESC(LDN,		tlu_ldn,	pciex_oe) },
438 	{ TLU_OE_BIT_DESC(LUP,		tlu_lup,	pciex_oe) },
439 	{ TLU_OE_BIT_DESC(ERU,		panic,		pciex_oe) },
440 	{ TLU_OE_BIT_DESC(ERO,		panic,		pciex_oe) },
441 	{ TLU_OE_BIT_DESC(EMP,		panic,		pciex_oe) },
442 	{ TLU_OE_BIT_DESC(EPE,		panic,		pciex_oe) },
443 	{ TLU_OE_BIT_DESC(ERP,		panic,		pciex_oe) },
444 	{ TLU_OE_BIT_DESC(EIP,		panic,		pciex_oe) }
445 };
446 
447 #define	px_err_tlu_oe_keys \
448 	(sizeof (px_err_tlu_oe_tbl)) / (sizeof (px_err_bit_desc_t))
449 
450 
451 /*
452  * All the following tables below are for LPU Interrupts.  These interrupts
453  * are *NOT* error interrupts, but event status interrupts.
454  *
455  * These events are probably of most interest to:
456  * o Hotplug
457  * o Power Management
458  * o etc...
459  *
460  * There are also a few events that would be interresting for FMA.
461  * Again none of the regiseters below state that an error has occured
462  * or that data has been lost.  If anything, they give status that an
463  * error is *about* to occur.  examples
464  * o INT_SKP_ERR - indicates clock between fire and child is too far
465  *		   off and is most unlikely able to compensate
466  * o INT_TX_PAR_ERR - A parity error occured in ONE lane.  This is
467  *		      HW recoverable, but will like end up as a future
468  *		      fabric error as well.
469  *
470  * For now, we don't care about any of these errors and should be ignore,
471  * but cleared.
472  */
473 
474 /* LPU Link Interrupt Table */
475 #define	LPUL_BIT_DESC(bit, hdl, erpt) \
476 	LPU_LINK_LAYER_INTERRUPT_AND_STATUS_INT_ ## bit, \
477 	0, \
478 	NULL, \
479 	NULL, \
480 	""
481 px_err_bit_desc_t px_err_lpul_tbl[] = {
482 	{ LPUL_BIT_DESC(LINK_ERR_ACT,	NULL,		NULL) }
483 };
484 #define	px_err_lpul_keys \
485 	(sizeof (px_err_lpul_tbl)) / (sizeof (px_err_bit_desc_t))
486 
487 /* LPU Physical Interrupt Table */
488 #define	LPUP_BIT_DESC(bit, hdl, erpt) \
489 	LPU_PHY_LAYER_INTERRUPT_AND_STATUS_INT_ ## bit, \
490 	0, \
491 	NULL, \
492 	NULL, \
493 	""
494 px_err_bit_desc_t px_err_lpup_tbl[] = {
495 	{ LPUP_BIT_DESC(PHY_LAYER_ERR,	NULL,		NULL) }
496 };
497 #define	px_err_lpup_keys \
498 	(sizeof (px_err_lpup_tbl)) / (sizeof (px_err_bit_desc_t))
499 
500 /* LPU Receive Interrupt Table */
501 #define	LPUR_BIT_DESC(bit, hdl, erpt) \
502 	LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_INT_ ## bit, \
503 	0, \
504 	NULL, \
505 	NULL, \
506 	""
507 px_err_bit_desc_t px_err_lpur_tbl[] = {
508 	{ LPUR_BIT_DESC(RCV_PHY,	NULL,		NULL) }
509 };
510 #define	px_err_lpur_keys \
511 	(sizeof (px_err_lpur_tbl)) / (sizeof (px_err_bit_desc_t))
512 
513 /* LPU Transmit Interrupt Table */
514 #define	LPUX_BIT_DESC(bit, hdl, erpt) \
515 	LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_INT_ ## bit, \
516 	0, \
517 	NULL, \
518 	NULL, \
519 	""
520 px_err_bit_desc_t px_err_lpux_tbl[] = {
521 	{ LPUX_BIT_DESC(UNMSK,		NULL,		NULL) }
522 };
523 #define	px_err_lpux_keys \
524 	(sizeof (px_err_lpux_tbl)) / (sizeof (px_err_bit_desc_t))
525 
526 /* LPU LTSSM Interrupt Table */
527 #define	LPUS_BIT_DESC(bit, hdl, erpt) \
528 	LPU_LTSSM_INTERRUPT_AND_STATUS_INT_ ## bit, \
529 	0, \
530 	NULL, \
531 	NULL, \
532 	""
533 px_err_bit_desc_t px_err_lpus_tbl[] = {
534 	{ LPUS_BIT_DESC(ANY,		NULL,		NULL) }
535 };
536 #define	px_err_lpus_keys \
537 	(sizeof (px_err_lpus_tbl)) / (sizeof (px_err_bit_desc_t))
538 
539 /* LPU Gigablaze Glue Interrupt Table */
540 #define	LPUG_BIT_DESC(bit, hdl, erpt) \
541 	LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_INT_ ## bit, \
542 	0, \
543 	NULL, \
544 	NULL, \
545 	""
546 px_err_bit_desc_t px_err_lpug_tbl[] = {
547 	{ LPUG_BIT_DESC(GLOBL_UNMSK,	NULL,		NULL) }
548 };
549 #define	px_err_lpug_keys \
550 	(sizeof (px_err_lpug_tbl)) / (sizeof (px_err_bit_desc_t))
551 
552 
553 /* Mask and Tables */
554 #define	MnT6X(pre) \
555 	&px_ ## pre ## _intr_mask, \
556 	&px_ ## pre ## _log_mask, \
557 	&px_ ## pre ## _count_mask, \
558 	px_err_ ## pre ## _tbl, \
559 	px_err_ ## pre ## _keys, \
560 	PX_REG_XBC, \
561 	0
562 
563 #define	MnT6(pre) \
564 	&px_ ## pre ## _intr_mask, \
565 	&px_ ## pre ## _log_mask, \
566 	&px_ ## pre ## _count_mask, \
567 	px_err_ ## pre ## _tbl, \
568 	px_err_ ## pre ## _keys, \
569 	PX_REG_CSR, \
570 	0
571 
572 /* LPU Registers Addresses */
573 #define	LR4(pre) \
574 	NULL, \
575 	LPU_ ## pre ## _INTERRUPT_MASK, \
576 	LPU_ ## pre ## _INTERRUPT_AND_STATUS, \
577 	LPU_ ## pre ## _INTERRUPT_AND_STATUS
578 
579 /* LPU Registers Addresses with Irregularities */
580 #define	LR4_FIXME(pre) \
581 	NULL, \
582 	LPU_ ## pre ## _INTERRUPT_MASK, \
583 	LPU_ ## pre ## _LAYER_INTERRUPT_AND_STATUS, \
584 	LPU_ ## pre ## _LAYER_INTERRUPT_AND_STATUS
585 
586 /* TLU Registers Addresses */
587 #define	TR4(pre) \
588 	TLU_ ## pre ## _LOG_ENABLE, \
589 	TLU_ ## pre ## _INTERRUPT_ENABLE, \
590 	TLU_ ## pre ## _INTERRUPT_STATUS, \
591 	TLU_ ## pre ## _STATUS_CLEAR
592 
593 /* Registers Addresses for JBC, UBC, MMU, IMU and ILU */
594 #define	R4(pre) \
595 	pre ## _ERROR_LOG_ENABLE, \
596 	pre ## _INTERRUPT_ENABLE, \
597 	pre ## _INTERRUPT_STATUS, \
598 	pre ## _ERROR_STATUS_CLEAR
599 
600 /* Bits in chip_mask, set according to type. */
601 #define	CHP_O	BITMASK(PX_CHIP_OBERON)
602 #define	CHP_F	BITMASK(PX_CHIP_FIRE)
603 #define	CHP_FO	(CHP_F | CHP_O)
604 
605 /*
606  * Register error handling tables.
607  * The ID Field (first field) is identified by an enum px_err_id_t.
608  * It is located in px_err.h
609  */
610 static const
611 px_err_reg_desc_t px_err_reg_tbl[] = {
612 	{ CHP_F,  MnT6X(jbc),	R4(JBC),		  "JBC Error"},
613 	{ CHP_O,  MnT6X(ubc),	R4(UBC),		  "UBC Error"},
614 	{ CHP_FO, MnT6(mmu),	R4(MMU),		  "MMU Error"},
615 	{ CHP_FO, MnT6(imu),	R4(IMU),		  "IMU Error"},
616 	{ CHP_FO, MnT6(tlu_ue),	TR4(UNCORRECTABLE_ERROR), "TLU UE"},
617 	{ CHP_FO, MnT6(tlu_ce),	TR4(CORRECTABLE_ERROR),	  "TLU CE"},
618 	{ CHP_FO, MnT6(tlu_oe),	TR4(OTHER_EVENT),	  "TLU OE"},
619 	{ CHP_FO, MnT6(ilu),	R4(ILU),		  "ILU Error"},
620 	{ CHP_F,  MnT6(lpul),	LR4(LINK_LAYER),	  "LPU Link Layer"},
621 	{ CHP_F,  MnT6(lpup),	LR4_FIXME(PHY),		  "LPU Phy Layer"},
622 	{ CHP_F,  MnT6(lpur),	LR4(RECEIVE_PHY),	  "LPU RX Phy Layer"},
623 	{ CHP_F,  MnT6(lpux),	LR4(TRANSMIT_PHY),	  "LPU TX Phy Layer"},
624 	{ CHP_F,  MnT6(lpus),	LR4(LTSSM),		  "LPU LTSSM"},
625 	{ CHP_F,  MnT6(lpug),	LR4(GIGABLAZE_GLUE),	  "LPU GigaBlaze Glue"},
626 };
627 
628 #define	PX_ERR_REG_KEYS	(sizeof (px_err_reg_tbl)) / (sizeof (px_err_reg_tbl[0]))
629 
630 typedef struct px_err_ss {
631 	uint64_t err_status[PX_ERR_REG_KEYS];
632 } px_err_ss_t;
633 
634 static void px_err_snapshot(px_t *px_p, px_err_ss_t *ss, int block);
635 static int  px_err_erpt_and_clr(px_t *px_p, ddi_fm_error_t *derr,
636     px_err_ss_t *ss);
637 static int  px_err_check_severity(px_t *px_p, ddi_fm_error_t *derr,
638     int err, int caller);
639 
640 /*
641  * px_err_cb_intr:
642  * Interrupt handler for the JBC/UBC block.
