xref: /titanic_41/usr/src/uts/sun4u/cpu/us3_common.c (revision 0a44ef6d9afbfe052a7e975f55ea0d2954b62a82)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/ddi.h>
31 #include <sys/sysmacros.h>
32 #include <sys/archsystm.h>
33 #include <sys/vmsystm.h>
34 #include <sys/machparam.h>
35 #include <sys/machsystm.h>
36 #include <sys/machthread.h>
37 #include <sys/cpu.h>
38 #include <sys/cmp.h>
39 #include <sys/elf_SPARC.h>
40 #include <vm/vm_dep.h>
41 #include <vm/hat_sfmmu.h>
42 #include <vm/seg_kpm.h>
43 #include <sys/cpuvar.h>
44 #include <sys/cheetahregs.h>
45 #include <sys/us3_module.h>
46 #include <sys/async.h>
47 #include <sys/cmn_err.h>
48 #include <sys/debug.h>
49 #include <sys/dditypes.h>
50 #include <sys/prom_debug.h>
51 #include <sys/prom_plat.h>
52 #include <sys/cpu_module.h>
53 #include <sys/sysmacros.h>
54 #include <sys/intreg.h>
55 #include <sys/clock.h>
56 #include <sys/platform_module.h>
57 #include <sys/machtrap.h>
58 #include <sys/ontrap.h>
59 #include <sys/panic.h>
60 #include <sys/memlist.h>
61 #include <sys/bootconf.h>
62 #include <sys/ivintr.h>
63 #include <sys/atomic.h>
64 #include <sys/taskq.h>
65 #include <sys/note.h>
66 #include <sys/ndifm.h>
67 #include <sys/ddifm.h>
68 #include <sys/fm/protocol.h>
69 #include <sys/fm/util.h>
70 #include <sys/fm/cpu/UltraSPARC-III.h>
71 #include <sys/fpras_impl.h>
72 #include <sys/dtrace.h>
73 #include <sys/watchpoint.h>
74 #include <sys/plat_ecc_unum.h>
75 #include <sys/cyclic.h>
76 #include <sys/errorq.h>
77 #include <sys/errclassify.h>
78 
79 #ifdef	CHEETAHPLUS_ERRATUM_25
80 #include <sys/xc_impl.h>
81 #endif	/* CHEETAHPLUS_ERRATUM_25 */
82 
83 /*
84  * Note that 'Cheetah PRM' refers to:
85  *   SPARC V9 JPS1 Implementation Supplement: Sun UltraSPARC-III
86  */
87 
88 /*
89  * Per CPU pointers to physical address of TL>0 logout data areas.
90  * These pointers have to be in the kernel nucleus to avoid MMU
91  * misses.
92  */
93 uint64_t ch_err_tl1_paddrs[NCPU];
94 
95 /*
96  * One statically allocated structure to use during startup/DR
97  * to prevent unnecessary panics.
98  */
99 ch_err_tl1_data_t ch_err_tl1_data;
100 
101 /*
102  * Per CPU pending error at TL>0, used by level15 softint handler
103  */
104 uchar_t ch_err_tl1_pending[NCPU];
105 
106 /*
107  * For deferred CE re-enable after trap.
108  */
109 taskq_t		*ch_check_ce_tq;
110 
111 /*
112  * Internal functions.
113  */
114 static int cpu_async_log_err(void *flt, errorq_elem_t *eqep);
115 static void cpu_log_diag_info(ch_async_flt_t *ch_flt);
116 static void cpu_queue_one_event(ch_async_flt_t *ch_flt, char *reason,
117     ecc_type_to_info_t *eccp, ch_diag_data_t *cdp);
118 static int cpu_flt_in_memory_one_event(ch_async_flt_t *ch_flt,
119     uint64_t t_afsr_bit);
120 static int clear_ecc(struct async_flt *ecc);
121 #if defined(CPU_IMP_ECACHE_ASSOC)
122 static int cpu_ecache_line_valid(ch_async_flt_t *ch_flt);
123 #endif
124 static int cpu_ecache_set_size(struct cpu *cp);
125 static int cpu_ectag_line_invalid(int cachesize, uint64_t tag);
126 static int cpu_ectag_pa_to_subblk(int cachesize, uint64_t subaddr);
127 static uint64_t cpu_ectag_to_pa(int setsize, uint64_t tag);
128 static int cpu_ectag_pa_to_subblk_state(int cachesize,
129 				uint64_t subaddr, uint64_t tag);
130 static void cpu_flush_ecache_line(ch_async_flt_t *ch_flt);
131 static int afsr_to_afar_status(uint64_t afsr, uint64_t afsr_bit);
132 static int afsr_to_esynd_status(uint64_t afsr, uint64_t afsr_bit);
133 static int afsr_to_msynd_status(uint64_t afsr, uint64_t afsr_bit);
134 static int afsr_to_synd_status(uint_t cpuid, uint64_t afsr, uint64_t afsr_bit);
135 static int synd_to_synd_code(int synd_status, ushort_t synd, uint64_t afsr_bit);
136 static int cpu_get_mem_unum_synd(int synd_code, struct async_flt *, char *buf);
137 static void cpu_uninit_ecache_scrub_dr(struct cpu *cp);
138 static void cpu_scrubphys(struct async_flt *aflt);
139 static void cpu_payload_add_aflt(struct async_flt *, nvlist_t *, nvlist_t *,
140     int *, int *);
141 static void cpu_payload_add_ecache(struct async_flt *, nvlist_t *);
142 static void cpu_ereport_init(struct async_flt *aflt);
143 static int cpu_check_secondary_errors(ch_async_flt_t *, uint64_t, uint64_t);
144 static uint8_t cpu_flt_bit_to_plat_error(struct async_flt *aflt);
145 static void cpu_log_fast_ecc_error(caddr_t tpc, int priv, int tl, uint64_t ceen,
146     uint64_t nceen, ch_cpu_logout_t *clop);
147 static int cpu_ce_delayed_ec_logout(uint64_t);
148 static int cpu_matching_ecache_line(uint64_t, void *, int, int *);
149 static int cpu_error_is_ecache_data(int, uint64_t);
150 static void cpu_fmri_cpu_set(nvlist_t *, int);
151 static int cpu_error_to_resource_type(struct async_flt *aflt);
152 
153 #ifdef	CHEETAHPLUS_ERRATUM_25
154 static int mondo_recover_proc(uint16_t, int);
155 static void cheetah_nudge_init(void);
156 static void cheetah_nudge_onln(void *arg, cpu_t *cpu, cyc_handler_t *hdlr,
157     cyc_time_t *when);
158 static void cheetah_nudge_buddy(void);
159 #endif	/* CHEETAHPLUS_ERRATUM_25 */
160 
161 #if defined(CPU_IMP_L1_CACHE_PARITY)
162 static void cpu_dcache_parity_info(ch_async_flt_t *ch_flt);
163 static void cpu_dcache_parity_check(ch_async_flt_t *ch_flt, int index);
164 static void cpu_record_dc_data_parity(ch_async_flt_t *ch_flt,
165     ch_dc_data_t *dest_dcp, ch_dc_data_t *src_dcp, int way, int word);
166 static void cpu_icache_parity_info(ch_async_flt_t *ch_flt);
167 static void cpu_icache_parity_check(ch_async_flt_t *ch_flt, int index);
168 static void cpu_pcache_parity_info(ch_async_flt_t *ch_flt);
169 static void cpu_pcache_parity_check(ch_async_flt_t *ch_flt, int index);
170 static void cpu_payload_add_dcache(struct async_flt *, nvlist_t *);
171 static void cpu_payload_add_icache(struct async_flt *, nvlist_t *);
172 #endif	/* CPU_IMP_L1_CACHE_PARITY */
173 
174 int (*p2get_mem_info)(int synd_code, uint64_t paddr,
175     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
176     int *segsp, int *banksp, int *mcidp);
177 
178 /*
179  * This table is used to determine which bit(s) is(are) bad when an ECC
180  * error occurs.  The array is indexed by an 9-bit syndrome.  The entries
181  * of this array have the following semantics:
182  *
183  *      00-127  The number of the bad bit, when only one bit is bad.
184  *      128     ECC bit C0 is bad.
185  *      129     ECC bit C1 is bad.
186  *      130     ECC bit C2 is bad.
187  *      131     ECC bit C3 is bad.
188  *      132     ECC bit C4 is bad.
189  *      133     ECC bit C5 is bad.
190  *      134     ECC bit C6 is bad.
191  *      135     ECC bit C7 is bad.
192  *      136     ECC bit C8 is bad.
193  *	137-143 reserved for Mtag Data and ECC.
194  *      144(M2) Two bits are bad within a nibble.
195  *      145(M3) Three bits are bad within a nibble.
196  *      146(M3) Four bits are bad within a nibble.
197  *      147(M)  Multiple bits (5 or more) are bad.
198  *      148     NO bits are bad.
199  * Based on "Cheetah Programmer's Reference Manual" rev 1.1, Tables 11-4,11-5.
200  */
201 
202 #define	C0	128
203 #define	C1	129
204 #define	C2	130
205 #define	C3	131
206 #define	C4	132
207 #define	C5	133
208 #define	C6	134
209 #define	C7	135
210 #define	C8	136
211 #define	MT0	137	/* Mtag Data bit 0 */
212 #define	MT1	138
213 #define	MT2	139
214 #define	MTC0	140	/* Mtag Check bit 0 */
215 #define	MTC1	141
216 #define	MTC2	142
217 #define	MTC3	143
218 #define	M2	144
219 #define	M3	145
220 #define	M4	146
221 #define	M	147
222 #define	NA	148
223 #if defined(JALAPENO) || defined(SERRANO)
224 #define	S003	149	/* Syndrome 0x003 => likely from CPU/EDU:ST/FRU/BP */
225 #define	S003MEM	150	/* Syndrome 0x003 => likely from WDU/WBP */
226 #define	SLAST	S003MEM	/* last special syndrome */
227 #else /* JALAPENO || SERRANO */
228 #define	S003	149	/* Syndrome 0x003 => likely from EDU:ST */
229 #define	S071	150	/* Syndrome 0x071 => likely from WDU/CPU */
230 #define	S11C	151	/* Syndrome 0x11c => likely from BERR/DBERR */
231 #define	SLAST	S11C	/* last special syndrome */
232 #endif /* JALAPENO || SERRANO */
233 #if defined(JALAPENO) || defined(SERRANO)
234 #define	BPAR0	152	/* syndrom 152 through 167 for bus parity */
235 #define	BPAR15	167
236 #endif	/* JALAPENO || SERRANO */
237 
238 static uint8_t ecc_syndrome_tab[] =
239 {
240 NA,  C0,  C1, S003, C2,  M2,  M3,  47,  C3,  M2,  M2,  53,  M2,  41,  29,   M,
241 C4,   M,   M,  50,  M2,  38,  25,  M2,  M2,  33,  24,  M2,  11,   M,  M2,  16,
242 C5,   M,   M,  46,  M2,  37,  19,  M2,   M,  31,  32,   M,   7,  M2,  M2,  10,
243 M2,  40,  13,  M2,  59,   M,  M2,  66,   M,  M2,  M2,   0,  M2,  67,  71,   M,
244 C6,   M,   M,  43,   M,  36,  18,   M,  M2,  49,  15,   M,  63,  M2,  M2,   6,
245 M2,  44,  28,  M2,   M,  M2,  M2,  52,  68,  M2,  M2,  62,  M2,  M3,  M3,  M4,
246 M2,  26, 106,  M2,  64,   M,  M2,   2, 120,   M,  M2,  M3,   M,  M3,  M3,  M4,
247 #if defined(JALAPENO) || defined(SERRANO)
248 116, M2,  M2,  M3,  M2,  M3,   M,  M4,  M2,  58,  54,  M2,   M,  M4,  M4,  M3,
249 #else	/* JALAPENO || SERRANO */
250 116, S071, M2,  M3,  M2,  M3,   M,  M4,  M2,  58,  54,  M2,   M,  M4,  M4,  M3,
251 #endif	/* JALAPENO || SERRANO */
252 C7,  M2,   M,  42,   M,  35,  17,  M2,   M,  45,  14,  M2,  21,  M2,  M2,   5,
253 M,   27,   M,   M,  99,   M,   M,   3, 114,  M2,  M2,  20,  M2,  M3,  M3,   M,
254 M2,  23, 113,  M2, 112,  M2,   M,  51,  95,   M,  M2,  M3,  M2,  M3,  M3,  M2,
255 103,  M,  M2,  M3,  M2,  M3,  M3,  M4,  M2,  48,   M,   M,  73,  M2,   M,  M3,
256 M2,  22, 110,  M2, 109,  M2,   M,   9, 108,  M2,   M,  M3,  M2,  M3,  M3,   M,
257 102, M2,   M,   M,  M2,  M3,  M3,   M,  M2,  M3,  M3,  M2,   M,  M4,   M,  M3,
258 98,   M,  M2,  M3,  M2,   M,  M3,  M4,  M2,  M3,  M3,  M4,  M3,   M,   M,   M,
259 M2,  M3,  M3,   M,  M3,   M,   M,   M,  56,  M4,   M,  M3,  M4,   M,   M,   M,
260 C8,   M,  M2,  39,   M,  34, 105,  M2,   M,  30, 104,   M, 101,   M,   M,   4,
261 #if defined(JALAPENO) || defined(SERRANO)
262 M,    M, 100,   M,  83,   M,  M2,  12,  87,   M,   M,  57,  M2,   M,  M3,   M,
263 #else	/* JALAPENO || SERRANO */
264 M,    M, 100,   M,  83,   M,  M2,  12,  87,   M,   M,  57, S11C,  M,  M3,   M,
265 #endif	/* JALAPENO || SERRANO */
266 M2,  97,  82,  M2,  78,  M2,  M2,   1,  96,   M,   M,   M,   M,   M,  M3,  M2,
267 94,   M,  M2,  M3,  M2,   M,  M3,   M,  M2,   M,  79,   M,  69,   M,  M4,   M,
268 M2,  93,  92,   M,  91,   M,  M2,   8,  90,  M2,  M2,   M,   M,   M,   M,  M4,
269 89,   M,   M,  M3,  M2,  M3,  M3,   M,   M,   M,  M3,  M2,  M3,  M2,   M,  M3,
270 86,   M,  M2,  M3,  M2,   M,  M3,   M,  M2,   M,  M3,   M,  M3,   M,   M,  M3,
271 M,    M,  M3,  M2,  M3,  M2,  M4,   M,  60,   M,  M2,  M3,  M4,   M,   M,  M2,
272 M2,  88,  85,  M2,  84,   M,  M2,  55,  81,  M2,  M2,  M3,  M2,  M3,  M3,  M4,
273 77,   M,   M,   M,  M2,  M3,   M,   M,  M2,  M3,  M3,  M4,  M3,  M2,   M,   M,
274 74,   M,  M2,  M3,   M,   M,  M3,   M,   M,   M,  M3,   M,  M3,   M,  M4,  M3,
275 M2,  70, 107,  M4,  65,  M2,  M2,   M, 127,   M,   M,   M,  M2,  M3,  M3,   M,
276 80,  M2,  M2,  72,   M, 119, 118,   M,  M2, 126,  76,   M, 125,   M,  M4,  M3,
277 M2, 115, 124,   M,  75,   M,   M,  M3,  61,   M,  M4,   M,  M4,   M,   M,   M,
278 M,  123, 122,  M4, 121,  M4,   M,  M3, 117,  M2,  M2,  M3,  M4,  M3,   M,   M,
279 111,  M,   M,   M,  M4,  M3,  M3,   M,   M,   M,  M3,   M,  M3,  M2,   M,   M
280 };
281 
282 #define	ESYND_TBL_SIZE	(sizeof (ecc_syndrome_tab) / sizeof (uint8_t))
283 
284 #if !(defined(JALAPENO) || defined(SERRANO))
285 /*
286  * This table is used to determine which bit(s) is(are) bad when a Mtag
287  * error occurs.  The array is indexed by an 4-bit ECC syndrome. The entries
288  * of this array have the following semantics:
289  *
290  *      -1	Invalid mtag syndrome.
291  *      137     Mtag Data 0 is bad.
292  *      138     Mtag Data 1 is bad.
293  *      139     Mtag Data 2 is bad.
294  *      140     Mtag ECC 0 is bad.
295  *      141     Mtag ECC 1 is bad.
296  *      142     Mtag ECC 2 is bad.
297  *      143     Mtag ECC 3 is bad.
298  * Based on "Cheetah Programmer's Reference Manual" rev 1.1, Tables 11-6.
299  */
300 short mtag_syndrome_tab[] =
301 {
302 NA, MTC0, MTC1, M2, MTC2, M2, M2, MT0, MTC3, M2, M2,  MT1, M2, MT2, M2, M2
303 };
304 
305 #define	MSYND_TBL_SIZE	(sizeof (mtag_syndrome_tab) / sizeof (short))
306 
307 #else /* !(JALAPENO || SERRANO) */
308 
309 #define	BSYND_TBL_SIZE	16
310 
311 #endif /* !(JALAPENO || SERRANO) */
312 
313 /*
314  * Types returned from cpu_error_to_resource_type()
315  */
316 #define	ERRTYPE_UNKNOWN		0
317 #define	ERRTYPE_CPU		1
318 #define	ERRTYPE_MEMORY		2
319 #define	ERRTYPE_ECACHE_DATA	3
320 
321 /*
322  * CE initial classification and subsequent action lookup table
323  */
324 static ce_dispact_t ce_disp_table[CE_INITDISPTBL_SIZE];
325 static int ce_disp_inited;
326 
327 /*
328  * Set to disable leaky and partner check for memory correctables
329  */
330 int ce_xdiag_off;
331 
332 /*
333  * The following are not incremented atomically so are indicative only
334  */
335 static int ce_xdiag_drops;
336 static int ce_xdiag_lkydrops;
337 static int ce_xdiag_ptnrdrops;
338 static int ce_xdiag_bad;
339 
340 /*
341  * CE leaky check callback structure
342  */
343 typedef struct {
344 	struct async_flt *lkycb_aflt;
345 	errorq_t *lkycb_eqp;
346 	errorq_elem_t *lkycb_eqep;
347 } ce_lkychk_cb_t;
348 
349 /*
350  * defines for various ecache_flush_flag's
351  */
352 #define	ECACHE_FLUSH_LINE	1
353 #define	ECACHE_FLUSH_ALL	2
354 
355 /*
356  * STICK sync
357  */
358 #define	STICK_ITERATION 10
359 #define	MAX_TSKEW	1
360 #define	EV_A_START	0
361 #define	EV_A_END	1
362 #define	EV_B_START	2
363 #define	EV_B_END	3
364 #define	EVENTS		4
365 
366 static int64_t stick_iter = STICK_ITERATION;
367 static int64_t stick_tsk = MAX_TSKEW;
368 
369 typedef enum {
370 	EVENT_NULL = 0,
371 	SLAVE_START,
372 	SLAVE_CONT,
373 	MASTER_START
374 } event_cmd_t;
375 
376 static volatile event_cmd_t stick_sync_cmd = EVENT_NULL;
377 static int64_t timestamp[EVENTS];
378 static volatile int slave_done;
379 
380 #ifdef DEBUG
381 #define	DSYNC_ATTEMPTS 64
382 typedef struct {
383 	int64_t	skew_val[DSYNC_ATTEMPTS];
384 } ss_t;
385 
386 ss_t stick_sync_stats[NCPU];
387 #endif /* DEBUG */
388 
389 uint_t cpu_impl_dual_pgsz = 0;
390 #if defined(CPU_IMP_DUAL_PAGESIZE)
391 uint_t disable_dual_pgsz = 0;
392 #endif	/* CPU_IMP_DUAL_PAGESIZE */
393 
394 /*
395  * Save the cache bootup state for use when internal
396  * caches are to be re-enabled after an error occurs.
397  */
398 uint64_t cache_boot_state;
399 
400 /*
401  * PA[22:0] represent Displacement in Safari configuration space.
402  */
403 uint_t	root_phys_addr_lo_mask = 0x7fffffu;
404 
405 bus_config_eclk_t bus_config_eclk[] = {
406 #if defined(JALAPENO) || defined(SERRANO)
407 	{JBUS_CONFIG_ECLK_1_DIV, JBUS_CONFIG_ECLK_1},
408 	{JBUS_CONFIG_ECLK_2_DIV, JBUS_CONFIG_ECLK_2},
409 	{JBUS_CONFIG_ECLK_32_DIV, JBUS_CONFIG_ECLK_32},
410 #else /* JALAPENO || SERRANO */
411 	{SAFARI_CONFIG_ECLK_1_DIV, SAFARI_CONFIG_ECLK_1},
412 	{SAFARI_CONFIG_ECLK_2_DIV, SAFARI_CONFIG_ECLK_2},
413 	{SAFARI_CONFIG_ECLK_32_DIV, SAFARI_CONFIG_ECLK_32},
414 #endif /* JALAPENO || SERRANO */
415 	{0, 0}
416 };
417 
418 /*
419  * Interval for deferred CEEN reenable
420  */
421 int cpu_ceen_delay_secs = CPU_CEEN_DELAY_SECS;
422 
423 /*
424  * set in /etc/system to control logging of user BERR/TO's
425  */
426 int cpu_berr_to_verbose = 0;
427 
428 /*
429  * set to 0 in /etc/system to defer CEEN reenable for all CEs
430  */
431 uint64_t cpu_ce_not_deferred = CPU_CE_NOT_DEFERRED;
432 uint64_t cpu_ce_not_deferred_ext = CPU_CE_NOT_DEFERRED_EXT;
433 
434 /*
435  * Set of all offline cpus
436  */
437 cpuset_t cpu_offline_set;
438 
439 static void cpu_delayed_check_ce_errors(void *);
440 static void cpu_check_ce_errors(void *);
441 void cpu_error_ecache_flush(ch_async_flt_t *);
442 static int cpu_error_ecache_flush_required(ch_async_flt_t *);
443 static void cpu_log_and_clear_ce(ch_async_flt_t *);
444 void cpu_ce_detected(ch_cpu_errors_t *, int);
445 
446 /*
447  * CE Leaky check timeout in microseconds.  This is chosen to be twice the
448  * memory refresh interval of current DIMMs (64ms).  After initial fix that
449  * gives at least one full refresh cycle in which the cell can leak
450  * (whereafter further refreshes simply reinforce any incorrect bit value).
451  */
452 clock_t cpu_ce_lkychk_timeout_usec = 128000;
453 
454 /*
455  * CE partner check partner caching period in seconds
456  */
457 int cpu_ce_ptnr_cachetime_sec = 60;
458 
459 /*
460  * Sets trap table entry ttentry by overwriting eight instructions from ttlabel
461  */
462 #define	CH_SET_TRAP(ttentry, ttlabel)			\
463 		bcopy((const void *)&ttlabel, &ttentry, 32);		\
464 		flush_instr_mem((caddr_t)&ttentry, 32);
465 
466 static int min_ecache_size;
467 static uint_t priv_hcl_1;
468 static uint_t priv_hcl_2;
469 static uint_t priv_hcl_4;
470 static uint_t priv_hcl_8;
471 
472 void
473 cpu_setup(void)
474 {
475 	extern int at_flags;
476 	extern int disable_delay_tlb_flush, delay_tlb_flush;
477 	extern int cpc_has_overflow_intr;
478 
479 	/*
480 	 * Setup chip-specific trap handlers.
481 	 */
482 	cpu_init_trap();
483 
484 	cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT);
485 
486 	at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3;
487 
488 	/*
489 	 * save the cache bootup state.
490 	 */
491 	cache_boot_state = get_dcu() & DCU_CACHE;
492 
493 	/*
494 	 * Due to the number of entries in the fully-associative tlb
495 	 * this may have to be tuned lower than in spitfire.
496 	 */
497 	pp_slots = MIN(8, MAXPP_SLOTS);
498 
499 	/*
500 	 * Block stores do not invalidate all pages of the d$, pagecopy
501 	 * et. al. need virtual translations with virtual coloring taken
502 	 * into consideration.  prefetch/ldd will pollute the d$ on the
503 	 * load side.
504 	 */
505 	pp_consistent_coloring = PPAGE_STORE_VCOLORING | PPAGE_LOADS_POLLUTE;
506 
507 	if (use_page_coloring) {
508 		do_pg_coloring = 1;
509 		if (use_virtual_coloring)
510 			do_virtual_coloring = 1;
511 	}
512 
513 	isa_list =
514 	    "sparcv9+vis2 sparcv9+vis sparcv9 "
515 	    "sparcv8plus+vis2 sparcv8plus+vis sparcv8plus "
516 	    "sparcv8 sparcv8-fsmuld sparcv7 sparc";
517 
518 	/*
519 	 * On Panther-based machines, this should
520 	 * also include AV_SPARC_POPC too
521 	 */
522 	cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2;
523 
524 	/*
525 	 * On cheetah, there's no hole in the virtual address space
526 	 */
527 	hole_start = hole_end = 0;
528 
529 	/*
530 	 * The kpm mapping window.
531 	 * kpm_size:
532 	 *	The size of a single kpm range.
533 	 *	The overall size will be: kpm_size * vac_colors.
534 	 * kpm_vbase:
535 	 *	The virtual start address of the kpm range within the kernel
536 	 *	virtual address space. kpm_vbase has to be kpm_size aligned.
537 	 */
538 	kpm_size = (size_t)(8ull * 1024 * 1024 * 1024 * 1024); /* 8TB */
539 	kpm_size_shift = 43;
540 	kpm_vbase = (caddr_t)0x8000000000000000ull; /* 8EB */
541 	kpm_smallpages = 1;
542 
543 	/*
544 	 * The traptrace code uses either %tick or %stick for
545 	 * timestamping.  We have %stick so we can use it.
546 	 */
547 	traptrace_use_stick = 1;
548 
549 	/*
550 	 * Cheetah has a performance counter overflow interrupt
551 	 */
552 	cpc_has_overflow_intr = 1;
553 
554 	/*
555 	 * Use cheetah flush-all support
556 	 */
557 	if (!disable_delay_tlb_flush)
558 		delay_tlb_flush = 1;
559 
560 #if defined(CPU_IMP_DUAL_PAGESIZE)
561 	/*
562 	 * Use Cheetah+ and later dual page size support.
563 	 */
564 	if (!disable_dual_pgsz) {
565 		cpu_impl_dual_pgsz = 1;
566 	}
567 #endif	/* CPU_IMP_DUAL_PAGESIZE */
568 
569 	/*
570 	 * Declare that this architecture/cpu combination does fpRAS.
571 	 */
572 	fpras_implemented = 1;
573 
574 	/*
575 	 * Setup CE lookup table
576 	 */
577 	CE_INITDISPTBL_POPULATE(ce_disp_table);
578 	ce_disp_inited = 1;
579 }
580 
581 /*
582  * Called by setcpudelay
583  */
584 void
585 cpu_init_tick_freq(void)
586 {
587 	/*
588 	 * For UltraSPARC III and beyond we want to use the
589 	 * system clock rate as the basis for low level timing,
590 	 * due to support of mixed speed CPUs and power managment.
591 	 */
592 	if (system_clock_freq == 0)
593 		cmn_err(CE_PANIC, "setcpudelay: invalid system_clock_freq");
594 
595 	sys_tick_freq = system_clock_freq;
596 }
597 
598 #ifdef CHEETAHPLUS_ERRATUM_25
599 /*
600  * Tunables
601  */
602 int cheetah_bpe_off = 0;
603 int cheetah_sendmondo_recover = 1;
604 int cheetah_sendmondo_fullscan = 0;
605 int cheetah_sendmondo_recover_delay = 5;
606 
607 #define	CHEETAH_LIVELOCK_MIN_DELAY	1
608 
609 /*
610  * Recovery Statistics
611  */
612 typedef struct cheetah_livelock_entry	{
613 	int cpuid;		/* fallen cpu */
614 	int buddy;		/* cpu that ran recovery */
615 	clock_t lbolt;		/* when recovery started */
616 	hrtime_t recovery_time;	/* time spent in recovery */
617 } cheetah_livelock_entry_t;
618 
619 #define	CHEETAH_LIVELOCK_NENTRY	32
620 
621 cheetah_livelock_entry_t cheetah_livelock_hist[CHEETAH_LIVELOCK_NENTRY];
622 int cheetah_livelock_entry_nxt;
623 
624 #define	CHEETAH_LIVELOCK_ENTRY_NEXT(statp)	{			\
625 	statp = cheetah_livelock_hist + cheetah_livelock_entry_nxt;	\
626 	if (++cheetah_livelock_entry_nxt >= CHEETAH_LIVELOCK_NENTRY) {	\
627 		cheetah_livelock_entry_nxt = 0;				\
628 	}								\
629 }
630 
631 #define	CHEETAH_LIVELOCK_ENTRY_SET(statp, item, val)	statp->item = val
632 
633 struct {
634 	hrtime_t hrt;		/* maximum recovery time */
635 	int recovery;		/* recovered */
636 	int full_claimed;	/* maximum pages claimed in full recovery */
637 	int proc_entry;		/* attempted to claim TSB */
638 	int proc_tsb_scan;	/* tsb scanned */
639 	int proc_tsb_partscan;	/* tsb partially scanned */
640 	int proc_tsb_fullscan;	/* whole tsb scanned */
641 	int proc_claimed;	/* maximum pages claimed in tsb scan */
642 	int proc_user;		/* user thread */
643 	int proc_kernel;	/* kernel thread */
644 	int proc_onflt;		/* bad stack */
645 	int proc_cpu;		/* null cpu */
646 	int proc_thread;	/* null thread */
647 	int proc_proc;		/* null proc */
648 	int proc_as;		/* null as */
649 	int proc_hat;		/* null hat */
650 	int proc_hat_inval;	/* hat contents don't make sense */
651 	int proc_hat_busy;	/* hat is changing TSBs */
652 	int proc_tsb_reloc;	/* TSB skipped because being relocated */
653 	int proc_cnum_bad;	/* cnum out of range */
654 	int proc_cnum;		/* last cnum processed */
655 	tte_t proc_tte;		/* last tte processed */
656 } cheetah_livelock_stat;
657 
658 #define	CHEETAH_LIVELOCK_STAT(item)	cheetah_livelock_stat.item++
659 
660 #define	CHEETAH_LIVELOCK_STATSET(item, value)		\
661 	cheetah_livelock_stat.item = value
662 
663 #define	CHEETAH_LIVELOCK_MAXSTAT(item, value)	{	\
664 	if (value > cheetah_livelock_stat.item)		\
665 		cheetah_livelock_stat.item = value;	\
666 }
667 
668 /*
669  * Attempt to recover a cpu by claiming every cache line as saved
670  * in the TSB that the non-responsive cpu is using. Since we can't
671  * grab any adaptive lock, this is at best an attempt to do so. Because
672  * we don't grab any locks, we must operate under the protection of
673  * on_fault().
