xref: /titanic_41/usr/src/uts/sun4u/io/pci/pci_ib.c (revision 4e9cfc9a015e8ca7d41f7d018c74dc8a692305b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * PCI Interrupt Block (RISCx) implementation
30  *	initialization
31  *	interrupt enable/disable/clear and mapping register manipulation
32  */
33 
34 #include <sys/types.h>
35 #include <sys/kmem.h>
36 #include <sys/async.h>
37 #include <sys/systm.h>		/* panicstr */
38 #include <sys/spl.h>
39 #include <sys/sunddi.h>
40 #include <sys/machsystm.h>	/* intr_dist_add */
41 #include <sys/ddi_impldefs.h>
42 #include <sys/clock.h>
43 #include <sys/cpuvar.h>
44 #include <sys/pci/pci_obj.h>
45 
46 #ifdef _STARFIRE
47 #include <sys/starfire.h>
48 #endif /* _STARFIRE */
49 
50 /*LINTLIBRARY*/
51 static uint_t ib_intr_reset(void *arg);
52 
53 void
54 ib_create(pci_t *pci_p)
55 {
56 	dev_info_t *dip = pci_p->pci_dip;
57 	ib_t *ib_p;
58 	uintptr_t a;
59 	int i;
60 
61 	/*
62 	 * Allocate interrupt block state structure and link it to
63 	 * the pci state structure.
64 	 */
65 	ib_p = kmem_zalloc(sizeof (ib_t), KM_SLEEP);
66 	pci_p->pci_ib_p = ib_p;
67 	ib_p->ib_pci_p = pci_p;
68 
69 	a = pci_ib_setup(ib_p);
70 
71 	/*
72 	 * Determine virtual addresses of interrupt mapping, clear and diag
73 	 * registers that have common offsets.
74 	 */
75 	ib_p->ib_slot_clear_intr_regs =
76 		a + COMMON_IB_SLOT_CLEAR_INTR_REG_OFFSET;
77 	ib_p->ib_intr_retry_timer_reg =
78 		(uint64_t *)(a + COMMON_IB_INTR_RETRY_TIMER_OFFSET);
79 	ib_p->ib_slot_intr_state_diag_reg =
80 		(uint64_t *)(a + COMMON_IB_SLOT_INTR_STATE_DIAG_REG);
81 	ib_p->ib_obio_intr_state_diag_reg =
82 		(uint64_t *)(a + COMMON_IB_OBIO_INTR_STATE_DIAG_REG);
83 
84 	if (CHIP_TYPE(pci_p) != PCI_CHIP_XMITS) {
85 		ib_p->ib_upa_imr[0] = (volatile uint64_t *)
86 				(a + COMMON_IB_UPA0_INTR_MAP_REG_OFFSET);
87 		ib_p->ib_upa_imr[1] = (volatile uint64_t *)
88 				(a + COMMON_IB_UPA1_INTR_MAP_REG_OFFSET);
89 	}
90 
91 	DEBUG2(DBG_ATTACH, dip, "ib_create: slot_imr=%x, slot_cir=%x\n",
92 		ib_p->ib_slot_intr_map_regs, ib_p->ib_obio_intr_map_regs);
93 	DEBUG2(DBG_ATTACH, dip, "ib_create: obio_imr=%x, obio_cir=%x\n",
94 		ib_p->ib_slot_clear_intr_regs, ib_p->ib_obio_clear_intr_regs);
95 	DEBUG2(DBG_ATTACH, dip, "ib_create: upa0_imr=%x, upa1_imr=%x\n",
96 		ib_p->ib_upa_imr[0], ib_p->ib_upa_imr[1]);
97 	DEBUG3(DBG_ATTACH, dip,
98 		"ib_create: retry_timer=%x, obio_diag=%x slot_diag=%x\n",
99 		ib_p->ib_intr_retry_timer_reg,
100 		ib_p->ib_obio_intr_state_diag_reg,
101 		ib_p->ib_slot_intr_state_diag_reg);
102 
103 	ib_p->ib_ino_lst = (ib_ino_info_t *)NULL;
104 	mutex_init(&ib_p->ib_intr_lock, NULL, MUTEX_DRIVER, NULL);
105 	mutex_init(&ib_p->ib_ino_lst_mutex, NULL, MUTEX_DRIVER, NULL);
106 
107 	DEBUG1(DBG_ATTACH, dip, "ib_create: numproxy=%x\n",
108 		pci_p->pci_numproxy);
109 	for (i = 1; i <= pci_p->pci_numproxy; i++) {
110 		set_intr_mapping_reg(pci_p->pci_id,
111 			(uint64_t *)ib_p->ib_upa_imr[i - 1], i);
112 	}
113 
114 	ib_configure(ib_p);
115 	bus_func_register(BF_TYPE_RESINTR, ib_intr_reset, ib_p);
116 }
117 
118 void
119 ib_destroy(pci_t *pci_p)
120 {
121 	ib_t *ib_p = pci_p->pci_ib_p;
122 	dev_info_t *dip = pci_p->pci_dip;
123 
124 	DEBUG0(DBG_IB, dip, "ib_destroy\n");
125 	bus_func_unregister(BF_TYPE_RESINTR, ib_intr_reset, ib_p);
126 
127 	intr_dist_rem_weighted(ib_intr_dist_all, ib_p);
128 	mutex_destroy(&ib_p->ib_ino_lst_mutex);
129 	mutex_destroy(&ib_p->ib_intr_lock);
130 
131 	ib_free_ino_all(ib_p);
132 
133 	kmem_free(ib_p, sizeof (ib_t));
134 	pci_p->pci_ib_p = NULL;
135 }
136 
137 void
138 ib_configure(ib_t *ib_p)
139 {
140 	/* XXX could be different between psycho and schizo */
141 	*ib_p->ib_intr_retry_timer_reg = pci_intr_retry_intv;
142 }
143 
144 /*
145  * can only used for psycho internal interrupts thermal, power,
146  * ue, ce, pbm
147  */
148 void
149 ib_intr_enable(pci_t *pci_p, ib_ino_t ino)
150 {
151 	ib_t *ib_p = pci_p->pci_ib_p;
152 	ib_mondo_t mondo = IB_INO_TO_MONDO(ib_p, ino);
153 	volatile uint64_t *imr_p = ib_intr_map_reg_addr(ib_p, ino);
154 	uint_t cpu_id;
155 
156 	/*
157 	 * Determine the cpu for the interrupt.
