1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/cpuvar.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sunddi.h> 32 #include <sys/ddi.h> 33 #include <sys/esunddi.h> 34 #include <sys/sysmacros.h> 35 #include <sys/note.h> 36 37 #include <sys/modctl.h> /* for modload() */ 38 #include <sys/platform_module.h> 39 #include <sys/errno.h> 40 #include <sys/daktari.h> 41 #include <sys/machsystm.h> 42 #include <sys/promif.h> 43 #include <vm/page.h> 44 #include <sys/memnode.h> 45 #include <vm/vm_dep.h> 46 47 /* I2C Stuff */ 48 #include <sys/i2c/clients/i2c_client.h> 49 50 51 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *); 52 53 /* Daktari Keyswitch Information */ 54 #define DAK_KEY_POLL_PORT 3 55 #define DAK_KEY_POLL_BIT 2 56 #define DAK_KEY_POLL_INTVL 10 57 58 static boolean_t key_locked_bit; 59 static clock_t keypoll_timeout_hz; 60 61 /* 62 * Table that maps memory slices to a specific memnode. 63 */ 64 int slice_to_memnode[DAK_MAX_SLICE]; 65 66 /* 67 * For software memory interleaving support. 68 */ 69 static void update_mem_bounds(int, int, int, uint64_t, uint64_t); 70 71 static uint64_t 72 slice_table[DAK_SBD_SLOTS][DAK_CPUS_PER_BOARD][DAK_BANKS_PER_MC][2]; 73 74 #define SLICE_PA 0 75 #define SLICE_SPAN 1 76 77 int (*daktari_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int); 78 extern void (*abort_seq_handler)(); 79 static int daktari_dev_search(dev_info_t *, void *); 80 static void keyswitch_poll(void *); 81 static void daktari_abort_seq_handler(char *msg); 82 83 void 84 startup_platform(void) 85 { 86 /* 87 * Disable an active h/w watchdog timer 88 * upon exit to OBP. 89 */ 90 extern int disable_watchdog_on_exit; 91 disable_watchdog_on_exit = 1; 92 } 93 94 int 95 set_platform_tsb_spares() 96 { 97 return (0); 98 } 99 100 #pragma weak mmu_init_large_pages 101 102 void 103 set_platform_defaults(void) 104 { 105 extern void mmu_init_large_pages(size_t); 106 107 if ((mmu_page_sizes == max_mmu_page_sizes) && 108 (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) { 109 if (&mmu_init_large_pages) 110 mmu_init_large_pages(mmu_ism_pagesize); 111 } 112 } 113 114 void 115 load_platform_modules(void) 116 { 117 if (modload("misc", "pcihp") < 0) { 118 cmn_err(CE_NOTE, "pcihp driver failed to load"); 119 } 120 if (modload("drv", "pmc") < 0) { 121 cmn_err(CE_NOTE, "pmc driver failed to load"); 122 } 123 124 } 125 126 void 127 load_platform_drivers(void) 128 { 129 char **drv; 130 dev_info_t *keysw_dip; 131 132 static char *boot_time_drivers[] = { 133 "hpc3130", 134 "todds1287", 135 "mc-us3", 136 "ssc050", 137 "pcisch", 138 NULL 139 }; 140 141 for (drv = boot_time_drivers; *drv; drv++) { 142 if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS) 143 cmn_err(CE_WARN, "Failed to install \"%s\" driver.", 144 *drv); 145 } 146 147 /* 148 * mc-us3 & ssc050 must stay loaded for plat_get_mem_unum() 149 * and keyswitch_poll() 150 */ 151 (void) ddi_hold_driver(ddi_name_to_major("mc-us3")); 152 (void) ddi_hold_driver(ddi_name_to_major("ssc050")); 153 154 /* Gain access into the ssc050_get_port function */ 155 daktari_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int, 156 uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0); 157 if (daktari_ssc050_get_port_bit == NULL) { 158 cmn_err(CE_WARN, "cannot find ssc050_get_port_bit"); 159 return; 160 } 161 162 ddi_walk_devs(ddi_root_node(), daktari_dev_search, (void *)&keysw_dip); 163 ASSERT(keysw_dip != NULL); 164 165 /* 166 * prevent detach of i2c-ssc050 167 */ 168 e_ddi_hold_devi(keysw_dip); 169 170 keypoll_timeout_hz = drv_usectohz(10 * MICROSEC); 171 keyswitch_poll(keysw_dip); 172 abort_seq_handler = daktari_abort_seq_handler; 173 } 174 175 static int 176 