1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/conf.h> 29 #include <sys/kmem.h> 30 #include <sys/debug.h> 31 #include <sys/modctl.h> 32 #include <sys/autoconf.h> 33 #include <sys/hwconf.h> 34 #include <sys/ddi_impldefs.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/sunndi.h> 38 #include <sys/ndi_impldefs.h> 39 #include <sys/machsystm.h> 40 #include <sys/fcode.h> 41 #include <sys/promif.h> 42 #include <sys/promimpl.h> 43 #include <sys/opl_cfg.h> 44 #include <sys/scfd/scfostoescf.h> 45 46 static unsigned int opl_cfg_inited; 47 static opl_board_cfg_t opl_boards[HWD_SBS_PER_DOMAIN]; 48 49 /* 50 * Module control operations 51 */ 52 53 extern struct mod_ops mod_miscops; 54 55 static struct modlmisc modlmisc = { 56 &mod_miscops, /* Type of module */ 57 "OPL opl_cfg %I%" 58 }; 59 60 static struct modlinkage modlinkage = { 61 MODREV_1, (void *)&modlmisc, NULL 62 }; 63 64 static int opl_map_in(dev_info_t *, fco_handle_t, fc_ci_t *); 65 static int opl_map_out(dev_info_t *, fco_handle_t, fc_ci_t *); 66 static int opl_register_fetch(dev_info_t *, fco_handle_t, fc_ci_t *); 67 static int opl_register_store(dev_info_t *, fco_handle_t, fc_ci_t *); 68 69 static int opl_claim_memory(dev_info_t *, fco_handle_t, fc_ci_t *); 70 static int opl_release_memory(dev_info_t *, fco_handle_t, fc_ci_t *); 71 static int opl_vtop(dev_info_t *, fco_handle_t, fc_ci_t *); 72 73 static int opl_config_child(dev_info_t *, fco_handle_t, fc_ci_t *); 74 75 static int opl_get_fcode_size(dev_info_t *, fco_handle_t, fc_ci_t *); 76 static int opl_get_fcode(dev_info_t *, fco_handle_t, fc_ci_t *); 77 78 static int opl_map_phys(dev_info_t *, struct regspec *, caddr_t *, 79 ddi_device_acc_attr_t *, ddi_acc_handle_t *); 80 static void opl_unmap_phys(ddi_acc_handle_t *); 81 static int opl_get_hwd_va(dev_info_t *, fco_handle_t, fc_ci_t *); 82 static int opl_master_interrupt(dev_info_t *, fco_handle_t, fc_ci_t *); 83 84 extern int prom_get_fcode_size(char *); 85 extern int prom_get_fcode(char *, char *); 86 87 static int master_interrupt_init(uint32_t, uint32_t); 88 89 #define PROBE_STR_SIZE 64 90 #define UNIT_ADDR_SIZE 64 91 92 opl_fc_ops_t opl_fc_ops[] = { 93 94 { FC_MAP_IN, opl_map_in}, 95 { FC_MAP_OUT, opl_map_out}, 96 { "rx@", opl_register_fetch}, 97 { FC_RL_FETCH, opl_register_fetch}, 98 { FC_RW_FETCH, opl_register_fetch}, 99 { FC_RB_FETCH, opl_register_fetch}, 100 { "rx!", opl_register_store}, 101 { FC_RL_STORE, opl_register_store}, 102 { FC_RW_STORE, opl_register_store}, 103 { FC_RB_STORE, opl_register_store}, 104 { "claim-memory", opl_claim_memory}, 105 { "release-memory", opl_release_memory}, 106 { "vtop", opl_vtop}, 107 { FC_CONFIG_CHILD, opl_config_child}, 108 { FC_GET_FCODE_SIZE, opl_get_fcode_size}, 109 { FC_GET_FCODE, opl_get_fcode}, 110 { "get-hwd-va", opl_get_hwd_va}, 111 { "master-interrupt", opl_master_interrupt}, 112 { NULL, NULL} 113 114 }; 115 116 extern caddr_t efcode_vaddr; 117 extern int efcode_size; 118 119 #ifdef DEBUG 120 #define HWDDUMP_OFFSETS 1 121 #define HWDDUMP_ALL_STATUS 2 122 #define HWDDUMP_CHUNKS 3 123 #define HWDDUMP_SBP 4 124 125 int hwddump_flags = HWDDUMP_SBP | HWDDUMP_CHUNKS; 126 #endif 127 128 static int master_interrupt_inited = 0; 129 130 int 131 _init() 132 { 133 int err = 0; 134 135 /* 136 * Create a resource map for the contiguous memory allocated 137 * at start-of-day in startup.c 138 */ 139 err = ndi_ra_map_setup(ddi_root_node(), "opl-fcodemem"); 140 if (err == NDI_FAILURE) { 141 cmn_err(CE_WARN, "Cannot setup resource map opl-fcodemem\n"); 142 return (1); 143 } 144 145 /* 146 * Put the allocated memory into the pool. 147 */ 148 (void) ndi_ra_free(ddi_root_node(), (uint64_t)efcode_vaddr, 149 (uint64_t)efcode_size, "opl-fcodemem", 0); 150 151 if ((err = mod_install(&modlinkage)) != 0) { 152 cmn_err(CE_WARN, "opl_cfg failed to load, error=%d", err); 153 (void) ndi_ra_map_destroy(ddi_root_node(), "opl-fcodemem"); 154 } 155 156 return (err); 157 } 158 159 int 160 _fini(void) 161 { 162 int ret; 163 164 ret = (mod_remove(&modlinkage)); 165 if (ret != 0) 166 return (ret); 167 168 (void) ndi_ra_map_destroy(ddi_root_node(), "opl-fcodemem"); 169 170 return (ret); 171 } 172 173 int 174 _info(modinfop) 175 struct modinfo *modinfop; 176 { 177 return (mod_info(&modlinkage, modinfop)); 178 } 179 180 #ifdef DEBUG 181 static void 182 opl_dump_hwd(opl_probe_t *probe) 183 { 184 hwd_header_t *hdrp; 185 hwd_sb_status_t *statp; 186 hwd_domain_info_t *dinfop; 187 hwd_sb_t *sbp; 188 hwd_cpu_chip_t *chips; 189 hwd_pci_ch_t *channels; 190 int board, i, status; 191 192 board = probe->pr_board; 193 194 hdrp = probe->pr_hdr; 195 statp = probe->pr_sb_status; 196 dinfop = probe->pr_dinfo; 197 sbp = probe->pr_sb; 198 199 printf("HWD: board %d\n", board); 200 printf("HWD:magic = 0x%x\n", hdrp->hdr_magic); 201 printf("HWD:version = 0x%x.%x\n", hdrp->hdr_version.major, 202 hdrp->hdr_version.minor); 203 204 if (hwddump_flags & HWDDUMP_OFFSETS) { 205 printf("HWD:status offset = 0x%x\n", 206 hdrp->hdr_sb_status_offset); 207 printf("HWD:domain offset = 0x%x\n", 208 hdrp->hdr_domain_info_offset); 209 printf("HWD:board offset = 0x%x\n", hdrp->hdr_sb_info_offset); 210 } 211 212 if (hwddump_flags & HWDDUMP_SBP) 213 printf("HWD:sb_t ptr = 0x%p\n", (void *)probe->pr_sb); 214 215 if (hwddump_flags & HWDDUMP_ALL_STATUS) { 216 int bd; 217 printf("HWD:board status ="); 218 for (bd = 0; bd < HWD_SBS_PER_DOMAIN; bd++) 219 printf("%x ", statp->sb_status[bd]); 220 printf("\n"); 221 } else { 222 printf("HWD:board status = %d\n", statp->sb_status[board]); 223 } 224 225 printf("HWD:banner name = %s\n", dinfop->dinf_banner_name); 226 printf("HWD:platform = %s\n", dinfop->dinf_platform_token); 227 228 printf("HWD:chip status:\n"); 229 chips = &sbp->sb_cmu.cmu_cpu_chips[0]; 230 for (i = 0; i < HWD_CPU_CHIPS_PER_CMU; i++) { 231 232 status = chips[i].chip_status; 233 printf("chip[%d] = ", i); 234 if (HWD_STATUS_NONE(status)) 235 printf("none"); 236 else if (HWD_STATUS_FAILED(status)) 237 printf("fail"); 238 else if (HWD_STATUS_OK(status)) 239 printf("ok"); 240 printf("\n"); 241 } 242 243 if (hwddump_flags & HWDDUMP_CHUNKS) { 244 int chunk; 245 hwd_memory_t *mem = &sbp->sb_cmu.cmu_memory; 246 printf("HWD:chunks:\n"); 247 for (chunk = 0; chunk < HWD_MAX_MEM_CHUNKS; chunk++) 248 printf("\t%d 0x%lx 0x%lx\n", chunk, 249 mem->mem_chunks[chunk].chnk_start_address, 250 mem->mem_chunks[chunk].chnk_size); 251 } 252 253 printf("HWD:channel status:\n"); 254 channels = &sbp->sb_pci_ch[0]; 255 for (i = 0; i < HWD_PCI_CHANNELS_PER_SB; i++) { 256 257 status = channels[i].pci_status; 258 printf("channels[%d] = ", i); 259 if (HWD_STATUS_NONE(status)) 260 printf("none"); 261 else if (HWD_STATUS_FAILED(status)) 262 printf("fail"); 263 else if (HWD_STATUS_OK(status)) 264 printf("ok"); 265 printf("\n"); 266 } 267 printf("channels[%d] = ", i); 268 status = sbp->sb_cmu.cmu_ch.chan_status; 269 if (HWD_STATUS_NONE(status)) 270 printf("none"); 271 else if (HWD_STATUS_FAILED(status)) 272 printf("fail"); 273 else if (HWD_STATUS_OK(status)) 274 printf("ok"); 275 printf("\n"); 276 } 277 #endif /* DEBUG */ 278 279 #ifdef UCTEST 280 /* 281 * For SesamI debugging, just map the SRAM directly to a kernel 282 * VA and read it out from there 283 */ 284 285 #include <sys/vmem.h> 286 #include <vm/seg_kmem.h> 287 288 /* 289 * 0x4081F1323000LL is the HWD base address for LSB 0. But we need to map 290 * at page boundaries. So, we use a base address of 0x4081F1322000LL. 291 * Note that this has to match the HWD base pa set in .sesami-common-defs. 292 * 293 * The size specified for the HWD in the SCF spec is 36K. But since 294 * we adjusted the base address by 4K, we need to use 40K for the 295 * mapping size to cover the HWD. And 40K is also a multiple of the 296 * base page size. 297 */ 298 #define OPL_HWD_BASE(lsb) \ 299 (0x4081F1322000LL | (((uint64_t)(lsb)) << 40)) 300 301 void *opl_hwd_vaddr; 302 #endif /* UCTEST */ 303 304 /* 305 * Get the hardware descriptor from SCF. 306 */ 307 308 /*ARGSUSED*/ 309 int 310 opl_read_hwd(int board, hwd_header_t **hdrp, hwd_sb_status_t **statp, 311 hwd_domain_info_t **dinfop, hwd_sb_t **sbp) 312 { 313 static int (*getinfop)(uint32_t, uint8_t, uint32_t, uint32_t *, 314 void *) = NULL; 315 void *hwdp; 316 317 uint32_t key = KEY_ESCF; /* required value */ 318 uint8_t type = 0x40; /* SUB_OS_RECEIVE_HWD */ 319 uint32_t transid = board; 320 uint32_t datasize = HWD_DATA_SIZE; 321 322 hwd_header_t *hd; 323 hwd_sb_status_t *st; 324 hwd_domain_info_t *di; 325 hwd_sb_t *sb; 326 327 int ret; 328 329 if (opl_boards[board].cfg_hwd == NULL) { 330 #ifdef UCTEST 331 /* 332 * Just map the HWD in SRAM to a kernel VA 333 */ 334 335 size_t size; 336 pfn_t pfn; 337 338 size = 0xA000; 339 340 opl_hwd_vaddr = vmem_alloc(heap_arena, size, VM_SLEEP); 341 if (opl_hwd_vaddr == NULL) { 342 cmn_err(CE_NOTE, "No space for HWD"); 343 return (-1); 344 } 345 346 pfn = btop(OPL_HWD_BASE(board)); 347 hat_devload(kas.a_hat, opl_hwd_vaddr, size, pfn, PROT_READ, 348 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 349 350 hwdp = (void *)((char *)opl_hwd_vaddr + 0x1000); 351 opl_boards[board].cfg_hwd = hwdp; 352 ret = 0; 353 #else 354 355 /* find the scf_service_getinfo() function */ 356 if (getinfop == NULL) 357 getinfop = (int (*)(uint32_t, uint8_t, uint32_t, 358 uint32_t *, 359 void *))modgetsymvalue("scf_service_getinfo", 0); 360 361 if (getinfop == NULL) 362 return (-1); 363 364 /* allocate memory to receive the data */ 365 hwdp = kmem_alloc(HWD_DATA_SIZE, KM_SLEEP); 366 367 /* get the HWD */ 368 ret = (*getinfop)(key, type, transid, &datasize, hwdp); 369 if (ret == 0) 370 opl_boards[board].cfg_hwd = hwdp; 371 else 372 kmem_free(hwdp, HWD_DATA_SIZE); 373 #endif 374 } else { 375 hwdp = opl_boards[board].cfg_hwd; 376 ret = 0; 377 } 378 379 /* copy the data to the destination */ 380 if (ret == 0) { 381 hd = (hwd_header_t *)hwdp; 382 st = (hwd_sb_status_t *) 383 ((char *)hwdp + hd->hdr_sb_status_offset); 384 di = (hwd_domain_info_t *) 385 ((char *)hwdp + hd->hdr_domain_info_offset); 386 sb = (hwd_sb_t *) 387 ((char *)hwdp + hd->hdr_sb_info_offset); 388 if (hdrp != NULL) 389 *hdrp = hd; 390 if (statp != NULL) 391 *statp = st; 392 if (dinfop != NULL) 393 *dinfop = di; 394 if (sbp != NULL) 395 *sbp = sb; 396 } 397 398 return (ret); 399 } 400 401 /* 402 * The opl_probe_t probe structure is used to pass all sorts of parameters 403 * to callback functions during probing. It also contains a snapshot of 404 * the hardware descriptor that is taken at the beginning of a probe. 