158 	 */
159 	mutex_enter(&ib_p->ib_intr_lock);
160 	cpu_id = intr_dist_cpuid();
161 #ifdef _STARFIRE
162 	cpu_id = pc_translate_tgtid(IB2CB(ib_p)->cb_ittrans_cookie, cpu_id,
163 		IB_GET_MAPREG_INO(ino));
164 #endif /* _STARFIRE */
165 	DEBUG2(DBG_IB, pci_p->pci_dip,
166 		"ib_intr_enable: ino=%x cpu_id=%x\n", ino, cpu_id);
167 
168 	*imr_p = ib_get_map_reg(mondo, cpu_id);
169 	IB_INO_INTR_CLEAR(ib_clear_intr_reg_addr(ib_p, ino));
170 	mutex_exit(&ib_p->ib_intr_lock);
171 }
172 
173 /*
174  * Disable the interrupt via its interrupt mapping register.
175  * Can only be used for internal interrupts: thermal, power, ue, ce, pbm.
176  * If called under interrupt context, wait should be set to 0
177  */
178 void
179 ib_intr_disable(ib_t *ib_p, ib_ino_t ino, int wait)
180 {
181 	volatile uint64_t *imr_p = ib_intr_map_reg_addr(ib_p, ino);
182 	volatile uint64_t *state_reg_p = IB_INO_INTR_STATE_REG(ib_p, ino);
183 	hrtime_t start_time;
184 
185 	/* disable the interrupt */
186 	mutex_enter(&ib_p->ib_intr_lock);
187 	IB_INO_INTR_OFF(imr_p);
188 	*imr_p;	/* flush previous write */
189 	mutex_exit(&ib_p->ib_intr_lock);
190 
191 	if (!wait)
192 		goto wait_done;
193 
194 	start_time = gethrtime();
195 	/* busy wait if there is interrupt being processed */
196 	while (IB_INO_INTR_PENDING(state_reg_p, ino) && !panicstr) {
197 		if (gethrtime() - start_time > pci_intrpend_timeout) {
198 			pbm_t *pbm_p = ib_p->ib_pci_p->pci_pbm_p;
199 			cmn_err(CE_WARN, "%s:%s: ib_intr_disable timeout %x",
200 				pbm_p->pbm_nameinst_str,
201 				pbm_p->pbm_nameaddr_str, ino);
202 				break;
203 		}
204 	}
205 wait_done:
206 	IB_INO_INTR_PEND(ib_clear_intr_reg_addr(ib_p, ino));
207 #ifdef _STARFIRE
208 	pc_ittrans_cleanup(IB2CB(ib_p)->cb_ittrans_cookie,
209 	    (volatile uint64_t *)(uintptr_t)ino);
210 #endif /* _STARFIRE */
211 }
212 
213 /* can only used for psycho internal interrupts thermal, power, ue, ce, pbm */
214 void
215 ib_nintr_clear(ib_t *ib_p, ib_ino_t ino)
216 {
217 	uint64_t *clr_reg = ib_clear_intr_reg_addr(ib_p, ino);
218 	IB_INO_INTR_CLEAR(clr_reg);
219 }
220 
221 /*
222  * distribute PBM and UPA interrupts. ino is set to 0 by caller if we
223  * are dealing with UPA interrupts (without inos).
224  */
225 void
226 ib_intr_dist_nintr(ib_t *ib_p, ib_ino_t ino, volatile uint64_t *imr_p)
227 {
228 	volatile uint64_t imr = *imr_p;
229 	uint32_t cpu_id;
230 
231 	if (!IB_INO_INTR_ISON(imr))
232 		return;
233 
234 	cpu_id = intr_dist_cpuid();
235 
236 #ifdef _STARFIRE
237 	if (ino) {
238 		cpu_id = pc_translate_tgtid(IB2CB(ib_p)->cb_ittrans_cookie,
239 			cpu_id, IB_GET_MAPREG_INO(ino));
240 	}
241 #else /* _STARFIRE */
242 	if (ib_map_reg_get_cpu(*imr_p) == cpu_id)
243 		return;
244 #endif /* _STARFIRE */
245 
246 	*imr_p = ib_get_map_reg(IB_IMR2MONDO(imr), cpu_id);
247 	imr = *imr_p;	/* flush previous write */
248 }
249 
250 /*
251  * Converts into nsec, ticks logged with a given CPU.  Adds nsec to ih.