daktari_dev_search(dev_info_t *dip, void *arg) 177 { 178 char *compatible = NULL; /* Search tree for "i2c-ssc050" */ 179 int *dev_regs; /* Info about where the device is. */ 180 uint_t len; 181 int err; 182 183 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 184 "compatible", &compatible) != DDI_PROP_SUCCESS) 185 return (DDI_WALK_CONTINUE); 186 187 if (strcmp(compatible, "i2c-ssc050") == 0) { 188 ddi_prop_free(compatible); 189 190 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 191 DDI_PROP_DONTPASS, "reg", &dev_regs, &len); 192 if (err != DDI_PROP_SUCCESS) { 193 return (DDI_WALK_CONTINUE); 194 } 195 /* 196 * regs[0] contains the bus number and regs[1] 197 * contains the device address of the i2c device. 198 * 0x82 is the device address of the i2c device 199 * from which the key switch position is read. 200 */ 201 if (dev_regs[0] == 0 && dev_regs[1] == 0x82) { 202 *((dev_info_t **)arg) = dip; 203 ddi_prop_free(dev_regs); 204 return (DDI_WALK_TERMINATE); 205 } 206 ddi_prop_free(dev_regs); 207 } else { 208 ddi_prop_free(compatible); 209 } 210 return (DDI_WALK_CONTINUE); 211 } 212 213 static void 214 keyswitch_poll(void *arg) 215 { 216 dev_info_t *dip = arg; 217 uchar_t port_byte; 218 int port = DAK_KEY_POLL_PORT; 219 int bit = DAK_KEY_POLL_BIT; 220 int err; 221 222 err = daktari_ssc050_get_port_bit(dip, port, bit, 223 &port_byte, I2C_NOSLEEP); 224 if (err != 0) { 225 cmn_err(CE_WARN, "keyswitch polling disabled: " 226 "errno=%d while reading ssc050", err); 227 return; 228 } 229 230 key_locked_bit = (boolean_t)((port_byte & 0x1)); 231 timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz); 232 } 233 234 static void 235 daktari_abort_seq_handler(char *msg) 236 { 237 if (key_locked_bit == 0) 238 cmn_err(CE_CONT, "KEY in LOCKED position, " 239 "ignoring debug enter sequence"); 240 else { 241 debug_enter(msg); 242 } 243 } 244 245 246 int 247 plat_cpu_poweron(struct cpu *cp) 248 { 249 _NOTE(ARGUNUSED(cp)) 250 return (ENOTSUP); 251 } 252 253 int 254 plat_cpu_poweroff(struct cpu *cp) 255 { 256 _NOTE(ARGUNUSED(cp)) 257 return (ENOTSUP); 258 } 259 260 /* 261 * Given a pfn, return the board and beginning/end of the page's 262 * memory controller's address range. 263 */ 264 static int 265 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last) 266 { 267 int bd, cpu, bank; 268 269 for (bd = 0; bd < DAK_SBD_SLOTS; bd++) { 270 for (cpu = 0; cpu < DAK_CPUS_PER_BOARD; cpu++) { 271 for (bank = 0; bank < DAK_BANKS_PER_MC; bank++) { 272 uint64_t *slice = slice_table[bd][cpu][bank]; 273 uint64_t base = btop(slice[SLICE_PA]); 274 uint64_t len = btop(slice[SLICE_SPAN]); 275 if (len && pfn >= base && pfn < (base + len)) { 276 *first = base; 277 *last = base + len - 1; 278 return (bd); 279 } 280 } 281 } 282 } 283 panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn); 284 /* NOTREACHED */ 285 } 286 287 /*ARGSUSED*/ 288 void 289 plat_freelist_process(int mnode) 290 {} 291 292 293 /* 294 * Called for each board/cpu/PA range detected in plat_fill_mc(). 295 */ 296 static void 297 update_mem_bounds(int boardid, int cpuid, int bankid, 298 uint64_t base, uint64_t size) 299 { 300 uint64_t end; 301 int mnode; 302 303 slice_table[boardid][cpuid][bankid][SLICE_PA] = base; 304 slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size; 305 306 end = base + size - 1; 307 308 /* 309 * First see if this board already has a memnode associated 310 * with it. If not, see if this slice has a memnode. This 311 * covers the cases where a single slice covers multiple 312 * boards (cross-board interleaving) and where a single 313 * board has multiple slices (1+GB DIMMs). 