xref: /titanic_41/usr/src/uts/sun4u/cpu/us3_common.c (revision afd1ac7b1c9a8cdf273c865aa5e9a14620341443)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/ddi.h>
32 #include <sys/sysmacros.h>
33 #include <sys/archsystm.h>
34 #include <sys/vmsystm.h>
35 #include <sys/machparam.h>
36 #include <sys/machsystm.h>
37 #include <sys/machthread.h>
38 #include <sys/cpu.h>
39 #include <sys/cmp.h>
40 #include <sys/elf_SPARC.h>
41 #include <vm/vm_dep.h>
42 #include <vm/hat_sfmmu.h>
43 #include <vm/seg_kpm.h>
44 #include <sys/cpuvar.h>
45 #include <sys/cheetahregs.h>
46 #include <sys/us3_module.h>
47 #include <sys/async.h>
48 #include <sys/cmn_err.h>
49 #include <sys/debug.h>
50 #include <sys/dditypes.h>
51 #include <sys/prom_debug.h>
52 #include <sys/prom_plat.h>
53 #include <sys/cpu_module.h>
54 #include <sys/sysmacros.h>
55 #include <sys/intreg.h>
56 #include <sys/clock.h>
57 #include <sys/platform_module.h>
58 #include <sys/machtrap.h>
59 #include <sys/ontrap.h>
60 #include <sys/panic.h>
61 #include <sys/memlist.h>
62 #include <sys/bootconf.h>
63 #include <sys/ivintr.h>
64 #include <sys/atomic.h>
65 #include <sys/taskq.h>
66 #include <sys/note.h>
67 #include <sys/ndifm.h>
68 #include <sys/ddifm.h>
69 #include <sys/fm/protocol.h>
70 #include <sys/fm/util.h>
71 #include <sys/fm/cpu/UltraSPARC-III.h>
72 #include <sys/fpras_impl.h>
73 #include <sys/dtrace.h>
74 #include <sys/watchpoint.h>
75 #include <sys/plat_ecc_unum.h>
76 #include <sys/cyclic.h>
77 #include <sys/errorq.h>
78 #include <sys/errclassify.h>
79 
80 #ifdef	CHEETAHPLUS_ERRATUM_25
81 #include <sys/xc_impl.h>
82 #endif	/* CHEETAHPLUS_ERRATUM_25 */
83 
84 /*
85  * Note that 'Cheetah PRM' refers to:
86  *   SPARC V9 JPS1 Implementation Supplement: Sun UltraSPARC-III
87  */
88 
89 /*
90  * Per CPU pointers to physical address of TL>0 logout data areas.
91  * These pointers have to be in the kernel nucleus to avoid MMU
92  * misses.
93  */
94 uint64_t ch_err_tl1_paddrs[NCPU];
95 
96 /*
97  * One statically allocated structure to use during startup/DR
98  * to prevent unnecessary panics.
99  */
100 ch_err_tl1_data_t ch_err_tl1_data;
101 
102 /*
103  * Per CPU pending error at TL>0, used by level15 softint handler
104  */
105 uchar_t ch_err_tl1_pending[NCPU];
106 
107 /*
108  * For deferred CE re-enable after trap.
109  */
110 taskq_t		*ch_check_ce_tq;
111 
112 /*
113  * Internal functions.
114  */
115 static int cpu_async_log_err(void *flt, errorq_elem_t *eqep);
116 static void cpu_log_diag_info(ch_async_flt_t *ch_flt);
117 static void cpu_queue_one_event(ch_async_flt_t *ch_flt, char *reason,
118     ecc_type_to_info_t *eccp, ch_diag_data_t *cdp);
119 static int clear_ecc(struct async_flt *ecc);
120 #if defined(CPU_IMP_ECACHE_ASSOC)
121 static int cpu_ecache_line_valid(ch_async_flt_t *ch_flt);
122 #endif
123 static int cpu_ecache_set_size(struct cpu *cp);
124 static int cpu_ectag_line_invalid(int cachesize, uint64_t tag);
125 static int cpu_ectag_pa_to_subblk(int cachesize, uint64_t subaddr);
126 static uint64_t cpu_ectag_to_pa(int setsize, uint64_t tag);
127 static int cpu_ectag_pa_to_subblk_state(int cachesize,
128 				uint64_t subaddr, uint64_t tag);
129 static void cpu_flush_ecache_line(ch_async_flt_t *ch_flt);
130 static int afsr_to_afar_status(uint64_t afsr, uint64_t afsr_bit);
131 static int afsr_to_esynd_status(uint64_t afsr, uint64_t afsr_bit);
132 static int afsr_to_msynd_status(uint64_t afsr, uint64_t afsr_bit);
133 static int afsr_to_synd_status(uint_t cpuid, uint64_t afsr, uint64_t afsr_bit);
134 static int synd_to_synd_code(int synd_status, ushort_t synd, uint64_t afsr_bit);
135 static void cpu_uninit_ecache_scrub_dr(struct cpu *cp);
136 static void cpu_scrubphys(struct async_flt *aflt);
137 static void cpu_payload_add_aflt(struct async_flt *, nvlist_t *, nvlist_t *,
138     int *, int *);
139 static void cpu_payload_add_ecache(struct async_flt *, nvlist_t *);
140 static void cpu_ereport_init(struct async_flt *aflt);
141 static int cpu_check_secondary_errors(ch_async_flt_t *, uint64_t, uint64_t);
142 static uint8_t cpu_flt_bit_to_plat_error(struct async_flt *aflt);
143 static void cpu_log_fast_ecc_error(caddr_t tpc, int priv, int tl, uint64_t ceen,
144     uint64_t nceen, ch_cpu_logout_t *clop);
145 static int cpu_ce_delayed_ec_logout(uint64_t);
146 static int cpu_matching_ecache_line(uint64_t, void *, int, int *);
147 
148 #ifdef	CHEETAHPLUS_ERRATUM_25
149 static int mondo_recover_proc(uint16_t, int);
150 static void cheetah_nudge_init(void);
151 static void cheetah_nudge_onln(void *arg, cpu_t *cpu, cyc_handler_t *hdlr,
152     cyc_time_t *when);
153 static void cheetah_nudge_buddy(void);
154 #endif	/* CHEETAHPLUS_ERRATUM_25 */
155 
156 #if defined(CPU_IMP_L1_CACHE_PARITY)
157 static void cpu_dcache_parity_info(ch_async_flt_t *ch_flt);
158 static void cpu_dcache_parity_check(ch_async_flt_t *ch_flt, int index);
159 static void cpu_record_dc_data_parity(ch_async_flt_t *ch_flt,
160     ch_dc_data_t *dest_dcp, ch_dc_data_t *src_dcp, int way, int word);
161 static void cpu_icache_parity_info(ch_async_flt_t *ch_flt);
162 static void cpu_icache_parity_check(ch_async_flt_t *ch_flt, int index);
163 static void cpu_pcache_parity_info(ch_async_flt_t *ch_flt);
164 static void cpu_pcache_parity_check(ch_async_flt_t *ch_flt, int index);
165 static void cpu_payload_add_dcache(struct async_flt *, nvlist_t *);
166 static void cpu_payload_add_icache(struct async_flt *, nvlist_t *);
167 #endif	/* CPU_IMP_L1_CACHE_PARITY */
168 
169 int (*p2get_mem_info)(int synd_code, uint64_t paddr,
170     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
171     int *segsp, int *banksp, int *mcidp);
172 
173 /*
174  * This table is used to determine which bit(s) is(are) bad when an ECC
175  * error occurs.  The array is indexed by an 9-bit syndrome.  The entries
176  * of this array have the following semantics:
177  *
178  *      00-127  The number of the bad bit, when only one bit is bad.
179  *      128     ECC bit C0 is bad.
180  *      129     ECC bit C1 is bad.
181  *      130     ECC bit C2 is bad.
182  *      131     ECC bit C3 is bad.
183  *      132     ECC bit C4 is bad.
184  *      133     ECC bit C5 is bad.
185  *      134     ECC bit C6 is bad.
186  *      135     ECC bit C7 is bad.
187  *      136     ECC bit C8 is bad.
188  *	137-143 reserved for Mtag Data and ECC.
189  *      144(M2) Two bits are bad within a nibble.
190  *      145(M3) Three bits are bad within a nibble.
191  *      146(M3) Four bits are bad within a nibble.
192  *      147(M)  Multiple bits (5 or more) are bad.
193  *      148     NO bits are bad.
194  * Based on "Cheetah Programmer's Reference Manual" rev 1.1, Tables 11-4,11-5.
195  */
196 
197 #define	C0	128
198 #define	C1	129
199 #define	C2	130
200 #define	C3	131
201 #define	C4	132
202 #define	C5	133
203 #define	C6	134
204 #define	C7	135
205 #define	C8	136
206 #define	MT0	137	/* Mtag Data bit 0 */
207 #define	MT1	138
208 #define	MT2	139
209 #define	MTC0	140	/* Mtag Check bit 0 */
210 #define	MTC1	141
211 #define	MTC2	142
212 #define	MTC3	143
213 #define	M2	144
214 #define	M3	145
215 #define	M4	146
216 #define	M	147
217 #define	NA	148
218 #if defined(JALAPENO) || defined(SERRANO)
219 #define	S003	149	/* Syndrome 0x003 => likely from CPU/EDU:ST/FRU/BP */
220 #define	S003MEM	150	/* Syndrome 0x003 => likely from WDU/WBP */
221 #define	SLAST	S003MEM	/* last special syndrome */
222 #else /* JALAPENO || SERRANO */
223 #define	S003	149	/* Syndrome 0x003 => likely from EDU:ST */
224 #define	S071	150	/* Syndrome 0x071 => likely from WDU/CPU */
225 #define	S11C	151	/* Syndrome 0x11c => likely from BERR/DBERR */
226 #define	SLAST	S11C	/* last special syndrome */
227 #endif /* JALAPENO || SERRANO */
228 #if defined(JALAPENO) || defined(SERRANO)
229 #define	BPAR0	152	/* syndrom 152 through 167 for bus parity */
230 #define	BPAR15	167
231 #endif	/* JALAPENO || SERRANO */
232 
233 static uint8_t ecc_syndrome_tab[] =
234 {
235 NA,  C0,  C1, S003, C2,  M2,  M3,  47,  C3,  M2,  M2,  53,  M2,  41,  29,   M,
236 C4,   M,   M,  50,  M2,  38,  25,  M2,  M2,  33,  24,  M2,  11,   M,  M2,  16,
237 C5,   M,   M,  46,  M2,  37,  19,  M2,   M,  31,  32,   M,   7,  M2,  M2,  10,
238 M2,  40,  13,  M2,  59,   M,  M2,  66,   M,  M2,  M2,   0,  M2,  67,  71,   M,
239 C6,   M,   M,  43,   M,  36,  18,   M,  M2,  49,  15,   M,  63,  M2,  M2,   6,
240 M2,  44,  28,  M2,   M,  M2,  M2,  52,  68,  M2,  M2,  62,  M2,  M3,  M3,  M4,
241 M2,  26, 106,  M2,  64,   M,  M2,   2, 120,   M,  M2,  M3,   M,  M3,  M3,  M4,
242 #if defined(JALAPENO) || defined(SERRANO)
243 116, M2,  M2,  M3,  M2,  M3,   M,  M4,  M2,  58,  54,  M2,   M,  M4,  M4,  M3,
244 #else	/* JALAPENO || SERRANO */
245 116, S071, M2,  M3,  M2,  M3,   M,  M4,  M2,  58,  54,  M2,   M,  M4,  M4,  M3,
246 #endif	/* JALAPENO || SERRANO */
247 C7,  M2,   M,  42,   M,  35,  17,  M2,   M,  45,  14,  M2,  21,  M2,  M2,   5,
248 M,   27,   M,   M,  99,   M,   M,   3, 114,  M2,  M2,  20,  M2,  M3,  M3,   M,
249 M2,  23, 113,  M2, 112,  M2,   M,  51,  95,   M,  M2,  M3,  M2,  M3,  M3,  M2,
250 103,  M,  M2,  M3,  M2,  M3,  M3,  M4,  M2,  48,   M,   M,  73,  M2,   M,  M3,
251 M2,  22, 110,  M2, 109,  M2,   M,   9, 108,  M2,   M,  M3,  M2,  M3,  M3,   M,
252 102, M2,   M,   M,  M2,  M3,  M3,   M,  M2,  M3,  M3,  M2,   M,  M4,   M,  M3,
253 98,   M,  M2,  M3,  M2,   M,  M3,  M4,  M2,  M3,  M3,  M4,  M3,   M,   M,   M,
254 M2,  M3,  M3,   M,  M3,   M,   M,   M,  56,  M4,   M,  M3,  M4,   M,   M,   M,
255 C8,   M,  M2,  39,   M,  34, 105,  M2,   M,  30, 104,   M, 101,   M,   M,   4,
256 #if defined(JALAPENO) || defined(SERRANO)
257 M,    M, 100,   M,  83,   M,  M2,  12,  87,   M,   M,  57,  M2,   M,  M3,   M,
258 #else	/* JALAPENO || SERRANO */
259 M,    M, 100,   M,  83,   M,  M2,  12,  87,   M,   M,  57, S11C,  M,  M3,   M,
260 #endif	/* JALAPENO || SERRANO */
261 M2,  97,  82,  M2,  78,  M2,  M2,   1,  96,   M,   M,   M,   M,   M,  M3,  M2,
262 94,   M,  M2,  M3,  M2,   M,  M3,   M,  M2,   M,  79,   M,  69,   M,  M4,   M,
263 M2,  93,  92,   M,  91,   M,  M2,   8,  90,  M2,  M2,   M,   M,   M,   M,  M4,
264 89,   M,   M,  M3,  M2,  M3,  M3,   M,   M,   M,  M3,  M2,  M3,  M2,   M,  M3,
265 86,   M,  M2,  M3,  M2,   M,  M3,   M,  M2,   M,  M3,   M,  M3,   M,   M,  M3,
266 M,    M,  M3,  M2,  M3,  M2,  M4,   M,  60,   M,  M2,  M3,  M4,   M,   M,  M2,
267 M2,  88,  85,  M2,  84,   M,  M2,  55,  81,  M2,  M2,  M3,  M2,  M3,  M3,  M4,
268 77,   M,   M,   M,  M2,  M3,   M,   M,  M2,  M3,  M3,  M4,  M3,  M2,   M,   M,
269 74,   M,  M2,  M3,   M,   M,  M3,   M,   M,   M,  M3,   M,  M3,   M,  M4,  M3,
270 M2,  70, 107,  M4,  65,  M2,  M2,   M, 127,   M,   M,   M,  M2,  M3,  M3,   M,
271 80,  M2,  M2,  72,   M, 119, 118,   M,  M2, 126,  76,   M, 125,   M,  M4,  M3,
272 M2, 115, 124,   M,  75,   M,   M,  M3,  61,   M,  M4,   M,  M4,   M,   M,   M,
273 M,  123, 122,  M4, 121,  M4,   M,  M3, 117,  M2,  M2,  M3,  M4,  M3,   M,   M,
274 111,  M,   M,   M,  M4,  M3,  M3,   M,   M,   M,  M3,   M,  M3,  M2,   M,   M
275 };
276 
277 #define	ESYND_TBL_SIZE	(sizeof (ecc_syndrome_tab) / sizeof (uint8_t))
278 
279 #if !(defined(JALAPENO) || defined(SERRANO))
280 /*
281  * This table is used to determine which bit(s) is(are) bad when a Mtag
282  * error occurs.  The array is indexed by an 4-bit ECC syndrome. The entries
283  * of this array have the following semantics:
284  *
285  *      -1	Invalid mtag syndrome.
286  *      137     Mtag Data 0 is bad.
287  *      138     Mtag Data 1 is bad.
288  *      139     Mtag Data 2 is bad.
289  *      140     Mtag ECC 0 is bad.
290  *      141     Mtag ECC 1 is bad.
291  *      142     Mtag ECC 2 is bad.
292  *      143     Mtag ECC 3 is bad.
293  * Based on "Cheetah Programmer's Reference Manual" rev 1.1, Tables 11-6.
294  */
295 short mtag_syndrome_tab[] =
296 {
297 NA, MTC0, MTC1, M2, MTC2, M2, M2, MT0, MTC3, M2, M2,  MT1, M2, MT2, M2, M2
298 };
299 
300 #define	MSYND_TBL_SIZE	(sizeof (mtag_syndrome_tab) / sizeof (short))
301 
302 #else /* !(JALAPENO || SERRANO) */
303 
304 #define	BSYND_TBL_SIZE	16
305 
306 #endif /* !(JALAPENO || SERRANO) */
307 
308 /*
309  * CE initial classification and subsequent action lookup table
310  */
311 static ce_dispact_t ce_disp_table[CE_INITDISPTBL_SIZE];
312 static int ce_disp_inited;
313 
314 /*
315  * Set to disable leaky and partner check for memory correctables
316  */
317 int ce_xdiag_off;
318 
319 /*
320  * The following are not incremented atomically so are indicative only
321  */
322 static int ce_xdiag_drops;
323 static int ce_xdiag_lkydrops;
324 static int ce_xdiag_ptnrdrops;
325 static int ce_xdiag_bad;
326 
327 /*
328  * CE leaky check callback structure
329  */
330 typedef struct {
331 	struct async_flt *lkycb_aflt;
332 	errorq_t *lkycb_eqp;
333 	errorq_elem_t *lkycb_eqep;
334 } ce_lkychk_cb_t;
335 
336 /*
337  * defines for various ecache_flush_flag's
338  */
339 #define	ECACHE_FLUSH_LINE	1
340 #define	ECACHE_FLUSH_ALL	2
341 
342 /*
343  * STICK sync
344  */
345 #define	STICK_ITERATION 10
346 #define	MAX_TSKEW	1
347 #define	EV_A_START	0
348 #define	EV_A_END	1
349 #define	EV_B_START	2
350 #define	EV_B_END	3
351 #define	EVENTS		4
352 
353 static int64_t stick_iter = STICK_ITERATION;
354 static int64_t stick_tsk = MAX_TSKEW;
355 
356 typedef enum {
357 	EVENT_NULL = 0,
358 	SLAVE_START,
359 	SLAVE_CONT,
360 	MASTER_START
361 } event_cmd_t;
362 
363 static volatile event_cmd_t stick_sync_cmd = EVENT_NULL;
364 static int64_t timestamp[EVENTS];
365 static volatile int slave_done;
366 
367 #ifdef DEBUG
368 #define	DSYNC_ATTEMPTS 64
369 typedef struct {
370 	int64_t	skew_val[DSYNC_ATTEMPTS];
371 } ss_t;
372 
373 ss_t stick_sync_stats[NCPU];
374 #endif /* DEBUG */
375 
376 /*
377  * Maximum number of contexts for Cheetah.
378  */
379 #define	MAX_NCTXS	(1 << 13)
380 
381 /* Will be set !NULL for Cheetah+ and derivatives. */
382 uchar_t *ctx_pgsz_array = NULL;
383 #if defined(CPU_IMP_DUAL_PAGESIZE)
384 static uchar_t ctx_pgsz_arr[MAX_NCTXS];
385 uint_t disable_dual_pgsz = 0;
386 #endif	/* CPU_IMP_DUAL_PAGESIZE */
387 
388 /*
389  * Save the cache bootup state for use when internal
390  * caches are to be re-enabled after an error occurs.
391  */
392 uint64_t cache_boot_state;
393 
394 /*
395  * PA[22:0] represent Displacement in Safari configuration space.
396  */
397 uint_t	root_phys_addr_lo_mask = 0x7fffffu;
398 
399 bus_config_eclk_t bus_config_eclk[] = {
400 #if defined(JALAPENO) || defined(SERRANO)
401 	{JBUS_CONFIG_ECLK_1_DIV, JBUS_CONFIG_ECLK_1},
402 	{JBUS_CONFIG_ECLK_2_DIV, JBUS_CONFIG_ECLK_2},
403 	{JBUS_CONFIG_ECLK_32_DIV, JBUS_CONFIG_ECLK_32},
404 #else /* JALAPENO || SERRANO */
405 	{SAFARI_CONFIG_ECLK_1_DIV, SAFARI_CONFIG_ECLK_1},
406 	{SAFARI_CONFIG_ECLK_2_DIV, SAFARI_CONFIG_ECLK_2},
407 	{SAFARI_CONFIG_ECLK_32_DIV, SAFARI_CONFIG_ECLK_32},
408 #endif /* JALAPENO || SERRANO */
409 	{0, 0}
410 };
411 
412 /*
413  * Interval for deferred CEEN reenable
414  */
415 int cpu_ceen_delay_secs = CPU_CEEN_DELAY_SECS;
416 
417 /*
418  * set in /etc/system to control logging of user BERR/TO's
419  */
420 int cpu_berr_to_verbose = 0;
421 
422 /*
423  * set to 0 in /etc/system to defer CEEN reenable for all CEs
424  */
425 uint64_t cpu_ce_not_deferred = CPU_CE_NOT_DEFERRED;
426 uint64_t cpu_ce_not_deferred_ext = CPU_CE_NOT_DEFERRED_EXT;
427 
428 /*
429  * Set of all offline cpus
430  */
431 cpuset_t cpu_offline_set;
432 
433 static void cpu_delayed_check_ce_errors(void *);
434 static void cpu_check_ce_errors(void *);
435 void cpu_error_ecache_flush(ch_async_flt_t *);
436 static int cpu_error_ecache_flush_required(ch_async_flt_t *);
437 static void cpu_log_and_clear_ce(ch_async_flt_t *);
438 void cpu_ce_detected(ch_cpu_errors_t *, int);
439 
440 /*
441  * CE Leaky check timeout in microseconds.  This is chosen to be twice the
442  * memory refresh interval of current DIMMs (64ms).  After initial fix that
443  * gives at least one full refresh cycle in which the cell can leak
444  * (whereafter further refreshes simply reinforce any incorrect bit value).
445  */
446 clock_t cpu_ce_lkychk_timeout_usec = 128000;
447 
448 /*
449  * CE partner check partner caching period in seconds
450  */
451 int cpu_ce_ptnr_cachetime_sec = 60;
452 
453 /*
454  * Sets trap table entry ttentry by overwriting eight instructions from ttlabel
455  */
456 #define	CH_SET_TRAP(ttentry, ttlabel)			\
457 		bcopy((const void *)&ttlabel, &ttentry, 32);		\
458 		flush_instr_mem((caddr_t)&ttentry, 32);
459 
460 static int min_ecache_size;
461 static uint_t priv_hcl_1;
462 static uint_t priv_hcl_2;
463 static uint_t priv_hcl_4;
464 static uint_t priv_hcl_8;
465 
466 void
467 cpu_setup(void)
468 {
469 	extern int at_flags;
470 	extern int disable_delay_tlb_flush, delay_tlb_flush;
471 	extern int cpc_has_overflow_intr;
472 	extern int disable_text_largepages;
473 	extern int use_text_pgsz4m;
474 
475 	/*
476 	 * Setup chip-specific trap handlers.
477 	 */
478 	cpu_init_trap();
479 
480 	cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT);
481 
482 	at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3;
483 
484 	/*
485 	 * save the cache bootup state.
486 	 */
487 	cache_boot_state = get_dcu() & DCU_CACHE;
488 
489 	/*
490 	 * Use the maximum number of contexts available for Cheetah
491 	 * unless it has been tuned for debugging.
492 	 * We are checking against 0 here since this value can be patched
493 	 * while booting.  It can not be patched via /etc/system since it
494 	 * will be patched too late and thus cause the system to panic.
495 	 */
496 	if (nctxs == 0)
497 		nctxs = MAX_NCTXS;
498 
499 	/*
500 	 * Due to the number of entries in the fully-associative tlb
501 	 * this may have to be tuned lower than in spitfire.
502 	 */
503 	pp_slots = MIN(8, MAXPP_SLOTS);
504 
505 	/*
506 	 * Block stores do not invalidate all pages of the d$, pagecopy
507 	 * et. al. need virtual translations with virtual coloring taken
508 	 * into consideration.  prefetch/ldd will pollute the d$ on the
509 	 * load side.
510 	 */
511 	pp_consistent_coloring = PPAGE_STORE_VCOLORING | PPAGE_LOADS_POLLUTE;
512 
513 	if (use_page_coloring) {
514 		do_pg_coloring = 1;
515 		if (use_virtual_coloring)
516 			do_virtual_coloring = 1;
517 	}
518 
519 	isa_list =
520 	    "sparcv9+vis2 sparcv9+vis sparcv9 "
521 	    "sparcv8plus+vis2 sparcv8plus+vis sparcv8plus "
522 	    "sparcv8 sparcv8-fsmuld sparcv7 sparc";
523 
524 	/*
525 	 * On Panther-based machines, this should
526 	 * also include AV_SPARC_POPC too
527 	 */
528 	cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2;
529 
530 	/*
531 	 * On cheetah, there's no hole in the virtual address space
532 	 */
533 	hole_start = hole_end = 0;
534 
535 	/*
536 	 * The kpm mapping window.
537 	 * kpm_size:
538 	 *	The size of a single kpm range.
539 	 *	The overall size will be: kpm_size * vac_colors.
540 	 * kpm_vbase:
541 	 *	The virtual start address of the kpm range within the kernel
542 	 *	virtual address space. kpm_vbase has to be kpm_size aligned.
543 	 */
544 	kpm_size = (size_t)(8ull * 1024 * 1024 * 1024 * 1024); /* 8TB */
545 	kpm_size_shift = 43;
546 	kpm_vbase = (caddr_t)0x8000000000000000ull; /* 8EB */
547 	kpm_smallpages = 1;
548 
549 	/*
550 	 * The traptrace code uses either %tick or %stick for
551 	 * timestamping.  We have %stick so we can use it.
552 	 */
553 	traptrace_use_stick = 1;
554 
555 	/*
556 	 * Cheetah has a performance counter overflow interrupt
557 	 */
558 	cpc_has_overflow_intr = 1;
559 
560 	/*
561 	 * Use cheetah flush-all support
562 	 */
563 	if (!disable_delay_tlb_flush)
564 		delay_tlb_flush = 1;
565 
566 #if defined(CPU_IMP_DUAL_PAGESIZE)
567 	/*
568 	 * Use Cheetah+ and later dual page size support.
569 	 */
570 	if (!disable_dual_pgsz) {
571 		ctx_pgsz_array = ctx_pgsz_arr;
572 	}
573 #endif	/* CPU_IMP_DUAL_PAGESIZE */
574 
575 	/*
576 	 * Declare that this architecture/cpu combination does fpRAS.
577 	 */
578 	fpras_implemented = 1;
579 
580 	/*
581 	 * Enable 4M pages to be used for mapping user text by default.  Don't
582 	 * use large pages for initialized data segments since we may not know
583 	 * at exec() time what should be the preferred large page size for DTLB
584 	 * programming.
585 	 */
586 	use_text_pgsz4m = 1;
587 	disable_text_largepages = (1 << TTE64K) | (1 << TTE512K) |
588 	    (1 << TTE32M) | (1 << TTE256M);
589 
590 	/*
591 	 * Setup CE lookup table
592 	 */
593 	CE_INITDISPTBL_POPULATE(ce_disp_table);
594 	ce_disp_inited = 1;
595 }
596 
597 /*
598  * Called by setcpudelay
599  */
600 void
601 cpu_init_tick_freq(void)
602 {
603 	/*
604 	 * For UltraSPARC III and beyond we want to use the
605 	 * system clock rate as the basis for low level timing,
606 	 * due to support of mixed speed CPUs and power managment.
607 	 */
608 	if (system_clock_freq == 0)
609 		cmn_err(CE_PANIC, "setcpudelay: invalid system_clock_freq");
610 
611 	sys_tick_freq = system_clock_freq;
612 }
613 
614 #ifdef CHEETAHPLUS_ERRATUM_25
615 /*
616  * Tunables
617  */
618 int cheetah_bpe_off = 0;
619 int cheetah_sendmondo_recover = 1;
620 int cheetah_sendmondo_fullscan = 0;
621 int cheetah_sendmondo_recover_delay = 5;
622 
623 #define	CHEETAH_LIVELOCK_MIN_DELAY	1
624 
625 /*
626  * Recovery Statistics
627  */
628 typedef struct cheetah_livelock_entry	{
629 	int cpuid;		/* fallen cpu */
630 	int buddy;		/* cpu that ran recovery */
631 	clock_t lbolt;		/* when recovery started */
632 	hrtime_t recovery_time;	/* time spent in recovery */
633 } cheetah_livelock_entry_t;
634 
635 #define	CHEETAH_LIVELOCK_NENTRY	32
636 
637 cheetah_livelock_entry_t cheetah_livelock_hist[CHEETAH_LIVELOCK_NENTRY];
638 int cheetah_livelock_entry_nxt;
639 
640 #define	CHEETAH_LIVELOCK_ENTRY_NEXT(statp)	{			\
641 	statp = cheetah_livelock_hist + cheetah_livelock_entry_nxt;	\
642 	if (++cheetah_livelock_entry_nxt >= CHEETAH_LIVELOCK_NENTRY) {	\
643 		cheetah_livelock_entry_nxt = 0;				\
644 	}								\
645 }
646 
647 #define	CHEETAH_LIVELOCK_ENTRY_SET(statp, item, val)	statp->item = val
648 
649 struct {
650 	hrtime_t hrt;		/* maximum recovery time */
651 	int recovery;		/* recovered */
652 	int full_claimed;	/* maximum pages claimed in full recovery */
653 	int proc_entry;		/* attempted to claim TSB */
654 	int proc_tsb_scan;	/* tsb scanned */
655 	int proc_tsb_partscan;	/* tsb partially scanned */
656 	int proc_tsb_fullscan;	/* whole tsb scanned */
657 	int proc_claimed;	/* maximum pages claimed in tsb scan */
658 	int proc_user;		/* user thread */
659 	int proc_kernel;	/* kernel thread */
660 	int proc_onflt;		/* bad stack */
661 	int proc_cpu;		/* null cpu */
662 	int proc_thread;	/* null thread */
663 	int proc_proc;		/* null proc */
664 	int proc_as;		/* null as */
665 	int proc_hat;		/* null hat */
666 	int proc_hat_inval;	/* hat contents don't make sense */
667 	int proc_hat_busy;	/* hat is changing TSBs */
668 	int proc_tsb_reloc;	/* TSB skipped because being relocated */
669 	int proc_cnum_bad;	/* cnum out of range */
670 	int proc_cnum;		/* last cnum processed */
671 	tte_t proc_tte;		/* last tte processed */
672 } cheetah_livelock_stat;
673 
674 #define	CHEETAH_LIVELOCK_STAT(item)	cheetah_livelock_stat.item++
675 
676 #define	CHEETAH_LIVELOCK_STATSET(item, value)		\
677 	cheetah_livelock_stat.item = value
678 
679 #define	CHEETAH_LIVELOCK_MAXSTAT(item, value)	{	\
680 	if (value > cheetah_livelock_stat.item)		\
681 		cheetah_livelock_stat.item = value;	\
682 }
683 
684 /*
685  * Attempt to recover a cpu by claiming every cache line as saved
686  * in the TSB that the non-responsive cpu is using. Since we can't
687  * grab any adaptive lock, this is at best an attempt to do so. Because
688  * we don't grab any locks, we must operate under the protection of
689  * on_fault().
690  *
691  * Return 1 if cpuid could be recovered, 0 if failed.
692  */
693 int
694 mondo_recover_proc(uint16_t cpuid, int bn)
695 {
696 	label_t ljb;
697 	cpu_t *cp;
698 	kthread_t *t;
699 	proc_t *p;
700 	struct as *as;
701 	struct hat *hat;
702 	short  cnum;
703 	struct tsb_info *tsbinfop;
704 	struct tsbe *tsbep;
705 	caddr_t tsbp;
706 	caddr_t end_tsbp;
707 	uint64_t paddr;
708 	uint64_t idsr;
709 	u_longlong_t pahi, palo;
710 	int pages_claimed = 0;
711 	tte_t tsbe_tte;
712 	int tried_kernel_tsb = 0;
713 
714 	CHEETAH_LIVELOCK_STAT(proc_entry);
715 
716 	if (on_fault(&ljb)) {
717 		CHEETAH_LIVELOCK_STAT(proc_onflt);
718 		goto badstruct;
719 	}
720 
721 	if ((cp = cpu[cpuid]) == NULL) {
722 		CHEETAH_LIVELOCK_STAT(proc_cpu);
723 		goto badstruct;
724 	}
725 
726 	if ((t = cp->cpu_thread) == NULL) {
727 		CHEETAH_LIVELOCK_STAT(proc_thread);
728 		goto badstruct;
729 	}
730 
731 	if ((p = ttoproc(t)) == NULL) {
732 		CHEETAH_LIVELOCK_STAT(proc_proc);
733 		goto badstruct;
734 	}
735 
736 	if ((as = p->p_as) == NULL) {
737 		CHEETAH_LIVELOCK_STAT(proc_as);
738 		goto badstruct;
739 	}
740 
741 	if ((hat = as->a_hat) == NULL) {
742 		CHEETAH_LIVELOCK_STAT(proc_hat);
743 		goto badstruct;
744 	}
745 
746 	if (hat != ksfmmup) {
747 		CHEETAH_LIVELOCK_STAT(proc_user);
748 		if (hat->sfmmu_flags & (HAT_BUSY | HAT_SWAPPED | HAT_SWAPIN)) {
749 			CHEETAH_LIVELOCK_STAT(proc_hat_busy);
750 			goto badstruct;
751 		}
752 		tsbinfop = hat->sfmmu_tsb;
753 		if (tsbinfop == NULL) {
754 			CHEETAH_LIVELOCK_STAT(proc_hat_inval);
755 			goto badstruct;
756 		}
757 		tsbp = tsbinfop->tsb_va;
758 		end_tsbp = tsbp + TSB_BYTES(tsbinfop->tsb_szc);
759 	} else {
760 		CHEETAH_LIVELOCK_STAT(proc_kernel);
761 		tsbinfop = NULL;
762 		tsbp = ktsb_base;
763 		end_tsbp = tsbp + TSB_BYTES(ktsb_sz);
764 	}
765 
766 	/* Verify as */
767 	if (hat->sfmmu_as != as) {
768 		CHEETAH_LIVELOCK_STAT(proc_hat_inval);
769 		goto badstruct;
770 	}
771 
772 	cnum = hat->sfmmu_cnum;
773 	CHEETAH_LIVELOCK_STATSET(proc_cnum, cnum);
774 
775 	if ((cnum < 0) || (cnum == INVALID_CONTEXT) || (cnum >= nctxs)) {
776 		CHEETAH_LIVELOCK_STAT(proc_cnum_bad);
777 		goto badstruct;
778 	}
779 
780 	do {
781 		CHEETAH_LIVELOCK_STAT(proc_tsb_scan);
782 
783 		/*
784 		 * Skip TSBs being relocated.  This is important because
785 		 * we want to avoid the following deadlock scenario:
786 		 *
787 		 * 1) when we came in we set ourselves to "in recover" state.
788 		 * 2) when we try to touch TSB being relocated the mapping
789 		 *    will be in the suspended state so we'll spin waiting
790 		 *    for it to be unlocked.
791 		 * 3) when the CPU that holds the TSB mapping locked tries to
792 		 *    unlock it it will send a xtrap which will fail to xcall
793 		 *    us or the CPU we're trying to recover, and will in turn
794 		 *    enter the mondo code.
795 		 * 4) since we are still spinning on the locked mapping
796 		 *    no further progress will be made and the system will
797 		 *    inevitably hard hang.
798 		 *
799 		 * A TSB not being relocated can't begin being relocated
800 		 * while we're accessing it because we check
801 		 * sendmondo_in_recover before relocating TSBs.
802 		 */
803 		if (hat != ksfmmup &&
804 		    (tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
805 			CHEETAH_LIVELOCK_STAT(proc_tsb_reloc);
806 			goto next_tsbinfo;
807 		}
808 
809 		for (tsbep = (struct tsbe *)tsbp;
810 		    tsbep < (struct tsbe *)end_tsbp; tsbep++) {
811 			tsbe_tte = tsbep->tte_data;
812 
813 			if (tsbe_tte.tte_val == 0) {
814 				/*
815 				 * Invalid tte
816 				 */
817 				continue;
818 			}
819 			if (tsbe_tte.tte_se) {
820 				/*
821 				 * Don't want device registers
822 				 */
823 				continue;
824 			}
825 			if (tsbe_tte.tte_cp == 0) {
826 				/*
827 				 * Must be cached in E$
828 				 */
829 				continue;
830 			}
831 			CHEETAH_LIVELOCK_STATSET(proc_tte, tsbe_tte);
832 			idsr = getidsr();
833 			if ((idsr & (IDSR_NACK_BIT(bn) |
834 			    IDSR_BUSY_BIT(bn))) == 0) {
835 				CHEETAH_LIVELOCK_STAT(proc_tsb_partscan);
836 				goto done;
837 			}
838 			pahi = tsbe_tte.tte_pahi;
839 			palo = tsbe_tte.tte_palo;
840 			paddr = (uint64_t)((pahi << 32) |
841 			    (palo << MMU_PAGESHIFT));
842 			claimlines(paddr, TTEBYTES(TTE_CSZ(&tsbe_tte)),
843 			    CH_ECACHE_SUBBLK_SIZE);
844 			if ((idsr & IDSR_BUSY_BIT(bn)) == 0) {
845 				shipit(cpuid, bn);
846 			}
847 			pages_claimed++;
848 		}
849 next_tsbinfo:
850 		if (tsbinfop != NULL)
851 			tsbinfop = tsbinfop->tsb_next;
852 		if (tsbinfop != NULL) {
853 			tsbp = tsbinfop->tsb_va;
854 			end_tsbp = tsbp + TSB_BYTES(tsbinfop->tsb_szc);
855 		} else if (tsbp == ktsb_base) {
856 			tried_kernel_tsb = 1;
857 		} else if (!tried_kernel_tsb) {
858 			tsbp = ktsb_base;
859 			end_tsbp = tsbp + TSB_BYTES(ktsb_sz);
860 			hat = ksfmmup;
861 			tsbinfop = NULL;
862 		}
863 	} while (tsbinfop != NULL ||
864 			((tsbp == ktsb_base) && !tried_kernel_tsb));
865 
866 	CHEETAH_LIVELOCK_STAT(proc_tsb_fullscan);
867 	CHEETAH_LIVELOCK_MAXSTAT(proc_claimed, pages_claimed);
868 	no_fault();
869 	idsr = getidsr();
870 	if ((idsr & (IDSR_NACK_BIT(bn) |
871 	    IDSR_BUSY_BIT(bn))) == 0) {
872 		return (1);
873 	} else {
874 		return (0);
875 	}
876 
877 done:
878 	no_fault();
879 	CHEETAH_LIVELOCK_MAXSTAT(proc_claimed, pages_claimed);
880 	return (1);
881 
882 badstruct:
883 	no_fault();
884 	return (0);
885 }
886 
887 /*
888  * Attempt to claim ownership, temporarily, of every cache line that a
889  * non-responsive cpu might be using.  This might kick that cpu out of
890  * this state.