643  * o lock
644  * o create derr
645  * o px_err_cmn_intr
646  * o unlock
647  * o handle error: fatal? fm_panic() : return INTR_CLAIMED)
648  */
649 uint_t
650 px_err_cb_intr(caddr_t arg)
651 {
652 	px_fault_t	*px_fault_p = (px_fault_t *)arg;
653 	dev_info_t	*rpdip = px_fault_p->px_fh_dip;
654 	px_t		*px_p = DIP_TO_STATE(rpdip);
655 	int		err;
656 	ddi_fm_error_t	derr;
657 
658 	/* Create the derr */
659 	bzero(&derr, sizeof (ddi_fm_error_t));
660 	derr.fme_version = DDI_FME_VERSION;
661 	derr.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
662 	derr.fme_flag = DDI_FM_ERR_UNEXPECTED;
663 
664 	mutex_enter(&px_p->px_fm_mutex);
665 
666 	err = px_err_cmn_intr(px_p, &derr, PX_INTR_CALL, PX_FM_BLOCK_HOST);
667 	(void) px_lib_intr_setstate(rpdip, px_fault_p->px_fh_sysino,
668 	    INTR_IDLE_STATE);
669 
670 	mutex_exit(&px_p->px_fm_mutex);
671 
672 	px_err_panic(err, PX_HB, PX_NO_ERROR);
673 
674 	return (DDI_INTR_CLAIMED);
675 }
676 
677 /*
678  * px_err_dmc_pec_intr:
679  * Interrupt handler for the DMC/PEC block.
680  * o lock
681  * o create derr
682  * o px_err_cmn_intr(leaf, with out cb)
683  * o pcie_scan_fabric (leaf)
684  * o unlock
685  * o handle error: fatal? fm_panic() : return INTR_CLAIMED)
686  */
687 uint_t
688 px_err_dmc_pec_intr(caddr_t arg)
689 {
690 	px_fault_t	*px_fault_p = (px_fault_t *)arg;
691 	dev_info_t	*rpdip = px_fault_p->px_fh_dip;
692 	px_t		*px_p = DIP_TO_STATE(rpdip);
693 	int		rc_err, fab_err = PF_NO_PANIC;
694 	ddi_fm_error_t	derr;
695 
696 	/* Create the derr */
697 	bzero(&derr, sizeof (ddi_fm_error_t));
698 	derr.fme_version = DDI_FME_VERSION;
699 	derr.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
700 	derr.fme_flag = DDI_FM_ERR_UNEXPECTED;
701 
702 	mutex_enter(&px_p->px_fm_mutex);
703 
704 	/* send ereport/handle/clear fire registers */
705 	rc_err = px_err_cmn_intr(px_p, &derr, PX_INTR_CALL, PX_FM_BLOCK_PCIE);
706 
707 	/* Check all child devices for errors */
708 	if (!px_lib_is_in_drain_state(px_p)) {
709 		fab_err = pf_scan_fabric(rpdip, &derr, px_p->px_dq_p,
710 		    &px_p->px_dq_tail);
711 	}
712 
713 	/* Set the interrupt state to idle */
714 	(void) px_lib_intr_setstate(rpdip, px_fault_p->px_fh_sysino,
715 	    INTR_IDLE_STATE);
716 
717 	mutex_exit(&px_p->px_fm_mutex);
718 
719 	px_err_panic(rc_err, PX_RC, fab_err);
720 
721 	return (DDI_INTR_CLAIMED);
722 }
723 
724 /*
725  * Proper csr_base is responsibility of the caller. (Called from px_lib_dev_init
726  * via px_err_reg_setup_all for pcie error registers;  called from
727  * px_cb_add_intr for jbc/ubc from px_cb_attach.)
728  *
729  * Note: reg_id is passed in instead of reg_desc since this function is called
730  * from px_lib4u.c, which doesn't know about the structure of the table.
731  */
732 void
733 px_err_reg_enable(px_err_id_t reg_id, caddr_t csr_base)
734 {
735 	const px_err_reg_desc_t	*reg_desc_p = &px_err_reg_tbl[reg_id];
736 	uint64_t 		intr_mask = *reg_desc_p->intr_mask_p;
737 	uint64_t 		log_mask = *reg_desc_p->log_mask_p;
738 
739 	/* Enable logs if it exists */
740 	if (reg_desc_p->log_addr != NULL)
741 		CSR_XS(csr_base, reg_desc_p->log_addr, log_mask);
742 
743 	/*
744 	 * For readability you in code you set 1 to enable an interrupt.
745 	 * But in Fire it's backwards.  You set 1 to *disable* an intr.
746 	 * Reverse the user tunable intr mask field.
747 	 *
748 	 * Disable All Errors
749 	 * Clear All Errors
750 	 * Enable Errors
751 	 */
752 	CSR_XS(csr_base, reg_desc_p->enable_addr, 0);
753 	CSR_XS(csr_base, reg_desc_p->clear_addr, -1);
754 	CSR_XS(csr_base, reg_desc_p->enable_addr, intr_mask);
755 	DBG(DBG_ATTACH, NULL, "%s Mask: 0x%llx\n", reg_desc_p->msg,
756 	    CSR_XR(csr_base, reg_desc_p->enable_addr));
757 	DBG(DBG_ATTACH, NULL, "%s Status: 0x%llx\n", reg_desc_p->msg,
758 	    CSR_XR(csr_base, reg_desc_p->status_addr));
759 	DBG(DBG_ATTACH, NULL, "%s Clear: 0x%llx\n", reg_desc_p->msg,
760 	    CSR_XR(csr_base, reg_desc_p->clear_addr));
761 	if (reg_desc_p->log_addr != NULL) {
762 		DBG(DBG_ATTACH, NULL, "%s Log: 0x%llx\n", reg_desc_p->msg,
763 		    CSR_XR(csr_base, reg_desc_p->log_addr));
764 	}
765 }
766 
767 void
768 px_err_reg_disable(px_err_id_t reg_id, caddr_t csr_base)
769 {
770 	const px_err_reg_desc_t	*reg_desc_p = &px_err_reg_tbl[reg_id];
771 	uint64_t		val = (reg_id >= PX_ERR_LPU_LINK) ? -1 : 0;
772 
773 	if (reg_desc_p->log_addr != NULL)
774 		CSR_XS(csr_base, reg_desc_p->log_addr, val);
775 	CSR_XS(csr_base, reg_desc_p->enable_addr, val);
776 }
777 
778 /*
779  * Set up pcie error registers.
780  */
781 void
782 px_err_reg_setup_pcie(uint8_t chip_mask, caddr_t csr_base, boolean_t enable)
783 {
784 	px_err_id_t		reg_id;
785 	const px_err_reg_desc_t	*reg_desc_p;
786 	void (*px_err_reg_func)(px_err_id_t, caddr_t);
787 
788 	/*
789 	 * JBC or XBC are enabled during adding of common block interrupts,
790 	 * not done here.
791 	 */
792 	px_err_reg_func = (enable ? px_err_reg_enable : px_err_reg_disable);
793 	for (reg_id = 0; reg_id < PX_ERR_REG_KEYS; reg_id++) {
794 		reg_desc_p = &px_err_reg_tbl[reg_id];
795 		if ((reg_desc_p->chip_mask & chip_mask) &&
796 		    (reg_desc_p->reg_bank == PX_REG_CSR))
797 			px_err_reg_func(reg_id, csr_base);
798 	}
799 }
800 
801 /*
802  * px_err_cmn_intr:
803  * Common function called by trap, mondo and fabric intr.
804  * o Snap shot current fire registers
805  * o check for safe access
806  * o send ereport and clear snap shot registers
807  * o create and queue RC info for later use in fabric scan.
808  *   o RUC/WUC, PTLP, MMU Errors(CA), UR
809  * o check severity of snap shot registers
810  *
811  * @param px_p		leaf in which to check access
812  * @param derr		fm err data structure to be updated
813  * @param caller	PX_TRAP_CALL | PX_INTR_CALL
814  * @param block		PX_FM_BLOCK_HOST | PX_FM_BLOCK_PCIE | PX_FM_BLOCK_ALL
815  * @return err		PX_NO_PANIC | PX_PANIC | PX_HW_RESET | PX_PROTECTED
816  */
817 int
818 px_err_cmn_intr(px_t *px_p, ddi_fm_error_t *derr, int caller, int block)
819 {
820 	px_err_ss_t		ss = {0};
821 	int			err;
822 
823 	ASSERT(MUTEX_HELD(&px_p->px_fm_mutex));
824 
825 	/* snap shot the current fire registers */
826 	px_err_snapshot(px_p, &ss, block);
827 
828 	/* check for safe access */
829 	px_err_safeacc_check(px_p, derr);
830 
831 	/* send ereports/handle/clear registers */
832 	err = px_err_erpt_and_clr(px_p, derr, &ss);
833 
834 	/* check for error severity */
835 	err = px_err_check_severity(px_p, derr, err, caller);
836 
837 	/* Mark the On Trap Handle if an error occured */
838 	if (err != PX_NO_ERROR) {
839 		px_pec_t	*pec_p = px_p->px_pec_p;
840 		on_trap_data_t	*otd = pec_p->pec_ontrap_data;
841 
842 		if ((otd != NULL) && (otd->ot_prot & OT_DATA_ACCESS))
843 			otd->ot_trap |= OT_DATA_ACCESS;
844 	}
845 
846 	return (err);
847 }
848 
849 /*
850  * Static function
851  */
852 
853 /*
854  * px_err_snapshot:
855  * Take a current snap shot of all the fire error registers.  This includes
856  * JBC/UBC, DMC, and PEC depending on the block flag
857  *
858  * @param px_p		leaf in which to take the snap shot.
859  * @param ss		pre-allocated memory to store the snap shot.
860  * @param chk_cb	boolean on whether to store jbc/ubc register.