252  */
253 /*ARGSUSED*/
254 void
255 ib_cpu_ticks_to_ih_nsec(ib_t *ib_p, ih_t *ih_p, uint32_t cpu_id)
256 {
257 	extern kmutex_t pciintr_ks_template_lock;
258 	hrtime_t ticks;
259 
260 	/*
261 	 * Because we are updating two fields in ih_t we must lock
262 	 * pciintr_ks_template_lock to prevent someone from reading the
263 	 * kstats after we set ih_ticks to 0 and before we increment
264 	 * ih_nsec to compensate.
265 	 *
266 	 * We must also protect against the interrupt arriving and incrementing
267 	 * ih_ticks between the time we read it and when we reset it to 0.
268 	 * To do this we use atomic_swap.
269 	 */
270 
271 	ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex));
272 
273 	mutex_enter(&pciintr_ks_template_lock);
274 	ticks = atomic_swap_64(&ih_p->ih_ticks, 0);
275 	ih_p->ih_nsec += (uint64_t)tick2ns(ticks, cpu_id);
276 	mutex_exit(&pciintr_ks_template_lock);
277 }
278 
279 static void
280 ib_intr_dist(ib_t *ib_p, ib_ino_info_t *ino_p)
281 {
282 	uint32_t cpu_id = ino_p->ino_cpuid;
283 	ib_ino_t ino = ino_p->ino_ino;
284 	volatile uint64_t imr, *imr_p, *state_reg;
285 	hrtime_t start_time;
286 
287 	ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex));
288 	imr_p = ib_intr_map_reg_addr(ib_p, ino);
289 	state_reg = IB_INO_INTR_STATE_REG(ib_p, ino);
290 
291 #ifdef _STARFIRE
292 	/*
293 	 * For Starfire it is a pain to check the current target for
294 	 * the mondo since we have to read the PC asics ITTR slot
295 	 * assigned to this mondo. It will be much easier to assume
296 	 * the current target is always different and do the target
297 	 * reprogram all the time.
298 	 */
299 	cpu_id = pc_translate_tgtid(IB2CB(ib_p)->cb_ittrans_cookie, cpu_id,
300 		IB_GET_MAPREG_INO(ino));
301 #else
302 	if (ib_map_reg_get_cpu(*imr_p) == cpu_id) /* same cpu, no reprog */
303 		return;
304 #endif /* _STARFIRE */
305 
306 	/* disable interrupt, this could disrupt devices sharing our slot */
307 	IB_INO_INTR_OFF(imr_p);
308 	imr = *imr_p;	/* flush previous write */
309 
310 	/* busy wait if there is interrupt being processed */
311 	start_time = gethrtime();
312 	while (IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) {
313 		if (gethrtime() - start_time > pci_intrpend_timeout) {
314 			pbm_t *pbm_p = ib_p->ib_pci_p->pci_pbm_p;
315 			cmn_err(CE_WARN, "%s:%s: ib_intr_dist(%p,%x) timeout",
316 				pbm_p->pbm_nameinst_str,
317 				pbm_p->pbm_nameaddr_str,
318 				imr_p, IB_INO_TO_MONDO(ib_p, ino));
319 			break;
320 		}
321 	}
322 	*imr_p = ib_get_map_reg(IB_IMR2MONDO(imr), cpu_id);
323 	imr = *imr_p;	/* flush previous write */
324 }
325 
326 /*
327  * Redistribute interrupts of the specified weight. The first call has a weight
328  * of weight_max, which can be used to trigger initialization for
329  * redistribution. The inos with weight [weight_max, inf.) should be processed
330  * on the "weight == weight_max" call.  This first call is followed by calls
331  * of decreasing weights, inos of that weight should be processed.  The final
332  * call specifies a weight of zero, this can be used to trigger processing of
333  * stragglers.
334  */
335 void
336 ib_intr_dist_all(void *arg, int32_t weight_max, int32_t weight)
337 {
338 	ib_t *ib_p = (ib_t *)arg;
339 	pci_t *pci_p = ib_p->ib_pci_p;
340 	ib_ino_info_t *ino_p;
341 	ib_ino_pil_t *ipil_p;
342 	ih_t *ih_lst;
343 	int32_t dweight;
344 	int i;
345 
346 	if (weight == 0) {
347 		mutex_enter(&ib_p->ib_intr_lock);
348 		if (CHIP_TYPE(pci_p) != PCI_CHIP_XMITS) {
349 			for (i = 0; i < 2; i++)
350 				ib_intr_dist_nintr(ib_p, 0,
351 				    ib_p->ib_upa_imr[i]);
352 		}
353 		mutex_exit(&ib_p->ib_intr_lock);
354 	}
355 
356 	mutex_enter(&ib_p->ib_ino_lst_mutex);
357 
358 	/* Perform special processing for first call of a redistribution. */
359 	if (weight == weight_max) {
360 		for (ino_p = ib_p->ib_ino_lst; ino_p;
361 		    ino_p = ino_p->ino_next_p) {
362 
363 			/*
364 			 * Clear ino_established of each ino on first call.
365 			 * The ino_established field may be used by a pci
366 			 * nexus driver's pci_intr_dist_cpuid implementation
367 			 * when detection of established pci slot-cpu binding
368 			 * for multi function pci cards.