891  *
892  * The return value indicates to the caller if we have exhausted all recovery
893  * techniques. If 1 is returned, it is useless to call this function again
894  * even for a different target CPU.
895  */
896 int
897 mondo_recover(uint16_t cpuid, int bn)
898 {
899 	struct memseg *seg;
900 	uint64_t begin_pa, end_pa, cur_pa;
901 	hrtime_t begin_hrt, end_hrt;
902 	int retval = 0;
903 	int pages_claimed = 0;
904 	cheetah_livelock_entry_t *histp;
905 	uint64_t idsr;
906 
907 	if (cas32(&sendmondo_in_recover, 0, 1) != 0) {
908 		/*
909 		 * Wait while recovery takes place
910 		 */
911 		while (sendmondo_in_recover) {
912 			drv_usecwait(1);
913 		}
914 		/*
915 		 * Assume we didn't claim the whole memory. If
916 		 * the target of this caller is not recovered,
917 		 * it will come back.
918 		 */
919 		return (retval);
920 	}
921 
922 	CHEETAH_LIVELOCK_ENTRY_NEXT(histp)
923 	CHEETAH_LIVELOCK_ENTRY_SET(histp, lbolt, lbolt);
924 	CHEETAH_LIVELOCK_ENTRY_SET(histp, cpuid, cpuid);
925 	CHEETAH_LIVELOCK_ENTRY_SET(histp, buddy, CPU->cpu_id);
926 
927 	begin_hrt = gethrtime_waitfree();
928 	/*
929 	 * First try to claim the lines in the TSB the target
930 	 * may have been using.
931 	 */
932 	if (mondo_recover_proc(cpuid, bn) == 1) {
933 		/*
934 		 * Didn't claim the whole memory
935 		 */
936 		goto done;
937 	}
938 
939 	/*
940 	 * We tried using the TSB. The target is still
941 	 * not recovered. Check if complete memory scan is
942 	 * enabled.
943 	 */
944 	if (cheetah_sendmondo_fullscan == 0) {
945 		/*
946 		 * Full memory scan is disabled.
947 		 */
948 		retval = 1;
949 		goto done;
950 	}
951 
952 	/*
953 	 * Try claiming the whole memory.
954 	 */
955 	for (seg = memsegs; seg; seg = seg->next) {
956 		begin_pa = (uint64_t)(seg->pages_base) << MMU_PAGESHIFT;
957 		end_pa = (uint64_t)(seg->pages_end) << MMU_PAGESHIFT;
958 		for (cur_pa = begin_pa; cur_pa < end_pa;
959 		    cur_pa += MMU_PAGESIZE) {
960 			idsr = getidsr();
961 			if ((idsr & (IDSR_NACK_BIT(bn) |
962 			    IDSR_BUSY_BIT(bn))) == 0) {
963 				/*
964 				 * Didn't claim all memory
965 				 */
966 				goto done;
967 			}
968 			claimlines(cur_pa, MMU_PAGESIZE,
969 			    CH_ECACHE_SUBBLK_SIZE);
970 			if ((idsr & IDSR_BUSY_BIT(bn)) == 0) {
971 				shipit(cpuid, bn);
972 			}
973 			pages_claimed++;
974 		}
975 	}
976 
977 	/*
978 	 * We did all we could.
979 	 */
980 	retval = 1;
981 
982 done:
983 	/*
984 	 * Update statistics
985 	 */
986 	end_hrt = gethrtime_waitfree();
987 	CHEETAH_LIVELOCK_STAT(recovery);
988 	CHEETAH_LIVELOCK_MAXSTAT(hrt, (end_hrt - begin_hrt));
989 	CHEETAH_LIVELOCK_MAXSTAT(full_claimed, pages_claimed);
990 	CHEETAH_LIVELOCK_ENTRY_SET(histp, recovery_time, \
991 	    (end_hrt -  begin_hrt));
992 
993 	while (cas32(&sendmondo_in_recover, 1, 0) != 1);
994 
995 	return (retval);
996 }
997 
998 /*
999  * This is called by the cyclic framework when this CPU becomes online
1000  */
1001 /*ARGSUSED*/
1002 static void
1003 cheetah_nudge_onln(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
1004 {
1005 
1006 	hdlr->cyh_func = (cyc_func_t)cheetah_nudge_buddy;
1007 	hdlr->cyh_level = CY_LOW_LEVEL;
1008 	hdlr->cyh_arg = NULL;
1009 
1010 	/*
1011 	 * Stagger the start time
1012 	 */
1013 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
1014 	if (cheetah_sendmondo_recover_delay < CHEETAH_LIVELOCK_MIN_DELAY) {
1015 		cheetah_sendmondo_recover_delay = CHEETAH_LIVELOCK_MIN_DELAY;
1016 	}
1017 	when->cyt_interval = cheetah_sendmondo_recover_delay * NANOSEC;
1018 }
1019 
1020 /*
1021  * Create a low level cyclic to send a xtrap to the next cpu online.
1022  * However, there's no need to have this running on a uniprocessor system.
1023  */
1024 static void
1025 cheetah_nudge_init(void)
1026 {
1027 	cyc_omni_handler_t hdlr;
1028 
1029 	if (max_ncpus == 1) {
1030 		return;
1031 	}
1032 
1033 	hdlr.cyo_online = cheetah_nudge_onln;
1034 	hdlr.cyo_offline = NULL;
1035 	hdlr.cyo_arg = NULL;
1036 
1037 	mutex_enter(&cpu_lock);
1038 	(void) cyclic_add_omni(&hdlr);
1039 	mutex_exit(&cpu_lock);
1040 }
1041 
1042 /*
1043  * Cyclic handler to wake up buddy
1044  */
1045 void
1046 cheetah_nudge_buddy(void)
1047 {
1048 	/*
1049 	 * Disable kernel preemption to protect the cpu list
1050 	 */
1051 	kpreempt_disable();
1052 	if ((CPU->cpu_next_onln != CPU) && (sendmondo_in_recover == 0)) {
1053 		xt_one(CPU->cpu_next_onln->cpu_id, (xcfunc_t *)xt_sync_tl1,
1054 		    0, 0);
1055 	}
1056 	kpreempt_enable();
1057 }
1058 
1059 #endif	/* CHEETAHPLUS_ERRATUM_25 */
1060 
1061 #ifdef SEND_MONDO_STATS
1062 uint32_t x_one_stimes[64];
1063 uint32_t x_one_ltimes[16];
1064 uint32_t x_set_stimes[64];
1065 uint32_t x_set_ltimes[16];
1066 uint32_t x_set_cpus[NCPU];
1067 uint32_t x_nack_stimes[64];
1068 #endif
1069 
1070 /*
1071  * Note: A version of this function is used by the debugger via the KDI,
1072  * and must be kept in sync with this version.  Any changes made to this
1073  * function to support new chips or to accomodate errata must also be included
1074  * in the KDI-specific version.  See us3_kdi.c.
1075  */
1076 void
1077 send_one_mondo(int cpuid)
1078 {
1079 	int busy, nack;
1080 	uint64_t idsr, starttick, endtick, tick, lasttick;
1081 	uint64_t busymask;
1082 #ifdef	CHEETAHPLUS_ERRATUM_25
1083 	int recovered = 0;
1084 #endif
1085 
1086 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
1087 	starttick = lasttick = gettick();
1088 	shipit(cpuid, 0);
1089 	endtick = starttick + xc_tick_limit;
1090 	busy = nack = 0;
1091 #if defined(JALAPENO) || defined(SERRANO)
1092 	/*
1093 	 * Lower 2 bits of the agent ID determine which BUSY/NACK pair
1094 	 * will be used for dispatching interrupt. For now, assume
1095 	 * there are no more than IDSR_BN_SETS CPUs, hence no aliasing
1096 	 * issues with respect to BUSY/NACK pair usage.
1097 	 */
1098 	busymask  = IDSR_BUSY_BIT(cpuid);
1099 #else /* JALAPENO || SERRANO */
1100 	busymask = IDSR_BUSY;
1101 #endif /* JALAPENO || SERRANO */
1102 	for (;;) {
1103 		idsr = getidsr();
1104 		if (idsr == 0)
1105 			break;
1106 
1107 		tick = gettick();
1108 		/*
1109 		 * If there is a big jump between the current tick
1110 		 * count and lasttick, we have probably hit a break
1111 		 * point.  Adjust endtick accordingly to avoid panic.
1112 		 */
1113 		if (tick > (lasttick + xc_tick_jump_limit))
1114 			endtick += (tick - lasttick);
1115 		lasttick = tick;
1116 		if (tick > endtick) {
1117 			if (panic_quiesce)
1118 				return;
1119 #ifdef	CHEETAHPLUS_ERRATUM_25
1120 			if (cheetah_sendmondo_recover && recovered == 0) {
1121 				if (mondo_recover(cpuid, 0)) {
1122 					/*
1123 					 * We claimed the whole memory or
1124 					 * full scan is disabled.
1125 					 */
1126 					recovered++;
1127 				}
1128 				tick = gettick();
1129 				endtick = tick + xc_tick_limit;
1130 				lasttick = tick;
1131 				/*
1132 				 * Recheck idsr
1133 				 */
1134 				continue;
1135 			} else
1136 #endif	/* CHEETAHPLUS_ERRATUM_25 */
1137 			{
1138 				cmn_err(CE_PANIC, "send mondo timeout "
1139 				    "(target 0x%x) [%d NACK %d BUSY]",
1140 				    cpuid, nack, busy);
1141 			}
1142 		}
1143 
1144 		if (idsr & busymask) {
1145 			busy++;
1146 			continue;
1147 		}
1148 		drv_usecwait(1);
1149 		shipit(cpuid, 0);
1150 		nack++;
1151 		busy = 0;
1152 	}
1153 #ifdef SEND_MONDO_STATS
1154 	{
1155 		int n = gettick() - starttick;
1156 		if (n < 8192)
1157 			x_one_stimes[n >> 7]++;
1158 		else
1159 			x_one_ltimes[(n >> 13) & 0xf]++;
1160 	}
1161 #endif
1162 }
1163 
1164 void
1165 syncfpu(void)
1166 {
1167 }
1168 
1169 /*
1170  * Return processor specific async error structure
1171  * size used.
1172  */
1173 int
1174 cpu_aflt_size(void)
1175 {
1176 	return (sizeof (ch_async_flt_t));
1177 }
1178 
1179 /*
1180  * Tunable to disable the checking of other cpu logout areas during panic for
1181  * potential syndrome 71 generating errors.
1182  */
1183 int enable_check_other_cpus_logout = 1;
1184 
1185 /*
1186  * Check other cpus logout area for potential synd 71 generating
1187  * errors.
1188  */
1189 static void
1190 cpu_check_cpu_logout(int cpuid, caddr_t tpc, int tl, int ecc_type,
1191     ch_cpu_logout_t *clop)
1192 {
1193 	struct async_flt *aflt;
1194 	ch_async_flt_t ch_flt;
1195 	uint64_t t_afar, t_afsr, t_afsr_ext, t_afsr_errs;
1196 
1197 	if (clop == NULL || clop->clo_data.chd_afar == LOGOUT_INVALID) {
1198 		return;
1199 	}
1200 
1201 	bzero(&ch_flt, sizeof (ch_async_flt_t));
1202 
1203 	t_afar = clop->clo_data.chd_afar;
1204 	t_afsr = clop->clo_data.chd_afsr;
1205 	t_afsr_ext = clop->clo_data.chd_afsr_ext;
1206 #if defined(SERRANO)
1207 	ch_flt.afar2 = clop->clo_data.chd_afar2;
1208 #endif	/* SERRANO */
1209 
1210 	/*
1211 	 * In order to simplify code, we maintain this afsr_errs
1212 	 * variable which holds the aggregate of AFSR and AFSR_EXT
1213 	 * sticky bits.
1214 	 */
1215 	t_afsr_errs = (t_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
1216 	    (t_afsr & C_AFSR_ALL_ERRS);
1217 
1218 	/* Setup the async fault structure */
1219 	aflt = (struct async_flt *)&ch_flt;
1220 	aflt->flt_id = gethrtime_waitfree();
1221 	ch_flt.afsr_ext = t_afsr_ext;
1222 	ch_flt.afsr_errs = t_afsr_errs;
1223 	aflt->flt_stat = t_afsr;
1224 	aflt->flt_addr = t_afar;
1225 	aflt->flt_bus_id = cpuid;
1226 	aflt->flt_inst = cpuid;
1227 	aflt->flt_pc = tpc;
1228 	aflt->flt_prot = AFLT_PROT_NONE;
1229 	aflt->flt_class = CPU_FAULT;
1230 	aflt->flt_priv = ((t_afsr & C_AFSR_PRIV) != 0);
1231 	aflt->flt_tl = tl;
1232 	aflt->flt_status = ecc_type;
1233 	aflt->flt_panic = C_AFSR_PANIC(t_afsr_errs);
1234 
1235 	/*
1236 	 * Queue events on the async event queue, one event per error bit.
1237 	 * If no events are queued, queue an event to complain.
1238 	 */
1239 	if (cpu_queue_events(&ch_flt, NULL, t_afsr_errs, clop) == 0) {
1240 		ch_flt.flt_type = CPU_INV_AFSR;
1241 		cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_INVALID_AFSR,
1242 		    (void *)&ch_flt, sizeof (ch_async_flt_t), ue_queue,
1243 		    aflt->flt_panic);
1244 	}
1245 
1246 	/*
1247 	 * Zero out + invalidate CPU logout.
1248 	 */
1249 	bzero(clop, sizeof (ch_cpu_logout_t));
1250 	clop->clo_data.chd_afar = LOGOUT_INVALID;
1251 }
1252 
1253 /*
1254  * Check the logout areas of all other cpus for unlogged errors.
1255  */
1256 static void
1257 cpu_check_other_cpus_logout(void)
1258 {
1259 	int i, j;
1260 	processorid_t myid;
1261 	struct cpu *cp;
1262 	ch_err_tl1_data_t *cl1p;
1263 
1264 	myid = CPU->cpu_id;
1265 	for (i = 0; i < NCPU; i++) {
1266 		cp = cpu[i];
1267 
1268 		if ((cp == NULL) || !(cp->cpu_flags & CPU_EXISTS) ||
1269 		    (cp->cpu_id == myid) || (CPU_PRIVATE(cp) == NULL)) {
1270 			continue;
1271 		}
1272 
1273 		/*
1274 		 * Check each of the tl>0 logout areas
1275 		 */
1276 		cl1p = CPU_PRIVATE_PTR(cp, chpr_tl1_err_data[0]);
1277 		for (j = 0; j < CH_ERR_TL1_TLMAX; j++, cl1p++) {
1278 			if (cl1p->ch_err_tl1_flags == 0)
1279 				continue;
1280 
1281 			cpu_check_cpu_logout(i, (caddr_t)cl1p->ch_err_tl1_tpc,
1282 			    1, ECC_F_TRAP, &cl1p->ch_err_tl1_logout);
1283 		}
1284 
1285 		/*
1286 		 * Check each of the remaining logout areas
1287 		 */
1288 		cpu_check_cpu_logout(i, NULL, 0, ECC_F_TRAP,
1289 		    CPU_PRIVATE_PTR(cp, chpr_fecctl0_logout));
1290 		cpu_check_cpu_logout(i, NULL, 0, ECC_C_TRAP,
1291 		    CPU_PRIVATE_PTR(cp, chpr_cecc_logout));
1292 		cpu_check_cpu_logout(i, NULL, 0, ECC_D_TRAP,
1293 		    CPU_PRIVATE_PTR(cp, chpr_async_logout));
1294 	}
1295 }
1296 
1297 /*
1298  * The fast_ecc_err handler transfers control here for UCU, UCC events.
1299  * Note that we flush Ecache twice, once in the fast_ecc_err handler to
1300  * flush the error that caused the UCU/UCC, then again here at the end to
1301  * flush the TL=1 trap handler code out of the Ecache, so we can minimize
1302  * the probability of getting a TL>1 Fast ECC trap when we're fielding
1303  * another Fast ECC trap.
1304  *
1305  * Cheetah+ also handles: TSCE: No additional processing required.
1306  * Panther adds L3_UCU and L3_UCC which are reported in AFSR_EXT.
1307  *
1308  * Note that the p_clo_flags input is only valid in cases where the
1309  * cpu_private struct is not yet initialized (since that is the only
1310  * time that information cannot be obtained from the logout struct.)
1311  */
1312 /*ARGSUSED*/
1313 void
1314 cpu_fast_ecc_error(struct regs *rp, ulong_t p_clo_flags)
1315 {
1316 	ch_cpu_logout_t *clop;
1317 	uint64_t ceen, nceen;
1318 
1319 	/*
1320 	 * Get the CPU log out info. If we can't find our CPU private
1321 	 * pointer, then we will have to make due without any detailed
1322 	 * logout information.
1323 	 */
1324 	if (CPU_PRIVATE(CPU) == NULL) {
1325 		clop = NULL;
1326 		ceen = p_clo_flags & EN_REG_CEEN;
1327 		nceen = p_clo_flags & EN_REG_NCEEN;
1328 	} else {
1329 		clop = CPU_PRIVATE_PTR(CPU, chpr_fecctl0_logout);
1330 		ceen = clop->clo_flags & EN_REG_CEEN;
1331 		nceen = clop->clo_flags & EN_REG_NCEEN;
1332 	}
1333 
1334 	cpu_log_fast_ecc_error((caddr_t)rp->r_pc,
1335 	    (rp->r_tstate & TSTATE_PRIV) ? 1 : 0, 0, ceen, nceen, clop);
1336 }
1337 
1338 /*
1339  * Log fast ecc error, called from either Fast ECC at TL=0 or Fast
1340  * ECC at TL>0.  Need to supply either a error register pointer or a
1341  * cpu logout structure pointer.
1342  */
1343 static void
1344 cpu_log_fast_ecc_error(caddr_t tpc, int priv, int tl, uint64_t ceen,
1345     uint64_t nceen, ch_cpu_logout_t *clop)
1346 {
1347 	struct async_flt *aflt;
1348 	ch_async_flt_t ch_flt;
1349 	uint64_t t_afar, t_afsr, t_afsr_ext, t_afsr_errs;
1350 	char pr_reason[MAX_REASON_STRING];
1351 	ch_cpu_errors_t cpu_error_regs;
1352 
1353 	bzero(&ch_flt, sizeof (ch_async_flt_t));
1354 	/*
1355 	 * If no cpu logout data, then we will have to make due without
1356 	 * any detailed logout information.
1357 	 */
1358 	if (clop == NULL) {
1359 		ch_flt.flt_diag_data.chd_afar = LOGOUT_INVALID;
1360 		get_cpu_error_state(&cpu_error_regs);
1361 		set_cpu_error_state(&cpu_error_regs);
1362 		t_afar = cpu_error_regs.afar;
1363 		t_afsr = cpu_error_regs.afsr;
1364 		t_afsr_ext = cpu_error_regs.afsr_ext;
1365 #if defined(SERRANO)
1366 		ch_flt.afar2 = cpu_error_regs.afar2;
1367 #endif	/* SERRANO */
1368 	} else {
1369 		t_afar = clop->clo_data.chd_afar;
1370 		t_afsr = clop->clo_data.chd_afsr;
1371 		t_afsr_ext = clop->clo_data.chd_afsr_ext;
1372 #if defined(SERRANO)
1373 		ch_flt.afar2 = clop->clo_data.chd_afar2;
1374 #endif	/* SERRANO */
1375 	}
1376 
1377 	/*
1378 	 * In order to simplify code, we maintain this afsr_errs
1379 	 * variable which holds the aggregate of AFSR and AFSR_EXT
1380 	 * sticky bits.
1381 	 */
1382 	t_afsr_errs = (t_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
1383 	    (t_afsr & C_AFSR_ALL_ERRS);
1384 	pr_reason[0] = '\0';
1385 
1386 	/* Setup the async fault structure */
1387 	aflt = (struct async_flt *)&ch_flt;
1388 	aflt->flt_id = gethrtime_waitfree();
1389 	ch_flt.afsr_ext = t_afsr_ext;
1390 	ch_flt.afsr_errs = t_afsr_errs;
1391 	aflt->flt_stat = t_afsr;
1392 	aflt->flt_addr = t_afar;
1393 	aflt->flt_bus_id = getprocessorid();
1394 	aflt->flt_inst = CPU->cpu_id;
1395 	aflt->flt_pc = tpc;
1396 	aflt->flt_prot = AFLT_PROT_NONE;
1397 	aflt->flt_class = CPU_FAULT;
1398 	aflt->flt_priv = priv;
1399 	aflt->flt_tl = tl;
1400 	aflt->flt_status = ECC_F_TRAP;
1401 	aflt->flt_panic = C_AFSR_PANIC(t_afsr_errs);
1402 
1403 	/*
1404 	 * XXXX - Phenomenal hack to get around Solaris not getting all the
1405 	 * cmn_err messages out to the console.  The situation is a UCU (in
1406 	 * priv mode) which causes a WDU which causes a UE (on the retry).
1407 	 * The messages for the UCU and WDU are enqueued and then pulled off
1408 	 * the async queue via softint and syslogd starts to process them
1409 	 * but doesn't get them to the console.  The UE causes a panic, but
1410 	 * since the UCU/WDU messages are already in transit, those aren't
1411 	 * on the async queue.  The hack is to check if we have a matching
1412 	 * WDU event for the UCU, and if it matches, we're more than likely
1413 	 * going to panic with a UE, unless we're under protection.  So, we
1414 	 * check to see if we got a matching WDU event and if we're under
1415 	 * protection.
1416 	 *
1417 	 * For Cheetah/Cheetah+/Jaguar/Jalapeno, the sequence we care about
1418 	 * looks like this:
1419 	 *    UCU->WDU->UE
1420 	 * For Panther, it could look like either of these:
1421 	 *    UCU---->WDU->L3_WDU->UE
1422 	 *    L3_UCU->WDU->L3_WDU->UE
1423 	 */
1424 	if ((t_afsr_errs & (C_AFSR_UCU | C_AFSR_L3_UCU)) &&
1425 	    aflt->flt_panic == 0 && aflt->flt_priv != 0 &&
1426 	    curthread->t_ontrap == NULL && curthread->t_lofault == NULL) {
1427 		get_cpu_error_state(&cpu_error_regs);
1428 		aflt->flt_panic |= ((cpu_error_regs.afsr & C_AFSR_WDU) &&
1429 		    (cpu_error_regs.afar == t_afar));
1430 		aflt->flt_panic |= ((clop == NULL) &&
1431 		    (t_afsr_errs & C_AFSR_WDU));
1432 	}
1433 
1434 	/*
1435 	 * Queue events on the async event queue, one event per error bit.
1436 	 * If no events are queued or no Fast ECC events are on in the AFSR,
1437 	 * queue an event to complain.
1438 	 */
1439 	if (cpu_queue_events(&ch_flt, pr_reason, t_afsr_errs, clop) == 0 ||
1440 	    ((t_afsr_errs & (C_AFSR_FECC_ERRS | C_AFSR_EXT_FECC_ERRS)) == 0)) {
1441 		ch_flt.flt_type = CPU_INV_AFSR;
1442 		cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_INVALID_AFSR,
1443 		    (void *)&ch_flt, sizeof (ch_async_flt_t), ue_queue,
1444 		    aflt->flt_panic);
1445 	}
1446 
1447 	/*
1448 	 * Zero out + invalidate CPU logout.
1449 	 */
1450 	if (clop) {
1451 		bzero(clop, sizeof (ch_cpu_logout_t));
1452 		clop->clo_data.chd_afar = LOGOUT_INVALID;
1453 	}
1454 
1455 	/*
1456 	 * We carefully re-enable NCEEN and CEEN and then check if any deferred
1457 	 * or disrupting errors have happened.  We do this because if a
1458 	 * deferred or disrupting error had occurred with NCEEN/CEEN off, the
1459 	 * trap will not be taken when NCEEN/CEEN is re-enabled.  Note that
1460 	 * CEEN works differently on Cheetah than on Spitfire.  Also, we enable
1461 	 * NCEEN/CEEN *before* checking the AFSR to avoid the small window of a
1462 	 * deferred or disrupting error happening between checking the AFSR and
1463 	 * enabling NCEEN/CEEN.
1464 	 *
1465 	 * Note: CEEN and NCEEN are only reenabled if they were on when trap
1466 	 * taken.
1467 	 */
1468 	set_error_enable(get_error_enable() | (nceen | ceen));
1469 	if (clear_errors(&ch_flt)) {
1470 		aflt->flt_panic |= ((ch_flt.afsr_errs &
1471 		    (C_AFSR_EXT_ASYNC_ERRS | C_AFSR_ASYNC_ERRS)) != 0);
1472 		(void) cpu_queue_events(&ch_flt, pr_reason, ch_flt.afsr_errs,
1473 		    NULL);
1474 	}
1475 
1476 	/*
1477 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
1478 	 * be logged as part of the panic flow.
1479 	 */
1480 	if (aflt->flt_panic)
1481 		fm_panic("%sError(s)", pr_reason);
1482 
1483 	/*
1484 	 * Flushing the Ecache here gets the part of the trap handler that
1485 	 * is run at TL=1 out of the Ecache.
1486 	 */
1487 	cpu_flush_ecache();
1488 }
1489 
1490 /*
1491  * This is called via sys_trap from pil15_interrupt code if the
1492  * corresponding entry in ch_err_tl1_pending is set.  Checks the
1493  * various ch_err_tl1_data structures for valid entries based on the bit
1494  * settings in the ch_err_tl1_flags entry of the structure.
1495  */
1496 /*ARGSUSED*/
1497 void
1498 cpu_tl1_error(struct regs *rp, int panic)
1499 {
1500 	ch_err_tl1_data_t *cl1p, cl1;
1501 	int i, ncl1ps;
1502 	uint64_t me_flags;
1503 	uint64_t ceen, nceen;
1504 
1505 	if (ch_err_tl1_paddrs[CPU->cpu_id] == 0) {
1506 		cl1p = &ch_err_tl1_data;
1507 		ncl1ps = 1;
1508 	} else if (CPU_PRIVATE(CPU) != NULL) {
1509 		cl1p = CPU_PRIVATE_PTR(CPU, chpr_tl1_err_data[0]);
1510 		ncl1ps = CH_ERR_TL1_TLMAX;
1511 	} else {
1512 		ncl1ps = 0;
1513 	}
1514 
1515 	for (i = 0; i < ncl1ps; i++, cl1p++) {
1516 		if (cl1p->ch_err_tl1_flags == 0)
1517 			continue;
1518 
1519 		/*
1520 		 * Grab a copy of the logout data and invalidate
1521 		 * the logout area.
1522 		 */
1523 		cl1 = *cl1p;
1524 		bzero(cl1p, sizeof (ch_err_tl1_data_t));
1525 		cl1p->ch_err_tl1_logout.clo_data.chd_afar = LOGOUT_INVALID;
1526 		me_flags = CH_ERR_ME_FLAGS(cl1.ch_err_tl1_flags);
1527 
1528 		/*
1529 		 * Log "first error" in ch_err_tl1_data.
1530 		 */
1531 		if (cl1.ch_err_tl1_flags & CH_ERR_FECC) {
1532 			ceen = get_error_enable() & EN_REG_CEEN;
1533 			nceen = get_error_enable() & EN_REG_NCEEN;
1534 			cpu_log_fast_ecc_error((caddr_t)cl1.ch_err_tl1_tpc, 1,
1535 			    1, ceen, nceen, &cl1.ch_err_tl1_logout);
1536 		}
1537 #if defined(CPU_IMP_L1_CACHE_PARITY)
1538 		if (cl1.ch_err_tl1_flags & (CH_ERR_IPE | CH_ERR_DPE)) {
1539 			cpu_parity_error(rp, cl1.ch_err_tl1_flags,
1540 			    (caddr_t)cl1.ch_err_tl1_tpc);
1541 		}
1542 #endif	/* CPU_IMP_L1_CACHE_PARITY */
1543 
1544 		/*
1545 		 * Log "multiple events" in ch_err_tl1_data.  Note that
1546 		 * we don't read and clear the AFSR/AFAR in the TL>0 code
1547 		 * if the structure is busy, we just do the cache flushing
1548 		 * we have to do and then do the retry.  So the AFSR/AFAR
1549 		 * at this point *should* have some relevant info.  If there
1550 		 * are no valid errors in the AFSR, we'll assume they've
1551 		 * already been picked up and logged.  For I$/D$ parity,
1552 		 * we just log an event with an "Unknown" (NULL) TPC.
1553 		 */
1554 		if (me_flags & CH_ERR_FECC) {
1555 			ch_cpu_errors_t cpu_error_regs;
1556 			uint64_t t_afsr_errs;
1557 
1558 			/*
1559 			 * Get the error registers and see if there's
1560 			 * a pending error.  If not, don't bother
1561 			 * generating an "Invalid AFSR" error event.
1562 			 */
1563 			get_cpu_error_state(&cpu_error_regs);
1564 			t_afsr_errs = (cpu_error_regs.afsr_ext &
1565 			    C_AFSR_EXT_ALL_ERRS) |
1566 			    (cpu_error_regs.afsr & C_AFSR_ALL_ERRS);
1567 			if (t_afsr_errs != 0) {
1568 				ceen = get_error_enable() & EN_REG_CEEN;
1569 				nceen = get_error_enable() & EN_REG_NCEEN;
1570 				cpu_log_fast_ecc_error((caddr_t)NULL, 1,
1571 				    1, ceen, nceen, NULL);
1572 			}
1573 		}
1574 #if defined(CPU_IMP_L1_CACHE_PARITY)
1575 		if (me_flags & (CH_ERR_IPE | CH_ERR_DPE)) {
1576 			cpu_parity_error(rp, me_flags, (caddr_t)NULL);
1577 		}
1578 #endif	/* CPU_IMP_L1_CACHE_PARITY */
1579 	}
1580 }
1581 
1582 /*
1583  * Called from Fast ECC TL>0 handler in case of fatal error.
1584  * cpu_tl1_error should always find an associated ch_err_tl1_data structure,
1585  * but if we don't, we'll panic with something reasonable.
1586  */
1587 /*ARGSUSED*/
1588 void
1589 cpu_tl1_err_panic(struct regs *rp, ulong_t flags)
1590 {
1591 	cpu_tl1_error(rp, 1);
1592 	/*
1593 	 * Should never return, but just in case.
1594 	 */
1595 	fm_panic("Unsurvivable ECC Error at TL>0");
1596 }
1597 
1598 /*
1599  * The ce_err/ce_err_tl1 handlers transfer control here for CE, EMC, EDU:ST,
1600  * EDC, WDU, WDC, CPU, CPC, IVU, IVC events.
1601  * Disrupting errors controlled by NCEEN: EDU:ST, WDU, CPU, IVU
1602  * Disrupting errors controlled by CEEN: CE, EMC, EDC, WDC, CPC, IVC
1603  *
1604  * Cheetah+ also handles (No additional processing required):
1605  *    DUE, DTO, DBERR	(NCEEN controlled)
1606  *    THCE		(CEEN and ET_ECC_en controlled)
1607  *    TUE		(ET_ECC_en controlled)
1608  *
1609  * Panther further adds:
1610  *    IMU, L3_EDU, L3_WDU, L3_CPU		(NCEEN controlled)
1611  *    IMC, L3_EDC, L3_WDC, L3_CPC, L3_THCE	(CEEN controlled)
1612  *    TUE_SH, TUE		(NCEEN and L2_tag_ECC_en controlled)
1613  *    L3_TUE, L3_TUE_SH		(NCEEN and ET_ECC_en controlled)
1614  *    THCE			(CEEN and L2_tag_ECC_en controlled)
1615  *    L3_THCE			(CEEN and ET_ECC_en controlled)
1616  *
1617  * Note that the p_clo_flags input is only valid in cases where the
1618  * cpu_private struct is not yet initialized (since that is the only
1619  * time that information cannot be obtained from the logout struct.)
1620  */
1621 /*ARGSUSED*/
1622 void
1623 cpu_disrupting_error(struct regs *rp, ulong_t p_clo_flags)
1624 {
1625 	struct async_flt *aflt;
1626 	ch_async_flt_t ch_flt;
1627 	char pr_reason[MAX_REASON_STRING];
1628 	ch_cpu_logout_t *clop;
1629 	uint64_t t_afar, t_afsr, t_afsr_ext, t_afsr_errs;
1630 	ch_cpu_errors_t cpu_error_regs;
1631 
1632 	bzero(&ch_flt, sizeof (ch_async_flt_t));
1633 	/*
1634 	 * Get the CPU log out info. If we can't find our CPU private
1635 	 * pointer, then we will have to make due without any detailed
1636 	 * logout information.
1637 	 */
1638 	if (CPU_PRIVATE(CPU) == NULL) {
1639 		clop = NULL;
1640 		ch_flt.flt_diag_data.chd_afar = LOGOUT_INVALID;
1641 		get_cpu_error_state(&cpu_error_regs);
1642 		set_cpu_error_state(&cpu_error_regs);
1643 		t_afar = cpu_error_regs.afar;
1644 		t_afsr = cpu_error_regs.afsr;
1645 		t_afsr_ext = cpu_error_regs.afsr_ext;
1646 #if defined(SERRANO)
1647 		ch_flt.afar2 = cpu_error_regs.afar2;
1648 #endif	/* SERRANO */
1649 	} else {
1650 		clop = CPU_PRIVATE_PTR(CPU, chpr_cecc_logout);
1651 		t_afar = clop->clo_data.chd_afar;
1652 		t_afsr = clop->clo_data.chd_afsr;
1653 		t_afsr_ext = clop->clo_data.chd_afsr_ext;
1654 #if defined(SERRANO)
1655 		ch_flt.afar2 = clop->clo_data.chd_afar2;
1656 #endif	/* SERRANO */
1657 	}
1658 
1659 	/*
1660 	 * In order to simplify code, we maintain this afsr_errs
1661 	 * variable which holds the aggregate of AFSR and AFSR_EXT
1662 	 * sticky bits.
1663 	 */
1664 	t_afsr_errs = (t_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
1665 	    (t_afsr & C_AFSR_ALL_ERRS);
1666 
1667 	pr_reason[0] = '\0';
1668 	/* Setup the async fault structure */
1669 	aflt = (struct async_flt *)&ch_flt;
1670 	ch_flt.afsr_ext = t_afsr_ext;
1671 	ch_flt.afsr_errs = t_afsr_errs;
1672 	aflt->flt_stat = t_afsr;
1673 	aflt->flt_addr = t_afar;
1674 	aflt->flt_pc = (caddr_t)rp->r_pc;
1675 	aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ?  1 : 0;
1676 	aflt->flt_tl = 0;
1677 	aflt->flt_panic = C_AFSR_PANIC(t_afsr_errs);
1678 
1679 	/*
1680 	 * If this trap is a result of one of the errors not masked
1681 	 * by cpu_ce_not_deferred, we don't reenable CEEN. Instead
1682 	 * indicate that a timeout is to be set later.
1683 	 */
1684 	if (!(t_afsr_errs & (cpu_ce_not_deferred | cpu_ce_not_deferred_ext)) &&
1685 	    !aflt->flt_panic)
1686 		ch_flt.flt_trapped_ce = CE_CEEN_DEFER | CE_CEEN_TRAPPED;
1687 	else
1688 		ch_flt.flt_trapped_ce = CE_CEEN_NODEFER | CE_CEEN_TRAPPED;
1689 
1690 	/*
1691 	 * log the CE and clean up
1692 	 */
1693 	cpu_log_and_clear_ce(&ch_flt);
1694 
1695 	/*
1696 	 * We re-enable CEEN (if required) and check if any disrupting errors
1697 	 * have happened.  We do this because if a disrupting error had occurred
1698 	 * with CEEN off, the trap will not be taken when CEEN is re-enabled.
1699 	 * Note that CEEN works differently on Cheetah than on Spitfire.  Also,
1700 	 * we enable CEEN *before* checking the AFSR to avoid the small window
1701 	 * of a error happening between checking the AFSR and enabling CEEN.
1702 	 */
1703 	if (ch_flt.flt_trapped_ce & CE_CEEN_NODEFER)
1704 	    set_error_enable(get_error_enable() | EN_REG_CEEN);
1705 	if (clear_errors(&ch_flt)) {
1706 		(void) cpu_queue_events(&ch_flt, pr_reason, ch_flt.afsr_errs,
1707 		    NULL);
1708 	}
1709 
1710 	/*
1711 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
1712 	 * be logged as part of the panic flow.