861  */
862 static void
863 px_err_snapshot(px_t *px_p, px_err_ss_t *ss_p, int block)
864 {
865 	pxu_t	*pxu_p = (pxu_t *)px_p->px_plat_p;
866 	caddr_t	xbc_csr_base = (caddr_t)pxu_p->px_address[PX_REG_XBC];
867 	caddr_t	pec_csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR];
868 	caddr_t	csr_base;
869 	uint8_t chip_mask = 1 << PX_CHIP_TYPE(pxu_p);
870 	const px_err_reg_desc_t *reg_desc_p = px_err_reg_tbl;
871 	px_err_id_t reg_id;
872 
873 	for (reg_id = 0; reg_id < PX_ERR_REG_KEYS; reg_id++, reg_desc_p++) {
874 		if (!(reg_desc_p->chip_mask & chip_mask))
875 			continue;
876 
877 		if ((block & PX_FM_BLOCK_HOST) &&
878 		    (reg_desc_p->reg_bank == PX_REG_XBC))
879 			csr_base = xbc_csr_base;
880 		else if ((block & PX_FM_BLOCK_PCIE) &&
881 		    (reg_desc_p->reg_bank == PX_REG_CSR))
882 			csr_base = pec_csr_base;
883 		else {
884 			ss_p->err_status[reg_id] = 0;
885 			continue;
886 		}
887 
888 		ss_p->err_status[reg_id] = CSR_XR(csr_base,
889 		    reg_desc_p->status_addr);
890 	}
891 }
892 
893 /*
894  * px_err_erpt_and_clr:
895  * This function does the following thing to all the fire registers based
896  * on an earlier snap shot.
897  * o Send ereport
898  * o Handle the error
899  * o Clear the error
900  *
901  * @param px_p		leaf in which to take the snap shot.
902  * @param derr		fm err in which the ereport is to be based on
903  * @param ss_p		pre-allocated memory to store the snap shot.
904  */
905 static int
906 px_err_erpt_and_clr(px_t *px_p, ddi_fm_error_t *derr, px_err_ss_t *ss_p)
907 {
908 	dev_info_t		*rpdip = px_p->px_dip;
909 	pxu_t			*pxu_p = (pxu_t *)px_p->px_plat_p;
910 	caddr_t			csr_base;
911 	const px_err_reg_desc_t	*err_reg_tbl;
912 	px_err_bit_desc_t	*err_bit_tbl;
913 	px_err_bit_desc_t	*err_bit_desc;
914 
915 	uint64_t		*count_mask;
916 	uint64_t		clear_addr;
917 	uint64_t		ss_reg;
918 
919 	int			(*err_handler)();
920 	int			(*erpt_handler)();
921 	int			reg_id, key;
922 	int			err = PX_NO_ERROR;
923 	int			biterr = 0;
924 
925 	ASSERT(MUTEX_HELD(&px_p->px_fm_mutex));
926 
927 	/* send erport/handle/clear JBC errors */
928 	for (reg_id = 0; reg_id < PX_ERR_REG_KEYS; reg_id++) {
929 		/* Get the correct register description table */
930 		err_reg_tbl = &px_err_reg_tbl[reg_id];
931 
932 		/* Only look at enabled groups. */
933 		if (!(BIT_TST(err_reg_tbl->chip_mask, PX_CHIP_TYPE(pxu_p))))
934 			continue;
935 
936 		/* Get the correct CSR BASE */
937 		csr_base = (caddr_t)pxu_p->px_address[err_reg_tbl->reg_bank];
938 
939 		/* If there are no errors in this register, continue */
940 		ss_reg = ss_p->err_status[reg_id];
941 		if (!ss_reg)
942 			continue;
943 
944 		/* Get pointers to masks and register addresses */
945 		count_mask = err_reg_tbl->count_mask_p;
946 		clear_addr = err_reg_tbl->clear_addr;
947 
948 		/* Get the register BIT description table */
949 		err_bit_tbl = err_reg_tbl->err_bit_tbl;
950 
951 		/* For each known bit in the register send erpt and handle */
952 		for (key = 0; key < err_reg_tbl->err_bit_keys; key++) {
953 			/*
954 			 * If the ss_reg is set for this bit,
955 			 * send ereport and handle
956 			 */
957 			err_bit_desc = &err_bit_tbl[key];
958 			if (!BIT_TST(ss_reg, err_bit_desc->bit))
959 				continue;
960 
961 			/* Increment the counter if necessary */
962 			if (BIT_TST(*count_mask, err_bit_desc->bit)) {
963 				err_bit_desc->counter++;
964 			}
965 
966 			/* Error Handle for this bit */
967 			err_handler = err_bit_desc->err_handler;
968 			if (err_handler) {
969 				biterr = err_handler(rpdip, csr_base, derr,
970 				    err_reg_tbl, err_bit_desc);
971 				err |= biterr;
972 			}
973 
974 			/*
975 			 * Send the ereport if it's an UNEXPECTED err.
976 			 * This is the only place where PX_EXPECTED is utilized.
977 			 */
978 			erpt_handler = err_bit_desc->erpt_handler;
979 			if ((derr->fme_flag != DDI_FM_ERR_UNEXPECTED) ||
980 			    (biterr == PX_EXPECTED))
981 				continue;
982 
983 			if (erpt_handler)
984 				(void) erpt_handler(rpdip, csr_base, ss_reg,
985 				    derr, err_bit_desc->bit,
986 				    err_bit_desc->class_name);
987 		}
988 
989 		/* Clear the register and error */
990 		CSR_XS(csr_base, clear_addr, ss_reg);
991 	}
992 
993 	return (err);
994 }
995 
996 /*
997  * px_err_check_severity:
998  * Check the severity of the fire error based on an earlier snapshot
999  *
1000  * @param px_p		leaf in which to take the snap shot.
1001  * @param derr		fm err in which the ereport is to be based on
1002  * @param err		fire register error status
1003  * @param caller	PX_TRAP_CALL | PX_INTR_CALL | PX_LIB_CALL
1004  */
1005 static int
1006 px_err_check_severity(px_t *px_p, ddi_fm_error_t *derr, int err, int caller)
1007 {
1008 	px_pec_t 	*pec_p = px_p->px_pec_p;
1009 	boolean_t	is_safeacc = B_FALSE;
1010 
1011 	/*
1012 	 * Nothing to do if called with no error.
1013 	 * The err could have already been set to PX_NO_PANIC, which means the
1014 	 * system doesn't need to panic, but PEEK/POKE still failed.
1015 	 */
1016 	if (err == PX_NO_ERROR)
1017 		return (err);
1018 
1019 	/* Cautious access error handling  */
1020 	switch (derr->fme_flag) {
1021 	case DDI_FM_ERR_EXPECTED:
1022 		if (caller == PX_TRAP_CALL) {
1023 			/*
1024 			 * for ddi_caut_get treat all events as nonfatal
1025 			 * The trampoline will set err_ena = 0,
1026 			 * err_status = NONFATAL.
1027 			 */
1028 			derr->fme_status = DDI_FM_NONFATAL;
1029 			is_safeacc = B_TRUE;
1030 		} else {
1031 			/*
1032 			 * For ddi_caut_put treat all events as nonfatal. Here
1033 			 * we have the handle and can call ndi_fm_acc_err_set().
1034 			 */
1035 			derr->fme_status = DDI_FM_NONFATAL;
1036 			ndi_fm_acc_err_set(pec_p->pec_acc_hdl, derr);
1037 			is_safeacc = B_TRUE;
1038 		}
1039 		break;
1040 	case DDI_FM_ERR_PEEK:
1041 	case DDI_FM_ERR_POKE:
1042 		/*
1043 		 * For ddi_peek/poke treat all events as nonfatal.
1044 		 */
1045 		is_safeacc = B_TRUE;
1046 		break;
1047 	default:
1048 		is_safeacc = B_FALSE;
1049 	}
1050 
1051 	/* re-adjust error status from safe access, forgive all errors */
1052 	if (is_safeacc)
1053 		return (PX_NO_PANIC);
1054 
1055 	return (err);
1056 }
1057 
1058 /* predefined convenience functions */
1059 /* ARGSUSED */
1060 void
1061 px_err_log_handle(dev_info_t *rpdip, px_err_reg_desc_t *err_reg_descr,
1062 	px_err_bit_desc_t *err_bit_descr, char *msg)
1063 {
1064 	DBG(DBG_ERR_INTR, rpdip,
1065 	    "Bit %d, %s, at %s(0x%x) has occured %d times with a severity "
1066 	    "of \"%s\"\n",
1067 	    err_bit_descr->bit, err_bit_descr->class_name,
1068 	    err_reg_descr->msg, err_reg_descr->status_addr,
1069 	    err_bit_descr->counter, msg);
1070 }
1071 
1072 /* ARGSUSED */
1073 int
1074 px_err_hw_reset_handle(dev_info_t *rpdip, caddr_t csr_base,
1075 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1076 	px_err_bit_desc_t *err_bit_descr)
1077 {
1078 	if (px_log & PX_HW_RESET) {
1079 		px_err_log_handle(rpdip, err_reg_descr, err_bit_descr,
1080 		    "HW RESET");
1081 	}
1082 
1083 	return (PX_HW_RESET);
1084 }
1085 
1086 /* ARGSUSED */
1087 int
1088 px_err_panic_handle(dev_info_t *rpdip, caddr_t csr_base,
1089 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1090 	px_err_bit_desc_t *err_bit_descr)
1091 {
1092 	if (px_log & PX_PANIC) {
1093 		px_err_log_handle(rpdip, err_reg_descr, err_bit_descr, "PANIC");
1094 	}
1095 
1096 	return (PX_PANIC);
1097 }
1098 
1099 /* ARGSUSED */
1100 int
1101 px_err_protected_handle(dev_info_t *rpdip, caddr_t csr_base,
1102 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1103 	px_err_bit_desc_t *err_bit_descr)
1104 {
1105 	if (px_log & PX_PROTECTED) {
1106 		px_err_log_handle(rpdip, err_reg_descr, err_bit_descr,
1107 		    "PROTECTED");
1108 	}
1109 
1110 	return (PX_PROTECTED);
1111 }
1112 
1113 /* ARGSUSED */
1114 int
1115 px_err_no_panic_handle(dev_info_t *rpdip, caddr_t csr_base,
1116 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1117 	px_err_bit_desc_t *err_bit_descr)
1118 {
1119 	if (px_log & PX_NO_PANIC) {
1120 		px_err_log_handle(rpdip, err_reg_descr, err_bit_descr,
1121 		    "NO PANIC");
1122 	}
1123 
1124 	return (PX_NO_PANIC);
1125 }
1126 
1127 /* ARGSUSED */
1128 int
1129 px_err_no_error_handle(dev_info_t *rpdip, caddr_t csr_base,
1130 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1131 	px_err_bit_desc_t *err_bit_descr)