674  *
675  * Return 1 if cpuid could be recovered, 0 if failed.
676  */
677 int
678 mondo_recover_proc(uint16_t cpuid, int bn)
679 {
680 	label_t ljb;
681 	cpu_t *cp;
682 	kthread_t *t;
683 	proc_t *p;
684 	struct as *as;
685 	struct hat *hat;
686 	uint_t  cnum;
687 	struct tsb_info *tsbinfop;
688 	struct tsbe *tsbep;
689 	caddr_t tsbp;
690 	caddr_t end_tsbp;
691 	uint64_t paddr;
692 	uint64_t idsr;
693 	u_longlong_t pahi, palo;
694 	int pages_claimed = 0;
695 	tte_t tsbe_tte;
696 	int tried_kernel_tsb = 0;
697 	mmu_ctx_t *mmu_ctxp;
698 
699 	CHEETAH_LIVELOCK_STAT(proc_entry);
700 
701 	if (on_fault(&ljb)) {
702 		CHEETAH_LIVELOCK_STAT(proc_onflt);
703 		goto badstruct;
704 	}
705 
706 	if ((cp = cpu[cpuid]) == NULL) {
707 		CHEETAH_LIVELOCK_STAT(proc_cpu);
708 		goto badstruct;
709 	}
710 
711 	if ((t = cp->cpu_thread) == NULL) {
712 		CHEETAH_LIVELOCK_STAT(proc_thread);
713 		goto badstruct;
714 	}
715 
716 	if ((p = ttoproc(t)) == NULL) {
717 		CHEETAH_LIVELOCK_STAT(proc_proc);
718 		goto badstruct;
719 	}
720 
721 	if ((as = p->p_as) == NULL) {
722 		CHEETAH_LIVELOCK_STAT(proc_as);
723 		goto badstruct;
724 	}
725 
726 	if ((hat = as->a_hat) == NULL) {
727 		CHEETAH_LIVELOCK_STAT(proc_hat);
728 		goto badstruct;
729 	}
730 
731 	if (hat != ksfmmup) {
732 		CHEETAH_LIVELOCK_STAT(proc_user);
733 		if (hat->sfmmu_flags & (HAT_BUSY | HAT_SWAPPED | HAT_SWAPIN)) {
734 			CHEETAH_LIVELOCK_STAT(proc_hat_busy);
735 			goto badstruct;
736 		}
737 		tsbinfop = hat->sfmmu_tsb;
738 		if (tsbinfop == NULL) {
739 			CHEETAH_LIVELOCK_STAT(proc_hat_inval);
740 			goto badstruct;
741 		}
742 		tsbp = tsbinfop->tsb_va;
743 		end_tsbp = tsbp + TSB_BYTES(tsbinfop->tsb_szc);
744 	} else {
745 		CHEETAH_LIVELOCK_STAT(proc_kernel);
746 		tsbinfop = NULL;
747 		tsbp = ktsb_base;
748 		end_tsbp = tsbp + TSB_BYTES(ktsb_sz);
749 	}
750 
751 	/* Verify as */
752 	if (hat->sfmmu_as != as) {
753 		CHEETAH_LIVELOCK_STAT(proc_hat_inval);
754 		goto badstruct;
755 	}
756 
757 	mmu_ctxp = CPU_MMU_CTXP(cp);
758 	ASSERT(mmu_ctxp);
759 	cnum = hat->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
760 	CHEETAH_LIVELOCK_STATSET(proc_cnum, cnum);
761 
762 	if ((cnum < 0) || (cnum == INVALID_CONTEXT) ||
763 	    (cnum >= mmu_ctxp->mmu_nctxs)) {
764 		CHEETAH_LIVELOCK_STAT(proc_cnum_bad);
765 		goto badstruct;
766 	}
767 
768 	do {
769 		CHEETAH_LIVELOCK_STAT(proc_tsb_scan);
770 
771 		/*
772 		 * Skip TSBs being relocated.  This is important because
773 		 * we want to avoid the following deadlock scenario:
774 		 *
775 		 * 1) when we came in we set ourselves to "in recover" state.
776 		 * 2) when we try to touch TSB being relocated the mapping
777 		 *    will be in the suspended state so we'll spin waiting
778 		 *    for it to be unlocked.
779 		 * 3) when the CPU that holds the TSB mapping locked tries to
780 		 *    unlock it it will send a xtrap which will fail to xcall
781 		 *    us or the CPU we're trying to recover, and will in turn
782 		 *    enter the mondo code.
783 		 * 4) since we are still spinning on the locked mapping
784 		 *    no further progress will be made and the system will
785 		 *    inevitably hard hang.
786 		 *
787 		 * A TSB not being relocated can't begin being relocated
788 		 * while we're accessing it because we check
789 		 * sendmondo_in_recover before relocating TSBs.
790 		 */
791 		if (hat != ksfmmup &&
792 		    (tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
793 			CHEETAH_LIVELOCK_STAT(proc_tsb_reloc);
794 			goto next_tsbinfo;
795 		}
796 
797 		for (tsbep = (struct tsbe *)tsbp;
798 		    tsbep < (struct tsbe *)end_tsbp; tsbep++) {
799 			tsbe_tte = tsbep->tte_data;
800 
801 			if (tsbe_tte.tte_val == 0) {
802 				/*
803 				 * Invalid tte
804 				 */
805 				continue;
806 			}
807 			if (tsbe_tte.tte_se) {
808 				/*
809 				 * Don't want device registers
810 				 */
811 				continue;
812 			}
813 			if (tsbe_tte.tte_cp == 0) {
814 				/*
815 				 * Must be cached in E$
816 				 */
817 				continue;
818 			}
819 			CHEETAH_LIVELOCK_STATSET(proc_tte, tsbe_tte);
820 			idsr = getidsr();
821 			if ((idsr & (IDSR_NACK_BIT(bn) |
822 			    IDSR_BUSY_BIT(bn))) == 0) {
823 				CHEETAH_LIVELOCK_STAT(proc_tsb_partscan);
824 				goto done;
825 			}
826 			pahi = tsbe_tte.tte_pahi;
827 			palo = tsbe_tte.tte_palo;
828 			paddr = (uint64_t)((pahi << 32) |
829 			    (palo << MMU_PAGESHIFT));
830 			claimlines(paddr, TTEBYTES(TTE_CSZ(&tsbe_tte)),
831 			    CH_ECACHE_SUBBLK_SIZE);
832 			if ((idsr & IDSR_BUSY_BIT(bn)) == 0) {
833 				shipit(cpuid, bn);
834 			}
835 			pages_claimed++;
836 		}
837 next_tsbinfo:
838 		if (tsbinfop != NULL)
839 			tsbinfop = tsbinfop->tsb_next;
840 		if (tsbinfop != NULL) {
841 			tsbp = tsbinfop->tsb_va;
842 			end_tsbp = tsbp + TSB_BYTES(tsbinfop->tsb_szc);
843 		} else if (tsbp == ktsb_base) {
844 			tried_kernel_tsb = 1;
845 		} else if (!tried_kernel_tsb) {
846 			tsbp = ktsb_base;
847 			end_tsbp = tsbp + TSB_BYTES(ktsb_sz);
848 			hat = ksfmmup;
849 			tsbinfop = NULL;
850 		}
851 	} while (tsbinfop != NULL ||
852 			((tsbp == ktsb_base) && !tried_kernel_tsb));
853 
854 	CHEETAH_LIVELOCK_STAT(proc_tsb_fullscan);
855 	CHEETAH_LIVELOCK_MAXSTAT(proc_claimed, pages_claimed);
856 	no_fault();
857 	idsr = getidsr();
858 	if ((idsr & (IDSR_NACK_BIT(bn) |
859 	    IDSR_BUSY_BIT(bn))) == 0) {
860 		return (1);
861 	} else {
862 		return (0);
863 	}
864 
865 done:
866 	no_fault();
867 	CHEETAH_LIVELOCK_MAXSTAT(proc_claimed, pages_claimed);
868 	return (1);
869 
870 badstruct:
871 	no_fault();
872 	return (0);
873 }
874 
875 /*
876  * Attempt to claim ownership, temporarily, of every cache line that a
877  * non-responsive cpu might be using.  This might kick that cpu out of
878  * this state.
879  *
880  * The return value indicates to the caller if we have exhausted all recovery
881  * techniques. If 1 is returned, it is useless to call this function again
882  * even for a different target CPU.
883  */
884 int
885 mondo_recover(uint16_t cpuid, int bn)
886 {
887 	struct memseg *seg;
888 	uint64_t begin_pa, end_pa, cur_pa;
889 	hrtime_t begin_hrt, end_hrt;
890 	int retval = 0;
891 	int pages_claimed = 0;
892 	cheetah_livelock_entry_t *histp;
893 	uint64_t idsr;
894 
895 	if (cas32(&sendmondo_in_recover, 0, 1) != 0) {
896 		/*
897 		 * Wait while recovery takes place
898 		 */
899 		while (sendmondo_in_recover) {
900 			drv_usecwait(1);
901 		}
902 		/*
903 		 * Assume we didn't claim the whole memory. If
904 		 * the target of this caller is not recovered,
905 		 * it will come back.
906 		 */
907 		return (retval);
908 	}
909 
910 	CHEETAH_LIVELOCK_ENTRY_NEXT(histp)
911 	CHEETAH_LIVELOCK_ENTRY_SET(histp, lbolt, lbolt);
912 	CHEETAH_LIVELOCK_ENTRY_SET(histp, cpuid, cpuid);
913 	CHEETAH_LIVELOCK_ENTRY_SET(histp, buddy, CPU->cpu_id);
914 
915 	begin_hrt = gethrtime_waitfree();
916 	/*
917 	 * First try to claim the lines in the TSB the target
918 	 * may have been using.
919 	 */
920 	if (mondo_recover_proc(cpuid, bn) == 1) {
921 		/*
922 		 * Didn't claim the whole memory
923 		 */
924 		goto done;
925 	}
926 
927 	/*
928 	 * We tried using the TSB. The target is still
929 	 * not recovered. Check if complete memory scan is
930 	 * enabled.
931 	 */
932 	if (cheetah_sendmondo_fullscan == 0) {
933 		/*
934 		 * Full memory scan is disabled.
935 		 */
936 		retval = 1;
937 		goto done;
938 	}
939 
940 	/*
941 	 * Try claiming the whole memory.
942 	 */
943 	for (seg = memsegs; seg; seg = seg->next) {
944 		begin_pa = (uint64_t)(seg->pages_base) << MMU_PAGESHIFT;
945 		end_pa = (uint64_t)(seg->pages_end) << MMU_PAGESHIFT;
946 		for (cur_pa = begin_pa; cur_pa < end_pa;
947 		    cur_pa += MMU_PAGESIZE) {
948 			idsr = getidsr();
949 			if ((idsr & (IDSR_NACK_BIT(bn) |
950 			    IDSR_BUSY_BIT(bn))) == 0) {
951 				/*
952 				 * Didn't claim all memory
953 				 */
954 				goto done;
955 			}
956 			claimlines(cur_pa, MMU_PAGESIZE,
957 			    CH_ECACHE_SUBBLK_SIZE);
958 			if ((idsr & IDSR_BUSY_BIT(bn)) == 0) {
959 				shipit(cpuid, bn);
960 			}
961 			pages_claimed++;
962 		}
963 	}
964 
965 	/*
966 	 * We did all we could.
967 	 */
968 	retval = 1;
969 
970 done:
971 	/*
972 	 * Update statistics
973 	 */
974 	end_hrt = gethrtime_waitfree();
975 	CHEETAH_LIVELOCK_STAT(recovery);
976 	CHEETAH_LIVELOCK_MAXSTAT(hrt, (end_hrt - begin_hrt));
977 	CHEETAH_LIVELOCK_MAXSTAT(full_claimed, pages_claimed);
978 	CHEETAH_LIVELOCK_ENTRY_SET(histp, recovery_time, \
979 	    (end_hrt -  begin_hrt));
980 
981 	while (cas32(&sendmondo_in_recover, 1, 0) != 1);
982 
983 	return (retval);
984 }
985 
986 /*
987  * This is called by the cyclic framework when this CPU becomes online
988  */
989 /*ARGSUSED*/
990 static void
991 cheetah_nudge_onln(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
992 {
993 
994 	hdlr->cyh_func = (cyc_func_t)cheetah_nudge_buddy;
995 	hdlr->cyh_level = CY_LOW_LEVEL;
996 	hdlr->cyh_arg = NULL;
997 
998 	/*
999 	 * Stagger the start time
1000 	 */
1001 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
1002 	if (cheetah_sendmondo_recover_delay < CHEETAH_LIVELOCK_MIN_DELAY) {
1003 		cheetah_sendmondo_recover_delay = CHEETAH_LIVELOCK_MIN_DELAY;
1004 	}
1005 	when->cyt_interval = cheetah_sendmondo_recover_delay * NANOSEC;
1006 }
1007 
1008 /*
1009  * Create a low level cyclic to send a xtrap to the next cpu online.
1010  * However, there's no need to have this running on a uniprocessor system.
1011  */
1012 static void
1013 cheetah_nudge_init(void)
1014 {
1015 	cyc_omni_handler_t hdlr;
1016 
1017 	if (max_ncpus == 1) {
1018 		return;
1019 	}
1020 
1021 	hdlr.cyo_online = cheetah_nudge_onln;
1022 	hdlr.cyo_offline = NULL;
1023 	hdlr.cyo_arg = NULL;
1024 
1025 	mutex_enter(&cpu_lock);
1026 	(void) cyclic_add_omni(&hdlr);
1027 	mutex_exit(&cpu_lock);
1028 }
1029 
1030 /*
1031  * Cyclic handler to wake up buddy
1032  */
1033 void
1034 cheetah_nudge_buddy(void)
1035 {
1036 	/*
1037 	 * Disable kernel preemption to protect the cpu list
1038 	 */
1039 	kpreempt_disable();
1040 	if ((CPU->cpu_next_onln != CPU) && (sendmondo_in_recover == 0)) {
1041 		xt_one(CPU->cpu_next_onln->cpu_id, (xcfunc_t *)xt_sync_tl1,
1042 		    0, 0);
1043 	}
1044 	kpreempt_enable();
1045 }
1046 
1047 #endif	/* CHEETAHPLUS_ERRATUM_25 */
1048 
1049 #ifdef SEND_MONDO_STATS
1050 uint32_t x_one_stimes[64];
1051 uint32_t x_one_ltimes[16];
1052 uint32_t x_set_stimes[64];
1053 uint32_t x_set_ltimes[16];
1054 uint32_t x_set_cpus[NCPU];
1055 uint32_t x_nack_stimes[64];
1056 #endif
1057 
1058 /*
1059  * Note: A version of this function is used by the debugger via the KDI,
1060  * and must be kept in sync with this version.  Any changes made to this
1061  * function to support new chips or to accomodate errata must also be included
1062  * in the KDI-specific version.  See us3_kdi.c.
1063  */
1064 void
1065 send_one_mondo(int cpuid)
1066 {
1067 	int busy, nack;
1068 	uint64_t idsr, starttick, endtick, tick, lasttick;
1069 	uint64_t busymask;
1070 #ifdef	CHEETAHPLUS_ERRATUM_25
1071 	int recovered = 0;
1072 #endif
1073 
1074 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
1075 	starttick = lasttick = gettick();
1076 	shipit(cpuid, 0);
1077 	endtick = starttick + xc_tick_limit;
1078 	busy = nack = 0;
1079 #if defined(JALAPENO) || defined(SERRANO)
1080 	/*
1081 	 * Lower 2 bits of the agent ID determine which BUSY/NACK pair
1082 	 * will be used for dispatching interrupt. For now, assume
1083 	 * there are no more than IDSR_BN_SETS CPUs, hence no aliasing
1084 	 * issues with respect to BUSY/NACK pair usage.
1085 	 */
1086 	busymask  = IDSR_BUSY_BIT(cpuid);
1087 #else /* JALAPENO || SERRANO */
1088 	busymask = IDSR_BUSY;
1089 #endif /* JALAPENO || SERRANO */
1090 	for (;;) {
1091 		idsr = getidsr();
1092 		if (idsr == 0)
1093 			break;
1094 
1095 		tick = gettick();
1096 		/*
1097 		 * If there is a big jump between the current tick
1098 		 * count and lasttick, we have probably hit a break
1099 		 * point.  Adjust endtick accordingly to avoid panic.
1100 		 */
1101 		if (tick > (lasttick + xc_tick_jump_limit))
1102 			endtick += (tick - lasttick);
1103 		lasttick = tick;
1104 		if (tick > endtick) {
1105 			if (panic_quiesce)
1106 				return;
1107 #ifdef	CHEETAHPLUS_ERRATUM_25
1108 			if (cheetah_sendmondo_recover && recovered == 0) {
1109 				if (mondo_recover(cpuid, 0)) {
1110 					/*
1111 					 * We claimed the whole memory or
1112 					 * full scan is disabled.
1113 					 */
1114 					recovered++;
1115 				}
1116 				tick = gettick();
1117 				endtick = tick + xc_tick_limit;
1118 				lasttick = tick;
1119 				/*
1120 				 * Recheck idsr
1121 				 */
1122 				continue;
1123 			} else
1124 #endif	/* CHEETAHPLUS_ERRATUM_25 */
1125 			{
1126 				cmn_err(CE_PANIC, "send mondo timeout "
1127 				    "(target 0x%x) [%d NACK %d BUSY]",
1128 				    cpuid, nack, busy);
1129 			}
1130 		}
1131 
1132 		if (idsr & busymask) {
1133 			busy++;
1134 			continue;
1135 		}
1136 		drv_usecwait(1);
1137 		shipit(cpuid, 0);
1138 		nack++;
1139 		busy = 0;
1140 	}
1141 #ifdef SEND_MONDO_STATS
1142 	{
1143 		int n = gettick() - starttick;
1144 		if (n < 8192)
1145 			x_one_stimes[n >> 7]++;
1146 		else
1147 			x_one_ltimes[(n >> 13) & 0xf]++;
1148 	}
1149 #endif
1150 }
1151 
1152 void
1153 syncfpu(void)
1154 {
1155 }
1156 
1157 /*
1158  * Return processor specific async error structure
1159  * size used.
1160  */
1161 int
1162 cpu_aflt_size(void)
1163 {
1164 	return (sizeof (ch_async_flt_t));
1165 }
1166 
1167 /*
1168  * Tunable to disable the checking of other cpu logout areas during panic for
1169  * potential syndrome 71 generating errors.
1170  */
1171 int enable_check_other_cpus_logout = 1;
1172 
1173 /*
1174  * Check other cpus logout area for potential synd 71 generating
1175  * errors.
1176  */
1177 static void
1178 cpu_check_cpu_logout(int cpuid, caddr_t tpc, int tl, int ecc_type,
1179     ch_cpu_logout_t *clop)
1180 {
1181 	struct async_flt *aflt;
1182 	ch_async_flt_t ch_flt;
1183 	uint64_t t_afar, t_afsr, t_afsr_ext, t_afsr_errs;
1184 
1185 	if (clop == NULL || clop->clo_data.chd_afar == LOGOUT_INVALID) {
1186 		return;
1187 	}
1188 
1189 	bzero(&ch_flt, sizeof (ch_async_flt_t));
1190 
1191 	t_afar = clop->clo_data.chd_afar;
1192 	t_afsr = clop->clo_data.chd_afsr;
1193 	t_afsr_ext = clop->clo_data.chd_afsr_ext;
1194 #if defined(SERRANO)
1195 	ch_flt.afar2 = clop->clo_data.chd_afar2;
1196 #endif	/* SERRANO */
1197 
1198 	/*
1199 	 * In order to simplify code, we maintain this afsr_errs
1200 	 * variable which holds the aggregate of AFSR and AFSR_EXT
1201 	 * sticky bits.
1202 	 */
1203 	t_afsr_errs = (t_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
1204 	    (t_afsr & C_AFSR_ALL_ERRS);
1205 
1206 	/* Setup the async fault structure */
1207 	aflt = (struct async_flt *)&ch_flt;
1208 	aflt->flt_id = gethrtime_waitfree();
1209 	ch_flt.afsr_ext = t_afsr_ext;
1210 	ch_flt.afsr_errs = t_afsr_errs;
1211 	aflt->flt_stat = t_afsr;
1212 	aflt->flt_addr = t_afar;
1213 	aflt->flt_bus_id = cpuid;
1214 	aflt->flt_inst = cpuid;
1215 	aflt->flt_pc = tpc;
1216 	aflt->flt_prot = AFLT_PROT_NONE;
1217 	aflt->flt_class = CPU_FAULT;
1218 	aflt->flt_priv = ((t_afsr & C_AFSR_PRIV) != 0);
1219 	aflt->flt_tl = tl;
1220 	aflt->flt_status = ecc_type;
1221 	aflt->flt_panic = C_AFSR_PANIC(t_afsr_errs);
1222 
1223 	/*
1224 	 * Queue events on the async event queue, one event per error bit.
1225 	 * If no events are queued, queue an event to complain.
1226 	 */
1227 	if (cpu_queue_events(&ch_flt, NULL, t_afsr_errs, clop) == 0) {
1228 		ch_flt.flt_type = CPU_INV_AFSR;
1229 		cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_INVALID_AFSR,
1230 		    (void *)&ch_flt, sizeof (ch_async_flt_t), ue_queue,
1231 		    aflt->flt_panic);
1232 	}
1233 
1234 	/*
1235 	 * Zero out + invalidate CPU logout.
1236 	 */
1237 	bzero(clop, sizeof (ch_cpu_logout_t));
1238 	clop->clo_data.chd_afar = LOGOUT_INVALID;
1239 }
1240 
1241 /*
1242  * Check the logout areas of all other cpus for unlogged errors.
1243  */
1244 static void
1245 cpu_check_other_cpus_logout(void)
1246 {
1247 	int i, j;
1248 	processorid_t myid;
1249 	struct cpu *cp;
1250 	ch_err_tl1_data_t *cl1p;
1251 
1252 	myid = CPU->cpu_id;
1253 	for (i = 0; i < NCPU; i++) {
1254 		cp = cpu[i];
1255 
1256 		if ((cp == NULL) || !(cp->cpu_flags & CPU_EXISTS) ||
1257 		    (cp->cpu_id == myid) || (CPU_PRIVATE(cp) == NULL)) {
1258 			continue;
1259 		}
1260 
1261 		/*
1262 		 * Check each of the tl>0 logout areas
1263 		 */
1264 		cl1p = CPU_PRIVATE_PTR(cp, chpr_tl1_err_data[0]);
1265 		for (j = 0; j < CH_ERR_TL1_TLMAX; j++, cl1p++) {
1266 			if (cl1p->ch_err_tl1_flags == 0)
1267 				continue;
1268 
1269 			cpu_check_cpu_logout(i, (caddr_t)cl1p->ch_err_tl1_tpc,
1270 			    1, ECC_F_TRAP, &cl1p->ch_err_tl1_logout);
1271 		}
1272 
1273 		/*
1274 		 * Check each of the remaining logout areas
1275 		 */
1276 		cpu_check_cpu_logout(i, NULL, 0, ECC_F_TRAP,
1277 		    CPU_PRIVATE_PTR(cp, chpr_fecctl0_logout));
1278 		cpu_check_cpu_logout(i, NULL, 0, ECC_C_TRAP,
1279 		    CPU_PRIVATE_PTR(cp, chpr_cecc_logout));
1280 		cpu_check_cpu_logout(i, NULL, 0, ECC_D_TRAP,
1281 		    CPU_PRIVATE_PTR(cp, chpr_async_logout));
1282 	}
1283 }
1284 
1285 /*
1286  * The fast_ecc_err handler transfers control here for UCU, UCC events.
1287  * Note that we flush Ecache twice, once in the fast_ecc_err handler to
1288  * flush the error that caused the UCU/UCC, then again here at the end to
1289  * flush the TL=1 trap handler code out of the Ecache, so we can minimize
1290  * the probability of getting a TL>1 Fast ECC trap when we're fielding
1291  * another Fast ECC trap.
1292  *
1293  * Cheetah+ also handles: TSCE: No additional processing required.
1294  * Panther adds L3_UCU and L3_UCC which are reported in AFSR_EXT.
1295  *
1296  * Note that the p_clo_flags input is only valid in cases where the
1297  * cpu_private struct is not yet initialized (since that is the only
1298  * time that information cannot be obtained from the logout struct.)
1299  */
1300 /*ARGSUSED*/
1301 void
1302 cpu_fast_ecc_error(struct regs *rp, ulong_t p_clo_flags)
1303 {
1304 	ch_cpu_logout_t *clop;
1305 	uint64_t ceen, nceen;
1306 
1307 	/*
1308 	 * Get the CPU log out info. If we can't find our CPU private
1309 	 * pointer, then we will have to make due without any detailed
1310 	 * logout information.
1311 	 */
1312 	if (CPU_PRIVATE(CPU) == NULL) {
1313 		clop = NULL;
1314 		ceen = p_clo_flags & EN_REG_CEEN;
1315 		nceen = p_clo_flags & EN_REG_NCEEN;
1316 	} else {
1317 		clop = CPU_PRIVATE_PTR(CPU, chpr_fecctl0_logout);
1318 		ceen = clop->clo_flags & EN_REG_CEEN;
1319 		nceen = clop->clo_flags & EN_REG_NCEEN;
1320 	}
1321 
1322 	cpu_log_fast_ecc_error((caddr_t)rp->r_pc,
1323 	    (rp->r_tstate & TSTATE_PRIV) ? 1 : 0, 0, ceen, nceen, clop);
1324 }
1325 
1326 /*
1327  * Log fast ecc error, called from either Fast ECC at TL=0 or Fast
1328  * ECC at TL>0.  Need to supply either a error register pointer or a
1329  * cpu logout structure pointer.
1330  */
1331 static void
1332 cpu_log_fast_ecc_error(caddr_t tpc, int priv, int tl, uint64_t ceen,
1333     uint64_t nceen, ch_cpu_logout_t *clop)
1334 {
1335 	struct async_flt *aflt;
1336 	ch_async_flt_t ch_flt;
1337 	uint64_t t_afar, t_afsr, t_afsr_ext, t_afsr_errs;
1338 	char pr_reason[MAX_REASON_STRING];
1339 	ch_cpu_errors_t cpu_error_regs;
1340 
1341 	bzero(&ch_flt, sizeof (ch_async_flt_t));
1342 	/*
1343 	 * If no cpu logout data, then we will have to make due without
1344 	 * any detailed logout information.
1345 	 */
1346 	if (clop == NULL) {
1347 		ch_flt.flt_diag_data.chd_afar = LOGOUT_INVALID;
1348 		get_cpu_error_state(&cpu_error_regs);
1349 		set_cpu_error_state(&cpu_error_regs);
1350 		t_afar = cpu_error_regs.afar;
1351 		t_afsr = cpu_error_regs.afsr;
1352 		t_afsr_ext = cpu_error_regs.afsr_ext;
1353 #if defined(SERRANO)
1354 		ch_flt.afar2 = cpu_error_regs.afar2;
1355 #endif	/* SERRANO */
1356 	} else {
1357 		t_afar = clop->clo_data.chd_afar;
1358 		t_afsr = clop->clo_data.chd_afsr;
1359 		t_afsr_ext = clop->clo_data.chd_afsr_ext;
1360 #if defined(SERRANO)
1361 		ch_flt.afar2 = clop->clo_data.chd_afar2;
1362 #endif	/* SERRANO */
1363 	}
1364 
1365 	/*
1366 	 * In order to simplify code, we maintain this afsr_errs
1367 	 * variable which holds the aggregate of AFSR and AFSR_EXT
1368 	 * sticky bits.
1369 	 */
1370 	t_afsr_errs = (t_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
1371 	    (t_afsr & C_AFSR_ALL_ERRS);
1372 	pr_reason[0] = '\0';
1373 
1374 	/* Setup the async fault structure */
1375 	aflt = (struct async_flt *)&ch_flt;
1376 	aflt->flt_id = gethrtime_waitfree();
1377 	ch_flt.afsr_ext = t_afsr_ext;
1378 	ch_flt.afsr_errs = t_afsr_errs;
1379 	aflt->flt_stat = t_afsr;
1380 	aflt->flt_addr = t_afar;
1381 	aflt->flt_bus_id = getprocessorid();
1382 	aflt->flt_inst = CPU->cpu_id;
1383 	aflt->flt_pc = tpc;
1384 	aflt->flt_prot = AFLT_PROT_NONE;
1385 	aflt->flt_class = CPU_FAULT;
1386 	aflt->flt_priv = priv;
1387 	aflt->flt_tl = tl;
1388 	aflt->flt_status = ECC_F_TRAP;
1389 	aflt->flt_panic = C_AFSR_PANIC(t_afsr_errs);
1390 
1391 	/*
1392 	 * XXXX - Phenomenal hack to get around Solaris not getting all the
1393 	 * cmn_err messages out to the console.  The situation is a UCU (in
1394 	 * priv mode) which causes a WDU which causes a UE (on the retry).
1395 	 * The messages for the UCU and WDU are enqueued and then pulled off
1396 	 * the async queue via softint and syslogd starts to process them
1397 	 * but doesn't get them to the console.  The UE causes a panic, but
1398 	 * since the UCU/WDU messages are already in transit, those aren't
1399 	 * on the async queue.  The hack is to check if we have a matching
1400 	 * WDU event for the UCU, and if it matches, we're more than likely
1401 	 * going to panic with a UE, unless we're under protection.  So, we
1402 	 * check to see if we got a matching WDU event and if we're under
1403 	 * protection.
1404 	 *
1405 	 * For Cheetah/Cheetah+/Jaguar/Jalapeno, the sequence we care about
1406 	 * looks like this:
1407 	 *    UCU->WDU->UE
1408 	 * For Panther, it could look like either of these:
1409 	 *    UCU---->WDU->L3_WDU->UE
1410 	 *    L3_UCU->WDU->L3_WDU->UE
1411 	 */
1412 	if ((t_afsr_errs & (C_AFSR_UCU | C_AFSR_L3_UCU)) &&
1413 	    aflt->flt_panic == 0 && aflt->flt_priv != 0 &&
1414 	    curthread->t_ontrap == NULL && curthread->t_lofault == NULL) {
1415 		get_cpu_error_state(&cpu_error_regs);
1416 		aflt->flt_panic |= ((cpu_error_regs.afsr & C_AFSR_WDU) &&
1417 		    (cpu_error_regs.afar == t_afar));
1418 		aflt->flt_panic |= ((clop == NULL) &&
1419 		    (t_afsr_errs & C_AFSR_WDU));
1420 	}
1421 
1422 	/*
1423 	 * Queue events on the async event queue, one event per error bit.