1713 	 */
1714 	if (aflt->flt_panic)
1715 		fm_panic("%sError(s)", pr_reason);
1716 }
1717 
1718 /*
1719  * The async_err handler transfers control here for UE, EMU, EDU:BLD,
1720  * L3_EDU:BLD, TO, and BERR events.
1721  * Deferred errors controlled by NCEEN: UE, EMU, EDU:BLD, L3_EDU:BLD, TO, BERR
1722  *
1723  * Cheetah+: No additional errors handled.
1724  *
1725  * Note that the p_clo_flags input is only valid in cases where the
1726  * cpu_private struct is not yet initialized (since that is the only
1727  * time that information cannot be obtained from the logout struct.)
1728  */
1729 /*ARGSUSED*/
1730 void
1731 cpu_deferred_error(struct regs *rp, ulong_t p_clo_flags)
1732 {
1733 	ushort_t ttype, tl;
1734 	ch_async_flt_t ch_flt;
1735 	struct async_flt *aflt;
1736 	int trampolined = 0;
1737 	char pr_reason[MAX_REASON_STRING];
1738 	ch_cpu_logout_t *clop;
1739 	uint64_t ceen, clo_flags;
1740 	uint64_t log_afsr;
1741 	uint64_t t_afar, t_afsr, t_afsr_ext, t_afsr_errs;
1742 	ch_cpu_errors_t cpu_error_regs;
1743 	int expected = DDI_FM_ERR_UNEXPECTED;
1744 	ddi_acc_hdl_t *hp;
1745 
1746 	/*
1747 	 * We need to look at p_flag to determine if the thread detected an
1748 	 * error while dumping core.  We can't grab p_lock here, but it's ok
1749 	 * because we just need a consistent snapshot and we know that everyone
1750 	 * else will store a consistent set of bits while holding p_lock.  We
1751 	 * don't have to worry about a race because SDOCORE is set once prior
1752 	 * to doing i/o from the process's address space and is never cleared.
1753 	 */
1754 	uint_t pflag = ttoproc(curthread)->p_flag;
1755 
1756 	bzero(&ch_flt, sizeof (ch_async_flt_t));
1757 	/*
1758 	 * Get the CPU log out info. If we can't find our CPU private
1759 	 * pointer then we will have to make due without any detailed
1760 	 * logout information.
1761 	 */
1762 	if (CPU_PRIVATE(CPU) == NULL) {
1763 		clop = NULL;
1764 		ch_flt.flt_diag_data.chd_afar = LOGOUT_INVALID;
1765 		get_cpu_error_state(&cpu_error_regs);
1766 		set_cpu_error_state(&cpu_error_regs);
1767 		t_afar = cpu_error_regs.afar;
1768 		t_afsr = cpu_error_regs.afsr;
1769 		t_afsr_ext = cpu_error_regs.afsr_ext;
1770 #if defined(SERRANO)
1771 		ch_flt.afar2 = cpu_error_regs.afar2;
1772 #endif	/* SERRANO */
1773 		clo_flags = p_clo_flags;
1774 	} else {
1775 		clop = CPU_PRIVATE_PTR(CPU, chpr_async_logout);
1776 		t_afar = clop->clo_data.chd_afar;
1777 		t_afsr = clop->clo_data.chd_afsr;
1778 		t_afsr_ext = clop->clo_data.chd_afsr_ext;
1779 #if defined(SERRANO)
1780 		ch_flt.afar2 = clop->clo_data.chd_afar2;
1781 #endif	/* SERRANO */
1782 		clo_flags = clop->clo_flags;
1783 	}
1784 
1785 	/*
1786 	 * In order to simplify code, we maintain this afsr_errs
1787 	 * variable which holds the aggregate of AFSR and AFSR_EXT
1788 	 * sticky bits.
1789 	 */
1790 	t_afsr_errs = (t_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
1791 	    (t_afsr & C_AFSR_ALL_ERRS);
1792 	pr_reason[0] = '\0';
1793 
1794 	/*
1795 	 * Grab information encoded into our clo_flags field.
1796 	 */
1797 	ceen = clo_flags & EN_REG_CEEN;
1798 	tl = (clo_flags & CLO_FLAGS_TL_MASK) >> CLO_FLAGS_TL_SHIFT;
1799 	ttype = (clo_flags & CLO_FLAGS_TT_MASK) >> CLO_FLAGS_TT_SHIFT;
1800 
1801 	/*
1802 	 * handle the specific error
1803 	 */
1804 	aflt = (struct async_flt *)&ch_flt;
1805 	aflt->flt_id = gethrtime_waitfree();
1806 	aflt->flt_bus_id = getprocessorid();
1807 	aflt->flt_inst = CPU->cpu_id;
1808 	ch_flt.afsr_ext = t_afsr_ext;
1809 	ch_flt.afsr_errs = t_afsr_errs;
1810 	aflt->flt_stat = t_afsr;
1811 	aflt->flt_addr = t_afar;
1812 	aflt->flt_pc = (caddr_t)rp->r_pc;
1813 	aflt->flt_prot = AFLT_PROT_NONE;
1814 	aflt->flt_class = CPU_FAULT;
1815 	aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ?  1 : 0;
1816 	aflt->flt_tl = (uchar_t)tl;
1817 	aflt->flt_panic = ((tl != 0) || (aft_testfatal != 0) ||
1818 	    C_AFSR_PANIC(t_afsr_errs));
1819 	aflt->flt_core = (pflag & SDOCORE) ? 1 : 0;
1820 	aflt->flt_status = ((ttype == T_DATA_ERROR) ? ECC_D_TRAP : ECC_I_TRAP);
1821 
1822 	/*
1823 	 * If the trap occurred in privileged mode at TL=0, we need to check to
1824 	 * see if we were executing in the kernel under on_trap() or t_lofault
1825 	 * protection.  If so, modify the saved registers so that we return
1826 	 * from the trap to the appropriate trampoline routine.
1827 	 */
1828 	if (aflt->flt_priv && tl == 0) {
1829 		if (curthread->t_ontrap != NULL) {
1830 			on_trap_data_t *otp = curthread->t_ontrap;
1831 
1832 			if (otp->ot_prot & OT_DATA_EC) {
1833 				aflt->flt_prot = AFLT_PROT_EC;
1834 				otp->ot_trap |= OT_DATA_EC;
1835 				rp->r_pc = otp->ot_trampoline;
1836 				rp->r_npc = rp->r_pc + 4;
1837 				trampolined = 1;
1838 			}
1839 
1840 			if ((t_afsr & (C_AFSR_TO | C_AFSR_BERR)) &&
1841 			    (otp->ot_prot & OT_DATA_ACCESS)) {
1842 				aflt->flt_prot = AFLT_PROT_ACCESS;
1843 				otp->ot_trap |= OT_DATA_ACCESS;
1844 				rp->r_pc = otp->ot_trampoline;
1845 				rp->r_npc = rp->r_pc + 4;
1846 				trampolined = 1;
1847 				/*
1848 				 * for peeks and caut_gets errors are expected
1849 				 */
1850 				hp = (ddi_acc_hdl_t *)otp->ot_handle;
1851 				if (!hp)
1852 					expected = DDI_FM_ERR_PEEK;
1853 				else if (hp->ah_acc.devacc_attr_access ==
1854 				    DDI_CAUTIOUS_ACC)
1855 					expected = DDI_FM_ERR_EXPECTED;
1856 			}
1857 
1858 		} else if (curthread->t_lofault) {
1859 			aflt->flt_prot = AFLT_PROT_COPY;
1860 			rp->r_g1 = EFAULT;
1861 			rp->r_pc = curthread->t_lofault;
1862 			rp->r_npc = rp->r_pc + 4;
1863 			trampolined = 1;
1864 		}
1865 	}
1866 
1867 	/*
1868 	 * If we're in user mode or we're doing a protected copy, we either
1869 	 * want the ASTON code below to send a signal to the user process
1870 	 * or we want to panic if aft_panic is set.
1871 	 *
1872 	 * If we're in privileged mode and we're not doing a copy, then we
1873 	 * need to check if we've trampolined.  If we haven't trampolined,
1874 	 * we should panic.
1875 	 */
1876 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
1877 		if (t_afsr_errs &
1878 		    ((C_AFSR_ASYNC_ERRS | C_AFSR_EXT_ASYNC_ERRS) &
1879 		    ~(C_AFSR_BERR | C_AFSR_TO)))
1880 			aflt->flt_panic |= aft_panic;
1881 	} else if (!trampolined) {
1882 			aflt->flt_panic = 1;
1883 	}
1884 
1885 	/*
1886 	 * If we've trampolined due to a privileged TO or BERR, or if an
1887 	 * unprivileged TO or BERR occurred, we don't want to enqueue an
1888 	 * event for that TO or BERR.  Queue all other events (if any) besides
1889 	 * the TO/BERR.  Since we may not be enqueing any events, we need to
1890 	 * ignore the number of events queued.  If we haven't trampolined due
1891 	 * to a TO or BERR, just enqueue events normally.
1892 	 */
1893 	log_afsr = t_afsr_errs;
1894 	if (trampolined) {
1895 		log_afsr &= ~(C_AFSR_TO | C_AFSR_BERR);
1896 	} else if (!aflt->flt_priv) {
1897 		/*
1898 		 * User mode, suppress messages if
1899 		 * cpu_berr_to_verbose is not set.
1900 		 */
1901 		if (!cpu_berr_to_verbose)
1902 			log_afsr &= ~(C_AFSR_TO | C_AFSR_BERR);
1903 	}
1904 
1905 	/*
1906 	 * Log any errors that occurred
1907 	 */
1908 	if (((log_afsr &
1909 		((C_AFSR_ALL_ERRS | C_AFSR_EXT_ALL_ERRS) & ~C_AFSR_ME)) &&
1910 		cpu_queue_events(&ch_flt, pr_reason, log_afsr, clop) == 0) ||
1911 		(t_afsr_errs &
1912 		(C_AFSR_ASYNC_ERRS | C_AFSR_EXT_ASYNC_ERRS)) == 0) {
1913 		ch_flt.flt_type = CPU_INV_AFSR;
1914 		cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_INVALID_AFSR,
1915 		    (void *)&ch_flt, sizeof (ch_async_flt_t), ue_queue,
1916 		    aflt->flt_panic);
1917 	}
1918 
1919 	/*
1920 	 * Zero out + invalidate CPU logout.
1921 	 */
1922 	if (clop) {
1923 		bzero(clop, sizeof (ch_cpu_logout_t));
1924 		clop->clo_data.chd_afar = LOGOUT_INVALID;
1925 	}
1926 
1927 #if defined(JALAPENO) || defined(SERRANO)
1928 	/*
1929 	 * UE/RUE/BERR/TO: Call our bus nexus friends to check for
1930 	 * IO errors that may have resulted in this trap.
1931 	 */
1932 	if (t_afsr & (C_AFSR_UE|C_AFSR_RUE|C_AFSR_TO|C_AFSR_BERR)) {
1933 		cpu_run_bus_error_handlers(aflt, expected);
1934 	}
1935 
1936 	/*
1937 	 * UE/RUE: If UE or RUE is in memory, we need to flush the bad
1938 	 * line from the Ecache.  We also need to query the bus nexus for
1939 	 * fatal errors.  Attempts to do diagnostic read on caches may
1940 	 * introduce more errors (especially when the module is bad).
1941 	 */
1942 	if (t_afsr & (C_AFSR_UE|C_AFSR_RUE)) {
1943 		/*
1944 		 * Ask our bus nexus friends if they have any fatal errors.  If
1945 		 * so, they will log appropriate error messages.
1946 		 */
1947 		if (bus_func_invoke(BF_TYPE_UE) == BF_FATAL)
1948 			aflt->flt_panic = 1;
1949 
1950 		/*
1951 		 * We got a UE or RUE and are panicking, save the fault PA in
1952 		 * a known location so that the platform specific panic code
1953 		 * can check for copyback errors.
1954 		 */
1955 		if (aflt->flt_panic && cpu_flt_in_memory(&ch_flt, C_AFSR_UE)) {
1956 			panic_aflt = *aflt;
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * Flush Ecache line or entire Ecache
1962 	 */
1963 	if (t_afsr & (C_AFSR_UE | C_AFSR_RUE | C_AFSR_EDU | C_AFSR_BERR))
1964 		cpu_error_ecache_flush(&ch_flt);
1965 #else /* JALAPENO || SERRANO */
1966 	/*
1967 	 * UE/BERR/TO: Call our bus nexus friends to check for
1968 	 * IO errors that may have resulted in this trap.
1969 	 */
1970 	if (t_afsr & (C_AFSR_UE|C_AFSR_TO|C_AFSR_BERR)) {
1971 		cpu_run_bus_error_handlers(aflt, expected);
1972 	}
1973 
1974 	/*
1975 	 * UE: If the UE is in memory, we need to flush the bad
1976 	 * line from the Ecache.  We also need to query the bus nexus for
1977 	 * fatal errors.  Attempts to do diagnostic read on caches may
1978 	 * introduce more errors (especially when the module is bad).
1979 	 */
1980 	if (t_afsr & C_AFSR_UE) {
1981 		/*
1982 		 * Ask our legacy bus nexus friends if they have any fatal
1983 		 * errors.  If so, they will log appropriate error messages.
1984 		 */
1985 		if (bus_func_invoke(BF_TYPE_UE) == BF_FATAL)
1986 			aflt->flt_panic = 1;
1987 
1988 		/*
1989 		 * We got a UE and are panicking, save the fault PA in a known
1990 		 * location so that the platform specific panic code can check
1991 		 * for copyback errors.
1992 		 */
1993 		if (aflt->flt_panic && cpu_flt_in_memory(&ch_flt, C_AFSR_UE)) {
1994 			panic_aflt = *aflt;
1995 		}
1996 	}
1997 
1998 	/*
1999 	 * Flush Ecache line or entire Ecache
2000 	 */
2001 	if (t_afsr_errs &
2002 	    (C_AFSR_UE | C_AFSR_EDU | C_AFSR_BERR | C_AFSR_L3_EDU))
2003 		cpu_error_ecache_flush(&ch_flt);
2004 #endif /* JALAPENO || SERRANO */
2005 
2006 	/*
2007 	 * We carefully re-enable NCEEN and CEEN and then check if any deferred
2008 	 * or disrupting errors have happened.  We do this because if a
2009 	 * deferred or disrupting error had occurred with NCEEN/CEEN off, the
2010 	 * trap will not be taken when NCEEN/CEEN is re-enabled.  Note that
2011 	 * CEEN works differently on Cheetah than on Spitfire.  Also, we enable
2012 	 * NCEEN/CEEN *before* checking the AFSR to avoid the small window of a
2013 	 * deferred or disrupting error happening between checking the AFSR and
2014 	 * enabling NCEEN/CEEN.
2015 	 *
2016 	 * Note: CEEN reenabled only if it was on when trap taken.
2017 	 */
2018 	set_error_enable(get_error_enable() | (EN_REG_NCEEN | ceen));
2019 	if (clear_errors(&ch_flt)) {
2020 		/*
2021 		 * Check for secondary errors, and avoid panicking if we
2022 		 * have them
2023 		 */
2024 		if (cpu_check_secondary_errors(&ch_flt, t_afsr_errs,
2025 		    t_afar) == 0) {
2026 			aflt->flt_panic |= ((ch_flt.afsr_errs &
2027 			    (C_AFSR_ASYNC_ERRS | C_AFSR_EXT_ASYNC_ERRS)) != 0);
2028 		}
2029 		(void) cpu_queue_events(&ch_flt, pr_reason, ch_flt.afsr_errs,
2030 		    NULL);
2031 	}
2032 
2033 	/*
2034 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
2035 	 * be logged as part of the panic flow.
2036 	 */
2037 	if (aflt->flt_panic)
2038 		fm_panic("%sError(s)", pr_reason);
2039 
2040 	/*
2041 	 * If we queued an error and we are going to return from the trap and
2042 	 * the error was in user mode or inside of a copy routine, set AST flag
2043 	 * so the queue will be drained before returning to user mode.  The
2044 	 * AST processing will also act on our failure policy.
2045 	 */
2046 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
2047 		int pcb_flag = 0;
2048 
2049 		if (t_afsr_errs &
2050 		    (C_AFSR_ASYNC_ERRS | C_AFSR_EXT_ASYNC_ERRS &
2051 		    ~(C_AFSR_BERR | C_AFSR_TO)))
2052 			pcb_flag |= ASYNC_HWERR;
2053 
2054 		if (t_afsr & C_AFSR_BERR)
2055 			pcb_flag |= ASYNC_BERR;
2056 
2057 		if (t_afsr & C_AFSR_TO)
2058 			pcb_flag |= ASYNC_BTO;
2059 
2060 		ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
2061 		aston(curthread);
2062 	}
2063 }
2064 
2065 #if defined(CPU_IMP_L1_CACHE_PARITY)
2066 /*
2067  * Handling of data and instruction parity errors (traps 0x71, 0x72).
2068  *
2069  * For Panther, P$ data parity errors during floating point load hits
2070  * are also detected (reported as TT 0x71) and handled by this trap
2071  * handler.
2072  *
2073  * AFSR/AFAR are not set for parity errors, only TPC (a virtual address)
2074  * is available.
2075  */
2076 /*ARGSUSED*/
2077 void
2078 cpu_parity_error(struct regs *rp, uint_t flags, caddr_t tpc)
2079 {
2080 	ch_async_flt_t ch_flt;
2081 	struct async_flt *aflt;
2082 	uchar_t tl = ((flags & CH_ERR_TL) != 0);
2083 	uchar_t iparity = ((flags & CH_ERR_IPE) != 0);
2084 	uchar_t panic = ((flags & CH_ERR_PANIC) != 0);
2085 	char *error_class;
2086 
2087 	/*
2088 	 * Log the error.
2089 	 * For icache parity errors the fault address is the trap PC.
2090 	 * For dcache/pcache parity errors the instruction would have to
2091 	 * be decoded to determine the address and that isn't possible
2092 	 * at high PIL.
2093 	 */
2094 	bzero(&ch_flt, sizeof (ch_async_flt_t));
2095 	aflt = (struct async_flt *)&ch_flt;
2096 	aflt->flt_id = gethrtime_waitfree();
2097 	aflt->flt_bus_id = getprocessorid();
2098 	aflt->flt_inst = CPU->cpu_id;
2099 	aflt->flt_pc = tpc;
2100 	aflt->flt_addr = iparity ? (uint64_t)tpc : AFLT_INV_ADDR;
2101 	aflt->flt_prot = AFLT_PROT_NONE;
2102 	aflt->flt_class = CPU_FAULT;
2103 	aflt->flt_priv = (tl || (rp->r_tstate & TSTATE_PRIV)) ?  1 : 0;
2104 	aflt->flt_tl = tl;
2105 	aflt->flt_panic = panic;
2106 	aflt->flt_status = iparity ? ECC_IP_TRAP : ECC_DP_TRAP;
2107 	ch_flt.flt_type = iparity ? CPU_IC_PARITY : CPU_DC_PARITY;
2108 
2109 	if (iparity) {
2110 		cpu_icache_parity_info(&ch_flt);
2111 		if (ch_flt.parity_data.ipe.cpl_off != -1)
2112 			error_class = FM_EREPORT_CPU_USIII_IDSPE;
2113 		else if (ch_flt.parity_data.ipe.cpl_way != -1)
2114 			error_class = FM_EREPORT_CPU_USIII_ITSPE;
2115 		else
2116 			error_class = FM_EREPORT_CPU_USIII_IPE;
2117 		aflt->flt_payload = FM_EREPORT_PAYLOAD_ICACHE_PE;
2118 	} else {
2119 		cpu_dcache_parity_info(&ch_flt);
2120 		if (ch_flt.parity_data.dpe.cpl_off != -1)
2121 			error_class = FM_EREPORT_CPU_USIII_DDSPE;
2122 		else if (ch_flt.parity_data.dpe.cpl_way != -1)
2123 			error_class = FM_EREPORT_CPU_USIII_DTSPE;
2124 		else
2125 			error_class = FM_EREPORT_CPU_USIII_DPE;
2126 		aflt->flt_payload = FM_EREPORT_PAYLOAD_DCACHE_PE;
2127 		/*
2128 		 * For panther we also need to check the P$ for parity errors.
2129 		 */
2130 		if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
2131 			cpu_pcache_parity_info(&ch_flt);
2132 			if (ch_flt.parity_data.dpe.cpl_cache == CPU_PC_PARITY) {
2133 				error_class = FM_EREPORT_CPU_USIII_PDSPE;
2134 				aflt->flt_payload =
2135 				    FM_EREPORT_PAYLOAD_PCACHE_PE;
2136 			}
2137 		}
2138 	}
2139 
2140 	cpu_errorq_dispatch(error_class, (void *)&ch_flt,
2141 	    sizeof (ch_async_flt_t), ue_queue, aflt->flt_panic);
2142 
2143 	if (iparity) {
2144 		/*
2145 		 * Invalidate entire I$.
2146 		 * This is required due to the use of diagnostic ASI
2147 		 * accesses that may result in a loss of I$ coherency.
2148 		 */
2149 		if (cache_boot_state & DCU_IC) {
2150 			flush_icache();
2151 		}
2152 		/*
2153 		 * According to section P.3.1 of the Panther PRM, we
2154 		 * need to do a little more for recovery on those
2155 		 * CPUs after encountering an I$ parity error.
2156 		 */
2157 		if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
2158 			flush_ipb();
2159 			correct_dcache_parity(dcache_size,
2160 			    dcache_linesize);
2161 			flush_pcache();
2162 		}
2163 	} else {
2164 		/*
2165 		 * Since the valid bit is ignored when checking parity the
2166 		 * D$ data and tag must also be corrected.  Set D$ data bits
2167 		 * to zero and set utag to 0, 1, 2, 3.
2168 		 */
2169 		correct_dcache_parity(dcache_size, dcache_linesize);
2170 
2171 		/*
2172 		 * According to section P.3.3 of the Panther PRM, we
2173 		 * need to do a little more for recovery on those
2174 		 * CPUs after encountering a D$ or P$ parity error.
2175 		 *
2176 		 * As far as clearing P$ parity errors, it is enough to
2177 		 * simply invalidate all entries in the P$ since P$ parity
2178 		 * error traps are only generated for floating point load
2179 		 * hits.
2180 		 */
2181 		if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
2182 			flush_icache();
2183 			flush_ipb();
2184 			flush_pcache();
2185 		}
2186 	}
2187 
2188 	/*
2189 	 * Invalidate entire D$ if it was enabled.
2190 	 * This is done to avoid stale data in the D$ which might
2191 	 * occur with the D$ disabled and the trap handler doing
2192 	 * stores affecting lines already in the D$.
2193 	 */
2194 	if (cache_boot_state & DCU_DC) {
2195 		flush_dcache();
2196 	}
2197 
2198 	/*
2199 	 * Restore caches to their bootup state.
2200 	 */
2201 	set_dcu(get_dcu() | cache_boot_state);
2202 
2203 	/*
2204 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
2205 	 * be logged as part of the panic flow.
2206 	 */
2207 	if (aflt->flt_panic)
2208 		fm_panic("%sError(s)", iparity ? "IPE " : "DPE ");
2209 
2210 	/*
2211 	 * If this error occurred at TL>0 then flush the E$ here to reduce
2212 	 * the chance of getting an unrecoverable Fast ECC error.  This
2213 	 * flush will evict the part of the parity trap handler that is run
2214 	 * at TL>1.
2215 	 */
2216 	if (tl) {
2217 		cpu_flush_ecache();
2218 	}
2219 }
2220 
2221 /*
2222  * On an I$ parity error, mark the appropriate entries in the ch_async_flt_t
2223  * to indicate which portions of the captured data should be in the ereport.
2224  */
2225 void
2226 cpu_async_log_ic_parity_err(ch_async_flt_t *ch_flt)
2227 {
2228 	int way = ch_flt->parity_data.ipe.cpl_way;
2229 	int offset = ch_flt->parity_data.ipe.cpl_off;
2230 	int tag_index;
2231 	struct async_flt *aflt = (struct async_flt *)ch_flt;
2232 
2233 
2234 	if ((offset != -1) || (way != -1)) {
2235 		/*
2236 		 * Parity error in I$ tag or data
2237 		 */
2238 		tag_index = ch_flt->parity_data.ipe.cpl_ic[way].ic_idx;
2239 		if (IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
2240 			ch_flt->parity_data.ipe.cpl_ic[way].ic_way =
2241 			    PN_ICIDX_TO_WAY(tag_index);
2242 		else
2243 			ch_flt->parity_data.ipe.cpl_ic[way].ic_way =
2244 			    CH_ICIDX_TO_WAY(tag_index);
2245 		ch_flt->parity_data.ipe.cpl_ic[way].ic_logflag =
2246 		    IC_LOGFLAG_MAGIC;
2247 	} else {
2248 		/*
2249 		 * Parity error was not identified.
2250 		 * Log tags and data for all ways.
2251 		 */
2252 		for (way = 0; way < CH_ICACHE_NWAY; way++) {
2253 			tag_index = ch_flt->parity_data.ipe.cpl_ic[way].ic_idx;
2254 			if (IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
2255 				ch_flt->parity_data.ipe.cpl_ic[way].ic_way =
2256 				    PN_ICIDX_TO_WAY(tag_index);
2257 			else
2258 				ch_flt->parity_data.ipe.cpl_ic[way].ic_way =
2259 				    CH_ICIDX_TO_WAY(tag_index);
2260 			ch_flt->parity_data.ipe.cpl_ic[way].ic_logflag =
2261 			    IC_LOGFLAG_MAGIC;
2262 		}
2263 	}
2264 }
2265 
2266 /*
2267  * On an D$ parity error, mark the appropriate entries in the ch_async_flt_t
2268  * to indicate which portions of the captured data should be in the ereport.
2269  */
2270 void
2271 cpu_async_log_dc_parity_err(ch_async_flt_t *ch_flt)
2272 {
2273 	int way = ch_flt->parity_data.dpe.cpl_way;
2274 	int offset = ch_flt->parity_data.dpe.cpl_off;
2275 	int tag_index;
2276 
2277 	if (offset != -1) {
2278 		/*
2279 		 * Parity error in D$ or P$ data array.
2280 		 *
2281 		 * First check to see whether the parity error is in D$ or P$
2282 		 * since P$ data parity errors are reported in Panther using
2283 		 * the same trap.
2284 		 */
2285 		if (ch_flt->parity_data.dpe.cpl_cache == CPU_PC_PARITY) {
2286 			tag_index = ch_flt->parity_data.dpe.cpl_pc[way].pc_idx;
2287 			ch_flt->parity_data.dpe.cpl_pc[way].pc_way =
2288 			    CH_PCIDX_TO_WAY(tag_index);
2289 			ch_flt->parity_data.dpe.cpl_pc[way].pc_logflag =
2290 			    PC_LOGFLAG_MAGIC;
2291 		} else {
2292 			tag_index = ch_flt->parity_data.dpe.cpl_dc[way].dc_idx;
2293 			ch_flt->parity_data.dpe.cpl_dc[way].dc_way =
2294 			    CH_DCIDX_TO_WAY(tag_index);
2295 			ch_flt->parity_data.dpe.cpl_dc[way].dc_logflag =
2296 			    DC_LOGFLAG_MAGIC;
2297 		}
2298 	} else if (way != -1) {
2299 		/*
2300 		 * Parity error in D$ tag.
2301 		 */
2302 		tag_index = ch_flt->parity_data.dpe.cpl_dc[way].dc_idx;
2303 		ch_flt->parity_data.dpe.cpl_dc[way].dc_way =
2304 		    CH_DCIDX_TO_WAY(tag_index);
2305 		ch_flt->parity_data.dpe.cpl_dc[way].dc_logflag =
2306 		    DC_LOGFLAG_MAGIC;
2307 	}
2308 }
2309 #endif	/* CPU_IMP_L1_CACHE_PARITY */
2310 
2311 /*
2312  * The cpu_async_log_err() function is called via the [uc]e_drain() function to
2313  * post-process CPU events that are dequeued.  As such, it can be invoked
2314  * from softint context, from AST processing in the trap() flow, or from the
2315  * panic flow.  We decode the CPU-specific data, and take appropriate actions.
2316  * Historically this entry point was used to log the actual cmn_err(9F) text;
2317  * now with FMA it is used to prepare 'flt' to be converted into an ereport.
2318  * With FMA this function now also returns a flag which indicates to the
2319  * caller whether the ereport should be posted (1) or suppressed (0).
2320  */
2321 static int
2322 cpu_async_log_err(void *flt, errorq_elem_t *eqep)
2323 {
2324 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
2325 	struct async_flt *aflt = (struct async_flt *)flt;
2326 	uint64_t errors;
2327 
2328 	switch (ch_flt->flt_type) {
2329 	case CPU_INV_AFSR:
2330 		/*
2331 		 * If it is a disrupting trap and the AFSR is zero, then
2332 		 * the event has probably already been noted. Do not post
2333 		 * an ereport.
2334 		 */
2335 		if ((aflt->flt_status & ECC_C_TRAP) &&
2336 		    (!(aflt->flt_stat & C_AFSR_MASK)))
2337 			return (0);
2338 		else
2339 			return (1);
2340 	case CPU_TO:
2341 	case CPU_BERR:
2342 	case CPU_FATAL:
2343 	case CPU_FPUERR:
2344 		return (1);
2345 
2346 	case CPU_UE_ECACHE_RETIRE:
2347 		cpu_log_err(aflt);
2348 		cpu_page_retire(ch_flt);
2349 		return (1);
2350 
2351 	/*
2352 	 * Cases where we may want to suppress logging or perform
2353 	 * extended diagnostics.
2354 	 */
2355 	case CPU_CE:
2356 	case CPU_EMC:
2357 		/*
2358 		 * We want to skip logging and further classification
2359 		 * only if ALL the following conditions are true:
2360 		 *
2361 		 *	1. There is only one error
2362 		 *	2. That error is a correctable memory error
2363 		 *	3. The error is caused by the memory scrubber (in
2364 		 *	   which case the error will have occurred under
2365 		 *	   on_trap protection)
2366 		 *	4. The error is on a retired page
2367 		 *
2368 		 * Note: AFLT_PROT_EC is used places other than the memory
2369 		 * scrubber.  However, none of those errors should occur
2370 		 * on a retired page.
2371 		 */
2372 		if ((ch_flt->afsr_errs &
2373 		    (C_AFSR_ALL_ERRS | C_AFSR_EXT_ALL_ERRS)) == C_AFSR_CE &&
2374 		    aflt->flt_prot == AFLT_PROT_EC) {
2375 
2376 			if (page_retire_check(aflt->flt_addr, NULL) == 0) {
2377 			    if (ch_flt->flt_trapped_ce & CE_CEEN_DEFER) {
2378 
2379 				/*
2380 				 * Since we're skipping logging, we'll need
2381 				 * to schedule the re-enabling of CEEN
2382 				 */
2383 				(void) timeout(cpu_delayed_check_ce_errors,
2384 				    (void *)(uintptr_t)aflt->flt_inst,
2385 				    drv_usectohz((clock_t)cpu_ceen_delay_secs
2386 						 * MICROSEC));
2387 			    }
2388 			    return (0);
2389 			}
2390 		}
2391 
2392 		/*
2393 		 * Perform/schedule further classification actions, but
2394 		 * only if the page is healthy (we don't want bad
2395 		 * pages inducing too much diagnostic activity).  If we could
2396 		 * not find a page pointer then we also skip this.  If
2397 		 * ce_scrub_xdiag_recirc returns nonzero then it has chosen
2398 		 * to copy and recirculate the event (for further diagnostics)
2399 		 * and we should not proceed to log it here.
2400 		 *
2401 		 * This must be the last step here before the cpu_log_err()
2402 		 * below - if an event recirculates cpu_ce_log_err() will
2403 		 * not call the current function but just proceed directly
2404 		 * to cpu_ereport_post after the cpu_log_err() avoided below.
2405 		 *
2406 		 * Note: Check cpu_impl_async_log_err if changing this
2407 		 */
2408 		if (page_retire_check(aflt->flt_addr, &errors) == EINVAL) {
2409 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
2410 			    CE_XDIAG_SKIP_NOPP);
2411 		} else {
2412 			if (errors != PR_OK) {
2413 				CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
2414 				    CE_XDIAG_SKIP_PAGEDET);
2415 			} else if (ce_scrub_xdiag_recirc(aflt, ce_queue, eqep,
2416 			    offsetof(ch_async_flt_t, cmn_asyncflt))) {
2417 				return (0);
2418 			}
2419 		}
2420 		/*FALLTHRU*/
2421 
2422 	/*
2423 	 * Cases where we just want to report the error and continue.
2424 	 */
2425 	case CPU_CE_ECACHE:
2426 	case CPU_UE_ECACHE:
2427 	case CPU_IV:
2428 	case CPU_ORPH:
2429 		cpu_log_err(aflt);
2430 		return (1);
2431 
2432 	/*
2433 	 * Cases where we want to fall through to handle panicking.
2434 	 */
2435 	case CPU_UE:
2436 		/*
2437 		 * We want to skip logging in the same conditions as the
2438 		 * CE case.  In addition, we want to make sure we're not
2439 		 * panicking.
2440 		 */
2441 		if (!panicstr && (ch_flt->afsr_errs &
2442 		    (C_AFSR_ALL_ERRS | C_AFSR_EXT_ALL_ERRS)) == C_AFSR_UE &&
2443 		    aflt->flt_prot == AFLT_PROT_EC) {
2444 			if (page_retire_check(aflt->flt_addr, NULL) == 0) {
2445 				/* Zero the address to clear the error */
2446 				softcall(ecc_page_zero, (void *)aflt->flt_addr);
2447 				return (0);
2448 			}
2449 		}
2450 		cpu_log_err(aflt);
2451 		break;
2452 
2453 	default:
2454 		/*
2455 		 * If the us3_common.c code doesn't know the flt_type, it may
2456 		 * be an implementation-specific code.  Call into the impldep
2457 		 * backend to find out what to do: if it tells us to continue,
2458 		 * break and handle as if falling through from a UE; if not,
2459 		 * the impldep backend has handled the error and we're done.
2460 		 */
2461 		switch (cpu_impl_async_log_err(flt, eqep)) {
2462 		case CH_ASYNC_LOG_DONE:
2463 			return (1);
2464 		case CH_ASYNC_LOG_RECIRC:
2465 			return (0);
2466 		case CH_ASYNC_LOG_CONTINUE:
2467 			break; /* continue on to handle UE-like error */
2468 		default:
2469 			cmn_err(CE_WARN, "discarding error 0x%p with "
2470 			    "invalid fault type (0x%x)",
2471 			    (void *)aflt, ch_flt->flt_type);
2472 			return (0);
2473 		}
2474 	}
2475 
2476 	/* ... fall through from the UE case */
2477 
2478 	if (aflt->flt_addr != AFLT_INV_ADDR && aflt->flt_in_memory) {
2479 		if (!panicstr) {
2480 			cpu_page_retire(ch_flt);
2481 		} else {
2482 			/*
2483 			 * Clear UEs on panic so that we don't
2484 			 * get haunted by them during panic or
2485 			 * after reboot
2486 			 */
2487 			cpu_clearphys(aflt);
2488 			(void) clear_errors(NULL);
2489 		}
2490 	}
2491 
2492 	return (1);
2493 }
2494 
2495 /*
2496  * Retire the bad page that may contain the flushed error.
2497  */
2498 void
2499 cpu_page_retire(ch_async_flt_t *ch_flt)
2500 {
2501 	struct async_flt *aflt = (struct async_flt *)ch_flt;
2502 	(void) page_retire(aflt->flt_addr, PR_UE);
2503 }
2504 
2505 /*
2506  * The cpu_log_err() function is called by cpu_async_log_err() to perform the
2507  * generic event post-processing for correctable and uncorrectable memory,
2508  * E$, and MTag errors.  Historically this entry point was used to log bits of
2509  * common cmn_err(9F) text; now with FMA it is used to prepare 'flt' to be
2510  * converted into an ereport.  In addition, it transmits the error to any
2511  * platform-specific service-processor FRU logging routines, if available.
2512  */
2513 void
2514 cpu_log_err(struct async_flt *aflt)
2515 {
2516 	char unum[UNUM_NAMLEN];
2517 	int len = 0;
2518 	int synd_status, synd_code, afar_status;
2519 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
2520 
2521 	/*
2522 	 * Need to turn on ECC_ECACHE for plat_get_mem_unum().
2523 	 * For Panther, L2$ is not external, so we don't want to
2524 	 * generate an E$ unum for those errors.
2525 	 */
2526 	if (IS_PANTHER(cpunodes[aflt->flt_inst].implementation)) {
2527 		if (ch_flt->flt_bit & C_AFSR_EXT_L3_ERRS)
2528 			aflt->flt_status |= ECC_ECACHE;
2529 	} else {
2530 		if (ch_flt->flt_bit & C_AFSR_ECACHE)
2531 			aflt->flt_status |= ECC_ECACHE;
2532 	}
2533 
2534 	/*
2535 	 * Determine syndrome status.
2536 	 */
2537 	synd_status = afsr_to_synd_status(aflt->flt_inst,
2538 	    ch_flt->afsr_errs, ch_flt->flt_bit);
2539 
2540 	/*
2541 	 * Determine afar status.
2542 	 */
2543 	if (pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT))
2544 		afar_status = afsr_to_afar_status(ch_flt->afsr_errs,
2545 				ch_flt->flt_bit);
2546 	else
2547 		afar_status = AFLT_STAT_INVALID;
2548 
2549 	/*
2550 	 * If afar status is not invalid do a unum lookup.