1132 {
1133 	if (px_log & PX_NO_ERROR) {
1134 		px_err_log_handle(rpdip, err_reg_descr, err_bit_descr,
1135 		    "NO ERROR");
1136 	}
1137 
1138 	return (PX_NO_ERROR);
1139 }
1140 
1141 /* ARGSUSED */
1142 PX_ERPT_SEND_DEC(do_not)
1143 {
1144 	return (PX_NO_ERROR);
1145 }
1146 
1147 
1148 /* UBC FATAL - see io erpt doc, section 1.1 */
1149 /* ARGSUSED */
1150 PX_ERPT_SEND_DEC(ubc_fatal)
1151 {
1152 	char		buf[FM_MAX_CLASS];
1153 	uint64_t	memory_ue_log, marked;
1154 	char		unum[FM_MAX_CLASS];
1155 	int		unum_length;
1156 	uint64_t	device_id = 0;
1157 	uint8_t		cpu_version = 0;
1158 	nvlist_t	*resource = NULL;
1159 
1160 	unum[0] = '\0';
1161 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1162 
1163 	memory_ue_log = CSR_XR(csr_base, UBC_MEMORY_UE_LOG);
1164 	marked = (memory_ue_log >> UBC_MEMORY_UE_LOG_MARKED) &
1165 	    UBC_MEMORY_UE_LOG_MARKED_MASK;
1166 
1167 	if ((strstr(class_name, "ubc.piowtue") != NULL) ||
1168 	    (strstr(class_name, "ubc.piowbeue") != NULL) ||
1169 	    (strstr(class_name, "ubc.piorbeue") != NULL) ||
1170 	    (strstr(class_name, "ubc.dmarduea") != NULL) ||
1171 	    (strstr(class_name, "ubc.dmardueb") != NULL)) {
1172 		int eid = (memory_ue_log >> UBC_MEMORY_UE_LOG_EID) &
1173 		    UBC_MEMORY_UE_LOG_EID_MASK;
1174 		(void) strncat(buf, ubc_class_eid_qualifier[eid],
1175 		    FM_MAX_CLASS);
1176 
1177 		if (eid == UBC_EID_MEM) {
1178 			uint64_t phys_addr = memory_ue_log &
1179 			    MMU_OBERON_PADDR_MASK;
1180 			uint64_t offset = (uint64_t)-1;
1181 
1182 			resource = fm_nvlist_create(NULL);
1183 			if (&plat_get_mem_unum) {
1184 				if ((plat_get_mem_unum(0,
1185 				    phys_addr, 0, B_TRUE, 0, unum,
1186 				    FM_MAX_CLASS, &unum_length)) != 0)
1187 					unum[0] = '\0';
1188 			}
1189 			fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION,
1190 					NULL, unum, NULL, offset);
1191 
1192 		} else if (eid == UBC_EID_CPU) {
1193 			int cpuid = (marked & UBC_MARKED_MAX_CPUID_MASK);
1194 			char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
1195 
1196 			resource = fm_nvlist_create(NULL);
1197 			cpu_version = cpunodes[cpuid].version;
1198 			device_id = cpunodes[cpuid].device_id;
1199 			(void) snprintf(sbuf, sizeof (sbuf), "%lX",
1200 			    device_id);
1201 			(void) fm_fmri_cpu_set(resource,
1202 			    FM_CPU_SCHEME_VERSION, NULL, cpuid,
1203 			    &cpu_version, sbuf);
1204 		}
1205 	}
1206 
1207 	if (resource) {
1208 		ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1209 		    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1210 		    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, B_TRUE,
1211 		    OBERON_UBC_ELE, DATA_TYPE_UINT64,
1212 		    CSR_XR(csr_base, UBC_ERROR_LOG_ENABLE),
1213 		    OBERON_UBC_IE, DATA_TYPE_UINT64,
1214 		    CSR_XR(csr_base, UBC_INTERRUPT_ENABLE),
1215 		    OBERON_UBC_IS, DATA_TYPE_UINT64,
1216 		    CSR_XR(csr_base, UBC_INTERRUPT_STATUS),
1217 		    OBERON_UBC_ESS, DATA_TYPE_UINT64,
1218 		    CSR_XR(csr_base, UBC_ERROR_STATUS_SET),
1219 		    OBERON_UBC_MUE, DATA_TYPE_UINT64, memory_ue_log,
1220 		    OBERON_UBC_UNUM, DATA_TYPE_STRING, unum,
1221 		    OBERON_UBC_DID, DATA_TYPE_UINT64, device_id,
1222 		    OBERON_UBC_CPUV, DATA_TYPE_UINT32, cpu_version,
1223 		    OBERON_UBC_RESOURCE, DATA_TYPE_NVLIST, resource,
1224 		    NULL);
1225 		fm_nvlist_destroy(resource, FM_NVA_FREE);
1226 	} else {
1227 		ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1228 		    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1229 		    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, B_TRUE,
1230 		    OBERON_UBC_ELE, DATA_TYPE_UINT64,
1231 		    CSR_XR(csr_base, UBC_ERROR_LOG_ENABLE),
1232 		    OBERON_UBC_IE, DATA_TYPE_UINT64,
1233 		    CSR_XR(csr_base, UBC_INTERRUPT_ENABLE),
1234 		    OBERON_UBC_IS, DATA_TYPE_UINT64,
1235 		    CSR_XR(csr_base, UBC_INTERRUPT_STATUS),
1236 		    OBERON_UBC_ESS, DATA_TYPE_UINT64,
1237 		    CSR_XR(csr_base, UBC_ERROR_STATUS_SET),
1238 		    OBERON_UBC_MUE, DATA_TYPE_UINT64, memory_ue_log,
1239 		    OBERON_UBC_UNUM, DATA_TYPE_STRING, unum,
1240 		    OBERON_UBC_DID, DATA_TYPE_UINT64, device_id,
1241 		    OBERON_UBC_CPUV, DATA_TYPE_UINT32, cpu_version,
1242 		    NULL);
1243 	}
1244 
1245 	return (PX_NO_PANIC);
1246 }
1247 
1248 /* JBC FATAL */
1249 PX_ERPT_SEND_DEC(jbc_fatal)
1250 {
1251 	char		buf[FM_MAX_CLASS];
1252 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1253 
1254 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1255 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1256 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1257 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1258 	    FIRE_JBC_ELE, DATA_TYPE_UINT64,
1259 	    CSR_XR(csr_base, JBC_ERROR_LOG_ENABLE),
1260 	    FIRE_JBC_IE, DATA_TYPE_UINT64,
1261 	    CSR_XR(csr_base, JBC_INTERRUPT_ENABLE),
1262 	    FIRE_JBC_IS, DATA_TYPE_UINT64,
1263 	    ss_reg,
1264 	    FIRE_JBC_ESS, DATA_TYPE_UINT64,
1265 	    CSR_XR(csr_base, JBC_ERROR_STATUS_SET),
1266 	    FIRE_JBC_FEL1, DATA_TYPE_UINT64,
1267 	    CSR_XR(csr_base, FATAL_ERROR_LOG_1),
1268 	    FIRE_JBC_FEL2, DATA_TYPE_UINT64,
1269 	    CSR_XR(csr_base, FATAL_ERROR_LOG_2),
1270 	    NULL);
1271 
1272 	return (PX_NO_PANIC);
1273 }
1274 
1275 /* JBC MERGE */
1276 PX_ERPT_SEND_DEC(jbc_merge)
1277 {
1278 	char		buf[FM_MAX_CLASS];
1279 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1280 
1281 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1282 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1283 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1284 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1285 	    FIRE_JBC_ELE, DATA_TYPE_UINT64,
1286 	    CSR_XR(csr_base, JBC_ERROR_LOG_ENABLE),
1287 	    FIRE_JBC_IE, DATA_TYPE_UINT64,
1288 	    CSR_XR(csr_base, JBC_INTERRUPT_ENABLE),
1289 	    FIRE_JBC_IS, DATA_TYPE_UINT64,
1290 	    ss_reg,
1291 	    FIRE_JBC_ESS, DATA_TYPE_UINT64,
1292 	    CSR_XR(csr_base, JBC_ERROR_STATUS_SET),
1293 	    FIRE_JBC_MTEL, DATA_TYPE_UINT64,
1294 	    CSR_XR(csr_base, MERGE_TRANSACTION_ERROR_LOG),
1295 	    NULL);
1296 
1297 	return (PX_NO_PANIC);
1298 }
1299 
1300 /*
1301  * JBC Merge buffer retryable errors:
1302  *    Merge buffer parity error (rd_buf): PIO or DMA
1303  *    Merge buffer parity error (wr_buf): PIO or DMA
1304  */
1305 /* ARGSUSED */
1306 int
1307 px_err_jbc_merge_handle(dev_info_t *rpdip, caddr_t csr_base,
1308     ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1309     px_err_bit_desc_t *err_bit_descr)
1310 {
1311 	/*
1312 	 * Holder function to attempt error recovery.  When the features
1313 	 * are in place, look up the address of the transaction in:
1314 	 *
1315 	 * paddr = CSR_XR(csr_base, MERGE_TRANSACTION_ERROR_LOG);
1316 	 * paddr &= MERGE_TRANSACTION_ERROR_LOG_ADDRESS_MASK;
1317 	 *
1318 	 * If the error is a secondary error, there is no log information
1319 	 * just panic as it is unknown which address has been affected.
1320 	 *
1321 	 * Remember the address is pretranslation and might be hard to look
1322 	 * up the appropriate driver based on the PA.
1323 	 */
1324 	return (px_err_panic_handle(rpdip, csr_base, derr, err_reg_descr,
1325 		    err_bit_descr));
1326 }
1327 
1328 /* JBC Jbusint IN */
1329 PX_ERPT_SEND_DEC(jbc_in)
1330 {
1331 	char		buf[FM_MAX_CLASS];
1332 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1333 
1334 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1335 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1336 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1337 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1338 	    FIRE_JBC_ELE, DATA_TYPE_UINT64,
1339 	    CSR_XR(csr_base, JBC_ERROR_LOG_ENABLE),
1340 	    FIRE_JBC_IE, DATA_TYPE_UINT64,
1341 	    CSR_XR(csr_base, JBC_INTERRUPT_ENABLE),
1342 	    FIRE_JBC_IS, DATA_TYPE_UINT64,
1343 	    ss_reg,
1344 	    FIRE_JBC_ESS, DATA_TYPE_UINT64,
1345 	    CSR_XR(csr_base, JBC_ERROR_STATUS_SET),
1346 	    FIRE_JBC_JITEL1, DATA_TYPE_UINT64,
1347 	    CSR_XR(csr_base, JBCINT_IN_TRANSACTION_ERROR_LOG),
1348 	    FIRE_JBC_JITEL2, DATA_TYPE_UINT64,
1349 	    CSR_XR(csr_base, JBCINT_IN_TRANSACTION_ERROR_LOG_2),
1350 	    NULL);
1351 
1352 	return (PX_NO_PANIC);
1353 }
1354 
1355 /*
1356  * JBC Jbusint IN retryable errors
1357  * Log Reg[42:0].