1424 	 * If no events are queued or no Fast ECC events are on in the AFSR,
1425 	 * queue an event to complain.
1426 	 */
1427 	if (cpu_queue_events(&ch_flt, pr_reason, t_afsr_errs, clop) == 0 ||
1428 	    ((t_afsr_errs & (C_AFSR_FECC_ERRS | C_AFSR_EXT_FECC_ERRS)) == 0)) {
1429 		ch_flt.flt_type = CPU_INV_AFSR;
1430 		cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_INVALID_AFSR,
1431 		    (void *)&ch_flt, sizeof (ch_async_flt_t), ue_queue,
1432 		    aflt->flt_panic);
1433 	}
1434 
1435 	/*
1436 	 * Zero out + invalidate CPU logout.
1437 	 */
1438 	if (clop) {
1439 		bzero(clop, sizeof (ch_cpu_logout_t));
1440 		clop->clo_data.chd_afar = LOGOUT_INVALID;
1441 	}
1442 
1443 	/*
1444 	 * We carefully re-enable NCEEN and CEEN and then check if any deferred
1445 	 * or disrupting errors have happened.  We do this because if a
1446 	 * deferred or disrupting error had occurred with NCEEN/CEEN off, the
1447 	 * trap will not be taken when NCEEN/CEEN is re-enabled.  Note that
1448 	 * CEEN works differently on Cheetah than on Spitfire.  Also, we enable
1449 	 * NCEEN/CEEN *before* checking the AFSR to avoid the small window of a
1450 	 * deferred or disrupting error happening between checking the AFSR and
1451 	 * enabling NCEEN/CEEN.
1452 	 *
1453 	 * Note: CEEN and NCEEN are only reenabled if they were on when trap
1454 	 * taken.
1455 	 */
1456 	set_error_enable(get_error_enable() | (nceen | ceen));
1457 	if (clear_errors(&ch_flt)) {
1458 		aflt->flt_panic |= ((ch_flt.afsr_errs &
1459 		    (C_AFSR_EXT_ASYNC_ERRS | C_AFSR_ASYNC_ERRS)) != 0);
1460 		(void) cpu_queue_events(&ch_flt, pr_reason, ch_flt.afsr_errs,
1461 		    NULL);
1462 	}
1463 
1464 	/*
1465 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
1466 	 * be logged as part of the panic flow.
1467 	 */
1468 	if (aflt->flt_panic)
1469 		fm_panic("%sError(s)", pr_reason);
1470 
1471 	/*
1472 	 * Flushing the Ecache here gets the part of the trap handler that
1473 	 * is run at TL=1 out of the Ecache.
1474 	 */
1475 	cpu_flush_ecache();
1476 }
1477 
1478 /*
1479  * This is called via sys_trap from pil15_interrupt code if the
1480  * corresponding entry in ch_err_tl1_pending is set.  Checks the
1481  * various ch_err_tl1_data structures for valid entries based on the bit
1482  * settings in the ch_err_tl1_flags entry of the structure.
1483  */
1484 /*ARGSUSED*/
1485 void
1486 cpu_tl1_error(struct regs *rp, int panic)
1487 {
1488 	ch_err_tl1_data_t *cl1p, cl1;
1489 	int i, ncl1ps;
1490 	uint64_t me_flags;
1491 	uint64_t ceen, nceen;
1492 
1493 	if (ch_err_tl1_paddrs[CPU->cpu_id] == 0) {
1494 		cl1p = &ch_err_tl1_data;
1495 		ncl1ps = 1;
1496 	} else if (CPU_PRIVATE(CPU) != NULL) {
1497 		cl1p = CPU_PRIVATE_PTR(CPU, chpr_tl1_err_data[0]);
1498 		ncl1ps = CH_ERR_TL1_TLMAX;
1499 	} else {
1500 		ncl1ps = 0;
1501 	}
1502 
1503 	for (i = 0; i < ncl1ps; i++, cl1p++) {
1504 		if (cl1p->ch_err_tl1_flags == 0)
1505 			continue;
1506 
1507 		/*
1508 		 * Grab a copy of the logout data and invalidate
1509 		 * the logout area.
1510 		 */
1511 		cl1 = *cl1p;
1512 		bzero(cl1p, sizeof (ch_err_tl1_data_t));
1513 		cl1p->ch_err_tl1_logout.clo_data.chd_afar = LOGOUT_INVALID;
1514 		me_flags = CH_ERR_ME_FLAGS(cl1.ch_err_tl1_flags);
1515 
1516 		/*
1517 		 * Log "first error" in ch_err_tl1_data.
1518 		 */
1519 		if (cl1.ch_err_tl1_flags & CH_ERR_FECC) {
1520 			ceen = get_error_enable() & EN_REG_CEEN;
1521 			nceen = get_error_enable() & EN_REG_NCEEN;
1522 			cpu_log_fast_ecc_error((caddr_t)cl1.ch_err_tl1_tpc, 1,
1523 			    1, ceen, nceen, &cl1.ch_err_tl1_logout);
1524 		}
1525 #if defined(CPU_IMP_L1_CACHE_PARITY)
1526 		if (cl1.ch_err_tl1_flags & (CH_ERR_IPE | CH_ERR_DPE)) {
1527 			cpu_parity_error(rp, cl1.ch_err_tl1_flags,
1528 			    (caddr_t)cl1.ch_err_tl1_tpc);
1529 		}
1530 #endif	/* CPU_IMP_L1_CACHE_PARITY */
1531 
1532 		/*
1533 		 * Log "multiple events" in ch_err_tl1_data.  Note that
1534 		 * we don't read and clear the AFSR/AFAR in the TL>0 code
1535 		 * if the structure is busy, we just do the cache flushing
1536 		 * we have to do and then do the retry.  So the AFSR/AFAR
1537 		 * at this point *should* have some relevant info.  If there
1538 		 * are no valid errors in the AFSR, we'll assume they've
1539 		 * already been picked up and logged.  For I$/D$ parity,
1540 		 * we just log an event with an "Unknown" (NULL) TPC.
1541 		 */
1542 		if (me_flags & CH_ERR_FECC) {
1543 			ch_cpu_errors_t cpu_error_regs;
1544 			uint64_t t_afsr_errs;
1545 
1546 			/*
1547 			 * Get the error registers and see if there's
1548 			 * a pending error.  If not, don't bother
1549 			 * generating an "Invalid AFSR" error event.
1550 			 */
1551 			get_cpu_error_state(&cpu_error_regs);
1552 			t_afsr_errs = (cpu_error_regs.afsr_ext &
1553 			    C_AFSR_EXT_ALL_ERRS) |
1554 			    (cpu_error_regs.afsr & C_AFSR_ALL_ERRS);
1555 			if (t_afsr_errs != 0) {
1556 				ceen = get_error_enable() & EN_REG_CEEN;
1557 				nceen = get_error_enable() & EN_REG_NCEEN;
1558 				cpu_log_fast_ecc_error((caddr_t)NULL, 1,
1559 				    1, ceen, nceen, NULL);
1560 			}
1561 		}
1562 #if defined(CPU_IMP_L1_CACHE_PARITY)
1563 		if (me_flags & (CH_ERR_IPE | CH_ERR_DPE)) {
1564 			cpu_parity_error(rp, me_flags, (caddr_t)NULL);
1565 		}
1566 #endif	/* CPU_IMP_L1_CACHE_PARITY */
1567 	}
1568 }
1569 
1570 /*
1571  * Called from Fast ECC TL>0 handler in case of fatal error.
1572  * cpu_tl1_error should always find an associated ch_err_tl1_data structure,
1573  * but if we don't, we'll panic with something reasonable.
1574  */
1575 /*ARGSUSED*/
1576 void
1577 cpu_tl1_err_panic(struct regs *rp, ulong_t flags)
1578 {
1579 	cpu_tl1_error(rp, 1);
1580 	/*
1581 	 * Should never return, but just in case.
1582 	 */
1583 	fm_panic("Unsurvivable ECC Error at TL>0");
1584 }
1585 
1586 /*
1587  * The ce_err/ce_err_tl1 handlers transfer control here for CE, EMC, EDU:ST,
1588  * EDC, WDU, WDC, CPU, CPC, IVU, IVC events.
1589  * Disrupting errors controlled by NCEEN: EDU:ST, WDU, CPU, IVU
1590  * Disrupting errors controlled by CEEN: CE, EMC, EDC, WDC, CPC, IVC
1591  *
1592  * Cheetah+ also handles (No additional processing required):
1593  *    DUE, DTO, DBERR	(NCEEN controlled)
1594  *    THCE		(CEEN and ET_ECC_en controlled)
1595  *    TUE		(ET_ECC_en controlled)
1596  *
1597  * Panther further adds:
1598  *    IMU, L3_EDU, L3_WDU, L3_CPU		(NCEEN controlled)
1599  *    IMC, L3_EDC, L3_WDC, L3_CPC, L3_THCE	(CEEN controlled)
1600  *    TUE_SH, TUE		(NCEEN and L2_tag_ECC_en controlled)
1601  *    L3_TUE, L3_TUE_SH		(NCEEN and ET_ECC_en controlled)
1602  *    THCE			(CEEN and L2_tag_ECC_en controlled)
1603  *    L3_THCE			(CEEN and ET_ECC_en controlled)
1604  *
1605  * Note that the p_clo_flags input is only valid in cases where the
1606  * cpu_private struct is not yet initialized (since that is the only
1607  * time that information cannot be obtained from the logout struct.)
1608  */
1609 /*ARGSUSED*/
1610 void
1611 cpu_disrupting_error(struct regs *rp, ulong_t p_clo_flags)
1612 {
1613 	struct async_flt *aflt;
1614 	ch_async_flt_t ch_flt;
1615 	char pr_reason[MAX_REASON_STRING];
1616 	ch_cpu_logout_t *clop;
1617 	uint64_t t_afar, t_afsr, t_afsr_ext, t_afsr_errs;
1618 	ch_cpu_errors_t cpu_error_regs;
1619 
1620 	bzero(&ch_flt, sizeof (ch_async_flt_t));
1621 	/*
1622 	 * Get the CPU log out info. If we can't find our CPU private
1623 	 * pointer, then we will have to make due without any detailed
1624 	 * logout information.
1625 	 */
1626 	if (CPU_PRIVATE(CPU) == NULL) {
1627 		clop = NULL;
1628 		ch_flt.flt_diag_data.chd_afar = LOGOUT_INVALID;
1629 		get_cpu_error_state(&cpu_error_regs);
1630 		set_cpu_error_state(&cpu_error_regs);
1631 		t_afar = cpu_error_regs.afar;
1632 		t_afsr = cpu_error_regs.afsr;
1633 		t_afsr_ext = cpu_error_regs.afsr_ext;
1634 #if defined(SERRANO)
1635 		ch_flt.afar2 = cpu_error_regs.afar2;
1636 #endif	/* SERRANO */
1637 	} else {
1638 		clop = CPU_PRIVATE_PTR(CPU, chpr_cecc_logout);
1639 		t_afar = clop->clo_data.chd_afar;
1640 		t_afsr = clop->clo_data.chd_afsr;
1641 		t_afsr_ext = clop->clo_data.chd_afsr_ext;
1642 #if defined(SERRANO)
1643 		ch_flt.afar2 = clop->clo_data.chd_afar2;
1644 #endif	/* SERRANO */
1645 	}
1646 
1647 	/*
1648 	 * In order to simplify code, we maintain this afsr_errs
1649 	 * variable which holds the aggregate of AFSR and AFSR_EXT
1650 	 * sticky bits.
1651 	 */
1652 	t_afsr_errs = (t_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
1653 	    (t_afsr & C_AFSR_ALL_ERRS);
1654 
1655 	pr_reason[0] = '\0';
1656 	/* Setup the async fault structure */
1657 	aflt = (struct async_flt *)&ch_flt;
1658 	ch_flt.afsr_ext = t_afsr_ext;
1659 	ch_flt.afsr_errs = t_afsr_errs;
1660 	aflt->flt_stat = t_afsr;
1661 	aflt->flt_addr = t_afar;
1662 	aflt->flt_pc = (caddr_t)rp->r_pc;
1663 	aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ?  1 : 0;
1664 	aflt->flt_tl = 0;
1665 	aflt->flt_panic = C_AFSR_PANIC(t_afsr_errs);
1666 
1667 	/*
1668 	 * If this trap is a result of one of the errors not masked
1669 	 * by cpu_ce_not_deferred, we don't reenable CEEN. Instead
1670 	 * indicate that a timeout is to be set later.
1671 	 */
1672 	if (!(t_afsr_errs & (cpu_ce_not_deferred | cpu_ce_not_deferred_ext)) &&
1673 	    !aflt->flt_panic)
1674 		ch_flt.flt_trapped_ce = CE_CEEN_DEFER | CE_CEEN_TRAPPED;
1675 	else
1676 		ch_flt.flt_trapped_ce = CE_CEEN_NODEFER | CE_CEEN_TRAPPED;
1677 
1678 	/*
1679 	 * log the CE and clean up
1680 	 */
1681 	cpu_log_and_clear_ce(&ch_flt);
1682 
1683 	/*
1684 	 * We re-enable CEEN (if required) and check if any disrupting errors
1685 	 * have happened.  We do this because if a disrupting error had occurred
1686 	 * with CEEN off, the trap will not be taken when CEEN is re-enabled.
1687 	 * Note that CEEN works differently on Cheetah than on Spitfire.  Also,
1688 	 * we enable CEEN *before* checking the AFSR to avoid the small window
1689 	 * of a error happening between checking the AFSR and enabling CEEN.
1690 	 */
1691 	if (ch_flt.flt_trapped_ce & CE_CEEN_NODEFER)
1692 	    set_error_enable(get_error_enable() | EN_REG_CEEN);
1693 	if (clear_errors(&ch_flt)) {
1694 		(void) cpu_queue_events(&ch_flt, pr_reason, ch_flt.afsr_errs,
1695 		    NULL);
1696 	}
1697 
1698 	/*
1699 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
1700 	 * be logged as part of the panic flow.
1701 	 */
1702 	if (aflt->flt_panic)
1703 		fm_panic("%sError(s)", pr_reason);
1704 }
1705 
1706 /*
1707  * The async_err handler transfers control here for UE, EMU, EDU:BLD,
1708  * L3_EDU:BLD, TO, and BERR events.
1709  * Deferred errors controlled by NCEEN: UE, EMU, EDU:BLD, L3_EDU:BLD, TO, BERR
1710  *
1711  * Cheetah+: No additional errors handled.
1712  *
1713  * Note that the p_clo_flags input is only valid in cases where the
1714  * cpu_private struct is not yet initialized (since that is the only
1715  * time that information cannot be obtained from the logout struct.)
1716  */
1717 /*ARGSUSED*/
1718 void
1719 cpu_deferred_error(struct regs *rp, ulong_t p_clo_flags)
1720 {
1721 	ushort_t ttype, tl;
1722 	ch_async_flt_t ch_flt;
1723 	struct async_flt *aflt;
1724 	int trampolined = 0;
1725 	char pr_reason[MAX_REASON_STRING];
1726 	ch_cpu_logout_t *clop;
1727 	uint64_t ceen, clo_flags;
1728 	uint64_t log_afsr;
1729 	uint64_t t_afar, t_afsr, t_afsr_ext, t_afsr_errs;
1730 	ch_cpu_errors_t cpu_error_regs;
1731 	int expected = DDI_FM_ERR_UNEXPECTED;
1732 	ddi_acc_hdl_t *hp;
1733 
1734 	/*
1735 	 * We need to look at p_flag to determine if the thread detected an
1736 	 * error while dumping core.  We can't grab p_lock here, but it's ok
1737 	 * because we just need a consistent snapshot and we know that everyone
1738 	 * else will store a consistent set of bits while holding p_lock.  We
1739 	 * don't have to worry about a race because SDOCORE is set once prior
1740 	 * to doing i/o from the process's address space and is never cleared.
1741 	 */
1742 	uint_t pflag = ttoproc(curthread)->p_flag;
1743 
1744 	bzero(&ch_flt, sizeof (ch_async_flt_t));
1745 	/*
1746 	 * Get the CPU log out info. If we can't find our CPU private
1747 	 * pointer then we will have to make due without any detailed
1748 	 * logout information.
1749 	 */
1750 	if (CPU_PRIVATE(CPU) == NULL) {
1751 		clop = NULL;
1752 		ch_flt.flt_diag_data.chd_afar = LOGOUT_INVALID;
1753 		get_cpu_error_state(&cpu_error_regs);
1754 		set_cpu_error_state(&cpu_error_regs);
1755 		t_afar = cpu_error_regs.afar;
1756 		t_afsr = cpu_error_regs.afsr;
1757 		t_afsr_ext = cpu_error_regs.afsr_ext;
1758 #if defined(SERRANO)
1759 		ch_flt.afar2 = cpu_error_regs.afar2;
1760 #endif	/* SERRANO */
1761 		clo_flags = p_clo_flags;
1762 	} else {
1763 		clop = CPU_PRIVATE_PTR(CPU, chpr_async_logout);
1764 		t_afar = clop->clo_data.chd_afar;
1765 		t_afsr = clop->clo_data.chd_afsr;
1766 		t_afsr_ext = clop->clo_data.chd_afsr_ext;
1767 #if defined(SERRANO)
1768 		ch_flt.afar2 = clop->clo_data.chd_afar2;
1769 #endif	/* SERRANO */
1770 		clo_flags = clop->clo_flags;
1771 	}
1772 
1773 	/*
1774 	 * In order to simplify code, we maintain this afsr_errs
1775 	 * variable which holds the aggregate of AFSR and AFSR_EXT
1776 	 * sticky bits.
1777 	 */
1778 	t_afsr_errs = (t_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
1779 	    (t_afsr & C_AFSR_ALL_ERRS);
1780 	pr_reason[0] = '\0';
1781 
1782 	/*
1783 	 * Grab information encoded into our clo_flags field.
1784 	 */
1785 	ceen = clo_flags & EN_REG_CEEN;
1786 	tl = (clo_flags & CLO_FLAGS_TL_MASK) >> CLO_FLAGS_TL_SHIFT;
1787 	ttype = (clo_flags & CLO_FLAGS_TT_MASK) >> CLO_FLAGS_TT_SHIFT;
1788 
1789 	/*
1790 	 * handle the specific error
1791 	 */
1792 	aflt = (struct async_flt *)&ch_flt;
1793 	aflt->flt_id = gethrtime_waitfree();
1794 	aflt->flt_bus_id = getprocessorid();
1795 	aflt->flt_inst = CPU->cpu_id;
1796 	ch_flt.afsr_ext = t_afsr_ext;
1797 	ch_flt.afsr_errs = t_afsr_errs;
1798 	aflt->flt_stat = t_afsr;
1799 	aflt->flt_addr = t_afar;
1800 	aflt->flt_pc = (caddr_t)rp->r_pc;
1801 	aflt->flt_prot = AFLT_PROT_NONE;
1802 	aflt->flt_class = CPU_FAULT;
1803 	aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ?  1 : 0;
1804 	aflt->flt_tl = (uchar_t)tl;
1805 	aflt->flt_panic = ((tl != 0) || (aft_testfatal != 0) ||
1806 	    C_AFSR_PANIC(t_afsr_errs));
1807 	aflt->flt_core = (pflag & SDOCORE) ? 1 : 0;
1808 	aflt->flt_status = ((ttype == T_DATA_ERROR) ? ECC_D_TRAP : ECC_I_TRAP);
1809 
1810 	/*
1811 	 * If the trap occurred in privileged mode at TL=0, we need to check to
1812 	 * see if we were executing in the kernel under on_trap() or t_lofault
1813 	 * protection.  If so, modify the saved registers so that we return
1814 	 * from the trap to the appropriate trampoline routine.
1815 	 */
1816 	if (aflt->flt_priv && tl == 0) {
1817 		if (curthread->t_ontrap != NULL) {
1818 			on_trap_data_t *otp = curthread->t_ontrap;
1819 
1820 			if (otp->ot_prot & OT_DATA_EC) {
1821 				aflt->flt_prot = AFLT_PROT_EC;
1822 				otp->ot_trap |= OT_DATA_EC;
1823 				rp->r_pc = otp->ot_trampoline;
1824 				rp->r_npc = rp->r_pc + 4;
1825 				trampolined = 1;
1826 			}
1827 
1828 			if ((t_afsr & (C_AFSR_TO | C_AFSR_BERR)) &&
1829 			    (otp->ot_prot & OT_DATA_ACCESS)) {
1830 				aflt->flt_prot = AFLT_PROT_ACCESS;
1831 				otp->ot_trap |= OT_DATA_ACCESS;
1832 				rp->r_pc = otp->ot_trampoline;
1833 				rp->r_npc = rp->r_pc + 4;
1834 				trampolined = 1;
1835 				/*
1836 				 * for peeks and caut_gets errors are expected
1837 				 */
1838 				hp = (ddi_acc_hdl_t *)otp->ot_handle;
1839 				if (!hp)
1840 					expected = DDI_FM_ERR_PEEK;
1841 				else if (hp->ah_acc.devacc_attr_access ==
1842 				    DDI_CAUTIOUS_ACC)
1843 					expected = DDI_FM_ERR_EXPECTED;
1844 			}
1845 
1846 		} else if (curthread->t_lofault) {
1847 			aflt->flt_prot = AFLT_PROT_COPY;
1848 			rp->r_g1 = EFAULT;
1849 			rp->r_pc = curthread->t_lofault;
1850 			rp->r_npc = rp->r_pc + 4;
1851 			trampolined = 1;
1852 		}
1853 	}
1854 
1855 	/*
1856 	 * If we're in user mode or we're doing a protected copy, we either
1857 	 * want the ASTON code below to send a signal to the user process
1858 	 * or we want to panic if aft_panic is set.
1859 	 *
1860 	 * If we're in privileged mode and we're not doing a copy, then we
1861 	 * need to check if we've trampolined.  If we haven't trampolined,
1862 	 * we should panic.
1863 	 */
1864 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
1865 		if (t_afsr_errs &
1866 		    ((C_AFSR_ASYNC_ERRS | C_AFSR_EXT_ASYNC_ERRS) &
1867 		    ~(C_AFSR_BERR | C_AFSR_TO)))
1868 			aflt->flt_panic |= aft_panic;
1869 	} else if (!trampolined) {
1870 			aflt->flt_panic = 1;
1871 	}
1872 
1873 	/*
1874 	 * If we've trampolined due to a privileged TO or BERR, or if an
1875 	 * unprivileged TO or BERR occurred, we don't want to enqueue an
1876 	 * event for that TO or BERR.  Queue all other events (if any) besides
1877 	 * the TO/BERR.  Since we may not be enqueing any events, we need to
1878 	 * ignore the number of events queued.  If we haven't trampolined due
1879 	 * to a TO or BERR, just enqueue events normally.
1880 	 */
1881 	log_afsr = t_afsr_errs;
1882 	if (trampolined) {
1883 		log_afsr &= ~(C_AFSR_TO | C_AFSR_BERR);
1884 	} else if (!aflt->flt_priv) {
1885 		/*
1886 		 * User mode, suppress messages if
1887 		 * cpu_berr_to_verbose is not set.
1888 		 */
1889 		if (!cpu_berr_to_verbose)
1890 			log_afsr &= ~(C_AFSR_TO | C_AFSR_BERR);
1891 	}
1892 
1893 	/*
1894 	 * Log any errors that occurred
1895 	 */
1896 	if (((log_afsr &
1897 		((C_AFSR_ALL_ERRS | C_AFSR_EXT_ALL_ERRS) & ~C_AFSR_ME)) &&
1898 		cpu_queue_events(&ch_flt, pr_reason, log_afsr, clop) == 0) ||
1899 		(t_afsr_errs &
1900 		(C_AFSR_ASYNC_ERRS | C_AFSR_EXT_ASYNC_ERRS)) == 0) {
1901 		ch_flt.flt_type = CPU_INV_AFSR;
1902 		cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_INVALID_AFSR,
1903 		    (void *)&ch_flt, sizeof (ch_async_flt_t), ue_queue,
1904 		    aflt->flt_panic);
1905 	}
1906 
1907 	/*
1908 	 * Zero out + invalidate CPU logout.
1909 	 */
1910 	if (clop) {
1911 		bzero(clop, sizeof (ch_cpu_logout_t));
1912 		clop->clo_data.chd_afar = LOGOUT_INVALID;
1913 	}
1914 
1915 #if defined(JALAPENO) || defined(SERRANO)
1916 	/*
1917 	 * UE/RUE/BERR/TO: Call our bus nexus friends to check for
1918 	 * IO errors that may have resulted in this trap.
1919 	 */
1920 	if (t_afsr & (C_AFSR_UE|C_AFSR_RUE|C_AFSR_TO|C_AFSR_BERR)) {
1921 		cpu_run_bus_error_handlers(aflt, expected);
1922 	}
1923 
1924 	/*
1925 	 * UE/RUE: If UE or RUE is in memory, we need to flush the bad
1926 	 * line from the Ecache.  We also need to query the bus nexus for
1927 	 * fatal errors.  Attempts to do diagnostic read on caches may
1928 	 * introduce more errors (especially when the module is bad).
1929 	 */
1930 	if (t_afsr & (C_AFSR_UE|C_AFSR_RUE)) {
1931 		/*
1932 		 * Ask our bus nexus friends if they have any fatal errors.  If
1933 		 * so, they will log appropriate error messages.
1934 		 */
1935 		if (bus_func_invoke(BF_TYPE_UE) == BF_FATAL)
1936 			aflt->flt_panic = 1;
1937 
1938 		/*
1939 		 * We got a UE or RUE and are panicking, save the fault PA in
1940 		 * a known location so that the platform specific panic code
1941 		 * can check for copyback errors.
1942 		 */
1943 		if (aflt->flt_panic && cpu_flt_in_memory(&ch_flt, C_AFSR_UE)) {
1944 			panic_aflt = *aflt;
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * Flush Ecache line or entire Ecache
1950 	 */
1951 	if (t_afsr & (C_AFSR_UE | C_AFSR_RUE | C_AFSR_EDU | C_AFSR_BERR))
1952 		cpu_error_ecache_flush(&ch_flt);
1953 #else /* JALAPENO || SERRANO */
1954 	/*
1955 	 * UE/BERR/TO: Call our bus nexus friends to check for
1956 	 * IO errors that may have resulted in this trap.
1957 	 */
1958 	if (t_afsr & (C_AFSR_UE|C_AFSR_TO|C_AFSR_BERR)) {
1959 		cpu_run_bus_error_handlers(aflt, expected);
1960 	}
1961 
1962 	/*
1963 	 * UE: If the UE is in memory, we need to flush the bad
1964 	 * line from the Ecache.  We also need to query the bus nexus for
1965 	 * fatal errors.  Attempts to do diagnostic read on caches may
1966 	 * introduce more errors (especially when the module is bad).
1967 	 */
1968 	if (t_afsr & C_AFSR_UE) {
1969 		/*
1970 		 * Ask our legacy bus nexus friends if they have any fatal
1971 		 * errors.  If so, they will log appropriate error messages.
1972 		 */
1973 		if (bus_func_invoke(BF_TYPE_UE) == BF_FATAL)
1974 			aflt->flt_panic = 1;
1975 
1976 		/*
1977 		 * We got a UE and are panicking, save the fault PA in a known
1978 		 * location so that the platform specific panic code can check
1979 		 * for copyback errors.
1980 		 */
1981 		if (aflt->flt_panic && cpu_flt_in_memory(&ch_flt, C_AFSR_UE)) {
1982 			panic_aflt = *aflt;
1983 		}
1984 	}
1985 
1986 	/*
1987 	 * Flush Ecache line or entire Ecache
1988 	 */
1989 	if (t_afsr_errs &
1990 	    (C_AFSR_UE | C_AFSR_EDU | C_AFSR_BERR | C_AFSR_L3_EDU))
1991 		cpu_error_ecache_flush(&ch_flt);
1992 #endif /* JALAPENO || SERRANO */
1993 
1994 	/*
1995 	 * We carefully re-enable NCEEN and CEEN and then check if any deferred
1996 	 * or disrupting errors have happened.  We do this because if a
1997 	 * deferred or disrupting error had occurred with NCEEN/CEEN off, the
1998 	 * trap will not be taken when NCEEN/CEEN is re-enabled.  Note that
1999 	 * CEEN works differently on Cheetah than on Spitfire.  Also, we enable
2000 	 * NCEEN/CEEN *before* checking the AFSR to avoid the small window of a
2001 	 * deferred or disrupting error happening between checking the AFSR and
2002 	 * enabling NCEEN/CEEN.
2003 	 *
2004 	 * Note: CEEN reenabled only if it was on when trap taken.
2005 	 */
2006 	set_error_enable(get_error_enable() | (EN_REG_NCEEN | ceen));
2007 	if (clear_errors(&ch_flt)) {
2008 		/*
2009 		 * Check for secondary errors, and avoid panicking if we
2010 		 * have them
2011 		 */
2012 		if (cpu_check_secondary_errors(&ch_flt, t_afsr_errs,
2013 		    t_afar) == 0) {
2014 			aflt->flt_panic |= ((ch_flt.afsr_errs &
2015 			    (C_AFSR_ASYNC_ERRS | C_AFSR_EXT_ASYNC_ERRS)) != 0);
2016 		}
2017 		(void) cpu_queue_events(&ch_flt, pr_reason, ch_flt.afsr_errs,
2018 		    NULL);
2019 	}
2020 
2021 	/*
2022 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
2023 	 * be logged as part of the panic flow.
2024 	 */
2025 	if (aflt->flt_panic)
2026 		fm_panic("%sError(s)", pr_reason);
2027 
2028 	/*
2029 	 * If we queued an error and we are going to return from the trap and
2030 	 * the error was in user mode or inside of a copy routine, set AST flag
2031 	 * so the queue will be drained before returning to user mode.  The
2032 	 * AST processing will also act on our failure policy.
2033 	 */
2034 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
2035 		int pcb_flag = 0;
2036 
2037 		if (t_afsr_errs &
2038 		    (C_AFSR_ASYNC_ERRS | C_AFSR_EXT_ASYNC_ERRS &
2039 		    ~(C_AFSR_BERR | C_AFSR_TO)))
2040 			pcb_flag |= ASYNC_HWERR;
2041 
2042 		if (t_afsr & C_AFSR_BERR)
2043 			pcb_flag |= ASYNC_BERR;
2044 
2045 		if (t_afsr & C_AFSR_TO)
2046 			pcb_flag |= ASYNC_BTO;
2047 
2048 		ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
2049 		aston(curthread);
2050 	}
2051 }
2052 
2053 #if defined(CPU_IMP_L1_CACHE_PARITY)
2054 /*
2055  * Handling of data and instruction parity errors (traps 0x71, 0x72).