369 			 */
370 			ino_p->ino_established = 0;
371 
372 			/*
373 			 * recompute the ino_intr_weight based on the device
374 			 * weight of all devinfo nodes sharing the ino (this
375 			 * will allow us to pick up new weights established by
376 			 * i_ddi_set_intr_weight()).
377 			 */
378 			ino_p->ino_intr_weight = 0;
379 
380 			for (ipil_p = ino_p->ino_ipil_p; ipil_p;
381 			    ipil_p = ipil_p->ipil_next_p) {
382 				for (i = 0, ih_lst = ipil_p->ipil_ih_head;
383 				    i < ipil_p->ipil_ih_size; i++,
384 				    ih_lst = ih_lst->ih_next) {
385 					dweight = i_ddi_get_intr_weight
386 					    (ih_lst->ih_dip);
387 					if (dweight > 0)
388 						ino_p->ino_intr_weight +=
389 						    dweight;
390 				}
391 			}
392 		}
393 	}
394 
395 	for (ino_p = ib_p->ib_ino_lst; ino_p; ino_p = ino_p->ino_next_p) {
396 		uint32_t orig_cpuid;
397 
398 		/*
399 		 * Get the weight of the ino and determine if we are going to
400 		 * process call.  We wait until an ib_intr_dist_all call of
401 		 * the proper weight occurs to support redistribution of all
402 		 * heavy weighted interrupts first (across all nexus driver
403 		 * instances).  This is done to ensure optimal
404 		 * INTR_WEIGHTED_DIST behavior.
405 		 */
406 		if ((weight == ino_p->ino_intr_weight) ||
407 		    ((weight >= weight_max) &&
408 		    (ino_p->ino_intr_weight >= weight_max))) {
409 			/* select cpuid to target and mark ino established */
410 			orig_cpuid = ino_p->ino_cpuid;
411 			if (cpu[orig_cpuid] == NULL)
412 				orig_cpuid = CPU->cpu_id;
413 			ino_p->ino_cpuid = pci_intr_dist_cpuid(ib_p, ino_p);
414 			ino_p->ino_established = 1;
415 
416 			/* Add device weight of ino devinfos to targeted cpu. */
417 			for (ipil_p = ino_p->ino_ipil_p; ipil_p;
418 			    ipil_p = ipil_p->ipil_next_p) {
419 				for (i = 0, ih_lst = ipil_p->ipil_ih_head;
420 				    i < ipil_p->ipil_ih_size; i++,
421 				    ih_lst = ih_lst->ih_next) {
422 
423 					dweight = i_ddi_get_intr_weight(
424 					    ih_lst->ih_dip);
425 					intr_dist_cpuid_add_device_weight(
426 					    ino_p->ino_cpuid, ih_lst->ih_dip,
427 					    dweight);
428 
429 					/*
430 					 * Different cpus may have different
431 					 * clock speeds. to account for this,
432 					 * whenever an interrupt is moved to a
433 					 * new CPU, we convert the accumulated
434 					 * ticks into nsec, based upon the clock
435 					 * rate of the prior CPU.
436 					 *
437 					 * It is possible that the prior CPU no
438 					 * longer exists. In this case, fall
439 					 * back to using this CPU's clock rate.
440 					 *
441 					 * Note that the value in ih_ticks has
442 					 * already been corrected for any power
443 					 * savings mode which might have been
444 					 * in effect.
445 					 */
446 					ib_cpu_ticks_to_ih_nsec(ib_p, ih_lst,
447 					    orig_cpuid);
448 				}
449 			}
450 
451 			/* program the hardware */
452 			ib_intr_dist(ib_p, ino_p);
453 		}
454 	}
455 	mutex_exit(&ib_p->ib_ino_lst_mutex);
456 }
457 
458 /*
459  * Reset interrupts to IDLE.  This function is called during
460  * panic handling after redistributing interrupts; it's needed to
461  * support dumping to network devices after 'sync' from OBP.
462  *
463  * N.B.  This routine runs in a context where all other threads
464  * are permanently suspended.
465  */
466 static uint_t
467 ib_intr_reset(void *arg)
468 {
469 	ib_t *ib_p = (ib_t *)arg;
470 	ib_ino_t ino;
471 	uint64_t *clr_reg;
472 
473 	/*
474 	 * Note that we only actually care about interrupts that are
475 	 * potentially from network devices.