314 */ 315 if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) { 316 if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1) 317 mnode = mem_node_alloc(); 318 319 ASSERT(mnode >= 0); 320 ASSERT(mnode < MAX_MEM_NODES); 321 plat_assign_lgrphand_to_mem_node(boardid, mnode); 322 } 323 324 base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT)); 325 326 while (base < end) { 327 slice_to_memnode[PA_2_SLICE(base)] = mnode; 328 base += (1ul << PA_SLICE_SHIFT); 329 } 330 } 331 332 /* 333 * Dynamically detect memory slices in the system by decoding 334 * the cpu memory decoder registers at boot time. 335 */ 336 void 337 plat_fill_mc(pnode_t nodeid) 338 { 339 uint64_t mc_addr, saf_addr; 340 uint64_t mc_decode[DAK_BANKS_PER_MC]; 341 uint64_t base, size; 342 uint64_t saf_mask; 343 uint64_t offset; 344 uint32_t regs[4]; 345 int len; 346 int local_mc; 347 int portid; 348 int boardid; 349 int cpuid; 350 int i; 351 352 if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) || 353 (portid == -1)) 354 return; 355 356 /* 357 * Decode the board number from the MC portid. Assumes 358 * portid == safari agentid. 359 */ 360 boardid = DAK_GETSLOT(portid); 361 cpuid = DAK_GETSID(portid); 362 363 /* 364 * The "reg" property returns 4 32-bit values. The first two are 365 * combined to form a 64-bit address. The second two are for a 366 * 64-bit size, but we don't actually need to look at that value. 367 */ 368 len = prom_getproplen(nodeid, "reg"); 369 if (len != (sizeof (uint32_t) * 4)) { 370 prom_printf("Warning: malformed 'reg' property\n"); 371 return; 372 } 373 if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0) 374 return; 375 mc_addr = ((uint64_t)regs[0]) << 32; 376 mc_addr |= (uint64_t)regs[1]; 377 378 /* 379 * Figure out whether the memory controller we are examining 380 * belongs to this CPU or a different one. 381 */ 382 saf_addr = lddsafaddr(8); 383 saf_mask = (uint64_t)SAF_MASK; 384 if ((mc_addr & saf_mask) == saf_addr) 385 local_mc = 1; 386 else 387 local_mc = 0; 388 389 for (i = 0; i < DAK_BANKS_PER_MC; i++) { 390 /* 391 * Memory decode masks are at offsets 0x10 - 0x28. 392 */ 393 offset = 0x10 + (i << 3); 394 395 /* 396 * If the memory controller is local to this CPU, we use 397 * the special ASI to read the decode registers. 398 * Otherwise, we load the values from a magic address in 399 * I/O space. 400 */ 401 if (local_mc) 402 mc_decode[i] = lddmcdecode(offset); 403 else 404 mc_decode[i] = lddphysio(mc_addr | offset); 405 406 /* 407 * If the upper bit is set, we have a valid mask 408 */ 409 if ((int64_t)mc_decode[i] < 0) { 410 /* 411 * The memory decode register is a bitmask field, 412 * so we can decode that into both a base and 413 * a span. 414 */ 415 base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT; 416 size = MC_UK2SPAN(mc_decode[i]); 417 update_mem_bounds(boardid, cpuid, i, base, size); 418 } 419 } 420 } 421 422 423 /* 424 * This routine is run midway through the boot process. By the time we get 425 * here, we know about all the active CPU boards in the system, and we have 426 * extracted information about each board's memory from the memory 427 * controllers. We have also figured out which ranges of memory will be 428 * assigned to which memnodes, so we walk the slice table to build the table 429 * of memnodes. 430 */ 431 /* ARGSUSED */ 432 void 433 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems) 434 { 435 int slice; 436 pfn_t basepfn; 437 pgcnt_t npgs; 438 439 mem_node_pfn_shift = PFN_SLICE_SHIFT; 440 mem_node_physalign = (1ull << PA_SLICE_SHIFT); 441 npgs = 1ull << PFN_SLICE_SHIFT; 442 443 for (slice = 0; slice < DAK_MAX_SLICE; slice++) { 444 if (slice_to_memnode[slice] == -1) 445 continue; 446 basepfn = (uint64_t)slice << PFN_SLICE_SHIFT; 447 mem_node_add_slice(basepfn, basepfn + npgs - 1); 448 } 449 } 450 451 452 453 /* 454 * Daktari support for lgroups. 