2056  *
2057  * For Panther, P$ data parity errors during floating point load hits
2058  * are also detected (reported as TT 0x71) and handled by this trap
2059  * handler.
2060  *
2061  * AFSR/AFAR are not set for parity errors, only TPC (a virtual address)
2062  * is available.
2063  */
2064 /*ARGSUSED*/
2065 void
2066 cpu_parity_error(struct regs *rp, uint_t flags, caddr_t tpc)
2067 {
2068 	ch_async_flt_t ch_flt;
2069 	struct async_flt *aflt;
2070 	uchar_t tl = ((flags & CH_ERR_TL) != 0);
2071 	uchar_t iparity = ((flags & CH_ERR_IPE) != 0);
2072 	uchar_t panic = ((flags & CH_ERR_PANIC) != 0);
2073 	char *error_class;
2074 
2075 	/*
2076 	 * Log the error.
2077 	 * For icache parity errors the fault address is the trap PC.
2078 	 * For dcache/pcache parity errors the instruction would have to
2079 	 * be decoded to determine the address and that isn't possible
2080 	 * at high PIL.
2081 	 */
2082 	bzero(&ch_flt, sizeof (ch_async_flt_t));
2083 	aflt = (struct async_flt *)&ch_flt;
2084 	aflt->flt_id = gethrtime_waitfree();
2085 	aflt->flt_bus_id = getprocessorid();
2086 	aflt->flt_inst = CPU->cpu_id;
2087 	aflt->flt_pc = tpc;
2088 	aflt->flt_addr = iparity ? (uint64_t)tpc : AFLT_INV_ADDR;
2089 	aflt->flt_prot = AFLT_PROT_NONE;
2090 	aflt->flt_class = CPU_FAULT;
2091 	aflt->flt_priv = (tl || (rp->r_tstate & TSTATE_PRIV)) ?  1 : 0;
2092 	aflt->flt_tl = tl;
2093 	aflt->flt_panic = panic;
2094 	aflt->flt_status = iparity ? ECC_IP_TRAP : ECC_DP_TRAP;
2095 	ch_flt.flt_type = iparity ? CPU_IC_PARITY : CPU_DC_PARITY;
2096 
2097 	if (iparity) {
2098 		cpu_icache_parity_info(&ch_flt);
2099 		if (ch_flt.parity_data.ipe.cpl_off != -1)
2100 			error_class = FM_EREPORT_CPU_USIII_IDSPE;
2101 		else if (ch_flt.parity_data.ipe.cpl_way != -1)
2102 			error_class = FM_EREPORT_CPU_USIII_ITSPE;
2103 		else
2104 			error_class = FM_EREPORT_CPU_USIII_IPE;
2105 		aflt->flt_payload = FM_EREPORT_PAYLOAD_ICACHE_PE;
2106 	} else {
2107 		cpu_dcache_parity_info(&ch_flt);
2108 		if (ch_flt.parity_data.dpe.cpl_off != -1)
2109 			error_class = FM_EREPORT_CPU_USIII_DDSPE;
2110 		else if (ch_flt.parity_data.dpe.cpl_way != -1)
2111 			error_class = FM_EREPORT_CPU_USIII_DTSPE;
2112 		else
2113 			error_class = FM_EREPORT_CPU_USIII_DPE;
2114 		aflt->flt_payload = FM_EREPORT_PAYLOAD_DCACHE_PE;
2115 		/*
2116 		 * For panther we also need to check the P$ for parity errors.
2117 		 */
2118 		if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
2119 			cpu_pcache_parity_info(&ch_flt);
2120 			if (ch_flt.parity_data.dpe.cpl_cache == CPU_PC_PARITY) {
2121 				error_class = FM_EREPORT_CPU_USIII_PDSPE;
2122 				aflt->flt_payload =
2123 				    FM_EREPORT_PAYLOAD_PCACHE_PE;
2124 			}
2125 		}
2126 	}
2127 
2128 	cpu_errorq_dispatch(error_class, (void *)&ch_flt,
2129 	    sizeof (ch_async_flt_t), ue_queue, aflt->flt_panic);
2130 
2131 	if (iparity) {
2132 		/*
2133 		 * Invalidate entire I$.
2134 		 * This is required due to the use of diagnostic ASI
2135 		 * accesses that may result in a loss of I$ coherency.
2136 		 */
2137 		if (cache_boot_state & DCU_IC) {
2138 			flush_icache();
2139 		}
2140 		/*
2141 		 * According to section P.3.1 of the Panther PRM, we
2142 		 * need to do a little more for recovery on those
2143 		 * CPUs after encountering an I$ parity error.
2144 		 */
2145 		if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
2146 			flush_ipb();
2147 			correct_dcache_parity(dcache_size,
2148 			    dcache_linesize);
2149 			flush_pcache();
2150 		}
2151 	} else {
2152 		/*
2153 		 * Since the valid bit is ignored when checking parity the
2154 		 * D$ data and tag must also be corrected.  Set D$ data bits
2155 		 * to zero and set utag to 0, 1, 2, 3.
2156 		 */
2157 		correct_dcache_parity(dcache_size, dcache_linesize);
2158 
2159 		/*
2160 		 * According to section P.3.3 of the Panther PRM, we
2161 		 * need to do a little more for recovery on those
2162 		 * CPUs after encountering a D$ or P$ parity error.
2163 		 *
2164 		 * As far as clearing P$ parity errors, it is enough to
2165 		 * simply invalidate all entries in the P$ since P$ parity
2166 		 * error traps are only generated for floating point load
2167 		 * hits.
2168 		 */
2169 		if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
2170 			flush_icache();
2171 			flush_ipb();
2172 			flush_pcache();
2173 		}
2174 	}
2175 
2176 	/*
2177 	 * Invalidate entire D$ if it was enabled.
2178 	 * This is done to avoid stale data in the D$ which might
2179 	 * occur with the D$ disabled and the trap handler doing
2180 	 * stores affecting lines already in the D$.
2181 	 */
2182 	if (cache_boot_state & DCU_DC) {
2183 		flush_dcache();
2184 	}
2185 
2186 	/*
2187 	 * Restore caches to their bootup state.
2188 	 */
2189 	set_dcu(get_dcu() | cache_boot_state);
2190 
2191 	/*
2192 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
2193 	 * be logged as part of the panic flow.
2194 	 */
2195 	if (aflt->flt_panic)
2196 		fm_panic("%sError(s)", iparity ? "IPE " : "DPE ");
2197 
2198 	/*
2199 	 * If this error occurred at TL>0 then flush the E$ here to reduce
2200 	 * the chance of getting an unrecoverable Fast ECC error.  This
2201 	 * flush will evict the part of the parity trap handler that is run
2202 	 * at TL>1.
2203 	 */
2204 	if (tl) {
2205 		cpu_flush_ecache();
2206 	}
2207 }
2208 
2209 /*
2210  * On an I$ parity error, mark the appropriate entries in the ch_async_flt_t
2211  * to indicate which portions of the captured data should be in the ereport.
2212  */
2213 void
2214 cpu_async_log_ic_parity_err(ch_async_flt_t *ch_flt)
2215 {
2216 	int way = ch_flt->parity_data.ipe.cpl_way;
2217 	int offset = ch_flt->parity_data.ipe.cpl_off;
2218 	int tag_index;
2219 	struct async_flt *aflt = (struct async_flt *)ch_flt;
2220 
2221 
2222 	if ((offset != -1) || (way != -1)) {
2223 		/*
2224 		 * Parity error in I$ tag or data
2225 		 */
2226 		tag_index = ch_flt->parity_data.ipe.cpl_ic[way].ic_idx;
2227 		if (IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
2228 			ch_flt->parity_data.ipe.cpl_ic[way].ic_way =
2229 			    PN_ICIDX_TO_WAY(tag_index);
2230 		else
2231 			ch_flt->parity_data.ipe.cpl_ic[way].ic_way =
2232 			    CH_ICIDX_TO_WAY(tag_index);
2233 		ch_flt->parity_data.ipe.cpl_ic[way].ic_logflag =
2234 		    IC_LOGFLAG_MAGIC;
2235 	} else {
2236 		/*
2237 		 * Parity error was not identified.
2238 		 * Log tags and data for all ways.
2239 		 */
2240 		for (way = 0; way < CH_ICACHE_NWAY; way++) {
2241 			tag_index = ch_flt->parity_data.ipe.cpl_ic[way].ic_idx;
2242 			if (IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
2243 				ch_flt->parity_data.ipe.cpl_ic[way].ic_way =
2244 				    PN_ICIDX_TO_WAY(tag_index);
2245 			else
2246 				ch_flt->parity_data.ipe.cpl_ic[way].ic_way =
2247 				    CH_ICIDX_TO_WAY(tag_index);
2248 			ch_flt->parity_data.ipe.cpl_ic[way].ic_logflag =
2249 			    IC_LOGFLAG_MAGIC;
2250 		}
2251 	}
2252 }
2253 
2254 /*
2255  * On an D$ parity error, mark the appropriate entries in the ch_async_flt_t
2256  * to indicate which portions of the captured data should be in the ereport.
2257  */
2258 void
2259 cpu_async_log_dc_parity_err(ch_async_flt_t *ch_flt)
2260 {
2261 	int way = ch_flt->parity_data.dpe.cpl_way;
2262 	int offset = ch_flt->parity_data.dpe.cpl_off;
2263 	int tag_index;
2264 
2265 	if (offset != -1) {
2266 		/*
2267 		 * Parity error in D$ or P$ data array.
2268 		 *
2269 		 * First check to see whether the parity error is in D$ or P$
2270 		 * since P$ data parity errors are reported in Panther using
2271 		 * the same trap.
2272 		 */
2273 		if (ch_flt->parity_data.dpe.cpl_cache == CPU_PC_PARITY) {
2274 			tag_index = ch_flt->parity_data.dpe.cpl_pc[way].pc_idx;
2275 			ch_flt->parity_data.dpe.cpl_pc[way].pc_way =
2276 			    CH_PCIDX_TO_WAY(tag_index);
2277 			ch_flt->parity_data.dpe.cpl_pc[way].pc_logflag =
2278 			    PC_LOGFLAG_MAGIC;
2279 		} else {
2280 			tag_index = ch_flt->parity_data.dpe.cpl_dc[way].dc_idx;
2281 			ch_flt->parity_data.dpe.cpl_dc[way].dc_way =
2282 			    CH_DCIDX_TO_WAY(tag_index);
2283 			ch_flt->parity_data.dpe.cpl_dc[way].dc_logflag =
2284 			    DC_LOGFLAG_MAGIC;
2285 		}
2286 	} else if (way != -1) {
2287 		/*
2288 		 * Parity error in D$ tag.
2289 		 */
2290 		tag_index = ch_flt->parity_data.dpe.cpl_dc[way].dc_idx;
2291 		ch_flt->parity_data.dpe.cpl_dc[way].dc_way =
2292 		    CH_DCIDX_TO_WAY(tag_index);
2293 		ch_flt->parity_data.dpe.cpl_dc[way].dc_logflag =
2294 		    DC_LOGFLAG_MAGIC;
2295 	}
2296 }
2297 #endif	/* CPU_IMP_L1_CACHE_PARITY */
2298 
2299 /*
2300  * The cpu_async_log_err() function is called via the [uc]e_drain() function to
2301  * post-process CPU events that are dequeued.  As such, it can be invoked
2302  * from softint context, from AST processing in the trap() flow, or from the
2303  * panic flow.  We decode the CPU-specific data, and take appropriate actions.
2304  * Historically this entry point was used to log the actual cmn_err(9F) text;
2305  * now with FMA it is used to prepare 'flt' to be converted into an ereport.
2306  * With FMA this function now also returns a flag which indicates to the
2307  * caller whether the ereport should be posted (1) or suppressed (0).
2308  */
2309 static int
2310 cpu_async_log_err(void *flt, errorq_elem_t *eqep)
2311 {
2312 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
2313 	struct async_flt *aflt = (struct async_flt *)flt;
2314 	uint64_t errors;
2315 	extern void memscrub_induced_error(void);
2316 
2317 	switch (ch_flt->flt_type) {
2318 	case CPU_INV_AFSR:
2319 		/*
2320 		 * If it is a disrupting trap and the AFSR is zero, then
2321 		 * the event has probably already been noted. Do not post
2322 		 * an ereport.
2323 		 */
2324 		if ((aflt->flt_status & ECC_C_TRAP) &&
2325 		    (!(aflt->flt_stat & C_AFSR_MASK)))
2326 			return (0);
2327 		else
2328 			return (1);
2329 	case CPU_TO:
2330 	case CPU_BERR:
2331 	case CPU_FATAL:
2332 	case CPU_FPUERR:
2333 		return (1);
2334 
2335 	case CPU_UE_ECACHE_RETIRE:
2336 		cpu_log_err(aflt);
2337 		cpu_page_retire(ch_flt);
2338 		return (1);
2339 
2340 	/*
2341 	 * Cases where we may want to suppress logging or perform
2342 	 * extended diagnostics.
2343 	 */
2344 	case CPU_CE:
2345 	case CPU_EMC:
2346 		/*
2347 		 * We want to skip logging and further classification
2348 		 * only if ALL the following conditions are true:
2349 		 *
2350 		 *	1. There is only one error
2351 		 *	2. That error is a correctable memory error
2352 		 *	3. The error is caused by the memory scrubber (in
2353 		 *	   which case the error will have occurred under
2354 		 *	   on_trap protection)
2355 		 *	4. The error is on a retired page
2356 		 *
2357 		 * Note: AFLT_PROT_EC is used places other than the memory
2358 		 * scrubber.  However, none of those errors should occur
2359 		 * on a retired page.
2360 		 */
2361 		if ((ch_flt->afsr_errs &
2362 		    (C_AFSR_ALL_ERRS | C_AFSR_EXT_ALL_ERRS)) == C_AFSR_CE &&
2363 		    aflt->flt_prot == AFLT_PROT_EC) {
2364 
2365 			if (page_retire_check(aflt->flt_addr, NULL) == 0) {
2366 			    if (ch_flt->flt_trapped_ce & CE_CEEN_DEFER) {
2367 
2368 				/*
2369 				 * Since we're skipping logging, we'll need
2370 				 * to schedule the re-enabling of CEEN
2371 				 */
2372 				(void) timeout(cpu_delayed_check_ce_errors,
2373 				    (void *)(uintptr_t)aflt->flt_inst,
2374 				    drv_usectohz((clock_t)cpu_ceen_delay_secs
2375 						 * MICROSEC));
2376 			    }
2377 				/*
2378 				 * Inform memscrubber - scrubbing induced
2379 				 * CE on a retired page.
2380 				 */
2381 				memscrub_induced_error();
2382 				return (0);
2383 			}
2384 		}
2385 
2386 		/*
2387 		 * Perform/schedule further classification actions, but
2388 		 * only if the page is healthy (we don't want bad
2389 		 * pages inducing too much diagnostic activity).  If we could
2390 		 * not find a page pointer then we also skip this.  If
2391 		 * ce_scrub_xdiag_recirc returns nonzero then it has chosen
2392 		 * to copy and recirculate the event (for further diagnostics)
2393 		 * and we should not proceed to log it here.
2394 		 *
2395 		 * This must be the last step here before the cpu_log_err()
2396 		 * below - if an event recirculates cpu_ce_log_err() will
2397 		 * not call the current function but just proceed directly
2398 		 * to cpu_ereport_post after the cpu_log_err() avoided below.
2399 		 *
2400 		 * Note: Check cpu_impl_async_log_err if changing this
2401 		 */
2402 		if (page_retire_check(aflt->flt_addr, &errors) == EINVAL) {
2403 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
2404 			    CE_XDIAG_SKIP_NOPP);
2405 		} else {
2406 			if (errors != PR_OK) {
2407 				CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
2408 				    CE_XDIAG_SKIP_PAGEDET);
2409 			} else if (ce_scrub_xdiag_recirc(aflt, ce_queue, eqep,
2410 			    offsetof(ch_async_flt_t, cmn_asyncflt))) {
2411 				return (0);
2412 			}
2413 		}
2414 		/*FALLTHRU*/
2415 
2416 	/*
2417 	 * Cases where we just want to report the error and continue.
2418 	 */
2419 	case CPU_CE_ECACHE:
2420 	case CPU_UE_ECACHE:
2421 	case CPU_IV:
2422 	case CPU_ORPH:
2423 		cpu_log_err(aflt);
2424 		return (1);
2425 
2426 	/*
2427 	 * Cases where we want to fall through to handle panicking.
2428 	 */
2429 	case CPU_UE:
2430 		/*
2431 		 * We want to skip logging in the same conditions as the
2432 		 * CE case.  In addition, we want to make sure we're not
2433 		 * panicking.
2434 		 */
2435 		if (!panicstr && (ch_flt->afsr_errs &
2436 		    (C_AFSR_ALL_ERRS | C_AFSR_EXT_ALL_ERRS)) == C_AFSR_UE &&
2437 		    aflt->flt_prot == AFLT_PROT_EC) {
2438 			if (page_retire_check(aflt->flt_addr, NULL) == 0) {
2439 				/* Zero the address to clear the error */
2440 				softcall(ecc_page_zero, (void *)aflt->flt_addr);
2441 				/*
2442 				 * Inform memscrubber - scrubbing induced
2443 				 * UE on a retired page.
2444 				 */
2445 				memscrub_induced_error();
2446 				return (0);
2447 			}
2448 		}
2449 		cpu_log_err(aflt);
2450 		break;
2451 
2452 	default:
2453 		/*
2454 		 * If the us3_common.c code doesn't know the flt_type, it may
2455 		 * be an implementation-specific code.  Call into the impldep
2456 		 * backend to find out what to do: if it tells us to continue,
2457 		 * break and handle as if falling through from a UE; if not,
2458 		 * the impldep backend has handled the error and we're done.
2459 		 */
2460 		switch (cpu_impl_async_log_err(flt, eqep)) {
2461 		case CH_ASYNC_LOG_DONE:
2462 			return (1);
2463 		case CH_ASYNC_LOG_RECIRC:
2464 			return (0);
2465 		case CH_ASYNC_LOG_CONTINUE:
2466 			break; /* continue on to handle UE-like error */
2467 		default:
2468 			cmn_err(CE_WARN, "discarding error 0x%p with "
2469 			    "invalid fault type (0x%x)",
2470 			    (void *)aflt, ch_flt->flt_type);
2471 			return (0);
2472 		}
2473 	}
2474 
2475 	/* ... fall through from the UE case */
2476 
2477 	if (aflt->flt_addr != AFLT_INV_ADDR && aflt->flt_in_memory) {
2478 		if (!panicstr) {
2479 			cpu_page_retire(ch_flt);
2480 		} else {
2481 			/*
2482 			 * Clear UEs on panic so that we don't
2483 			 * get haunted by them during panic or
2484 			 * after reboot
2485 			 */
2486 			cpu_clearphys(aflt);
2487 			(void) clear_errors(NULL);
2488 		}
2489 	}
2490 
2491 	return (1);
2492 }
2493 
2494 /*
2495  * Retire the bad page that may contain the flushed error.
2496  */
2497 void
2498 cpu_page_retire(ch_async_flt_t *ch_flt)
2499 {
2500 	struct async_flt *aflt = (struct async_flt *)ch_flt;
2501 	(void) page_retire(aflt->flt_addr, PR_UE);
2502 }
2503 
2504 /*
2505  * Return true if the error specified in the AFSR indicates
2506  * an E$ data error (L2$ for Cheetah/Cheetah+/Jaguar, L3$
2507  * for Panther, none for Jalapeno/Serrano).
2508  */
2509 /* ARGSUSED */
2510 static int
2511 cpu_error_is_ecache_data(int cpuid, uint64_t t_afsr)
2512 {
2513 #if defined(JALAPENO) || defined(SERRANO)
2514 	return (0);
2515 #elif defined(CHEETAH_PLUS)
2516 	if (IS_PANTHER(cpunodes[cpuid].implementation))
2517 		return ((t_afsr & C_AFSR_EXT_L3_DATA_ERRS) != 0);
2518 	return ((t_afsr & C_AFSR_EC_DATA_ERRS) != 0);
2519 #else	/* CHEETAH_PLUS */
2520 	return ((t_afsr & C_AFSR_EC_DATA_ERRS) != 0);
2521 #endif
2522 }
2523 
2524 /*
2525  * The cpu_log_err() function is called by cpu_async_log_err() to perform the
2526  * generic event post-processing for correctable and uncorrectable memory,
2527  * E$, and MTag errors.  Historically this entry point was used to log bits of
2528  * common cmn_err(9F) text; now with FMA it is used to prepare 'flt' to be
2529  * converted into an ereport.  In addition, it transmits the error to any
2530  * platform-specific service-processor FRU logging routines, if available.
2531  */
2532 void
2533 cpu_log_err(struct async_flt *aflt)
2534 {
2535 	char unum[UNUM_NAMLEN];
2536 	int synd_status, synd_code, afar_status;
2537 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
2538 
2539 	if (cpu_error_is_ecache_data(aflt->flt_inst, ch_flt->flt_bit))
2540 		aflt->flt_status |= ECC_ECACHE;
2541 	else
2542 		aflt->flt_status &= ~ECC_ECACHE;
2543 	/*
2544 	 * Determine syndrome status.
2545 	 */
2546 	synd_status = afsr_to_synd_status(aflt->flt_inst,
2547 	    ch_flt->afsr_errs, ch_flt->flt_bit);
2548 
2549 	/*
2550 	 * Determine afar status.
2551 	 */
2552 	if (pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT))
2553 		afar_status = afsr_to_afar_status(ch_flt->afsr_errs,
2554 				ch_flt->flt_bit);
2555 	else
2556 		afar_status = AFLT_STAT_INVALID;
2557 
2558 	synd_code = synd_to_synd_code(synd_status,
2559 	    aflt->flt_synd, ch_flt->flt_bit);
2560 
2561 	/*
2562 	 * If afar status is not invalid do a unum lookup.
2563 	 */
2564 	if (afar_status != AFLT_STAT_INVALID) {
2565 		(void) cpu_get_mem_unum_synd(synd_code, aflt, unum);
2566 	} else {
2567 		unum[0] = '\0';
2568 	}
2569 
2570 	/*
2571 	 * Do not send the fruid message (plat_ecc_error_data_t)
2572 	 * to the SC if it can handle the enhanced error information
2573 	 * (plat_ecc_error2_data_t) or when the tunable
2574 	 * ecc_log_fruid_enable is set to 0.
2575 	 */
2576 
2577 	if (&plat_ecc_capability_sc_get &&
2578 	    plat_ecc_capability_sc_get(PLAT_ECC_ERROR_MESSAGE)) {
2579 		if (&plat_log_fruid_error)
2580 			plat_log_fruid_error(synd_code, aflt, unum,
2581 			    ch_flt->flt_bit);
2582 	}
2583 
2584 	if (aflt->flt_func != NULL)
2585 		aflt->flt_func(aflt, unum);
2586 
2587 	if (afar_status != AFLT_STAT_INVALID)
2588 		cpu_log_diag_info(ch_flt);
2589 
2590 	/*
2591 	 * If we have a CEEN error , we do not reenable CEEN until after
2592 	 * we exit the trap handler. Otherwise, another error may
2593 	 * occur causing the handler to be entered recursively.
2594 	 * We set a timeout to trigger in cpu_ceen_delay_secs seconds,
2595 	 * to try and ensure that the CPU makes progress in the face
2596 	 * of a CE storm.
2597 	 */
2598 	if (ch_flt->flt_trapped_ce & CE_CEEN_DEFER) {
2599 		(void) timeout(cpu_delayed_check_ce_errors,
2600 		    (void *)(uintptr_t)aflt->flt_inst,
2601 		    drv_usectohz((clock_t)cpu_ceen_delay_secs * MICROSEC));
2602 	}
2603 }
2604 
2605 /*
2606  * Invoked by error_init() early in startup and therefore before
2607  * startup_errorq() is called to drain any error Q -
2608  *
2609  * startup()
2610  *   startup_end()
2611  *     error_init()
2612  *       cpu_error_init()
2613  * errorq_init()
2614  *   errorq_drain()
2615  * start_other_cpus()
2616  *
2617  * The purpose of this routine is to create error-related taskqs.  Taskqs
2618  * are used for this purpose because cpu_lock can't be grabbed from interrupt
2619  * context.
2620  */
2621 void
2622 cpu_error_init(int items)
2623 {
2624 	/*
2625 	 * Create taskq(s) to reenable CE
2626 	 */
2627 	ch_check_ce_tq = taskq_create("cheetah_check_ce", 1, minclsyspri,
2628 	    items, items, TASKQ_PREPOPULATE);
2629 }
2630 
2631 void
2632 cpu_ce_log_err(struct async_flt *aflt, errorq_elem_t *eqep)
2633 {
2634 	char unum[UNUM_NAMLEN];
2635 	int len;
2636 
2637 	switch (aflt->flt_class) {
2638 	case CPU_FAULT:
2639 		cpu_ereport_init(aflt);
2640 		if (cpu_async_log_err(aflt, eqep))
2641 			cpu_ereport_post(aflt);
2642 		break;
2643 
2644 	case BUS_FAULT:
2645 		if (aflt->flt_func != NULL) {
2646 			(void) cpu_get_mem_unum_aflt(AFLT_STAT_VALID, aflt,
2647 			    unum, UNUM_NAMLEN, &len);
2648 			aflt->flt_func(aflt, unum);
2649 		}
2650 		break;
2651 
2652 	case RECIRC_CPU_FAULT:
2653 		aflt->flt_class = CPU_FAULT;
2654 		cpu_log_err(aflt);
2655 		cpu_ereport_post(aflt);
2656 		break;
2657 
2658 	case RECIRC_BUS_FAULT:
2659 		ASSERT(aflt->flt_class != RECIRC_BUS_FAULT);
2660 		/*FALLTHRU*/
2661 	default:
2662 		cmn_err(CE_WARN, "discarding CE error 0x%p with invalid "
2663 		    "fault class (0x%x)", (void *)aflt, aflt->flt_class);
2664 		return;
2665 	}
2666 }
2667 
2668 /*
2669  * Scrub and classify a CE.  This function must not modify the
2670  * fault structure passed to it but instead should return the classification
2671  * information.
2672  */
2673 
2674 static uchar_t
2675 cpu_ce_scrub_mem_err_common(struct async_flt *ecc, boolean_t logout_tried)
2676 {
2677 	uchar_t disp = CE_XDIAG_EXTALG;
2678 	on_trap_data_t otd;
2679 	uint64_t orig_err;
2680 	ch_cpu_logout_t *clop;
2681 
2682 	/*
2683 	 * Clear CEEN.  CPU CE TL > 0 trap handling will already have done
2684 	 * this, but our other callers have not.  Disable preemption to
2685 	 * avoid CPU migration so that we restore CEEN on the correct
2686 	 * cpu later.
2687 	 *
2688 	 * CEEN is cleared so that further CEs that our instruction and
2689 	 * data footprint induce do not cause use to either creep down
2690 	 * kernel stack to the point of overflow, or do so much CE
2691 	 * notification as to make little real forward progress.
2692 	 *
2693 	 * NCEEN must not be cleared.  However it is possible that
2694 	 * our accesses to the flt_addr may provoke a bus error or timeout
2695 	 * if the offending address has just been unconfigured as part of
2696 	 * a DR action.  So we must operate under on_trap protection.
2697 	 */
2698 	kpreempt_disable();
2699 	orig_err = get_error_enable();
2700 	if (orig_err & EN_REG_CEEN)
2701 	    set_error_enable(orig_err & ~EN_REG_CEEN);
2702 
2703 	/*
2704 	 * Our classification algorithm includes the line state before
2705 	 * the scrub; we'd like this captured after the detection and
2706 	 * before the algorithm below - the earlier the better.
2707 	 *
2708 	 * If we've come from a cpu CE trap then this info already exists
2709 	 * in the cpu logout area.
2710 	 *
2711 	 * For a CE detected by memscrub for which there was no trap
2712 	 * (running with CEEN off) cpu_log_and_clear_ce has called
2713 	 * cpu_ce_delayed_ec_logout to capture some cache data, and
2714 	 * marked the fault structure as incomplete as a flag to later
2715 	 * logging code.
2716 	 *
2717 	 * If called directly from an IO detected CE there has been
2718 	 * no line data capture.  In this case we logout to the cpu logout
2719 	 * area - that's appropriate since it's the cpu cache data we need
2720 	 * for classification.  We thus borrow the cpu logout area for a
2721 	 * short time, and cpu_ce_delayed_ec_logout will mark it as busy in
2722 	 * this time (we will invalidate it again below).
2723 	 *
2724 	 * If called from the partner check xcall handler then this cpu
2725 	 * (the partner) has not necessarily experienced a CE at this
2726 	 * address.  But we want to capture line state before its scrub
2727 	 * attempt since we use that in our classification.
2728 	 */
2729 	if (logout_tried == B_FALSE) {
2730 		if (!cpu_ce_delayed_ec_logout(ecc->flt_addr))
2731 			disp |= CE_XDIAG_NOLOGOUT;
2732 	}
2733 
2734 	/*
2735 	 * Scrub memory, then check AFSR for errors.  The AFAR we scrub may
2736 	 * no longer be valid (if DR'd since the initial event) so we
2737 	 * perform this scrub under on_trap protection.  If this access is
2738 	 * ok then further accesses below will also be ok - DR cannot
2739 	 * proceed while this thread is active (preemption is disabled);
2740 	 * to be safe we'll nonetheless use on_trap again below.
2741 	 */
2742 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2743 		cpu_scrubphys(ecc);
2744 	} else {
2745 		no_trap();
2746 		if (orig_err & EN_REG_CEEN)
2747 		    set_error_enable(orig_err);
2748 		kpreempt_enable();
2749 		return (disp);
2750 	}
2751 	no_trap();
2752 
2753 	/*
2754 	 * Did the casx read of the scrub log a CE that matches the AFAR?
2755 	 * Note that it's quite possible that the read sourced the data from
2756 	 * another cpu.
2757 	 */
2758 	if (clear_ecc(ecc))
2759 		disp |= CE_XDIAG_CE1;
2760 
2761 	/*
2762 	 * Read the data again.  This time the read is very likely to
2763 	 * come from memory since the scrub induced a writeback to memory.
2764 	 */
2765 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2766 		(void) lddphys(P2ALIGN(ecc->flt_addr, 8));
2767 	} else {
2768 		no_trap();
2769 		if (orig_err & EN_REG_CEEN)
2770 		    set_error_enable(orig_err);
2771 		kpreempt_enable();
2772 		return (disp);
2773 	}
2774 	no_trap();
2775 
2776 	/* Did that read induce a CE that matches the AFAR? */
2777 	if (clear_ecc(ecc))
2778 		disp |= CE_XDIAG_CE2;
2779 
2780 	/*
2781 	 * Look at the logout information and record whether we found the
2782 	 * line in l2/l3 cache.  For Panther we are interested in whether
2783 	 * we found it in either cache (it won't reside in both but
2784 	 * it is possible to read it that way given the moving target).