476 	 */
477 	for (ino = 0; ino <= ib_p->ib_max_ino; ino++) {
478 		clr_reg = ib_clear_intr_reg_addr(ib_p, ino);
479 		IB_INO_INTR_CLEAR(clr_reg);
480 	}
481 
482 	return (BF_NONE);
483 }
484 
485 void
486 ib_suspend(ib_t *ib_p)
487 {
488 	ib_ino_info_t *ip;
489 	pci_t *pci_p = ib_p->ib_pci_p;
490 
491 	/* save ino_lst interrupts' mapping registers content */
492 	mutex_enter(&ib_p->ib_ino_lst_mutex);
493 	for (ip = ib_p->ib_ino_lst; ip; ip = ip->ino_next_p)
494 		ip->ino_map_reg_save = *ip->ino_map_reg;
495 	mutex_exit(&ib_p->ib_ino_lst_mutex);
496 
497 	if (CHIP_TYPE(pci_p) != PCI_CHIP_XMITS) {
498 		ib_p->ib_upa_imr_state[0] = *ib_p->ib_upa_imr[0];
499 		ib_p->ib_upa_imr_state[1] = *ib_p->ib_upa_imr[1];
500 	}
501 }
502 
503 void
504 ib_resume(ib_t *ib_p)
505 {
506 	ib_ino_info_t *ip;
507 	pci_t *pci_p = ib_p->ib_pci_p;
508 
509 	/* restore ino_lst interrupts' mapping registers content */
510 	mutex_enter(&ib_p->ib_ino_lst_mutex);
511 	for (ip = ib_p->ib_ino_lst; ip; ip = ip->ino_next_p) {
512 		IB_INO_INTR_CLEAR(ip->ino_clr_reg);	 /* set intr to idle */
513 		*ip->ino_map_reg = ip->ino_map_reg_save; /* restore IMR */
514 	}
515 	mutex_exit(&ib_p->ib_ino_lst_mutex);
516 
517 	if (CHIP_TYPE(pci_p) != PCI_CHIP_XMITS) {
518 		*ib_p->ib_upa_imr[0] = ib_p->ib_upa_imr_state[0];
519 		*ib_p->ib_upa_imr[1] = ib_p->ib_upa_imr_state[1];
520 	}
521 }
522 
523 /*
524  * locate ino_info structure on ib_p->ib_ino_lst according to ino#
525  * returns NULL if not found.
526  */
527 ib_ino_info_t *
528 ib_locate_ino(ib_t *ib_p, ib_ino_t ino_num)
529 {
530 	ib_ino_info_t *ino_p = ib_p->ib_ino_lst;
531 	ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex));
532 
533 	for (; ino_p && ino_p->ino_ino != ino_num; ino_p = ino_p->ino_next_p);
534 	return (ino_p);
535 }
536 
537 #define	IB_INO_TO_SLOT(ino) (IB_IS_OBIO_INO(ino) ? 0xff : ((ino) & 0x1f) >> 2)
538 
539 ib_ino_pil_t *
540 ib_new_ino_pil(ib_t *ib_p, ib_ino_t ino_num, uint_t pil, ih_t *ih_p)
541 {
542 	ib_ino_pil_t	*ipil_p = kmem_zalloc(sizeof (ib_ino_pil_t), KM_SLEEP);
543 	ib_ino_info_t	*ino_p;
544 
545 	if ((ino_p = ib_locate_ino(ib_p, ino_num)) == NULL) {
546 		ino_p = kmem_zalloc(sizeof (ib_ino_info_t), KM_SLEEP);
547 
548 		ino_p->ino_next_p = ib_p->ib_ino_lst;
549 		ib_p->ib_ino_lst = ino_p;
550 
551 		ino_p->ino_ino = ino_num;
552 		ino_p->ino_slot_no = IB_INO_TO_SLOT(ino_num);
553 		ino_p->ino_ib_p = ib_p;
554 		ino_p->ino_clr_reg = ib_clear_intr_reg_addr(ib_p, ino_num);
555 		ino_p->ino_map_reg = ib_intr_map_reg_addr(ib_p, ino_num);
556 		ino_p->ino_unclaimed_intrs = 0;
557 		ino_p->ino_lopil = pil;
558 	}
559 
560 	ih_p->ih_next = ih_p;
561 	ipil_p->ipil_pil = pil;
562 	ipil_p->ipil_ih_head = ih_p;
563 	ipil_p->ipil_ih_tail = ih_p;
564 	ipil_p->ipil_ih_start = ih_p;
565 	ipil_p->ipil_ih_size = 1;
566 	ipil_p->ipil_ino_p = ino_p;
567 
568 	ipil_p->ipil_next_p = ino_p->ino_ipil_p;
569 	ino_p->ino_ipil_p = ipil_p;
570 	ino_p->ino_ipil_size++;
571 
572 	if (ino_p->ino_lopil > pil)
573 		ino_p->ino_lopil = pil;
574 
575 	return (ipil_p);
576 }
577 
578 void
579 ib_delete_ino_pil(ib_t *ib_p, ib_ino_pil_t *ipil_p)
580 {
581 	ib_ino_info_t	*ino_p = ipil_p->ipil_ino_p;
582 	ib_ino_pil_t	*prev, *next;
583 	ushort_t	pil = ipil_p->ipil_pil;
584 
585 	ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex));
586 
587 	if (ino_p->ino_ipil_p == ipil_p)
588 		ino_p->ino_ipil_p = ipil_p->ipil_next_p;
589 	else {
590 		for (prev = next = ino_p->ino_ipil_p; next != ipil_p;
591 		    prev = next, next = next->ipil_next_p);
592 
593 		if (prev)
594 			prev->ipil_next_p = ipil_p->ipil_next_p;
595 	}
596 
597 	kmem_free(ipil_p, sizeof (ib_ino_pil_t));
598 
599 	if (ino_p->ino_lopil == pil) {
600 		for (pil = 0, next = ino_p->ino_ipil_p; next;
601 		    next = next->ipil_next_p) {
602 			if (pil > next->ipil_pil)
603 				pil = next->ipil_pil;
604 		}
605 
606 		ino_p->ino_lopil = pil;
607 	}
608 
609 	if (--ino_p->ino_ipil_size)
610 		return;
611 
612 	if (ib_p->ib_ino_lst == ino_p)
613 		ib_p->ib_ino_lst = ino_p->ino_next_p;
614 	else {
615 		ib_ino_info_t	*list = ib_p->ib_ino_lst;
616 
617 		for (; list->ino_next_p != ino_p; list = list->ino_next_p);
618 		list->ino_next_p = ino_p->ino_next_p;
619 	}
620 }
621 
622 /* free all ino when we are detaching */
623 void
624 ib_free_ino_all(ib_t *ib_p)
625 {
626 	ib_ino_info_t *ino_p = ib_p->ib_ino_lst;
627 	ib_ino_info_t *next = NULL;
628 
629 	while (ino_p) {
630 		next = ino_p->ino_next_p;
631 		kmem_free(ino_p, sizeof (ib_ino_info_t));
632 		ino_p = next;
633 	}
634 }
635 
636 /*
637  * Locate ib_ino_pil_t structure on ino_p->ino_ipil_p according to ino#
638  * returns NULL if not found.