1358  *    Write Data Parity Error: PIO Writes
1359  *    Read Data Parity Error: DMA Reads
1360  */
1361 int
1362 px_err_jbc_jbusint_in_handle(dev_info_t *rpdip, caddr_t csr_base,
1363 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1364 	px_err_bit_desc_t *err_bit_descr)
1365 {
1366 	/*
1367 	 * Holder function to attempt error recovery.  When the features
1368 	 * are in place, look up the address of the transaction in:
1369 	 *
1370 	 * paddr = CSR_XR(csr_base, JBCINT_IN_TRANSACTION_ERROR_LOG);
1371 	 * paddr &= JBCINT_IN_TRANSACTION_ERROR_LOG_ADDRESS_MASK;
1372 	 *
1373 	 * If the error is a secondary error, there is no log information
1374 	 * just panic as it is unknown which address has been affected.
1375 	 *
1376 	 * Remember the address is pretranslation and might be hard to look
1377 	 * up the appropriate driver based on the PA.
1378 	 */
1379 	return (px_err_panic_handle(rpdip, csr_base, derr, err_reg_descr,
1380 		    err_bit_descr));
1381 }
1382 
1383 
1384 /* JBC Jbusint Out */
1385 PX_ERPT_SEND_DEC(jbc_out)
1386 {
1387 	char		buf[FM_MAX_CLASS];
1388 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1389 
1390 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1391 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1392 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1393 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1394 	    FIRE_JBC_ELE, DATA_TYPE_UINT64,
1395 	    CSR_XR(csr_base, JBC_ERROR_LOG_ENABLE),
1396 	    FIRE_JBC_IE, DATA_TYPE_UINT64,
1397 	    CSR_XR(csr_base, JBC_INTERRUPT_ENABLE),
1398 	    FIRE_JBC_IS, DATA_TYPE_UINT64,
1399 	    ss_reg,
1400 	    FIRE_JBC_ESS, DATA_TYPE_UINT64,
1401 	    CSR_XR(csr_base, JBC_ERROR_STATUS_SET),
1402 	    FIRE_JBC_JOTEL1, DATA_TYPE_UINT64,
1403 	    CSR_XR(csr_base, JBCINT_OUT_TRANSACTION_ERROR_LOG),
1404 	    FIRE_JBC_JOTEL2, DATA_TYPE_UINT64,
1405 	    CSR_XR(csr_base, JBCINT_OUT_TRANSACTION_ERROR_LOG_2),
1406 	    NULL);
1407 
1408 	return (PX_NO_PANIC);
1409 }
1410 
1411 /* JBC Dmcint ODCD */
1412 PX_ERPT_SEND_DEC(jbc_odcd)
1413 {
1414 	char		buf[FM_MAX_CLASS];
1415 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1416 
1417 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1418 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1419 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1420 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1421 	    FIRE_JBC_ELE, DATA_TYPE_UINT64,
1422 	    CSR_XR(csr_base, JBC_ERROR_LOG_ENABLE),
1423 	    FIRE_JBC_IE, DATA_TYPE_UINT64,
1424 	    CSR_XR(csr_base, JBC_INTERRUPT_ENABLE),
1425 	    FIRE_JBC_IS, DATA_TYPE_UINT64,
1426 	    ss_reg,
1427 	    FIRE_JBC_ESS, DATA_TYPE_UINT64,
1428 	    CSR_XR(csr_base, JBC_ERROR_STATUS_SET),
1429 	    FIRE_JBC_DMC_ODCD, DATA_TYPE_UINT64,
1430 	    CSR_XR(csr_base, DMCINT_ODCD_ERROR_LOG),
1431 	    NULL);
1432 
1433 	return (PX_NO_PANIC);
1434 }
1435 
1436 /*
1437  * JBC Dmcint ODCO nonfatal errer handling -
1438  *    PIO data parity error: PIO
1439  */
1440 /* ARGSUSED */
1441 int
1442 px_err_jbc_dmcint_odcd_handle(dev_info_t *rpdip, caddr_t csr_base,
1443 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1444 	px_err_bit_desc_t *err_bit_descr)
1445 {
1446 	/*
1447 	 * Holder function to attempt error recovery.  When the features
1448 	 * are in place, look up the address of the transaction in:
1449 	 *
1450 	 * paddr = CSR_XR(csr_base, DMCINT_ODCD_ERROR_LOG);
1451 	 * paddr &= DMCINT_ODCD_ERROR_LOG_ADDRESS_MASK;
1452 	 *
1453 	 * If the error is a secondary error, there is no log information
1454 	 * just panic as it is unknown which address has been affected.
1455 	 *
1456 	 * Remember the address is pretranslation and might be hard to look
1457 	 * up the appropriate driver based on the PA.
1458 	 */
1459 	return (px_err_panic_handle(rpdip, csr_base, derr, err_reg_descr,
1460 		    err_bit_descr));
1461 }
1462 
1463 /* Does address in DMCINT error log register match address of pcitool access? */
1464 static boolean_t
1465 px_jbc_pcitool_addr_match(dev_info_t *rpdip, caddr_t csr_base)
1466 {
1467 	px_t	*px_p = DIP_TO_STATE(rpdip);
1468 	pxu_t	*pxu_p = (pxu_t *)px_p->px_plat_p;
1469 	caddr_t	pcitool_addr = pxu_p->pcitool_addr;
1470 	caddr_t errlog_addr =
1471 	    (caddr_t)CSR_FR(csr_base, DMCINT_ODCD_ERROR_LOG, ADDRESS);
1472 
1473 	return (pcitool_addr == errlog_addr);
1474 }
1475 
1476 /*
1477  * JBC Dmcint ODCD errer handling for errors which are forgivable during a safe
1478  * access.  (This will be most likely be a PCItool access.)  If not a safe
1479  * access context, treat like jbc_dmcint_odcd.
1480  *    Unmapped PIO read error: pio:read:M:nonfatal
1481  *    Unmapped PIO write error: pio:write:M:nonfatal
1482  *    Invalid PIO write to PCIe cfg/io, csr, ebus or i2c bus: pio:write:nonfatal
1483  *    Invalid PIO read to PCIe cfg/io, csr, ebus or i2c bus: pio:read:nonfatal
1484  */
1485 /* ARGSUSED */
1486 int
1487 px_err_jbc_safe_acc_handle(dev_info_t *rpdip, caddr_t csr_base,
1488 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1489 	px_err_bit_desc_t *err_bit_descr)
1490 {
1491 	boolean_t	pri = PX_ERR_IS_PRI(err_bit_descr->bit);
1492 
1493 	if (!pri)
1494 		return (px_err_panic_handle(rpdip, csr_base, derr,
1495 			    err_reg_descr, err_bit_descr));
1496 	/*
1497 	 * Got an error which is forgivable during a PCItool access.
1498 	 *
1499 	 * Don't do handler check since the error may otherwise be unfairly
1500 	 * attributed to a device.  Just return.
1501 	 *
1502 	 * Note: There is a hole here in that a legitimate error can come in
1503 	 * while a PCItool access is in play and be forgiven.  This is possible
1504 	 * though not likely.