2551 	 */
2552 	if (afar_status != AFLT_STAT_INVALID) {
2553 		(void) cpu_get_mem_unum_aflt(synd_status, aflt, unum,
2554 			UNUM_NAMLEN, &len);
2555 	} else {
2556 		unum[0] = '\0';
2557 	}
2558 
2559 	synd_code = synd_to_synd_code(synd_status,
2560 	    aflt->flt_synd, ch_flt->flt_bit);
2561 
2562 	/*
2563 	 * Do not send the fruid message (plat_ecc_error_data_t)
2564 	 * to the SC if it can handle the enhanced error information
2565 	 * (plat_ecc_error2_data_t) or when the tunable
2566 	 * ecc_log_fruid_enable is set to 0.
2567 	 */
2568 
2569 	if (&plat_ecc_capability_sc_get &&
2570 	    plat_ecc_capability_sc_get(PLAT_ECC_ERROR_MESSAGE)) {
2571 		if (&plat_log_fruid_error)
2572 			plat_log_fruid_error(synd_code, aflt, unum,
2573 			    ch_flt->flt_bit);
2574 	}
2575 
2576 	if (aflt->flt_func != NULL)
2577 		aflt->flt_func(aflt, unum);
2578 
2579 	if (afar_status != AFLT_STAT_INVALID)
2580 		cpu_log_diag_info(ch_flt);
2581 
2582 	/*
2583 	 * If we have a CEEN error , we do not reenable CEEN until after
2584 	 * we exit the trap handler. Otherwise, another error may
2585 	 * occur causing the handler to be entered recursively.
2586 	 * We set a timeout to trigger in cpu_ceen_delay_secs seconds,
2587 	 * to try and ensure that the CPU makes progress in the face
2588 	 * of a CE storm.
2589 	 */
2590 	if (ch_flt->flt_trapped_ce & CE_CEEN_DEFER) {
2591 		(void) timeout(cpu_delayed_check_ce_errors,
2592 		    (void *)(uintptr_t)aflt->flt_inst,
2593 		    drv_usectohz((clock_t)cpu_ceen_delay_secs * MICROSEC));
2594 	}
2595 }
2596 
2597 /*
2598  * Invoked by error_init() early in startup and therefore before
2599  * startup_errorq() is called to drain any error Q -
2600  *
2601  * startup()
2602  *   startup_end()
2603  *     error_init()
2604  *       cpu_error_init()
2605  * errorq_init()
2606  *   errorq_drain()
2607  * start_other_cpus()
2608  *
2609  * The purpose of this routine is to create error-related taskqs.  Taskqs
2610  * are used for this purpose because cpu_lock can't be grabbed from interrupt
2611  * context.
2612  */
2613 void
2614 cpu_error_init(int items)
2615 {
2616 	/*
2617 	 * Create taskq(s) to reenable CE
2618 	 */
2619 	ch_check_ce_tq = taskq_create("cheetah_check_ce", 1, minclsyspri,
2620 	    items, items, TASKQ_PREPOPULATE);
2621 }
2622 
2623 void
2624 cpu_ce_log_err(struct async_flt *aflt, errorq_elem_t *eqep)
2625 {
2626 	char unum[UNUM_NAMLEN];
2627 	int len;
2628 
2629 	switch (aflt->flt_class) {
2630 	case CPU_FAULT:
2631 		cpu_ereport_init(aflt);
2632 		if (cpu_async_log_err(aflt, eqep))
2633 			cpu_ereport_post(aflt);
2634 		break;
2635 
2636 	case BUS_FAULT:
2637 		if (aflt->flt_func != NULL) {
2638 			(void) cpu_get_mem_unum_aflt(AFLT_STAT_VALID, aflt,
2639 			    unum, UNUM_NAMLEN, &len);
2640 			aflt->flt_func(aflt, unum);
2641 		}
2642 		break;
2643 
2644 	case RECIRC_CPU_FAULT:
2645 		aflt->flt_class = CPU_FAULT;
2646 		cpu_log_err(aflt);
2647 		cpu_ereport_post(aflt);
2648 		break;
2649 
2650 	case RECIRC_BUS_FAULT:
2651 		ASSERT(aflt->flt_class != RECIRC_BUS_FAULT);
2652 		/*FALLTHRU*/
2653 	default:
2654 		cmn_err(CE_WARN, "discarding CE error 0x%p with invalid "
2655 		    "fault class (0x%x)", (void *)aflt, aflt->flt_class);
2656 		return;
2657 	}
2658 }
2659 
2660 /*
2661  * Scrub and classify a CE.  This function must not modify the
2662  * fault structure passed to it but instead should return the classification
2663  * information.
2664  */
2665 
2666 static uchar_t
2667 cpu_ce_scrub_mem_err_common(struct async_flt *ecc, boolean_t logout_tried)
2668 {
2669 	uchar_t disp = CE_XDIAG_EXTALG;
2670 	on_trap_data_t otd;
2671 	uint64_t orig_err;
2672 	ch_cpu_logout_t *clop;
2673 
2674 	/*
2675 	 * Clear CEEN.  CPU CE TL > 0 trap handling will already have done
2676 	 * this, but our other callers have not.  Disable preemption to
2677 	 * avoid CPU migration so that we restore CEEN on the correct
2678 	 * cpu later.
2679 	 *
2680 	 * CEEN is cleared so that further CEs that our instruction and
2681 	 * data footprint induce do not cause use to either creep down
2682 	 * kernel stack to the point of overflow, or do so much CE
2683 	 * notification as to make little real forward progress.
2684 	 *
2685 	 * NCEEN must not be cleared.  However it is possible that
2686 	 * our accesses to the flt_addr may provoke a bus error or timeout
2687 	 * if the offending address has just been unconfigured as part of
2688 	 * a DR action.  So we must operate under on_trap protection.
2689 	 */
2690 	kpreempt_disable();
2691 	orig_err = get_error_enable();
2692 	if (orig_err & EN_REG_CEEN)
2693 	    set_error_enable(orig_err & ~EN_REG_CEEN);
2694 
2695 	/*
2696 	 * Our classification algorithm includes the line state before
2697 	 * the scrub; we'd like this captured after the detection and
2698 	 * before the algorithm below - the earlier the better.
2699 	 *
2700 	 * If we've come from a cpu CE trap then this info already exists
2701 	 * in the cpu logout area.
2702 	 *
2703 	 * For a CE detected by memscrub for which there was no trap
2704 	 * (running with CEEN off) cpu_log_and_clear_ce has called
2705 	 * cpu_ce_delayed_ec_logout to capture some cache data, and
2706 	 * marked the fault structure as incomplete as a flag to later
2707 	 * logging code.
2708 	 *
2709 	 * If called directly from an IO detected CE there has been
2710 	 * no line data capture.  In this case we logout to the cpu logout
2711 	 * area - that's appropriate since it's the cpu cache data we need
2712 	 * for classification.  We thus borrow the cpu logout area for a
2713 	 * short time, and cpu_ce_delayed_ec_logout will mark it as busy in
2714 	 * this time (we will invalidate it again below).
2715 	 *
2716 	 * If called from the partner check xcall handler then this cpu
2717 	 * (the partner) has not necessarily experienced a CE at this
2718 	 * address.  But we want to capture line state before its scrub
2719 	 * attempt since we use that in our classification.
2720 	 */
2721 	if (logout_tried == B_FALSE) {
2722 		if (!cpu_ce_delayed_ec_logout(ecc->flt_addr))
2723 			disp |= CE_XDIAG_NOLOGOUT;
2724 	}
2725 
2726 	/*
2727 	 * Scrub memory, then check AFSR for errors.  The AFAR we scrub may
2728 	 * no longer be valid (if DR'd since the initial event) so we
2729 	 * perform this scrub under on_trap protection.  If this access is
2730 	 * ok then further accesses below will also be ok - DR cannot
2731 	 * proceed while this thread is active (preemption is disabled);
2732 	 * to be safe we'll nonetheless use on_trap again below.
2733 	 */
2734 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2735 		cpu_scrubphys(ecc);
2736 	} else {
2737 		no_trap();
2738 		if (orig_err & EN_REG_CEEN)
2739 		    set_error_enable(orig_err);
2740 		kpreempt_enable();
2741 		return (disp);
2742 	}
2743 	no_trap();
2744 
2745 	/*
2746 	 * Did the casx read of the scrub log a CE that matches the AFAR?
2747 	 * Note that it's quite possible that the read sourced the data from
2748 	 * another cpu.
2749 	 */
2750 	if (clear_ecc(ecc))
2751 		disp |= CE_XDIAG_CE1;
2752 
2753 	/*
2754 	 * Read the data again.  This time the read is very likely to
2755 	 * come from memory since the scrub induced a writeback to memory.
2756 	 */
2757 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2758 		(void) lddphys(P2ALIGN(ecc->flt_addr, 8));
2759 	} else {
2760 		no_trap();
2761 		if (orig_err & EN_REG_CEEN)
2762 		    set_error_enable(orig_err);
2763 		kpreempt_enable();
2764 		return (disp);
2765 	}
2766 	no_trap();
2767 
2768 	/* Did that read induce a CE that matches the AFAR? */
2769 	if (clear_ecc(ecc))
2770 		disp |= CE_XDIAG_CE2;
2771 
2772 	/*
2773 	 * Look at the logout information and record whether we found the
2774 	 * line in l2/l3 cache.  For Panther we are interested in whether
2775 	 * we found it in either cache (it won't reside in both but
2776 	 * it is possible to read it that way given the moving target).
2777 	 */
2778 	clop = CPU_PRIVATE(CPU) ? CPU_PRIVATE_PTR(CPU, chpr_cecc_logout) : NULL;
2779 	if (!(disp & CE_XDIAG_NOLOGOUT) && clop &&
2780 	    clop->clo_data.chd_afar != LOGOUT_INVALID) {
2781 		int hit, level;
2782 		int state;
2783 		int totalsize;
2784 		ch_ec_data_t *ecp;
2785 
2786 		/*
2787 		 * If hit is nonzero then a match was found and hit will
2788 		 * be one greater than the index which hit.  For Panther we
2789 		 * also need to pay attention to level to see which of l2$ or
2790 		 * l3$ it hit in.
2791 		 */
2792 		hit = cpu_matching_ecache_line(ecc->flt_addr, &clop->clo_data,
2793 		    0, &level);
2794 
2795 		if (hit) {
2796 			--hit;
2797 			disp |= CE_XDIAG_AFARMATCH;
2798 
2799 			if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
2800 				if (level == 2)
2801 					ecp = &clop->clo_data.chd_l2_data[hit];
2802 				else
2803 					ecp = &clop->clo_data.chd_ec_data[hit];
2804 			} else {
2805 				ASSERT(level == 2);
2806 				ecp = &clop->clo_data.chd_ec_data[hit];
2807 			}
2808 			totalsize = cpunodes[CPU->cpu_id].ecache_size;
2809 			state = cpu_ectag_pa_to_subblk_state(totalsize,
2810 			    ecc->flt_addr, ecp->ec_tag);
2811 
2812 			/*
2813 			 * Cheetah variants use different state encodings -
2814 			 * the CH_ECSTATE_* defines vary depending on the
2815 			 * module we're compiled for.  Translate into our
2816 			 * one true version.  Conflate Owner-Shared state
2817 			 * of SSM mode with Owner as victimisation of such
2818 			 * lines may cause a writeback.
2819 			 */
2820 			switch (state) {
2821 			case CH_ECSTATE_MOD:
2822 				disp |= EC_STATE_M;
2823 				break;
2824 
2825 			case CH_ECSTATE_OWN:
2826 			case CH_ECSTATE_OWS:
2827 				disp |= EC_STATE_O;
2828 				break;
2829 
2830 			case CH_ECSTATE_EXL:
2831 				disp |= EC_STATE_E;
2832 				break;
2833 
2834 			case CH_ECSTATE_SHR:
2835 				disp |= EC_STATE_S;
2836 				break;
2837 
2838 			default:
2839 				disp |= EC_STATE_I;
2840 				break;
2841 			}
2842 		}
2843 
2844 		/*
2845 		 * If we initiated the delayed logout then we are responsible
2846 		 * for invalidating the logout area.
2847 		 */
2848 		if (logout_tried == B_FALSE) {
2849 			bzero(clop, sizeof (ch_cpu_logout_t));
2850 			clop->clo_data.chd_afar = LOGOUT_INVALID;
2851 		}
2852 	}
2853 
2854 	/*
2855 	 * Re-enable CEEN if we turned it off.
2856 	 */
2857 	if (orig_err & EN_REG_CEEN)
2858 	    set_error_enable(orig_err);
2859 	kpreempt_enable();
2860 
2861 	return (disp);
2862 }
2863 
2864 /*
2865  * Scrub a correctable memory error and collect data for classification
2866  * of CE type.  This function is called in the detection path, ie tl0 handling
2867  * of a correctable error trap (cpus) or interrupt (IO) at high PIL.
2868  */
2869 void
2870 cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t logout_tried)
2871 {
2872 	/*
2873 	 * Cheetah CE classification does not set any bits in flt_status.
2874 	 * Instead we will record classification datapoints in flt_disp.
2875 	 */
2876 	ecc->flt_status &= ~(ECC_INTERMITTENT | ECC_PERSISTENT | ECC_STICKY);
2877 
2878 	/*
2879 	 * To check if the error detected by IO is persistent, sticky or
2880 	 * intermittent.  This is noticed by clear_ecc().
2881 	 */
2882 	if (ecc->flt_status & ECC_IOBUS)
2883 		ecc->flt_stat = C_AFSR_MEMORY;
2884 
2885 	/*
2886 	 * Record information from this first part of the algorithm in
2887 	 * flt_disp.
2888 	 */
2889 	ecc->flt_disp = cpu_ce_scrub_mem_err_common(ecc, logout_tried);
2890 }
2891 
2892 /*
2893  * Select a partner to perform a further CE classification check from.
2894  * Must be called with kernel preemption disabled (to stop the cpu list
2895  * from changing).  The detecting cpu we are partnering has cpuid
2896  * aflt->flt_inst; we might not be running on the detecting cpu.
2897  *
2898  * Restrict choice to active cpus in the same cpu partition as ourselves in
2899  * an effort to stop bad cpus in one partition causing other partitions to
2900  * perform excessive diagnostic activity.  Actually since the errorq drain
2901  * is run from a softint most of the time and that is a global mechanism
2902  * this isolation is only partial.  Return NULL if we fail to find a
2903  * suitable partner.
2904  *
2905  * We prefer a partner that is in a different latency group to ourselves as
2906  * we will share fewer datapaths.  If such a partner is unavailable then
2907  * choose one in the same lgroup but prefer a different chip and only allow
2908  * a sibling core if flags includes PTNR_SIBLINGOK.  If all else fails and
2909  * flags includes PTNR_SELFOK then permit selection of the original detector.
2910  *
2911  * We keep a cache of the last partner selected for a cpu, and we'll try to
2912  * use that previous partner if no more than cpu_ce_ptnr_cachetime_sec seconds
2913  * have passed since that selection was made.  This provides the benefit
2914  * of the point-of-view of different partners over time but without
2915  * requiring frequent cpu list traversals.
2916  */
2917 
2918 #define	PTNR_SIBLINGOK	0x1	/* Allow selection of sibling core */
2919 #define	PTNR_SELFOK	0x2	/* Allow selection of cpu to "partner" itself */
2920 
2921 static cpu_t *
2922 ce_ptnr_select(struct async_flt *aflt, int flags, int *typep)
2923 {
2924 	cpu_t *sp, *dtcr, *ptnr, *locptnr, *sibptnr;
2925 	hrtime_t lasttime, thistime;
2926 
2927 	ASSERT(curthread->t_preempt > 0 || getpil() >= DISP_LEVEL);
2928 
2929 	dtcr = cpu[aflt->flt_inst];
2930 
2931 	/*
2932 	 * Short-circuit for the following cases:
2933 	 *	. the dtcr is not flagged active
2934 	 *	. there is just one cpu present
2935 	 *	. the detector has disappeared
2936 	 *	. we were given a bad flt_inst cpuid; this should not happen
2937 	 *	  (eg PCI code now fills flt_inst) but if it does it is no
2938 	 *	  reason to panic.
2939 	 *	. there is just one cpu left online in the cpu partition
2940 	 *
2941 	 * If we return NULL after this point then we do not update the
2942 	 * chpr_ceptnr_seltime which will cause us to perform a full lookup
2943 	 * again next time; this is the case where the only other cpu online
2944 	 * in the detector's partition is on the same chip as the detector
2945 	 * and since CEEN re-enable is throttled even that case should not
2946 	 * hurt performance.
2947 	 */
2948 	if (dtcr == NULL || !cpu_flagged_active(dtcr->cpu_flags)) {
2949 		return (NULL);
2950 	}
2951 	if (ncpus == 1 || dtcr->cpu_part->cp_ncpus == 1) {
2952 		if (flags & PTNR_SELFOK) {
2953 			*typep = CE_XDIAG_PTNR_SELF;
2954 			return (dtcr);
2955 		} else {
2956 			return (NULL);
2957 		}
2958 	}
2959 
2960 	thistime = gethrtime();
2961 	lasttime = CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime);
2962 
2963 	/*
2964 	 * Select a starting point.
2965 	 */
2966 	if (!lasttime) {
2967 		/*
2968 		 * We've never selected a partner for this detector before.
2969 		 * Start the scan at the next online cpu in the same cpu
2970 		 * partition.
2971 		 */
2972 		sp = dtcr->cpu_next_part;
2973 	} else if (thistime - lasttime < cpu_ce_ptnr_cachetime_sec * NANOSEC) {
2974 		/*
2975 		 * Our last selection has not aged yet.  If this partner:
2976 		 *	. is still a valid cpu,
2977 		 *	. is still in the same partition as the detector
2978 		 *	. is still marked active
2979 		 *	. satisfies the 'flags' argument criteria
2980 		 * then select it again without updating the timestamp.
2981 		 */
2982 		sp = cpu[CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id)];
2983 		if (sp == NULL || sp->cpu_part != dtcr->cpu_part ||
2984 		    !cpu_flagged_active(sp->cpu_flags) ||
2985 		    (sp == dtcr && !(flags & PTNR_SELFOK)) ||
2986 		    (sp->cpu_chip->chip_id == dtcr->cpu_chip->chip_id &&
2987 		    !(flags & PTNR_SIBLINGOK))) {
2988 			sp = dtcr->cpu_next_part;
2989 		} else {
2990 			if (sp->cpu_lpl->lpl_lgrp != dtcr->cpu_lpl->lpl_lgrp) {
2991 				*typep = CE_XDIAG_PTNR_REMOTE;
2992 			} else if (sp == dtcr) {
2993 				*typep = CE_XDIAG_PTNR_SELF;
2994 			} else if (sp->cpu_chip->chip_id ==
2995 			    dtcr->cpu_chip->chip_id) {
2996 				*typep = CE_XDIAG_PTNR_SIBLING;
2997 			} else {
2998 				*typep = CE_XDIAG_PTNR_LOCAL;
2999 			}
3000 			return (sp);
3001 		}
3002 	} else {
3003 		/*
3004 		 * Our last selection has aged.  If it is nonetheless still a
3005 		 * valid cpu then start the scan at the next cpu in the
3006 		 * partition after our last partner.  If the last selection
3007 		 * is no longer a valid cpu then go with our default.  In
3008 		 * this way we slowly cycle through possible partners to
3009 		 * obtain multiple viewpoints over time.
3010 		 */
3011 		sp = cpu[CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id)];
3012 		if (sp == NULL) {
3013 			sp = dtcr->cpu_next_part;
3014 		} else {
3015 			sp = sp->cpu_next_part;		/* may be dtcr */
3016 			if (sp->cpu_part != dtcr->cpu_part)
3017 				sp = dtcr;
3018 		}
3019 	}
3020 
3021 	/*
3022 	 * We have a proposed starting point for our search, but if this
3023 	 * cpu is offline then its cpu_next_part will point to itself
3024 	 * so we can't use that to iterate over cpus in this partition in
3025 	 * the loop below.  We still want to avoid iterating over cpus not
3026 	 * in our partition, so in the case that our starting point is offline
3027 	 * we will repoint it to be the detector itself;  and if the detector
3028 	 * happens to be offline we'll return NULL from the following loop.
3029 	 */
3030 	if (!cpu_flagged_active(sp->cpu_flags)) {
3031 		sp = dtcr;
3032 	}
3033 
3034 	ptnr = sp;
3035 	locptnr = NULL;
3036 	sibptnr = NULL;
3037 	do {
3038 		if (ptnr == dtcr || !cpu_flagged_active(ptnr->cpu_flags))
3039 			continue;
3040 		if (ptnr->cpu_lpl->lpl_lgrp != dtcr->cpu_lpl->lpl_lgrp) {
3041 			CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id) = ptnr->cpu_id;
3042 			CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime) = thistime;
3043 			*typep = CE_XDIAG_PTNR_REMOTE;
3044 			return (ptnr);
3045 		}
3046 		if (ptnr->cpu_chip->chip_id == dtcr->cpu_chip->chip_id) {
3047 			if (sibptnr == NULL)
3048 				sibptnr = ptnr;
3049 			continue;
3050 		}
3051 		if (locptnr == NULL)
3052 			locptnr = ptnr;
3053 	} while ((ptnr = ptnr->cpu_next_part) != sp);
3054 
3055 	/*
3056 	 * A foreign partner has already been returned if one was available.
3057 	 *
3058 	 * If locptnr is not NULL it is a cpu in the same lgroup as the
3059 	 * detector, is active, and is not a sibling of the detector.
3060 	 *
3061 	 * If sibptnr is not NULL it is a sibling of the detector, and is
3062 	 * active.
3063 	 *
3064 	 * If we have to resort to using the detector itself we have already
3065 	 * checked that it is active.
3066 	 */
3067 	if (locptnr) {
3068 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id) = locptnr->cpu_id;
3069 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime) = thistime;
3070 		*typep = CE_XDIAG_PTNR_LOCAL;
3071 		return (locptnr);
3072 	} else if (sibptnr && flags & PTNR_SIBLINGOK) {
3073 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id) = sibptnr->cpu_id;
3074 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime) = thistime;
3075 		*typep = CE_XDIAG_PTNR_SIBLING;
3076 		return (sibptnr);
3077 	} else if (flags & PTNR_SELFOK) {
3078 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id) = dtcr->cpu_id;
3079 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime) = thistime;
3080 		*typep = CE_XDIAG_PTNR_SELF;
3081 		return (dtcr);
3082 	}
3083 
3084 	return (NULL);
3085 }
3086 
3087 /*
3088  * Cross call handler that is requested to run on the designated partner of
3089  * a cpu that experienced a possibly sticky or possibly persistnet CE.
3090  */
3091 static void
3092 ce_ptnrchk_xc(struct async_flt *aflt, uchar_t *dispp)
3093 {
3094 	*dispp = cpu_ce_scrub_mem_err_common(aflt, B_FALSE);
3095 }
3096 
3097 /*
3098  * The associated errorqs are never destroyed so we do not need to deal with
3099  * them disappearing before this timeout fires.  If the affected memory
3100  * has been DR'd out since the original event the scrub algrithm will catch
3101  * any errors and return null disposition info.  If the original detecting
3102  * cpu has been DR'd out then ereport detector info will not be able to
3103  * lookup CPU type;  with a small timeout this is unlikely.
3104  */
3105 static void
3106 ce_lkychk_cb(ce_lkychk_cb_t *cbarg)
3107 {
3108 	struct async_flt *aflt = cbarg->lkycb_aflt;
3109 	uchar_t disp;
3110 	cpu_t *cp;
3111 	int ptnrtype;
3112 
3113 	kpreempt_disable();
3114 	if (cp = ce_ptnr_select(aflt, PTNR_SIBLINGOK | PTNR_SELFOK,
3115 	    &ptnrtype)) {
3116 		xc_one(cp->cpu_id, (xcfunc_t *)ce_ptnrchk_xc, (uint64_t)aflt,
3117 		    (uint64_t)&disp);
3118 		CE_XDIAG_SETLKYINFO(aflt->flt_disp, disp);
3119 		CE_XDIAG_SETPTNRID(aflt->flt_disp, cp->cpu_id);
3120 		CE_XDIAG_SETPTNRTYPE(aflt->flt_disp, ptnrtype);
3121 	} else {
3122 		ce_xdiag_lkydrops++;
3123 		if (ncpus > 1)
3124 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
3125 			    CE_XDIAG_SKIP_NOPTNR);
3126 	}
3127 	kpreempt_enable();
3128 
3129 	errorq_commit(cbarg->lkycb_eqp, cbarg->lkycb_eqep, ERRORQ_ASYNC);
3130 	kmem_free(cbarg, sizeof (ce_lkychk_cb_t));
3131 }
3132 
3133 /*
3134  * Called from errorq drain code when processing a CE error, both from
3135  * CPU and PCI drain functions.  Decide what further classification actions,
3136  * if any, we will perform.  Perform immediate actions now, and schedule
3137  * delayed actions as required.  Note that we are no longer necessarily running
3138  * on the detecting cpu, and that the async_flt structure will not persist on
3139  * return from this function.
3140  *
3141  * Calls to this function should aim to be self-throtlling in some way.  With
3142  * the delayed re-enable of CEEN the absolute rate of calls should not
3143  * be excessive.  Callers should also avoid performing in-depth classification
3144  * for events in pages that are already known to be suspect.
3145  *
3146  * We return nonzero to indicate that the event has been copied and
3147  * recirculated for further testing.  The caller should not log the event
3148  * in this case - it will be logged when further test results are available.
3149  *
3150  * Our possible contexts are that of errorq_drain: below lock level or from
3151  * panic context.  We can assume that the cpu we are running on is online.
3152  */
3153 
3154 
3155 #ifdef DEBUG
3156 static int ce_xdiag_forceaction;
3157 #endif
3158 
3159 int
3160 ce_scrub_xdiag_recirc(struct async_flt *aflt, errorq_t *eqp,
3161     errorq_elem_t *eqep, size_t afltoffset)
3162 {
3163 	ce_dispact_t dispact, action;
3164 	cpu_t *cp;
3165 	uchar_t dtcrinfo, disp;
3166 	int ptnrtype;
3167 
3168 	if (!ce_disp_inited || panicstr || ce_xdiag_off) {
3169 		ce_xdiag_drops++;
3170 		return (0);
3171 	} else if (!aflt->flt_in_memory) {
3172 		ce_xdiag_drops++;
3173 		CE_XDIAG_SETSKIPCODE(aflt->flt_disp, CE_XDIAG_SKIP_NOTMEM);
3174 		return (0);
3175 	}
3176 
3177 	dtcrinfo = CE_XDIAG_DTCRINFO(aflt->flt_disp);
3178 
3179 	/*
3180 	 * Some correctable events are not scrubbed/classified, such as those
3181 	 * noticed at the tail of cpu_deferred_error.  So if there is no
3182 	 * initial detector classification go no further.
3183 	 */
3184 	if (!CE_XDIAG_EXT_ALG_APPLIED(dtcrinfo)) {
3185 		ce_xdiag_drops++;
3186 		CE_XDIAG_SETSKIPCODE(aflt->flt_disp, CE_XDIAG_SKIP_NOSCRUB);
3187 		return (0);
3188 	}
3189 
3190 	dispact = CE_DISPACT(ce_disp_table,
3191 	    CE_XDIAG_AFARMATCHED(dtcrinfo),
3192 	    CE_XDIAG_STATE(dtcrinfo),
3193 	    CE_XDIAG_CE1SEEN(dtcrinfo),
3194 	    CE_XDIAG_CE2SEEN(dtcrinfo));
3195 
3196 
3197 	action = CE_ACT(dispact);	/* bad lookup caught below */
3198 #ifdef DEBUG
3199 	if (ce_xdiag_forceaction != 0)
3200 		action = ce_xdiag_forceaction;
3201 #endif
3202 
3203 	switch (action) {
3204 	case CE_ACT_LKYCHK: {
3205 		caddr_t ndata;
3206 		errorq_elem_t *neqep;
3207 		struct async_flt *ecc;
3208 		ce_lkychk_cb_t *cbargp;
3209 
3210 		if ((ndata = errorq_elem_dup(eqp, eqep, &neqep)) == NULL) {
3211 			ce_xdiag_lkydrops++;
3212 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
3213 			    CE_XDIAG_SKIP_DUPFAIL);
3214 			break;
3215 		}
3216 		ecc = (struct async_flt *)(ndata + afltoffset);
3217 
3218 		ASSERT(ecc->flt_class == CPU_FAULT ||
3219 		    ecc->flt_class == BUS_FAULT);
3220 		ecc->flt_class = (ecc->flt_class == CPU_FAULT) ?
3221 		    RECIRC_CPU_FAULT : RECIRC_BUS_FAULT;
3222 
3223 		cbargp = kmem_alloc(sizeof (ce_lkychk_cb_t), KM_SLEEP);
3224 		cbargp->lkycb_aflt = ecc;
3225 		cbargp->lkycb_eqp = eqp;
3226 		cbargp->lkycb_eqep = neqep;
3227 
3228 		(void) timeout((void (*)(void *))ce_lkychk_cb,
3229 		    (void *)cbargp, drv_usectohz(cpu_ce_lkychk_timeout_usec));
3230 		return (1);
3231 	}
3232 
3233 	case CE_ACT_PTNRCHK:
3234 		kpreempt_disable();	/* stop cpu list changing */
3235 		if ((cp = ce_ptnr_select(aflt, 0, &ptnrtype)) != NULL) {
3236 			xc_one(cp->cpu_id, (xcfunc_t *)ce_ptnrchk_xc,
3237 			    (uint64_t)aflt, (uint64_t)&disp);
3238 			CE_XDIAG_SETPTNRINFO(aflt->flt_disp, disp);
3239 			CE_XDIAG_SETPTNRID(aflt->flt_disp, cp->cpu_id);
3240 			CE_XDIAG_SETPTNRTYPE(aflt->flt_disp, ptnrtype);
3241 		} else if (ncpus > 1) {
3242 			ce_xdiag_ptnrdrops++;
3243 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
3244 			    CE_XDIAG_SKIP_NOPTNR);
3245 		} else {
3246 			ce_xdiag_ptnrdrops++;
3247 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
3248 			    CE_XDIAG_SKIP_UNIPROC);
3249 		}
3250 		kpreempt_enable();
3251 		break;
3252 
3253 	case CE_ACT_DONE:
3254 		break;
3255 
3256 	case CE_ACT(CE_DISP_BAD):
3257 	default:
3258 #ifdef DEBUG
3259 		cmn_err(CE_PANIC, "ce_scrub_post: Bad action '%d'", action);
3260 #endif
3261 		ce_xdiag_bad++;
3262 		CE_XDIAG_SETSKIPCODE(aflt->flt_disp, CE_XDIAG_SKIP_ACTBAD);
3263 		break;
3264 	}
3265 
3266 	return (0);
3267 }
3268 
3269 /*
3270  * We route all errors through a single switch statement.
3271  */
3272 void
3273 cpu_ue_log_err(struct async_flt *aflt)
3274 {
3275 	switch (aflt->flt_class) {
3276 	case CPU_FAULT:
3277 		cpu_ereport_init(aflt);
3278 		if (cpu_async_log_err(aflt, NULL))
3279 			cpu_ereport_post(aflt);
3280 		break;
3281 
3282 	case BUS_FAULT:
3283 		bus_async_log_err(aflt);
3284 		break;
3285 
3286 	default:
3287 		cmn_err(CE_WARN, "discarding async error %p with invalid "
3288 		    "fault class (0x%x)", (void *)aflt, aflt->flt_class);
3289 		return;
3290 	}
3291 }
3292 
3293 /*
3294  * Routine for panic hook callback from panic_idle().
3295  */
3296 void
3297 cpu_async_panic_callb(void)
3298 {
3299 	ch_async_flt_t ch_flt;
3300 	struct async_flt *aflt;
3301 	ch_cpu_errors_t cpu_error_regs;
3302 	uint64_t afsr_errs;
3303 
3304 	get_cpu_error_state(&cpu_error_regs);
3305 
3306 	afsr_errs = (cpu_error_regs.afsr & C_AFSR_ALL_ERRS) |
3307 	    (cpu_error_regs.afsr_ext & C_AFSR_EXT_L3_ERRS);
3308 
3309 	if (afsr_errs) {
3310 
3311 		bzero(&ch_flt, sizeof (ch_async_flt_t));
3312 		aflt = (struct async_flt *)&ch_flt;
3313 		aflt->flt_id = gethrtime_waitfree();
3314 		aflt->flt_bus_id = getprocessorid();
3315 		aflt->flt_inst = CPU->cpu_id;
3316 		aflt->flt_stat = cpu_error_regs.afsr;
3317 		aflt->flt_addr = cpu_error_regs.afar;
3318 		aflt->flt_prot = AFLT_PROT_NONE;
3319 		aflt->flt_class = CPU_FAULT;
3320 		aflt->flt_priv = ((cpu_error_regs.afsr & C_AFSR_PRIV) != 0);
3321 		aflt->flt_panic = 1;
3322 		ch_flt.afsr_ext = cpu_error_regs.afsr_ext;
3323 		ch_flt.afsr_errs = afsr_errs;
3324 #if defined(SERRANO)
3325 		ch_flt.afar2 = cpu_error_regs.afar2;
3326 #endif	/* SERRANO */
3327 		(void) cpu_queue_events(&ch_flt, NULL, afsr_errs, NULL);
3328 	}
3329 }
3330 
3331 /*
3332  * Routine to convert a syndrome into a syndrome code.
3333  */
3334 static int
3335 synd_to_synd_code(int synd_status, ushort_t synd, uint64_t afsr_bit)
3336 {
3337 	if (synd_status == AFLT_STAT_INVALID)
3338 		return (-1);
3339 
3340 	/*
3341 	 * Use the syndrome to index the appropriate syndrome table,
3342 	 * to get the code indicating which bit(s) is(are) bad.
3343 	 */
3344 	if (afsr_bit &
3345 	    (C_AFSR_MSYND_ERRS | C_AFSR_ESYND_ERRS | C_AFSR_EXT_ESYND_ERRS)) {
3346 		if (afsr_bit & C_AFSR_MSYND_ERRS) {
3347 #if defined(JALAPENO) || defined(SERRANO)
3348 			if ((synd == 0) || (synd >= BSYND_TBL_SIZE))
3349 				return (-1);
3350 			else
3351 				return (BPAR0 + synd);
3352 #else /* JALAPENO || SERRANO */
3353 			if ((synd == 0) || (synd >= MSYND_TBL_SIZE))
3354 				return (-1);
3355 			else
3356 				return (mtag_syndrome_tab[synd]);
3357 #endif /* JALAPENO || SERRANO */
3358 		} else {
3359 			if ((synd == 0) || (synd >= ESYND_TBL_SIZE))
3360 				return (-1);
3361 			else
3362 				return (ecc_syndrome_tab[synd]);
3363 		}
3364 	} else {
3365 		return (-1);
3366 	}
3367 }
3368 
3369 /*
3370  * Routine to return a string identifying the physical name
3371  * associated with a memory/cache error.
3372  */
3373 int
3374 cpu_get_mem_unum(int synd_status, ushort_t flt_synd, uint64_t flt_stat,
3375     uint64_t flt_addr, int flt_bus_id, int flt_in_memory,
3376     ushort_t flt_status, char *buf, int buflen, int *lenp)
3377 {
3378 	int synd_code;
3379 	int ret;
3380 
3381 	/*
3382 	 * An AFSR of -1 defaults to a memory syndrome.
3383 	 */
3384 	if (flt_stat == (uint64_t)-1)
3385 		flt_stat = C_AFSR_CE;
3386 
3387 	synd_code = synd_to_synd_code(synd_status, flt_synd, flt_stat);
3388 
3389 	/*
3390 	 * Syndrome code must be either a single-bit error code
3391 	 * (0...143) or -1 for unum lookup.
3392 	 */
3393 	if (synd_code < 0 || synd_code >= M2)
3394 		synd_code = -1;
3395 	if (&plat_get_mem_unum) {
3396 		if ((ret = plat_get_mem_unum(synd_code, flt_addr, flt_bus_id,
3397 		    flt_in_memory, flt_status, buf, buflen, lenp)) != 0) {
3398 			buf[0] = '\0';
3399 			*lenp = 0;
3400 		}
3401 
3402 		return (ret);
3403 	}
3404 
3405 	return (ENOTSUP);
3406 }
3407 
3408 /*
3409  * Wrapper for cpu_get_mem_unum() routine that takes an
3410  * async_flt struct rather than explicit arguments.
3411  */
3412 int
3413 cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt,
3414     char *buf, int buflen, int *lenp)
3415 {
3416 	/*
3417 	 * If we come thru here for an IO bus error aflt->flt_stat will
3418 	 * not be the CPU AFSR, and we pass in a -1 to cpu_get_mem_unum()
3419 	 * so it will interpret this as a memory error.
3420 	 */
3421 	return (cpu_get_mem_unum(synd_status, aflt->flt_synd,
3422 	    (aflt->flt_class == BUS_FAULT) ?
3423 	    (uint64_t)-1 : ((ch_async_flt_t *)(aflt))->afsr_errs,
3424 	    aflt->flt_addr, aflt->flt_bus_id, aflt->flt_in_memory,
3425 	    aflt->flt_status, buf, buflen, lenp));
3426 }
3427 
3428 /*
3429  * This routine is a more generic interface to cpu_get_mem_unum()
3430  * that may be used by other modules (e.g. mm).
3431  */
3432 int
3433 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
3434     char *buf, int buflen, int *lenp)
3435 {
3436 	int synd_status, flt_in_memory, ret;
3437 	ushort_t flt_status = 0;
3438 	char unum[UNUM_NAMLEN];
3439 
3440 	/*
3441 	 * Check for an invalid address.