405 */ 406 static int 407 opl_probe_init(opl_probe_t *probe) 408 { 409 hwd_header_t **hdrp; 410 hwd_sb_status_t **statp; 411 hwd_domain_info_t **dinfop; 412 hwd_sb_t **sbp; 413 int board, ret; 414 415 board = probe->pr_board; 416 417 hdrp = &probe->pr_hdr; 418 statp = &probe->pr_sb_status; 419 dinfop = &probe->pr_dinfo; 420 sbp = &probe->pr_sb; 421 422 /* 423 * Read the hardware descriptor. 424 */ 425 ret = opl_read_hwd(board, hdrp, statp, dinfop, sbp); 426 if (ret != 0) { 427 428 cmn_err(CE_WARN, "IKP: failed to read HWD header"); 429 return (-1); 430 } 431 432 #ifdef DEBUG 433 opl_dump_hwd(probe); 434 #endif 435 return (0); 436 } 437 438 /* 439 * This function is used to obtain pointers to relevant device nodes 440 * which are created by Solaris at boot time. 441 * 442 * This function walks the child nodes of a given node, extracts 443 * the "name" property, if it exists, and passes the node to a 444 * callback init function. The callback determines if this node is 445 * interesting or not. If it is, then a pointer to the node is 446 * stored away by the callback for use during unprobe. 447 * 448 * The DDI get property function allocates storage for the name 449 * property. That needs to be freed within this function. 450 */ 451 static int 452 opl_init_nodes(dev_info_t *parent, opl_init_func_t init) 453 { 454 dev_info_t *node; 455 char *name; 456 int circ, ret; 457 int len; 458 459 ASSERT(parent != NULL); 460 461 /* 462 * Hold parent node busy to walk its child list 463 */ 464 ndi_devi_enter(parent, &circ); 465 node = ddi_get_child(parent); 466 467 while (node != NULL) { 468 469 ret = OPL_GET_PROP(string, node, "name", &name, &len); 470 if (ret != DDI_PROP_SUCCESS) { 471 /* 472 * The property does not exist for this node. 473 */ 474 node = ddi_get_next_sibling(node); 475 continue; 476 } 477 478 ret = init(node, name, len); 479 kmem_free(name, len); 480 if (ret != 0) { 481 482 ndi_devi_exit(parent, circ); 483 return (-1); 484 } 485 486 node = ddi_get_next_sibling(node); 487 } 488 489 ndi_devi_exit(parent, circ); 490 491 return (0); 492 } 493 494 /* 495 * This init function finds all the interesting nodes under the 496 * root node and stores pointers to them. The following nodes 497 * are considered interesting by this implementation: 498 * 499 * "cmp" 500 * These are nodes that represent processor chips. 501 * 502 * "pci" 503 * These are nodes that represent PCI leaves. 504 * 505 * "pseudo-mc" 506 * These are nodes that contain memory information. 507 */ 508 static int 509 opl_init_root_nodes(dev_info_t *node, char *name, int len) 510 { 511 int portid, board, chip, channel, leaf; 512 int ret; 513 514 if (strncmp(name, OPL_CPU_CHIP_NODE, len) == 0) { 515 516 ret = OPL_GET_PROP(int, node, "portid", &portid, -1); 517 if (ret != DDI_PROP_SUCCESS) 518 return (-1); 519 520 ret = OPL_GET_PROP(int, node, "board#", &board, -1); 521 if (ret != DDI_PROP_SUCCESS) 522 return (-1); 523 524 chip = OPL_CPU_CHIP(portid); 525 opl_boards[board].cfg_cpu_chips[chip] = node; 526 527 } else if (strncmp(name, OPL_PCI_LEAF_NODE, len) == 0) { 528 529 ret = OPL_GET_PROP(int, node, "portid", &portid, -1); 530 if (ret != DDI_PROP_SUCCESS) 531 return (-1); 532 533 board = OPL_IO_PORTID_TO_LSB(portid); 534 channel = OPL_PORTID_TO_CHANNEL(portid); 535 536 if (channel == OPL_CMU_CHANNEL) { 537 538 opl_boards[board].cfg_cmuch_leaf = node; 539 540 } else { 541 542 leaf = OPL_PORTID_TO_LEAF(portid); 543 opl_boards[board].cfg_pcich_leaf[channel][leaf] = node; 544 } 545 } else if (strncmp(name, OPL_PSEUDO_MC_NODE, len) == 0) { 546 547 ret = OPL_GET_PROP(int, node, "board#", &board, -1); 548 if (ret != DDI_PROP_SUCCESS) 549 return (-1); 550 551 ASSERT((board >= 0) && (board < HWD_SBS_PER_DOMAIN)); 552 553 opl_boards[board].cfg_pseudo_mc = node; 554 } 555 556 return (0); 557 } 558 559 /* 560 * This function initializes the OPL IKP feature. Currently, all it does 561 * is find the interesting nodes that Solaris has created at boot time 562 * for boards present at boot time and store pointers to them. This 563 * is useful if those boards are unprobed by DR. 564 */ 565 int 566 opl_init_cfg() 567 { 568 dev_info_t *root; 569 570 if (opl_cfg_inited == 0) { 571 572 root = ddi_root_node(); 573 if ((opl_init_nodes(root, opl_init_root_nodes) != 0)) { 574 cmn_err(CE_WARN, "IKP: init failed"); 575 return (1); 576 } 577 578 opl_cfg_inited = 1; 579 } 580 581 return (0); 582 } 583 584 /* 585 * When DR is initialized, we walk the device tree and acquire a hold on 586 * all the nodes that are interesting to IKP. This is so that the corresponding 587 * branches cannot be deleted. 588 * 589 * The following function informs the walk about which nodes are interesting 590 * so that it can hold the corresponding branches. 591 */ 592 static int 593 opl_hold_node(char *name) 594 { 595 /* 596 * We only need to hold/release the following nodes which 597 * represent separate branches that must be managed. 598 */ 599 return ((strcmp(name, OPL_CPU_CHIP_NODE) == 0) || 600 (strcmp(name, OPL_PSEUDO_MC_NODE) == 0) || 601 (strcmp(name, OPL_PCI_LEAF_NODE) == 0)); 602 } 603 604 static int 605 opl_hold_rele_devtree(dev_info_t *rdip, void *arg) 606 { 607 608 int *holdp = (int *)arg; 609 char *name = ddi_node_name(rdip); 610 611 /* 612 * We only need to hold/release the following nodes which 613 * represent separate branches that must be managed. 614 */ 615 if (opl_hold_node(name) == 0) { 616 /* Not of interest to us */ 617 return (DDI_WALK_PRUNECHILD); 618 } 619 if (*holdp) { 620 ASSERT(!e_ddi_branch_held(rdip)); 621 e_ddi_branch_hold(rdip); 622 } else { 623 ASSERT(e_ddi_branch_held(rdip)); 624 e_ddi_branch_rele(rdip); 625 } 626 627 return (DDI_WALK_PRUNECHILD); 628 } 629 630 void 631 opl_hold_devtree() 632 { 633 dev_info_t *dip; 634 int circ; 635 int hold = 1; 636 637 dip = ddi_root_node(); 638 ndi_devi_enter(dip, &circ); 639 ddi_walk_devs(ddi_get_child(dip), opl_hold_rele_devtree, &hold); 640 ndi_devi_exit(dip, circ); 641 } 642 643 void 644 opl_release_devtree() 645 { 646 dev_info_t *dip; 647 int circ; 648 int hold = 0; 649 650 dip = ddi_root_node(); 651 ndi_devi_enter(dip, &circ); 652 ddi_walk_devs(ddi_get_child(dip), opl_hold_rele_devtree, &hold); 653 ndi_devi_exit(dip, circ); 654 } 655 656 /* 657 * This is a helper function that allows opl_create_node() to return a 658 * pointer to a newly created node to its caller. 659 */ 660 /*ARGSUSED*/ 661 static void 662 opl_set_node(dev_info_t *node, void *arg, uint_t flags) 663 { 664 opl_probe_t *probe; 665 666 probe = arg; 667 probe->pr_node = node; 668 } 669 670 /* 671 * Function to create a node in the device tree under a specified parent. 672 * 673 * e_ddi_branch_create() allows the creation of a whole branch with a 674 * single call of the function. However, we only use it to create one node 675 * at a time in the case of non-I/O device nodes. In other words, we 676 * create branches by repeatedly using this function. This makes the 677 * code more readable. 678 * 679 * The branch descriptor passed to e_ddi_branch_create() takes two 680 * callbacks. The create() callback is used to set the properties of a 681 * newly created node. The other callback is used to return a pointer 682 * to the newly created node. The create() callback is passed by the 683 * caller of this function based on the kind of node he wishes to 684 * create. 685 * 686 * e_ddi_branch_create() returns with the newly created node held. We 687 * only need to hold the top nodes of the branches we create. We release 688 * the hold for the others. E.g., the "cmp" node needs to be held. Since 689 * we hold the "cmp" node, there is no need to hold the "core" and "cpu" 690 * nodes below it. 691 */ 692 static dev_info_t * 693 opl_create_node(opl_probe_t *probe) 694 { 695 devi_branch_t branch; 696 697 probe->pr_node = NULL; 698 699 branch.arg = probe; 700 branch.type = DEVI_BRANCH_SID; 701 branch.create.sid_branch_create = probe->pr_create; 702 branch.devi_branch_callback = opl_set_node; 703 704 if (e_ddi_branch_create(probe->pr_parent, &branch, NULL, 0) != 0) 705 return (NULL); 706 707 ASSERT(probe->pr_node != NULL); 708 709 if (probe->pr_hold == 0) 710 e_ddi_branch_rele(probe->pr_node); 711 712 return (probe->pr_node); 713 } 714 715 /* 716 * Function to tear down a whole branch rooted at the specified node. 717 * 718 * Although we create each node of a branch individually, we destroy 719 * a whole branch in one call. This is more efficient. 720 */ 721 static int 722 opl_destroy_node(dev_info_t *node) 723 { 724 if (e_ddi_branch_destroy(node, NULL, 0) != 0) 725 return (-1); 726 727 return (0); 728 } 729 730 /* 731 * Set the properties for a "cpu" node. 732 */ 733 /*ARGSUSED*/ 734 static int 735 opl_create_cpu(dev_info_t *node, void *arg, uint_t flags) 736 { 737 opl_probe_t *probe; 738 hwd_cpu_chip_t *chip; 739 hwd_core_t *core; 740 hwd_cpu_t *cpu; 741 int ret; 742 743 probe = arg; 744 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 745 core = &chip->chip_cores[probe->pr_core]; 746 cpu = &core->core_cpus[probe->pr_cpu]; 747 OPL_UPDATE_PROP(string, node, "name", OPL_CPU_NODE); 748 OPL_UPDATE_PROP(string, node, "device_type", OPL_CPU_NODE); 749 750 OPL_UPDATE_PROP(int, node, "cpuid", cpu->cpu_cpuid); 751 OPL_UPDATE_PROP(int, node, "reg", probe->pr_cpu); 752 753 OPL_UPDATE_PROP(string, node, "status", "okay"); 754 755 return (DDI_WALK_TERMINATE); 756 } 757 758 /* 759 * Create "cpu" nodes as child nodes of a given "core" node. 760 */ 761 static int 762 opl_probe_cpus(opl_probe_t *probe) 763 { 764 int i; 765 hwd_cpu_chip_t *chip; 766 hwd_core_t *core; 767 hwd_cpu_t *cpus; 768 769 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 770 core = &chip->chip_cores[probe->pr_core]; 771 cpus = &core->core_cpus[0]; 772 773 for (i = 0; i < HWD_CPUS_PER_CORE; i++) { 774 775 /* 776 * Olympus-C has 2 cpus per core. 777 * Jupiter has 4 cpus per core. 778 * For the Olympus-C based platform, we expect the cpu_status 779 * of the non-existent cpus to be set to missing. 