639  */
640 ib_ino_pil_t *
641 ib_ino_locate_ipil(ib_ino_info_t *ino_p, uint_t pil)
642 {
643 	ib_ino_pil_t	*ipil_p = ino_p->ino_ipil_p;
644 
645 	for (; ipil_p && ipil_p->ipil_pil != pil; ipil_p = ipil_p->ipil_next_p);
646 
647 	return (ipil_p);
648 }
649 
650 void
651 ib_ino_add_intr(pci_t *pci_p, ib_ino_pil_t *ipil_p, ih_t *ih_p)
652 {
653 	ib_ino_info_t *ino_p = ipil_p->ipil_ino_p;
654 	ib_ino_t ino = ino_p->ino_ino;
655 	ib_t *ib_p = ino_p->ino_ib_p;
656 	volatile uint64_t *state_reg = IB_INO_INTR_STATE_REG(ib_p, ino);
657 	hrtime_t start_time;
658 
659 	ASSERT(ib_p == pci_p->pci_ib_p);
660 	ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex));
661 
662 	/* disable interrupt, this could disrupt devices sharing our slot */
663 	IB_INO_INTR_OFF(ino_p->ino_map_reg);
664 	*ino_p->ino_map_reg;
665 
666 	/* do NOT modify the link list until after the busy wait */
667 
668 	/*
669 	 * busy wait if there is interrupt being processed.
670 	 * either the pending state will be cleared by the interrupt wrapper
671 	 * or the interrupt will be marked as blocked indicating that it was
672 	 * jabbering.
673 	 */
674 	start_time = gethrtime();
675 	while ((ino_p->ino_unclaimed_intrs <= pci_unclaimed_intr_max) &&
676 		IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) {
677 		if (gethrtime() - start_time > pci_intrpend_timeout) {
678 			pbm_t *pbm_p = pci_p->pci_pbm_p;
679 			cmn_err(CE_WARN, "%s:%s: ib_ino_add_intr %x timeout",
680 				pbm_p->pbm_nameinst_str,
681 				pbm_p->pbm_nameaddr_str, ino);
682 			break;
683 		}
684 	}
685 
686 	/* link up ih_t */
687 	ih_p->ih_next = ipil_p->ipil_ih_head;
688 	ipil_p->ipil_ih_tail->ih_next = ih_p;
689 	ipil_p->ipil_ih_tail = ih_p;
690 
691 	ipil_p->ipil_ih_start = ipil_p->ipil_ih_head;
692 	ipil_p->ipil_ih_size++;
693 
694 	/*
695 	 * if the interrupt was previously blocked (left in pending state)
696 	 * because of jabber we need to clear the pending state in case the
697 	 * jabber has gone away.
698 	 */
699 	if (ino_p->ino_unclaimed_intrs > pci_unclaimed_intr_max) {
700 		cmn_err(CE_WARN,
701 		    "%s%d: ib_ino_add_intr: ino 0x%x has been unblocked",
702 		    ddi_driver_name(pci_p->pci_dip),
703 		    ddi_get_instance(pci_p->pci_dip),
704 		    ino_p->ino_ino);
705 		ino_p->ino_unclaimed_intrs = 0;
706 		IB_INO_INTR_CLEAR(ino_p->ino_clr_reg);
707 	}
708 
709 	/* re-enable interrupt */
710 	IB_INO_INTR_ON(ino_p->ino_map_reg);
711 	*ino_p->ino_map_reg;
712 }
713 
714 /*
715  * removes pci_ispec_t from the ino's link list.
716  * uses hardware mutex to lock out interrupt threads.
717  * Side effects: interrupt belongs to that ino is turned off on return.
718  * if we are sharing PCI slot with other inos, the caller needs
719  * to turn it back on.
720  */
721 void
722 ib_ino_rem_intr(pci_t *pci_p, ib_ino_pil_t *ipil_p, ih_t *ih_p)
723 {
724 	ib_ino_info_t *ino_p = ipil_p->ipil_ino_p;
725 	int i;
726 	ib_ino_t ino = ino_p->ino_ino;
727 	ih_t *ih_lst = ipil_p->ipil_ih_head;
728 	volatile uint64_t *state_reg =
729 		IB_INO_INTR_STATE_REG(ino_p->ino_ib_p, ino);
730 	hrtime_t start_time;
731 
732 	ASSERT(MUTEX_HELD(&ino_p->ino_ib_p->ib_ino_lst_mutex));
733 	/* disable interrupt, this could disrupt devices sharing our slot */
734 	IB_INO_INTR_OFF(ino_p->ino_map_reg);
735 	*ino_p->ino_map_reg;
736 
737 	/* do NOT modify the link list until after the busy wait */
738 
739 	/*
740 	 * busy wait if there is interrupt being processed.