3442 	 */
3443 	if (afar == (uint64_t)-1)
3444 		return (ENXIO);
3445 
3446 	if (synd == (uint64_t)-1)
3447 		synd_status = AFLT_STAT_INVALID;
3448 	else
3449 		synd_status = AFLT_STAT_VALID;
3450 
3451 	flt_in_memory = (*afsr & C_AFSR_MEMORY) &&
3452 	    pf_is_memory(afar >> MMU_PAGESHIFT);
3453 
3454 	/*
3455 	 * Need to turn on ECC_ECACHE for plat_get_mem_unum().
3456 	 * For Panther, L2$ is not external, so we don't want to
3457 	 * generate an E$ unum for those errors.
3458 	 */
3459 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
3460 		if (*(afsr + 1) & C_AFSR_EXT_L3_ERRS)
3461 			flt_status |= ECC_ECACHE;
3462 	} else {
3463 		if (*afsr & C_AFSR_ECACHE)
3464 			flt_status |= ECC_ECACHE;
3465 	}
3466 
3467 	ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, *afsr, afar,
3468 	    CPU->cpu_id, flt_in_memory, flt_status, unum, UNUM_NAMLEN, lenp);
3469 	if (ret != 0)
3470 		return (ret);
3471 
3472 	if (*lenp >= buflen)
3473 		return (ENAMETOOLONG);
3474 
3475 	(void) strncpy(buf, unum, buflen);
3476 
3477 	return (0);
3478 }
3479 
3480 /*
3481  * Routine to return memory information associated
3482  * with a physical address and syndrome.
3483  */
3484 int
3485 cpu_get_mem_info(uint64_t synd, uint64_t afar,
3486     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
3487     int *segsp, int *banksp, int *mcidp)
3488 {
3489 	int synd_status, synd_code;
3490 
3491 	if (afar == (uint64_t)-1)
3492 		return (ENXIO);
3493 
3494 	if (synd == (uint64_t)-1)
3495 		synd_status = AFLT_STAT_INVALID;
3496 	else
3497 		synd_status = AFLT_STAT_VALID;
3498 
3499 	synd_code = synd_to_synd_code(synd_status, synd, C_AFSR_CE);
3500 
3501 	if (p2get_mem_info != NULL)
3502 		return ((p2get_mem_info)(synd_code, afar,
3503 			mem_sizep, seg_sizep, bank_sizep,
3504 			segsp, banksp, mcidp));
3505 	else
3506 		return (ENOTSUP);
3507 }
3508 
3509 /*
3510  * Routine to return a string identifying the physical
3511  * name associated with a cpuid.
3512  */
3513 int
3514 cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
3515 {
3516 	int ret;
3517 	char unum[UNUM_NAMLEN];
3518 
3519 	if (&plat_get_cpu_unum) {
3520 		if ((ret = plat_get_cpu_unum(cpuid, unum, UNUM_NAMLEN, lenp))
3521 		    != 0)
3522 			return (ret);
3523 	} else {
3524 		return (ENOTSUP);
3525 	}
3526 
3527 	if (*lenp >= buflen)
3528 		return (ENAMETOOLONG);
3529 
3530 	(void) strncpy(buf, unum, buflen);
3531 
3532 	return (0);
3533 }
3534 
3535 /*
3536  * This routine exports the name buffer size.
3537  */
3538 size_t
3539 cpu_get_name_bufsize()
3540 {
3541 	return (UNUM_NAMLEN);
3542 }
3543 
3544 /*
3545  * Historical function, apparantly not used.
3546  */
3547 /* ARGSUSED */
3548 void
3549 cpu_read_paddr(struct async_flt *ecc, short verbose, short ce_err)
3550 {}
3551 
3552 /*
3553  * Historical function only called for SBus errors in debugging.
3554  */
3555 /*ARGSUSED*/
3556 void
3557 read_ecc_data(struct async_flt *aflt, short verbose, short ce_err)
3558 {}
3559 
3560 /*
3561  * Clear the AFSR sticky bits.  The routine returns a non-zero value if
3562  * any of the AFSR's sticky errors are detected.  If a non-null pointer to
3563  * an async fault structure argument is passed in, the captured error state
3564  * (AFSR, AFAR) info will be returned in the structure.
3565  */
3566 int
3567 clear_errors(ch_async_flt_t *ch_flt)
3568 {
3569 	struct async_flt *aflt = (struct async_flt *)ch_flt;
3570 	ch_cpu_errors_t	cpu_error_regs;
3571 
3572 	get_cpu_error_state(&cpu_error_regs);
3573 
3574 	if (ch_flt != NULL) {
3575 		aflt->flt_stat = cpu_error_regs.afsr & C_AFSR_MASK;
3576 		aflt->flt_addr = cpu_error_regs.afar;
3577 		ch_flt->afsr_ext = cpu_error_regs.afsr_ext;
3578 		ch_flt->afsr_errs = (cpu_error_regs.afsr & C_AFSR_ALL_ERRS) |
3579 		    (cpu_error_regs.afsr_ext & C_AFSR_EXT_ALL_ERRS);
3580 #if defined(SERRANO)
3581 		ch_flt->afar2 = cpu_error_regs.afar2;
3582 #endif	/* SERRANO */
3583 	}
3584 
3585 	set_cpu_error_state(&cpu_error_regs);
3586 
3587 	return (((cpu_error_regs.afsr & C_AFSR_ALL_ERRS) |
3588 	    (cpu_error_regs.afsr_ext & C_AFSR_EXT_ALL_ERRS)) != 0);
3589 }
3590 
3591 /*
3592  * Clear any AFSR error bits, and check for persistence.
3593  *
3594  * It would be desirable to also insist that syndrome match.  PCI handling
3595  * has already filled flt_synd.  For errors trapped by CPU we only fill
3596  * flt_synd when we queue the event, so we do not have a valid flt_synd
3597  * during initial classification (it is valid if we're called as part of
3598  * subsequent low-pil additional classification attempts).  We could try
3599  * to determine which syndrome to use: we know we're only called for
3600  * CE/RCE (Jalapeno & Serrano) and CE/EMC (others) so the syndrome to use
3601  * would be esynd/none and esynd/msynd, respectively.  If that is
3602  * implemented then what do we do in the case that we do experience an
3603  * error on the same afar but with different syndrome?  At the very least
3604  * we should count such occurences.  Anyway, for now, we'll leave it as
3605  * it has been for ages.
3606  */
3607 static int
3608 clear_ecc(struct async_flt *aflt)
3609 {
3610 	ch_cpu_errors_t	cpu_error_regs;
3611 
3612 	/*
3613 	 * Snapshot the AFSR and AFAR and clear any errors
3614 	 */
3615 	get_cpu_error_state(&cpu_error_regs);
3616 	set_cpu_error_state(&cpu_error_regs);
3617 
3618 	/*
3619 	 * If any of the same memory access error bits are still on and
3620 	 * the AFAR matches, return that the error is persistent.
3621 	 */
3622 	return ((cpu_error_regs.afsr & (C_AFSR_MEMORY & aflt->flt_stat)) != 0 &&
3623 	    cpu_error_regs.afar == aflt->flt_addr);
3624 }
3625 
3626 /*
3627  * Turn off all cpu error detection, normally only used for panics.
3628  */
3629 void
3630 cpu_disable_errors(void)
3631 {
3632 	xt_all(set_error_enable_tl1, EN_REG_DISABLE, EER_SET_ABSOLUTE);
3633 
3634 	/*
3635 	 * With error detection now turned off, check the other cpus
3636 	 * logout areas for any unlogged errors.
3637 	 */
3638 	if (enable_check_other_cpus_logout) {
3639 		cpu_check_other_cpus_logout();
3640 		/*
3641 		 * Make a second pass over the logout areas, in case
3642 		 * there is a failing CPU in an error-trap loop which
3643 		 * will write to the logout area once it is emptied.
3644 		 */
3645 		cpu_check_other_cpus_logout();
3646 	}
3647 }
3648 
3649 /*
3650  * Enable errors.
3651  */
3652 void
3653 cpu_enable_errors(void)
3654 {
3655 	xt_all(set_error_enable_tl1, EN_REG_ENABLE, EER_SET_ABSOLUTE);
3656 }
3657 
3658 /*
3659  * Flush the entire ecache using displacement flush by reading through a
3660  * physical address range twice as large as the Ecache.
3661  */
3662 void
3663 cpu_flush_ecache(void)
3664 {
3665 	flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size,
3666 	    cpunodes[CPU->cpu_id].ecache_linesize);
3667 }
3668 
3669 /*
3670  * Return CPU E$ set size - E$ size divided by the associativity.
3671  * We use this function in places where the CPU_PRIVATE ptr may not be
3672  * initialized yet.  Note that for send_mondo and in the Ecache scrubber,
3673  * we're guaranteed that CPU_PRIVATE is initialized.  Also, cpunodes is set
3674  * up before the kernel switches from OBP's to the kernel's trap table, so
3675  * we don't have to worry about cpunodes being unitialized.
3676  */
3677 int
3678 cpu_ecache_set_size(struct cpu *cp)
3679 {
3680 	if (CPU_PRIVATE(cp))
3681 		return (CPU_PRIVATE_VAL(cp, chpr_ec_set_size));
3682 
3683 	return (cpunodes[cp->cpu_id].ecache_size / cpu_ecache_nway());
3684 }
3685 
3686 /*
3687  * Flush Ecache line.
3688  * Uses ASI_EC_DIAG for Cheetah+ and Jalapeno.
3689  * Uses normal displacement flush for Cheetah.
3690  */
3691 static void
3692 cpu_flush_ecache_line(ch_async_flt_t *ch_flt)
3693 {
3694 	struct async_flt *aflt = (struct async_flt *)ch_flt;
3695 	int ec_set_size = cpu_ecache_set_size(CPU);
3696 
3697 	ecache_flush_line(aflt->flt_addr, ec_set_size);
3698 }
3699 
3700 /*
3701  * Scrub physical address.
3702  * Scrub code is different depending upon whether this a Cheetah+ with 2-way
3703  * Ecache or direct-mapped Ecache.
3704  */
3705 static void
3706 cpu_scrubphys(struct async_flt *aflt)
3707 {
3708 	int ec_set_size = cpu_ecache_set_size(CPU);
3709 
3710 	scrubphys(aflt->flt_addr, ec_set_size);
3711 }
3712 
3713 /*
3714  * Clear physical address.
3715  * Scrub code is different depending upon whether this a Cheetah+ with 2-way
3716  * Ecache or direct-mapped Ecache.
3717  */
3718 void
3719 cpu_clearphys(struct async_flt *aflt)
3720 {
3721 	int lsize = cpunodes[CPU->cpu_id].ecache_linesize;
3722 	int ec_set_size = cpu_ecache_set_size(CPU);
3723 
3724 
3725 	clearphys(P2ALIGN(aflt->flt_addr, lsize), ec_set_size, lsize);
3726 }
3727 
3728 #if defined(CPU_IMP_ECACHE_ASSOC)
3729 /*
3730  * Check for a matching valid line in all the sets.
3731  * If found, return set# + 1. Otherwise return 0.
3732  */
3733 static int
3734 cpu_ecache_line_valid(ch_async_flt_t *ch_flt)
3735 {
3736 	struct async_flt *aflt = (struct async_flt *)ch_flt;
3737 	int totalsize = cpunodes[CPU->cpu_id].ecache_size;
3738 	int ec_set_size = cpu_ecache_set_size(CPU);
3739 	ch_ec_data_t *ecp = &ch_flt->flt_diag_data.chd_ec_data[0];
3740 	int nway = cpu_ecache_nway();
3741 	int i;
3742 
3743 	for (i = 0; i < nway; i++, ecp++) {
3744 		if (!cpu_ectag_line_invalid(totalsize, ecp->ec_tag) &&
3745 		    (aflt->flt_addr & P2ALIGN(C_AFAR_PA, ec_set_size)) ==
3746 		    cpu_ectag_to_pa(ec_set_size, ecp->ec_tag))
3747 			return (i+1);
3748 	}
3749 	return (0);
3750 }
3751 #endif /* CPU_IMP_ECACHE_ASSOC */
3752 
3753 /*
3754  * Check whether a line in the given logout info matches the specified
3755  * fault address.  If reqval is set then the line must not be Invalid.
3756  * Returns 0 on failure;  on success (way + 1) is returned an *level is
3757  * set to 2 for l2$ or 3 for l3$.
3758  */
3759 static int
3760 cpu_matching_ecache_line(uint64_t faddr, void *data, int reqval, int *level)
3761 {
3762 	ch_diag_data_t *cdp = data;
3763 	ch_ec_data_t *ecp;
3764 	int totalsize, ec_set_size;
3765 	int i, ways;
3766 	int match = 0;
3767 	int tagvalid;
3768 	uint64_t addr, tagpa;
3769 	int ispanther = IS_PANTHER(cpunodes[CPU->cpu_id].implementation);
3770 
3771 	/*
3772 	 * Check the l2$ logout data
3773 	 */
3774 	if (ispanther) {
3775 		ecp = &cdp->chd_l2_data[0];
3776 		ec_set_size = PN_L2_SET_SIZE;
3777 		ways = PN_L2_NWAYS;
3778 	} else {
3779 		ecp = &cdp->chd_ec_data[0];
3780 		ec_set_size = cpu_ecache_set_size(CPU);
3781 		ways = cpu_ecache_nway();
3782 		totalsize = cpunodes[CPU->cpu_id].ecache_size;
3783 	}
3784 	/* remove low order PA bits from fault address not used in PA tag */
3785 	addr = faddr & P2ALIGN(C_AFAR_PA, ec_set_size);
3786 	for (i = 0; i < ways; i++, ecp++) {
3787 		if (ispanther) {
3788 			tagpa = PN_L2TAG_TO_PA(ecp->ec_tag);
3789 			tagvalid = !PN_L2_LINE_INVALID(ecp->ec_tag);
3790 		} else {
3791 			tagpa = cpu_ectag_to_pa(ec_set_size, ecp->ec_tag);
3792 			tagvalid = !cpu_ectag_line_invalid(totalsize,
3793 			    ecp->ec_tag);
3794 		}
3795 		if (tagpa == addr && (!reqval || tagvalid)) {
3796 			match = i + 1;
3797 			*level = 2;
3798 			break;
3799 		}
3800 	}
3801 
3802 	if (match || !ispanther)
3803 		return (match);
3804 
3805 	/* For Panther we also check the l3$ */
3806 	ecp = &cdp->chd_ec_data[0];
3807 	ec_set_size = PN_L3_SET_SIZE;
3808 	ways = PN_L3_NWAYS;
3809 	addr = faddr & P2ALIGN(C_AFAR_PA, ec_set_size);
3810 
3811 	for (i = 0; i < ways; i++, ecp++) {
3812 		if (PN_L3TAG_TO_PA(ecp->ec_tag) == addr && (!reqval ||
3813 		    !PN_L3_LINE_INVALID(ecp->ec_tag))) {
3814 			match = i + 1;
3815 			*level = 3;
3816 			break;
3817 		}
3818 	}
3819 
3820 	return (match);
3821 }
3822 
3823 #if defined(CPU_IMP_L1_CACHE_PARITY)
3824 /*
3825  * Record information related to the source of an Dcache Parity Error.
3826  */
3827 static void
3828 cpu_dcache_parity_info(ch_async_flt_t *ch_flt)
3829 {
3830 	int dc_set_size = dcache_size / CH_DCACHE_NWAY;
3831 	int index;
3832 
3833 	/*
3834 	 * Since instruction decode cannot be done at high PIL
3835 	 * just examine the entire Dcache to locate the error.
3836 	 */
3837 	if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
3838 		ch_flt->parity_data.dpe.cpl_way = -1;
3839 		ch_flt->parity_data.dpe.cpl_off = -1;
3840 	}
3841 	for (index = 0; index < dc_set_size; index += dcache_linesize)
3842 		cpu_dcache_parity_check(ch_flt, index);
3843 }
3844 
3845 /*
3846  * Check all ways of the Dcache at a specified index for good parity.
3847  */
3848 static void
3849 cpu_dcache_parity_check(ch_async_flt_t *ch_flt, int index)
3850 {
3851 	int dc_set_size = dcache_size / CH_DCACHE_NWAY;
3852 	uint64_t parity_bits, pbits, data_word;
3853 	static int parity_bits_popc[] = { 0, 1, 1, 0 };
3854 	int way, word, data_byte;
3855 	ch_dc_data_t *dcp = &ch_flt->parity_data.dpe.cpl_dc[0];
3856 	ch_dc_data_t tmp_dcp;
3857 
3858 	for (way = 0; way < CH_DCACHE_NWAY; way++, dcp++) {
3859 		/*
3860 		 * Perform diagnostic read.
3861 		 */
3862 		get_dcache_dtag(index + way * dc_set_size,
3863 				(uint64_t *)&tmp_dcp);
3864 
3865 		/*
3866 		 * Check tag for even parity.
3867 		 * Sum of 1 bits (including parity bit) should be even.
3868 		 */
3869 		if (popc64(tmp_dcp.dc_tag & CHP_DCTAG_PARMASK) & 1) {
3870 			/*
3871 			 * If this is the first error log detailed information
3872 			 * about it and check the snoop tag. Otherwise just
3873 			 * record the fact that we found another error.
3874 			 */
3875 			if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
3876 				ch_flt->parity_data.dpe.cpl_way = way;
3877 				ch_flt->parity_data.dpe.cpl_cache =
3878 				    CPU_DC_PARITY;
3879 				ch_flt->parity_data.dpe.cpl_tag |= CHP_DC_TAG;
3880 
3881 				if (popc64(tmp_dcp.dc_sntag &
3882 						CHP_DCSNTAG_PARMASK) & 1) {
3883 					ch_flt->parity_data.dpe.cpl_tag |=
3884 								CHP_DC_SNTAG;
3885 					ch_flt->parity_data.dpe.cpl_lcnt++;
3886 				}
3887 
3888 				bcopy(&tmp_dcp, dcp, sizeof (ch_dc_data_t));
3889 			}
3890 
3891 			ch_flt->parity_data.dpe.cpl_lcnt++;
3892 		}
3893 
3894 		if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
3895 			/*
3896 			 * Panther has more parity bits than the other
3897 			 * processors for covering dcache data and so each
3898 			 * byte of data in each word has its own parity bit.
3899 			 */
3900 			parity_bits = tmp_dcp.dc_pn_data_parity;
3901 			for (word = 0; word < 4; word++) {
3902 				data_word = tmp_dcp.dc_data[word];
3903 				pbits = parity_bits & PN_DC_DATA_PARITY_MASK;
3904 				for (data_byte = 0; data_byte < 8;
3905 				    data_byte++) {
3906 					if (((popc64(data_word &
3907 					    PN_DC_DATA_PARITY_MASK)) & 1) ^
3908 					    (pbits & 1)) {
3909 						cpu_record_dc_data_parity(
3910 						ch_flt, dcp, &tmp_dcp, way,
3911 						word);
3912 					}
3913 					pbits >>= 1;
3914 					data_word >>= 8;
3915 				}
3916 				parity_bits >>= 8;
3917 			}
3918 		} else {
3919 			/*
3920 			 * Check data array for even parity.
3921 			 * The 8 parity bits are grouped into 4 pairs each
3922 			 * of which covers a 64-bit word.  The endianness is
3923 			 * reversed -- the low-order parity bits cover the
3924 			 * high-order data words.
3925 			 */
3926 			parity_bits = tmp_dcp.dc_utag >> 8;
3927 			for (word = 0; word < 4; word++) {
3928 				pbits = (parity_bits >> (6 - word * 2)) & 3;
3929 				if ((popc64(tmp_dcp.dc_data[word]) +
3930 				    parity_bits_popc[pbits]) & 1) {
3931 					cpu_record_dc_data_parity(ch_flt, dcp,
3932 					    &tmp_dcp, way, word);
3933 				}
3934 			}
3935 		}
3936 	}
3937 }
3938 
3939 static void
3940 cpu_record_dc_data_parity(ch_async_flt_t *ch_flt,
3941     ch_dc_data_t *dest_dcp, ch_dc_data_t *src_dcp, int way, int word)
3942 {
3943 	/*
3944 	 * If this is the first error log detailed information about it.
3945 	 * Otherwise just record the fact that we found another error.
3946 	 */
3947 	if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
3948 		ch_flt->parity_data.dpe.cpl_way = way;
3949 		ch_flt->parity_data.dpe.cpl_cache = CPU_DC_PARITY;
3950 		ch_flt->parity_data.dpe.cpl_off = word * 8;
3951 		bcopy(src_dcp, dest_dcp, sizeof (ch_dc_data_t));
3952 	}
3953 	ch_flt->parity_data.dpe.cpl_lcnt++;
3954 }
3955 
3956 /*
3957  * Record information related to the source of an Icache Parity Error.
3958  *
3959  * Called with the Icache disabled so any diagnostic accesses are safe.
3960  */
3961 static void
3962 cpu_icache_parity_info(ch_async_flt_t *ch_flt)
3963 {
3964 	int	ic_set_size;
3965 	int	ic_linesize;
3966 	int	index;
3967 
3968 	if (CPU_PRIVATE(CPU)) {
3969 		ic_set_size = CPU_PRIVATE_VAL(CPU, chpr_icache_size) /
3970 		    CH_ICACHE_NWAY;
3971 		ic_linesize = CPU_PRIVATE_VAL(CPU, chpr_icache_linesize);
3972 	} else {
3973 		ic_set_size = icache_size / CH_ICACHE_NWAY;
3974 		ic_linesize = icache_linesize;
3975 	}
3976 
3977 	ch_flt->parity_data.ipe.cpl_way = -1;
3978 	ch_flt->parity_data.ipe.cpl_off = -1;
3979 
3980 	for (index = 0; index < ic_set_size; index += ic_linesize)
3981 		cpu_icache_parity_check(ch_flt, index);
3982 }
3983 
3984 /*
3985  * Check all ways of the Icache at a specified index for good parity.
3986  */
3987 static void
3988 cpu_icache_parity_check(ch_async_flt_t *ch_flt, int index)
3989 {
3990 	uint64_t parmask, pn_inst_parity;
3991 	int ic_set_size;
3992 	int ic_linesize;
3993 	int flt_index, way, instr, num_instr;
3994 	struct async_flt *aflt = (struct async_flt *)ch_flt;
3995 	ch_ic_data_t *icp = &ch_flt->parity_data.ipe.cpl_ic[0];
3996 	ch_ic_data_t tmp_icp;
3997 
3998 	if (CPU_PRIVATE(CPU)) {
3999 		ic_set_size = CPU_PRIVATE_VAL(CPU, chpr_icache_size) /
4000 		    CH_ICACHE_NWAY;
4001 		ic_linesize = CPU_PRIVATE_VAL(CPU, chpr_icache_linesize);
4002 	} else {
4003 		ic_set_size = icache_size / CH_ICACHE_NWAY;
4004 		ic_linesize = icache_linesize;
4005 	}
4006 
4007 	/*
4008 	 * Panther has twice as many instructions per icache line and the
4009 	 * instruction parity bit is in a different location.
4010 	 */
4011 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
4012 		num_instr = PN_IC_DATA_REG_SIZE / sizeof (uint64_t);
4013 		pn_inst_parity = PN_ICDATA_PARITY_BIT_MASK;
4014 	} else {
4015 		num_instr = CH_IC_DATA_REG_SIZE / sizeof (uint64_t);
4016 		pn_inst_parity = 0;
4017 	}
4018 
4019 	/*
4020 	 * Index at which we expect to find the parity error.
4021 	 */
4022 	flt_index = P2ALIGN(aflt->flt_addr % ic_set_size, ic_linesize);
4023 
4024 	for (way = 0; way < CH_ICACHE_NWAY; way++, icp++) {
4025 		/*
4026 		 * Diagnostic reads expect address argument in ASI format.
4027 		 */
4028 		get_icache_dtag(2 * (index + way * ic_set_size),
4029 				(uint64_t *)&tmp_icp);
4030 
4031 		/*
4032 		 * If this is the index in which we expect to find the
4033 		 * error log detailed information about each of the ways.
4034 		 * This information will be displayed later if we can't
4035 		 * determine the exact way in which the error is located.
4036 		 */
4037 		if (flt_index == index)
4038 			bcopy(&tmp_icp, icp, sizeof (ch_ic_data_t));
4039 
4040 		/*
4041 		 * Check tag for even parity.
4042 		 * Sum of 1 bits (including parity bit) should be even.
4043 		 */
4044 		if (popc64(tmp_icp.ic_patag & CHP_ICPATAG_PARMASK) & 1) {
4045 			/*
4046 			 * If this way is the one in which we expected
4047 			 * to find the error record the way and check the
4048 			 * snoop tag. Otherwise just record the fact we
4049 			 * found another error.
4050 			 */
4051 			if (flt_index == index) {
4052 				ch_flt->parity_data.ipe.cpl_way = way;
4053 				ch_flt->parity_data.ipe.cpl_tag |= CHP_IC_TAG;
4054 
4055 				if (popc64(tmp_icp.ic_sntag &
4056 						CHP_ICSNTAG_PARMASK) & 1) {
4057 					ch_flt->parity_data.ipe.cpl_tag |=
4058 								CHP_IC_SNTAG;
4059 					ch_flt->parity_data.ipe.cpl_lcnt++;
4060 				}
4061 
4062 			}
4063 			ch_flt->parity_data.ipe.cpl_lcnt++;
4064 			continue;
4065 		}
4066 
4067 		/*
4068 		 * Check instruction data for even parity.
4069 		 * Bits participating in parity differ for PC-relative
4070 		 * versus non-PC-relative instructions.
4071 		 */
4072 		for (instr = 0; instr < num_instr; instr++) {
4073 			parmask = (tmp_icp.ic_data[instr] &
4074 					CH_ICDATA_PRED_ISPCREL) ?
4075 				(CHP_ICDATA_PCREL_PARMASK | pn_inst_parity) :
4076 				(CHP_ICDATA_NPCREL_PARMASK | pn_inst_parity);
4077 			if (popc64(tmp_icp.ic_data[instr] & parmask) & 1) {
4078 				/*
4079 				 * If this way is the one in which we expected
4080 				 * to find the error record the way and offset.
4081 				 * Otherwise just log the fact we found another
4082 				 * error.
4083 				 */
4084 				if (flt_index == index) {
4085 					ch_flt->parity_data.ipe.cpl_way = way;
4086 					ch_flt->parity_data.ipe.cpl_off =
4087 								instr * 4;
4088 				}
4089 				ch_flt->parity_data.ipe.cpl_lcnt++;
4090 				continue;
4091 			}
4092 		}
4093 	}
4094 }
4095 
4096 /*
4097  * Record information related to the source of an Pcache Parity Error.
4098  */
4099 static void
4100 cpu_pcache_parity_info(ch_async_flt_t *ch_flt)
4101 {
4102 	int pc_set_size = CH_PCACHE_SIZE / CH_PCACHE_NWAY;
4103 	int index;
4104 
4105 	/*
4106 	 * Since instruction decode cannot be done at high PIL just
4107 	 * examine the entire Pcache to check for any parity errors.
4108 	 */
4109 	if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
4110 		ch_flt->parity_data.dpe.cpl_way = -1;
4111 		ch_flt->parity_data.dpe.cpl_off = -1;
4112 	}
4113 	for (index = 0; index < pc_set_size; index += CH_PCACHE_LSIZE)
4114 		cpu_pcache_parity_check(ch_flt, index);
4115 }
4116 
4117 /*
4118  * Check all ways of the Pcache at a specified index for good parity.
4119  */
4120 static void
4121 cpu_pcache_parity_check(ch_async_flt_t *ch_flt, int index)
4122 {
4123 	int pc_set_size = CH_PCACHE_SIZE / CH_PCACHE_NWAY;
4124 	int pc_data_words = CH_PC_DATA_REG_SIZE / sizeof (uint64_t);
4125 	int way, word, pbit, parity_bits;
4126 	ch_pc_data_t *pcp = &ch_flt->parity_data.dpe.cpl_pc[0];
4127 	ch_pc_data_t tmp_pcp;
4128 
4129 	for (way = 0; way < CH_PCACHE_NWAY; way++, pcp++) {
4130 		/*
4131 		 * Perform diagnostic read.
4132 		 */
4133 		get_pcache_dtag(index + way * pc_set_size,
4134 				(uint64_t *)&tmp_pcp);
4135 		/*
4136 		 * Check data array for odd parity. There are 8 parity
4137 		 * bits (bits 57:50 of ASI_PCACHE_STATUS_DATA) and each
4138 		 * of those bits covers exactly 8 bytes of the data
4139 		 * array:
4140 		 *
4141 		 *	parity bit	P$ data bytes covered
4142 		 *	----------	---------------------
4143 		 *	50		63:56
4144 		 *	51		55:48
4145 		 *	52		47:40
4146 		 *	53		39:32
4147 		 *	54		31:24
4148 		 *	55		23:16
4149 		 *	56		15:8
4150 		 *	57		7:0
4151 		 */
4152 		parity_bits = PN_PC_PARITY_BITS(tmp_pcp.pc_status);
4153 		for (word = 0; word < pc_data_words; word++) {
4154 			pbit = (parity_bits >> (pc_data_words - word - 1)) & 1;
4155 			if ((popc64(tmp_pcp.pc_data[word]) & 1) ^ pbit) {
4156 				/*
4157 				 * If this is the first error log detailed
4158 				 * information about it. Otherwise just record
4159 				 * the fact that we found another error.
4160 				 */
4161 				if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
4162 					ch_flt->parity_data.dpe.cpl_way = way;
4163 					ch_flt->parity_data.dpe.cpl_cache =
4164 					    CPU_PC_PARITY;
4165 					ch_flt->parity_data.dpe.cpl_off =
4166 					    word * sizeof (uint64_t);
4167 					bcopy(&tmp_pcp, pcp,
4168 							sizeof (ch_pc_data_t));
4169 				}
4170 				ch_flt->parity_data.dpe.cpl_lcnt++;
4171 			}
4172 		}
4173 	}
4174 }
4175 
4176 
4177 /*
4178  * Add L1 Data cache data to the ereport payload.
4179  */
4180 static void
4181 cpu_payload_add_dcache(struct async_flt *aflt, nvlist_t *nvl)
4182 {
4183 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4184 	ch_dc_data_t *dcp;
4185 	ch_dc_data_t dcdata[CH_DCACHE_NWAY];
4186 	uint_t nelem;
4187 	int i, ways_to_check, ways_logged = 0;
4188 
4189 	/*
4190 	 * If this is an D$ fault then there may be multiple
4191 	 * ways captured in the ch_parity_log_t structure.
4192 	 * Otherwise, there will be at most one way captured
4193 	 * in the ch_diag_data_t struct.
4194 	 * Check each way to see if it should be encoded.
4195 	 */
4196 	if (ch_flt->flt_type == CPU_DC_PARITY)
4197 		ways_to_check = CH_DCACHE_NWAY;
4198 	else
4199 		ways_to_check = 1;
4200 	for (i = 0; i < ways_to_check; i++) {
4201 		if (ch_flt->flt_type == CPU_DC_PARITY)
4202 			dcp = &ch_flt->parity_data.dpe.cpl_dc[i];
4203 		else
4204 			dcp = &ch_flt->flt_diag_data.chd_dc_data;
4205 		if (dcp->dc_logflag == DC_LOGFLAG_MAGIC) {
4206 			bcopy(dcp, &dcdata[ways_logged],
4207 				sizeof (ch_dc_data_t));
4208 			ways_logged++;
4209 		}
4210 	}
4211 
4212 	/*
4213 	 * Add the dcache data to the payload.
4214 	 */
4215 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1D_WAYS,
4216 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
4217 	if (ways_logged != 0) {
4218 		nelem = sizeof (ch_dc_data_t) / sizeof (uint64_t) * ways_logged;
4219 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1D_DATA,
4220 		    DATA_TYPE_UINT64_ARRAY, nelem, (uint64_t *)dcdata, NULL);
4221 	}
4222 }
4223 
4224 /*
4225  * Add L1 Instruction cache data to the ereport payload.
4226  */
4227 static void
4228 cpu_payload_add_icache(struct async_flt *aflt, nvlist_t *nvl)
4229 {
4230 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4231 	ch_ic_data_t *icp;
4232 	ch_ic_data_t icdata[CH_ICACHE_NWAY];
4233 	uint_t nelem;
4234 	int i, ways_to_check, ways_logged = 0;
4235 
4236 	/*
4237 	 * If this is an I$ fault then there may be multiple
4238 	 * ways captured in the ch_parity_log_t structure.
4239 	 * Otherwise, there will be at most one way captured
4240 	 * in the ch_diag_data_t struct.
4241 	 * Check each way to see if it should be encoded.
4242 	 */
4243 	if (ch_flt->flt_type == CPU_IC_PARITY)
4244 		ways_to_check = CH_ICACHE_NWAY;
4245 	else
4246 		ways_to_check = 1;
4247 	for (i = 0; i < ways_to_check; i++) {
4248 		if (ch_flt->flt_type == CPU_IC_PARITY)
4249 			icp = &ch_flt->parity_data.ipe.cpl_ic[i];
4250 		else
4251 			icp = &ch_flt->flt_diag_data.chd_ic_data;
4252 		if (icp->ic_logflag == IC_LOGFLAG_MAGIC) {
4253 			bcopy(icp, &icdata[ways_logged],
4254 				sizeof (ch_ic_data_t));
4255 			ways_logged++;
4256 		}
4257 	}
4258 
4259 	/*
4260 	 * Add the icache data to the payload.
4261 	 */
4262 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1I_WAYS,
4263 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
4264 	if (ways_logged != 0) {
4265 		nelem = sizeof (ch_ic_data_t) / sizeof (uint64_t) * ways_logged;
4266 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1I_DATA,
4267 		    DATA_TYPE_UINT64_ARRAY, nelem, (uint64_t *)icdata, NULL);
4268 	}
4269 }
4270 
4271 #endif	/* CPU_IMP_L1_CACHE_PARITY */
4272 
4273 /*
4274  * Add ecache data to payload.
4275  */
4276 static void
4277 cpu_payload_add_ecache(struct async_flt *aflt, nvlist_t *nvl)
4278 {
4279 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4280 	ch_ec_data_t *ecp;
4281 	ch_ec_data_t ecdata[CHD_EC_DATA_SETS];
4282 	uint_t nelem;
4283 	int i, ways_logged = 0;
4284 
4285 	/*
4286 	 * Check each way to see if it should be encoded
4287 	 * and concatinate it into a temporary buffer.
4288 	 */
4289 	for (i = 0; i < CHD_EC_DATA_SETS; i++) {
4290 		ecp = &ch_flt->flt_diag_data.chd_ec_data[i];
4291 		if (ecp->ec_logflag == EC_LOGFLAG_MAGIC) {
4292 			bcopy(ecp, &ecdata[ways_logged],
4293 				sizeof (ch_ec_data_t));
4294 			ways_logged++;
4295 		}
4296 	}
4297 
4298 	/*
4299 	 * Panther CPUs have an additional level of cache and so
4300 	 * what we just collected was the L3 (ecache) and not the
4301 	 * L2 cache.
4302 	 */
4303 	if (IS_PANTHER(cpunodes[aflt->flt_inst].implementation)) {
4304 		/*
4305 		 * Add the L3 (ecache) data to the payload.
4306 		 */
4307 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L3_WAYS,
4308 		    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
4309 		if (ways_logged != 0) {
4310 			nelem = sizeof (ch_ec_data_t) /
4311 			    sizeof (uint64_t) * ways_logged;
4312 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L3_DATA,
4313 			    DATA_TYPE_UINT64_ARRAY, nelem,
4314 			    (uint64_t *)ecdata, NULL);
4315 		}
4316 
4317 		/*
4318 		 * Now collect the L2 cache.
4319 		 */
4320 		ways_logged = 0;
4321 		for (i = 0; i < PN_L2_NWAYS; i++) {
4322 			ecp = &ch_flt->flt_diag_data.chd_l2_data[i];
4323 			if (ecp->ec_logflag == EC_LOGFLAG_MAGIC) {
4324 				bcopy(ecp, &ecdata[ways_logged],
4325 				    sizeof (ch_ec_data_t));
4326 				ways_logged++;
4327 			}
4328 		}
4329 	}
4330 
4331 	/*
4332 	 * Add the L2 cache data to the payload.
4333 	 */
4334 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L2_WAYS,
4335 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
4336 	if (ways_logged != 0) {
4337 		nelem = sizeof (ch_ec_data_t) /
4338 			sizeof (uint64_t) * ways_logged;
4339 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L2_DATA,
4340 		    DATA_TYPE_UINT64_ARRAY, nelem,  (uint64_t *)ecdata, NULL);
4341 	}
4342 }
4343 
4344 /*
4345  * Encode the data saved in the ch_async_flt_t struct into
4346  * the FM ereport payload.