780 */ 781 if (!HWD_STATUS_OK(cpus[i].cpu_status)) 782 continue; 783 784 probe->pr_create = opl_create_cpu; 785 probe->pr_cpu = i; 786 if (opl_create_node(probe) == NULL) { 787 788 cmn_err(CE_WARN, "IKP: create cpu (%d-%d-%d-%d) failed", 789 probe->pr_board, probe->pr_cpu_chip, 790 probe->pr_core, probe->pr_cpu); 791 return (-1); 792 } 793 } 794 795 return (0); 796 } 797 798 /* 799 * Set the properties for a "core" node. 800 */ 801 /*ARGSUSED*/ 802 static int 803 opl_create_core(dev_info_t *node, void *arg, uint_t flags) 804 { 805 opl_probe_t *probe; 806 hwd_cpu_chip_t *chip; 807 hwd_core_t *core; 808 int sharing[2]; 809 int ret; 810 811 probe = arg; 812 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 813 core = &chip->chip_cores[probe->pr_core]; 814 815 OPL_UPDATE_PROP(string, node, "name", OPL_CORE_NODE); 816 OPL_UPDATE_PROP(string, node, "device_type", OPL_CORE_NODE); 817 OPL_UPDATE_PROP(string, node, "compatible", chip->chip_compatible); 818 819 OPL_UPDATE_PROP(int, node, "reg", probe->pr_core); 820 OPL_UPDATE_PROP(int, node, "manufacturer#", core->core_manufacturer); 821 OPL_UPDATE_PROP(int, node, "implementation#", 822 core->core_implementation); 823 OPL_UPDATE_PROP(int, node, "mask#", core->core_mask); 824 825 OPL_UPDATE_PROP(int, node, "sparc-version", core->core_version); 826 OPL_UPDATE_PROP(int, node, "clock-frequency", core->core_frequency); 827 828 OPL_UPDATE_PROP(int, node, "l1-icache-size", core->core_l1_icache_size); 829 OPL_UPDATE_PROP(int, node, "l1-icache-line-size", 830 core->core_l1_icache_line_size); 831 OPL_UPDATE_PROP(int, node, "l1-icache-associativity", 832 core->core_l1_icache_associativity); 833 OPL_UPDATE_PROP(int, node, "#itlb-entries", 834 core->core_num_itlb_entries); 835 836 OPL_UPDATE_PROP(int, node, "l1-dcache-size", core->core_l1_dcache_size); 837 OPL_UPDATE_PROP(int, node, "l1-dcache-line-size", 838 core->core_l1_dcache_line_size); 839 OPL_UPDATE_PROP(int, node, "l1-dcache-associativity", 840 core->core_l1_dcache_associativity); 841 OPL_UPDATE_PROP(int, node, "#dtlb-entries", 842 core->core_num_dtlb_entries); 843 844 OPL_UPDATE_PROP(int, node, "l2-cache-size", core->core_l2_cache_size); 845 OPL_UPDATE_PROP(int, node, "l2-cache-line-size", 846 core->core_l2_cache_line_size); 847 OPL_UPDATE_PROP(int, node, "l2-cache-associativity", 848 core->core_l2_cache_associativity); 849 sharing[0] = 0; 850 sharing[1] = core->core_l2_cache_sharing; 851 OPL_UPDATE_PROP_ARRAY(int, node, "l2-cache-sharing", sharing, 2); 852 853 OPL_UPDATE_PROP(string, node, "status", "okay"); 854 855 return (DDI_WALK_TERMINATE); 856 } 857 858 /* 859 * Create "core" nodes as child nodes of a given "cmp" node. 860 * 861 * Create the branch below each "core" node". 862 */ 863 static int 864 opl_probe_cores(opl_probe_t *probe) 865 { 866 int i; 867 hwd_cpu_chip_t *chip; 868 hwd_core_t *cores; 869 dev_info_t *parent, *node; 870 871 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 872 cores = &chip->chip_cores[0]; 873 parent = probe->pr_parent; 874 875 for (i = 0; i < HWD_CORES_PER_CPU_CHIP; i++) { 876 877 if (!HWD_STATUS_OK(cores[i].core_status)) 878 continue; 879 880 probe->pr_parent = parent; 881 probe->pr_create = opl_create_core; 882 probe->pr_core = i; 883 node = opl_create_node(probe); 884 if (node == NULL) { 885 886 cmn_err(CE_WARN, "IKP: create core (%d-%d-%d) failed", 887 probe->pr_board, probe->pr_cpu_chip, 888 probe->pr_core); 889 return (-1); 890 } 891 892 /* 893 * Create "cpu" nodes below "core". 894 */ 895 probe->pr_parent = node; 896 if (opl_probe_cpus(probe) != 0) 897 return (-1); 898 } 899 900 return (0); 901 } 902 903 /* 904 * Set the properties for a "cmp" node. 905 */ 906 /*ARGSUSED*/ 907 static int 908 opl_create_cpu_chip(dev_info_t *node, void *arg, uint_t flags) 909 { 910 opl_probe_t *probe; 911 hwd_cpu_chip_t *chip; 912 opl_range_t range; 913 uint64_t dummy_addr; 914 int ret; 915 916 probe = arg; 917 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 918 919 OPL_UPDATE_PROP(string, node, "name", OPL_CPU_CHIP_NODE); 920 921 OPL_UPDATE_PROP(int, node, "portid", chip->chip_portid); 922 OPL_UPDATE_PROP(int, node, "board#", probe->pr_board); 923 924 dummy_addr = OPL_PROC_AS(probe->pr_board, probe->pr_cpu_chip); 925 range.rg_addr_hi = OPL_HI(dummy_addr); 926 range.rg_addr_lo = OPL_LO(dummy_addr); 927 range.rg_size_hi = 0; 928 range.rg_size_lo = 0; 929 OPL_UPDATE_PROP_ARRAY(int, node, "reg", (int *)&range, 4); 930 931 OPL_UPDATE_PROP(int, node, "#address-cells", 1); 932 OPL_UPDATE_PROP(int, node, "#size-cells", 0); 933 934 OPL_UPDATE_PROP(string, node, "status", "okay"); 935 936 return (DDI_WALK_TERMINATE); 937 } 938 939 /* 940 * Create "cmp" nodes as child nodes of the root node. 941 * 942 * Create the branch below each "cmp" node. 943 */ 944 static int 945 opl_probe_cpu_chips(opl_probe_t *probe) 946 { 947 int i; 948 dev_info_t **cfg_cpu_chips; 949 hwd_cpu_chip_t *chips; 950 dev_info_t *node; 951 952 cfg_cpu_chips = opl_boards[probe->pr_board].cfg_cpu_chips; 953 chips = &probe->pr_sb->sb_cmu.cmu_cpu_chips[0]; 954 955 for (i = 0; i < HWD_CPU_CHIPS_PER_CMU; i++) { 956 957 ASSERT(cfg_cpu_chips[i] == NULL); 958 959 if (!HWD_STATUS_OK(chips[i].chip_status)) 960 continue; 961 962 probe->pr_parent = ddi_root_node(); 963 probe->pr_create = opl_create_cpu_chip; 964 probe->pr_cpu_chip = i; 965 probe->pr_hold = 1; 966 node = opl_create_node(probe); 967 if (node == NULL) { 968 969 cmn_err(CE_WARN, "IKP: create chip (%d-%d) failed", 970 probe->pr_board, probe->pr_cpu_chip); 971 return (-1); 972 } 973 974 cfg_cpu_chips[i] = node; 975 976 /* 977 * Create "core" nodes below "cmp". 978 * We hold the "cmp" node. So, there is no need to hold 979 * the "core" and "cpu" nodes below it. 980 */ 981 probe->pr_parent = node; 982 probe->pr_hold = 0; 983 if (opl_probe_cores(probe) != 0) 984 return (-1); 985 } 986 987 return (0); 988 } 989 990 /* 991 * Set the properties for a "pseudo-mc" node. 992 */ 993 /*ARGSUSED*/ 994 static int 995 opl_create_pseudo_mc(dev_info_t *node, void *arg, uint_t flags) 996 { 997 opl_probe_t *probe; 998 int board, portid; 999 hwd_bank_t *bank; 1000 hwd_memory_t *mem; 1001 opl_range_t range; 1002 opl_mc_addr_t mc[HWD_BANKS_PER_CMU]; 1003 int status[2][7]; 1004 int i, j; 1005 int ret; 1006 1007 probe = arg; 1008 board = probe->pr_board; 1009 1010 OPL_UPDATE_PROP(string, node, "name", OPL_PSEUDO_MC_NODE); 1011 OPL_UPDATE_PROP(string, node, "device_type", "memory-controller"); 1012 OPL_UPDATE_PROP(string, node, "compatible", "FJSV,oplmc"); 1013 1014 portid = OPL_LSB_TO_PSEUDOMC_PORTID(board); 1015 OPL_UPDATE_PROP(int, node, "portid", portid); 1016 1017 range.rg_addr_hi = OPL_HI(OPL_MC_AS(board)); 1018 range.rg_addr_lo = 0x200; 1019 range.rg_size_hi = 0; 1020 range.rg_size_lo = 0; 1021 OPL_UPDATE_PROP_ARRAY(int, node, "reg", (int *)&range, 4); 1022 1023 OPL_UPDATE_PROP(int, node, "board#", board); 1024 OPL_UPDATE_PROP(int, node, "physical-board#", 1025 probe->pr_sb->sb_psb_number); 1026 1027 OPL_UPDATE_PROP(int, node, "#address-cells", 1); 1028 OPL_UPDATE_PROP(int, node, "#size-cells", 2); 1029 1030 mem = &probe->pr_sb->sb_cmu.cmu_memory; 1031 1032 range.rg_addr_hi = OPL_HI(mem->mem_start_address); 1033 range.rg_addr_lo = OPL_LO(mem->mem_start_address); 1034 range.rg_size_hi = OPL_HI(mem->mem_size); 1035 range.rg_size_lo = OPL_LO(mem->mem_size); 1036 OPL_UPDATE_PROP_ARRAY(int, node, "sb-mem-ranges", (int *)&range, 4); 1037 1038 bank = probe->pr_sb->sb_cmu.cmu_memory.mem_banks; 1039 for (i = 0, j = 0; i < HWD_BANKS_PER_CMU; i++) { 1040 1041 if (!HWD_STATUS_OK(bank[i].bank_status)) 1042 continue; 1043 1044 mc[j].mc_bank = i; 1045 mc[j].mc_hi = OPL_HI(bank[i].bank_register_address); 1046 mc[j].mc_lo = OPL_LO(bank[i].bank_register_address); 1047 j++; 1048 } 1049 ASSERT(j > 0); 1050 OPL_UPDATE_PROP_ARRAY(int, node, "mc-addr", (int *)mc, j*3); 1051 1052 OPL_UPDATE_PROP_ARRAY(byte, node, "cs0-mc-pa-trans-table", 1053 mem->mem_cs[0].cs_pa_mac_table, 64); 1054 OPL_UPDATE_PROP_ARRAY(byte, node, "cs1-mc-pa-trans-table", 1055 mem->mem_cs[1].cs_pa_mac_table, 64); 1056 1057 #define CS_PER_MEM 2 1058 1059 for (i = 0, j = 0; i < CS_PER_MEM; i++) { 1060 if (HWD_STATUS_OK(mem->mem_cs[i].cs_status) || 1061 HWD_STATUS_FAILED(mem->mem_cs[i].cs_status)) { 1062 status[j][0] = i; 1063 if (HWD_STATUS_OK(mem->mem_cs[i].cs_status)) 1064 status[j][1] = 0; 1065 else 1066 status[j][1] = 1; 1067 status[j][2] = 1068 OPL_HI(mem->mem_cs[i].cs_available_capacity); 1069 status[j][3] = 1070 OPL_LO(mem->mem_cs[i].cs_available_capacity); 1071 status[j][4] = OPL_HI(mem->mem_cs[i].cs_dimm_capacity); 1072 status[j][5] = OPL_LO(mem->mem_cs[i].cs_dimm_capacity); 1073 status[j][6] = mem->mem_cs[i].cs_number_of_dimms; 1074 j++; 1075 } 1076 } 1077 ASSERT(j > 0); 1078 OPL_UPDATE_PROP_ARRAY(int, node, "cs-status", (int *)status, 1079 j*7); 1080 1081 return (DDI_WALK_TERMINATE); 1082 } 1083 1084 /* 1085 * Create "pseudo-mc" nodes 1086 */ 1087 static int 1088 opl_probe_memory(opl_probe_t *probe) 1089 { 1090 int board; 1091 opl_board_cfg_t *board_cfg; 1092 dev_info_t *node; 1093 1094 board = probe->pr_board; 1095 board_cfg = &opl_boards[board]; 1096 1097 ASSERT(board_cfg->cfg_pseudo_mc == NULL); 1098 1099 probe->pr_parent = ddi_root_node(); 1100 probe->pr_create = opl_create_pseudo_mc; 1101 probe->pr_hold = 1; 1102 node = opl_create_node(probe); 1103 if (node == NULL) { 1104 1105 cmn_err(CE_WARN, "IKP: create pseudo-mc (%d) failed", board); 1106 return (-1); 1107 } 1108 1109 board_cfg->cfg_pseudo_mc = node; 1110 1111 return (0); 1112 } 1113 1114 /* 1115 * Allocate the fcode ops handle. 