1505 	 */
1506 	if ((derr->fme_flag != DDI_FM_ERR_UNEXPECTED) &&
1507 	    (px_jbc_pcitool_addr_match(rpdip, csr_base)))
1508 		return (px_err_protected_handle(rpdip, csr_base, derr,
1509 			    err_reg_descr, err_bit_descr));
1510 
1511 	return (px_err_jbc_dmcint_odcd_handle(rpdip, csr_base, derr,
1512 	    err_reg_descr, err_bit_descr));
1513 }
1514 
1515 /* JBC Dmcint IDC */
1516 PX_ERPT_SEND_DEC(jbc_idc)
1517 {
1518 	char		buf[FM_MAX_CLASS];
1519 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1520 
1521 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1522 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1523 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1524 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1525 	    FIRE_JBC_ELE, DATA_TYPE_UINT64,
1526 	    CSR_XR(csr_base, JBC_ERROR_LOG_ENABLE),
1527 	    FIRE_JBC_IE, DATA_TYPE_UINT64,
1528 	    CSR_XR(csr_base, JBC_INTERRUPT_ENABLE),
1529 	    FIRE_JBC_IS, DATA_TYPE_UINT64,
1530 	    ss_reg,
1531 	    FIRE_JBC_ESS, DATA_TYPE_UINT64,
1532 	    CSR_XR(csr_base, JBC_ERROR_STATUS_SET),
1533 	    FIRE_JBC_DMC_IDC, DATA_TYPE_UINT64,
1534 	    CSR_XR(csr_base, DMCINT_IDC_ERROR_LOG),
1535 	    NULL);
1536 
1537 	return (PX_NO_PANIC);
1538 }
1539 
1540 /* JBC CSR */
1541 PX_ERPT_SEND_DEC(jbc_csr)
1542 {
1543 	char		buf[FM_MAX_CLASS];
1544 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1545 
1546 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1547 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1548 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1549 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1550 	    FIRE_JBC_ELE, DATA_TYPE_UINT64,
1551 	    CSR_XR(csr_base, JBC_ERROR_LOG_ENABLE),
1552 	    FIRE_JBC_IE, DATA_TYPE_UINT64,
1553 	    CSR_XR(csr_base, JBC_INTERRUPT_ENABLE),
1554 	    FIRE_JBC_IS, DATA_TYPE_UINT64,
1555 	    ss_reg,
1556 	    FIRE_JBC_ESS, DATA_TYPE_UINT64,
1557 	    CSR_XR(csr_base, JBC_ERROR_STATUS_SET),
1558 	    "jbc-error-reg", DATA_TYPE_UINT64,
1559 	    CSR_XR(csr_base, CSR_ERROR_LOG),
1560 	    NULL);
1561 
1562 	return (PX_NO_PANIC);
1563 }
1564 
1565 /* DMC IMU RDS */
1566 PX_ERPT_SEND_DEC(imu_rds)
1567 {
1568 	char		buf[FM_MAX_CLASS];
1569 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1570 
1571 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1572 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1573 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1574 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1575 	    FIRE_IMU_ELE, DATA_TYPE_UINT64,
1576 	    CSR_XR(csr_base, IMU_ERROR_LOG_ENABLE),
1577 	    FIRE_IMU_IE, DATA_TYPE_UINT64,
1578 	    CSR_XR(csr_base, IMU_INTERRUPT_ENABLE),
1579 	    FIRE_IMU_IS, DATA_TYPE_UINT64,
1580 	    ss_reg,
1581 	    FIRE_IMU_ESS, DATA_TYPE_UINT64,
1582 	    CSR_XR(csr_base, IMU_ERROR_STATUS_SET),
1583 	    FIRE_IMU_RDS, DATA_TYPE_UINT64,
1584 	    CSR_XR(csr_base, IMU_RDS_ERROR_LOG),
1585 	    NULL);
1586 
1587 	return (PX_NO_PANIC);
1588 }
1589 
1590 /* handle EQ overflow */
1591 /* ARGSUSED */
1592 int
1593 px_err_imu_eq_ovfl_handle(dev_info_t *rpdip, caddr_t csr_base,
1594 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1595 	px_err_bit_desc_t *err_bit_descr)
1596 {
1597 	px_t	*px_p = DIP_TO_STATE(rpdip);
1598 	pxu_t	*pxu_p = (pxu_t *)px_p->px_plat_p;
1599 	int	err = px_err_check_eq(rpdip);
1600 
1601 	if ((err == PX_PANIC) && (pxu_p->cpr_flag == PX_NOT_CPR)) {
1602 		return (px_err_panic_handle(rpdip, csr_base, derr,
1603 			    err_reg_descr, err_bit_descr));
1604 	} else {
1605 		return (px_err_no_panic_handle(rpdip, csr_base, derr,
1606 			    err_reg_descr, err_bit_descr));
1607 	}
1608 }
1609 
1610 /* DMC IMU SCS */
1611 PX_ERPT_SEND_DEC(imu_scs)
1612 {
1613 	char		buf[FM_MAX_CLASS];
1614 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1615 
1616 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1617 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1618 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1619 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1620 	    FIRE_IMU_ELE, DATA_TYPE_UINT64,
1621 	    CSR_XR(csr_base, IMU_ERROR_LOG_ENABLE),
1622 	    FIRE_IMU_IE, DATA_TYPE_UINT64,
1623 	    CSR_XR(csr_base, IMU_INTERRUPT_ENABLE),
1624 	    FIRE_IMU_IS, DATA_TYPE_UINT64,
1625 	    ss_reg,
1626 	    FIRE_IMU_ESS, DATA_TYPE_UINT64,
1627 	    CSR_XR(csr_base, IMU_ERROR_STATUS_SET),
1628 	    FIRE_IMU_SCS, DATA_TYPE_UINT64,
1629 	    CSR_XR(csr_base, IMU_SCS_ERROR_LOG),
1630 	    NULL);
1631 
1632 	return (PX_NO_PANIC);
1633 }
1634 
1635 /* DMC IMU */
1636 PX_ERPT_SEND_DEC(imu)
1637 {
1638 	char		buf[FM_MAX_CLASS];
1639 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1640 
1641 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1642 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1643 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1644 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1645 	    FIRE_IMU_ELE, DATA_TYPE_UINT64,
1646 	    CSR_XR(csr_base, IMU_ERROR_LOG_ENABLE),
1647 	    FIRE_IMU_IE, DATA_TYPE_UINT64,
1648 	    CSR_XR(csr_base, IMU_INTERRUPT_ENABLE),
1649 	    FIRE_IMU_IS, DATA_TYPE_UINT64,
1650 	    ss_reg,
1651 	    FIRE_IMU_ESS, DATA_TYPE_UINT64,
1652 	    CSR_XR(csr_base, IMU_ERROR_STATUS_SET),
1653 	    NULL);
1654 
1655 	return (PX_NO_PANIC);
1656 }
1657 
1658 /* DMC MMU TFAR/TFSR */
1659 PX_ERPT_SEND_DEC(mmu_tfar_tfsr)
1660 {
1661 	char		buf[FM_MAX_CLASS];
1662 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1663 	px_t		*px_p = DIP_TO_STATE(rpdip);
1664 	pcie_req_id_t	fault_bdf = 0;
1665 	uint16_t	s_status = 0;
1666 
1667 	if (pri) {
1668 		fault_bdf = CSR_XR(csr_base, MMU_TRANSLATION_FAULT_STATUS)
1669 		    & (MMU_TRANSLATION_FAULT_STATUS_ID_MASK <<
1670 		    MMU_TRANSLATION_FAULT_STATUS_ID);
1671 		s_status = PCI_STAT_S_TARG_AB;
1672 
1673 		/* Only PIO Fault Addresses are valid, this is DMA */
1674 		(void) px_rp_en_q(px_p, fault_bdf, NULL, s_status);
1675 	}
1676 
1677 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1678 
1679 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1680 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1681 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1682 	    FIRE_MMU_ELE, DATA_TYPE_UINT64,
1683 	    CSR_XR(csr_base, MMU_ERROR_LOG_ENABLE),
1684 	    FIRE_MMU_IE, DATA_TYPE_UINT64,
1685 	    CSR_XR(csr_base, MMU_INTERRUPT_ENABLE),
1686 	    FIRE_MMU_IS, DATA_TYPE_UINT64,
1687 	    ss_reg,
1688 	    FIRE_MMU_ESS, DATA_TYPE_UINT64,
1689 	    CSR_XR(csr_base, MMU_ERROR_STATUS_SET),
1690 	    FIRE_MMU_TFAR, DATA_TYPE_UINT64,
1691 	    CSR_XR(csr_base, MMU_TRANSLATION_FAULT_ADDRESS),
1692 	    FIRE_MMU_TFSR, DATA_TYPE_UINT64,
1693 	    CSR_XR(csr_base, MMU_TRANSLATION_FAULT_STATUS),
1694 	    NULL);
1695 
1696 	return (PX_NO_PANIC);
1697 }
1698 
1699 /* DMC MMU */
1700 PX_ERPT_SEND_DEC(mmu)
1701 {
1702 	char		buf[FM_MAX_CLASS];
1703 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1704 
1705 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1706 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1707 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1708 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1709 	    FIRE_MMU_ELE, DATA_TYPE_UINT64,
1710 	    CSR_XR(csr_base, MMU_ERROR_LOG_ENABLE),
1711 	    FIRE_MMU_IE, DATA_TYPE_UINT64,
1712 	    CSR_XR(csr_base, MMU_INTERRUPT_ENABLE),
1713 	    FIRE_MMU_IS, DATA_TYPE_UINT64,
1714 	    ss_reg,
1715 	    FIRE_MMU_ESS, DATA_TYPE_UINT64,
1716 	    CSR_XR(csr_base, MMU_ERROR_STATUS_SET),
1717 	    NULL);
1718 
1719 	return (PX_NO_PANIC);
1720 }
1721 
1722 /*
1723  * IMU function to handle all Received but Not Enabled errors.
1724  *
1725  * These errors are due to transactions modes in which the PX driver was not
1726  * setup to be able to do.  If possible, inform the driver that their DMA has
1727  * failed by marking their DMA handle as failed, but do not panic the system.
1728  * Most likely the address is not valid, as Fire wasn't setup to handle them in
1729  * the first place.
1730  *
1731  * These errors are not retryable, unless the PX mode has changed, otherwise the
1732  * same error will occur again.
1733  */
1734 int
1735 px_err_mmu_rbne_handle(dev_info_t *rpdip, caddr_t csr_base,
1736 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1737 	px_err_bit_desc_t *err_bit_descr)
1738 {
1739 	pcie_req_id_t bdf;
1740 
1741 	if (!PX_ERR_IS_PRI(err_bit_descr->bit))
1742 		goto done;
1743 
1744 	bdf = (pcie_req_id_t)CSR_FR(csr_base, MMU_TRANSLATION_FAULT_STATUS, ID);
1745 	(void) pf_hdl_lookup(rpdip, derr->fme_ena, PF_DMA_ADDR, NULL,
1746 	    bdf);
1747 
1748 done:
1749 	return (px_err_no_panic_handle(rpdip, csr_base, derr, err_reg_descr,
1750 		    err_bit_descr));
1751 }
1752 
1753 /*
1754  * IMU function to handle all invalid address errors.
1755  *
1756  * These errors are due to transactions in which the address is not recognized.
1757  * If possible, inform the driver that all DMAs have failed by marking their DMA
1758  * handles.  Fire should not panic the system, it'll be up to the driver to
1759  * panic.  The address logged is invalid.
1760  *
1761  * These errors are not retryable since retrying the same transaction with the
1762  * same invalid address will result in the same error.
1763  */
1764 /* ARGSUSED */
1765 int
1766 px_err_mmu_tfa_handle(dev_info_t *rpdip, caddr_t csr_base,
1767 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1768 	px_err_bit_desc_t *err_bit_descr)
1769 {
1770 	pcie_req_id_t bdf;
1771 
1772 	if (!PX_ERR_IS_PRI(err_bit_descr->bit))
1773 		goto done;
1774 
1775 	bdf = (pcie_req_id_t)CSR_FR(csr_base, MMU_TRANSLATION_FAULT_STATUS, ID);
1776 	(void) pf_hdl_lookup(rpdip, derr->fme_ena, PF_DMA_ADDR, NULL,
1777 	    bdf);
1778 
1779 done:
1780 	return (px_err_no_panic_handle(rpdip, csr_base, derr, err_reg_descr,
1781 		    err_bit_descr));
1782 }
1783 
1784 /*
1785  * IMU function to handle normal transactions that encounter a parity error.
1786  *
1787  * These errors are due to transactions that enouter a parity error. If
1788  * possible, inform the driver that their DMA have failed and that they should
1789  * retry.  If Fire is unable to contact the leaf driver, panic the system.
1790  * Otherwise, it'll be up to the device to determine is this is a panicable
1791  * error.