4347  */
4348 static void
4349 cpu_payload_add_aflt(struct async_flt *aflt, nvlist_t *payload,
4350 	nvlist_t *resource, int *afar_status, int *synd_status)
4351 {
4352 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4353 	*synd_status = AFLT_STAT_INVALID;
4354 	*afar_status = AFLT_STAT_INVALID;
4355 
4356 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_AFSR) {
4357 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_AFSR,
4358 		    DATA_TYPE_UINT64, aflt->flt_stat, NULL);
4359 	}
4360 
4361 	if ((aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_AFSR_EXT) &&
4362 	    IS_PANTHER(cpunodes[aflt->flt_inst].implementation)) {
4363 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_AFSR_EXT,
4364 		    DATA_TYPE_UINT64, ch_flt->afsr_ext, NULL);
4365 	}
4366 
4367 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_AFAR_STATUS) {
4368 		*afar_status = afsr_to_afar_status(ch_flt->afsr_errs,
4369 		    ch_flt->flt_bit);
4370 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_AFAR_STATUS,
4371 		    DATA_TYPE_UINT8, (uint8_t)*afar_status, NULL);
4372 	}
4373 
4374 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_AFAR) {
4375 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_AFAR,
4376 		    DATA_TYPE_UINT64, aflt->flt_addr, NULL);
4377 	}
4378 
4379 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PC) {
4380 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PC,
4381 		    DATA_TYPE_UINT64, (uint64_t)aflt->flt_pc, NULL);
4382 	}
4383 
4384 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TL) {
4385 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TL,
4386 		    DATA_TYPE_UINT8, (uint8_t)aflt->flt_tl, NULL);
4387 	}
4388 
4389 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TT) {
4390 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TT,
4391 		    DATA_TYPE_UINT8, flt_to_trap_type(aflt), NULL);
4392 	}
4393 
4394 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PRIV) {
4395 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV,
4396 		    DATA_TYPE_BOOLEAN_VALUE,
4397 		    (aflt->flt_priv ? B_TRUE : B_FALSE), NULL);
4398 	}
4399 
4400 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_ME) {
4401 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ME,
4402 		    DATA_TYPE_BOOLEAN_VALUE,
4403 		    (aflt->flt_stat & C_AFSR_ME) ? B_TRUE : B_FALSE, NULL);
4404 	}
4405 
4406 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SYND_STATUS) {
4407 		*synd_status = afsr_to_synd_status(aflt->flt_inst,
4408 		    ch_flt->afsr_errs, ch_flt->flt_bit);
4409 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SYND_STATUS,
4410 		    DATA_TYPE_UINT8, (uint8_t)*synd_status, NULL);
4411 	}
4412 
4413 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SYND) {
4414 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SYND,
4415 		    DATA_TYPE_UINT16, (uint16_t)aflt->flt_synd, NULL);
4416 	}
4417 
4418 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_ERR_TYPE) {
4419 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ERR_TYPE,
4420 		    DATA_TYPE_STRING, flt_to_error_type(aflt), NULL);
4421 	}
4422 
4423 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_ERR_DISP) {
4424 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ERR_DISP,
4425 		    DATA_TYPE_UINT64, aflt->flt_disp, NULL);
4426 	}
4427 
4428 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_L2)
4429 		cpu_payload_add_ecache(aflt, payload);
4430 
4431 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_COPYFUNCTION) {
4432 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_COPYFUNCTION,
4433 		    DATA_TYPE_UINT8, (uint8_t)aflt->flt_status & 0xff, NULL);
4434 	}
4435 
4436 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_HOWDETECTED) {
4437 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_HOWDETECTED,
4438 		    DATA_TYPE_UINT8, (uint8_t)(aflt->flt_status >> 8), NULL);
4439 	}
4440 
4441 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_INSTRBLOCK) {
4442 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_INSTRBLOCK,
4443 		    DATA_TYPE_UINT32_ARRAY, 16,
4444 		    (uint32_t *)&ch_flt->flt_fpdata, NULL);
4445 	}
4446 
4447 #if defined(CPU_IMP_L1_CACHE_PARITY)
4448 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_L1D)
4449 		cpu_payload_add_dcache(aflt, payload);
4450 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_L1I)
4451 		cpu_payload_add_icache(aflt, payload);
4452 #endif	/* CPU_IMP_L1_CACHE_PARITY */
4453 
4454 #if defined(CHEETAH_PLUS)
4455 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_L1P)
4456 		cpu_payload_add_pcache(aflt, payload);
4457 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_TLB)
4458 		cpu_payload_add_tlb(aflt, payload);
4459 #endif	/* CHEETAH_PLUS */
4460 	/*
4461 	 * Create the FMRI that goes into the payload
4462 	 * and contains the unum info if necessary.
4463 	 */
4464 	if ((aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_RESOURCE) &&
4465 	    (*afar_status == AFLT_STAT_VALID)) {
4466 		char unum[UNUM_NAMLEN];
4467 		int len;
4468 
4469 		if (cpu_get_mem_unum_aflt(*synd_status, aflt, unum,
4470 		    UNUM_NAMLEN, &len) == 0) {
4471 			fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION,
4472 			    NULL, unum, NULL);
4473 			fm_payload_set(payload,
4474 			    FM_EREPORT_PAYLOAD_NAME_RESOURCE,
4475 			    DATA_TYPE_NVLIST, resource, NULL);
4476 		}
4477 	}
4478 }
4479 
4480 /*
4481  * Initialize the way info if necessary.
4482  */
4483 void
4484 cpu_ereport_init(struct async_flt *aflt)
4485 {
4486 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4487 	ch_ec_data_t *ecp = &ch_flt->flt_diag_data.chd_ec_data[0];
4488 	ch_ec_data_t *l2p = &ch_flt->flt_diag_data.chd_l2_data[0];
4489 	int i;
4490 
4491 	/*
4492 	 * Initialize the info in the CPU logout structure.
4493 	 * The I$/D$ way information is not initialized here
4494 	 * since it is captured in the logout assembly code.
4495 	 */
4496 	for (i = 0; i < CHD_EC_DATA_SETS; i++)
4497 		(ecp + i)->ec_way = i;
4498 
4499 	for (i = 0; i < PN_L2_NWAYS; i++)
4500 		(l2p + i)->ec_way = i;
4501 }
4502 
4503 /*
4504  * Returns whether fault address is valid for this error bit and
4505  * whether the address is "in memory" (i.e. pf_is_memory returns 1).
4506  */
4507 int
4508 cpu_flt_in_memory(ch_async_flt_t *ch_flt, uint64_t t_afsr_bit)
4509 {
4510 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4511 
4512 	return ((aflt->flt_stat & C_AFSR_MEMORY) &&
4513 	    afsr_to_afar_status(ch_flt->afsr_errs, t_afsr_bit) ==
4514 	    AFLT_STAT_VALID &&
4515 	    pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT));
4516 }
4517 
4518 static void
4519 cpu_log_diag_info(ch_async_flt_t *ch_flt)
4520 {
4521 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4522 	ch_dc_data_t *dcp = &ch_flt->flt_diag_data.chd_dc_data;
4523 	ch_ic_data_t *icp = &ch_flt->flt_diag_data.chd_ic_data;
4524 	ch_ec_data_t *ecp = &ch_flt->flt_diag_data.chd_ec_data[0];
4525 #if defined(CPU_IMP_ECACHE_ASSOC)
4526 	int i, nway;
4527 #endif /* CPU_IMP_ECACHE_ASSOC */
4528 
4529 	/*
4530 	 * Check if the CPU log out captured was valid.
4531 	 */
4532 	if (ch_flt->flt_diag_data.chd_afar == LOGOUT_INVALID ||
4533 	    ch_flt->flt_data_incomplete)
4534 		return;
4535 
4536 #if defined(CPU_IMP_ECACHE_ASSOC)
4537 	nway = cpu_ecache_nway();
4538 	i =  cpu_ecache_line_valid(ch_flt);
4539 	if (i == 0 || i > nway) {
4540 		for (i = 0; i < nway; i++)
4541 			ecp[i].ec_logflag = EC_LOGFLAG_MAGIC;
4542 	} else
4543 		ecp[i - 1].ec_logflag = EC_LOGFLAG_MAGIC;
4544 #else /* CPU_IMP_ECACHE_ASSOC */
4545 	ecp->ec_logflag = EC_LOGFLAG_MAGIC;
4546 #endif /* CPU_IMP_ECACHE_ASSOC */
4547 
4548 #if defined(CHEETAH_PLUS)
4549 	pn_cpu_log_diag_l2_info(ch_flt);
4550 #endif /* CHEETAH_PLUS */
4551 
4552 	if (CH_DCTAG_MATCH(dcp->dc_tag, aflt->flt_addr)) {
4553 		dcp->dc_way = CH_DCIDX_TO_WAY(dcp->dc_idx);
4554 		dcp->dc_logflag = DC_LOGFLAG_MAGIC;
4555 	}
4556 
4557 	if (CH_ICTAG_MATCH(icp, aflt->flt_addr)) {
4558 		if (IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
4559 			icp->ic_way = PN_ICIDX_TO_WAY(icp->ic_idx);
4560 		else
4561 			icp->ic_way = CH_ICIDX_TO_WAY(icp->ic_idx);
4562 		icp->ic_logflag = IC_LOGFLAG_MAGIC;
4563 	}
4564 }
4565 
4566 /*
4567  * Cheetah ECC calculation.
4568  *
4569  * We only need to do the calculation on the data bits and can ignore check
4570  * bit and Mtag bit terms in the calculation.
4571  */
4572 static uint64_t ch_ecc_table[9][2] = {
4573 	/*
4574 	 * low order 64-bits   high-order 64-bits
4575 	 */
4576 	{ 0x46bffffeccd1177f, 0x488800022100014c },
4577 	{ 0x42fccc81331ff77f, 0x14424f1010249184 },
4578 	{ 0x8898827c222f1ffe, 0x22c1222808184aaf },
4579 	{ 0xf7632203e131ccf1, 0xe1241121848292b8 },
4580 	{ 0x7f5511421b113809, 0x901c88d84288aafe },
4581 	{ 0x1d49412184882487, 0x8f338c87c044c6ef },
4582 	{ 0xf552181014448344, 0x7ff8f4443e411911 },
4583 	{ 0x2189240808f24228, 0xfeeff8cc81333f42 },
4584 	{ 0x3280008440001112, 0xfee88b337ffffd62 },
4585 };
4586 
4587 /*
4588  * 64-bit population count, use well-known popcnt trick.
4589  * We could use the UltraSPARC V9 POPC instruction, but some
4590  * CPUs including Cheetahplus and Jaguar do not support that
4591  * instruction.
4592  */
4593 int
4594 popc64(uint64_t val)
4595 {
4596 	int cnt;
4597 
4598 	for (cnt = 0; val != 0; val &= val - 1)
4599 		cnt++;
4600 	return (cnt);
4601 }
4602 
4603 /*
4604  * Generate the 9 ECC bits for the 128-bit chunk based on the table above.
4605  * Note that xor'ing an odd number of 1 bits == 1 and xor'ing an even number
4606  * of 1 bits == 0, so we can just use the least significant bit of the popcnt
4607  * instead of doing all the xor's.
4608  */
4609 uint32_t
4610 us3_gen_ecc(uint64_t data_low, uint64_t data_high)
4611 {
4612 	int bitno, s;
4613 	int synd = 0;
4614 
4615 	for (bitno = 0; bitno < 9; bitno++) {
4616 		s = (popc64(data_low & ch_ecc_table[bitno][0]) +
4617 		    popc64(data_high & ch_ecc_table[bitno][1])) & 1;
4618 		synd |= (s << bitno);
4619 	}
4620 	return (synd);
4621 
4622 }
4623 
4624 /*
4625  * Queue one event based on ecc_type_to_info entry.  If the event has an AFT1
4626  * tag associated with it or is a fatal event (aflt_panic set), it is sent to
4627  * the UE event queue.  Otherwise it is dispatched to the CE event queue.
4628  */
4629 static void
4630 cpu_queue_one_event(ch_async_flt_t *ch_flt, char *reason,
4631     ecc_type_to_info_t *eccp, ch_diag_data_t *cdp)
4632 {
4633 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4634 
4635 	if (reason &&
4636 	    strlen(reason) + strlen(eccp->ec_reason) < MAX_REASON_STRING) {
4637 		(void) strcat(reason, eccp->ec_reason);
4638 	}
4639 
4640 	ch_flt->flt_bit = eccp->ec_afsr_bit;
4641 	ch_flt->flt_type = eccp->ec_flt_type;
4642 	if (cdp != NULL && cdp->chd_afar != LOGOUT_INVALID)
4643 		ch_flt->flt_diag_data = *cdp;
4644 	else
4645 		ch_flt->flt_diag_data.chd_afar = LOGOUT_INVALID;
4646 	aflt->flt_in_memory = cpu_flt_in_memory(ch_flt, ch_flt->flt_bit);
4647 
4648 	if (ch_flt->flt_bit & C_AFSR_MSYND_ERRS)
4649 		aflt->flt_synd = GET_M_SYND(aflt->flt_stat);
4650 	else if (ch_flt->flt_bit & (C_AFSR_ESYND_ERRS | C_AFSR_EXT_ESYND_ERRS))
4651 		aflt->flt_synd = GET_E_SYND(aflt->flt_stat);
4652 	else
4653 		aflt->flt_synd = 0;
4654 
4655 	aflt->flt_payload = eccp->ec_err_payload;
4656 
4657 	if (aflt->flt_panic || (eccp->ec_afsr_bit &
4658 	    (C_AFSR_LEVEL1 | C_AFSR_EXT_LEVEL1)))
4659 		cpu_errorq_dispatch(eccp->ec_err_class,
4660 		    (void *)ch_flt, sizeof (ch_async_flt_t), ue_queue,
4661 		    aflt->flt_panic);
4662 	else
4663 		cpu_errorq_dispatch(eccp->ec_err_class,
4664 		    (void *)ch_flt, sizeof (ch_async_flt_t), ce_queue,
4665 		    aflt->flt_panic);
4666 }
4667 
4668 /*
4669  * Queue events on async event queue one event per error bit.  First we
4670  * queue the events that we "expect" for the given trap, then we queue events
4671  * that we may not expect.  Return number of events queued.
4672  */
4673 int
4674 cpu_queue_events(ch_async_flt_t *ch_flt, char *reason, uint64_t t_afsr_errs,
4675     ch_cpu_logout_t *clop)
4676 {
4677 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4678 	ecc_type_to_info_t *eccp;
4679 	int nevents = 0;
4680 	uint64_t primary_afar = aflt->flt_addr, primary_afsr = aflt->flt_stat;
4681 #if defined(CHEETAH_PLUS)
4682 	uint64_t orig_t_afsr_errs;
4683 #endif
4684 	uint64_t primary_afsr_ext = ch_flt->afsr_ext;
4685 	uint64_t primary_afsr_errs = ch_flt->afsr_errs;
4686 	ch_diag_data_t *cdp = NULL;
4687 
4688 	t_afsr_errs &= ((C_AFSR_ALL_ERRS & ~C_AFSR_ME) | C_AFSR_EXT_ALL_ERRS);
4689 
4690 #if defined(CHEETAH_PLUS)
4691 	orig_t_afsr_errs = t_afsr_errs;
4692 
4693 	/*
4694 	 * For Cheetah+, log the shadow AFSR/AFAR bits first.
4695 	 */
4696 	if (clop != NULL) {
4697 		/*
4698 		 * Set the AFSR and AFAR fields to the shadow registers.  The
4699 		 * flt_addr and flt_stat fields will be reset to the primaries
4700 		 * below, but the sdw_addr and sdw_stat will stay as the
4701 		 * secondaries.
4702 		 */
4703 		cdp = &clop->clo_sdw_data;
4704 		aflt->flt_addr = ch_flt->flt_sdw_afar = cdp->chd_afar;
4705 		aflt->flt_stat = ch_flt->flt_sdw_afsr = cdp->chd_afsr;
4706 		ch_flt->afsr_ext = ch_flt->flt_sdw_afsr_ext = cdp->chd_afsr_ext;
4707 		ch_flt->afsr_errs = (cdp->chd_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
4708 		    (cdp->chd_afsr & C_AFSR_ALL_ERRS);
4709 
4710 		/*
4711 		 * If the primary and shadow AFSR differ, tag the shadow as
4712 		 * the first fault.
4713 		 */
4714 		if ((primary_afar != cdp->chd_afar) ||
4715 		    (primary_afsr_errs != ch_flt->afsr_errs)) {
4716 			aflt->flt_stat |= (1ull << C_AFSR_FIRSTFLT_SHIFT);
4717 		}
4718 
4719 		/*
4720 		 * Check AFSR bits as well as AFSR_EXT bits in order of
4721 		 * the AFAR overwrite priority. Our stored AFSR_EXT value
4722 		 * is expected to be zero for those CPUs which do not have
4723 		 * an AFSR_EXT register.
4724 		 */
4725 		for (eccp = ecc_type_to_info; eccp->ec_desc != NULL; eccp++) {
4726 			if ((eccp->ec_afsr_bit &
4727 			    (ch_flt->afsr_errs & t_afsr_errs)) &&
4728 			    ((eccp->ec_flags & aflt->flt_status) != 0)) {
4729 				cpu_queue_one_event(ch_flt, reason, eccp, cdp);
4730 				cdp = NULL;
4731 				t_afsr_errs &= ~eccp->ec_afsr_bit;
4732 				nevents++;
4733 			}
4734 		}
4735 
4736 		/*
4737 		 * If the ME bit is on in the primary AFSR turn all the
4738 		 * error bits on again that may set the ME bit to make
4739 		 * sure we see the ME AFSR error logs.
4740 		 */
4741 		if ((primary_afsr & C_AFSR_ME) != 0)
4742 			t_afsr_errs = (orig_t_afsr_errs & C_AFSR_ALL_ME_ERRS);
4743 	}
4744 #endif	/* CHEETAH_PLUS */
4745 
4746 	if (clop != NULL)
4747 		cdp = &clop->clo_data;
4748 
4749 	/*
4750 	 * Queue expected errors, error bit and fault type must match
4751 	 * in the ecc_type_to_info table.
4752 	 */
4753 	for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL;
4754 	    eccp++) {
4755 		if ((eccp->ec_afsr_bit & t_afsr_errs) != 0 &&
4756 		    (eccp->ec_flags & aflt->flt_status) != 0) {
4757 #if defined(SERRANO)
4758 			/*
4759 			 * For FRC/FRU errors on Serrano the afar2 captures
4760 			 * the address and the associated data is
4761 			 * in the shadow logout area.
4762 			 */
4763 			if (eccp->ec_afsr_bit  & (C_AFSR_FRC | C_AFSR_FRU)) {
4764 				if (clop != NULL)
4765 					cdp = &clop->clo_sdw_data;
4766 				aflt->flt_addr = ch_flt->afar2;
4767 			} else {
4768 				if (clop != NULL)
4769 					cdp = &clop->clo_data;
4770 				aflt->flt_addr = primary_afar;
4771 			}
4772 #else	/* SERRANO */
4773 			aflt->flt_addr = primary_afar;
4774 #endif	/* SERRANO */
4775 			aflt->flt_stat = primary_afsr;
4776 			ch_flt->afsr_ext = primary_afsr_ext;
4777 			ch_flt->afsr_errs = primary_afsr_errs;
4778 			cpu_queue_one_event(ch_flt, reason, eccp, cdp);
4779 			cdp = NULL;
4780 			t_afsr_errs &= ~eccp->ec_afsr_bit;
4781 			nevents++;
4782 		}
4783 	}
4784 
4785 	/*
4786 	 * Queue unexpected errors, error bit only match.
4787 	 */
4788 	for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL;
4789 	    eccp++) {
4790 		if (eccp->ec_afsr_bit & t_afsr_errs) {
4791 #if defined(SERRANO)
4792 			/*
4793 			 * For FRC/FRU errors on Serrano the afar2 captures
4794 			 * the address and the associated data is
4795 			 * in the shadow logout area.
4796 			 */
4797 			if (eccp->ec_afsr_bit  & (C_AFSR_FRC | C_AFSR_FRU)) {
4798 				if (clop != NULL)
4799 					cdp = &clop->clo_sdw_data;
4800 				aflt->flt_addr = ch_flt->afar2;
4801 			} else {
4802 				if (clop != NULL)
4803 					cdp = &clop->clo_data;
4804 				aflt->flt_addr = primary_afar;
4805 			}
4806 #else	/* SERRANO */
4807 			aflt->flt_addr = primary_afar;
4808 #endif	/* SERRANO */
4809 			aflt->flt_stat = primary_afsr;
4810 			ch_flt->afsr_ext = primary_afsr_ext;
4811 			ch_flt->afsr_errs = primary_afsr_errs;
4812 			cpu_queue_one_event(ch_flt, reason, eccp, cdp);
4813 			cdp = NULL;
4814 			t_afsr_errs &= ~eccp->ec_afsr_bit;
4815 			nevents++;
4816 		}
4817 	}
4818 	return (nevents);
4819 }
4820 
4821 /*
4822  * Return trap type number.
4823  */
4824 uint8_t
4825 flt_to_trap_type(struct async_flt *aflt)
4826 {
4827 	if (aflt->flt_status & ECC_I_TRAP)
4828 		return (TRAP_TYPE_ECC_I);
4829 	if (aflt->flt_status & ECC_D_TRAP)
4830 		return (TRAP_TYPE_ECC_D);
4831 	if (aflt->flt_status & ECC_F_TRAP)
4832 		return (TRAP_TYPE_ECC_F);
4833 	if (aflt->flt_status & ECC_C_TRAP)
4834 		return (TRAP_TYPE_ECC_C);
4835 	if (aflt->flt_status & ECC_DP_TRAP)
4836 		return (TRAP_TYPE_ECC_DP);
4837 	if (aflt->flt_status & ECC_IP_TRAP)
4838 		return (TRAP_TYPE_ECC_IP);
4839 	if (aflt->flt_status & ECC_ITLB_TRAP)
4840 		return (TRAP_TYPE_ECC_ITLB);
4841 	if (aflt->flt_status & ECC_DTLB_TRAP)
4842 		return (TRAP_TYPE_ECC_DTLB);
4843 	return (TRAP_TYPE_UNKNOWN);
4844 }
4845 
4846 /*
4847  * Decide an error type based on detector and leaky/partner tests.
4848  * The following array is used for quick translation - it must
4849  * stay in sync with ce_dispact_t.
4850  */
4851 
4852 static char *cetypes[] = {
4853 	CE_DISP_DESC_U,
4854 	CE_DISP_DESC_I,
4855 	CE_DISP_DESC_PP,
4856 	CE_DISP_DESC_P,
4857 	CE_DISP_DESC_L,
4858 	CE_DISP_DESC_PS,
4859 	CE_DISP_DESC_S
4860 };
4861 
4862 char *
4863 flt_to_error_type(struct async_flt *aflt)
4864 {
4865 	ce_dispact_t dispact, disp;
4866 	uchar_t dtcrinfo, ptnrinfo, lkyinfo;
4867 
4868 	/*
4869 	 * The memory payload bundle is shared by some events that do
4870 	 * not perform any classification.  For those flt_disp will be
4871 	 * 0 and we will return "unknown".
4872 	 */
4873 	if (!ce_disp_inited || !aflt->flt_in_memory || aflt->flt_disp == 0)
4874 		return (cetypes[CE_DISP_UNKNOWN]);
4875 
4876 	dtcrinfo = CE_XDIAG_DTCRINFO(aflt->flt_disp);
4877 
4878 	/*
4879 	 * It is also possible that no scrub/classification was performed
4880 	 * by the detector, for instance where a disrupting error logged
4881 	 * in the AFSR while CEEN was off in cpu_deferred_error.
4882 	 */
4883 	if (!CE_XDIAG_EXT_ALG_APPLIED(dtcrinfo))
4884 		return (cetypes[CE_DISP_UNKNOWN]);
4885 
4886 	/*
4887 	 * Lookup type in initial classification/action table
4888 	 */
4889 	dispact = CE_DISPACT(ce_disp_table,
4890 	    CE_XDIAG_AFARMATCHED(dtcrinfo),
4891 	    CE_XDIAG_STATE(dtcrinfo),
4892 	    CE_XDIAG_CE1SEEN(dtcrinfo),
4893 	    CE_XDIAG_CE2SEEN(dtcrinfo));
4894 
4895 	/*
4896 	 * A bad lookup is not something to panic production systems for.
4897 	 */
4898 	ASSERT(dispact != CE_DISP_BAD);
4899 	if (dispact == CE_DISP_BAD)
4900 		return (cetypes[CE_DISP_UNKNOWN]);
4901 
4902 	disp = CE_DISP(dispact);
4903 
4904 	switch (disp) {
4905 	case CE_DISP_UNKNOWN:
4906 	case CE_DISP_INTERMITTENT:
4907 		break;
4908 
4909 	case CE_DISP_POSS_PERS:
4910 		/*
4911 		 * "Possible persistent" errors to which we have applied a valid
4912 		 * leaky test can be separated into "persistent" or "leaky".
4913 		 */
4914 		lkyinfo = CE_XDIAG_LKYINFO(aflt->flt_disp);
4915 		if (CE_XDIAG_TESTVALID(lkyinfo)) {
4916 			if (CE_XDIAG_CE1SEEN(lkyinfo) ||
4917 			    CE_XDIAG_CE2SEEN(lkyinfo))
4918 				disp = CE_DISP_LEAKY;
4919 			else
4920 				disp = CE_DISP_PERS;
4921 		}
4922 		break;
4923 
4924 	case CE_DISP_POSS_STICKY:
4925 		/*
4926 		 * Promote "possible sticky" results that have been
4927 		 * confirmed by a partner test to "sticky".  Unconfirmed
4928 		 * "possible sticky" events are left at that status - we do not
4929 		 * guess at any bad reader/writer etc status here.
4930 		 */
4931 		ptnrinfo = CE_XDIAG_PTNRINFO(aflt->flt_disp);
4932 		if (CE_XDIAG_TESTVALID(ptnrinfo) &&
4933 		    CE_XDIAG_CE1SEEN(ptnrinfo) && CE_XDIAG_CE2SEEN(ptnrinfo))
4934 			disp = CE_DISP_STICKY;
4935 
4936 		/*
4937 		 * Promote "possible sticky" results on a uniprocessor
4938 		 * to "sticky"
4939 		 */
4940 		if (disp == CE_DISP_POSS_STICKY &&
4941 		    CE_XDIAG_SKIPCODE(disp) == CE_XDIAG_SKIP_UNIPROC)
4942 			disp = CE_DISP_STICKY;
4943 		break;
4944 
4945 	default:
4946 		disp = CE_DISP_UNKNOWN;
4947 		break;
4948 	}
4949 
4950 	return (cetypes[disp]);
4951 }
4952 
4953 /*
4954  * Given the entire afsr, the specific bit to check and a prioritized list of
4955  * error bits, determine the validity of the various overwrite priority
4956  * features of the AFSR/AFAR: AFAR, ESYND and MSYND, each of which have
4957  * different overwrite priorities.
4958  *
4959  * Given a specific afsr error bit and the entire afsr, there are three cases:
4960  *   INVALID:	The specified bit is lower overwrite priority than some other
4961  *		error bit which is on in the afsr (or IVU/IVC).
4962  *   VALID:	The specified bit is higher priority than all other error bits
4963  *		which are on in the afsr.
4964  *   AMBIGUOUS: Another error bit (or bits) of equal priority to the specified
4965  *		bit is on in the afsr.
4966  */
4967 int
4968 afsr_to_overw_status(uint64_t afsr, uint64_t afsr_bit, uint64_t *ow_bits)
4969 {
4970 	uint64_t afsr_ow;
4971 
4972 	while ((afsr_ow = *ow_bits++) != 0) {
4973 		/*
4974 		 * If bit is in the priority class, check to see if another
4975 		 * bit in the same class is on => ambiguous.  Otherwise,
4976 		 * the value is valid.  If the bit is not on at this priority
4977 		 * class, but a higher priority bit is on, then the value is
4978 		 * invalid.
4979 		 */
4980 		if (afsr_ow & afsr_bit) {
4981 			/*
4982 			 * If equal pri bit is on, ambiguous.
4983 			 */
4984 			if (afsr & (afsr_ow & ~afsr_bit))
4985 				return (AFLT_STAT_AMBIGUOUS);
4986 			return (AFLT_STAT_VALID);
4987 		} else if (afsr & afsr_ow)
4988 			break;
4989 	}
4990 
4991 	/*
4992 	 * We didn't find a match or a higher priority bit was on.  Not
4993 	 * finding a match handles the case of invalid AFAR for IVC, IVU.
4994 	 */
4995 	return (AFLT_STAT_INVALID);
4996 }
4997 
4998 static int
4999 afsr_to_afar_status(uint64_t afsr, uint64_t afsr_bit)
5000 {
5001 #if defined(SERRANO)
5002 	if (afsr_bit & (C_AFSR_FRC | C_AFSR_FRU))
5003 		return (afsr_to_overw_status(afsr, afsr_bit, afar2_overwrite));
5004 	else
5005 #endif	/* SERRANO */
5006 		return (afsr_to_overw_status(afsr, afsr_bit, afar_overwrite));
5007 }
5008 
5009 static int
5010 afsr_to_esynd_status(uint64_t afsr, uint64_t afsr_bit)
5011 {
5012 	return (afsr_to_overw_status(afsr, afsr_bit, esynd_overwrite));
5013 }
5014 
5015 static int
5016 afsr_to_msynd_status(uint64_t afsr, uint64_t afsr_bit)
5017 {
5018 	return (afsr_to_overw_status(afsr, afsr_bit, msynd_overwrite));
5019 }
5020 
5021 static int
5022 afsr_to_synd_status(uint_t cpuid, uint64_t afsr, uint64_t afsr_bit)
5023 {
5024 #ifdef lint
5025 	cpuid = cpuid;
5026 #endif
5027 	if (afsr_bit & C_AFSR_MSYND_ERRS) {
5028 		return (afsr_to_msynd_status(afsr, afsr_bit));
5029 	} else if (afsr_bit & (C_AFSR_ESYND_ERRS | C_AFSR_EXT_ESYND_ERRS)) {
5030 #if defined(CHEETAH_PLUS)
5031 		/*
5032 		 * The E_SYND overwrite policy is slightly different
5033 		 * for Panther CPUs.
5034 		 */
5035 		if (IS_PANTHER(cpunodes[cpuid].implementation))
5036 			return (afsr_to_pn_esynd_status(afsr, afsr_bit));
5037 		else
5038 			return (afsr_to_esynd_status(afsr, afsr_bit));
5039 #else /* CHEETAH_PLUS */
5040 		return (afsr_to_esynd_status(afsr, afsr_bit));
5041 #endif /* CHEETAH_PLUS */
5042 	} else {
5043 		return (AFLT_STAT_INVALID);
5044 	}
5045 }
5046 
5047 /*
5048  * Slave CPU stick synchronization.
5049  */
5050 void
5051 sticksync_slave(void)
5052 {
5053 	int 		i;
5054 	int		tries = 0;
5055 	int64_t		tskew;
5056 	int64_t		av_tskew;
5057 
5058 	kpreempt_disable();
5059 	/* wait for the master side */
5060 	while (stick_sync_cmd != SLAVE_START)
5061 		;
5062 	/*
5063 	 * Synchronization should only take a few tries at most. But in the
5064 	 * odd case where the cpu isn't cooperating we'll keep trying. A cpu
5065 	 * without it's stick synchronized wouldn't be a good citizen.
5066 	 */
5067 	while (slave_done == 0) {
5068 		/*
5069 		 * Time skew calculation.
5070 		 */
5071 		av_tskew = tskew = 0;
5072 
5073 		for (i = 0; i < stick_iter; i++) {
5074 			/* make location hot */
5075 			timestamp[EV_A_START] = 0;
5076 			stick_timestamp(&timestamp[EV_A_START]);
5077 
5078 			/* tell the master we're ready */
5079 			stick_sync_cmd = MASTER_START;
5080 
5081 			/* and wait */
5082 			while (stick_sync_cmd != SLAVE_CONT)
5083 				;
5084 			/* Event B end */
5085 			stick_timestamp(&timestamp[EV_B_END]);
5086 
5087 			/* calculate time skew */
5088 			tskew = ((timestamp[EV_B_END] - timestamp[EV_B_START])
5089 				- (timestamp[EV_A_END] -
5090 				timestamp[EV_A_START])) / 2;
5091 
5092 			/* keep running count */
5093 			av_tskew += tskew;
5094 		} /* for */
5095 
5096 		/*
5097 		 * Adjust stick for time skew if not within the max allowed;
5098 		 * otherwise we're all done.
5099 		 */
5100 		if (stick_iter != 0)
5101 			av_tskew = av_tskew/stick_iter;
5102 		if (ABS(av_tskew) > stick_tsk) {
5103 			/*
5104 			 * If the skew is 1 (the slave's STICK register
5105 			 * is 1 STICK ahead of the master's), stick_adj
5106 			 * could fail to adjust the slave's STICK register
5107 			 * if the STICK read on the slave happens to
5108 			 * align with the increment of the STICK.
5109 			 * Therefore, we increment the skew to 2.
5110 			 */
5111 			if (av_tskew == 1)
5112 				av_tskew++;
5113 			stick_adj(-av_tskew);
5114 		} else
5115 			slave_done = 1;
5116 #ifdef DEBUG
5117 		if (tries < DSYNC_ATTEMPTS)
5118 			stick_sync_stats[CPU->cpu_id].skew_val[tries] =
5119 				av_tskew;
5120 		++tries;
5121 #endif /* DEBUG */
5122 #ifdef lint
5123 		tries = tries;
5124 #endif
5125 
5126 	} /* while */
5127 
5128 	/* allow the master to finish */
5129 	stick_sync_cmd = EVENT_NULL;
5130 	kpreempt_enable();
5131 }
5132 
5133 /*
5134  * Master CPU side of stick synchronization.
5135  *  - timestamp end of Event A
5136  *  - timestamp beginning of Event B
5137  */
5138 void
5139 sticksync_master(void)
5140 {
5141 	int		i;
5142 
5143 	kpreempt_disable();
5144 	/* tell the slave we've started */
5145 	slave_done = 0;
5146 	stick_sync_cmd = SLAVE_START;
5147 
5148 	while (slave_done == 0) {
5149 		for (i = 0; i < stick_iter; i++) {
5150 			/* wait for the slave */
5151 			while (stick_sync_cmd != MASTER_START)
5152 				;
5153 			/* Event A end */
5154 			stick_timestamp(&timestamp[EV_A_END]);
5155 
5156 			/* make location hot */
5157 			timestamp[EV_B_START] = 0;
5158 			stick_timestamp(&timestamp[EV_B_START]);
5159 
5160 			/* tell the slave to continue */
5161 			stick_sync_cmd = SLAVE_CONT;
5162 		} /* for */
5163 
5164 		/* wait while slave calculates time skew */
5165 		while (stick_sync_cmd == SLAVE_CONT)
5166 			;
5167 	} /* while */
5168 	kpreempt_enable();
5169 }
5170 
5171 /*
5172  * Cheetah/Cheetah+ have disrupting error for copyback's, so we don't need to
5173  * do Spitfire hack of xcall'ing all the cpus to ask to check for them.  Also,
5174  * in cpu_async_panic_callb, each cpu checks for CPU events on its way to
5175  * panic idle.
5176  */
5177 /*ARGSUSED*/
5178 void
5179 cpu_check_allcpus(struct async_flt *aflt)
5180 {}
5181 
5182 struct kmem_cache *ch_private_cache;
5183 
5184 /*
5185  * Cpu private unitialization.  Uninitialize the Ecache scrubber and
5186  * deallocate the scrubber data structures and cpu_private data structure.
5187  */
5188 void
5189 cpu_uninit_private(struct cpu *cp)
5190 {
5191 	cheetah_private_t *chprp = CPU_PRIVATE(cp);
5192 
5193 	ASSERT(chprp);
5194 	cpu_uninit_ecache_scrub_dr(cp);
5195 	CPU_PRIVATE(cp) = NULL;
5196 	ch_err_tl1_paddrs[cp->cpu_id] = NULL;
5197 	kmem_cache_free(ch_private_cache, chprp);
5198 	cmp_delete_cpu(cp->cpu_id);
5199 
5200 }
5201 
5202 /*
5203  * Cheetah Cache Scrubbing
5204  *
5205  * The primary purpose of Cheetah cache scrubbing is to reduce the exposure
5206  * of E$ tags, D$ data, and I$ data to cosmic ray events since they are not
5207  * protected by either parity or ECC.
5208  *
5209  * We currently default the E$ and D$ scan rate to 100 (scan 10% of the
5210  * cache per second). Due to the the specifics of how the I$ control
5211  * logic works with respect to the ASI used to scrub I$ lines, the entire
5212  * I$ is scanned at once.
5213  */
5214 
5215 /*
5216  * Tuneables to enable and disable the scrubbing of the caches, and to tune
5217  * scrubbing behavior.  These may be changed via /etc/system or using mdb
5218  * on a running system.
5219  */
5220 int dcache_scrub_enable = 1;		/* D$ scrubbing is on by default */
5221 
5222 /*
5223  * The following are the PIL levels that the softints/cross traps will fire at.
5224  */
5225 uint_t ecache_scrub_pil = PIL_9;	/* E$ scrub PIL for cross traps */
5226 uint_t dcache_scrub_pil = PIL_9;	/* D$ scrub PIL for cross traps */
5227 uint_t icache_scrub_pil = PIL_9;	/* I$ scrub PIL for cross traps */
5228 
5229 #if defined(JALAPENO)
5230 
5231 /*
5232  * Due to several errata (82, 85, 86), we don't enable the L2$ scrubber
5233  * on Jalapeno.
5234  */
5235 int ecache_scrub_enable = 0;
5236 
5237 #else	/* JALAPENO */
5238 
5239 /*
5240  * With all other cpu types, E$ scrubbing is on by default
5241  */
5242 int ecache_scrub_enable = 1;
5243 
5244 #endif	/* JALAPENO */
5245 
5246 
5247 #if defined(CHEETAH_PLUS) || defined(JALAPENO) || defined(SERRANO)
5248 
5249 /*
5250  * The I$ scrubber tends to cause latency problems for real-time SW, so it
5251  * is disabled by default on non-Cheetah systems
5252  */
5253 int icache_scrub_enable = 0;
5254 
5255 /*
5256  * Tuneables specifying the scrub calls per second and the scan rate
5257  * for each cache
5258  *
5259  * The cyclic times are set during boot based on the following values.