741 	 * either the pending state will be cleared by the interrupt wrapper
742 	 * or the interrupt will be marked as blocked indicating that it was
743 	 * jabbering.
744 	 */
745 	start_time = gethrtime();
746 	while ((ino_p->ino_unclaimed_intrs <= pci_unclaimed_intr_max) &&
747 		IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) {
748 		if (gethrtime() - start_time > pci_intrpend_timeout) {
749 			pbm_t *pbm_p = pci_p->pci_pbm_p;
750 			cmn_err(CE_WARN, "%s:%s: ib_ino_rem_intr %x timeout",
751 				pbm_p->pbm_nameinst_str,
752 				pbm_p->pbm_nameaddr_str, ino);
753 			break;
754 		}
755 	}
756 
757 	if (ipil_p->ipil_ih_size == 1) {
758 		if (ih_lst != ih_p)
759 			goto not_found;
760 		/* no need to set head/tail as ino_p will be freed */
761 		goto reset;
762 	}
763 
764 	/*
765 	 * if the interrupt was previously blocked (left in pending state)
766 	 * because of jabber we need to clear the pending state in case the
767 	 * jabber has gone away.
768 	 */
769 	if (ino_p->ino_unclaimed_intrs > pci_unclaimed_intr_max) {
770 		cmn_err(CE_WARN,
771 		    "%s%d: ib_ino_rem_intr: ino 0x%x has been unblocked",
772 		    ddi_driver_name(pci_p->pci_dip),
773 		    ddi_get_instance(pci_p->pci_dip),
774 		    ino_p->ino_ino);
775 		ino_p->ino_unclaimed_intrs = 0;
776 		IB_INO_INTR_CLEAR(ino_p->ino_clr_reg);
777 	}
778 
779 	/* search the link list for ih_p */
780 	for (i = 0;
781 		(i < ipil_p->ipil_ih_size) && (ih_lst->ih_next != ih_p);
782 		i++, ih_lst = ih_lst->ih_next);
783 	if (ih_lst->ih_next != ih_p)
784 		goto not_found;
785 
786 	/* remove ih_p from the link list and maintain the head/tail */
787 	ih_lst->ih_next = ih_p->ih_next;
788 	if (ipil_p->ipil_ih_head == ih_p)
789 		ipil_p->ipil_ih_head = ih_p->ih_next;
790 	if (ipil_p->ipil_ih_tail == ih_p)
791 		ipil_p->ipil_ih_tail = ih_lst;
792 	ipil_p->ipil_ih_start = ipil_p->ipil_ih_head;
793 reset:
794 	if (ih_p->ih_config_handle)
795 		pci_config_teardown(&ih_p->ih_config_handle);
796 	if (ih_p->ih_ksp != NULL)
797 		kstat_delete(ih_p->ih_ksp);
798 	kmem_free(ih_p, sizeof (ih_t));
799 	ipil_p->ipil_ih_size--;
800 
801 	return;
802 not_found:
803 	DEBUG2(DBG_R_INTX, ino_p->ino_ib_p->ib_pci_p->pci_dip,
804 		"ino_p=%x does not have ih_p=%x\n", ino_p, ih_p);
805 }
806 
807 ih_t *
808 ib_intr_locate_ih(ib_ino_pil_t *ipil_p, dev_info_t *rdip, uint32_t inum)
809 {
810 	ih_t *ih_p = ipil_p->ipil_ih_head;
811 	int i;
812 
813 	for (i = 0; i < ipil_p->ipil_ih_size; i++, ih_p = ih_p->ih_next) {
814 		if (ih_p->ih_dip == rdip && ih_p->ih_inum == inum)
815 			return (ih_p);
816 	}
817 
818 	return ((ih_t *)NULL);
819 }
820 
821 ih_t *
822 ib_alloc_ih(dev_info_t *rdip, uint32_t inum,
823 	uint_t (*int_handler)(caddr_t int_handler_arg1,
824 	caddr_t int_handler_arg2),
825 	caddr_t int_handler_arg1,
826 	caddr_t int_handler_arg2)
827 {
828 	ih_t *ih_p;
829 
830 	ih_p = kmem_alloc(sizeof (ih_t), KM_SLEEP);
831 	ih_p->ih_dip = rdip;
832 	ih_p->ih_inum = inum;
833 	ih_p->ih_intr_state = PCI_INTR_STATE_DISABLE;
834 	ih_p->ih_handler = int_handler;
835 	ih_p->ih_handler_arg1 = int_handler_arg1;
836 	ih_p->ih_handler_arg2 = int_handler_arg2;
837 	ih_p->ih_config_handle = NULL;
838 	ih_p->ih_nsec = 0;
839 	ih_p->ih_ticks = 0;
840 	ih_p->ih_ksp = NULL;
841 
842 	return (ih_p);
843 }
844 
845 int
846 ib_update_intr_state(pci_t *pci_p, dev_info_t *rdip,
847 	ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state)
848 {
849 	ib_t		*ib_p = pci_p->pci_ib_p;
850 	ib_ino_info_t	*ino_p;
851 	ib_ino_pil_t	*ipil_p;
852 	ib_mondo_t	mondo;
853 	ih_t		*ih_p;
854 	int		ret = DDI_FAILURE;
855 
856 	/*
857 	 * For PULSE interrupts, pci driver don't allocate
858 	 * ib_ino_info_t and ih_t data structures and also,
859 	 * not maintains any interrupt state information.