455 * 456 * On Daktari, an lgroup platform handle == slot number. 457 * 458 * Mappings between lgroup handles and memnodes are managed 459 * in addition to mappings between memory slices and memnodes 460 * to support cross-board interleaving as well as multiple 461 * slices per board (e.g. >1GB DIMMs). The initial mapping 462 * of memnodes to lgroup handles is determined at boot time. 463 */ 464 int 465 plat_pfn_to_mem_node(pfn_t pfn) 466 { 467 return (slice_to_memnode[PFN_2_SLICE(pfn)]); 468 } 469 470 /* 471 * Return the platform handle for the lgroup containing the given CPU 472 * 473 * For Daktari, lgroup platform handle == slot number 474 */ 475 lgrp_handle_t 476 plat_lgrp_cpu_to_hand(processorid_t id) 477 { 478 return (DAK_GETSLOT(id)); 479 } 480 481 /* 482 * Platform specific lgroup initialization 483 */ 484 void 485 plat_lgrp_init(void) 486 { 487 int i; 488 489 /* 490 * Initialize lookup tables to invalid values so we catch 491 * any illegal use of them. 492 */ 493 for (i = 0; i < DAK_MAX_SLICE; i++) { 494 slice_to_memnode[i] = -1; 495 } 496 } 497 498 /* 499 * Return latency between "from" and "to" lgroups 500 * 501 * This latency number can only be used for relative comparison 502 * between lgroups on the running system, cannot be used across platforms, 503 * and may not reflect the actual latency. It is platform and implementation 504 * specific, so platform gets to decide its value. It would be nice if the 505 * number was at least proportional to make comparisons more meaningful though. 506 * NOTE: The numbers below are supposed to be load latencies for uncached 507 * memory divided by 10. 508 */ 509 int 510 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) 511 { 512 /* 513 * Return min remote latency when there are more than two lgroups 514 * (root and child) and getting latency between two different lgroups 515 * or root is involved 516 */ 517 if (lgrp_optimizations() && (from != to || 518 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) 519 return (21); 520 else 521 return (19); 522 } 523 /* 524 * No platform drivers on this platform 525 */ 526 char *platform_module_list[] = { 527 (char *)0 528 }; 529 530 /*ARGSUSED*/ 531 void 532 plat_tod_fault(enum tod_fault_type tod_bad) 533 { 534 } 535 536 /*ARGSUSED*/ 537 int 538 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, 539 int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp) 540 { 541 if (flt_in_memory && (p2get_mem_unum != NULL)) 542 return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8), 543 buf, buflen, lenp)); 544 else 545 return (ENOTSUP); 546 } 547 548 /* 549 * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3 550 * driver giving each platform the opportunity to add platform 551 * specific label information to the unum for ECC error logging purposes. 552 */ 553 void 554 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm) 555 { 556 _NOTE(ARGUNUSED(bank, dimm)) 557 558 char board = DAK_GETSLOT_LABEL(mcid); 559 char old_unum[UNUM_NAMLEN]; 560 561 strcpy(old_unum, unum); 562 snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum); 563 } 564 565 int 566 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) 567 { 568 char board = DAK_GETSLOT_LABEL(cpuid); 569 570 if (snprintf(buf, buflen, "Slot %c", board) >= buflen) { 571 return (ENOSPC); 572 } else { 573 *lenp = strlen(buf); 574 return (0); 575 } 576 } 577 578 /* 579 * The zuluvm module requires a dmv interrupt for each installed zulu board. 580 */ 581 void 582 plat_dmv_params(uint_t *hwint, uint_t *swint) 583 { 584 *hwint = 0; 585 *swint = DAK_SBD_SLOTS - 1; 586 } 587