1116 */ 1117 /*ARGSUSED*/ 1118 static 1119 fco_handle_t 1120 opl_fc_ops_alloc_handle(dev_info_t *parent, dev_info_t *child, 1121 void *fcode, size_t fcode_size, char *unit_address, 1122 char *my_args) 1123 { 1124 fco_handle_t rp; 1125 phandle_t h; 1126 char *buf; 1127 1128 rp = kmem_zalloc(sizeof (struct fc_resource_list), KM_SLEEP); 1129 rp->next_handle = fc_ops_alloc_handle(parent, child, fcode, fcode_size, 1130 unit_address, NULL); 1131 rp->ap = parent; 1132 rp->child = child; 1133 rp->fcode = fcode; 1134 rp->fcode_size = fcode_size; 1135 rp->my_args = my_args; 1136 1137 if (unit_address) { 1138 buf = kmem_zalloc(UNIT_ADDR_SIZE, KM_SLEEP); 1139 (void) strcpy(buf, unit_address); 1140 rp->unit_address = buf; 1141 } 1142 1143 /* 1144 * Add the child's nodeid to our table... 1145 */ 1146 h = ddi_get_nodeid(rp->child); 1147 fc_add_dip_to_phandle(fc_handle_to_phandle_head(rp), rp->child, h); 1148 1149 return (rp); 1150 } 1151 1152 1153 static void 1154 opl_fc_ops_free_handle(fco_handle_t rp) 1155 { 1156 struct fc_resource *resp, *nresp; 1157 1158 ASSERT(rp); 1159 1160 if (rp->next_handle) 1161 fc_ops_free_handle(rp->next_handle); 1162 if (rp->unit_address) 1163 kmem_free(rp->unit_address, UNIT_ADDR_SIZE); 1164 1165 /* 1166 * Release all the resources from the resource list 1167 */ 1168 for (resp = rp->head; resp != NULL; resp = nresp) { 1169 nresp = resp->next; 1170 switch (resp->type) { 1171 1172 case RT_MAP: 1173 break; 1174 1175 case RT_DMA: 1176 /* 1177 * DMA has to be freed up at exit time. 1178 */ 1179 cmn_err(CE_CONT, 1180 "opl_fc_ops_free_handle: Unexpected DMA seen!"); 1181 break; 1182 1183 case RT_CONTIGIOUS: 1184 FC_DEBUG2(1, CE_CONT, "opl_fc_ops_free: " 1185 "Free claim-memory resource 0x%lx size 0x%x\n", 1186 resp->fc_contig_virt, resp->fc_contig_len); 1187 1188 (void) ndi_ra_free(ddi_root_node(), 1189 (uint64_t)resp->fc_contig_virt, 1190 resp->fc_contig_len, "opl-fcodemem", 1191 NDI_RA_PASS); 1192 1193 break; 1194 1195 default: 1196 cmn_err(CE_CONT, "opl_fc_ops_free: " 1197 "unknown resource type %d", resp->type); 1198 break; 1199 } 1200 fc_rem_resource(rp, resp); 1201 kmem_free(resp, sizeof (struct fc_resource)); 1202 } 1203 1204 kmem_free(rp, sizeof (struct fc_resource_list)); 1205 } 1206 1207 int 1208 opl_fc_do_op(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1209 { 1210 opl_fc_ops_t *op; 1211 char *service = fc_cell2ptr(cp->svc_name); 1212 1213 ASSERT(rp); 1214 1215 FC_DEBUG1(1, CE_CONT, "opl_fc_do_op: <%s>\n", service); 1216 1217 /* 1218 * First try the generic fc_ops. 1219 */ 1220 if (fc_ops(ap, rp->next_handle, cp) == 0) 1221 return (0); 1222 1223 /* 1224 * Now try the Jupiter-specific ops. 1225 */ 1226 for (op = opl_fc_ops; op->fc_service != NULL; ++op) 1227 if (strcmp(op->fc_service, service) == 0) 1228 return (op->fc_op(ap, rp, cp)); 1229 1230 FC_DEBUG1(9, CE_CONT, "opl_fc_do_op: <%s> not serviced\n", service); 1231 1232 return (-1); 1233 } 1234 1235 /* 1236 * map-in (phys.lo phys.hi size -- virt) 1237 */ 1238 static int 1239 opl_map_in(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1240 { 1241 size_t len; 1242 int error; 1243 caddr_t virt; 1244 struct fc_resource *resp; 1245 struct regspec rspec; 1246 ddi_device_acc_attr_t acc; 1247 ddi_acc_handle_t h; 1248 1249 if (fc_cell2int(cp->nargs) != 3) 1250 return (fc_syntax_error(cp, "nargs must be 3")); 1251 1252 if (fc_cell2int(cp->nresults) < 1) 1253 return (fc_syntax_error(cp, "nresults must be >= 1")); 1254 1255 rspec.regspec_size = len = fc_cell2size(fc_arg(cp, 0)); 1256 rspec.regspec_bustype = fc_cell2uint(fc_arg(cp, 1)); 1257 rspec.regspec_addr = fc_cell2uint(fc_arg(cp, 2)); 1258 1259 acc.devacc_attr_version = DDI_DEVICE_ATTR_V0; 1260 acc.devacc_attr_endian_flags = DDI_STRUCTURE_BE_ACC; 1261 acc.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 1262 1263 FC_DEBUG3(1, CE_CONT, "opl_map_in: attempting map in " 1264 "address 0x%08x.%08x length %x\n", rspec.regspec_bustype, 1265 rspec.regspec_addr, rspec.regspec_size); 1266 1267 error = opl_map_phys(rp->child, &rspec, &virt, &acc, &h); 1268 1269 if (error) { 1270 FC_DEBUG3(1, CE_CONT, "opl_map_in: map in failed - " 1271 "address 0x%08x.%08x length %x\n", rspec.regspec_bustype, 1272 rspec.regspec_addr, rspec.regspec_size); 1273 1274 return (fc_priv_error(cp, "opl map-in failed")); 1275 } 1276 1277 FC_DEBUG1(3, CE_CONT, "opl_map_in: returning virt %p\n", virt); 1278 1279 cp->nresults = fc_int2cell(1); 1280 fc_result(cp, 0) = fc_ptr2cell(virt); 1281 1282 /* 1283 * Log this resource ... 1284 */ 1285 resp = kmem_zalloc(sizeof (struct fc_resource), KM_SLEEP); 1286 resp->type = RT_MAP; 1287 resp->fc_map_virt = virt; 1288 resp->fc_map_len = len; 1289 resp->fc_map_handle = h; 1290 fc_add_resource(rp, resp); 1291 1292 return (fc_success_op(ap, rp, cp)); 1293 } 1294 1295 /* 1296 * map-out (virt size -- ) 1297 */ 1298 static int 1299 opl_map_out(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1300 { 1301 caddr_t virt; 1302 size_t len; 1303 struct fc_resource *resp; 1304 1305 if (fc_cell2int(cp->nargs) != 2) 1306 return (fc_syntax_error(cp, "nargs must be 2")); 1307 1308 virt = fc_cell2ptr(fc_arg(cp, 1)); 1309 1310 len = fc_cell2size(fc_arg(cp, 0)); 1311 1312 FC_DEBUG2(1, CE_CONT, "opl_map_out: attempting map out %p %x\n", 1313 virt, len); 1314 1315 /* 1316 * Find if this request matches a mapping resource we set up. 1317 */ 1318 fc_lock_resource_list(rp); 1319 for (resp = rp->head; resp != NULL; resp = resp->next) { 1320 if (resp->type != RT_MAP) 1321 continue; 1322 if (resp->fc_map_virt != virt) 1323 continue; 1324 if (resp->fc_map_len == len) 1325 break; 1326 } 1327 fc_unlock_resource_list(rp); 1328 1329 if (resp == NULL) 1330 return (fc_priv_error(cp, "request doesn't match a " 1331 "known mapping")); 1332 1333 opl_unmap_phys(&resp->fc_map_handle); 1334 1335 /* 1336 * remove the resource from the list and release it. 1337 */ 1338 fc_rem_resource(rp, resp); 1339 kmem_free(resp, sizeof (struct fc_resource)); 1340 1341 cp->nresults = fc_int2cell(0); 1342 return (fc_success_op(ap, rp, cp)); 1343 } 1344 1345 static int 1346 opl_register_fetch(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1347 { 1348 size_t len; 1349 caddr_t virt; 1350 int error = 0; 1351 uint64_t v; 1352 uint64_t x; 1353 uint32_t l; 1354 uint16_t w; 1355 uint8_t b; 1356 char *service = fc_cell2ptr(cp->svc_name); 1357 struct fc_resource *resp; 1358 1359 if (fc_cell2int(cp->nargs) != 1) 1360 return (fc_syntax_error(cp, "nargs must be 1")); 1361 1362 if (fc_cell2int(cp->nresults) < 1) 1363 return (fc_syntax_error(cp, "nresults must be >= 1")); 1364 1365 virt = fc_cell2ptr(fc_arg(cp, 0)); 1366 1367 /* 1368 * Determine the access width .. we can switch on the 2nd 1369 * character of the name which is "rx@", "rl@", "rb@" or "rw@" 1370 */ 1371 switch (*(service + 1)) { 1372 case 'x': len = sizeof (x); break; 1373 case 'l': len = sizeof (l); break; 1374 case 'w': len = sizeof (w); break; 1375 case 'b': len = sizeof (b); break; 1376 } 1377 1378 /* 1379 * Check the alignment ... 1380 */ 1381 if (((intptr_t)virt & (len - 1)) != 0) 1382 return (fc_priv_error(cp, "unaligned access")); 1383 1384 /* 1385 * Find if this virt is 'within' a request we know about 1386 */ 1387 fc_lock_resource_list(rp); 1388 for (resp = rp->head; resp != NULL; resp = resp->next) { 1389 if (resp->type == RT_MAP) { 1390 if ((virt >= (caddr_t)resp->fc_map_virt) && 1391 ((virt + len) <= 1392 ((caddr_t)resp->fc_map_virt + resp->fc_map_len))) 1393 break; 1394 } else if (resp->type == RT_CONTIGIOUS) { 1395 if ((virt >= (caddr_t)resp->fc_contig_virt) && ((virt + len) 1396 <= ((caddr_t)resp->fc_contig_virt + 1397 resp->fc_contig_len))) 1398 break; 1399 } 1400 } 1401 fc_unlock_resource_list(rp); 1402 1403 if (resp == NULL) { 1404 return (fc_priv_error(cp, "request not within " 1405 "known mappings")); 1406 } 1407 1408 switch (len) { 1409 case sizeof (x): 1410 if (resp->type == RT_MAP) 1411 error = ddi_peek64(rp->child, 1412 (int64_t *)virt, (int64_t *)&x); 1413 else /* RT_CONTIGIOUS */ 1414 x = *(int64_t *)virt; 1415 v = x; 1416 break; 1417 case sizeof (l): 1418 if (resp->type == RT_MAP) 1419 error = ddi_peek32(rp->child, 1420 (int32_t *)virt, (int32_t *)&l); 1421 else /* RT_CONTIGIOUS */ 1422 l = *(int32_t *)virt; 1423 v = l; 1424 break; 1425 case sizeof (w): 1426 if (resp->type == RT_MAP) 1427 error = ddi_peek16(rp->child, 1428 (int16_t *)virt, (int16_t *)&w); 1429 else /* RT_CONTIGIOUS */ 1430 w = *(int16_t *)virt; 1431 v = w; 1432 break; 1433 case sizeof (b): 1434 if (resp->type == RT_MAP) 1435 error = ddi_peek8(rp->child, 1436 (int8_t *)virt, (int8_t *)&b); 1437 else /* RT_CONTIGIOUS */ 1438 b = *(int8_t *)virt; 1439 v = b; 1440 break; 1441 } 1442 1443 if (error == DDI_FAILURE) { 1444 FC_DEBUG2(1, CE_CONT, "opl_register_fetch: access error " 1445 "accessing virt %p len %d\n", virt, len); 1446 return (fc_priv_error(cp, "access error")); 1447 } 1448 1449 FC_DEBUG3(1, CE_CONT, "register_fetch (%s) %llx %llx\n", 1450 service, virt, v); 1451 1452 cp->nresults = fc_int2cell(1); 1453 switch (len) { 1454 case sizeof (x): fc_result(cp, 0) = x; break; 1455 case sizeof (l): fc_result(cp, 0) = fc_uint32_t2cell(l); break; 1456 case sizeof (w): fc_result(cp, 0) = fc_uint16_t2cell(w); break; 1457 case sizeof (b): fc_result(cp, 0) = fc_uint8_t2cell(b); break; 1458 } 1459 return (fc_success_op(ap, rp, cp)); 1460 } 1461 1462 static int 1463 opl_register_store(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1464 { 1465 size_t len; 1466 caddr_t virt; 1467 uint64_t v; 1468 uint64_t x; 1469 uint32_t l; 1470 uint16_t w; 1471 uint8_t b; 1472 char *service = fc_cell2ptr(cp->svc_name); 1473 struct fc_resource *resp; 1474 int error = 0; 1475 1476 if (fc_cell2int(cp->nargs) != 2) 1477 return (fc_syntax_error(cp, "nargs must be 2")); 1478 1479 virt = fc_cell2ptr(fc_arg(cp, 0)); 1480 1481 /* 1482 * Determine the access width .. we can switch on the 2nd 1483 * character of the name which is "rx!", "rl!", "rb!" or "rw!" 1484 */ 1485 switch (*(service + 1)) { 1486 case 'x': 1487 len = sizeof (x); 1488 x = fc_arg(cp, 1); 1489 v = x; 1490 break; 1491 case 'l': 1492 len = sizeof (l); 1493 l = fc_cell2uint32_t(fc_arg(cp, 1)); 1494 v = l; 1495 break; 1496 case 'w': 1497 len = sizeof (w); 1498 w = fc_cell2uint16_t(fc_arg(cp, 1)); 1499 v = w; 1500 break; 1501 case 'b': 1502 len = sizeof (b); 1503 b = fc_cell2uint8_t(fc_arg(cp, 1)); 1504 v = b; 1505 break; 1506 } 1507 1508 FC_DEBUG3(1, CE_CONT, "register_store (%s) %llx %llx\n", 1509 service, virt, v); 1510 1511 /* 1512 * Check the alignment ... 