1792  */
1793 /* ARGSUSED */
1794 int
1795 px_err_mmu_parity_handle(dev_info_t *rpdip, caddr_t csr_base,
1796 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1797 	px_err_bit_desc_t *err_bit_descr)
1798 {
1799 	uint64_t mmu_tfa;
1800 	pcie_req_id_t bdf;
1801 	int status = DDI_FM_UNKNOWN;
1802 
1803 	if (!PX_ERR_IS_PRI(err_bit_descr->bit))
1804 		goto done;
1805 
1806 	mmu_tfa = CSR_XR(csr_base, MMU_TRANSLATION_FAULT_ADDRESS);
1807 	bdf = (pcie_req_id_t)CSR_FR(csr_base, MMU_TRANSLATION_FAULT_STATUS, ID);
1808 	status = pf_hdl_lookup(rpdip, derr->fme_ena, PF_DMA_ADDR,
1809 	    (uint32_t)mmu_tfa, bdf);
1810 
1811 done:
1812 	if (status == DDI_FM_UNKNOWN)
1813 		return (px_err_panic_handle(rpdip, csr_base, derr,
1814 			    err_reg_descr, err_bit_descr));
1815 	else
1816 		return (px_err_no_panic_handle(rpdip, csr_base, derr,
1817 			    err_reg_descr, err_bit_descr));
1818 }
1819 
1820 /*
1821  * wuc/ruc event - Mark the handle of the failed PIO access.  Return "no_panic"
1822  */
1823 /* ARGSUSED */
1824 int
1825 px_err_wuc_ruc_handle(dev_info_t *rpdip, caddr_t csr_base,
1826 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1827 	px_err_bit_desc_t *err_bit_descr)
1828 {
1829 	px_t		*px_p = DIP_TO_STATE(rpdip);
1830 	pxu_t		*pxu_p = (pxu_t *)px_p->px_plat_p;
1831 	uint64_t 	data;
1832 	uint32_t	addr, hdr;
1833 	pcie_tlp_hdr_t	*tlp;
1834 	int		sts = PF_HDL_NOTFOUND;
1835 
1836 	if (!PX_ERR_IS_PRI(err_bit_descr->bit))
1837 		goto done;
1838 
1839 	data = CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG);
1840 	hdr = (uint32_t)(data >> 32);
1841 	tlp = (pcie_tlp_hdr_t *)&hdr;
1842 	data = CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG);
1843 	addr = (uint32_t)(data >> 32);
1844 
1845 	switch (tlp->type) {
1846 	case PCIE_TLP_TYPE_IO:
1847 	case PCIE_TLP_TYPE_MEM:
1848 	case PCIE_TLP_TYPE_MEMLK:
1849 		sts = pf_hdl_lookup(rpdip, derr->fme_ena, PF_PIO_ADDR,
1850 		    addr, NULL);
1851 		break;
1852 	case PCIE_TLP_TYPE_CFG0:
1853 	case PCIE_TLP_TYPE_CFG1:
1854 		sts = pf_hdl_lookup(rpdip, derr->fme_ena, PF_CFG_ADDR,
1855 		    addr, (addr >> 16));
1856 		break;
1857 	}
1858 
1859 done:
1860 	if ((sts == PF_HDL_NOTFOUND) && (pxu_p->cpr_flag == PX_NOT_CPR))
1861 		return (px_err_protected_handle(rpdip, csr_base, derr,
1862 			    err_reg_descr, err_bit_descr));
1863 
1864 	return (px_err_no_panic_handle(rpdip, csr_base, derr,
1865 		    err_reg_descr, err_bit_descr));
1866 }
1867 
1868 /*
1869  * TLU LUP event - if caused by power management activity, then it is expected.
1870  * In all other cases, it is an error.
1871  */
1872 /* ARGSUSED */
1873 int
1874 px_err_tlu_lup_handle(dev_info_t *rpdip, caddr_t csr_base,
1875 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1876 	px_err_bit_desc_t *err_bit_descr)
1877 {
1878 	px_t	*px_p = DIP_TO_STATE(rpdip);
1879 
1880 	/*
1881 	 * power management code is currently the only segment that sets
1882 	 * px_lup_pending to indicate its expectation for a healthy LUP
1883 	 * event.  For all other occasions, LUP event should be flaged as
1884 	 * error condition.
1885 	 */
1886 	return ((atomic_cas_32(&px_p->px_lup_pending, 1, 0) == 0) ?
1887 	    PX_NO_PANIC : PX_EXPECTED);
1888 }
1889 
1890 /*
1891  * TLU LDN event - if caused by power management activity, then it is expected.
1892  * In all other cases, it is an error.
1893  */
1894 /* ARGSUSED */
1895 int
1896 px_err_tlu_ldn_handle(dev_info_t *rpdip, caddr_t csr_base,
1897 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1898 	px_err_bit_desc_t *err_bit_descr)
1899 {
1900 	px_t    *px_p = DIP_TO_STATE(rpdip);
1901 	return ((px_p->px_pm_flags & PX_LDN_EXPECTED) ? PX_EXPECTED :
1902 	    PX_NO_PANIC);
1903 }
1904 
1905 /* PEC ILU none - see io erpt doc, section 3.1 */
1906 PX_ERPT_SEND_DEC(pec_ilu)
1907 {
1908 	char		buf[FM_MAX_CLASS];
1909 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1910 
1911 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1912 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1913 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1914 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1915 	    FIRE_ILU_ELE, DATA_TYPE_UINT64,
1916 	    CSR_XR(csr_base, ILU_ERROR_LOG_ENABLE),
1917 	    FIRE_ILU_IE, DATA_TYPE_UINT64,
1918 	    CSR_XR(csr_base, ILU_INTERRUPT_ENABLE),
1919 	    FIRE_ILU_IS, DATA_TYPE_UINT64,
1920 	    ss_reg,
1921 	    FIRE_ILU_ESS, DATA_TYPE_UINT64,
1922 	    CSR_XR(csr_base, ILU_ERROR_STATUS_SET),
1923 	    NULL);
1924 
1925 	return (PX_NO_PANIC);
1926 }
1927 
1928 /* PCIEX UE Errors */
1929 /* ARGSUSED */
1930 int
1931 px_err_pciex_ue_handle(dev_info_t *rpdip, caddr_t csr_base,
1932 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
1933 	px_err_bit_desc_t *err_bit_descr)
1934 {
1935 	px_err_pcie_t	regs = {0};
1936 	uint32_t	err_bit;
1937 	int		err;
1938 	uint64_t	log;
1939 
1940 	if (err_bit_descr->bit < 32) {
1941 		err_bit = (uint32_t)BITMASK(err_bit_descr->bit);
1942 		regs.ue_reg = err_bit;
1943 		regs.primary_ue = err_bit;
1944 
1945 		/*
1946 		 * Log the Received Log for PTLP and UR.  The PTLP most likely
1947 		 * is a poisoned completion.  The original transaction will be
1948 		 * logged inthe Transmit Log.
1949 		 */
1950 		if (err_bit & (PCIE_AER_UCE_PTLP | PCIE_AER_UCE_UR)) {
1951 			log = CSR_XR(csr_base,
1952 			    TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG);
1953 			regs.rx_hdr1 = (uint32_t)(log >> 32);
1954 			regs.rx_hdr2 = (uint32_t)(log && 0xFFFFFFFF);
1955 
1956 			log = CSR_XR(csr_base,
1957 			    TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG);
1958 			regs.rx_hdr3 = (uint32_t)(log >> 32);
1959 			regs.rx_hdr4 = (uint32_t)(log && 0xFFFFFFFF);
1960 		}
1961 
1962 		if (err_bit & (PCIE_AER_UCE_PTLP)) {
1963 			log = CSR_XR(csr_base,
1964 			    TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG);
1965 			regs.tx_hdr1 = (uint32_t)(log >> 32);
1966 			regs.tx_hdr2 = (uint32_t)(log && 0xFFFFFFFF);
1967 
1968 			log = CSR_XR(csr_base,
1969 			    TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG);
1970 			regs.tx_hdr3 = (uint32_t)(log >> 32);
1971 			regs.tx_hdr4 = (uint32_t)(log && 0xFFFFFFFF);
1972 		}
1973 	} else {
1974 		regs.ue_reg = (uint32_t)BITMASK(err_bit_descr->bit - 32);
1975 	}
1976 
1977 	err = px_err_check_pcie(rpdip, derr, &regs);
1978 
1979 	if (err == PX_PANIC) {
1980 		return (px_err_panic_handle(rpdip, csr_base, derr,
1981 			    err_reg_descr, err_bit_descr));
1982 	} else {
1983 		return (px_err_no_panic_handle(rpdip, csr_base, derr,
1984 			    err_reg_descr, err_bit_descr));
1985 	}
1986 }
1987 
1988 /* PCI-E Uncorrectable Errors */
1989 PX_ERPT_SEND_DEC(pciex_rx_ue)
1990 {
1991 	char		buf[FM_MAX_CLASS];
1992 	boolean_t	pri = PX_ERR_IS_PRI(bit);
1993 
1994 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
1995 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
1996 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
1997 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
1998 	    FIRE_TLU_UELE, DATA_TYPE_UINT64,
1999 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE),
2000 	    FIRE_TLU_UIE, DATA_TYPE_UINT64,
2001 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE),
2002 	    FIRE_TLU_UIS, DATA_TYPE_UINT64,
2003 	    ss_reg,
2004 	    FIRE_TLU_UESS, DATA_TYPE_UINT64,
2005 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_SET),
2006 	    FIRE_TLU_RUEH1L, DATA_TYPE_UINT64,
2007 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG),
2008 	    FIRE_TLU_RUEH2L, DATA_TYPE_UINT64,
2009 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG),
2010 	    NULL);
2011 
2012 	return (PX_NO_PANIC);
2013 }
2014 
2015 /* PCI-E Uncorrectable Errors */
2016 PX_ERPT_SEND_DEC(pciex_tx_ue)
2017 {
2018 	char		buf[FM_MAX_CLASS];
2019 	boolean_t	pri = PX_ERR_IS_PRI(bit);
2020 
2021 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
2022 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
2023 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
2024 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
2025 	    FIRE_TLU_UELE, DATA_TYPE_UINT64,
2026 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE),
2027 	    FIRE_TLU_UIE, DATA_TYPE_UINT64,
2028 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE),
2029 	    FIRE_TLU_UIS, DATA_TYPE_UINT64,
2030 	    ss_reg,
2031 	    FIRE_TLU_UESS, DATA_TYPE_UINT64,
2032 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_SET),
2033 	    FIRE_TLU_TUEH1L, DATA_TYPE_UINT64,
2034 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG),
2035 	    FIRE_TLU_TUEH2L, DATA_TYPE_UINT64,
2036 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG),