5260  * Changing these values in mdb after this time will have no effect.  If
5261  * a different value is desired, it must be set in /etc/system before a
5262  * reboot.
5263  */
5264 int ecache_calls_a_sec = 1;
5265 int dcache_calls_a_sec = 2;
5266 int icache_calls_a_sec = 2;
5267 
5268 int ecache_scan_rate_idle = 1;
5269 int ecache_scan_rate_busy = 1;
5270 int dcache_scan_rate_idle = 1;
5271 int dcache_scan_rate_busy = 1;
5272 int icache_scan_rate_idle = 1;
5273 int icache_scan_rate_busy = 1;
5274 
5275 #else	/* CHEETAH_PLUS || JALAPENO || SERRANO */
5276 
5277 int icache_scrub_enable = 1;		/* I$ scrubbing is on by default */
5278 
5279 int ecache_calls_a_sec = 100;		/* E$ scrub calls per seconds */
5280 int dcache_calls_a_sec = 100;		/* D$ scrub calls per seconds */
5281 int icache_calls_a_sec = 100;		/* I$ scrub calls per seconds */
5282 
5283 int ecache_scan_rate_idle = 100;	/* E$ scan rate (in tenths of a %) */
5284 int ecache_scan_rate_busy = 100;	/* E$ scan rate (in tenths of a %) */
5285 int dcache_scan_rate_idle = 100;	/* D$ scan rate (in tenths of a %) */
5286 int dcache_scan_rate_busy = 100;	/* D$ scan rate (in tenths of a %) */
5287 int icache_scan_rate_idle = 100;	/* I$ scan rate (in tenths of a %) */
5288 int icache_scan_rate_busy = 100;	/* I$ scan rate (in tenths of a %) */
5289 
5290 #endif	/* CHEETAH_PLUS || JALAPENO || SERRANO */
5291 
5292 /*
5293  * In order to scrub on offline cpus, a cross trap is sent.  The handler will
5294  * increment the outstanding request counter and schedule a softint to run
5295  * the scrubber.
5296  */
5297 extern xcfunc_t cache_scrubreq_tl1;
5298 
5299 /*
5300  * These are the softint functions for each cache scrubber
5301  */
5302 static uint_t scrub_ecache_line_intr(caddr_t arg1, caddr_t arg2);
5303 static uint_t scrub_dcache_line_intr(caddr_t arg1, caddr_t arg2);
5304 static uint_t scrub_icache_line_intr(caddr_t arg1, caddr_t arg2);
5305 
5306 /*
5307  * The cache scrub info table contains cache specific information
5308  * and allows for some of the scrub code to be table driven, reducing
5309  * duplication of cache similar code.
5310  *
5311  * This table keeps a copy of the value in the calls per second variable
5312  * (?cache_calls_a_sec).  This makes it much more difficult for someone
5313  * to cause us problems (for example, by setting ecache_calls_a_sec to 0 in
5314  * mdb in a misguided attempt to disable the scrubber).
5315  */
5316 struct scrub_info {
5317 	int		*csi_enable;	/* scrubber enable flag */
5318 	int		csi_freq;	/* scrubber calls per second */
5319 	int		csi_index;	/* index to chsm_outstanding[] */
5320 	uint_t		csi_inum;	/* scrubber interrupt number */
5321 	cyclic_id_t	csi_omni_cyc_id;	/* omni cyclic ID */
5322 	cyclic_id_t	csi_offline_cyc_id;	/* offline cyclic ID */
5323 	char		csi_name[3];	/* cache name for this scrub entry */
5324 } cache_scrub_info[] = {
5325 { &ecache_scrub_enable, 0, CACHE_SCRUBBER_INFO_E, 0, 0, 0, "E$"},
5326 { &dcache_scrub_enable, 0, CACHE_SCRUBBER_INFO_D, 0, 0, 0, "D$"},
5327 { &icache_scrub_enable, 0, CACHE_SCRUBBER_INFO_I, 0, 0, 0, "I$"}
5328 };
5329 
5330 /*
5331  * If scrubbing is enabled, increment the outstanding request counter.  If it
5332  * is 1 (meaning there were no previous requests outstanding), call
5333  * setsoftint_tl1 through xt_one_unchecked, which eventually ends up doing
5334  * a self trap.
5335  */
5336 static void
5337 do_scrub(struct scrub_info *csi)
5338 {
5339 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5340 	int index = csi->csi_index;
5341 	uint32_t *outstanding = &csmp->chsm_outstanding[index];
5342 
5343 	if (*(csi->csi_enable) && (csmp->chsm_enable[index])) {
5344 		if (atomic_add_32_nv(outstanding, 1) == 1) {
5345 			xt_one_unchecked(CPU->cpu_id, setsoftint_tl1,
5346 			    csi->csi_inum, 0);
5347 		}
5348 	}
5349 }
5350 
5351 /*
5352  * Omni cyclics don't fire on offline cpus, so we use another cyclic to
5353  * cross-trap the offline cpus.
5354  */
5355 static void
5356 do_scrub_offline(struct scrub_info *csi)
5357 {
5358 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5359 
5360 	if (CPUSET_ISNULL(cpu_offline_set)) {
5361 		/*
5362 		 * No offline cpus - nothing to do
5363 		 */
5364 		return;
5365 	}
5366 
5367 	if (*(csi->csi_enable) && (csmp->chsm_enable[csi->csi_index])) {
5368 		xt_some(cpu_offline_set, cache_scrubreq_tl1, csi->csi_inum,
5369 		    csi->csi_index);
5370 	}
5371 }
5372 
5373 /*
5374  * This is the initial setup for the scrubber cyclics - it sets the
5375  * interrupt level, frequency, and function to call.
5376  */
5377 /*ARGSUSED*/
5378 static void
5379 cpu_scrub_cyclic_setup(void *arg, cpu_t *cpu, cyc_handler_t *hdlr,
5380     cyc_time_t *when)
5381 {
5382 	struct scrub_info *csi = (struct scrub_info *)arg;
5383 
5384 	ASSERT(csi != NULL);
5385 	hdlr->cyh_func = (cyc_func_t)do_scrub;
5386 	hdlr->cyh_level = CY_LOW_LEVEL;
5387 	hdlr->cyh_arg = arg;
5388 
5389 	when->cyt_when = 0;	/* Start immediately */
5390 	when->cyt_interval = NANOSEC / csi->csi_freq;
5391 }
5392 
5393 /*
5394  * Initialization for cache scrubbing.
5395  * This routine is called AFTER all cpus have had cpu_init_private called
5396  * to initialize their private data areas.
5397  */
5398 void
5399 cpu_init_cache_scrub(void)
5400 {
5401 	int i;
5402 	struct scrub_info *csi;
5403 	cyc_omni_handler_t omni_hdlr;
5404 	cyc_handler_t offline_hdlr;
5405 	cyc_time_t when;
5406 
5407 	/*
5408 	 * save away the maximum number of lines for the D$
5409 	 */
5410 	dcache_nlines = dcache_size / dcache_linesize;
5411 
5412 	/*
5413 	 * register the softints for the cache scrubbing
5414 	 */
5415 	cache_scrub_info[CACHE_SCRUBBER_INFO_E].csi_inum =
5416 	    add_softintr(ecache_scrub_pil, scrub_ecache_line_intr,
5417 	    (caddr_t)&cache_scrub_info[CACHE_SCRUBBER_INFO_E]);
5418 	cache_scrub_info[CACHE_SCRUBBER_INFO_E].csi_freq = ecache_calls_a_sec;
5419 
5420 	cache_scrub_info[CACHE_SCRUBBER_INFO_D].csi_inum =
5421 	    add_softintr(dcache_scrub_pil, scrub_dcache_line_intr,
5422 	    (caddr_t)&cache_scrub_info[CACHE_SCRUBBER_INFO_D]);
5423 	cache_scrub_info[CACHE_SCRUBBER_INFO_D].csi_freq = dcache_calls_a_sec;
5424 
5425 	cache_scrub_info[CACHE_SCRUBBER_INFO_I].csi_inum =
5426 	    add_softintr(icache_scrub_pil, scrub_icache_line_intr,
5427 	    (caddr_t)&cache_scrub_info[CACHE_SCRUBBER_INFO_I]);
5428 	cache_scrub_info[CACHE_SCRUBBER_INFO_I].csi_freq = icache_calls_a_sec;
5429 
5430 	/*
5431 	 * start the scrubbing for all the caches
5432 	 */
5433 	mutex_enter(&cpu_lock);
5434 	for (i = 0; i < CACHE_SCRUBBER_COUNT; i++) {
5435 
5436 		csi = &cache_scrub_info[i];
5437 
5438 		if (!(*csi->csi_enable))
5439 			continue;
5440 
5441 		/*
5442 		 * force the following to be true:
5443 		 *	1 <= calls_a_sec <= hz
5444 		 */
5445 		if (csi->csi_freq > hz) {
5446 			cmn_err(CE_NOTE, "%s scrub calls_a_sec set too high "
5447 				"(%d); resetting to hz (%d)", csi->csi_name,
5448 				csi->csi_freq, hz);
5449 			csi->csi_freq = hz;
5450 		} else if (csi->csi_freq < 1) {
5451 			cmn_err(CE_NOTE, "%s scrub calls_a_sec set too low "
5452 				"(%d); resetting to 1", csi->csi_name,
5453 				csi->csi_freq);
5454 			csi->csi_freq = 1;
5455 		}
5456 
5457 		omni_hdlr.cyo_online = cpu_scrub_cyclic_setup;
5458 		omni_hdlr.cyo_offline = NULL;
5459 		omni_hdlr.cyo_arg = (void *)csi;
5460 
5461 		offline_hdlr.cyh_func = (cyc_func_t)do_scrub_offline;
5462 		offline_hdlr.cyh_arg = (void *)csi;
5463 		offline_hdlr.cyh_level = CY_LOW_LEVEL;
5464 
5465 		when.cyt_when = 0;	/* Start immediately */
5466 		when.cyt_interval = NANOSEC / csi->csi_freq;
5467 
5468 		csi->csi_omni_cyc_id = cyclic_add_omni(&omni_hdlr);
5469 		csi->csi_offline_cyc_id = cyclic_add(&offline_hdlr, &when);
5470 	}
5471 	register_cpu_setup_func(cpu_scrub_cpu_setup, NULL);
5472 	mutex_exit(&cpu_lock);
5473 }
5474 
5475 /*
5476  * Indicate that the specified cpu is idle.
5477  */
5478 void
5479 cpu_idle_ecache_scrub(struct cpu *cp)
5480 {
5481 	if (CPU_PRIVATE(cp) != NULL) {
5482 		ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(cp, chpr_scrub_misc);
5483 		csmp->chsm_ecache_busy = ECACHE_CPU_IDLE;
5484 	}
5485 }
5486 
5487 /*
5488  * Indicate that the specified cpu is busy.
5489  */
5490 void
5491 cpu_busy_ecache_scrub(struct cpu *cp)
5492 {
5493 	if (CPU_PRIVATE(cp) != NULL) {
5494 		ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(cp, chpr_scrub_misc);
5495 		csmp->chsm_ecache_busy = ECACHE_CPU_BUSY;
5496 	}
5497 }
5498 
5499 /*
5500  * Initialization for cache scrubbing for the specified cpu.
5501  */
5502 void
5503 cpu_init_ecache_scrub_dr(struct cpu *cp)
5504 {
5505 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(cp, chpr_scrub_misc);
5506 	int cpuid = cp->cpu_id;
5507 
5508 	/* initialize the number of lines in the caches */
5509 	csmp->chsm_ecache_nlines = cpunodes[cpuid].ecache_size /
5510 	    cpunodes[cpuid].ecache_linesize;
5511 	csmp->chsm_icache_nlines = CPU_PRIVATE_VAL(cp, chpr_icache_size) /
5512 	    CPU_PRIVATE_VAL(cp, chpr_icache_linesize);
5513 
5514 	/*
5515 	 * do_scrub() and do_scrub_offline() check both the global
5516 	 * ?cache_scrub_enable and this per-cpu enable variable.  All scrubbers
5517 	 * check this value before scrubbing.  Currently, we use it to
5518 	 * disable the E$ scrubber on multi-core cpus or while running at
5519 	 * slowed speed.  For now, just turn everything on and allow
5520 	 * cpu_init_private() to change it if necessary.
5521 	 */
5522 	csmp->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
5523 	csmp->chsm_enable[CACHE_SCRUBBER_INFO_D] = 1;
5524 	csmp->chsm_enable[CACHE_SCRUBBER_INFO_I] = 1;
5525 
5526 	cpu_busy_ecache_scrub(cp);
5527 }
5528 
5529 /*
5530  * Un-initialization for cache scrubbing for the specified cpu.
5531  */
5532 static void
5533 cpu_uninit_ecache_scrub_dr(struct cpu *cp)
5534 {
5535 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(cp, chpr_scrub_misc);
5536 
5537 	/*
5538 	 * un-initialize bookkeeping for cache scrubbing
5539 	 */
5540 	bzero(csmp, sizeof (ch_scrub_misc_t));
5541 
5542 	cpu_idle_ecache_scrub(cp);
5543 }
5544 
5545 /*
5546  * Called periodically on each CPU to scrub the D$.
5547  */
5548 static void
5549 scrub_dcache(int how_many)
5550 {
5551 	int i;
5552 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5553 	int index = csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_D];
5554 
5555 	/*
5556 	 * scrub the desired number of lines
5557 	 */
5558 	for (i = 0; i < how_many; i++) {
5559 		/*
5560 		 * scrub a D$ line
5561 		 */
5562 		dcache_inval_line(index);
5563 
5564 		/*
5565 		 * calculate the next D$ line to scrub, assumes
5566 		 * that dcache_nlines is a power of 2
5567 		 */
5568 		index = (index + 1) & (dcache_nlines - 1);
5569 	}
5570 
5571 	/*
5572 	 * set the scrub index for the next visit
5573 	 */
5574 	csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_D] = index;
5575 }
5576 
5577 /*
5578  * Handler for D$ scrub inum softint. Call scrub_dcache until
5579  * we decrement the outstanding request count to zero.
5580  */
5581 /*ARGSUSED*/
5582 static uint_t
5583 scrub_dcache_line_intr(caddr_t arg1, caddr_t arg2)
5584 {
5585 	int i;
5586 	int how_many;
5587 	int outstanding;
5588 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5589 	uint32_t *countp = &csmp->chsm_outstanding[CACHE_SCRUBBER_INFO_D];
5590 	struct scrub_info *csi = (struct scrub_info *)arg1;
5591 	int scan_rate = (csmp->chsm_ecache_busy == ECACHE_CPU_IDLE) ?
5592 		dcache_scan_rate_idle : dcache_scan_rate_busy;
5593 
5594 	/*
5595 	 * The scan rates are expressed in units of tenths of a
5596 	 * percent.  A scan rate of 1000 (100%) means the whole
5597 	 * cache is scanned every second.
5598 	 */
5599 	how_many = (dcache_nlines * scan_rate) / (1000 * csi->csi_freq);
5600 
5601 	do {
5602 		outstanding = *countp;
5603 		for (i = 0; i < outstanding; i++) {
5604 			scrub_dcache(how_many);
5605 		}
5606 	} while (atomic_add_32_nv(countp, -outstanding));
5607 
5608 	return (DDI_INTR_CLAIMED);
5609 }
5610 
5611 /*
5612  * Called periodically on each CPU to scrub the I$. The I$ is scrubbed
5613  * by invalidating lines. Due to the characteristics of the ASI which
5614  * is used to invalidate an I$ line, the entire I$ must be invalidated
5615  * vs. an individual I$ line.
5616  */
5617 static void
5618 scrub_icache(int how_many)
5619 {
5620 	int i;
5621 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5622 	int index = csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_I];
5623 	int icache_nlines = csmp->chsm_icache_nlines;
5624 
5625 	/*
5626 	 * scrub the desired number of lines
5627 	 */
5628 	for (i = 0; i < how_many; i++) {
5629 		/*
5630 		 * since the entire I$ must be scrubbed at once,
5631 		 * wait until the index wraps to zero to invalidate
5632 		 * the entire I$
5633 		 */
5634 		if (index == 0) {
5635 			icache_inval_all();
5636 		}
5637 
5638 		/*
5639 		 * calculate the next I$ line to scrub, assumes
5640 		 * that chsm_icache_nlines is a power of 2
5641 		 */
5642 		index = (index + 1) & (icache_nlines - 1);
5643 	}
5644 
5645 	/*
5646 	 * set the scrub index for the next visit
5647 	 */
5648 	csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_I] = index;
5649 }
5650 
5651 /*
5652  * Handler for I$ scrub inum softint. Call scrub_icache until
5653  * we decrement the outstanding request count to zero.
5654  */
5655 /*ARGSUSED*/
5656 static uint_t
5657 scrub_icache_line_intr(caddr_t arg1, caddr_t arg2)
5658 {
5659 	int i;
5660 	int how_many;
5661 	int outstanding;
5662 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5663 	uint32_t *countp = &csmp->chsm_outstanding[CACHE_SCRUBBER_INFO_I];
5664 	struct scrub_info *csi = (struct scrub_info *)arg1;
5665 	int scan_rate = (csmp->chsm_ecache_busy == ECACHE_CPU_IDLE) ?
5666 	    icache_scan_rate_idle : icache_scan_rate_busy;
5667 	int icache_nlines = csmp->chsm_icache_nlines;
5668 
5669 	/*
5670 	 * The scan rates are expressed in units of tenths of a
5671 	 * percent.  A scan rate of 1000 (100%) means the whole
5672 	 * cache is scanned every second.
5673 	 */
5674 	how_many = (icache_nlines * scan_rate) / (1000 * csi->csi_freq);
5675 
5676 	do {
5677 		outstanding = *countp;
5678 		for (i = 0; i < outstanding; i++) {
5679 			scrub_icache(how_many);
5680 		}
5681 	} while (atomic_add_32_nv(countp, -outstanding));
5682 
5683 	return (DDI_INTR_CLAIMED);
5684 }
5685 
5686 /*
5687  * Called periodically on each CPU to scrub the E$.
5688  */
5689 static void
5690 scrub_ecache(int how_many)
5691 {
5692 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5693 	int i;
5694 	int cpuid = CPU->cpu_id;
5695 	int index = csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
5696 	int nlines = csmp->chsm_ecache_nlines;
5697 	int linesize = cpunodes[cpuid].ecache_linesize;
5698 	int ec_set_size = cpu_ecache_set_size(CPU);
5699 
5700 	/*
5701 	 * scrub the desired number of lines
5702 	 */
5703 	for (i = 0; i < how_many; i++) {
5704 		/*
5705 		 * scrub the E$ line
5706 		 */
5707 		ecache_flush_line(ecache_flushaddr + (index * linesize),
5708 		    ec_set_size);
5709 
5710 		/*
5711 		 * calculate the next E$ line to scrub based on twice
5712 		 * the number of E$ lines (to displace lines containing
5713 		 * flush area data), assumes that the number of lines
5714 		 * is a power of 2
5715 		 */
5716 		index = (index + 1) & ((nlines << 1) - 1);
5717 	}
5718 
5719 	/*
5720 	 * set the ecache scrub index for the next visit
5721 	 */
5722 	csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_E] = index;
5723 }
5724 
5725 /*
5726  * Handler for E$ scrub inum softint. Call the E$ scrubber until
5727  * we decrement the outstanding request count to zero.
5728  *
5729  * Due to interactions with cpu_scrub_cpu_setup(), the outstanding count may
5730  * become negative after the atomic_add_32_nv().  This is not a problem, as
5731  * the next trip around the loop won't scrub anything, and the next add will
5732  * reset the count back to zero.
5733  */
5734 /*ARGSUSED*/
5735 static uint_t
5736 scrub_ecache_line_intr(caddr_t arg1, caddr_t arg2)
5737 {
5738 	int i;
5739 	int how_many;
5740 	int outstanding;
5741 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5742 	uint32_t *countp = &csmp->chsm_outstanding[CACHE_SCRUBBER_INFO_E];
5743 	struct scrub_info *csi = (struct scrub_info *)arg1;
5744 	int scan_rate = (csmp->chsm_ecache_busy == ECACHE_CPU_IDLE) ?
5745 		ecache_scan_rate_idle : ecache_scan_rate_busy;
5746 	int ecache_nlines = csmp->chsm_ecache_nlines;
5747 
5748 	/*
5749 	 * The scan rates are expressed in units of tenths of a
5750 	 * percent.  A scan rate of 1000 (100%) means the whole
5751 	 * cache is scanned every second.
5752 	 */
5753 	how_many = (ecache_nlines * scan_rate) / (1000 * csi->csi_freq);
5754 
5755 	do {
5756 		outstanding = *countp;
5757 		for (i = 0; i < outstanding; i++) {
5758 			scrub_ecache(how_many);
5759 		}
5760 	} while (atomic_add_32_nv(countp, -outstanding));
5761 
5762 	return (DDI_INTR_CLAIMED);
5763 }
5764 
5765 /*
5766  * Timeout function to reenable CE
5767  */
5768 static void
5769 cpu_delayed_check_ce_errors(void *arg)
5770 {
5771 	if (!taskq_dispatch(ch_check_ce_tq, cpu_check_ce_errors, arg,
5772 	    TQ_NOSLEEP)) {
5773 		(void) timeout(cpu_delayed_check_ce_errors, arg,
5774 		    drv_usectohz((clock_t)cpu_ceen_delay_secs * MICROSEC));
5775 	}
5776 }
5777 
5778 /*
5779  * CE Deferred Re-enable after trap.
5780  *
5781  * When the CPU gets a disrupting trap for any of the errors
5782  * controlled by the CEEN bit, CEEN is disabled in the trap handler
5783  * immediately. To eliminate the possibility of multiple CEs causing
5784  * recursive stack overflow in the trap handler, we cannot
5785  * reenable CEEN while still running in the trap handler. Instead,
5786  * after a CE is logged on a CPU, we schedule a timeout function,
5787  * cpu_check_ce_errors(), to trigger after cpu_ceen_delay_secs
5788  * seconds. This function will check whether any further CEs
5789  * have occurred on that CPU, and if none have, will reenable CEEN.
5790  *
5791  * If further CEs have occurred while CEEN is disabled, another
5792  * timeout will be scheduled. This is to ensure that the CPU can
5793  * make progress in the face of CE 'storms', and that it does not
5794  * spend all its time logging CE errors.
5795  */
5796 static void
5797 cpu_check_ce_errors(void *arg)
5798 {
5799 	int	cpuid = (int)(uintptr_t)arg;
5800 	cpu_t	*cp;
5801 
5802 	/*
5803 	 * We acquire cpu_lock.
5804 	 */
5805 	ASSERT(curthread->t_pil == 0);
5806 
5807 	/*
5808 	 * verify that the cpu is still around, DR
5809 	 * could have got there first ...
5810 	 */
5811 	mutex_enter(&cpu_lock);
5812 	cp = cpu_get(cpuid);
5813 	if (cp == NULL) {
5814 		mutex_exit(&cpu_lock);
5815 		return;
5816 	}
5817 	/*
5818 	 * make sure we don't migrate across CPUs
5819 	 * while checking our CE status.
5820 	 */
5821 	kpreempt_disable();
5822 
5823 	/*
5824 	 * If we are running on the CPU that got the
5825 	 * CE, we can do the checks directly.
5826 	 */
5827 	if (cp->cpu_id == CPU->cpu_id) {
5828 		mutex_exit(&cpu_lock);
5829 		cpu_check_ce(TIMEOUT_CEEN_CHECK, 0, 0, 0);
5830 		kpreempt_enable();
5831 		return;
5832 	}
5833 	kpreempt_enable();
5834 
5835 	/*
5836 	 * send an x-call to get the CPU that originally
5837 	 * got the CE to do the necessary checks. If we can't
5838 	 * send the x-call, reschedule the timeout, otherwise we
5839 	 * lose CEEN forever on that CPU.
5840 	 */
5841 	if (CPU_XCALL_READY(cp->cpu_id) && (!(cp->cpu_flags & CPU_QUIESCED))) {
5842 		xc_one(cp->cpu_id, (xcfunc_t *)cpu_check_ce,
5843 		    TIMEOUT_CEEN_CHECK, 0);
5844 		mutex_exit(&cpu_lock);
5845 	} else {
5846 		/*
5847 		 * When the CPU is not accepting xcalls, or
5848 		 * the processor is offlined, we don't want to
5849 		 * incur the extra overhead of trying to schedule the
5850 		 * CE timeout indefinitely. However, we don't want to lose
5851 		 * CE checking forever.
5852 		 *
5853 		 * Keep rescheduling the timeout, accepting the additional
5854 		 * overhead as the cost of correctness in the case where we get
5855 		 * a CE, disable CEEN, offline the CPU during the
5856 		 * the timeout interval, and then online it at some
5857 		 * point in the future. This is unlikely given the short
5858 		 * cpu_ceen_delay_secs.
5859 		 */
5860 		mutex_exit(&cpu_lock);
5861 		(void) timeout(cpu_delayed_check_ce_errors,
5862 		    (void *)(uintptr_t)cp->cpu_id,
5863 		    drv_usectohz((clock_t)cpu_ceen_delay_secs * MICROSEC));
5864 	}
5865 }
5866 
5867 /*
5868  * This routine will check whether CEs have occurred while
5869  * CEEN is disabled. Any CEs detected will be logged and, if
5870  * possible, scrubbed.
5871  *
5872  * The memscrubber will also use this routine to clear any errors
5873  * caused by its scrubbing with CEEN disabled.
5874  *
5875  * flag == SCRUBBER_CEEN_CHECK
5876  *		called from memscrubber, just check/scrub, no reset
5877  *		paddr 	physical addr. for start of scrub pages
5878  *		vaddr 	virtual addr. for scrub area
5879  *		psz	page size of area to be scrubbed
5880  *
5881  * flag == TIMEOUT_CEEN_CHECK
5882  *		timeout function has triggered, reset timeout or CEEN
5883  *
5884  * Note: We must not migrate cpus during this function.  This can be
5885  * achieved by one of:
5886  *    - invoking as target of an x-call in which case we're at XCALL_PIL
5887  *	The flag value must be first xcall argument.
5888  *    - disabling kernel preemption.  This should be done for very short
5889  *	periods so is not suitable for SCRUBBER_CEEN_CHECK where we might
5890  *	scrub an extended area with cpu_check_block.  The call for
5891  *	TIMEOUT_CEEN_CHECK uses this so cpu_check_ce must be kept
5892  *	brief for this case.
5893  *    - binding to a cpu, eg with thread_affinity_set().  This is used
5894  *	in the SCRUBBER_CEEN_CHECK case, but is not practical for
5895  *	the TIMEOUT_CEEN_CHECK because both need cpu_lock.
5896  */
5897 void
5898 cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t psz)
5899 {
5900 	ch_cpu_errors_t	cpu_error_regs;
5901 	uint64_t	ec_err_enable;
5902 	uint64_t	page_offset;
5903 
5904 	/* Read AFSR */
5905 	get_cpu_error_state(&cpu_error_regs);
5906 
5907 	/*
5908 	 * If no CEEN errors have occurred during the timeout
5909 	 * interval, it is safe to re-enable CEEN and exit.
5910 	 */
5911 	if ((cpu_error_regs.afsr & C_AFSR_CECC_ERRS) == 0) {
5912 		if (flag == TIMEOUT_CEEN_CHECK &&
5913 		    !((ec_err_enable = get_error_enable()) & EN_REG_CEEN))
5914 			set_error_enable(ec_err_enable | EN_REG_CEEN);
5915 		return;
5916 	}
5917 
5918 	/*
5919 	 * Ensure that CEEN was not reenabled (maybe by DR) before
5920 	 * we log/clear the error.
5921 	 */
5922 	if ((ec_err_enable = get_error_enable()) & EN_REG_CEEN)
5923 	    set_error_enable(ec_err_enable & ~EN_REG_CEEN);
5924 
5925 	/*
5926 	 * log/clear the CE. If CE_CEEN_DEFER is passed, the
5927 	 * timeout will be rescheduled when the error is logged.
5928 	 */
5929 	if (!(cpu_error_regs.afsr & cpu_ce_not_deferred))
5930 	    cpu_ce_detected(&cpu_error_regs,
5931 		CE_CEEN_DEFER | CE_CEEN_TIMEOUT);
5932 	else
5933 	    cpu_ce_detected(&cpu_error_regs, CE_CEEN_TIMEOUT);
5934 
5935 	/*
5936 	 * If the memory scrubber runs while CEEN is
5937 	 * disabled, (or if CEEN is disabled during the
5938 	 * scrub as a result of a CE being triggered by
5939 	 * it), the range being scrubbed will not be
5940 	 * completely cleaned. If there are multiple CEs
5941 	 * in the range at most two of these will be dealt
5942 	 * with, (one by the trap handler and one by the
5943 	 * timeout). It is also possible that none are dealt
5944 	 * with, (CEEN disabled and another CE occurs before
5945 	 * the timeout triggers). So to ensure that the
5946 	 * memory is actually scrubbed, we have to access each
5947 	 * memory location in the range and then check whether
5948 	 * that access causes a CE.
5949 	 */
5950 	if (flag == SCRUBBER_CEEN_CHECK && va) {
5951 		if ((cpu_error_regs.afar >= pa) &&
5952 		    (cpu_error_regs.afar < (pa + psz))) {
5953 			/*
5954 			 * Force a load from physical memory for each
5955 			 * 64-byte block, then check AFSR to determine
5956 			 * whether this access caused an error.
5957 			 *
5958 			 * This is a slow way to do a scrub, but as it will
5959 			 * only be invoked when the memory scrubber actually
5960 			 * triggered a CE, it should not happen too
5961 			 * frequently.
5962 			 *
5963 			 * cut down what we need to check as the scrubber
5964 			 * has verified up to AFAR, so get it's offset
5965 			 * into the page and start there.
5966 			 */
5967 			page_offset = (uint64_t)(cpu_error_regs.afar &
5968 			    (psz - 1));
5969 			va = (caddr_t)(va + (P2ALIGN(page_offset, 64)));
5970 			psz -= (uint_t)(P2ALIGN(page_offset, 64));
5971 			cpu_check_block((caddr_t)(P2ALIGN((uint64_t)va, 64)),
5972 			    psz);
5973 		}
5974 	}
5975 
5976 	/*
5977 	 * Reset error enable if this CE is not masked.
5978 	 */
5979 	if ((flag == TIMEOUT_CEEN_CHECK) &&
5980 	    (cpu_error_regs.afsr & cpu_ce_not_deferred))
5981 	    set_error_enable(ec_err_enable | EN_REG_CEEN);
5982 
5983 }
5984 
5985 /*
5986  * Attempt a cpu logout for an error that we did not trap for, such
5987  * as a CE noticed with CEEN off.  It is assumed that we are still running
5988  * on the cpu that took the error and that we cannot migrate.  Returns
5989  * 0 on success, otherwise nonzero.
5990  */
5991 static int
5992 cpu_ce_delayed_ec_logout(uint64_t afar)
5993 {
5994 	ch_cpu_logout_t *clop;
5995 
5996 	if (CPU_PRIVATE(CPU) == NULL)
5997 		return (0);
5998 
5999 	clop = CPU_PRIVATE_PTR(CPU, chpr_cecc_logout);
6000 	if (cas64(&clop->clo_data.chd_afar, LOGOUT_INVALID, afar) !=
6001 	    LOGOUT_INVALID)
6002 		return (0);
6003 
6004 	cpu_delayed_logout(afar, clop);
6005 	return (1);
6006 }
6007 
6008 /*
6009  * We got an error while CEEN was disabled. We
6010  * need to clean up after it and log whatever
6011  * information we have on the CE.
6012  */
6013 void
6014 cpu_ce_detected(ch_cpu_errors_t *cpu_error_regs, int flag)
6015 {
6016 	ch_async_flt_t 	ch_flt;
6017 	struct async_flt *aflt;
6018 	char 		pr_reason[MAX_REASON_STRING];
6019 
6020 	bzero(&ch_flt, sizeof (ch_async_flt_t));
6021 	ch_flt.flt_trapped_ce = flag;
6022 	aflt = (struct async_flt *)&ch_flt;
6023 	aflt->flt_stat = cpu_error_regs->afsr & C_AFSR_MASK;
6024 	ch_flt.afsr_ext = cpu_error_regs->afsr_ext;
6025 	ch_flt.afsr_errs = (cpu_error_regs->afsr_ext & C_AFSR_EXT_ALL_ERRS) |
6026 	    (cpu_error_regs->afsr & C_AFSR_ALL_ERRS);
6027 	aflt->flt_addr = cpu_error_regs->afar;
6028 #if defined(SERRANO)
6029 	ch_flt.afar2 = cpu_error_regs->afar2;
6030 #endif	/* SERRANO */
6031 	aflt->flt_pc = NULL;
6032 	aflt->flt_priv = ((cpu_error_regs->afsr & C_AFSR_PRIV) != 0);
6033 	aflt->flt_tl = 0;
6034 	aflt->flt_panic = 0;
6035 	cpu_log_and_clear_ce(&ch_flt);
6036 
6037 	/*
6038 	 * check if we caused any errors during cleanup
6039 	 */
6040 	if (clear_errors(&ch_flt)) {
6041 		pr_reason[0] = '\0';
6042 		(void) cpu_queue_events(&ch_flt, pr_reason, ch_flt.afsr_errs,
6043 		    NULL);
6044 	}
6045 }
6046 
6047 /*
6048  * Log/clear CEEN-controlled disrupting errors
6049  */
6050 static void
6051 cpu_log_and_clear_ce(ch_async_flt_t *ch_flt)
6052 {
6053 	struct async_flt *aflt;
6054 	uint64_t afsr, afsr_errs;
6055 	ch_cpu_logout_t *clop;
6056 	char 		pr_reason[MAX_REASON_STRING];
6057 	on_trap_data_t	*otp = curthread->t_ontrap;
6058 
6059 	aflt = (struct async_flt *)ch_flt;
6060 	afsr = aflt->flt_stat;
6061 	afsr_errs = ch_flt->afsr_errs;
6062 	aflt->flt_id = gethrtime_waitfree();
6063 	aflt->flt_bus_id = getprocessorid();
6064 	aflt->flt_inst = CPU->cpu_id;
6065 	aflt->flt_prot = AFLT_PROT_NONE;
6066 	aflt->flt_class = CPU_FAULT;
6067 	aflt->flt_status = ECC_C_TRAP;
6068 
6069 	pr_reason[0] = '\0';
6070 	/*
6071 	 * Get the CPU log out info for Disrupting Trap.
6072 	 */
6073 	if (CPU_PRIVATE(CPU) == NULL) {
6074 		clop = NULL;
6075 		ch_flt->flt_diag_data.chd_afar = LOGOUT_INVALID;
6076 	} else {
6077 		clop = CPU_PRIVATE_PTR(CPU, chpr_cecc_logout);
6078 	}
6079 
6080 	if (clop && ch_flt->flt_trapped_ce & CE_CEEN_TIMEOUT) {
6081 		ch_cpu_errors_t cpu_error_regs;
6082 
6083 		get_cpu_error_state(&cpu_error_regs);
6084 		(void) cpu_ce_delayed_ec_logout(cpu_error_regs.afar);
6085 		clop->clo_data.chd_afsr = cpu_error_regs.afsr;
6086 		clop->clo_data.chd_afar = cpu_error_regs.afar;
6087 		clop->clo_data.chd_afsr_ext = cpu_error_regs.afsr_ext;
6088 		clop->clo_sdw_data.chd_afsr = cpu_error_regs.shadow_afsr;
6089 		clop->clo_sdw_data.chd_afar = cpu_error_regs.shadow_afar;
6090 		clop->clo_sdw_data.chd_afsr_ext =
6091 		    cpu_error_regs.shadow_afsr_ext;
6092 #if defined(SERRANO)
6093 		clop->clo_data.chd_afar2 = cpu_error_regs.afar2;
6094 #endif	/* SERRANO */
6095 		ch_flt->flt_data_incomplete = 1;
6096 
6097 		/*
6098 		 * The logging/clear code expects AFSR/AFAR to be cleared.
6099 		 * The trap handler does it for CEEN enabled errors
6100 		 * so we need to do it here.
6101 		 */
6102 		set_cpu_error_state(&cpu_error_regs);
6103 	}
6104 
6105 #if defined(JALAPENO) || defined(SERRANO)
6106 	/*
6107 	 * FRC: Can't scrub memory as we don't have AFAR for Jalapeno.
6108 	 * For Serrano, even thou we do have the AFAR, we still do the
6109 	 * scrub on the RCE side since that's where the error type can
6110 	 * be properly classified as intermittent, persistent, etc.
6111 	 *
6112 	 * CE/RCE:  If error is in memory and AFAR is valid, scrub the memory.
6113 	 * Must scrub memory before cpu_queue_events, as scrubbing memory sets
6114 	 * the flt_status bits.
6115 	 */
6116 	if ((afsr & (C_AFSR_CE|C_AFSR_RCE)) &&
6117 	    (cpu_flt_in_memory(ch_flt, (afsr & C_AFSR_CE)) ||
6118 	    cpu_flt_in_memory(ch_flt, (afsr & C_AFSR_RCE)))) {
6119 		cpu_ce_scrub_mem_err(aflt, B_TRUE);
6120 	}
6121 #else /* JALAPENO || SERRANO */
6122 	/*
6123 	 * CE/EMC:  If error is in memory and AFAR is valid, scrub the memory.
6124 	 * Must scrub memory before cpu_queue_events, as scrubbing memory sets
6125 	 * the flt_status bits.