1513 */ 1514 if (((intptr_t)virt & (len - 1)) != 0) 1515 return (fc_priv_error(cp, "unaligned access")); 1516 1517 /* 1518 * Find if this virt is 'within' a request we know about 1519 */ 1520 fc_lock_resource_list(rp); 1521 for (resp = rp->head; resp != NULL; resp = resp->next) { 1522 if (resp->type == RT_MAP) { 1523 if ((virt >= (caddr_t)resp->fc_map_virt) && 1524 ((virt + len) <= 1525 ((caddr_t)resp->fc_map_virt + resp->fc_map_len))) 1526 break; 1527 } else if (resp->type == RT_CONTIGIOUS) { 1528 if ((virt >= (caddr_t)resp->fc_contig_virt) && ((virt + len) 1529 <= ((caddr_t)resp->fc_contig_virt + 1530 resp->fc_contig_len))) 1531 break; 1532 } 1533 } 1534 fc_unlock_resource_list(rp); 1535 1536 if (resp == NULL) 1537 return (fc_priv_error(cp, "request not within" 1538 "known mappings")); 1539 1540 switch (len) { 1541 case sizeof (x): 1542 if (resp->type == RT_MAP) 1543 error = ddi_poke64(rp->child, (int64_t *)virt, x); 1544 else if (resp->type == RT_CONTIGIOUS) 1545 *(uint64_t *)virt = x; 1546 break; 1547 case sizeof (l): 1548 if (resp->type == RT_MAP) 1549 error = ddi_poke32(rp->child, (int32_t *)virt, l); 1550 else if (resp->type == RT_CONTIGIOUS) 1551 *(uint32_t *)virt = l; 1552 break; 1553 case sizeof (w): 1554 if (resp->type == RT_MAP) 1555 error = ddi_poke16(rp->child, (int16_t *)virt, w); 1556 else if (resp->type == RT_CONTIGIOUS) 1557 *(uint16_t *)virt = w; 1558 break; 1559 case sizeof (b): 1560 if (resp->type == RT_MAP) 1561 error = ddi_poke8(rp->child, (int8_t *)virt, b); 1562 else if (resp->type == RT_CONTIGIOUS) 1563 *(uint8_t *)virt = b; 1564 break; 1565 } 1566 1567 if (error == DDI_FAILURE) { 1568 FC_DEBUG2(1, CE_CONT, "opl_register_store: access error " 1569 "accessing virt %p len %d\n", virt, len); 1570 return (fc_priv_error(cp, "access error")); 1571 } 1572 1573 cp->nresults = fc_int2cell(0); 1574 return (fc_success_op(ap, rp, cp)); 1575 } 1576 1577 /* 1578 * opl_claim_memory 1579 * 1580 * claim-memory (align size vhint -- vaddr) 1581 */ 1582 static int 1583 opl_claim_memory(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1584 { 1585 int align, size, vhint; 1586 uint64_t answer, alen; 1587 ndi_ra_request_t request; 1588 struct fc_resource *resp; 1589 1590 if (fc_cell2int(cp->nargs) != 3) 1591 return (fc_syntax_error(cp, "nargs must be 3")); 1592 1593 if (fc_cell2int(cp->nresults) < 1) 1594 return (fc_syntax_error(cp, "nresults must be >= 1")); 1595 1596 vhint = fc_cell2int(fc_arg(cp, 2)); 1597 size = fc_cell2int(fc_arg(cp, 1)); 1598 align = fc_cell2int(fc_arg(cp, 0)); 1599 1600 FC_DEBUG3(1, CE_CONT, "opl_claim_memory: align=0x%x size=0x%x " 1601 "vhint=0x%x\n", align, size, vhint); 1602 1603 if (size == 0) { 1604 cmn_err(CE_WARN, "opl_claim_memory - unable to allocate " 1605 "contiguous memory of size zero\n"); 1606 return (fc_priv_error(cp, "allocation error")); 1607 } 1608 1609 if (vhint) { 1610 cmn_err(CE_WARN, "opl_claim_memory - vhint is not zero " 1611 "vhint=0x%x - Ignoring Argument\n", vhint); 1612 } 1613 1614 bzero((caddr_t)&request, sizeof (ndi_ra_request_t)); 1615 request.ra_flags = NDI_RA_ALLOC_BOUNDED; 1616 request.ra_boundbase = 0; 1617 request.ra_boundlen = 0xffffffff; 1618 request.ra_len = size; 1619 request.ra_align_mask = align - 1; 1620 1621 if (ndi_ra_alloc(ddi_root_node(), &request, &answer, &alen, 1622 "opl-fcodemem", NDI_RA_PASS) != NDI_SUCCESS) { 1623 cmn_err(CE_WARN, "opl_claim_memory - unable to allocate " 1624 "contiguous memory\n"); 1625 return (fc_priv_error(cp, "allocation error")); 1626 } 1627 1628 FC_DEBUG2(1, CE_CONT, "opl_claim_memory: address allocated=0x%lx " 1629 "size=0x%x\n", answer, alen); 1630 1631 cp->nresults = fc_int2cell(1); 1632 fc_result(cp, 0) = answer; 1633 1634 /* 1635 * Log this resource ... 1636 */ 1637 resp = kmem_zalloc(sizeof (struct fc_resource), KM_SLEEP); 1638 resp->type = RT_CONTIGIOUS; 1639 resp->fc_contig_virt = (void *)answer; 1640 resp->fc_contig_len = size; 1641 fc_add_resource(rp, resp); 1642 1643 return (fc_success_op(ap, rp, cp)); 1644 } 1645 1646 /* 1647 * opl_release_memory 1648 * 1649 * release-memory (size vaddr -- ) 1650 */ 1651 static int 1652 opl_release_memory(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1653 { 1654 int32_t vaddr, size; 1655 struct fc_resource *resp; 1656 1657 if (fc_cell2int(cp->nargs) != 2) 1658 return (fc_syntax_error(cp, "nargs must be 2")); 1659 1660 if (fc_cell2int(cp->nresults) != 0) 1661 return (fc_syntax_error(cp, "nresults must be 0")); 1662 1663 vaddr = fc_cell2int(fc_arg(cp, 1)); 1664 size = fc_cell2int(fc_arg(cp, 0)); 1665 1666 FC_DEBUG2(1, CE_CONT, "opl_release_memory: vaddr=0x%x size=0x%x\n", 1667 vaddr, size); 1668 1669 /* 1670 * Find if this request matches a mapping resource we set up. 1671 */ 1672 fc_lock_resource_list(rp); 1673 for (resp = rp->head; resp != NULL; resp = resp->next) { 1674 if (resp->type != RT_CONTIGIOUS) 1675 continue; 1676 if (resp->fc_contig_virt != (void *)(uintptr_t)vaddr) 1677 continue; 1678 if (resp->fc_contig_len == size) 1679 break; 1680 } 1681 fc_unlock_resource_list(rp); 1682 1683 if (resp == NULL) 1684 return (fc_priv_error(cp, "request doesn't match a " 1685 "known mapping")); 1686 1687 (void) ndi_ra_free(ddi_root_node(), vaddr, size, 1688 "opl-fcodemem", NDI_RA_PASS); 1689 1690 /* 1691 * remove the resource from the list and release it. 1692 */ 1693 fc_rem_resource(rp, resp); 1694 kmem_free(resp, sizeof (struct fc_resource)); 1695 1696 cp->nresults = fc_int2cell(0); 1697 1698 return (fc_success_op(ap, rp, cp)); 1699 } 1700 1701 /* 1702 * opl_vtop 1703 * 1704 * vtop (vaddr -- paddr.lo paddr.hi) 1705 */ 1706 static int 1707 opl_vtop(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1708 { 1709 int vaddr; 1710 uint64_t paddr; 1711 struct fc_resource *resp; 1712 1713 if (fc_cell2int(cp->nargs) != 1) 1714 return (fc_syntax_error(cp, "nargs must be 1")); 1715 1716 if (fc_cell2int(cp->nresults) >= 3) 1717 return (fc_syntax_error(cp, "nresults must be less than 2")); 1718 1719 vaddr = fc_cell2int(fc_arg(cp, 0)); 1720 1721 /* 1722 * Find if this request matches a mapping resource we set up. 1723 */ 1724 fc_lock_resource_list(rp); 1725 for (resp = rp->head; resp != NULL; resp = resp->next) { 1726 if (resp->type != RT_CONTIGIOUS) 1727 continue; 1728 if (resp->fc_contig_virt == (void *)(uintptr_t)vaddr) 1729 break; 1730 } 1731 fc_unlock_resource_list(rp); 1732 1733 if (resp == NULL) 1734 return (fc_priv_error(cp, "request doesn't match a " 1735 "known mapping")); 1736 1737 paddr = va_to_pa((void *)(uintptr_t)vaddr); 1738 1739 FC_DEBUG2(1, CE_CONT, "opl_vtop: vaddr=0x%x paddr=0x%x\n", 1740 vaddr, paddr); 1741 1742 cp->nresults = fc_int2cell(2); 1743 1744 fc_result(cp, 0) = paddr; 1745 fc_result(cp, 1) = 0; 1746 1747 return (fc_success_op(ap, rp, cp)); 1748 } 1749 1750 static int 1751 opl_config_child(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1752 { 1753 fc_phandle_t h; 1754 1755 if (fc_cell2int(cp->nargs) != 0) 1756 return (fc_syntax_error(cp, "nargs must be 0")); 1757 1758 if (fc_cell2int(cp->nresults) < 1) 1759 return (fc_syntax_error(cp, "nresults must be >= 1")); 1760 1761 h = fc_dip_to_phandle(fc_handle_to_phandle_head(rp), rp->child); 1762 1763 cp->nresults = fc_int2cell(1); 1764 fc_result(cp, 0) = fc_phandle2cell(h); 1765 1766 return (fc_success_op(ap, rp, cp)); 1767 } 1768 1769 static int 1770 opl_get_fcode(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1771 { 1772 caddr_t dropin_name_virt, fcode_virt; 1773 char *dropin_name, *fcode; 1774 int fcode_len, status; 1775 1776 if (fc_cell2int(cp->nargs) != 3) 1777 return (fc_syntax_error(cp, "nargs must be 3")); 1778 1779 if (fc_cell2int(cp->nresults) < 1) 1780 return (fc_syntax_error(cp, "nresults must be >= 1")); 1781 1782 dropin_name_virt = fc_cell2ptr(fc_arg(cp, 0)); 1783 1784 fcode_virt = fc_cell2ptr(fc_arg(cp, 1)); 1785 1786 fcode_len = fc_cell2int(fc_arg(cp, 2)); 1787 1788 dropin_name = kmem_zalloc(FC_SVC_NAME_LEN, KM_SLEEP); 1789 1790 FC_DEBUG2(1, CE_CONT, "get_fcode: %x %d\n", fcode_virt, fcode_len); 1791 1792 if (copyinstr(fc_cell2ptr(dropin_name_virt), dropin_name, 1793 FC_SVC_NAME_LEN - 1, NULL)) { 1794 FC_DEBUG1(1, CE_CONT, "opl_get_fcode: " 1795 "fault copying in drop in name %p\n", dropin_name_virt); 1796 status = 0; 1797 } else { 1798 FC_DEBUG1(1, CE_CONT, "get_fcode: %s\n", dropin_name); 1799 1800 fcode = kmem_zalloc(fcode_len, KM_SLEEP); 1801 1802 if ((status = prom_get_fcode(dropin_name, fcode)) != 0) { 1803 1804 if (copyout((void *)fcode, (void *)fcode_virt, 1805 fcode_len)) { 1806 cmn_err(CE_WARN, " opl_get_fcode: Unable " 1807 "to copy out fcode image"); 1808 status = 0; 1809 } 1810 } 1811 1812 kmem_free(fcode, fcode_len); 1813 } 1814 1815 kmem_free(dropin_name, FC_SVC_NAME_LEN); 1816 1817 cp->nresults = fc_int2cell(1); 1818 fc_result(cp, 0) = status; 1819 1820 return (fc_success_op(ap, rp, cp)); 1821 } 1822 1823 static int 1824 opl_get_fcode_size(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1825 { 1826 caddr_t virt; 1827 char *dropin_name; 1828 int len; 1829 1830 if (fc_cell2int(cp->nargs) != 1) 1831 return (fc_syntax_error(cp, "nargs must be 1")); 1832 1833 if (fc_cell2int(cp->nresults) < 1) 1834 return (fc_syntax_error(cp, "nresults must be >= 1")); 1835 1836 virt = fc_cell2ptr(fc_arg(cp, 0)); 1837 1838 dropin_name = kmem_zalloc(FC_SVC_NAME_LEN, KM_SLEEP); 1839 1840 FC_DEBUG0(1, CE_CONT, "opl_get_fcode_size:\n"); 