2785 	 */
2786 	clop = CPU_PRIVATE(CPU) ? CPU_PRIVATE_PTR(CPU, chpr_cecc_logout) : NULL;
2787 	if (!(disp & CE_XDIAG_NOLOGOUT) && clop &&
2788 	    clop->clo_data.chd_afar != LOGOUT_INVALID) {
2789 		int hit, level;
2790 		int state;
2791 		int totalsize;
2792 		ch_ec_data_t *ecp;
2793 
2794 		/*
2795 		 * If hit is nonzero then a match was found and hit will
2796 		 * be one greater than the index which hit.  For Panther we
2797 		 * also need to pay attention to level to see which of l2$ or
2798 		 * l3$ it hit in.
2799 		 */
2800 		hit = cpu_matching_ecache_line(ecc->flt_addr, &clop->clo_data,
2801 		    0, &level);
2802 
2803 		if (hit) {
2804 			--hit;
2805 			disp |= CE_XDIAG_AFARMATCH;
2806 
2807 			if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
2808 				if (level == 2)
2809 					ecp = &clop->clo_data.chd_l2_data[hit];
2810 				else
2811 					ecp = &clop->clo_data.chd_ec_data[hit];
2812 			} else {
2813 				ASSERT(level == 2);
2814 				ecp = &clop->clo_data.chd_ec_data[hit];
2815 			}
2816 			totalsize = cpunodes[CPU->cpu_id].ecache_size;
2817 			state = cpu_ectag_pa_to_subblk_state(totalsize,
2818 			    ecc->flt_addr, ecp->ec_tag);
2819 
2820 			/*
2821 			 * Cheetah variants use different state encodings -
2822 			 * the CH_ECSTATE_* defines vary depending on the
2823 			 * module we're compiled for.  Translate into our
2824 			 * one true version.  Conflate Owner-Shared state
2825 			 * of SSM mode with Owner as victimisation of such
2826 			 * lines may cause a writeback.
2827 			 */
2828 			switch (state) {
2829 			case CH_ECSTATE_MOD:
2830 				disp |= EC_STATE_M;
2831 				break;
2832 
2833 			case CH_ECSTATE_OWN:
2834 			case CH_ECSTATE_OWS:
2835 				disp |= EC_STATE_O;
2836 				break;
2837 
2838 			case CH_ECSTATE_EXL:
2839 				disp |= EC_STATE_E;
2840 				break;
2841 
2842 			case CH_ECSTATE_SHR:
2843 				disp |= EC_STATE_S;
2844 				break;
2845 
2846 			default:
2847 				disp |= EC_STATE_I;
2848 				break;
2849 			}
2850 		}
2851 
2852 		/*
2853 		 * If we initiated the delayed logout then we are responsible
2854 		 * for invalidating the logout area.
2855 		 */
2856 		if (logout_tried == B_FALSE) {
2857 			bzero(clop, sizeof (ch_cpu_logout_t));
2858 			clop->clo_data.chd_afar = LOGOUT_INVALID;
2859 		}
2860 	}
2861 
2862 	/*
2863 	 * Re-enable CEEN if we turned it off.
2864 	 */
2865 	if (orig_err & EN_REG_CEEN)
2866 	    set_error_enable(orig_err);
2867 	kpreempt_enable();
2868 
2869 	return (disp);
2870 }
2871 
2872 /*
2873  * Scrub a correctable memory error and collect data for classification
2874  * of CE type.  This function is called in the detection path, ie tl0 handling
2875  * of a correctable error trap (cpus) or interrupt (IO) at high PIL.
2876  */
2877 void
2878 cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t logout_tried)
2879 {
2880 	/*
2881 	 * Cheetah CE classification does not set any bits in flt_status.
2882 	 * Instead we will record classification datapoints in flt_disp.
2883 	 */
2884 	ecc->flt_status &= ~(ECC_INTERMITTENT | ECC_PERSISTENT | ECC_STICKY);
2885 
2886 	/*
2887 	 * To check if the error detected by IO is persistent, sticky or
2888 	 * intermittent.  This is noticed by clear_ecc().
2889 	 */
2890 	if (ecc->flt_status & ECC_IOBUS)
2891 		ecc->flt_stat = C_AFSR_MEMORY;
2892 
2893 	/*
2894 	 * Record information from this first part of the algorithm in
2895 	 * flt_disp.
2896 	 */
2897 	ecc->flt_disp = cpu_ce_scrub_mem_err_common(ecc, logout_tried);
2898 }
2899 
2900 /*
2901  * Select a partner to perform a further CE classification check from.
2902  * Must be called with kernel preemption disabled (to stop the cpu list
2903  * from changing).  The detecting cpu we are partnering has cpuid
2904  * aflt->flt_inst; we might not be running on the detecting cpu.
2905  *
2906  * Restrict choice to active cpus in the same cpu partition as ourselves in
2907  * an effort to stop bad cpus in one partition causing other partitions to
2908  * perform excessive diagnostic activity.  Actually since the errorq drain
2909  * is run from a softint most of the time and that is a global mechanism
2910  * this isolation is only partial.  Return NULL if we fail to find a
2911  * suitable partner.
2912  *
2913  * We prefer a partner that is in a different latency group to ourselves as
2914  * we will share fewer datapaths.  If such a partner is unavailable then
2915  * choose one in the same lgroup but prefer a different chip and only allow
2916  * a sibling core if flags includes PTNR_SIBLINGOK.  If all else fails and
2917  * flags includes PTNR_SELFOK then permit selection of the original detector.
2918  *
2919  * We keep a cache of the last partner selected for a cpu, and we'll try to
2920  * use that previous partner if no more than cpu_ce_ptnr_cachetime_sec seconds
2921  * have passed since that selection was made.  This provides the benefit
2922  * of the point-of-view of different partners over time but without
2923  * requiring frequent cpu list traversals.
2924  */
2925 
2926 #define	PTNR_SIBLINGOK	0x1	/* Allow selection of sibling core */
2927 #define	PTNR_SELFOK	0x2	/* Allow selection of cpu to "partner" itself */
2928 
2929 static cpu_t *
2930 ce_ptnr_select(struct async_flt *aflt, int flags, int *typep)
2931 {
2932 	cpu_t *sp, *dtcr, *ptnr, *locptnr, *sibptnr;
2933 	hrtime_t lasttime, thistime;
2934 
2935 	ASSERT(curthread->t_preempt > 0 || getpil() >= DISP_LEVEL);
2936 
2937 	dtcr = cpu[aflt->flt_inst];
2938 
2939 	/*
2940 	 * Short-circuit for the following cases:
2941 	 *	. the dtcr is not flagged active
2942 	 *	. there is just one cpu present
2943 	 *	. the detector has disappeared
2944 	 *	. we were given a bad flt_inst cpuid; this should not happen
2945 	 *	  (eg PCI code now fills flt_inst) but if it does it is no
2946 	 *	  reason to panic.
2947 	 *	. there is just one cpu left online in the cpu partition
2948 	 *
2949 	 * If we return NULL after this point then we do not update the
2950 	 * chpr_ceptnr_seltime which will cause us to perform a full lookup
2951 	 * again next time; this is the case where the only other cpu online
2952 	 * in the detector's partition is on the same chip as the detector
2953 	 * and since CEEN re-enable is throttled even that case should not
2954 	 * hurt performance.
2955 	 */
2956 	if (dtcr == NULL || !cpu_flagged_active(dtcr->cpu_flags)) {
2957 		return (NULL);
2958 	}
2959 	if (ncpus == 1 || dtcr->cpu_part->cp_ncpus == 1) {
2960 		if (flags & PTNR_SELFOK) {
2961 			*typep = CE_XDIAG_PTNR_SELF;
2962 			return (dtcr);
2963 		} else {
2964 			return (NULL);
2965 		}
2966 	}
2967 
2968 	thistime = gethrtime();
2969 	lasttime = CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime);
2970 
2971 	/*
2972 	 * Select a starting point.
2973 	 */
2974 	if (!lasttime) {
2975 		/*
2976 		 * We've never selected a partner for this detector before.
2977 		 * Start the scan at the next online cpu in the same cpu
2978 		 * partition.
2979 		 */
2980 		sp = dtcr->cpu_next_part;
2981 	} else if (thistime - lasttime < cpu_ce_ptnr_cachetime_sec * NANOSEC) {
2982 		/*
2983 		 * Our last selection has not aged yet.  If this partner:
2984 		 *	. is still a valid cpu,
2985 		 *	. is still in the same partition as the detector
2986 		 *	. is still marked active
2987 		 *	. satisfies the 'flags' argument criteria
2988 		 * then select it again without updating the timestamp.
2989 		 */
2990 		sp = cpu[CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id)];
2991 		if (sp == NULL || sp->cpu_part != dtcr->cpu_part ||
2992 		    !cpu_flagged_active(sp->cpu_flags) ||
2993 		    (sp == dtcr && !(flags & PTNR_SELFOK)) ||
2994 		    (sp->cpu_chip->chip_id == dtcr->cpu_chip->chip_id &&
2995 		    !(flags & PTNR_SIBLINGOK))) {
2996 			sp = dtcr->cpu_next_part;
2997 		} else {
2998 			if (sp->cpu_lpl->lpl_lgrp != dtcr->cpu_lpl->lpl_lgrp) {
2999 				*typep = CE_XDIAG_PTNR_REMOTE;
3000 			} else if (sp == dtcr) {
3001 				*typep = CE_XDIAG_PTNR_SELF;
3002 			} else if (sp->cpu_chip->chip_id ==
3003 			    dtcr->cpu_chip->chip_id) {
3004 				*typep = CE_XDIAG_PTNR_SIBLING;
3005 			} else {
3006 				*typep = CE_XDIAG_PTNR_LOCAL;
3007 			}
3008 			return (sp);
3009 		}
3010 	} else {
3011 		/*
3012 		 * Our last selection has aged.  If it is nonetheless still a
3013 		 * valid cpu then start the scan at the next cpu in the
3014 		 * partition after our last partner.  If the last selection
3015 		 * is no longer a valid cpu then go with our default.  In
3016 		 * this way we slowly cycle through possible partners to
3017 		 * obtain multiple viewpoints over time.
3018 		 */
3019 		sp = cpu[CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id)];
3020 		if (sp == NULL) {
3021 			sp = dtcr->cpu_next_part;
3022 		} else {
3023 			sp = sp->cpu_next_part;		/* may be dtcr */
3024 			if (sp->cpu_part != dtcr->cpu_part)
3025 				sp = dtcr;
3026 		}
3027 	}
3028 
3029 	/*
3030 	 * We have a proposed starting point for our search, but if this
3031 	 * cpu is offline then its cpu_next_part will point to itself
3032 	 * so we can't use that to iterate over cpus in this partition in
3033 	 * the loop below.  We still want to avoid iterating over cpus not
3034 	 * in our partition, so in the case that our starting point is offline
3035 	 * we will repoint it to be the detector itself;  and if the detector
3036 	 * happens to be offline we'll return NULL from the following loop.
3037 	 */
3038 	if (!cpu_flagged_active(sp->cpu_flags)) {
3039 		sp = dtcr;
3040 	}
3041 
3042 	ptnr = sp;
3043 	locptnr = NULL;
3044 	sibptnr = NULL;
3045 	do {
3046 		if (ptnr == dtcr || !cpu_flagged_active(ptnr->cpu_flags))
3047 			continue;
3048 		if (ptnr->cpu_lpl->lpl_lgrp != dtcr->cpu_lpl->lpl_lgrp) {
3049 			CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id) = ptnr->cpu_id;
3050 			CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime) = thistime;
3051 			*typep = CE_XDIAG_PTNR_REMOTE;
3052 			return (ptnr);
3053 		}
3054 		if (ptnr->cpu_chip->chip_id == dtcr->cpu_chip->chip_id) {
3055 			if (sibptnr == NULL)
3056 				sibptnr = ptnr;
3057 			continue;
3058 		}
3059 		if (locptnr == NULL)
3060 			locptnr = ptnr;
3061 	} while ((ptnr = ptnr->cpu_next_part) != sp);
3062 
3063 	/*
3064 	 * A foreign partner has already been returned if one was available.
3065 	 *
3066 	 * If locptnr is not NULL it is a cpu in the same lgroup as the
3067 	 * detector, is active, and is not a sibling of the detector.
3068 	 *
3069 	 * If sibptnr is not NULL it is a sibling of the detector, and is
3070 	 * active.
3071 	 *
3072 	 * If we have to resort to using the detector itself we have already
3073 	 * checked that it is active.
3074 	 */
3075 	if (locptnr) {
3076 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id) = locptnr->cpu_id;
3077 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime) = thistime;
3078 		*typep = CE_XDIAG_PTNR_LOCAL;
3079 		return (locptnr);
3080 	} else if (sibptnr && flags & PTNR_SIBLINGOK) {
3081 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id) = sibptnr->cpu_id;
3082 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime) = thistime;
3083 		*typep = CE_XDIAG_PTNR_SIBLING;
3084 		return (sibptnr);
3085 	} else if (flags & PTNR_SELFOK) {
3086 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_id) = dtcr->cpu_id;
3087 		CPU_PRIVATE_VAL(dtcr, chpr_ceptnr_seltime) = thistime;
3088 		*typep = CE_XDIAG_PTNR_SELF;
3089 		return (dtcr);
3090 	}
3091 
3092 	return (NULL);
3093 }
3094 
3095 /*
3096  * Cross call handler that is requested to run on the designated partner of
3097  * a cpu that experienced a possibly sticky or possibly persistnet CE.
3098  */
3099 static void
3100 ce_ptnrchk_xc(struct async_flt *aflt, uchar_t *dispp)
3101 {
3102 	*dispp = cpu_ce_scrub_mem_err_common(aflt, B_FALSE);
3103 }
3104 
3105 /*
3106  * The associated errorqs are never destroyed so we do not need to deal with
3107  * them disappearing before this timeout fires.  If the affected memory
3108  * has been DR'd out since the original event the scrub algrithm will catch
3109  * any errors and return null disposition info.  If the original detecting
3110  * cpu has been DR'd out then ereport detector info will not be able to
3111  * lookup CPU type;  with a small timeout this is unlikely.
3112  */
3113 static void
3114 ce_lkychk_cb(ce_lkychk_cb_t *cbarg)
3115 {
3116 	struct async_flt *aflt = cbarg->lkycb_aflt;
3117 	uchar_t disp;
3118 	cpu_t *cp;
3119 	int ptnrtype;
3120 
3121 	kpreempt_disable();
3122 	if (cp = ce_ptnr_select(aflt, PTNR_SIBLINGOK | PTNR_SELFOK,
3123 	    &ptnrtype)) {
3124 		xc_one(cp->cpu_id, (xcfunc_t *)ce_ptnrchk_xc, (uint64_t)aflt,
3125 		    (uint64_t)&disp);
3126 		CE_XDIAG_SETLKYINFO(aflt->flt_disp, disp);
3127 		CE_XDIAG_SETPTNRID(aflt->flt_disp, cp->cpu_id);
3128 		CE_XDIAG_SETPTNRTYPE(aflt->flt_disp, ptnrtype);
3129 	} else {
3130 		ce_xdiag_lkydrops++;
3131 		if (ncpus > 1)
3132 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
3133 			    CE_XDIAG_SKIP_NOPTNR);
3134 	}
3135 	kpreempt_enable();
3136 
3137 	errorq_commit(cbarg->lkycb_eqp, cbarg->lkycb_eqep, ERRORQ_ASYNC);
3138 	kmem_free(cbarg, sizeof (ce_lkychk_cb_t));
3139 }
3140 
3141 /*
3142  * Called from errorq drain code when processing a CE error, both from
3143  * CPU and PCI drain functions.  Decide what further classification actions,
3144  * if any, we will perform.  Perform immediate actions now, and schedule
3145  * delayed actions as required.  Note that we are no longer necessarily running
3146  * on the detecting cpu, and that the async_flt structure will not persist on
3147  * return from this function.
3148  *
3149  * Calls to this function should aim to be self-throtlling in some way.  With
3150  * the delayed re-enable of CEEN the absolute rate of calls should not
3151  * be excessive.  Callers should also avoid performing in-depth classification
3152  * for events in pages that are already known to be suspect.
3153  *
3154  * We return nonzero to indicate that the event has been copied and
3155  * recirculated for further testing.  The caller should not log the event
3156  * in this case - it will be logged when further test results are available.
3157  *
3158  * Our possible contexts are that of errorq_drain: below lock level or from
3159  * panic context.  We can assume that the cpu we are running on is online.
3160  */
3161 
3162 
3163 #ifdef DEBUG
3164 static int ce_xdiag_forceaction;
3165 #endif
3166 
3167 int
3168 ce_scrub_xdiag_recirc(struct async_flt *aflt, errorq_t *eqp,
3169     errorq_elem_t *eqep, size_t afltoffset)
3170 {
3171 	ce_dispact_t dispact, action;
3172 	cpu_t *cp;
3173 	uchar_t dtcrinfo, disp;
3174 	int ptnrtype;
3175 
3176 	if (!ce_disp_inited || panicstr || ce_xdiag_off) {
3177 		ce_xdiag_drops++;
3178 		return (0);
3179 	} else if (!aflt->flt_in_memory) {
3180 		ce_xdiag_drops++;
3181 		CE_XDIAG_SETSKIPCODE(aflt->flt_disp, CE_XDIAG_SKIP_NOTMEM);
3182 		return (0);
3183 	}
3184 
3185 	dtcrinfo = CE_XDIAG_DTCRINFO(aflt->flt_disp);
3186 
3187 	/*
3188 	 * Some correctable events are not scrubbed/classified, such as those
3189 	 * noticed at the tail of cpu_deferred_error.  So if there is no
3190 	 * initial detector classification go no further.
3191 	 */
3192 	if (!CE_XDIAG_EXT_ALG_APPLIED(dtcrinfo)) {
3193 		ce_xdiag_drops++;
3194 		CE_XDIAG_SETSKIPCODE(aflt->flt_disp, CE_XDIAG_SKIP_NOSCRUB);
3195 		return (0);
3196 	}
3197 
3198 	dispact = CE_DISPACT(ce_disp_table,
3199 	    CE_XDIAG_AFARMATCHED(dtcrinfo),
3200 	    CE_XDIAG_STATE(dtcrinfo),
3201 	    CE_XDIAG_CE1SEEN(dtcrinfo),
3202 	    CE_XDIAG_CE2SEEN(dtcrinfo));
3203 
3204 
3205 	action = CE_ACT(dispact);	/* bad lookup caught below */
3206 #ifdef DEBUG
3207 	if (ce_xdiag_forceaction != 0)
3208 		action = ce_xdiag_forceaction;
3209 #endif
3210 
3211 	switch (action) {
3212 	case CE_ACT_LKYCHK: {
3213 		caddr_t ndata;
3214 		errorq_elem_t *neqep;
3215 		struct async_flt *ecc;
3216 		ce_lkychk_cb_t *cbargp;
3217 
3218 		if ((ndata = errorq_elem_dup(eqp, eqep, &neqep)) == NULL) {
3219 			ce_xdiag_lkydrops++;
3220 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
3221 			    CE_XDIAG_SKIP_DUPFAIL);
3222 			break;
3223 		}
3224 		ecc = (struct async_flt *)(ndata + afltoffset);
3225 
3226 		ASSERT(ecc->flt_class == CPU_FAULT ||
3227 		    ecc->flt_class == BUS_FAULT);
3228 		ecc->flt_class = (ecc->flt_class == CPU_FAULT) ?
3229 		    RECIRC_CPU_FAULT : RECIRC_BUS_FAULT;
3230 
3231 		cbargp = kmem_alloc(sizeof (ce_lkychk_cb_t), KM_SLEEP);
3232 		cbargp->lkycb_aflt = ecc;
3233 		cbargp->lkycb_eqp = eqp;
3234 		cbargp->lkycb_eqep = neqep;
3235 
3236 		(void) timeout((void (*)(void *))ce_lkychk_cb,
3237 		    (void *)cbargp, drv_usectohz(cpu_ce_lkychk_timeout_usec));
3238 		return (1);
3239 	}
3240 
3241 	case CE_ACT_PTNRCHK:
3242 		kpreempt_disable();	/* stop cpu list changing */
3243 		if ((cp = ce_ptnr_select(aflt, 0, &ptnrtype)) != NULL) {
3244 			xc_one(cp->cpu_id, (xcfunc_t *)ce_ptnrchk_xc,
3245 			    (uint64_t)aflt, (uint64_t)&disp);
3246 			CE_XDIAG_SETPTNRINFO(aflt->flt_disp, disp);
3247 			CE_XDIAG_SETPTNRID(aflt->flt_disp, cp->cpu_id);
3248 			CE_XDIAG_SETPTNRTYPE(aflt->flt_disp, ptnrtype);
3249 		} else if (ncpus > 1) {
3250 			ce_xdiag_ptnrdrops++;
3251 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
3252 			    CE_XDIAG_SKIP_NOPTNR);
3253 		} else {
3254 			ce_xdiag_ptnrdrops++;
3255 			CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
3256 			    CE_XDIAG_SKIP_UNIPROC);
3257 		}
3258 		kpreempt_enable();
3259 		break;
3260 
3261 	case CE_ACT_DONE:
3262 		break;
3263 
3264 	case CE_ACT(CE_DISP_BAD):
3265 	default:
3266 #ifdef DEBUG
3267 		cmn_err(CE_PANIC, "ce_scrub_post: Bad action '%d'", action);
3268 #endif
3269 		ce_xdiag_bad++;
3270 		CE_XDIAG_SETSKIPCODE(aflt->flt_disp, CE_XDIAG_SKIP_ACTBAD);
3271 		break;
3272 	}
3273 
3274 	return (0);
3275 }
3276 
3277 /*
3278  * We route all errors through a single switch statement.
3279  */
3280 void
3281 cpu_ue_log_err(struct async_flt *aflt)
3282 {
3283 	switch (aflt->flt_class) {
3284 	case CPU_FAULT:
3285 		cpu_ereport_init(aflt);
3286 		if (cpu_async_log_err(aflt, NULL))
3287 			cpu_ereport_post(aflt);
3288 		break;
3289 
3290 	case BUS_FAULT:
3291 		bus_async_log_err(aflt);
3292 		break;
3293 
3294 	default:
3295 		cmn_err(CE_WARN, "discarding async error %p with invalid "
3296 		    "fault class (0x%x)", (void *)aflt, aflt->flt_class);
3297 		return;
3298 	}
3299 }
3300 
3301 /*
3302  * Routine for panic hook callback from panic_idle().
3303  */
3304 void
3305 cpu_async_panic_callb(void)
3306 {
3307 	ch_async_flt_t ch_flt;
3308 	struct async_flt *aflt;
3309 	ch_cpu_errors_t cpu_error_regs;
3310 	uint64_t afsr_errs;
3311 
3312 	get_cpu_error_state(&cpu_error_regs);
3313 
3314 	afsr_errs = (cpu_error_regs.afsr & C_AFSR_ALL_ERRS) |
3315 	    (cpu_error_regs.afsr_ext & C_AFSR_EXT_ALL_ERRS);
3316 
3317 	if (afsr_errs) {
3318 
3319 		bzero(&ch_flt, sizeof (ch_async_flt_t));
3320 		aflt = (struct async_flt *)&ch_flt;
3321 		aflt->flt_id = gethrtime_waitfree();
3322 		aflt->flt_bus_id = getprocessorid();
3323 		aflt->flt_inst = CPU->cpu_id;
3324 		aflt->flt_stat = cpu_error_regs.afsr;
3325 		aflt->flt_addr = cpu_error_regs.afar;
3326 		aflt->flt_prot = AFLT_PROT_NONE;
3327 		aflt->flt_class = CPU_FAULT;
3328 		aflt->flt_priv = ((cpu_error_regs.afsr & C_AFSR_PRIV) != 0);
3329 		aflt->flt_panic = 1;
3330 		ch_flt.afsr_ext = cpu_error_regs.afsr_ext;
3331 		ch_flt.afsr_errs = afsr_errs;
3332 #if defined(SERRANO)
3333 		ch_flt.afar2 = cpu_error_regs.afar2;
3334 #endif	/* SERRANO */
3335 		(void) cpu_queue_events(&ch_flt, NULL, afsr_errs, NULL);
3336 	}
3337 }
3338 
3339 /*
3340  * Routine to convert a syndrome into a syndrome code.
3341  */
3342 static int
3343 synd_to_synd_code(int synd_status, ushort_t synd, uint64_t afsr_bit)
3344 {
3345 	if (synd_status == AFLT_STAT_INVALID)
3346 		return (-1);
3347 
3348 	/*
3349 	 * Use the syndrome to index the appropriate syndrome table,
3350 	 * to get the code indicating which bit(s) is(are) bad.
3351 	 */
3352 	if (afsr_bit &
3353 	    (C_AFSR_MSYND_ERRS | C_AFSR_ESYND_ERRS | C_AFSR_EXT_ESYND_ERRS)) {
3354 		if (afsr_bit & C_AFSR_MSYND_ERRS) {
3355 #if defined(JALAPENO) || defined(SERRANO)
3356 			if ((synd == 0) || (synd >= BSYND_TBL_SIZE))
3357 				return (-1);
3358 			else
3359 				return (BPAR0 + synd);
3360 #else /* JALAPENO || SERRANO */
3361 			if ((synd == 0) || (synd >= MSYND_TBL_SIZE))
3362 				return (-1);
3363 			else
3364 				return (mtag_syndrome_tab[synd]);
3365 #endif /* JALAPENO || SERRANO */
3366 		} else {
3367 			if ((synd == 0) || (synd >= ESYND_TBL_SIZE))
3368 				return (-1);
3369 			else
3370 				return (ecc_syndrome_tab[synd]);
3371 		}
3372 	} else {
3373 		return (-1);
3374 	}
3375 }
3376 
3377 int
3378 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
3379 {
3380 	if (&plat_get_mem_sid)
3381 		return (plat_get_mem_sid(unum, buf, buflen, lenp));
3382 	else
3383 		return (ENOTSUP);
3384 }
3385 
3386 int
3387 cpu_get_mem_offset(uint64_t flt_addr, uint64_t *offp)
3388 {
3389 	if (&plat_get_mem_offset)
3390 		return (plat_get_mem_offset(flt_addr, offp));
3391 	else
3392 		return (ENOTSUP);
3393 }
3394 
3395 int
3396 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
3397 {
3398 	if (&plat_get_mem_addr)
3399 		return (plat_get_mem_addr(unum, sid, offset, addrp));
3400 	else
3401 		return (ENOTSUP);
3402 }
3403 
3404 /*
3405  * Routine to return a string identifying the physical name
3406  * associated with a memory/cache error.
3407  */
3408 int
3409 cpu_get_mem_unum(int synd_status, ushort_t flt_synd, uint64_t flt_stat,
3410     uint64_t flt_addr, int flt_bus_id, int flt_in_memory,
3411     ushort_t flt_status, char *buf, int buflen, int *lenp)
3412 {
3413 	int synd_code;
3414 	int ret;
3415 
3416 	/*
3417 	 * An AFSR of -1 defaults to a memory syndrome.
3418 	 */
3419 	if (flt_stat == (uint64_t)-1)
3420 		flt_stat = C_AFSR_CE;
3421 
3422 	synd_code = synd_to_synd_code(synd_status, flt_synd, flt_stat);
3423 
3424 	/*
3425 	 * Syndrome code must be either a single-bit error code
3426 	 * (0...143) or -1 for unum lookup.
3427 	 */
3428 	if (synd_code < 0 || synd_code >= M2)
3429 		synd_code = -1;
3430 	if (&plat_get_mem_unum) {
3431 		if ((ret = plat_get_mem_unum(synd_code, flt_addr, flt_bus_id,
3432 		    flt_in_memory, flt_status, buf, buflen, lenp)) != 0) {
3433 			buf[0] = '\0';
3434 			*lenp = 0;
3435 		}
3436 
3437 		return (ret);
3438 	}
3439 
3440 	return (ENOTSUP);
3441 }
3442 
3443 /*
3444  * Wrapper for cpu_get_mem_unum() routine that takes an
3445  * async_flt struct rather than explicit arguments.
3446  */
3447 int
3448 cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt,
3449     char *buf, int buflen, int *lenp)
3450 {
3451 	/*
3452 	 * If we come thru here for an IO bus error aflt->flt_stat will
3453 	 * not be the CPU AFSR, and we pass in a -1 to cpu_get_mem_unum()
3454 	 * so it will interpret this as a memory error.
3455 	 */
3456 	return (cpu_get_mem_unum(synd_status, aflt->flt_synd,
3457 	    (aflt->flt_class == BUS_FAULT) ?
3458 	    (uint64_t)-1 : ((ch_async_flt_t *)aflt)->flt_bit,
3459 	    aflt->flt_addr, aflt->flt_bus_id, aflt->flt_in_memory,
3460 	    aflt->flt_status, buf, buflen, lenp));
3461 }
3462 
3463 /*
3464  * Return unum string given synd_code and async_flt into
3465  * the buf with size UNUM_NAMLEN
3466  */
3467 static int
3468 cpu_get_mem_unum_synd(int synd_code, struct async_flt *aflt, char *buf)
3469 {
3470 	int ret, len;
3471 
3472 	/*
3473 	 * Syndrome code must be either a single-bit error code
3474 	 * (0...143) or -1 for unum lookup.
3475 	 */
3476 	if (synd_code < 0 || synd_code >= M2)
3477 		synd_code = -1;
3478 	if (&plat_get_mem_unum) {
3479 		if ((ret = plat_get_mem_unum(synd_code, aflt->flt_addr,
3480 		    aflt->flt_bus_id, aflt->flt_in_memory,
3481 		    aflt->flt_status, buf, UNUM_NAMLEN, &len)) != 0) {
3482 			buf[0] = '\0';
3483 		}
3484 		return (ret);
3485 	}
3486 
3487 	buf[0] = '\0';
3488 	return (ENOTSUP);
3489 }
3490 
3491 /*
3492  * This routine is a more generic interface to cpu_get_mem_unum()
3493  * that may be used by other modules (e.g. the 'mm' driver, through
3494  * the 'MEM_NAME' ioctl, which is used by fmd to resolve unum's
3495  * for Jalapeno/Serrano FRC/RCE or FRU/RUE paired events).
3496  */
3497 int
3498 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
3499     char *buf, int buflen, int *lenp)
3500 {
3501 	int synd_status, flt_in_memory, ret;
3502 	ushort_t flt_status = 0;
3503 	char unum[UNUM_NAMLEN];
3504 	uint64_t t_afsr_errs;
3505 
3506 	/*
3507 	 * Check for an invalid address.