6126 	 */
6127 	if (afsr & (C_AFSR_CE|C_AFSR_EMC)) {
6128 		if (cpu_flt_in_memory(ch_flt, (afsr & C_AFSR_CE)) ||
6129 		    cpu_flt_in_memory(ch_flt, (afsr & C_AFSR_EMC))) {
6130 			cpu_ce_scrub_mem_err(aflt, B_TRUE);
6131 		}
6132 	}
6133 
6134 #endif /* JALAPENO || SERRANO */
6135 
6136 	/*
6137 	 * Update flt_prot if this error occurred under on_trap protection.
6138 	 */
6139 	if (otp != NULL && (otp->ot_prot & OT_DATA_EC))
6140 		aflt->flt_prot = AFLT_PROT_EC;
6141 
6142 	/*
6143 	 * Queue events on the async event queue, one event per error bit.
6144 	 */
6145 	if (cpu_queue_events(ch_flt, pr_reason, afsr_errs, clop) == 0 ||
6146 	    (afsr_errs & (C_AFSR_CECC_ERRS | C_AFSR_EXT_CECC_ERRS)) == 0) {
6147 		ch_flt->flt_type = CPU_INV_AFSR;
6148 		cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_INVALID_AFSR,
6149 		    (void *)ch_flt, sizeof (ch_async_flt_t), ue_queue,
6150 		    aflt->flt_panic);
6151 	}
6152 
6153 	/*
6154 	 * Zero out + invalidate CPU logout.
6155 	 */
6156 	if (clop) {
6157 		bzero(clop, sizeof (ch_cpu_logout_t));
6158 		clop->clo_data.chd_afar = LOGOUT_INVALID;
6159 	}
6160 
6161 	/*
6162 	 * If either a CPC, WDC or EDC error has occurred while CEEN
6163 	 * was disabled, we need to flush either the entire
6164 	 * E$ or an E$ line.
6165 	 */
6166 #if defined(JALAPENO) || defined(SERRANO)
6167 	if (afsr & (C_AFSR_EDC | C_AFSR_CPC | C_AFSR_CPU | C_AFSR_WDC))
6168 #else	/* JALAPENO || SERRANO */
6169 	if (afsr_errs & (C_AFSR_EDC | C_AFSR_CPC | C_AFSR_WDC | C_AFSR_L3_EDC |
6170 	    C_AFSR_L3_CPC | C_AFSR_L3_WDC))
6171 #endif	/* JALAPENO || SERRANO */
6172 		cpu_error_ecache_flush(ch_flt);
6173 
6174 }
6175 
6176 /*
6177  * depending on the error type, we determine whether we
6178  * need to flush the entire ecache or just a line.
6179  */
6180 static int
6181 cpu_error_ecache_flush_required(ch_async_flt_t *ch_flt)
6182 {
6183 	struct async_flt *aflt;
6184 	uint64_t	afsr;
6185 	uint64_t	afsr_errs = ch_flt->afsr_errs;
6186 
6187 	aflt = (struct async_flt *)ch_flt;
6188 	afsr = aflt->flt_stat;
6189 
6190 	/*
6191 	 * If we got multiple errors, no point in trying
6192 	 * the individual cases, just flush the whole cache
6193 	 */
6194 	if (afsr & C_AFSR_ME) {
6195 		return (ECACHE_FLUSH_ALL);
6196 	}
6197 
6198 	/*
6199 	 * If either a CPC, WDC or EDC error has occurred while CEEN
6200 	 * was disabled, we need to flush entire E$. We can't just
6201 	 * flush the cache line affected as the ME bit
6202 	 * is not set when multiple correctable errors of the same
6203 	 * type occur, so we might have multiple CPC or EDC errors,
6204 	 * with only the first recorded.
6205 	 */
6206 #if defined(JALAPENO) || defined(SERRANO)
6207 	if (afsr & (C_AFSR_CPC | C_AFSR_CPU | C_AFSR_EDC | C_AFSR_WDC)) {
6208 #else	/* JALAPENO || SERRANO */
6209 	if (afsr_errs & (C_AFSR_CPC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_L3_CPC |
6210 	    C_AFSR_L3_EDC | C_AFSR_L3_WDC)) {
6211 #endif	/* JALAPENO || SERRANO */
6212 		return (ECACHE_FLUSH_ALL);
6213 	}
6214 
6215 #if defined(JALAPENO) || defined(SERRANO)
6216 	/*
6217 	 * If only UE or RUE is set, flush the Ecache line, otherwise
6218 	 * flush the entire Ecache.
6219 	 */
6220 	if (afsr & (C_AFSR_UE|C_AFSR_RUE)) {
6221 		if ((afsr & C_AFSR_ALL_ERRS) == C_AFSR_UE ||
6222 		    (afsr & C_AFSR_ALL_ERRS) == C_AFSR_RUE) {
6223 			return (ECACHE_FLUSH_LINE);
6224 		} else {
6225 			return (ECACHE_FLUSH_ALL);
6226 		}
6227 	}
6228 #else /* JALAPENO || SERRANO */
6229 	/*
6230 	 * If UE only is set, flush the Ecache line, otherwise
6231 	 * flush the entire Ecache.
6232 	 */
6233 	if (afsr_errs & C_AFSR_UE) {
6234 		if ((afsr_errs & (C_AFSR_ALL_ERRS | C_AFSR_EXT_ALL_ERRS)) ==
6235 		    C_AFSR_UE) {
6236 			return (ECACHE_FLUSH_LINE);
6237 		} else {
6238 			return (ECACHE_FLUSH_ALL);
6239 		}
6240 	}
6241 #endif /* JALAPENO || SERRANO */
6242 
6243 	/*
6244 	 * EDU: If EDU only is set, flush the ecache line, otherwise
6245 	 * flush the entire Ecache.
6246 	 */
6247 	if (afsr_errs & (C_AFSR_EDU | C_AFSR_L3_EDU)) {
6248 		if (((afsr_errs & ~C_AFSR_EDU) == 0) ||
6249 		    ((afsr_errs & ~C_AFSR_L3_EDU) == 0)) {
6250 			return (ECACHE_FLUSH_LINE);
6251 		} else {
6252 			return (ECACHE_FLUSH_ALL);
6253 		}
6254 	}
6255 
6256 	/*
6257 	 * BERR: If BERR only is set, flush the Ecache line, otherwise
6258 	 * flush the entire Ecache.
6259 	 */
6260 	if (afsr_errs & C_AFSR_BERR) {
6261 		if ((afsr_errs & ~C_AFSR_BERR) == 0) {
6262 			return (ECACHE_FLUSH_LINE);
6263 		} else {
6264 			return (ECACHE_FLUSH_ALL);
6265 		}
6266 	}
6267 
6268 	return (0);
6269 }
6270 
6271 void
6272 cpu_error_ecache_flush(ch_async_flt_t *ch_flt)
6273 {
6274 	int	ecache_flush_flag =
6275 	    cpu_error_ecache_flush_required(ch_flt);
6276 
6277 	/*
6278 	 * Flush Ecache line or entire Ecache based on above checks.
6279 	 */
6280 	if (ecache_flush_flag == ECACHE_FLUSH_ALL)
6281 		cpu_flush_ecache();
6282 	else if (ecache_flush_flag == ECACHE_FLUSH_LINE) {
6283 		cpu_flush_ecache_line(ch_flt);
6284 	}
6285 
6286 }
6287 
6288 /*
6289  * Extract the PA portion from the E$ tag.
6290  */
6291 uint64_t
6292 cpu_ectag_to_pa(int setsize, uint64_t tag)
6293 {
6294 	if (IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
6295 		return (JG_ECTAG_TO_PA(setsize, tag));
6296 	else if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
6297 		return (PN_L3TAG_TO_PA(tag));
6298 	else
6299 		return (CH_ECTAG_TO_PA(setsize, tag));
6300 }
6301 
6302 /*
6303  * Convert the E$ tag PA into an E$ subblock index.
6304  */
6305 static int
6306 cpu_ectag_pa_to_subblk(int cachesize, uint64_t subaddr)
6307 {
6308 	if (IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
6309 		return (JG_ECTAG_PA_TO_SUBBLK(cachesize, subaddr));
6310 	else if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
6311 		/* Panther has only one subblock per line */
6312 		return (0);
6313 	else
6314 		return (CH_ECTAG_PA_TO_SUBBLK(cachesize, subaddr));
6315 }
6316 
6317 /*
6318  * All subblocks in an E$ line must be invalid for
6319  * the line to be invalid.
6320  */
6321 int
6322 cpu_ectag_line_invalid(int cachesize, uint64_t tag)
6323 {
6324 	if (IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
6325 		return (JG_ECTAG_LINE_INVALID(cachesize, tag));
6326 	else if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
6327 		return (PN_L3_LINE_INVALID(tag));
6328 	else
6329 		return (CH_ECTAG_LINE_INVALID(cachesize, tag));
6330 }
6331 
6332 /*
6333  * Extract state bits for a subblock given the tag.  Note that for Panther
6334  * this works on both l2 and l3 tags.
6335  */
6336 static int
6337 cpu_ectag_pa_to_subblk_state(int cachesize, uint64_t subaddr, uint64_t tag)
6338 {
6339 	if (IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
6340 		return (JG_ECTAG_PA_TO_SUBBLK_STATE(cachesize, subaddr, tag));
6341 	else if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
6342 		return (tag & CH_ECSTATE_MASK);
6343 	else
6344 		return (CH_ECTAG_PA_TO_SUBBLK_STATE(cachesize, subaddr, tag));
6345 }
6346 
6347 /*
6348  * Cpu specific initialization.
6349  */
6350 void
6351 cpu_mp_init(void)
6352 {
6353 #ifdef	CHEETAHPLUS_ERRATUM_25
6354 	if (cheetah_sendmondo_recover) {
6355 		cheetah_nudge_init();
6356 	}
6357 #endif
6358 }
6359 
6360 void
6361 cpu_ereport_post(struct async_flt *aflt)
6362 {
6363 	char *cpu_type, buf[FM_MAX_CLASS];
6364 	nv_alloc_t *nva = NULL;
6365 	nvlist_t *ereport, *detector, *resource;
6366 	errorq_elem_t *eqep;
6367 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
6368 	char unum[UNUM_NAMLEN];
6369 	int len = 0;
6370 	uint8_t  msg_type;
6371 	plat_ecc_ch_async_flt_t	plat_ecc_ch_flt;
6372 
6373 	if (aflt->flt_panic || panicstr) {
6374 		eqep = errorq_reserve(ereport_errorq);
6375 		if (eqep == NULL)
6376 			return;
6377 		ereport = errorq_elem_nvl(ereport_errorq, eqep);
6378 		nva = errorq_elem_nva(ereport_errorq, eqep);
6379 	} else {
6380 		ereport = fm_nvlist_create(nva);
6381 	}
6382 
6383 	/*
6384 	 * Create the scheme "cpu" FMRI.
6385 	 */
6386 	detector = fm_nvlist_create(nva);
6387 	resource = fm_nvlist_create(nva);
6388 	switch (cpunodes[aflt->flt_inst].implementation) {
6389 	case CHEETAH_IMPL:
6390 		cpu_type = FM_EREPORT_CPU_USIII;
6391 		break;
6392 	case CHEETAH_PLUS_IMPL:
6393 		cpu_type = FM_EREPORT_CPU_USIIIplus;
6394 		break;
6395 	case JALAPENO_IMPL:
6396 		cpu_type = FM_EREPORT_CPU_USIIIi;
6397 		break;
6398 	case SERRANO_IMPL:
6399 		cpu_type = FM_EREPORT_CPU_USIIIiplus;
6400 		break;
6401 	case JAGUAR_IMPL:
6402 		cpu_type = FM_EREPORT_CPU_USIV;
6403 		break;
6404 	case PANTHER_IMPL:
6405 		cpu_type = FM_EREPORT_CPU_USIVplus;
6406 		break;
6407 	default:
6408 		cpu_type = FM_EREPORT_CPU_UNSUPPORTED;
6409 		break;
6410 	}
6411 	(void) fm_fmri_cpu_set(detector, FM_CPU_SCHEME_VERSION, NULL,
6412 	    aflt->flt_inst, (uint8_t)cpunodes[aflt->flt_inst].version,
6413 	    cpunodes[aflt->flt_inst].device_id);
6414 
6415 	/*
6416 	 * Encode all the common data into the ereport.
6417 	 */
6418 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s",
6419 		FM_ERROR_CPU, cpu_type, aflt->flt_erpt_class);
6420 
6421 	fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
6422 	    fm_ena_generate_cpu(aflt->flt_id, aflt->flt_inst, FM_ENA_FMT1),
6423 	    detector, NULL);
6424 
6425 	/*
6426 	 * Encode the error specific data that was saved in
6427 	 * the async_flt structure into the ereport.
6428 	 */
6429 	cpu_payload_add_aflt(aflt, ereport, resource,
6430 	    &plat_ecc_ch_flt.ecaf_afar_status,
6431 	    &plat_ecc_ch_flt.ecaf_synd_status);
6432 
6433 	if (aflt->flt_panic || panicstr) {
6434 		errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
6435 	} else {
6436 		(void) fm_ereport_post(ereport, EVCH_TRYHARD);
6437 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
6438 		fm_nvlist_destroy(detector, FM_NVA_FREE);
6439 		fm_nvlist_destroy(resource, FM_NVA_FREE);
6440 	}
6441 	/*
6442 	 * Send the enhanced error information (plat_ecc_error2_data_t)
6443 	 * to the SC olny if it can process it.
6444 	 */
6445 
6446 	if (&plat_ecc_capability_sc_get &&
6447 	    plat_ecc_capability_sc_get(PLAT_ECC_ERROR2_MESSAGE)) {
6448 		msg_type = cpu_flt_bit_to_plat_error(aflt);
6449 		if (msg_type != PLAT_ECC_ERROR2_NONE) {
6450 			/*
6451 			 * If afar status is not invalid do a unum lookup.
6452 			 */
6453 			if (plat_ecc_ch_flt.ecaf_afar_status !=
6454 			    AFLT_STAT_INVALID) {
6455 				(void) cpu_get_mem_unum_aflt(
6456 				    plat_ecc_ch_flt.ecaf_synd_status, aflt,
6457 				    unum, UNUM_NAMLEN, &len);
6458 			} else {
6459 				unum[0] = '\0';
6460 			}
6461 			plat_ecc_ch_flt.ecaf_sdw_afar = ch_flt->flt_sdw_afar;
6462 			plat_ecc_ch_flt.ecaf_sdw_afsr = ch_flt->flt_sdw_afsr;
6463 			plat_ecc_ch_flt.ecaf_afsr_ext = ch_flt->afsr_ext;
6464 			plat_ecc_ch_flt.ecaf_sdw_afsr_ext =
6465 			    ch_flt->flt_sdw_afsr_ext;
6466 
6467 			if (&plat_log_fruid_error2)
6468 				plat_log_fruid_error2(msg_type, unum, aflt,
6469 				    &plat_ecc_ch_flt);
6470 		}
6471 	}
6472 }
6473 
6474 void
6475 cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
6476 {
6477 	int status;
6478 	ddi_fm_error_t de;
6479 
6480 	bzero(&de, sizeof (ddi_fm_error_t));
6481 
6482 	de.fme_version = DDI_FME_VERSION;
6483 	de.fme_ena = fm_ena_generate_cpu(aflt->flt_id, aflt->flt_inst,
6484 	    FM_ENA_FMT1);
6485 	de.fme_flag = expected;
6486 	de.fme_bus_specific = (void *)aflt->flt_addr;
6487 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
6488 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL))
6489 		aflt->flt_panic = 1;
6490 }
6491 
6492 void
6493 cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz,
6494     errorq_t *eqp, uint_t flag)
6495 {
6496 	struct async_flt *aflt = (struct async_flt *)payload;
6497 
6498 	aflt->flt_erpt_class = error_class;
6499 	errorq_dispatch(eqp, payload, payload_sz, flag);
6500 }
6501 
6502 /*
6503  * This routine may be called by the IO module, but does not do
6504  * anything in this cpu module. The SERD algorithm is handled by
6505  * cpumem-diagnosis engine instead.
6506  */
6507 /*ARGSUSED*/
6508 void
6509 cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum)
6510 {}
6511 
6512 void
6513 adjust_hw_copy_limits(int ecache_size)
6514 {
6515 	/*
6516 	 * Set hw copy limits.
6517 	 *
6518 	 * /etc/system will be parsed later and can override one or more
6519 	 * of these settings.
6520 	 *
6521 	 * At this time, ecache size seems only mildly relevant.
6522 	 * We seem to run into issues with the d-cache and stalls
6523 	 * we see on misses.
6524 	 *
6525 	 * Cycle measurement indicates that 2 byte aligned copies fare
6526 	 * little better than doing things with VIS at around 512 bytes.
6527 	 * 4 byte aligned shows promise until around 1024 bytes. 8 Byte
6528 	 * aligned is faster whenever the source and destination data
6529 	 * in cache and the total size is less than 2 Kbytes.  The 2K
6530 	 * limit seems to be driven by the 2K write cache.
6531 	 * When more than 2K of copies are done in non-VIS mode, stores
6532 	 * backup in the write cache.  In VIS mode, the write cache is
6533 	 * bypassed, allowing faster cache-line writes aligned on cache
6534 	 * boundaries.
6535 	 *
6536 	 * In addition, in non-VIS mode, there is no prefetching, so
6537 	 * for larger copies, the advantage of prefetching to avoid even
6538 	 * occasional cache misses is enough to justify using the VIS code.
6539 	 *
6540 	 * During testing, it was discovered that netbench ran 3% slower
6541 	 * when hw_copy_limit_8 was 2K or larger.  Apparently for server
6542 	 * applications, data is only used once (copied to the output
6543 	 * buffer, then copied by the network device off the system).  Using
6544 	 * the VIS copy saves more L2 cache state.  Network copies are
6545 	 * around 1.3K to 1.5K in size for historical reasons.
6546 	 *
6547 	 * Therefore, a limit of 1K bytes will be used for the 8 byte
6548 	 * aligned copy even for large caches and 8 MB ecache.  The
6549 	 * infrastructure to allow different limits for different sized
6550 	 * caches is kept to allow further tuning in later releases.
6551 	 */
6552 
6553 	if (min_ecache_size == 0 && use_hw_bcopy) {
6554 		/*
6555 		 * First time through - should be before /etc/system
6556 		 * is read.
6557 		 * Could skip the checks for zero but this lets us
6558 		 * preserve any debugger rewrites.
6559 		 */
6560 		if (hw_copy_limit_1 == 0) {
6561 			hw_copy_limit_1 = VIS_COPY_THRESHOLD;
6562 			priv_hcl_1 = hw_copy_limit_1;
6563 		}
6564 		if (hw_copy_limit_2 == 0) {
6565 			hw_copy_limit_2 = 2 * VIS_COPY_THRESHOLD;
6566 			priv_hcl_2 = hw_copy_limit_2;
6567 		}
6568 		if (hw_copy_limit_4 == 0) {
6569 			hw_copy_limit_4 = 4 * VIS_COPY_THRESHOLD;
6570 			priv_hcl_4 = hw_copy_limit_4;
6571 		}
6572 		if (hw_copy_limit_8 == 0) {
6573 			hw_copy_limit_8 = 4 * VIS_COPY_THRESHOLD;
6574 			priv_hcl_8 = hw_copy_limit_8;
6575 		}
6576 		min_ecache_size = ecache_size;
6577 	} else {
6578 		/*
6579 		 * MP initialization. Called *after* /etc/system has
6580 		 * been parsed. One CPU has already been initialized.
6581 		 * Need to cater for /etc/system having scragged one
6582 		 * of our values.
6583 		 */
6584 		if (ecache_size == min_ecache_size) {
6585 			/*
6586 			 * Same size ecache. We do nothing unless we
6587 			 * have a pessimistic ecache setting. In that
6588 			 * case we become more optimistic (if the cache is
6589 			 * large enough).
6590 			 */
6591 			if (hw_copy_limit_8 == 4 * VIS_COPY_THRESHOLD) {
6592 				/*
6593 				 * Need to adjust hw_copy_limit* from our
6594 				 * pessimistic uniprocessor value to a more
6595 				 * optimistic UP value *iff* it hasn't been
6596 				 * reset.
6597 				 */
6598 				if ((ecache_size > 1048576) &&
6599 				    (priv_hcl_8 == hw_copy_limit_8)) {
6600 					if (ecache_size <= 2097152)
6601 						hw_copy_limit_8 = 4 *
6602 						    VIS_COPY_THRESHOLD;
6603 					else if (ecache_size <= 4194304)
6604 						hw_copy_limit_8 = 4 *
6605 						    VIS_COPY_THRESHOLD;
6606 					else
6607 						hw_copy_limit_8 = 4 *
6608 						    VIS_COPY_THRESHOLD;
6609 					priv_hcl_8 = hw_copy_limit_8;
6610 				}
6611 			}
6612 		} else if (ecache_size < min_ecache_size) {
6613 			/*
6614 			 * A different ecache size. Can this even happen?
6615 			 */
6616 			if (priv_hcl_8 == hw_copy_limit_8) {
6617 				/*
6618 				 * The previous value that we set
6619 				 * is unchanged (i.e., it hasn't been
6620 				 * scragged by /etc/system). Rewrite it.
6621 				 */
6622 				if (ecache_size <= 1048576)
6623 					hw_copy_limit_8 = 8 *
6624 					    VIS_COPY_THRESHOLD;
6625 				else if (ecache_size <= 2097152)
6626 					hw_copy_limit_8 = 8 *
6627 					    VIS_COPY_THRESHOLD;
6628 				else if (ecache_size <= 4194304)
6629 					hw_copy_limit_8 = 8 *
6630 					    VIS_COPY_THRESHOLD;
6631 				else
6632 					hw_copy_limit_8 = 10 *
6633 					    VIS_COPY_THRESHOLD;
6634 				priv_hcl_8 = hw_copy_limit_8;
6635 				min_ecache_size = ecache_size;
6636 			}
6637 		}
6638 	}
6639 }
6640 
6641 /*
6642  * Called from illegal instruction trap handler to see if we can attribute
6643  * the trap to a fpras check.
6644  */
6645 int
6646 fpras_chktrap(struct regs *rp)
6647 {
6648 	int op;
6649 	struct fpras_chkfngrp *cgp;
6650 	uintptr_t tpc = (uintptr_t)rp->r_pc;
6651 
6652 	if (fpras_chkfngrps == NULL)
6653 		return (0);
6654 
6655 	cgp = &fpras_chkfngrps[CPU->cpu_id];
6656 	for (op = 0; op < FPRAS_NCOPYOPS; ++op) {
6657 		if (tpc >= (uintptr_t)&cgp->fpras_fn[op].fpras_blk0 &&
6658 		    tpc < (uintptr_t)&cgp->fpras_fn[op].fpras_chkresult)
6659 			break;
6660 	}
6661 	if (op == FPRAS_NCOPYOPS)
6662 		return (0);
6663 
6664 	/*
6665 	 * This is an fpRAS failure caught through an illegal
6666 	 * instruction - trampoline.
6667 	 */
6668 	rp->r_pc = (uintptr_t)&cgp->fpras_fn[op].fpras_trampoline;
6669 	rp->r_npc = rp->r_pc + 4;
6670 	return (1);
6671 }
6672 
6673 /*
6674  * fpras_failure is called when a fpras check detects a bad calculation
6675  * result or an illegal instruction trap is attributed to an fpras
6676  * check.  In all cases we are still bound to CPU.
6677  */
6678 int
6679 fpras_failure(int op, int how)
6680 {
6681 	int use_hw_bcopy_orig, use_hw_bzero_orig;
6682 	uint_t hcl1_orig, hcl2_orig, hcl4_orig, hcl8_orig;
6683 	ch_async_flt_t ch_flt;
6684 	struct async_flt *aflt = (struct async_flt *)&ch_flt;
6685 	struct fpras_chkfn *sfp, *cfp;
6686 	uint32_t *sip, *cip;
6687 	int i;
6688 
6689 	/*
6690 	 * We're running on a sick CPU.  Avoid further FPU use at least for
6691 	 * the time in which we dispatch an ereport and (if applicable) panic.
6692 	 */
6693 	use_hw_bcopy_orig = use_hw_bcopy;
6694 	use_hw_bzero_orig = use_hw_bzero;
6695 	hcl1_orig = hw_copy_limit_1;
6696 	hcl2_orig = hw_copy_limit_2;
6697 	hcl4_orig = hw_copy_limit_4;
6698 	hcl8_orig = hw_copy_limit_8;
6699 	use_hw_bcopy = use_hw_bzero = 0;
6700 	hw_copy_limit_1 = hw_copy_limit_2 = hw_copy_limit_4 =
6701 	    hw_copy_limit_8 = 0;
6702 
6703 	bzero(&ch_flt, sizeof (ch_async_flt_t));
6704 	aflt->flt_id = gethrtime_waitfree();
6705 	aflt->flt_class = CPU_FAULT;
6706 	aflt->flt_inst = CPU->cpu_id;
6707 	aflt->flt_status = (how << 8) | op;
6708 	aflt->flt_payload = FM_EREPORT_PAYLOAD_FPU_HWCOPY;
6709 	ch_flt.flt_type = CPU_FPUERR;
6710 
6711 	/*
6712 	 * We must panic if the copy operation had no lofault protection -
6713 	 * ie, don't panic for copyin, copyout, kcopy and bcopy called
6714 	 * under on_fault and do panic for unprotected bcopy and hwblkpagecopy.
6715 	 */
6716 	aflt->flt_panic = (curthread->t_lofault == NULL);
6717 
6718 	/*
6719 	 * XOR the source instruction block with the copied instruction
6720 	 * block - this will show us which bit(s) are corrupted.
6721 	 */
6722 	sfp = (struct fpras_chkfn *)fpras_chkfn_type1;
6723 	cfp = &fpras_chkfngrps[CPU->cpu_id].fpras_fn[op];
6724 	if (op == FPRAS_BCOPY || op == FPRAS_COPYOUT) {
6725 		sip = &sfp->fpras_blk0[0];
6726 		cip = &cfp->fpras_blk0[0];
6727 	} else {
6728 		sip = &sfp->fpras_blk1[0];
6729 		cip = &cfp->fpras_blk1[0];
6730 	}
6731 	for (i = 0; i < 16; ++i, ++sip, ++cip)
6732 		ch_flt.flt_fpdata[i] = *sip ^ *cip;
6733 
6734 	cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_FPU_HWCOPY, (void *)&ch_flt,
6735 	    sizeof (ch_async_flt_t), ue_queue, aflt->flt_panic);
6736 
6737 	if (aflt->flt_panic)
6738 		fm_panic("FPU failure on CPU %d", CPU->cpu_id);
6739 
6740 	/*
6741 	 * We get here for copyin/copyout and kcopy or bcopy where the
6742 	 * caller has used on_fault.  We will flag the error so that
6743 	 * the process may be killed  The trap_async_hwerr mechanism will
6744 	 * take appropriate further action (such as a reboot, contract
6745 	 * notification etc).  Since we may be continuing we will
6746 	 * restore the global hardware copy acceleration switches.
6747 	 *
6748 	 * When we return from this function to the copy function we want to
6749 	 * avoid potentially bad data being used, ie we want the affected
6750 	 * copy function to return an error.  The caller should therefore
6751 	 * invoke its lofault handler (which always exists for these functions)
6752 	 * which will return the appropriate error.
6753 	 */
6754 	ttolwp(curthread)->lwp_pcb.pcb_flags |= ASYNC_HWERR;
6755 	aston(curthread);
6756 
6757 	use_hw_bcopy = use_hw_bcopy_orig;
6758 	use_hw_bzero = use_hw_bzero_orig;
6759 	hw_copy_limit_1 = hcl1_orig;
6760 	hw_copy_limit_2 = hcl2_orig;
6761 	hw_copy_limit_4 = hcl4_orig;
6762 	hw_copy_limit_8 = hcl8_orig;
6763 
6764 	return (1);
6765 }
6766 
6767 #define	VIS_BLOCKSIZE		64
6768 
6769 int
6770 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
6771 {
6772 	int ret, watched;
6773 
6774 	watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
6775 	ret = dtrace_blksuword32(addr, data, 0);
6776 	if (watched)
6777 		watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
6778 
6779 	return (ret);
6780 }
6781 
6782 /*
6783  * Called when a cpu enters the CPU_FAULTED state (by the cpu placing the
6784  * faulted cpu into that state).  Cross-trap to the faulted cpu to clear
6785  * CEEN from the EER to disable traps for further disrupting error types
6786  * on that cpu.  We could cross-call instead, but that has a larger
6787  * instruction and data footprint than cross-trapping, and the cpu is known
6788  * to be faulted.
6789  */
6790 
6791 void
6792 cpu_faulted_enter(struct cpu *cp)
6793 {
6794 	xt_one(cp->cpu_id, set_error_enable_tl1, EN_REG_CEEN, EER_SET_CLRBITS);
6795 }
6796 
6797 /*
6798  * Called when a cpu leaves the CPU_FAULTED state to return to one of
6799  * offline, spare, or online (by the cpu requesting this state change).
6800  * First we cross-call to clear the AFSR (and AFSR_EXT on Panther) of
6801  * disrupting error bits that have accumulated without trapping, then
6802  * we cross-trap to re-enable CEEN controlled traps.
6803  */
6804 void
6805 cpu_faulted_exit(struct cpu *cp)
6806 {
6807 	ch_cpu_errors_t cpu_error_regs;
6808 
6809 	cpu_error_regs.afsr = C_AFSR_CECC_ERRS;
6810 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation))
6811 		cpu_error_regs.afsr_ext &= C_AFSR_EXT_CECC_ERRS;
6812 	xc_one(cp->cpu_id, (xcfunc_t *)set_cpu_error_state,
6813 	    (uint64_t)&cpu_error_regs, 0);
6814 
6815 	xt_one(cp->cpu_id, set_error_enable_tl1, EN_REG_CEEN, EER_SET_SETBITS);
6816 }
6817 
6818 /*
6819  * Return 1 if the errors in ch_flt's AFSR are secondary errors caused by
6820  * the errors in the original AFSR, 0 otherwise.
6821  *
6822  * For all procs if the initial error was a BERR or TO, then it is possible
6823  * that we may have caused a secondary BERR or TO in the process of logging the
6824  * inital error via cpu_run_bus_error_handlers().  If this is the case then
6825  * if the request was protected then a panic is still not necessary, if not
6826  * protected then aft_panic is already set - so either way there's no need
6827  * to set aft_panic for the secondary error.
6828  *
6829  * For Cheetah and Jalapeno, if the original error was a UE which occurred on
6830  * a store merge, then the error handling code will call cpu_deferred_error().
6831  * When clear_errors() is called, it will determine that secondary errors have
6832  * occurred - in particular, the store merge also caused a EDU and WDU that
6833  * weren't discovered until this point.
6834  *
6835  * We do three checks to verify that we are in this case.  If we pass all three
6836  * checks, we return 1 to indicate that we should not panic.  If any unexpected
6837  * errors occur, we return 0.
6838  *
6839  * For Cheetah+ and derivative procs, the store merge causes a DUE, which is
6840  * handled in cpu_disrupting_errors().  Since this function is not even called
6841  * in the case we are interested in, we just return 0 for these processors.
6842  */
6843 /*ARGSUSED*/
6844 static int
6845 cpu_check_secondary_errors(ch_async_flt_t *ch_flt, uint64_t t_afsr_errs,
6846     uint64_t t_afar)
6847 {
6848 #if defined(CHEETAH_PLUS)
6849 #else	/* CHEETAH_PLUS */
6850 	struct async_flt *aflt = (struct async_flt *)ch_flt;
6851 #endif	/* CHEETAH_PLUS */
6852 
6853 	/*
6854 	 * Was the original error a BERR or TO and only a BERR or TO
6855 	 * (multiple errors are also OK)
6856 	 */
6857 	if ((t_afsr_errs & ~(C_AFSR_BERR | C_AFSR_TO | C_AFSR_ME)) == 0) {
6858 		/*
6859 		 * Is the new error a BERR or TO and only a BERR or TO
6860 		 * (multiple errors are also OK)
6861 		 */
6862 		if ((ch_flt->afsr_errs &
6863 		    ~(C_AFSR_BERR | C_AFSR_TO | C_AFSR_ME)) == 0)
6864 			return (1);
6865 	}
6866 
6867 #if defined(CHEETAH_PLUS)
6868 	return (0);
6869 #else	/* CHEETAH_PLUS */
6870 	/*
6871 	 * Now look for secondary effects of a UE on cheetah/jalapeno
6872 	 *
6873 	 * Check the original error was a UE, and only a UE.  Note that
6874 	 * the ME bit will cause us to fail this check.
6875 	 */
6876 	if (t_afsr_errs != C_AFSR_UE)
6877 		return (0);
6878 
6879 	/*
6880 	 * Check the secondary errors were exclusively an EDU and/or WDU.
6881 	 */
6882 	if ((ch_flt->afsr_errs & ~(C_AFSR_EDU|C_AFSR_WDU)) != 0)
6883 		return (0);
6884 
6885 	/*
6886 	 * Check the AFAR of the original error and secondary errors
6887 	 * match to the 64-byte boundary
6888 	 */
6889 	if (P2ALIGN(aflt->flt_addr, 64) != P2ALIGN(t_afar, 64))
6890 		return (0);
6891 
6892 	/*
6893 	 * We've passed all the checks, so it's a secondary error!
6894 	 */
6895 	return (1);
6896 #endif	/* CHEETAH_PLUS */
6897 }
6898 
6899 /*
6900  * Translate the flt_bit or flt_type into an error type.  First, flt_bit
6901  * is checked for any valid errors.  If found, the error type is
6902  * returned. If not found, the flt_type is checked for L1$ parity errors.
6903  */
6904 /*ARGSUSED*/
6905 static uint8_t
6906 cpu_flt_bit_to_plat_error(struct async_flt *aflt)
6907 {
6908 #if defined(JALAPENO)
6909 	/*
6910 	 * Currently, logging errors to the SC is not supported on Jalapeno
6911 	 */
6912 	return (PLAT_ECC_ERROR2_NONE);
6913 #else
6914 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
6915 
6916 	switch (ch_flt->flt_bit) {
6917 	case C_AFSR_CE:
6918 		return (PLAT_ECC_ERROR2_CE);
6919 	case C_AFSR_UCC:
6920 	case C_AFSR_EDC:
6921 	case C_AFSR_WDC:
6922 	case C_AFSR_CPC:
6923 		return (PLAT_ECC_ERROR2_L2_CE);
6924 	case C_AFSR_EMC:
6925 		return (PLAT_ECC_ERROR2_EMC);
6926 	case C_AFSR_IVC:
6927 		return (PLAT_ECC_ERROR2_IVC);
6928 	case C_AFSR_UE:
6929 		return (PLAT_ECC_ERROR2_UE);
6930 	case C_AFSR_UCU:
6931 	case C_AFSR_EDU:
6932 	case C_AFSR_WDU:
6933 	case C_AFSR_CPU:
6934 		return (PLAT_ECC_ERROR2_L2_UE);
6935 	case C_AFSR_IVU:
6936 		return (PLAT_ECC_ERROR2_IVU);
6937 	case C_AFSR_TO:
6938 		return (PLAT_ECC_ERROR2_TO);
6939 	case C_AFSR_BERR:
6940 		return (PLAT_ECC_ERROR2_BERR);
6941 #if defined(CHEETAH_PLUS)
6942 	case C_AFSR_L3_EDC:
6943 	case C_AFSR_L3_UCC:
6944 	case C_AFSR_L3_CPC:
6945 	case C_AFSR_L3_WDC:
6946 		return (PLAT_ECC_ERROR2_L3_CE);
6947 	case C_AFSR_IMC:
6948 		return (PLAT_ECC_ERROR2_IMC);
6949 	case C_AFSR_TSCE:
6950 		return (PLAT_ECC_ERROR2_L2_TSCE);
6951 	case C_AFSR_THCE:
6952 		return (PLAT_ECC_ERROR2_L2_THCE);
6953 	case C_AFSR_L3_MECC:
6954 		return (PLAT_ECC_ERROR2_L3_MECC);
6955 	case C_AFSR_L3_THCE:
6956 		return (PLAT_ECC_ERROR2_L3_THCE);
6957 	case C_AFSR_L3_CPU:
6958 	case C_AFSR_L3_EDU:
6959 	case C_AFSR_L3_UCU:
6960 	case C_AFSR_L3_WDU:
6961 		return (PLAT_ECC_ERROR2_L3_UE);
6962 	case C_AFSR_DUE:
6963 		return (PLAT_ECC_ERROR2_DUE);
6964 	case C_AFSR_DTO:
6965 		return (PLAT_ECC_ERROR2_DTO);
6966 	case C_AFSR_DBERR:
6967 		return (PLAT_ECC_ERROR2_DBERR);
6968 #endif	/* CHEETAH_PLUS */
6969 	default:
6970 		switch (ch_flt->flt_type) {
6971 #if defined(CPU_IMP_L1_CACHE_PARITY)
6972 		case CPU_IC_PARITY:
6973 			return (PLAT_ECC_ERROR2_IPE);
6974 		case CPU_DC_PARITY:
6975 			if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
6976 				if (ch_flt->parity_data.dpe.cpl_cache ==
6977 				    CPU_PC_PARITY) {
6978 					return (PLAT_ECC_ERROR2_PCACHE);
6979 				}
6980 			}
6981 			return (PLAT_ECC_ERROR2_DPE);
6982 #endif /* CPU_IMP_L1_CACHE_PARITY */
6983 		case CPU_ITLB_PARITY:
6984 			return (PLAT_ECC_ERROR2_ITLB);
6985 		case CPU_DTLB_PARITY:
6986 			return (PLAT_ECC_ERROR2_DTLB);
6987 		default:
6988 			return (PLAT_ECC_ERROR2_NONE);
6989 		}
6990 	}
6991 #endif	/* JALAPENO */
6992 }
6993