1841 1842 if (copyinstr(fc_cell2ptr(virt), dropin_name, 1843 FC_SVC_NAME_LEN - 1, NULL)) { 1844 FC_DEBUG1(1, CE_CONT, "opl_get_fcode_size: " 1845 "fault copying in drop in name %p\n", virt); 1846 len = 0; 1847 } else { 1848 FC_DEBUG1(1, CE_CONT, "opl_get_fcode_size: %s\n", dropin_name); 1849 1850 len = prom_get_fcode_size(dropin_name); 1851 } 1852 1853 kmem_free(dropin_name, FC_SVC_NAME_LEN); 1854 1855 FC_DEBUG1(1, CE_CONT, "opl_get_fcode_size: fcode_len = %d\n", len); 1856 1857 cp->nresults = fc_int2cell(1); 1858 fc_result(cp, 0) = len; 1859 1860 return (fc_success_op(ap, rp, cp)); 1861 } 1862 1863 static int 1864 opl_map_phys(dev_info_t *dip, struct regspec *phys_spec, 1865 caddr_t *addrp, ddi_device_acc_attr_t *accattrp, 1866 ddi_acc_handle_t *handlep) 1867 { 1868 ddi_map_req_t mapreq; 1869 ddi_acc_hdl_t *acc_handlep; 1870 int result; 1871 struct regspec *rspecp; 1872 1873 *handlep = impl_acc_hdl_alloc(KM_SLEEP, NULL); 1874 acc_handlep = impl_acc_hdl_get(*handlep); 1875 acc_handlep->ah_vers = VERS_ACCHDL; 1876 acc_handlep->ah_dip = dip; 1877 acc_handlep->ah_rnumber = 0; 1878 acc_handlep->ah_offset = 0; 1879 acc_handlep->ah_len = 0; 1880 acc_handlep->ah_acc = *accattrp; 1881 rspecp = kmem_zalloc(sizeof (struct regspec), KM_SLEEP); 1882 *rspecp = *phys_spec; 1883 /* 1884 * cache a copy of the reg spec 1885 */ 1886 acc_handlep->ah_bus_private = rspecp; 1887 1888 mapreq.map_op = DDI_MO_MAP_LOCKED; 1889 mapreq.map_type = DDI_MT_REGSPEC; 1890 mapreq.map_obj.rp = (struct regspec *)phys_spec; 1891 mapreq.map_prot = PROT_READ | PROT_WRITE; 1892 mapreq.map_flags = DDI_MF_KERNEL_MAPPING; 1893 mapreq.map_handlep = acc_handlep; 1894 mapreq.map_vers = DDI_MAP_VERSION; 1895 1896 result = ddi_map(dip, &mapreq, 0, 0, addrp); 1897 1898 if (result != DDI_SUCCESS) { 1899 impl_acc_hdl_free(*handlep); 1900 *handlep = (ddi_acc_handle_t)NULL; 1901 } else { 1902 acc_handlep->ah_addr = *addrp; 1903 } 1904 1905 return (result); 1906 } 1907 1908 static void 1909 opl_unmap_phys(ddi_acc_handle_t *handlep) 1910 { 1911 ddi_map_req_t mapreq; 1912 ddi_acc_hdl_t *acc_handlep; 1913 struct regspec *rspecp; 1914 1915 acc_handlep = impl_acc_hdl_get(*handlep); 1916 ASSERT(acc_handlep); 1917 rspecp = acc_handlep->ah_bus_private; 1918 1919 mapreq.map_op = DDI_MO_UNMAP; 1920 mapreq.map_type = DDI_MT_REGSPEC; 1921 mapreq.map_obj.rp = (struct regspec *)rspecp; 1922 mapreq.map_prot = PROT_READ | PROT_WRITE; 1923 mapreq.map_flags = DDI_MF_KERNEL_MAPPING; 1924 mapreq.map_handlep = acc_handlep; 1925 mapreq.map_vers = DDI_MAP_VERSION; 1926 1927 (void) ddi_map(acc_handlep->ah_dip, &mapreq, acc_handlep->ah_offset, 1928 acc_handlep->ah_len, &acc_handlep->ah_addr); 1929 1930 impl_acc_hdl_free(*handlep); 1931 /* 1932 * Free the cached copy 1933 */ 1934 kmem_free(rspecp, sizeof (struct regspec)); 1935 *handlep = (ddi_acc_handle_t)NULL; 1936 } 1937 1938 static int 1939 opl_get_hwd_va(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1940 { 1941 uint32_t portid; 1942 void *hwd_virt; 1943 hwd_header_t *hwd_h = NULL; 1944 hwd_sb_t *hwd_sb = NULL; 1945 int lsb, ch, leaf; 1946 int status = 1; 1947 1948 /* Check the argument */ 1949 if (fc_cell2int(cp->nargs) != 2) 1950 return (fc_syntax_error(cp, "nargs must be 2")); 1951 1952 if (fc_cell2int(cp->nresults) < 1) 1953 return (fc_syntax_error(cp, "nresults must be >= 1")); 1954 1955 /* Get the parameters */ 1956 portid = fc_cell2uint32_t(fc_arg(cp, 0)); 1957 hwd_virt = (void *)fc_cell2ptr(fc_arg(cp, 1)); 1958 1959 /* Get the ID numbers */ 1960 lsb = OPL_IO_PORTID_TO_LSB(portid); 1961 ch = OPL_PORTID_TO_CHANNEL(portid); 1962 leaf = OPL_PORTID_TO_LEAF(portid); 1963 ASSERT(OPL_IO_PORTID(lsb, ch, leaf) == portid); 1964 1965 /* Set the pointer of hwd. */ 1966 if ((hwd_h = (hwd_header_t *)opl_boards[lsb].cfg_hwd) == NULL) { 1967 return (fc_priv_error(cp, "null hwd header")); 1968 } 1969 /* Set the pointer of hwd sb. */ 1970 if ((hwd_sb = (hwd_sb_t *)((char *)hwd_h + hwd_h->hdr_sb_info_offset)) 1971 == NULL) { 1972 return (fc_priv_error(cp, "null hwd sb")); 1973 } 1974 1975 if (ch == OPL_CMU_CHANNEL) { 1976 /* Copyout CMU-CH HW Descriptor */ 1977 if (copyout((void *)&hwd_sb->sb_cmu.cmu_ch, 1978 (void *)hwd_virt, sizeof (hwd_cmu_chan_t))) { 1979 cmn_err(CE_WARN, "opl_get_hwd_va: " 1980 "Unable to copy out cmuch descriptor for %x", 1981 portid); 1982 status = 0; 1983 } 1984 } else { 1985 /* Copyout PCI-CH HW Descriptor */ 1986 if (copyout((void *)&hwd_sb->sb_pci_ch[ch].pci_leaf[leaf], 1987 (void *)hwd_virt, sizeof (hwd_leaf_t))) { 1988 cmn_err(CE_WARN, "opl_get_hwd_va: " 1989 "Unable to copy out pcich descriptor for %x", 1990 portid); 1991 status = 0; 1992 } 1993 } 1994 1995 cp->nresults = fc_int2cell(1); 1996 fc_result(cp, 0) = status; 1997 1998 return (fc_success_op(ap, rp, cp)); 1999 } 2000 2001 /* 2002 * After Solaris boots, a user can enter OBP using L1A, etc. While in OBP, 2003 * interrupts may be received from PCI devices. These interrupts 2004 * cannot be handled meaningfully since the system is in OBP. These 2005 * interrupts need to be cleared on the CPU side so that the CPU may 2006 * continue with whatever it is doing. Devices that have raised the 2007 * interrupts are expected to reraise the interrupts after sometime 2008 * as they have not been handled. At that time, Solaris will have a 2009 * chance to properly service the interrupts. 2010 * 2011 * The location of the interrupt registers depends on what is present 2012 * at a port. OPL currently supports the Oberon and the CMU channel. 2013 * The following handler handles both kinds of ports and computes 2014 * interrupt register addresses from the specifications and Jupiter Bus 2015 * device bindings. 2016 * 2017 * Fcode drivers install their interrupt handler via a "master-interrupt" 2018 * service. For boot time devices, this takes place within OBP. In the case 2019 * of DR, OPL uses IKP. The Fcode drivers that run within the efcode framework 2020 * attempt to install their handler via the "master-interrupt" service. 2021 * However, we cannot meaningfully install the Fcode driver's handler. 2022 * Instead, we install our own handler in OBP which does the same thing. 2023 * 2024 * Note that the only handling done for interrupts here is to clear it 2025 * on the CPU side. If any device in the future requires more special 2026 * handling, we would have to put in some kind of framework for adding 2027 * device-specific handlers. This is *highly* unlikely, but possible. 2028 * 2029 * Finally, OBP provides a hook called "unix-interrupt-handler" to install 2030 * a Solaris-defined master-interrupt handler for a port. The default 2031 * definition for this method does nothing. Solaris may override this 2032 * with its own definition. This is the way the following handler gets 2033 * control from OBP when interrupts happen at a port after L1A, etc. 2034 */ 2035 2036 static char define_master_interrupt_handler[] = 2037 2038 /* 2039 * This method translates an Oberon port id to the base (physical) address 2040 * of the interrupt clear registers for that port id. 2041 */ 2042 2043 ": pcich-mid>clear-int-pa ( mid -- pa ) " 2044 " dup 1 >> 7 and ( mid ch# ) " 2045 " over 4 >> h# 1f and ( mid ch# lsb# ) " 2046 " 1 d# 46 << ( mid ch# lsb# pa ) " 2047 " swap d# 40 << or ( mid ch# pa ) " 2048 " swap d# 37 << or ( mid pa ) " 2049 " swap 1 and if h# 70.0000 else h# 60.0000 then " 2050 " or h# 1400 or ( pa ) " 2051 "; " 2052 2053 /* 2054 * This method translates a CMU channel port id to the base (physical) address 2055 * of the interrupt clear registers for that port id. There are two classes of 2056 * interrupts that need to be handled for a CMU channel: 2057 * - obio interrupts 2058 * - pci interrupts 2059 * So, there are two addresses that need to be computed. 2060 */ 2061 2062 ": cmuch-mid>clear-int-pa ( mid -- obio-pa pci-pa ) " 2063 " dup 1 >> 7 and ( mid ch# ) " 2064 " over 4 >> h# 1f and ( mid ch# lsb# ) " 2065 " 1 d# 46 << ( mid ch# lsb# pa ) " 2066 " swap d# 40 << or ( mid ch# pa ) " 2067 " swap d# 37 << or ( mid pa ) " 2068 " nip dup h# 1800 + ( pa obio-pa ) " 2069 " swap h# 1400 + ( obio-pa pci-pa ) " 2070 "; " 2071 2072 /* 2073 * This method checks if a given I/O port ID is valid or not. 2074 * For a given LSB, 2075 * Oberon ports range from 0 - 3 2076 * CMU ch ports range from 4 - 4 2077 * 2078 * Also, the Oberon supports leaves 0 and 1. 2079 * The CMU ch supports only one leaf, leaf 0. 2080 */ 2081 2082 ": valid-io-mid? ( mid -- flag ) " 2083 " dup 1 >> 7 and ( mid ch# ) " 2084 " dup 4 > if 2drop false exit then ( mid ch# ) " 2085 " 4 = swap 1 and 1 = and not " 2086 "; " 2087 2088 /* 2089 * This method checks if a given port id is a CMU ch. 2090 */ 2091 2092 ": cmuch? ( mid -- flag ) 1 >> 7 and 4 = ; " 2093 2094 /* 2095 * Given the base address of the array of interrupt clear registers for 2096 * a port id, this method iterates over the given interrupt number bitmap 2097 * and resets the interrupt on the CPU side for every interrupt number 2098 * in the bitmap. Note that physical addresses are used to perform the 2099 * writes, not virtual addresses. This allows the handler to work without 2100 * any involvement from Solaris. 2101 */ 2102 2103 ": clear-ints ( pa bitmap count -- ) " 2104 " 0 do ( pa bitmap ) " 2105 " dup 0= if 2drop unloop exit then " 2106 " tuck ( bitmap pa bitmap ) " 2107 " 1 and if ( bitmap pa ) " 2108 " dup i 8 * + 0 swap ( bitmap pa 0 pa' ) " 2109 " h# 15 spacex! ( bitmap pa ) " 2110 " then ( bitmap pa ) " 2111 " swap 1 >> ( pa bitmap ) " 2112 " loop " 2113 "; " 2114 2115 /* 2116 * This method replaces the master-interrupt handler in OBP. Once 2117 * this method is plumbed into OBP, OBP transfers control to this 2118 * handler while returning to Solaris from OBP after L1A. This method's 2119 * task is to simply reset received interrupts on the CPU side. 2120 * When the devices reassert the interrupts later, Solaris will 2121 * be able to see them and handle them. 2122 * 2123 * For each port ID that has interrupts, this method is called 2124 * once by OBP. The input arguments are: 2125 * mid portid 2126 * bitmap bitmap of interrupts that have happened 2127 * 2128 * This method returns true, if it is able to handle the interrupts. 