860 	 * So, just return success from here.
861 	 */
862 	if (hdlp->ih_vector & PCI_PULSE_INO) {
863 		DEBUG0(DBG_IB, ib_p->ib_pci_p->pci_dip,
864 		    "ib_update_intr_state: PULSE interrupt, return success\n");
865 
866 		return (DDI_SUCCESS);
867 	}
868 
869 	mutex_enter(&ib_p->ib_ino_lst_mutex);
870 
871 	if ((mondo = pci_xlate_intr(pci_p->pci_dip, rdip, pci_p->pci_ib_p,
872 	    IB_MONDO_TO_INO(hdlp->ih_vector))) == 0) {
873 		mutex_exit(&ib_p->ib_ino_lst_mutex);
874 		return (ret);
875 	}
876 
877 	ino_p = ib_locate_ino(ib_p, IB_MONDO_TO_INO(mondo));
878 	if (ino_p && (ipil_p = ib_ino_locate_ipil(ino_p, hdlp->ih_pri))) {
879 		if (ih_p = ib_intr_locate_ih(ipil_p, rdip, hdlp->ih_inum)) {
880 			ih_p->ih_intr_state = new_intr_state;
881 			ret = DDI_SUCCESS;
882 		}
883 	}
884 
885 	mutex_exit(&ib_p->ib_ino_lst_mutex);
886 	return (ret);
887 }
888 
889 /*
890  * Return the dips or number of dips associated with a given interrupt block.
891  * Size of dips array arg is passed in as dips_ret arg.
892  * Number of dips returned is returned in dips_ret arg.
893  * Array of dips gets returned in the dips argument.
894  * Function returns number of dips existing for the given interrupt block.
895  *
896  */
897 uint8_t
898 ib_get_ino_devs(
899 	ib_t *ib_p, uint32_t ino, uint8_t *devs_ret, pcitool_intr_dev_t *devs)
900 {
901 	ib_ino_info_t	*ino_p;
902 	ib_ino_pil_t	*ipil_p;
903 	ih_t		*ih_p;
904 	uint32_t	num_devs = 0;
905 	int		i, j;
906 
907 	mutex_enter(&ib_p->ib_ino_lst_mutex);
908 	ino_p = ib_locate_ino(ib_p, ino);
909 	if (ino_p != NULL) {
910 		for (j = 0, ipil_p = ino_p->ino_ipil_p; ipil_p;
911 		    ipil_p = ipil_p->ipil_next_p) {
912 			num_devs += ipil_p->ipil_ih_size;
913 
914 			for (i = 0, ih_p = ipil_p->ipil_ih_head;
915 			    ((i < ipil_p->ipil_ih_size) && (i < *devs_ret));
916 			    i++, j++, ih_p = ih_p->ih_next) {
917 				(void) strncpy(devs[i].driver_name,
918 				    ddi_driver_name(ih_p->ih_dip),
919 				    MAXMODCONFNAME-1);
920 				devs[i].driver_name[MAXMODCONFNAME] = '\0';
921 				(void) ddi_pathname(ih_p->ih_dip, devs[i].path);
922 				devs[i].dev_inst =
923 				    ddi_get_instance(ih_p->ih_dip);
924 			}
925 		}
926 		*devs_ret = j;
927 	}
928 
929 	mutex_exit(&ib_p->ib_ino_lst_mutex);
930 
931 	return (num_devs);
932 }
933 
934 void ib_log_new_cpu(ib_t *ib_p, uint32_t old_cpu_id, uint32_t new_cpu_id,
935 	uint32_t ino)
936 {
937 	ib_ino_info_t	*ino_p;
938 	ib_ino_pil_t	*ipil_p;
939 	ih_t		*ih_p;
940 	int		i;
941 
942 	mutex_enter(&ib_p->ib_ino_lst_mutex);
943 
944 	/* Log in OS data structures the new CPU. */
945 	ino_p = ib_locate_ino(ib_p, ino);
946 	if (ino_p != NULL) {
947 
948 		/* Log in OS data structures the new CPU. */
949 		ino_p->ino_cpuid = new_cpu_id;
950 
951 		for (ipil_p = ino_p->ino_ipil_p; ipil_p;
952 		    ipil_p = ipil_p->ipil_next_p) {
953 			for (i = 0, ih_p = ipil_p->ipil_ih_head;
954 			    (i < ipil_p->ipil_ih_size);
955 			    i++, ih_p = ih_p->ih_next) {
956 				/*
957 				 * Account for any residual time
958 				 * to be logged for old cpu.
959 				 */
960 				ib_cpu_ticks_to_ih_nsec(ib_p,
961 				    ipil_p->ipil_ih_head, old_cpu_id);
962 			}
963 		}
964 	}
965 
966 	mutex_exit(&ib_p->ib_ino_lst_mutex);
967 }
968