3508 	 */
3509 	if (afar == (uint64_t)-1)
3510 		return (ENXIO);
3511 
3512 	if (synd == (uint64_t)-1)
3513 		synd_status = AFLT_STAT_INVALID;
3514 	else
3515 		synd_status = AFLT_STAT_VALID;
3516 
3517 	flt_in_memory = (*afsr & C_AFSR_MEMORY) &&
3518 	    pf_is_memory(afar >> MMU_PAGESHIFT);
3519 
3520 	/*
3521 	 * Get aggregate AFSR for call to cpu_error_is_ecache_data.
3522 	 */
3523 	if (*afsr == (uint64_t)-1)
3524 		t_afsr_errs = C_AFSR_CE;
3525 	else {
3526 		t_afsr_errs = (*afsr & C_AFSR_ALL_ERRS);
3527 #if defined(CHEETAH_PLUS)
3528 		if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
3529 			t_afsr_errs |= (*(afsr + 1) & C_AFSR_EXT_ALL_ERRS);
3530 #endif	/* CHEETAH_PLUS */
3531 	}
3532 
3533 	/*
3534 	 * Turn on ECC_ECACHE if error type is E$ Data.
3535 	 */
3536 	if (cpu_error_is_ecache_data(CPU->cpu_id, t_afsr_errs))
3537 		flt_status |= ECC_ECACHE;
3538 
3539 	ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, t_afsr_errs, afar,
3540 	    CPU->cpu_id, flt_in_memory, flt_status, unum, UNUM_NAMLEN, lenp);
3541 	if (ret != 0)
3542 		return (ret);
3543 
3544 	if (*lenp >= buflen)
3545 		return (ENAMETOOLONG);
3546 
3547 	(void) strncpy(buf, unum, buflen);
3548 
3549 	return (0);
3550 }
3551 
3552 /*
3553  * Routine to return memory information associated
3554  * with a physical address and syndrome.
3555  */
3556 int
3557 cpu_get_mem_info(uint64_t synd, uint64_t afar,
3558     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
3559     int *segsp, int *banksp, int *mcidp)
3560 {
3561 	int synd_status, synd_code;
3562 
3563 	if (afar == (uint64_t)-1)
3564 		return (ENXIO);
3565 
3566 	if (synd == (uint64_t)-1)
3567 		synd_status = AFLT_STAT_INVALID;
3568 	else
3569 		synd_status = AFLT_STAT_VALID;
3570 
3571 	synd_code = synd_to_synd_code(synd_status, synd, C_AFSR_CE);
3572 
3573 	if (p2get_mem_info != NULL)
3574 		return ((p2get_mem_info)(synd_code, afar,
3575 			mem_sizep, seg_sizep, bank_sizep,
3576 			segsp, banksp, mcidp));
3577 	else
3578 		return (ENOTSUP);
3579 }
3580 
3581 /*
3582  * Routine to return a string identifying the physical
3583  * name associated with a cpuid.
3584  */
3585 int
3586 cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
3587 {
3588 	int ret;
3589 	char unum[UNUM_NAMLEN];
3590 
3591 	if (&plat_get_cpu_unum) {
3592 		if ((ret = plat_get_cpu_unum(cpuid, unum, UNUM_NAMLEN, lenp))
3593 		    != 0)
3594 			return (ret);
3595 	} else {
3596 		return (ENOTSUP);
3597 	}
3598 
3599 	if (*lenp >= buflen)
3600 		return (ENAMETOOLONG);
3601 
3602 	(void) strncpy(buf, unum, buflen);
3603 
3604 	return (0);
3605 }
3606 
3607 /*
3608  * This routine exports the name buffer size.
3609  */
3610 size_t
3611 cpu_get_name_bufsize()
3612 {
3613 	return (UNUM_NAMLEN);
3614 }
3615 
3616 /*
3617  * Historical function, apparantly not used.
3618  */
3619 /* ARGSUSED */
3620 void
3621 cpu_read_paddr(struct async_flt *ecc, short verbose, short ce_err)
3622 {}
3623 
3624 /*
3625  * Historical function only called for SBus errors in debugging.
3626  */
3627 /*ARGSUSED*/
3628 void
3629 read_ecc_data(struct async_flt *aflt, short verbose, short ce_err)
3630 {}
3631 
3632 /*
3633  * Clear the AFSR sticky bits.  The routine returns a non-zero value if
3634  * any of the AFSR's sticky errors are detected.  If a non-null pointer to
3635  * an async fault structure argument is passed in, the captured error state
3636  * (AFSR, AFAR) info will be returned in the structure.
3637  */
3638 int
3639 clear_errors(ch_async_flt_t *ch_flt)
3640 {
3641 	struct async_flt *aflt = (struct async_flt *)ch_flt;
3642 	ch_cpu_errors_t	cpu_error_regs;
3643 
3644 	get_cpu_error_state(&cpu_error_regs);
3645 
3646 	if (ch_flt != NULL) {
3647 		aflt->flt_stat = cpu_error_regs.afsr & C_AFSR_MASK;
3648 		aflt->flt_addr = cpu_error_regs.afar;
3649 		ch_flt->afsr_ext = cpu_error_regs.afsr_ext;
3650 		ch_flt->afsr_errs = (cpu_error_regs.afsr & C_AFSR_ALL_ERRS) |
3651 		    (cpu_error_regs.afsr_ext & C_AFSR_EXT_ALL_ERRS);
3652 #if defined(SERRANO)
3653 		ch_flt->afar2 = cpu_error_regs.afar2;
3654 #endif	/* SERRANO */
3655 	}
3656 
3657 	set_cpu_error_state(&cpu_error_regs);
3658 
3659 	return (((cpu_error_regs.afsr & C_AFSR_ALL_ERRS) |
3660 	    (cpu_error_regs.afsr_ext & C_AFSR_EXT_ALL_ERRS)) != 0);
3661 }
3662 
3663 /*
3664  * Clear any AFSR error bits, and check for persistence.
3665  *
3666  * It would be desirable to also insist that syndrome match.  PCI handling
3667  * has already filled flt_synd.  For errors trapped by CPU we only fill
3668  * flt_synd when we queue the event, so we do not have a valid flt_synd
3669  * during initial classification (it is valid if we're called as part of
3670  * subsequent low-pil additional classification attempts).  We could try
3671  * to determine which syndrome to use: we know we're only called for
3672  * CE/RCE (Jalapeno & Serrano) and CE/EMC (others) so the syndrome to use
3673  * would be esynd/none and esynd/msynd, respectively.  If that is
3674  * implemented then what do we do in the case that we do experience an
3675  * error on the same afar but with different syndrome?  At the very least
3676  * we should count such occurences.  Anyway, for now, we'll leave it as
3677  * it has been for ages.
3678  */
3679 static int
3680 clear_ecc(struct async_flt *aflt)
3681 {
3682 	ch_cpu_errors_t	cpu_error_regs;
3683 
3684 	/*
3685 	 * Snapshot the AFSR and AFAR and clear any errors
3686 	 */
3687 	get_cpu_error_state(&cpu_error_regs);
3688 	set_cpu_error_state(&cpu_error_regs);
3689 
3690 	/*
3691 	 * If any of the same memory access error bits are still on and
3692 	 * the AFAR matches, return that the error is persistent.
3693 	 */
3694 	return ((cpu_error_regs.afsr & (C_AFSR_MEMORY & aflt->flt_stat)) != 0 &&
3695 	    cpu_error_regs.afar == aflt->flt_addr);
3696 }
3697 
3698 /*
3699  * Turn off all cpu error detection, normally only used for panics.
3700  */
3701 void
3702 cpu_disable_errors(void)
3703 {
3704 	xt_all(set_error_enable_tl1, EN_REG_DISABLE, EER_SET_ABSOLUTE);
3705 
3706 	/*
3707 	 * With error detection now turned off, check the other cpus
3708 	 * logout areas for any unlogged errors.
3709 	 */
3710 	if (enable_check_other_cpus_logout) {
3711 		cpu_check_other_cpus_logout();
3712 		/*
3713 		 * Make a second pass over the logout areas, in case
3714 		 * there is a failing CPU in an error-trap loop which
3715 		 * will write to the logout area once it is emptied.
3716 		 */
3717 		cpu_check_other_cpus_logout();
3718 	}
3719 }
3720 
3721 /*
3722  * Enable errors.
3723  */
3724 void
3725 cpu_enable_errors(void)
3726 {
3727 	xt_all(set_error_enable_tl1, EN_REG_ENABLE, EER_SET_ABSOLUTE);
3728 }
3729 
3730 /*
3731  * Flush the entire ecache using displacement flush by reading through a
3732  * physical address range twice as large as the Ecache.
3733  */
3734 void
3735 cpu_flush_ecache(void)
3736 {
3737 	flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size,
3738 	    cpunodes[CPU->cpu_id].ecache_linesize);
3739 }
3740 
3741 /*
3742  * Return CPU E$ set size - E$ size divided by the associativity.
3743  * We use this function in places where the CPU_PRIVATE ptr may not be
3744  * initialized yet.  Note that for send_mondo and in the Ecache scrubber,
3745  * we're guaranteed that CPU_PRIVATE is initialized.  Also, cpunodes is set
3746  * up before the kernel switches from OBP's to the kernel's trap table, so
3747  * we don't have to worry about cpunodes being unitialized.
3748  */
3749 int
3750 cpu_ecache_set_size(struct cpu *cp)
3751 {
3752 	if (CPU_PRIVATE(cp))
3753 		return (CPU_PRIVATE_VAL(cp, chpr_ec_set_size));
3754 
3755 	return (cpunodes[cp->cpu_id].ecache_size / cpu_ecache_nway());
3756 }
3757 
3758 /*
3759  * Flush Ecache line.
3760  * Uses ASI_EC_DIAG for Cheetah+ and Jalapeno.
3761  * Uses normal displacement flush for Cheetah.
3762  */
3763 static void
3764 cpu_flush_ecache_line(ch_async_flt_t *ch_flt)
3765 {
3766 	struct async_flt *aflt = (struct async_flt *)ch_flt;
3767 	int ec_set_size = cpu_ecache_set_size(CPU);
3768 
3769 	ecache_flush_line(aflt->flt_addr, ec_set_size);
3770 }
3771 
3772 /*
3773  * Scrub physical address.
3774  * Scrub code is different depending upon whether this a Cheetah+ with 2-way
3775  * Ecache or direct-mapped Ecache.
3776  */
3777 static void
3778 cpu_scrubphys(struct async_flt *aflt)
3779 {
3780 	int ec_set_size = cpu_ecache_set_size(CPU);
3781 
3782 	scrubphys(aflt->flt_addr, ec_set_size);
3783 }
3784 
3785 /*
3786  * Clear physical address.
3787  * Scrub code is different depending upon whether this a Cheetah+ with 2-way
3788  * Ecache or direct-mapped Ecache.
3789  */
3790 void
3791 cpu_clearphys(struct async_flt *aflt)
3792 {
3793 	int lsize = cpunodes[CPU->cpu_id].ecache_linesize;
3794 	int ec_set_size = cpu_ecache_set_size(CPU);
3795 
3796 
3797 	clearphys(P2ALIGN(aflt->flt_addr, lsize), ec_set_size, lsize);
3798 }
3799 
3800 #if defined(CPU_IMP_ECACHE_ASSOC)
3801 /*
3802  * Check for a matching valid line in all the sets.
3803  * If found, return set# + 1. Otherwise return 0.
3804  */
3805 static int
3806 cpu_ecache_line_valid(ch_async_flt_t *ch_flt)
3807 {
3808 	struct async_flt *aflt = (struct async_flt *)ch_flt;
3809 	int totalsize = cpunodes[CPU->cpu_id].ecache_size;
3810 	int ec_set_size = cpu_ecache_set_size(CPU);
3811 	ch_ec_data_t *ecp = &ch_flt->flt_diag_data.chd_ec_data[0];
3812 	int nway = cpu_ecache_nway();
3813 	int i;
3814 
3815 	for (i = 0; i < nway; i++, ecp++) {
3816 		if (!cpu_ectag_line_invalid(totalsize, ecp->ec_tag) &&
3817 		    (aflt->flt_addr & P2ALIGN(C_AFAR_PA, ec_set_size)) ==
3818 		    cpu_ectag_to_pa(ec_set_size, ecp->ec_tag))
3819 			return (i+1);
3820 	}
3821 	return (0);
3822 }
3823 #endif /* CPU_IMP_ECACHE_ASSOC */
3824 
3825 /*
3826  * Check whether a line in the given logout info matches the specified
3827  * fault address.  If reqval is set then the line must not be Invalid.
3828  * Returns 0 on failure;  on success (way + 1) is returned an *level is
3829  * set to 2 for l2$ or 3 for l3$.
3830  */
3831 static int
3832 cpu_matching_ecache_line(uint64_t faddr, void *data, int reqval, int *level)
3833 {
3834 	ch_diag_data_t *cdp = data;
3835 	ch_ec_data_t *ecp;
3836 	int totalsize, ec_set_size;
3837 	int i, ways;
3838 	int match = 0;
3839 	int tagvalid;
3840 	uint64_t addr, tagpa;
3841 	int ispanther = IS_PANTHER(cpunodes[CPU->cpu_id].implementation);
3842 
3843 	/*
3844 	 * Check the l2$ logout data
3845 	 */
3846 	if (ispanther) {
3847 		ecp = &cdp->chd_l2_data[0];
3848 		ec_set_size = PN_L2_SET_SIZE;
3849 		ways = PN_L2_NWAYS;
3850 	} else {
3851 		ecp = &cdp->chd_ec_data[0];
3852 		ec_set_size = cpu_ecache_set_size(CPU);
3853 		ways = cpu_ecache_nway();
3854 		totalsize = cpunodes[CPU->cpu_id].ecache_size;
3855 	}
3856 	/* remove low order PA bits from fault address not used in PA tag */
3857 	addr = faddr & P2ALIGN(C_AFAR_PA, ec_set_size);
3858 	for (i = 0; i < ways; i++, ecp++) {
3859 		if (ispanther) {
3860 			tagpa = PN_L2TAG_TO_PA(ecp->ec_tag);
3861 			tagvalid = !PN_L2_LINE_INVALID(ecp->ec_tag);
3862 		} else {
3863 			tagpa = cpu_ectag_to_pa(ec_set_size, ecp->ec_tag);
3864 			tagvalid = !cpu_ectag_line_invalid(totalsize,
3865 			    ecp->ec_tag);
3866 		}
3867 		if (tagpa == addr && (!reqval || tagvalid)) {
3868 			match = i + 1;
3869 			*level = 2;
3870 			break;
3871 		}
3872 	}
3873 
3874 	if (match || !ispanther)
3875 		return (match);
3876 
3877 	/* For Panther we also check the l3$ */
3878 	ecp = &cdp->chd_ec_data[0];
3879 	ec_set_size = PN_L3_SET_SIZE;
3880 	ways = PN_L3_NWAYS;
3881 	addr = faddr & P2ALIGN(C_AFAR_PA, ec_set_size);
3882 
3883 	for (i = 0; i < ways; i++, ecp++) {
3884 		if (PN_L3TAG_TO_PA(ecp->ec_tag) == addr && (!reqval ||
3885 		    !PN_L3_LINE_INVALID(ecp->ec_tag))) {
3886 			match = i + 1;
3887 			*level = 3;
3888 			break;
3889 		}
3890 	}
3891 
3892 	return (match);
3893 }
3894 
3895 #if defined(CPU_IMP_L1_CACHE_PARITY)
3896 /*
3897  * Record information related to the source of an Dcache Parity Error.
3898  */
3899 static void
3900 cpu_dcache_parity_info(ch_async_flt_t *ch_flt)
3901 {
3902 	int dc_set_size = dcache_size / CH_DCACHE_NWAY;
3903 	int index;
3904 
3905 	/*
3906 	 * Since instruction decode cannot be done at high PIL
3907 	 * just examine the entire Dcache to locate the error.
3908 	 */
3909 	if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
3910 		ch_flt->parity_data.dpe.cpl_way = -1;
3911 		ch_flt->parity_data.dpe.cpl_off = -1;
3912 	}
3913 	for (index = 0; index < dc_set_size; index += dcache_linesize)
3914 		cpu_dcache_parity_check(ch_flt, index);
3915 }
3916 
3917 /*
3918  * Check all ways of the Dcache at a specified index for good parity.
3919  */
3920 static void
3921 cpu_dcache_parity_check(ch_async_flt_t *ch_flt, int index)
3922 {
3923 	int dc_set_size = dcache_size / CH_DCACHE_NWAY;
3924 	uint64_t parity_bits, pbits, data_word;
3925 	static int parity_bits_popc[] = { 0, 1, 1, 0 };
3926 	int way, word, data_byte;
3927 	ch_dc_data_t *dcp = &ch_flt->parity_data.dpe.cpl_dc[0];
3928 	ch_dc_data_t tmp_dcp;
3929 
3930 	for (way = 0; way < CH_DCACHE_NWAY; way++, dcp++) {
3931 		/*
3932 		 * Perform diagnostic read.
3933 		 */
3934 		get_dcache_dtag(index + way * dc_set_size,
3935 				(uint64_t *)&tmp_dcp);
3936 
3937 		/*
3938 		 * Check tag for even parity.
3939 		 * Sum of 1 bits (including parity bit) should be even.
3940 		 */
3941 		if (popc64(tmp_dcp.dc_tag & CHP_DCTAG_PARMASK) & 1) {
3942 			/*
3943 			 * If this is the first error log detailed information
3944 			 * about it and check the snoop tag. Otherwise just
3945 			 * record the fact that we found another error.
3946 			 */
3947 			if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
3948 				ch_flt->parity_data.dpe.cpl_way = way;
3949 				ch_flt->parity_data.dpe.cpl_cache =
3950 				    CPU_DC_PARITY;
3951 				ch_flt->parity_data.dpe.cpl_tag |= CHP_DC_TAG;
3952 
3953 				if (popc64(tmp_dcp.dc_sntag &
3954 						CHP_DCSNTAG_PARMASK) & 1) {
3955 					ch_flt->parity_data.dpe.cpl_tag |=
3956 								CHP_DC_SNTAG;
3957 					ch_flt->parity_data.dpe.cpl_lcnt++;
3958 				}
3959 
3960 				bcopy(&tmp_dcp, dcp, sizeof (ch_dc_data_t));
3961 			}
3962 
3963 			ch_flt->parity_data.dpe.cpl_lcnt++;
3964 		}
3965 
3966 		if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
3967 			/*
3968 			 * Panther has more parity bits than the other
3969 			 * processors for covering dcache data and so each
3970 			 * byte of data in each word has its own parity bit.
3971 			 */
3972 			parity_bits = tmp_dcp.dc_pn_data_parity;
3973 			for (word = 0; word < 4; word++) {
3974 				data_word = tmp_dcp.dc_data[word];
3975 				pbits = parity_bits & PN_DC_DATA_PARITY_MASK;
3976 				for (data_byte = 0; data_byte < 8;
3977 				    data_byte++) {
3978 					if (((popc64(data_word &
3979 					    PN_DC_DATA_PARITY_MASK)) & 1) ^
3980 					    (pbits & 1)) {
3981 						cpu_record_dc_data_parity(
3982 						ch_flt, dcp, &tmp_dcp, way,
3983 						word);
3984 					}
3985 					pbits >>= 1;
3986 					data_word >>= 8;
3987 				}
3988 				parity_bits >>= 8;
3989 			}
3990 		} else {
3991 			/*
3992 			 * Check data array for even parity.
3993 			 * The 8 parity bits are grouped into 4 pairs each
3994 			 * of which covers a 64-bit word.  The endianness is
3995 			 * reversed -- the low-order parity bits cover the
3996 			 * high-order data words.
3997 			 */
3998 			parity_bits = tmp_dcp.dc_utag >> 8;
3999 			for (word = 0; word < 4; word++) {
4000 				pbits = (parity_bits >> (6 - word * 2)) & 3;
4001 				if ((popc64(tmp_dcp.dc_data[word]) +
4002 				    parity_bits_popc[pbits]) & 1) {
4003 					cpu_record_dc_data_parity(ch_flt, dcp,
4004 					    &tmp_dcp, way, word);
4005 				}
4006 			}
4007 		}
4008 	}
4009 }
4010 
4011 static void
4012 cpu_record_dc_data_parity(ch_async_flt_t *ch_flt,
4013     ch_dc_data_t *dest_dcp, ch_dc_data_t *src_dcp, int way, int word)
4014 {
4015 	/*
4016 	 * If this is the first error log detailed information about it.
4017 	 * Otherwise just record the fact that we found another error.
4018 	 */
4019 	if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
4020 		ch_flt->parity_data.dpe.cpl_way = way;
4021 		ch_flt->parity_data.dpe.cpl_cache = CPU_DC_PARITY;
4022 		ch_flt->parity_data.dpe.cpl_off = word * 8;
4023 		bcopy(src_dcp, dest_dcp, sizeof (ch_dc_data_t));
4024 	}
4025 	ch_flt->parity_data.dpe.cpl_lcnt++;
4026 }
4027 
4028 /*
4029  * Record information related to the source of an Icache Parity Error.
4030  *
4031  * Called with the Icache disabled so any diagnostic accesses are safe.
4032  */
4033 static void
4034 cpu_icache_parity_info(ch_async_flt_t *ch_flt)
4035 {
4036 	int	ic_set_size;
4037 	int	ic_linesize;
4038 	int	index;
4039 
4040 	if (CPU_PRIVATE(CPU)) {
4041 		ic_set_size = CPU_PRIVATE_VAL(CPU, chpr_icache_size) /
4042 		    CH_ICACHE_NWAY;
4043 		ic_linesize = CPU_PRIVATE_VAL(CPU, chpr_icache_linesize);
4044 	} else {
4045 		ic_set_size = icache_size / CH_ICACHE_NWAY;
4046 		ic_linesize = icache_linesize;
4047 	}
4048 
4049 	ch_flt->parity_data.ipe.cpl_way = -1;
4050 	ch_flt->parity_data.ipe.cpl_off = -1;
4051 
4052 	for (index = 0; index < ic_set_size; index += ic_linesize)
4053 		cpu_icache_parity_check(ch_flt, index);
4054 }
4055 
4056 /*
4057  * Check all ways of the Icache at a specified index for good parity.
4058  */
4059 static void
4060 cpu_icache_parity_check(ch_async_flt_t *ch_flt, int index)
4061 {
4062 	uint64_t parmask, pn_inst_parity;
4063 	int ic_set_size;
4064 	int ic_linesize;
4065 	int flt_index, way, instr, num_instr;
4066 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4067 	ch_ic_data_t *icp = &ch_flt->parity_data.ipe.cpl_ic[0];
4068 	ch_ic_data_t tmp_icp;
4069 
4070 	if (CPU_PRIVATE(CPU)) {
4071 		ic_set_size = CPU_PRIVATE_VAL(CPU, chpr_icache_size) /
4072 		    CH_ICACHE_NWAY;
4073 		ic_linesize = CPU_PRIVATE_VAL(CPU, chpr_icache_linesize);
4074 	} else {
4075 		ic_set_size = icache_size / CH_ICACHE_NWAY;
4076 		ic_linesize = icache_linesize;
4077 	}
4078 
4079 	/*
4080 	 * Panther has twice as many instructions per icache line and the
4081 	 * instruction parity bit is in a different location.
4082 	 */
4083 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
4084 		num_instr = PN_IC_DATA_REG_SIZE / sizeof (uint64_t);
4085 		pn_inst_parity = PN_ICDATA_PARITY_BIT_MASK;
4086 	} else {
4087 		num_instr = CH_IC_DATA_REG_SIZE / sizeof (uint64_t);
4088 		pn_inst_parity = 0;
4089 	}
4090 
4091 	/*
4092 	 * Index at which we expect to find the parity error.
4093 	 */
4094 	flt_index = P2ALIGN(aflt->flt_addr % ic_set_size, ic_linesize);
4095 
4096 	for (way = 0; way < CH_ICACHE_NWAY; way++, icp++) {
4097 		/*
4098 		 * Diagnostic reads expect address argument in ASI format.
4099 		 */
4100 		get_icache_dtag(2 * (index + way * ic_set_size),
4101 				(uint64_t *)&tmp_icp);
4102 
4103 		/*
4104 		 * If this is the index in which we expect to find the
4105 		 * error log detailed information about each of the ways.
4106 		 * This information will be displayed later if we can't
4107 		 * determine the exact way in which the error is located.
4108 		 */
4109 		if (flt_index == index)
4110 			bcopy(&tmp_icp, icp, sizeof (ch_ic_data_t));
4111 
4112 		/*
4113 		 * Check tag for even parity.
4114 		 * Sum of 1 bits (including parity bit) should be even.
4115 		 */
4116 		if (popc64(tmp_icp.ic_patag & CHP_ICPATAG_PARMASK) & 1) {
4117 			/*
4118 			 * If this way is the one in which we expected
4119 			 * to find the error record the way and check the
4120 			 * snoop tag. Otherwise just record the fact we
4121 			 * found another error.
4122 			 */
4123 			if (flt_index == index) {
4124 				ch_flt->parity_data.ipe.cpl_way = way;
4125 				ch_flt->parity_data.ipe.cpl_tag |= CHP_IC_TAG;
4126 
4127 				if (popc64(tmp_icp.ic_sntag &
4128 						CHP_ICSNTAG_PARMASK) & 1) {
4129 					ch_flt->parity_data.ipe.cpl_tag |=
4130 								CHP_IC_SNTAG;
4131 					ch_flt->parity_data.ipe.cpl_lcnt++;
4132 				}
4133 
4134 			}
4135 			ch_flt->parity_data.ipe.cpl_lcnt++;
4136 			continue;
4137 		}
4138 
4139 		/*
4140 		 * Check instruction data for even parity.
4141 		 * Bits participating in parity differ for PC-relative
4142 		 * versus non-PC-relative instructions.
4143 		 */
4144 		for (instr = 0; instr < num_instr; instr++) {
4145 			parmask = (tmp_icp.ic_data[instr] &
4146 					CH_ICDATA_PRED_ISPCREL) ?
4147 				(CHP_ICDATA_PCREL_PARMASK | pn_inst_parity) :
4148 				(CHP_ICDATA_NPCREL_PARMASK | pn_inst_parity);
4149 			if (popc64(tmp_icp.ic_data[instr] & parmask) & 1) {
4150 				/*
4151 				 * If this way is the one in which we expected
4152 				 * to find the error record the way and offset.
4153 				 * Otherwise just log the fact we found another
4154 				 * error.
4155 				 */
4156 				if (flt_index == index) {
4157 					ch_flt->parity_data.ipe.cpl_way = way;
4158 					ch_flt->parity_data.ipe.cpl_off =
4159 								instr * 4;
4160 				}
4161 				ch_flt->parity_data.ipe.cpl_lcnt++;
4162 				continue;
4163 			}
4164 		}
4165 	}
4166 }
4167 
4168 /*
4169  * Record information related to the source of an Pcache Parity Error.
4170  */
4171 static void
4172 cpu_pcache_parity_info(ch_async_flt_t *ch_flt)
4173 {
4174 	int pc_set_size = CH_PCACHE_SIZE / CH_PCACHE_NWAY;
4175 	int index;
4176 
4177 	/*
4178 	 * Since instruction decode cannot be done at high PIL just
4179 	 * examine the entire Pcache to check for any parity errors.
4180 	 */
4181 	if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
4182 		ch_flt->parity_data.dpe.cpl_way = -1;
4183 		ch_flt->parity_data.dpe.cpl_off = -1;
4184 	}
4185 	for (index = 0; index < pc_set_size; index += CH_PCACHE_LSIZE)
4186 		cpu_pcache_parity_check(ch_flt, index);
4187 }
4188 
4189 /*
4190  * Check all ways of the Pcache at a specified index for good parity.
4191  */
4192 static void
4193 cpu_pcache_parity_check(ch_async_flt_t *ch_flt, int index)
4194 {
4195 	int pc_set_size = CH_PCACHE_SIZE / CH_PCACHE_NWAY;
4196 	int pc_data_words = CH_PC_DATA_REG_SIZE / sizeof (uint64_t);
4197 	int way, word, pbit, parity_bits;
4198 	ch_pc_data_t *pcp = &ch_flt->parity_data.dpe.cpl_pc[0];
4199 	ch_pc_data_t tmp_pcp;
4200 
4201 	for (way = 0; way < CH_PCACHE_NWAY; way++, pcp++) {
4202 		/*
4203 		 * Perform diagnostic read.
4204 		 */
4205 		get_pcache_dtag(index + way * pc_set_size,
4206 				(uint64_t *)&tmp_pcp);
4207 		/*
4208 		 * Check data array for odd parity. There are 8 parity
4209 		 * bits (bits 57:50 of ASI_PCACHE_STATUS_DATA) and each
4210 		 * of those bits covers exactly 8 bytes of the data
4211 		 * array:
4212 		 *
4213 		 *	parity bit	P$ data bytes covered
4214 		 *	----------	---------------------
4215 		 *	50		63:56
4216 		 *	51		55:48
4217 		 *	52		47:40
4218 		 *	53		39:32
4219 		 *	54		31:24
4220 		 *	55		23:16
4221 		 *	56		15:8
4222 		 *	57		7:0
4223 		 */
4224 		parity_bits = PN_PC_PARITY_BITS(tmp_pcp.pc_status);
4225 		for (word = 0; word < pc_data_words; word++) {
4226 			pbit = (parity_bits >> (pc_data_words - word - 1)) & 1;
4227 			if ((popc64(tmp_pcp.pc_data[word]) & 1) ^ pbit) {
4228 				/*
4229 				 * If this is the first error log detailed
4230 				 * information about it. Otherwise just record
4231 				 * the fact that we found another error.
4232 				 */
4233 				if (ch_flt->parity_data.dpe.cpl_lcnt == 0) {
4234 					ch_flt->parity_data.dpe.cpl_way = way;
4235 					ch_flt->parity_data.dpe.cpl_cache =
4236 					    CPU_PC_PARITY;
4237 					ch_flt->parity_data.dpe.cpl_off =
4238 					    word * sizeof (uint64_t);
4239 					bcopy(&tmp_pcp, pcp,
4240 							sizeof (ch_pc_data_t));
4241 				}
4242 				ch_flt->parity_data.dpe.cpl_lcnt++;
4243 			}
4244 		}
4245 	}
4246 }
4247 
4248 
4249 /*
4250  * Add L1 Data cache data to the ereport payload.