2129 * OBP does nothing further. 2130 * 2131 * This method returns false, if it encountered a problem. Currently, 2132 * the only problem could be an invalid port id. OBP needs to do 2133 * its own processing in that case. If this method returns false, 2134 * it preserves the mid and bitmap arguments for OBP. 2135 */ 2136 2137 ": unix-resend-mondos ( mid bitmap -- [ mid bitmap false ] | true ) " 2138 2139 /* 2140 * Uncomment the following line if you want to display the input arguments. 2141 * This is meant for debugging. 2142 * " .\" Bitmap=\" dup u. .\" MID=\" over u. cr " 2143 */ 2144 2145 /* 2146 * If the port id is not valid (according to the Oberon and CMU ch 2147 * specifications, then return false to OBP to continue further 2148 * processing. 2149 */ 2150 2151 " over valid-io-mid? not if ( mid bitmap ) " 2152 " false exit " 2153 " then " 2154 2155 /* 2156 * If the port is a CMU ch, then the 64-bit bitmap represents 2157 * 2 32-bit bitmaps: 2158 * - obio interrupt bitmap (20 bits) 2159 * - pci interrupt bitmap (32 bits) 2160 * 2161 * - Split the bitmap into two 2162 * - Compute the base addresses of the interrupt clear registers 2163 * for both pci interrupts and obio interrupts 2164 * - Clear obio interrupts 2165 * - Clear pci interrupts 2166 */ 2167 2168 " over cmuch? if ( mid bitmap ) " 2169 " xlsplit ( mid pci-bit obio-bit ) " 2170 " rot cmuch-mid>clear-int-pa ( pci-bit obio-bit obio-pa pci-pa ) " 2171 " >r ( pci-bit obio-bit obio-pa ) ( r: pci-pa ) " 2172 " swap d# 20 clear-ints ( pci-bit ) ( r: pci-pa ) " 2173 " r> swap d# 32 clear-ints ( ) ( r: ) " 2174 2175 /* 2176 * If the port is an Oberon, then the 64-bit bitmap is used fully. 2177 * 2178 * - Compute the base address of the interrupt clear registers 2179 * - Clear interrupts 2180 */ 2181 2182 " else ( mid bitmap ) " 2183 " swap pcich-mid>clear-int-pa ( bitmap pa ) " 2184 " swap d# 64 clear-ints ( ) " 2185 " then " 2186 2187 /* 2188 * Always return true from here. 2189 */ 2190 2191 " true ( true ) " 2192 "; " 2193 ; 2194 2195 static char install_master_interrupt_handler[] = 2196 "' unix-resend-mondos to unix-interrupt-handler"; 2197 static char handler[] = "unix-interrupt-handler"; 2198 static char handler_defined[] = "p\" %s\" find nip swap l! "; 2199 2200 /*ARGSUSED*/ 2201 static int 2202 master_interrupt_init(uint32_t portid, uint32_t xt) 2203 { 2204 uint_t defined; 2205 char buf[sizeof (handler) + sizeof (handler_defined)]; 2206 2207 if (master_interrupt_inited) 2208 return (1); 2209 2210 /* 2211 * Check if the defer word "unix-interrupt-handler" is defined. 2212 * This must be defined for OPL systems. So, this is only a 2213 * sanity check. 2214 */ 2215 (void) sprintf(buf, handler_defined, handler); 2216 prom_interpret(buf, (uintptr_t)&defined, 0, 0, 0, 0); 2217 if (!defined) { 2218 cmn_err(CE_WARN, "master_interrupt_init: " 2219 "%s is not defined\n", handler); 2220 return (0); 2221 } 2222 2223 /* 2224 * Install the generic master-interrupt handler. Note that 2225 * this is only done one time on the first DR operation. 2226 * This is because, for OPL, one, single generic handler 2227 * handles all ports (Oberon and CMU channel) and all 2228 * interrupt sources within each port. 2229 * 2230 * The current support is only for the Oberon and CMU-channel. 2231 * If any others need to be supported, the handler has to be 2232 * modified accordingly. 2233 */ 2234 2235 /* 2236 * Define the OPL master interrupt handler 2237 */ 2238 prom_interpret(define_master_interrupt_handler, 0, 0, 0, 0, 0); 2239 2240 /* 2241 * Take over the master interrupt handler from OBP. 2242 */ 2243 prom_interpret(install_master_interrupt_handler, 0, 0, 0, 0, 0); 2244 2245 master_interrupt_inited = 1; 2246 2247 /* 2248 * prom_interpret() does not return a status. So, we assume 2249 * that the calls succeeded. In reality, the calls may fail 2250 * if there is a syntax error, etc in the strings. 2251 */ 2252 2253 return (1); 2254 } 2255 2256 /* 2257 * Install the master-interrupt handler for a device. 2258 */ 2259 static int 2260 opl_master_interrupt(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 2261 { 2262 uint32_t portid, xt; 2263 int board, channel, leaf; 2264 int status; 2265 2266 /* Check the argument */ 2267 if (fc_cell2int(cp->nargs) != 2) 2268 return (fc_syntax_error(cp, "nargs must be 2")); 2269 2270 if (fc_cell2int(cp->nresults) < 1) 2271 return (fc_syntax_error(cp, "nresults must be >= 1")); 2272 2273 /* Get the parameters */ 2274 portid = fc_cell2uint32_t(fc_arg(cp, 0)); 2275 xt = fc_cell2uint32_t(fc_arg(cp, 1)); 2276 2277 board = OPL_IO_PORTID_TO_LSB(portid); 2278 channel = OPL_PORTID_TO_CHANNEL(portid); 2279 leaf = OPL_PORTID_TO_LEAF(portid); 2280 2281 if ((board >= HWD_SBS_PER_DOMAIN) || !OPL_VALID_CHANNEL(channel) || 2282 (OPL_OBERON_CHANNEL(channel) && !OPL_VALID_LEAF(leaf)) || 2283 ((channel == OPL_CMU_CHANNEL) && (leaf != 0))) { 2284 FC_DEBUG1(1, CE_CONT, "opl_master_interrupt: invalid port %x\n", 2285 portid); 2286 status = 0; 2287 } else { 2288 status = master_interrupt_init(portid, xt); 2289 } 2290 2291 cp->nresults = fc_int2cell(1); 2292 fc_result(cp, 0) = status; 2293 2294 return (fc_success_op(ap, rp, cp)); 2295 } 2296 2297 /* 2298 * Set the properties for a leaf node (Oberon leaf or CMU channel leaf). 2299 */ 2300 /*ARGSUSED*/ 2301 static int 2302 opl_create_leaf(dev_info_t *node, void *arg, uint_t flags) 2303 { 2304 int ret; 2305 2306 OPL_UPDATE_PROP(string, node, "name", OPL_PCI_LEAF_NODE); 2307 2308 OPL_UPDATE_PROP(string, node, "status", "okay"); 2309 2310 return (DDI_WALK_TERMINATE); 2311 } 2312 2313 static char * 2314 opl_get_probe_string(opl_probe_t *probe, int channel, int leaf) 2315 { 2316 char *probe_string; 2317 int portid; 2318 2319 probe_string = kmem_zalloc(PROBE_STR_SIZE, KM_SLEEP); 2320 2321 if (channel == OPL_CMU_CHANNEL) 2322 portid = probe->pr_sb->sb_cmu.cmu_ch.chan_portid; 2323 else 2324 portid = probe-> 2325 pr_sb->sb_pci_ch[channel].pci_leaf[leaf].leaf_port_id; 2326 2327 (void) sprintf(probe_string, "%x", portid); 2328 2329 return (probe_string); 2330 } 2331 2332 static int 2333 opl_probe_leaf(opl_probe_t *probe) 2334 { 2335 int channel, leaf, portid, error, circ; 2336 int board; 2337 fco_handle_t fco_handle, *cfg_handle; 2338 dev_info_t *parent, *leaf_node; 2339 char unit_address[UNIT_ADDR_SIZE]; 2340 char *probe_string; 2341 opl_board_cfg_t *board_cfg; 2342 2343 board = probe->pr_board; 2344 channel = probe->pr_channel; 2345 leaf = probe->pr_leaf; 2346 parent = ddi_root_node(); 2347 board_cfg = &opl_boards[board]; 2348 2349 ASSERT(OPL_VALID_CHANNEL(channel)); 2350 ASSERT(OPL_VALID_LEAF(leaf)); 2351 2352 if (channel == OPL_CMU_CHANNEL) { 2353 portid = probe->pr_sb->sb_cmu.cmu_ch.chan_portid; 2354 cfg_handle = &board_cfg->cfg_cmuch_handle; 2355 } else { 2356 portid = probe-> 2357 pr_sb->sb_pci_ch[channel].pci_leaf[leaf].leaf_port_id; 2358 cfg_handle = &board_cfg->cfg_pcich_handle[channel][leaf]; 2359 } 2360 2361 /* 2362 * Prevent any changes to leaf_node until we have bound 2363 * it to the correct driver. 2364 */ 2365 ndi_devi_enter(parent, &circ); 2366 2367 /* 2368 * Ideally, fcode would be run from the "sid_branch_create" 2369 * callback (that is the primary purpose of that callback). 2370 * However, the fcode interpreter was written with the 2371 * assumption that the "new_child" was linked into the 2372 * device tree. The callback is invoked with the devinfo node 2373 * in the DS_PROTO state. More investigation is needed before 2374 * we can invoke the interpreter from the callback. For now, 2375 * we create the "new_child" in the BOUND state, invoke the 2376 * fcode interpreter and then rebind the dip to use any 2377 * compatible properties created by fcode. 2378 */ 2379 2380 probe->pr_parent = parent; 2381 probe->pr_create = opl_create_leaf; 2382 probe->pr_hold = 1; 2383 2384 leaf_node = opl_create_node(probe); 2385 if (leaf_node == NULL) { 2386 2387 cmn_err(CE_WARN, "IKP: create leaf (%d-%d-%d) failed", 2388 probe->pr_board, probe->pr_channel, probe->pr_leaf); 2389 ndi_devi_exit(parent, circ); 2390 return (-1); 2391 } 2392 2393 /* 2394 * The platform DR interfaces created the dip in 2395 * bound state. Bring devinfo node down to linked 2396 * state and hold it there until compatible 2397 * properties are created. 2398 */ 2399 e_ddi_branch_rele(leaf_node); 2400 (void) i_ndi_unconfig_node(leaf_node, DS_LINKED, 0); 2401 ASSERT(i_ddi_node_state(leaf_node) == DS_LINKED); 2402 e_ddi_branch_hold(leaf_node); 2403 2404 mutex_enter(&DEVI(leaf_node)->devi_lock); 2405 DEVI(leaf_node)->devi_flags |= DEVI_NO_BIND; 2406 mutex_exit(&DEVI(leaf_node)->devi_lock); 2407 2408 /* 2409 * Drop the busy-hold on parent before calling 2410 * fcode_interpreter to prevent potential deadlocks 2411 */ 2412 ndi_devi_exit(parent, circ); 2413 2414 (void) sprintf(unit_address, "%x", portid); 2415 2416 /* 2417 * Get the probe string 2418 */ 2419 probe_string = opl_get_probe_string(probe, channel, leaf); 2420 2421 /* 2422 * The fcode pointer specified here is NULL and the fcode 2423 * size specified here is 0. This causes the user-level 2424 * fcode interpreter to issue a request to the fcode 2425 * driver to get the Oberon/cmu-ch fcode. 2426 */ 2427 fco_handle = opl_fc_ops_alloc_handle(parent, leaf_node, 2428 NULL, 0, unit_address, probe_string); 2429 2430 error = fcode_interpreter(parent, &opl_fc_do_op, fco_handle); 2431 2432 if (error != 0) { 2433 cmn_err(CE_WARN, "IKP: Unable to probe PCI leaf (%d-%d-%d)", 2434 probe->pr_board, probe->pr_channel, probe->pr_leaf); 2435 2436 opl_fc_ops_free_handle(fco_handle); 2437 2438 if (probe_string != NULL) 2439 kmem_free(probe_string, PROBE_STR_SIZE); 2440 2441 (void) opl_destroy_node(leaf_node); 2442 } else { 2443 *cfg_handle = fco_handle; 2444 2445 if (channel == OPL_CMU_CHANNEL) 2446 board_cfg->cfg_cmuch_probe_str = probe_string; 2447 else 2448 board_cfg->cfg_pcich_probe_str[channel][leaf] 2449 = probe_string; 2450 2451 /* 2452 * Compatible properties (if any) have been created, 2453 * so bind driver. 