2037 	    NULL);
2038 
2039 	return (PX_NO_PANIC);
2040 }
2041 
2042 /* PCI-E Uncorrectable Errors */
2043 PX_ERPT_SEND_DEC(pciex_rx_tx_ue)
2044 {
2045 	char		buf[FM_MAX_CLASS];
2046 	boolean_t	pri = PX_ERR_IS_PRI(bit);
2047 
2048 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
2049 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
2050 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
2051 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
2052 	    FIRE_TLU_UELE, DATA_TYPE_UINT64,
2053 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE),
2054 	    FIRE_TLU_UIE, DATA_TYPE_UINT64,
2055 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE),
2056 	    FIRE_TLU_UIS, DATA_TYPE_UINT64,
2057 	    ss_reg,
2058 	    FIRE_TLU_UESS, DATA_TYPE_UINT64,
2059 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_SET),
2060 	    FIRE_TLU_RUEH1L, DATA_TYPE_UINT64,
2061 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG),
2062 	    FIRE_TLU_RUEH2L, DATA_TYPE_UINT64,
2063 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG),
2064 	    FIRE_TLU_TUEH1L, DATA_TYPE_UINT64,
2065 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG),
2066 	    FIRE_TLU_TUEH2L, DATA_TYPE_UINT64,
2067 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG),
2068 	    NULL);
2069 
2070 	return (PX_NO_PANIC);
2071 }
2072 
2073 /* PCI-E Uncorrectable Errors */
2074 PX_ERPT_SEND_DEC(pciex_ue)
2075 {
2076 	char		buf[FM_MAX_CLASS];
2077 	boolean_t	pri = PX_ERR_IS_PRI(bit);
2078 
2079 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
2080 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
2081 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
2082 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
2083 	    FIRE_TLU_UELE, DATA_TYPE_UINT64,
2084 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE),
2085 	    FIRE_TLU_UIE, DATA_TYPE_UINT64,
2086 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE),
2087 	    FIRE_TLU_UIS, DATA_TYPE_UINT64,
2088 	    ss_reg,
2089 	    FIRE_TLU_UESS, DATA_TYPE_UINT64,
2090 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_SET),
2091 	    NULL);
2092 
2093 	return (PX_NO_PANIC);
2094 }
2095 
2096 /* PCIEX UE Errors */
2097 /* ARGSUSED */
2098 int
2099 px_err_pciex_ce_handle(dev_info_t *rpdip, caddr_t csr_base,
2100 	ddi_fm_error_t *derr, px_err_reg_desc_t *err_reg_descr,
2101 	px_err_bit_desc_t *err_bit_descr)
2102 {
2103 	px_err_pcie_t	regs = {0};
2104 	int		err;
2105 
2106 	if (err_bit_descr->bit < 32)
2107 		regs.ce_reg = (uint32_t)BITMASK(err_bit_descr->bit);
2108 	else
2109 		regs.ce_reg = (uint32_t)BITMASK(err_bit_descr->bit - 32);
2110 
2111 	err = px_err_check_pcie(rpdip, derr, &regs);
2112 
2113 	if (err == PX_PANIC) {
2114 		return (px_err_panic_handle(rpdip, csr_base, derr,
2115 			    err_reg_descr, err_bit_descr));
2116 	} else {
2117 		return (px_err_no_panic_handle(rpdip, csr_base, derr,
2118 			    err_reg_descr, err_bit_descr));
2119 	}
2120 }
2121 
2122 /* PCI-E Correctable Errors - see io erpt doc, section 3.6 */
2123 PX_ERPT_SEND_DEC(pciex_ce)
2124 {
2125 	char		buf[FM_MAX_CLASS];
2126 	boolean_t	pri = PX_ERR_IS_PRI(bit);
2127 
2128 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
2129 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
2130 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
2131 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
2132 	    FIRE_TLU_CELE, DATA_TYPE_UINT64,
2133 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE),
2134 	    FIRE_TLU_CIE, DATA_TYPE_UINT64,
2135 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE),
2136 	    FIRE_TLU_CIS, DATA_TYPE_UINT64,
2137 	    ss_reg,
2138 	    FIRE_TLU_CESS, DATA_TYPE_UINT64,
2139 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_STATUS_SET),
2140 	    NULL);
2141 
2142 	return (PX_NO_PANIC);
2143 }
2144 
2145 /* TLU Other Event Status (receive only) - see io erpt doc, section 3.7 */
2146 PX_ERPT_SEND_DEC(pciex_rx_oe)
2147 {
2148 	char		buf[FM_MAX_CLASS];
2149 	boolean_t	pri = PX_ERR_IS_PRI(bit);
2150 
2151 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
2152 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
2153 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
2154 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
2155 	    FIRE_TLU_OEELE, DATA_TYPE_UINT64,
2156 	    CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE),
2157 	    FIRE_TLU_OEIE, DATA_TYPE_UINT64,
2158 	    CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_ENABLE),
2159 	    FIRE_TLU_OEIS, DATA_TYPE_UINT64,
2160 	    ss_reg,
2161 	    FIRE_TLU_OEESS, DATA_TYPE_UINT64,
2162 	    CSR_XR(csr_base, TLU_OTHER_EVENT_STATUS_SET),
2163 	    FIRE_TLU_RUEH1L, DATA_TYPE_UINT64,
2164 	    CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG),
2165 	    FIRE_TLU_RUEH2L, DATA_TYPE_UINT64,
2166 	    CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG),
2167 	    NULL);
2168 
2169 	return (PX_NO_PANIC);
2170 }
2171 
2172 /* TLU Other Event Status (rx + tx) - see io erpt doc, section 3.8 */
2173 PX_ERPT_SEND_DEC(pciex_rx_tx_oe)
2174 {
2175 	char		buf[FM_MAX_CLASS];
2176 	boolean_t	pri = PX_ERR_IS_PRI(bit);
2177 	px_t		*px_p = DIP_TO_STATE(rpdip);
2178 	uint32_t	trans_type, fault_addr = 0;
2179 	uint64_t	rx_h1, rx_h2, tx_h1, tx_h2;
2180 	uint16_t	s_status;
2181 	int		sts;
2182 	pcie_req_id_t	fault_bdf = 0;
2183 	pcie_cpl_t	*cpl;
2184 	pf_data_t	pf_data = {0};
2185 
2186 	rx_h1 = CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG);
2187 	rx_h2 = CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG);
2188 	tx_h1 = CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG);
2189 	tx_h2 = CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG);
2190 
2191 	if ((bit == TLU_OTHER_EVENT_STATUS_SET_RUC_P) ||
2192 	    (bit == TLU_OTHER_EVENT_STATUS_SET_WUC_P)) {
2193 		pf_data.aer_h0 = (uint32_t)(rx_h1 >> 32);
2194 		pf_data.aer_h1 = (uint32_t)rx_h1;
2195 		pf_data.aer_h2 = (uint32_t)(rx_h2 >> 32);
2196 		pf_data.aer_h3 = (uint32_t)rx_h2;
2197 
2198 		/* get completer bdf (fault bdf) from rx logs */
2199 		cpl = (pcie_cpl_t *)&pf_data.aer_h1;
2200 		fault_bdf = cpl->cid;
2201 
2202 		/* Figure out if UR/CA from rx logs */
2203 		if (cpl->status == PCIE_CPL_STS_UR)
2204 			s_status = PCI_STAT_R_MAST_AB;
2205 		else if (cpl->status == PCIE_CPL_STS_CA)
2206 			s_status = PCI_STAT_R_TARG_AB;
2207 
2208 
2209 		pf_data.aer_h0 = (uint32_t)(tx_h1 >> 32);
2210 		pf_data.aer_h1 = (uint32_t)tx_h1;
2211 		pf_data.aer_h2 = (uint32_t)(tx_h2 >> 32);
2212 		pf_data.aer_h3 = (uint32_t)tx_h2;
2213 
2214 		/* get fault addr from tx logs */
2215 		sts = pf_tlp_decode(rpdip, &pf_data, 0, &fault_addr,
2216 		    &trans_type);
2217 
2218 		if (sts == DDI_SUCCESS)
2219 			(void) px_rp_en_q(px_p, fault_bdf, fault_addr,
2220 			    s_status);
2221 	}
2222 
2223 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
2224 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
2225 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
2226 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
2227 	    FIRE_TLU_OEELE, DATA_TYPE_UINT64,
2228 	    CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE),
2229 	    FIRE_TLU_OEIE, DATA_TYPE_UINT64,
2230 	    CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_ENABLE),
2231 	    FIRE_TLU_OEIS, DATA_TYPE_UINT64,
2232 	    ss_reg,
2233 	    FIRE_TLU_OEESS, DATA_TYPE_UINT64,
2234 	    CSR_XR(csr_base, TLU_OTHER_EVENT_STATUS_SET),
2235 	    FIRE_TLU_ROEEH1L, DATA_TYPE_UINT64, rx_h1,
2236 	    FIRE_TLU_ROEEH2L, DATA_TYPE_UINT64, rx_h2,
2237 	    FIRE_TLU_TOEEH1L, DATA_TYPE_UINT64, tx_h1,
2238 	    FIRE_TLU_TOEEH2L, DATA_TYPE_UINT64, tx_h2,
2239 	    NULL);
2240 
2241 	return (PX_NO_PANIC);
2242 }
2243 
2244 /* TLU Other Event - see io erpt doc, section 3.9 */
2245 PX_ERPT_SEND_DEC(pciex_oe)
2246 {
2247 	char		buf[FM_MAX_CLASS];
2248 	boolean_t	pri = PX_ERR_IS_PRI(bit);
2249 
2250 	(void) snprintf(buf, FM_MAX_CLASS, "%s", class_name);
2251 	ddi_fm_ereport_post(rpdip, buf, derr->fme_ena,
2252 	    DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
2253 	    FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, pri,
2254 	    FIRE_TLU_OEELE, DATA_TYPE_UINT64,
2255 	    CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE),
2256 	    FIRE_TLU_OEIE, DATA_TYPE_UINT64,
2257 	    CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_ENABLE),
2258 	    FIRE_TLU_OEIS, DATA_TYPE_UINT64,
2259 	    ss_reg,
2260 	    FIRE_TLU_OEESS, DATA_TYPE_UINT64,
2261 	    CSR_XR(csr_base, TLU_OTHER_EVENT_STATUS_SET),
2262 	    NULL);
2263 
2264 	return (PX_NO_PANIC);
2265 }
2266