4251  */
4252 static void
4253 cpu_payload_add_dcache(struct async_flt *aflt, nvlist_t *nvl)
4254 {
4255 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4256 	ch_dc_data_t *dcp;
4257 	ch_dc_data_t dcdata[CH_DCACHE_NWAY];
4258 	uint_t nelem;
4259 	int i, ways_to_check, ways_logged = 0;
4260 
4261 	/*
4262 	 * If this is an D$ fault then there may be multiple
4263 	 * ways captured in the ch_parity_log_t structure.
4264 	 * Otherwise, there will be at most one way captured
4265 	 * in the ch_diag_data_t struct.
4266 	 * Check each way to see if it should be encoded.
4267 	 */
4268 	if (ch_flt->flt_type == CPU_DC_PARITY)
4269 		ways_to_check = CH_DCACHE_NWAY;
4270 	else
4271 		ways_to_check = 1;
4272 	for (i = 0; i < ways_to_check; i++) {
4273 		if (ch_flt->flt_type == CPU_DC_PARITY)
4274 			dcp = &ch_flt->parity_data.dpe.cpl_dc[i];
4275 		else
4276 			dcp = &ch_flt->flt_diag_data.chd_dc_data;
4277 		if (dcp->dc_logflag == DC_LOGFLAG_MAGIC) {
4278 			bcopy(dcp, &dcdata[ways_logged],
4279 				sizeof (ch_dc_data_t));
4280 			ways_logged++;
4281 		}
4282 	}
4283 
4284 	/*
4285 	 * Add the dcache data to the payload.
4286 	 */
4287 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1D_WAYS,
4288 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
4289 	if (ways_logged != 0) {
4290 		nelem = sizeof (ch_dc_data_t) / sizeof (uint64_t) * ways_logged;
4291 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1D_DATA,
4292 		    DATA_TYPE_UINT64_ARRAY, nelem, (uint64_t *)dcdata, NULL);
4293 	}
4294 }
4295 
4296 /*
4297  * Add L1 Instruction cache data to the ereport payload.
4298  */
4299 static void
4300 cpu_payload_add_icache(struct async_flt *aflt, nvlist_t *nvl)
4301 {
4302 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4303 	ch_ic_data_t *icp;
4304 	ch_ic_data_t icdata[CH_ICACHE_NWAY];
4305 	uint_t nelem;
4306 	int i, ways_to_check, ways_logged = 0;
4307 
4308 	/*
4309 	 * If this is an I$ fault then there may be multiple
4310 	 * ways captured in the ch_parity_log_t structure.
4311 	 * Otherwise, there will be at most one way captured
4312 	 * in the ch_diag_data_t struct.
4313 	 * Check each way to see if it should be encoded.
4314 	 */
4315 	if (ch_flt->flt_type == CPU_IC_PARITY)
4316 		ways_to_check = CH_ICACHE_NWAY;
4317 	else
4318 		ways_to_check = 1;
4319 	for (i = 0; i < ways_to_check; i++) {
4320 		if (ch_flt->flt_type == CPU_IC_PARITY)
4321 			icp = &ch_flt->parity_data.ipe.cpl_ic[i];
4322 		else
4323 			icp = &ch_flt->flt_diag_data.chd_ic_data;
4324 		if (icp->ic_logflag == IC_LOGFLAG_MAGIC) {
4325 			bcopy(icp, &icdata[ways_logged],
4326 				sizeof (ch_ic_data_t));
4327 			ways_logged++;
4328 		}
4329 	}
4330 
4331 	/*
4332 	 * Add the icache data to the payload.
4333 	 */
4334 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1I_WAYS,
4335 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
4336 	if (ways_logged != 0) {
4337 		nelem = sizeof (ch_ic_data_t) / sizeof (uint64_t) * ways_logged;
4338 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1I_DATA,
4339 		    DATA_TYPE_UINT64_ARRAY, nelem, (uint64_t *)icdata, NULL);
4340 	}
4341 }
4342 
4343 #endif	/* CPU_IMP_L1_CACHE_PARITY */
4344 
4345 /*
4346  * Add ecache data to payload.
4347  */
4348 static void
4349 cpu_payload_add_ecache(struct async_flt *aflt, nvlist_t *nvl)
4350 {
4351 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4352 	ch_ec_data_t *ecp;
4353 	ch_ec_data_t ecdata[CHD_EC_DATA_SETS];
4354 	uint_t nelem;
4355 	int i, ways_logged = 0;
4356 
4357 	/*
4358 	 * Check each way to see if it should be encoded
4359 	 * and concatinate it into a temporary buffer.
4360 	 */
4361 	for (i = 0; i < CHD_EC_DATA_SETS; i++) {
4362 		ecp = &ch_flt->flt_diag_data.chd_ec_data[i];
4363 		if (ecp->ec_logflag == EC_LOGFLAG_MAGIC) {
4364 			bcopy(ecp, &ecdata[ways_logged],
4365 				sizeof (ch_ec_data_t));
4366 			ways_logged++;
4367 		}
4368 	}
4369 
4370 	/*
4371 	 * Panther CPUs have an additional level of cache and so
4372 	 * what we just collected was the L3 (ecache) and not the
4373 	 * L2 cache.
4374 	 */
4375 	if (IS_PANTHER(cpunodes[aflt->flt_inst].implementation)) {
4376 		/*
4377 		 * Add the L3 (ecache) data to the payload.
4378 		 */
4379 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L3_WAYS,
4380 		    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
4381 		if (ways_logged != 0) {
4382 			nelem = sizeof (ch_ec_data_t) /
4383 			    sizeof (uint64_t) * ways_logged;
4384 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L3_DATA,
4385 			    DATA_TYPE_UINT64_ARRAY, nelem,
4386 			    (uint64_t *)ecdata, NULL);
4387 		}
4388 
4389 		/*
4390 		 * Now collect the L2 cache.
4391 		 */
4392 		ways_logged = 0;
4393 		for (i = 0; i < PN_L2_NWAYS; i++) {
4394 			ecp = &ch_flt->flt_diag_data.chd_l2_data[i];
4395 			if (ecp->ec_logflag == EC_LOGFLAG_MAGIC) {
4396 				bcopy(ecp, &ecdata[ways_logged],
4397 				    sizeof (ch_ec_data_t));
4398 				ways_logged++;
4399 			}
4400 		}
4401 	}
4402 
4403 	/*
4404 	 * Add the L2 cache data to the payload.
4405 	 */
4406 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L2_WAYS,
4407 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
4408 	if (ways_logged != 0) {
4409 		nelem = sizeof (ch_ec_data_t) /
4410 			sizeof (uint64_t) * ways_logged;
4411 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L2_DATA,
4412 		    DATA_TYPE_UINT64_ARRAY, nelem,  (uint64_t *)ecdata, NULL);
4413 	}
4414 }
4415 
4416 /*
4417  * Initialize cpu scheme for specified cpu.
4418  */
4419 static void
4420 cpu_fmri_cpu_set(nvlist_t *cpu_fmri, int cpuid)
4421 {
4422 	char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
4423 	uint8_t mask;
4424 
4425 	mask = cpunodes[cpuid].version;
4426 	(void) snprintf(sbuf, sizeof (sbuf), "%llX",
4427 	    (u_longlong_t)cpunodes[cpuid].device_id);
4428 	(void) fm_fmri_cpu_set(cpu_fmri, FM_CPU_SCHEME_VERSION, NULL,
4429 	    cpuid, &mask, (const char *)sbuf);
4430 }
4431 
4432 /*
4433  * Returns ereport resource type.
4434  */
4435 static int
4436 cpu_error_to_resource_type(struct async_flt *aflt)
4437 {
4438 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4439 
4440 	switch (ch_flt->flt_type) {
4441 
4442 	case CPU_CE_ECACHE:
4443 	case CPU_UE_ECACHE:
4444 	case CPU_UE_ECACHE_RETIRE:
4445 	case CPU_ORPH:
4446 		/*
4447 		 * If AFSR error bit indicates L2$ Data for Cheetah,
4448 		 * Cheetah+ or Jaguar, or L3$ Data for Panther, return
4449 		 * E$ Data type, otherwise, return CPU type.
4450 		 */
4451 		if (cpu_error_is_ecache_data(aflt->flt_inst,
4452 		    ch_flt->flt_bit))
4453 			return (ERRTYPE_ECACHE_DATA);
4454 		return (ERRTYPE_CPU);
4455 
4456 	case CPU_CE:
4457 	case CPU_UE:
4458 	case CPU_EMC:
4459 	case CPU_DUE:
4460 	case CPU_RCE:
4461 	case CPU_RUE:
4462 	case CPU_FRC:
4463 	case CPU_FRU:
4464 		return (ERRTYPE_MEMORY);
4465 
4466 	case CPU_IC_PARITY:
4467 	case CPU_DC_PARITY:
4468 	case CPU_FPUERR:
4469 	case CPU_PC_PARITY:
4470 	case CPU_ITLB_PARITY:
4471 	case CPU_DTLB_PARITY:
4472 		return (ERRTYPE_CPU);
4473 	}
4474 	return (ERRTYPE_UNKNOWN);
4475 }
4476 
4477 /*
4478  * Encode the data saved in the ch_async_flt_t struct into
4479  * the FM ereport payload.
4480  */
4481 static void
4482 cpu_payload_add_aflt(struct async_flt *aflt, nvlist_t *payload,
4483 	nvlist_t *resource, int *afar_status, int *synd_status)
4484 {
4485 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4486 	*synd_status = AFLT_STAT_INVALID;
4487 	*afar_status = AFLT_STAT_INVALID;
4488 
4489 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_AFSR) {
4490 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_AFSR,
4491 		    DATA_TYPE_UINT64, aflt->flt_stat, NULL);
4492 	}
4493 
4494 	if ((aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_AFSR_EXT) &&
4495 	    IS_PANTHER(cpunodes[aflt->flt_inst].implementation)) {
4496 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_AFSR_EXT,
4497 		    DATA_TYPE_UINT64, ch_flt->afsr_ext, NULL);
4498 	}
4499 
4500 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_AFAR_STATUS) {
4501 		*afar_status = afsr_to_afar_status(ch_flt->afsr_errs,
4502 		    ch_flt->flt_bit);
4503 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_AFAR_STATUS,
4504 		    DATA_TYPE_UINT8, (uint8_t)*afar_status, NULL);
4505 	}
4506 
4507 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_AFAR) {
4508 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_AFAR,
4509 		    DATA_TYPE_UINT64, aflt->flt_addr, NULL);
4510 	}
4511 
4512 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PC) {
4513 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PC,
4514 		    DATA_TYPE_UINT64, (uint64_t)aflt->flt_pc, NULL);
4515 	}
4516 
4517 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TL) {
4518 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TL,
4519 		    DATA_TYPE_UINT8, (uint8_t)aflt->flt_tl, NULL);
4520 	}
4521 
4522 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TT) {
4523 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TT,
4524 		    DATA_TYPE_UINT8, flt_to_trap_type(aflt), NULL);
4525 	}
4526 
4527 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PRIV) {
4528 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV,
4529 		    DATA_TYPE_BOOLEAN_VALUE,
4530 		    (aflt->flt_priv ? B_TRUE : B_FALSE), NULL);
4531 	}
4532 
4533 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_ME) {
4534 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ME,
4535 		    DATA_TYPE_BOOLEAN_VALUE,
4536 		    (aflt->flt_stat & C_AFSR_ME) ? B_TRUE : B_FALSE, NULL);
4537 	}
4538 
4539 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SYND_STATUS) {
4540 		*synd_status = afsr_to_synd_status(aflt->flt_inst,
4541 		    ch_flt->afsr_errs, ch_flt->flt_bit);
4542 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SYND_STATUS,
4543 		    DATA_TYPE_UINT8, (uint8_t)*synd_status, NULL);
4544 	}
4545 
4546 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SYND) {
4547 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SYND,
4548 		    DATA_TYPE_UINT16, (uint16_t)aflt->flt_synd, NULL);
4549 	}
4550 
4551 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_ERR_TYPE) {
4552 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ERR_TYPE,
4553 		    DATA_TYPE_STRING, flt_to_error_type(aflt), NULL);
4554 	}
4555 
4556 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_ERR_DISP) {
4557 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ERR_DISP,
4558 		    DATA_TYPE_UINT64, aflt->flt_disp, NULL);
4559 	}
4560 
4561 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_L2)
4562 		cpu_payload_add_ecache(aflt, payload);
4563 
4564 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_COPYFUNCTION) {
4565 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_COPYFUNCTION,
4566 		    DATA_TYPE_UINT8, (uint8_t)aflt->flt_status & 0xff, NULL);
4567 	}
4568 
4569 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_HOWDETECTED) {
4570 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_HOWDETECTED,
4571 		    DATA_TYPE_UINT8, (uint8_t)(aflt->flt_status >> 8), NULL);
4572 	}
4573 
4574 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_INSTRBLOCK) {
4575 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_INSTRBLOCK,
4576 		    DATA_TYPE_UINT32_ARRAY, 16,
4577 		    (uint32_t *)&ch_flt->flt_fpdata, NULL);
4578 	}
4579 
4580 #if defined(CPU_IMP_L1_CACHE_PARITY)
4581 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_L1D)
4582 		cpu_payload_add_dcache(aflt, payload);
4583 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_L1I)
4584 		cpu_payload_add_icache(aflt, payload);
4585 #endif	/* CPU_IMP_L1_CACHE_PARITY */
4586 
4587 #if defined(CHEETAH_PLUS)
4588 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_L1P)
4589 		cpu_payload_add_pcache(aflt, payload);
4590 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAGS_TLB)
4591 		cpu_payload_add_tlb(aflt, payload);
4592 #endif	/* CHEETAH_PLUS */
4593 	/*
4594 	 * Create the FMRI that goes into the payload
4595 	 * and contains the unum info if necessary.
4596 	 */
4597 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_RESOURCE) {
4598 		char unum[UNUM_NAMLEN] = "";
4599 		char sid[DIMM_SERIAL_ID_LEN] = "";
4600 		int len, ret, rtype, synd_code;
4601 		uint64_t offset = (uint64_t)-1;
4602 
4603 		rtype = cpu_error_to_resource_type(aflt);
4604 		switch (rtype) {
4605 
4606 		case ERRTYPE_MEMORY:
4607 		case ERRTYPE_ECACHE_DATA:
4608 
4609 			/*
4610 			 * Memory errors, do unum lookup
4611 			 */
4612 			if (*afar_status == AFLT_STAT_INVALID)
4613 				break;
4614 
4615 			if (rtype == ERRTYPE_ECACHE_DATA)
4616 				aflt->flt_status |= ECC_ECACHE;
4617 			else
4618 				aflt->flt_status &= ~ECC_ECACHE;
4619 
4620 			synd_code = synd_to_synd_code(*synd_status,
4621 			    aflt->flt_synd, ch_flt->flt_bit);
4622 
4623 			if (cpu_get_mem_unum_synd(synd_code, aflt, unum) != 0)
4624 				break;
4625 
4626 			ret = cpu_get_mem_sid(unum, sid, DIMM_SERIAL_ID_LEN,
4627 			    &len);
4628 
4629 			if (ret == 0) {
4630 				(void) cpu_get_mem_offset(aflt->flt_addr,
4631 				    &offset);
4632 			}
4633 
4634 			fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION,
4635 			    NULL, unum, (ret == 0) ? sid : NULL, offset);
4636 			fm_payload_set(payload,
4637 			    FM_EREPORT_PAYLOAD_NAME_RESOURCE,
4638 			    DATA_TYPE_NVLIST, resource, NULL);
4639 			break;
4640 
4641 		case ERRTYPE_CPU:
4642 			/*
4643 			 * On-board processor array error, add cpu resource.
4644 			 */
4645 			cpu_fmri_cpu_set(resource, aflt->flt_inst);
4646 			fm_payload_set(payload,
4647 			    FM_EREPORT_PAYLOAD_NAME_RESOURCE,
4648 			    DATA_TYPE_NVLIST, resource, NULL);
4649 			break;
4650 		}
4651 	}
4652 }
4653 
4654 /*
4655  * Initialize the way info if necessary.
4656  */
4657 void
4658 cpu_ereport_init(struct async_flt *aflt)
4659 {
4660 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
4661 	ch_ec_data_t *ecp = &ch_flt->flt_diag_data.chd_ec_data[0];
4662 	ch_ec_data_t *l2p = &ch_flt->flt_diag_data.chd_l2_data[0];
4663 	int i;
4664 
4665 	/*
4666 	 * Initialize the info in the CPU logout structure.
4667 	 * The I$/D$ way information is not initialized here
4668 	 * since it is captured in the logout assembly code.
4669 	 */
4670 	for (i = 0; i < CHD_EC_DATA_SETS; i++)
4671 		(ecp + i)->ec_way = i;
4672 
4673 	for (i = 0; i < PN_L2_NWAYS; i++)
4674 		(l2p + i)->ec_way = i;
4675 }
4676 
4677 /*
4678  * Returns whether fault address is valid for this error bit and
4679  * whether the address is "in memory" (i.e. pf_is_memory returns 1).
4680  */
4681 int
4682 cpu_flt_in_memory(ch_async_flt_t *ch_flt, uint64_t t_afsr_bit)
4683 {
4684 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4685 
4686 	return ((t_afsr_bit & C_AFSR_MEMORY) &&
4687 	    afsr_to_afar_status(ch_flt->afsr_errs, t_afsr_bit) ==
4688 	    AFLT_STAT_VALID &&
4689 	    pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT));
4690 }
4691 
4692 /*
4693  * Returns whether fault address is valid based on the error bit for the
4694  * one event being queued and whether the address is "in memory".
4695  */
4696 static int
4697 cpu_flt_in_memory_one_event(ch_async_flt_t *ch_flt, uint64_t t_afsr_bit)
4698 {
4699 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4700 	int afar_status;
4701 	uint64_t afsr_errs, afsr_ow, *ow_bits;
4702 
4703 	if (!(t_afsr_bit & C_AFSR_MEMORY) ||
4704 	    !pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT))
4705 		return (0);
4706 
4707 	afsr_errs = ch_flt->afsr_errs;
4708 	afar_status = afsr_to_afar_status(afsr_errs, t_afsr_bit);
4709 
4710 	switch (afar_status) {
4711 	case AFLT_STAT_VALID:
4712 		return (1);
4713 
4714 	case AFLT_STAT_AMBIGUOUS:
4715 		/*
4716 		 * Status is ambiguous since another error bit (or bits)
4717 		 * of equal priority to the specified bit on in the afsr,
4718 		 * so check those bits. Return 1 only if the bits on in the
4719 		 * same class as the t_afsr_bit are also C_AFSR_MEMORY bits.
4720 		 * Otherwise not all the equal priority bits are for memory
4721 		 * errors, so return 0.
4722 		 */
4723 		ow_bits = afar_overwrite;
4724 		while ((afsr_ow = *ow_bits++) != 0) {
4725 			/*
4726 			 * Get other bits that are on in t_afsr_bit's priority
4727 			 * class to check for Memory Error bits only.
4728 			 */
4729 			if (afsr_ow & t_afsr_bit) {
4730 				if ((afsr_errs & afsr_ow) & ~C_AFSR_MEMORY)
4731 					return (0);
4732 				else
4733 					return (1);
4734 			}
4735 		}
4736 		/*FALLTHRU*/
4737 
4738 	default:
4739 		return (0);
4740 	}
4741 }
4742 
4743 static void
4744 cpu_log_diag_info(ch_async_flt_t *ch_flt)
4745 {
4746 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4747 	ch_dc_data_t *dcp = &ch_flt->flt_diag_data.chd_dc_data;
4748 	ch_ic_data_t *icp = &ch_flt->flt_diag_data.chd_ic_data;
4749 	ch_ec_data_t *ecp = &ch_flt->flt_diag_data.chd_ec_data[0];
4750 #if defined(CPU_IMP_ECACHE_ASSOC)
4751 	int i, nway;
4752 #endif /* CPU_IMP_ECACHE_ASSOC */
4753 
4754 	/*
4755 	 * Check if the CPU log out captured was valid.
4756 	 */
4757 	if (ch_flt->flt_diag_data.chd_afar == LOGOUT_INVALID ||
4758 	    ch_flt->flt_data_incomplete)
4759 		return;
4760 
4761 #if defined(CPU_IMP_ECACHE_ASSOC)
4762 	nway = cpu_ecache_nway();
4763 	i =  cpu_ecache_line_valid(ch_flt);
4764 	if (i == 0 || i > nway) {
4765 		for (i = 0; i < nway; i++)
4766 			ecp[i].ec_logflag = EC_LOGFLAG_MAGIC;
4767 	} else
4768 		ecp[i - 1].ec_logflag = EC_LOGFLAG_MAGIC;
4769 #else /* CPU_IMP_ECACHE_ASSOC */
4770 	ecp->ec_logflag = EC_LOGFLAG_MAGIC;
4771 #endif /* CPU_IMP_ECACHE_ASSOC */
4772 
4773 #if defined(CHEETAH_PLUS)
4774 	pn_cpu_log_diag_l2_info(ch_flt);
4775 #endif /* CHEETAH_PLUS */
4776 
4777 	if (CH_DCTAG_MATCH(dcp->dc_tag, aflt->flt_addr)) {
4778 		dcp->dc_way = CH_DCIDX_TO_WAY(dcp->dc_idx);
4779 		dcp->dc_logflag = DC_LOGFLAG_MAGIC;
4780 	}
4781 
4782 	if (CH_ICTAG_MATCH(icp, aflt->flt_addr)) {
4783 		if (IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
4784 			icp->ic_way = PN_ICIDX_TO_WAY(icp->ic_idx);
4785 		else
4786 			icp->ic_way = CH_ICIDX_TO_WAY(icp->ic_idx);
4787 		icp->ic_logflag = IC_LOGFLAG_MAGIC;
4788 	}
4789 }
4790 
4791 /*
4792  * Cheetah ECC calculation.
4793  *
4794  * We only need to do the calculation on the data bits and can ignore check
4795  * bit and Mtag bit terms in the calculation.
4796  */
4797 static uint64_t ch_ecc_table[9][2] = {
4798 	/*
4799 	 * low order 64-bits   high-order 64-bits
4800 	 */
4801 	{ 0x46bffffeccd1177f, 0x488800022100014c },
4802 	{ 0x42fccc81331ff77f, 0x14424f1010249184 },
4803 	{ 0x8898827c222f1ffe, 0x22c1222808184aaf },
4804 	{ 0xf7632203e131ccf1, 0xe1241121848292b8 },
4805 	{ 0x7f5511421b113809, 0x901c88d84288aafe },
4806 	{ 0x1d49412184882487, 0x8f338c87c044c6ef },
4807 	{ 0xf552181014448344, 0x7ff8f4443e411911 },
4808 	{ 0x2189240808f24228, 0xfeeff8cc81333f42 },
4809 	{ 0x3280008440001112, 0xfee88b337ffffd62 },
4810 };
4811 
4812 /*
4813  * 64-bit population count, use well-known popcnt trick.
4814  * We could use the UltraSPARC V9 POPC instruction, but some
4815  * CPUs including Cheetahplus and Jaguar do not support that
4816  * instruction.
4817  */
4818 int
4819 popc64(uint64_t val)
4820 {
4821 	int cnt;
4822 
4823 	for (cnt = 0; val != 0; val &= val - 1)
4824 		cnt++;
4825 	return (cnt);
4826 }
4827 
4828 /*
4829  * Generate the 9 ECC bits for the 128-bit chunk based on the table above.
4830  * Note that xor'ing an odd number of 1 bits == 1 and xor'ing an even number
4831  * of 1 bits == 0, so we can just use the least significant bit of the popcnt
4832  * instead of doing all the xor's.
4833  */
4834 uint32_t
4835 us3_gen_ecc(uint64_t data_low, uint64_t data_high)
4836 {
4837 	int bitno, s;
4838 	int synd = 0;
4839 
4840 	for (bitno = 0; bitno < 9; bitno++) {
4841 		s = (popc64(data_low & ch_ecc_table[bitno][0]) +
4842 		    popc64(data_high & ch_ecc_table[bitno][1])) & 1;
4843 		synd |= (s << bitno);
4844 	}
4845 	return (synd);
4846 
4847 }
4848 
4849 /*
4850  * Queue one event based on ecc_type_to_info entry.  If the event has an AFT1
4851  * tag associated with it or is a fatal event (aflt_panic set), it is sent to
4852  * the UE event queue.  Otherwise it is dispatched to the CE event queue.
4853  */
4854 static void
4855 cpu_queue_one_event(ch_async_flt_t *ch_flt, char *reason,
4856     ecc_type_to_info_t *eccp, ch_diag_data_t *cdp)
4857 {
4858 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4859 
4860 	if (reason &&
4861 	    strlen(reason) + strlen(eccp->ec_reason) < MAX_REASON_STRING) {
4862 		(void) strcat(reason, eccp->ec_reason);
4863 	}
4864 
4865 	ch_flt->flt_bit = eccp->ec_afsr_bit;
4866 	ch_flt->flt_type = eccp->ec_flt_type;
4867 	if (cdp != NULL && cdp->chd_afar != LOGOUT_INVALID)
4868 		ch_flt->flt_diag_data = *cdp;
4869 	else
4870 		ch_flt->flt_diag_data.chd_afar = LOGOUT_INVALID;
4871 	aflt->flt_in_memory =
4872 	    cpu_flt_in_memory_one_event(ch_flt, ch_flt->flt_bit);
4873 
4874 	if (ch_flt->flt_bit & C_AFSR_MSYND_ERRS)
4875 		aflt->flt_synd = GET_M_SYND(aflt->flt_stat);
4876 	else if (ch_flt->flt_bit & (C_AFSR_ESYND_ERRS | C_AFSR_EXT_ESYND_ERRS))
4877 		aflt->flt_synd = GET_E_SYND(aflt->flt_stat);
4878 	else
4879 		aflt->flt_synd = 0;
4880 
4881 	aflt->flt_payload = eccp->ec_err_payload;
4882 
4883 	if (aflt->flt_panic || (eccp->ec_afsr_bit &
4884 	    (C_AFSR_LEVEL1 | C_AFSR_EXT_LEVEL1)))
4885 		cpu_errorq_dispatch(eccp->ec_err_class,
4886 		    (void *)ch_flt, sizeof (ch_async_flt_t), ue_queue,
4887 		    aflt->flt_panic);
4888 	else
4889 		cpu_errorq_dispatch(eccp->ec_err_class,
4890 		    (void *)ch_flt, sizeof (ch_async_flt_t), ce_queue,
4891 		    aflt->flt_panic);
4892 }
4893 
4894 /*
4895  * Queue events on async event queue one event per error bit.  First we
4896  * queue the events that we "expect" for the given trap, then we queue events
4897  * that we may not expect.  Return number of events queued.
4898  */
4899 int
4900 cpu_queue_events(ch_async_flt_t *ch_flt, char *reason, uint64_t t_afsr_errs,
4901     ch_cpu_logout_t *clop)
4902 {
4903 	struct async_flt *aflt = (struct async_flt *)ch_flt;
4904 	ecc_type_to_info_t *eccp;
4905 	int nevents = 0;
4906 	uint64_t primary_afar = aflt->flt_addr, primary_afsr = aflt->flt_stat;
4907 #if defined(CHEETAH_PLUS)
4908 	uint64_t orig_t_afsr_errs;
4909 #endif
4910 	uint64_t primary_afsr_ext = ch_flt->afsr_ext;
4911 	uint64_t primary_afsr_errs = ch_flt->afsr_errs;
4912 	ch_diag_data_t *cdp = NULL;
4913 
4914 	t_afsr_errs &= ((C_AFSR_ALL_ERRS & ~C_AFSR_ME) | C_AFSR_EXT_ALL_ERRS);
4915 
4916 #if defined(CHEETAH_PLUS)
4917 	orig_t_afsr_errs = t_afsr_errs;
4918 
4919 	/*
4920 	 * For Cheetah+, log the shadow AFSR/AFAR bits first.
4921 	 */
4922 	if (clop != NULL) {
4923 		/*
4924 		 * Set the AFSR and AFAR fields to the shadow registers.  The
4925 		 * flt_addr and flt_stat fields will be reset to the primaries
4926 		 * below, but the sdw_addr and sdw_stat will stay as the
4927 		 * secondaries.
4928 		 */
4929 		cdp = &clop->clo_sdw_data;
4930 		aflt->flt_addr = ch_flt->flt_sdw_afar = cdp->chd_afar;
4931 		aflt->flt_stat = ch_flt->flt_sdw_afsr = cdp->chd_afsr;
4932 		ch_flt->afsr_ext = ch_flt->flt_sdw_afsr_ext = cdp->chd_afsr_ext;
4933 		ch_flt->afsr_errs = (cdp->chd_afsr_ext & C_AFSR_EXT_ALL_ERRS) |
4934 		    (cdp->chd_afsr & C_AFSR_ALL_ERRS);
4935 
4936 		/*
4937 		 * If the primary and shadow AFSR differ, tag the shadow as
4938 		 * the first fault.
4939 		 */
4940 		if ((primary_afar != cdp->chd_afar) ||
4941 		    (primary_afsr_errs != ch_flt->afsr_errs)) {
4942 			aflt->flt_stat |= (1ull << C_AFSR_FIRSTFLT_SHIFT);
4943 		}
4944 
4945 		/*
4946 		 * Check AFSR bits as well as AFSR_EXT bits in order of
4947 		 * the AFAR overwrite priority. Our stored AFSR_EXT value
4948 		 * is expected to be zero for those CPUs which do not have
4949 		 * an AFSR_EXT register.
4950 		 */
4951 		for (eccp = ecc_type_to_info; eccp->ec_desc != NULL; eccp++) {
4952 			if ((eccp->ec_afsr_bit &
4953 			    (ch_flt->afsr_errs & t_afsr_errs)) &&
4954 			    ((eccp->ec_flags & aflt->flt_status) != 0)) {
4955 				cpu_queue_one_event(ch_flt, reason, eccp, cdp);
4956 				cdp = NULL;
4957 				t_afsr_errs &= ~eccp->ec_afsr_bit;
4958 				nevents++;
4959 			}
4960 		}
4961 
4962 		/*
4963 		 * If the ME bit is on in the primary AFSR turn all the
4964 		 * error bits on again that may set the ME bit to make
4965 		 * sure we see the ME AFSR error logs.
4966 		 */
4967 		if ((primary_afsr & C_AFSR_ME) != 0)
4968 			t_afsr_errs = (orig_t_afsr_errs & C_AFSR_ALL_ME_ERRS);
4969 	}
4970 #endif	/* CHEETAH_PLUS */
4971 
4972 	if (clop != NULL)
4973 		cdp = &clop->clo_data;
4974 
4975 	/*
4976 	 * Queue expected errors, error bit and fault type must match
4977 	 * in the ecc_type_to_info table.