2454 */ 2455 ndi_devi_enter(parent, &circ); 2456 ASSERT(i_ddi_node_state(leaf_node) <= DS_LINKED); 2457 2458 mutex_enter(&DEVI(leaf_node)->devi_lock); 2459 DEVI(leaf_node)->devi_flags &= ~DEVI_NO_BIND; 2460 mutex_exit(&DEVI(leaf_node)->devi_lock); 2461 2462 ndi_devi_exit(parent, circ); 2463 2464 if (ndi_devi_bind_driver(leaf_node, 0) != 2465 DDI_SUCCESS) { 2466 cmn_err(CE_WARN, 2467 "IKP: Unable to bind PCI leaf (%d-%d-%d)", 2468 probe->pr_board, probe->pr_channel, 2469 probe->pr_leaf); 2470 } 2471 } 2472 2473 if ((error != 0) && (channel == OPL_CMU_CHANNEL)) 2474 return (-1); 2475 2476 return (0); 2477 } 2478 2479 static void 2480 opl_init_leaves(int myboard) 2481 { 2482 dev_info_t *parent, *node; 2483 char *name; 2484 int circ, ret; 2485 int len, portid, board, channel, leaf; 2486 opl_board_cfg_t *cfg; 2487 2488 parent = ddi_root_node(); 2489 2490 /* 2491 * Hold parent node busy to walk its child list 2492 */ 2493 ndi_devi_enter(parent, &circ); 2494 2495 for (node = ddi_get_child(parent); 2496 (node != NULL); 2497 node = ddi_get_next_sibling(node)) { 2498 2499 ret = OPL_GET_PROP(string, node, "name", &name, &len); 2500 if (ret != DDI_PROP_SUCCESS) { 2501 /* 2502 * The property does not exist for this node. 2503 */ 2504 continue; 2505 } 2506 2507 if (strncmp(name, OPL_PCI_LEAF_NODE, len) == 0) { 2508 2509 ret = OPL_GET_PROP(int, node, "portid", &portid, -1); 2510 if (ret == DDI_PROP_SUCCESS) { 2511 2512 ret = OPL_GET_PROP(int, node, "board#", 2513 &board, -1); 2514 if ((ret != DDI_PROP_SUCCESS) || 2515 (board != myboard)) 2516 continue; 2517 2518 cfg = &opl_boards[board]; 2519 channel = OPL_PORTID_TO_CHANNEL(portid); 2520 if (channel == OPL_CMU_CHANNEL) { 2521 2522 if (cfg->cfg_cmuch_handle != NULL) 2523 cfg->cfg_cmuch_leaf = node; 2524 2525 } else { 2526 2527 leaf = OPL_PORTID_TO_LEAF(portid); 2528 if (cfg->cfg_pcich_handle 2529 [channel][leaf] != NULL) 2530 cfg->cfg_pcich_leaf 2531 [channel][leaf] = node; 2532 } 2533 } 2534 } 2535 2536 kmem_free(name, len); 2537 if (ret != DDI_PROP_SUCCESS) 2538 break; 2539 } 2540 2541 ndi_devi_exit(parent, circ); 2542 } 2543 2544 /* 2545 * Create "pci" node and hierarchy for the Oberon channels and the 2546 * CMU channel. 2547 */ 2548 /*ARGSUSED*/ 2549 static int 2550 opl_probe_io(opl_probe_t *probe) 2551 { 2552 2553 int i, j; 2554 hwd_pci_ch_t *channels; 2555 2556 if (HWD_STATUS_OK(probe->pr_sb->sb_cmu.cmu_ch.chan_status)) { 2557 2558 probe->pr_channel = HWD_CMU_CHANNEL; 2559 probe->pr_channel_status = 2560 probe->pr_sb->sb_cmu.cmu_ch.chan_status; 2561 probe->pr_leaf = 0; 2562 probe->pr_leaf_status = probe->pr_channel_status; 2563 2564 if (opl_probe_leaf(probe) != 0) 2565 return (-1); 2566 } 2567 2568 channels = &probe->pr_sb->sb_pci_ch[0]; 2569 2570 for (i = 0; i < HWD_PCI_CHANNELS_PER_SB; i++) { 2571 2572 if (!HWD_STATUS_OK(channels[i].pci_status)) 2573 continue; 2574 2575 probe->pr_channel = i; 2576 probe->pr_channel_status = channels[i].pci_status; 2577 2578 for (j = 0; j < HWD_LEAVES_PER_PCI_CHANNEL; j++) { 2579 2580 probe->pr_leaf = j; 2581 probe->pr_leaf_status = 2582 channels[i].pci_leaf[j].leaf_status; 2583 2584 if (!HWD_STATUS_OK(probe->pr_leaf_status)) 2585 continue; 2586 2587 (void) opl_probe_leaf(probe); 2588 } 2589 } 2590 opl_init_leaves(probe->pr_board); 2591 return (0); 2592 } 2593 2594 /* 2595 * Perform the probe in the following order: 2596 * 2597 * processors 2598 * memory 2599 * IO 2600 * 2601 * Each probe function returns 0 on sucess and a non-zero value on failure. 2602 * What is a failure is determined by the implementor of the probe function. 2603 * For example, while probing CPUs, any error encountered during probe 2604 * is considered a failure and causes the whole probe operation to fail. 2605 * However, for I/O, an error encountered while probing one device 2606 * should not prevent other devices from being probed. It should not cause 2607 * the whole probe operation to fail. 2608 */ 2609 int 2610 opl_probe_sb(int board) 2611 { 2612 opl_probe_t *probe; 2613 int ret; 2614 2615 if ((board < 0) || (board >= HWD_SBS_PER_DOMAIN)) 2616 return (-1); 2617 2618 ASSERT(opl_cfg_inited != 0); 2619 2620 /* 2621 * If the previous probe failed and left a partially configured 2622 * board, we need to unprobe the board and start with a clean slate. 2623 */ 2624 if ((opl_boards[board].cfg_hwd != NULL) && 2625 (opl_unprobe_sb(board) != 0)) 2626 return (-1); 2627 2628 ret = 0; 2629 2630 probe = kmem_zalloc(sizeof (opl_probe_t), KM_SLEEP); 2631 probe->pr_board = board; 2632 2633 if ((opl_probe_init(probe) != 0) || 2634 2635 (opl_probe_cpu_chips(probe) != 0) || 2636 2637 (opl_probe_memory(probe) != 0) || 2638 2639 (opl_probe_io(probe) != 0)) { 2640 2641 /* 2642 * Probe failed. Perform cleanup. 2643 */ 2644 (void) opl_unprobe_sb(board); 2645 ret = -1; 2646 } 2647 2648 kmem_free(probe, sizeof (opl_probe_t)); 2649 2650 return (ret); 2651 } 2652 2653 /* 2654 * This unprobing also includes CMU-CH. 2655 */ 2656 /*ARGSUSED*/ 2657 static int 2658 opl_unprobe_io(int board) 2659 { 2660 int i, j, ret; 2661 opl_board_cfg_t *board_cfg; 2662 dev_info_t **node; 2663 fco_handle_t *hand; 2664 char **probe_str; 2665 2666 board_cfg = &opl_boards[board]; 2667 2668 for (i = 0; i < HWD_PCI_CHANNELS_PER_SB; i++) { 2669 2670 for (j = 0; j < HWD_LEAVES_PER_PCI_CHANNEL; j++) { 2671 2672 node = &board_cfg->cfg_pcich_leaf[i][j]; 2673 hand = &board_cfg->cfg_pcich_handle[i][j]; 2674 probe_str = &board_cfg->cfg_pcich_probe_str[i][j]; 2675 2676 if (*node == NULL) 2677 continue; 2678 2679 if (*hand != NULL) { 2680 opl_fc_ops_free_handle(*hand); 2681 *hand = NULL; 2682 } 2683 2684 if (*probe_str != NULL) { 2685 kmem_free(*probe_str, PROBE_STR_SIZE); 2686 *probe_str = NULL; 2687 } 2688 2689 ret = opl_destroy_node(*node); 2690 if (ret != 0) { 2691 2692 cmn_err(CE_WARN, 2693 "IKP: destroy pci (%d-%d-%d) failed", 2694 board, i, j); 2695 return (-1); 2696 } 2697 2698 *node = NULL; 2699 2700 } 2701 } 2702 2703 node = &board_cfg->cfg_cmuch_leaf; 2704 hand = &board_cfg->cfg_cmuch_handle; 2705 probe_str = &board_cfg->cfg_cmuch_probe_str; 2706 2707 if (*node == NULL) 2708 return (0); 2709 2710 if (*hand != NULL) { 2711 opl_fc_ops_free_handle(*hand); 2712 *hand = NULL; 2713 } 2714 2715 if (*probe_str != NULL) { 2716 kmem_free(*probe_str, PROBE_STR_SIZE); 2717 *probe_str = NULL; 2718 } 2719 2720 if (opl_destroy_node(*node) != 0) { 2721 2722 cmn_err(CE_WARN, "IKP: destroy pci (%d-%d-%d) failed", 2723 board, OPL_CMU_CHANNEL, 0); 2724 return (-1); 2725 } 2726 2727 *node = NULL; 2728 2729 return (0); 2730 } 2731 2732 /* 2733 * Destroy the "pseudo-mc" node for a board. 2734 */ 2735 static int 2736 opl_unprobe_memory(int board) 2737 { 2738 opl_board_cfg_t *board_cfg; 2739 2740 board_cfg = &opl_boards[board]; 2741 2742 if (board_cfg->cfg_pseudo_mc == NULL) 2743 return (0); 2744 2745 if (opl_destroy_node(board_cfg->cfg_pseudo_mc) != 0) { 2746 2747 cmn_err(CE_WARN, "IKP: destroy pseudo-mc (%d) failed", board); 2748 return (-1); 2749 } 2750 2751 board_cfg->cfg_pseudo_mc = NULL; 2752 2753 return (0); 2754 } 2755 2756 /* 2757 * Destroy the "cmp" nodes for a board. This also destroys the "core" 2758 * and "cpu" nodes below the "cmp" nodes. 2759 */ 2760 static int 2761 opl_unprobe_processors(int board) 2762 { 2763 int i; 2764 dev_info_t **cfg_cpu_chips; 2765 2766 cfg_cpu_chips = opl_boards[board].cfg_cpu_chips; 2767 2768 for (i = 0; i < HWD_CPU_CHIPS_PER_CMU; i++) { 2769 2770 if (cfg_cpu_chips[i] == NULL) 2771 continue; 2772 2773 if (opl_destroy_node(cfg_cpu_chips[i]) != 0) { 2774 2775 cmn_err(CE_WARN, 2776 "IKP: destroy chip (%d-%d) failed", board, i); 2777 return (-1); 2778 } 2779 2780 cfg_cpu_chips[i] = NULL; 2781 } 2782 2783 return (0); 2784 } 2785 2786 /* 2787 * Perform the unprobe in the following order: 2788 * 2789 * IO 2790 * memory 2791 * processors 2792 */ 2793 int 2794 opl_unprobe_sb(int board) 2795 { 2796 if ((board < 0) || (board >= HWD_SBS_PER_DOMAIN)) 2797 return (-1); 2798 2799 ASSERT(opl_cfg_inited != 0); 2800 2801 if ((opl_unprobe_io(board) != 0) || 2802 2803 (opl_unprobe_memory(board) != 0) || 2804 2805 (opl_unprobe_processors(board) != 0)) 2806 2807 return (-1); 2808 2809 if (opl_boards[board].cfg_hwd != NULL) { 2810 #ifdef UCTEST 2811 size_t size = 0xA000; 2812 #endif 2813 /* Release the memory for the HWD */ 2814 void *hwdp = opl_boards[board].cfg_hwd; 2815 opl_boards[board].cfg_hwd = NULL; 2816 #ifdef UCTEST 2817 hwdp = (void *)((char *)hwdp - 0x1000); 2818 hat_unload(kas.a_hat, hwdp, size, HAT_UNLOAD_UNLOCK); 2819 vmem_free(heap_arena, hwdp, size); 2820 #else 2821 kmem_free(hwdp, HWD_DATA_SIZE); 2822 #endif 2823 } 2824 return (0); 2825 } 2826 2827 /* 2828 * For MAC patrol support, we need to update the PA-related properties 2829 * when there is a copy-rename event. This should be called after the 2830 * physical copy and rename has been done by DR, and before the MAC 2831 * patrol is restarted. 2832 */ 2833 int 2834 oplcfg_pa_swap(int from, int to) 2835 { 2836 dev_info_t *from_node = opl_boards[from].cfg_pseudo_mc; 2837 dev_info_t *to_node = opl_boards[to].cfg_pseudo_mc; 2838 opl_range_t *rangef, *ranget; 2839 int elems; 2840 int ret; 2841 2842 if ((OPL_GET_PROP_ARRAY(int, from_node, "sb-mem-ranges", rangef, 2843 elems) != DDI_SUCCESS) || (elems != 4)) { 2844 /* XXX -- bad news */ 2845 return (-1); 2846 } 2847 if ((OPL_GET_PROP_ARRAY(int, to_node, "sb-mem-ranges", ranget, 2848 elems) != DDI_SUCCESS) || (elems != 4)) { 2849 /* XXX -- bad news */ 2850 return (-1); 2851 } 2852 OPL_UPDATE_PROP_ARRAY(int, from_node, "sb-mem-ranges", (int *)ranget, 2853 4); 2854 OPL_UPDATE_PROP_ARRAY(int, to_node, "sb-mem-ranges", (int *)rangef, 2855 4); 2856 2857 OPL_FREE_PROP(ranget); 2858 OPL_FREE_PROP(rangef); 2859 2860 return (0); 2861 } 2862