4978 	 */
4979 	for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL;
4980 	    eccp++) {
4981 		if ((eccp->ec_afsr_bit & t_afsr_errs) != 0 &&
4982 		    (eccp->ec_flags & aflt->flt_status) != 0) {
4983 #if defined(SERRANO)
4984 			/*
4985 			 * For FRC/FRU errors on Serrano the afar2 captures
4986 			 * the address and the associated data is
4987 			 * in the shadow logout area.
4988 			 */
4989 			if (eccp->ec_afsr_bit  & (C_AFSR_FRC | C_AFSR_FRU)) {
4990 				if (clop != NULL)
4991 					cdp = &clop->clo_sdw_data;
4992 				aflt->flt_addr = ch_flt->afar2;
4993 			} else {
4994 				if (clop != NULL)
4995 					cdp = &clop->clo_data;
4996 				aflt->flt_addr = primary_afar;
4997 			}
4998 #else	/* SERRANO */
4999 			aflt->flt_addr = primary_afar;
5000 #endif	/* SERRANO */
5001 			aflt->flt_stat = primary_afsr;
5002 			ch_flt->afsr_ext = primary_afsr_ext;
5003 			ch_flt->afsr_errs = primary_afsr_errs;
5004 			cpu_queue_one_event(ch_flt, reason, eccp, cdp);
5005 			cdp = NULL;
5006 			t_afsr_errs &= ~eccp->ec_afsr_bit;
5007 			nevents++;
5008 		}
5009 	}
5010 
5011 	/*
5012 	 * Queue unexpected errors, error bit only match.
5013 	 */
5014 	for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL;
5015 	    eccp++) {
5016 		if (eccp->ec_afsr_bit & t_afsr_errs) {
5017 #if defined(SERRANO)
5018 			/*
5019 			 * For FRC/FRU errors on Serrano the afar2 captures
5020 			 * the address and the associated data is
5021 			 * in the shadow logout area.
5022 			 */
5023 			if (eccp->ec_afsr_bit  & (C_AFSR_FRC | C_AFSR_FRU)) {
5024 				if (clop != NULL)
5025 					cdp = &clop->clo_sdw_data;
5026 				aflt->flt_addr = ch_flt->afar2;
5027 			} else {
5028 				if (clop != NULL)
5029 					cdp = &clop->clo_data;
5030 				aflt->flt_addr = primary_afar;
5031 			}
5032 #else	/* SERRANO */
5033 			aflt->flt_addr = primary_afar;
5034 #endif	/* SERRANO */
5035 			aflt->flt_stat = primary_afsr;
5036 			ch_flt->afsr_ext = primary_afsr_ext;
5037 			ch_flt->afsr_errs = primary_afsr_errs;
5038 			cpu_queue_one_event(ch_flt, reason, eccp, cdp);
5039 			cdp = NULL;
5040 			t_afsr_errs &= ~eccp->ec_afsr_bit;
5041 			nevents++;
5042 		}
5043 	}
5044 	return (nevents);
5045 }
5046 
5047 /*
5048  * Return trap type number.
5049  */
5050 uint8_t
5051 flt_to_trap_type(struct async_flt *aflt)
5052 {
5053 	if (aflt->flt_status & ECC_I_TRAP)
5054 		return (TRAP_TYPE_ECC_I);
5055 	if (aflt->flt_status & ECC_D_TRAP)
5056 		return (TRAP_TYPE_ECC_D);
5057 	if (aflt->flt_status & ECC_F_TRAP)
5058 		return (TRAP_TYPE_ECC_F);
5059 	if (aflt->flt_status & ECC_C_TRAP)
5060 		return (TRAP_TYPE_ECC_C);
5061 	if (aflt->flt_status & ECC_DP_TRAP)
5062 		return (TRAP_TYPE_ECC_DP);
5063 	if (aflt->flt_status & ECC_IP_TRAP)
5064 		return (TRAP_TYPE_ECC_IP);
5065 	if (aflt->flt_status & ECC_ITLB_TRAP)
5066 		return (TRAP_TYPE_ECC_ITLB);
5067 	if (aflt->flt_status & ECC_DTLB_TRAP)
5068 		return (TRAP_TYPE_ECC_DTLB);
5069 	return (TRAP_TYPE_UNKNOWN);
5070 }
5071 
5072 /*
5073  * Decide an error type based on detector and leaky/partner tests.
5074  * The following array is used for quick translation - it must
5075  * stay in sync with ce_dispact_t.
5076  */
5077 
5078 static char *cetypes[] = {
5079 	CE_DISP_DESC_U,
5080 	CE_DISP_DESC_I,
5081 	CE_DISP_DESC_PP,
5082 	CE_DISP_DESC_P,
5083 	CE_DISP_DESC_L,
5084 	CE_DISP_DESC_PS,
5085 	CE_DISP_DESC_S
5086 };
5087 
5088 char *
5089 flt_to_error_type(struct async_flt *aflt)
5090 {
5091 	ce_dispact_t dispact, disp;
5092 	uchar_t dtcrinfo, ptnrinfo, lkyinfo;
5093 
5094 	/*
5095 	 * The memory payload bundle is shared by some events that do
5096 	 * not perform any classification.  For those flt_disp will be
5097 	 * 0 and we will return "unknown".
5098 	 */
5099 	if (!ce_disp_inited || !aflt->flt_in_memory || aflt->flt_disp == 0)
5100 		return (cetypes[CE_DISP_UNKNOWN]);
5101 
5102 	dtcrinfo = CE_XDIAG_DTCRINFO(aflt->flt_disp);
5103 
5104 	/*
5105 	 * It is also possible that no scrub/classification was performed
5106 	 * by the detector, for instance where a disrupting error logged
5107 	 * in the AFSR while CEEN was off in cpu_deferred_error.
5108 	 */
5109 	if (!CE_XDIAG_EXT_ALG_APPLIED(dtcrinfo))
5110 		return (cetypes[CE_DISP_UNKNOWN]);
5111 
5112 	/*
5113 	 * Lookup type in initial classification/action table
5114 	 */
5115 	dispact = CE_DISPACT(ce_disp_table,
5116 	    CE_XDIAG_AFARMATCHED(dtcrinfo),
5117 	    CE_XDIAG_STATE(dtcrinfo),
5118 	    CE_XDIAG_CE1SEEN(dtcrinfo),
5119 	    CE_XDIAG_CE2SEEN(dtcrinfo));
5120 
5121 	/*
5122 	 * A bad lookup is not something to panic production systems for.
5123 	 */
5124 	ASSERT(dispact != CE_DISP_BAD);
5125 	if (dispact == CE_DISP_BAD)
5126 		return (cetypes[CE_DISP_UNKNOWN]);
5127 
5128 	disp = CE_DISP(dispact);
5129 
5130 	switch (disp) {
5131 	case CE_DISP_UNKNOWN:
5132 	case CE_DISP_INTERMITTENT:
5133 		break;
5134 
5135 	case CE_DISP_POSS_PERS:
5136 		/*
5137 		 * "Possible persistent" errors to which we have applied a valid
5138 		 * leaky test can be separated into "persistent" or "leaky".
5139 		 */
5140 		lkyinfo = CE_XDIAG_LKYINFO(aflt->flt_disp);
5141 		if (CE_XDIAG_TESTVALID(lkyinfo)) {
5142 			if (CE_XDIAG_CE1SEEN(lkyinfo) ||
5143 			    CE_XDIAG_CE2SEEN(lkyinfo))
5144 				disp = CE_DISP_LEAKY;
5145 			else
5146 				disp = CE_DISP_PERS;
5147 		}
5148 		break;
5149 
5150 	case CE_DISP_POSS_STICKY:
5151 		/*
5152 		 * Promote "possible sticky" results that have been
5153 		 * confirmed by a partner test to "sticky".  Unconfirmed
5154 		 * "possible sticky" events are left at that status - we do not
5155 		 * guess at any bad reader/writer etc status here.
5156 		 */
5157 		ptnrinfo = CE_XDIAG_PTNRINFO(aflt->flt_disp);
5158 		if (CE_XDIAG_TESTVALID(ptnrinfo) &&
5159 		    CE_XDIAG_CE1SEEN(ptnrinfo) && CE_XDIAG_CE2SEEN(ptnrinfo))
5160 			disp = CE_DISP_STICKY;
5161 
5162 		/*
5163 		 * Promote "possible sticky" results on a uniprocessor
5164 		 * to "sticky"
5165 		 */
5166 		if (disp == CE_DISP_POSS_STICKY &&
5167 		    CE_XDIAG_SKIPCODE(disp) == CE_XDIAG_SKIP_UNIPROC)
5168 			disp = CE_DISP_STICKY;
5169 		break;
5170 
5171 	default:
5172 		disp = CE_DISP_UNKNOWN;
5173 		break;
5174 	}
5175 
5176 	return (cetypes[disp]);
5177 }
5178 
5179 /*
5180  * Given the entire afsr, the specific bit to check and a prioritized list of
5181  * error bits, determine the validity of the various overwrite priority
5182  * features of the AFSR/AFAR: AFAR, ESYND and MSYND, each of which have
5183  * different overwrite priorities.
5184  *
5185  * Given a specific afsr error bit and the entire afsr, there are three cases:
5186  *   INVALID:	The specified bit is lower overwrite priority than some other
5187  *		error bit which is on in the afsr (or IVU/IVC).
5188  *   VALID:	The specified bit is higher priority than all other error bits
5189  *		which are on in the afsr.
5190  *   AMBIGUOUS: Another error bit (or bits) of equal priority to the specified
5191  *		bit is on in the afsr.
5192  */
5193 int
5194 afsr_to_overw_status(uint64_t afsr, uint64_t afsr_bit, uint64_t *ow_bits)
5195 {
5196 	uint64_t afsr_ow;
5197 
5198 	while ((afsr_ow = *ow_bits++) != 0) {
5199 		/*
5200 		 * If bit is in the priority class, check to see if another
5201 		 * bit in the same class is on => ambiguous.  Otherwise,
5202 		 * the value is valid.  If the bit is not on at this priority
5203 		 * class, but a higher priority bit is on, then the value is
5204 		 * invalid.
5205 		 */
5206 		if (afsr_ow & afsr_bit) {
5207 			/*
5208 			 * If equal pri bit is on, ambiguous.
5209 			 */
5210 			if (afsr & (afsr_ow & ~afsr_bit))
5211 				return (AFLT_STAT_AMBIGUOUS);
5212 			return (AFLT_STAT_VALID);
5213 		} else if (afsr & afsr_ow)
5214 			break;
5215 	}
5216 
5217 	/*
5218 	 * We didn't find a match or a higher priority bit was on.  Not
5219 	 * finding a match handles the case of invalid AFAR for IVC, IVU.
5220 	 */
5221 	return (AFLT_STAT_INVALID);
5222 }
5223 
5224 static int
5225 afsr_to_afar_status(uint64_t afsr, uint64_t afsr_bit)
5226 {
5227 #if defined(SERRANO)
5228 	if (afsr_bit & (C_AFSR_FRC | C_AFSR_FRU))
5229 		return (afsr_to_overw_status(afsr, afsr_bit, afar2_overwrite));
5230 	else
5231 #endif	/* SERRANO */
5232 		return (afsr_to_overw_status(afsr, afsr_bit, afar_overwrite));
5233 }
5234 
5235 static int
5236 afsr_to_esynd_status(uint64_t afsr, uint64_t afsr_bit)
5237 {
5238 	return (afsr_to_overw_status(afsr, afsr_bit, esynd_overwrite));
5239 }
5240 
5241 static int
5242 afsr_to_msynd_status(uint64_t afsr, uint64_t afsr_bit)
5243 {
5244 	return (afsr_to_overw_status(afsr, afsr_bit, msynd_overwrite));
5245 }
5246 
5247 static int
5248 afsr_to_synd_status(uint_t cpuid, uint64_t afsr, uint64_t afsr_bit)
5249 {
5250 #ifdef lint
5251 	cpuid = cpuid;
5252 #endif
5253 #if defined(CHEETAH_PLUS)
5254 	/*
5255 	 * The M_SYND overwrite policy is combined with the E_SYND overwrite
5256 	 * policy for Cheetah+ and separate for Panther CPUs.
5257 	 */
5258 	if (afsr_bit & C_AFSR_MSYND_ERRS) {
5259 		if (IS_PANTHER(cpunodes[cpuid].implementation))
5260 			return (afsr_to_msynd_status(afsr, afsr_bit));
5261 		else
5262 			return (afsr_to_esynd_status(afsr, afsr_bit));
5263 	} else if (afsr_bit & (C_AFSR_ESYND_ERRS | C_AFSR_EXT_ESYND_ERRS)) {
5264 		if (IS_PANTHER(cpunodes[cpuid].implementation))
5265 			return (afsr_to_pn_esynd_status(afsr, afsr_bit));
5266 		else
5267 			return (afsr_to_esynd_status(afsr, afsr_bit));
5268 #else /* CHEETAH_PLUS */
5269 	if (afsr_bit & C_AFSR_MSYND_ERRS) {
5270 		return (afsr_to_msynd_status(afsr, afsr_bit));
5271 	} else if (afsr_bit & (C_AFSR_ESYND_ERRS | C_AFSR_EXT_ESYND_ERRS)) {
5272 		return (afsr_to_esynd_status(afsr, afsr_bit));
5273 #endif /* CHEETAH_PLUS */
5274 	} else {
5275 		return (AFLT_STAT_INVALID);
5276 	}
5277 }
5278 
5279 /*
5280  * Slave CPU stick synchronization.
5281  */
5282 void
5283 sticksync_slave(void)
5284 {
5285 	int 		i;
5286 	int		tries = 0;
5287 	int64_t		tskew;
5288 	int64_t		av_tskew;
5289 
5290 	kpreempt_disable();
5291 	/* wait for the master side */
5292 	while (stick_sync_cmd != SLAVE_START)
5293 		;
5294 	/*
5295 	 * Synchronization should only take a few tries at most. But in the
5296 	 * odd case where the cpu isn't cooperating we'll keep trying. A cpu
5297 	 * without it's stick synchronized wouldn't be a good citizen.
5298 	 */
5299 	while (slave_done == 0) {
5300 		/*
5301 		 * Time skew calculation.
5302 		 */
5303 		av_tskew = tskew = 0;
5304 
5305 		for (i = 0; i < stick_iter; i++) {
5306 			/* make location hot */
5307 			timestamp[EV_A_START] = 0;
5308 			stick_timestamp(&timestamp[EV_A_START]);
5309 
5310 			/* tell the master we're ready */
5311 			stick_sync_cmd = MASTER_START;
5312 
5313 			/* and wait */
5314 			while (stick_sync_cmd != SLAVE_CONT)
5315 				;
5316 			/* Event B end */
5317 			stick_timestamp(&timestamp[EV_B_END]);
5318 
5319 			/* calculate time skew */
5320 			tskew = ((timestamp[EV_B_END] - timestamp[EV_B_START])
5321 				- (timestamp[EV_A_END] -
5322 				timestamp[EV_A_START])) / 2;
5323 
5324 			/* keep running count */
5325 			av_tskew += tskew;
5326 		} /* for */
5327 
5328 		/*
5329 		 * Adjust stick for time skew if not within the max allowed;
5330 		 * otherwise we're all done.
5331 		 */
5332 		if (stick_iter != 0)
5333 			av_tskew = av_tskew/stick_iter;
5334 		if (ABS(av_tskew) > stick_tsk) {
5335 			/*
5336 			 * If the skew is 1 (the slave's STICK register
5337 			 * is 1 STICK ahead of the master's), stick_adj
5338 			 * could fail to adjust the slave's STICK register
5339 			 * if the STICK read on the slave happens to
5340 			 * align with the increment of the STICK.
5341 			 * Therefore, we increment the skew to 2.
5342 			 */
5343 			if (av_tskew == 1)
5344 				av_tskew++;
5345 			stick_adj(-av_tskew);
5346 		} else
5347 			slave_done = 1;
5348 #ifdef DEBUG
5349 		if (tries < DSYNC_ATTEMPTS)
5350 			stick_sync_stats[CPU->cpu_id].skew_val[tries] =
5351 				av_tskew;
5352 		++tries;
5353 #endif /* DEBUG */
5354 #ifdef lint
5355 		tries = tries;
5356 #endif
5357 
5358 	} /* while */
5359 
5360 	/* allow the master to finish */
5361 	stick_sync_cmd = EVENT_NULL;
5362 	kpreempt_enable();
5363 }
5364 
5365 /*
5366  * Master CPU side of stick synchronization.
5367  *  - timestamp end of Event A
5368  *  - timestamp beginning of Event B
5369  */
5370 void
5371 sticksync_master(void)
5372 {
5373 	int		i;
5374 
5375 	kpreempt_disable();
5376 	/* tell the slave we've started */
5377 	slave_done = 0;
5378 	stick_sync_cmd = SLAVE_START;
5379 
5380 	while (slave_done == 0) {
5381 		for (i = 0; i < stick_iter; i++) {
5382 			/* wait for the slave */
5383 			while (stick_sync_cmd != MASTER_START)
5384 				;
5385 			/* Event A end */
5386 			stick_timestamp(&timestamp[EV_A_END]);
5387 
5388 			/* make location hot */
5389 			timestamp[EV_B_START] = 0;
5390 			stick_timestamp(&timestamp[EV_B_START]);
5391 
5392 			/* tell the slave to continue */
5393 			stick_sync_cmd = SLAVE_CONT;
5394 		} /* for */
5395 
5396 		/* wait while slave calculates time skew */
5397 		while (stick_sync_cmd == SLAVE_CONT)
5398 			;
5399 	} /* while */
5400 	kpreempt_enable();
5401 }
5402 
5403 /*
5404  * Cheetah/Cheetah+ have disrupting error for copyback's, so we don't need to
5405  * do Spitfire hack of xcall'ing all the cpus to ask to check for them.  Also,
5406  * in cpu_async_panic_callb, each cpu checks for CPU events on its way to
5407  * panic idle.
5408  */
5409 /*ARGSUSED*/
5410 void
5411 cpu_check_allcpus(struct async_flt *aflt)
5412 {}
5413 
5414 struct kmem_cache *ch_private_cache;
5415 
5416 /*
5417  * Cpu private unitialization.  Uninitialize the Ecache scrubber and
5418  * deallocate the scrubber data structures and cpu_private data structure.
5419  */
5420 void
5421 cpu_uninit_private(struct cpu *cp)
5422 {
5423 	cheetah_private_t *chprp = CPU_PRIVATE(cp);
5424 
5425 	ASSERT(chprp);
5426 	cpu_uninit_ecache_scrub_dr(cp);
5427 	CPU_PRIVATE(cp) = NULL;
5428 	ch_err_tl1_paddrs[cp->cpu_id] = NULL;
5429 	kmem_cache_free(ch_private_cache, chprp);
5430 	cmp_delete_cpu(cp->cpu_id);
5431 
5432 }
5433 
5434 /*
5435  * Cheetah Cache Scrubbing
5436  *
5437  * The primary purpose of Cheetah cache scrubbing is to reduce the exposure
5438  * of E$ tags, D$ data, and I$ data to cosmic ray events since they are not
5439  * protected by either parity or ECC.
5440  *
5441  * We currently default the E$ and D$ scan rate to 100 (scan 10% of the
5442  * cache per second). Due to the the specifics of how the I$ control
5443  * logic works with respect to the ASI used to scrub I$ lines, the entire
5444  * I$ is scanned at once.
5445  */
5446 
5447 /*
5448  * Tuneables to enable and disable the scrubbing of the caches, and to tune
5449  * scrubbing behavior.  These may be changed via /etc/system or using mdb
5450  * on a running system.
5451  */
5452 int dcache_scrub_enable = 1;		/* D$ scrubbing is on by default */
5453 
5454 /*
5455  * The following are the PIL levels that the softints/cross traps will fire at.
5456  */
5457 uint_t ecache_scrub_pil = PIL_9;	/* E$ scrub PIL for cross traps */
5458 uint_t dcache_scrub_pil = PIL_9;	/* D$ scrub PIL for cross traps */
5459 uint_t icache_scrub_pil = PIL_9;	/* I$ scrub PIL for cross traps */
5460 
5461 #if defined(JALAPENO)
5462 
5463 /*
5464  * Due to several errata (82, 85, 86), we don't enable the L2$ scrubber
5465  * on Jalapeno.
5466  */
5467 int ecache_scrub_enable = 0;
5468 
5469 #else	/* JALAPENO */
5470 
5471 /*
5472  * With all other cpu types, E$ scrubbing is on by default
5473  */
5474 int ecache_scrub_enable = 1;
5475 
5476 #endif	/* JALAPENO */
5477 
5478 
5479 #if defined(CHEETAH_PLUS) || defined(JALAPENO) || defined(SERRANO)
5480 
5481 /*
5482  * The I$ scrubber tends to cause latency problems for real-time SW, so it
5483  * is disabled by default on non-Cheetah systems
5484  */
5485 int icache_scrub_enable = 0;
5486 
5487 /*
5488  * Tuneables specifying the scrub calls per second and the scan rate
5489  * for each cache
5490  *
5491  * The cyclic times are set during boot based on the following values.
5492  * Changing these values in mdb after this time will have no effect.  If
5493  * a different value is desired, it must be set in /etc/system before a
5494  * reboot.
5495  */
5496 int ecache_calls_a_sec = 1;
5497 int dcache_calls_a_sec = 2;
5498 int icache_calls_a_sec = 2;
5499 
5500 int ecache_scan_rate_idle = 1;
5501 int ecache_scan_rate_busy = 1;
5502 int dcache_scan_rate_idle = 1;
5503 int dcache_scan_rate_busy = 1;
5504 int icache_scan_rate_idle = 1;
5505 int icache_scan_rate_busy = 1;
5506 
5507 #else	/* CHEETAH_PLUS || JALAPENO || SERRANO */
5508 
5509 int icache_scrub_enable = 1;		/* I$ scrubbing is on by default */
5510 
5511 int ecache_calls_a_sec = 100;		/* E$ scrub calls per seconds */
5512 int dcache_calls_a_sec = 100;		/* D$ scrub calls per seconds */
5513 int icache_calls_a_sec = 100;		/* I$ scrub calls per seconds */
5514 
5515 int ecache_scan_rate_idle = 100;	/* E$ scan rate (in tenths of a %) */
5516 int ecache_scan_rate_busy = 100;	/* E$ scan rate (in tenths of a %) */
5517 int dcache_scan_rate_idle = 100;	/* D$ scan rate (in tenths of a %) */
5518 int dcache_scan_rate_busy = 100;	/* D$ scan rate (in tenths of a %) */
5519 int icache_scan_rate_idle = 100;	/* I$ scan rate (in tenths of a %) */
5520 int icache_scan_rate_busy = 100;	/* I$ scan rate (in tenths of a %) */
5521 
5522 #endif	/* CHEETAH_PLUS || JALAPENO || SERRANO */
5523 
5524 /*
5525  * In order to scrub on offline cpus, a cross trap is sent.  The handler will
5526  * increment the outstanding request counter and schedule a softint to run
5527  * the scrubber.
5528  */
5529 extern xcfunc_t cache_scrubreq_tl1;
5530 
5531 /*
5532  * These are the softint functions for each cache scrubber
5533  */
5534 static uint_t scrub_ecache_line_intr(caddr_t arg1, caddr_t arg2);
5535 static uint_t scrub_dcache_line_intr(caddr_t arg1, caddr_t arg2);
5536 static uint_t scrub_icache_line_intr(caddr_t arg1, caddr_t arg2);
5537 
5538 /*
5539  * The cache scrub info table contains cache specific information
5540  * and allows for some of the scrub code to be table driven, reducing
5541  * duplication of cache similar code.
5542  *
5543  * This table keeps a copy of the value in the calls per second variable
5544  * (?cache_calls_a_sec).  This makes it much more difficult for someone
5545  * to cause us problems (for example, by setting ecache_calls_a_sec to 0 in
5546  * mdb in a misguided attempt to disable the scrubber).
5547  */
5548 struct scrub_info {
5549 	int		*csi_enable;	/* scrubber enable flag */
5550 	int		csi_freq;	/* scrubber calls per second */
5551 	int		csi_index;	/* index to chsm_outstanding[] */
5552 	uint64_t	csi_inum;	/* scrubber interrupt number */
5553 	cyclic_id_t	csi_omni_cyc_id;	/* omni cyclic ID */
5554 	cyclic_id_t	csi_offline_cyc_id;	/* offline cyclic ID */
5555 	char		csi_name[3];	/* cache name for this scrub entry */
5556 } cache_scrub_info[] = {
5557 { &ecache_scrub_enable, 0, CACHE_SCRUBBER_INFO_E, 0, 0, 0, "E$"},
5558 { &dcache_scrub_enable, 0, CACHE_SCRUBBER_INFO_D, 0, 0, 0, "D$"},
5559 { &icache_scrub_enable, 0, CACHE_SCRUBBER_INFO_I, 0, 0, 0, "I$"}
5560 };
5561 
5562 /*
5563  * If scrubbing is enabled, increment the outstanding request counter.  If it
5564  * is 1 (meaning there were no previous requests outstanding), call
5565  * setsoftint_tl1 through xt_one_unchecked, which eventually ends up doing
5566  * a self trap.
5567  */
5568 static void
5569 do_scrub(struct scrub_info *csi)
5570 {
5571 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5572 	int index = csi->csi_index;
5573 	uint32_t *outstanding = &csmp->chsm_outstanding[index];
5574 
5575 	if (*(csi->csi_enable) && (csmp->chsm_enable[index])) {
5576 		if (atomic_add_32_nv(outstanding, 1) == 1) {
5577 			xt_one_unchecked(CPU->cpu_id, setsoftint_tl1,
5578 			    csi->csi_inum, 0);
5579 		}
5580 	}
5581 }
5582 
5583 /*
5584  * Omni cyclics don't fire on offline cpus, so we use another cyclic to
5585  * cross-trap the offline cpus.
5586  */
5587 static void
5588 do_scrub_offline(struct scrub_info *csi)
5589 {
5590 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5591 
5592 	if (CPUSET_ISNULL(cpu_offline_set)) {
5593 		/*
5594 		 * No offline cpus - nothing to do
5595 		 */
5596 		return;
5597 	}
5598 
5599 	if (*(csi->csi_enable) && (csmp->chsm_enable[csi->csi_index])) {
5600 		xt_some(cpu_offline_set, cache_scrubreq_tl1, csi->csi_inum,
5601 		    csi->csi_index);
5602 	}
5603 }
5604 
5605 /*
5606  * This is the initial setup for the scrubber cyclics - it sets the
5607  * interrupt level, frequency, and function to call.
5608  */
5609 /*ARGSUSED*/
5610 static void
5611 cpu_scrub_cyclic_setup(void *arg, cpu_t *cpu, cyc_handler_t *hdlr,
5612     cyc_time_t *when)
5613 {
5614 	struct scrub_info *csi = (struct scrub_info *)arg;
5615 
5616 	ASSERT(csi != NULL);
5617 	hdlr->cyh_func = (cyc_func_t)do_scrub;
5618 	hdlr->cyh_level = CY_LOW_LEVEL;
5619 	hdlr->cyh_arg = arg;
5620 
5621 	when->cyt_when = 0;	/* Start immediately */
5622 	when->cyt_interval = NANOSEC / csi->csi_freq;
5623 }
5624 
5625 /*
5626  * Initialization for cache scrubbing.
5627  * This routine is called AFTER all cpus have had cpu_init_private called
5628  * to initialize their private data areas.
5629  */
5630 void
5631 cpu_init_cache_scrub(void)
5632 {
5633 	int i;
5634 	struct scrub_info *csi;
5635 	cyc_omni_handler_t omni_hdlr;
5636 	cyc_handler_t offline_hdlr;
5637 	cyc_time_t when;
5638 
5639 	/*
5640 	 * save away the maximum number of lines for the D$
5641 	 */
5642 	dcache_nlines = dcache_size / dcache_linesize;
5643 
5644 	/*
5645 	 * register the softints for the cache scrubbing
5646 	 */
5647 	cache_scrub_info[CACHE_SCRUBBER_INFO_E].csi_inum =
5648 	    add_softintr(ecache_scrub_pil, scrub_ecache_line_intr,
5649 	    (caddr_t)&cache_scrub_info[CACHE_SCRUBBER_INFO_E], SOFTINT_MT);
5650 	cache_scrub_info[CACHE_SCRUBBER_INFO_E].csi_freq = ecache_calls_a_sec;
5651 
5652 	cache_scrub_info[CACHE_SCRUBBER_INFO_D].csi_inum =
5653 	    add_softintr(dcache_scrub_pil, scrub_dcache_line_intr,
5654 	    (caddr_t)&cache_scrub_info[CACHE_SCRUBBER_INFO_D], SOFTINT_MT);
5655 	cache_scrub_info[CACHE_SCRUBBER_INFO_D].csi_freq = dcache_calls_a_sec;
5656 
5657 	cache_scrub_info[CACHE_SCRUBBER_INFO_I].csi_inum =
5658 	    add_softintr(icache_scrub_pil, scrub_icache_line_intr,
5659 	    (caddr_t)&cache_scrub_info[CACHE_SCRUBBER_INFO_I], SOFTINT_MT);
5660 	cache_scrub_info[CACHE_SCRUBBER_INFO_I].csi_freq = icache_calls_a_sec;
5661 
5662 	/*
5663 	 * start the scrubbing for all the caches
5664 	 */
5665 	mutex_enter(&cpu_lock);
5666 	for (i = 0; i < CACHE_SCRUBBER_COUNT; i++) {
5667 
5668 		csi = &cache_scrub_info[i];
5669 
5670 		if (!(*csi->csi_enable))
5671 			continue;
5672 
5673 		/*
5674 		 * force the following to be true:
5675 		 *	1 <= calls_a_sec <= hz
5676 		 */
5677 		if (csi->csi_freq > hz) {
5678 			cmn_err(CE_NOTE, "%s scrub calls_a_sec set too high "
5679 				"(%d); resetting to hz (%d)", csi->csi_name,
5680 				csi->csi_freq, hz);
5681 			csi->csi_freq = hz;
5682 		} else if (csi->csi_freq < 1) {
5683 			cmn_err(CE_NOTE, "%s scrub calls_a_sec set too low "
5684 				"(%d); resetting to 1", csi->csi_name,
5685 				csi->csi_freq);
5686 			csi->csi_freq = 1;
5687 		}
5688 
5689 		omni_hdlr.cyo_online = cpu_scrub_cyclic_setup;
5690 		omni_hdlr.cyo_offline = NULL;
5691 		omni_hdlr.cyo_arg = (void *)csi;
5692 
5693 		offline_hdlr.cyh_func = (cyc_func_t)do_scrub_offline;
5694 		offline_hdlr.cyh_arg = (void *)csi;
5695 		offline_hdlr.cyh_level = CY_LOW_LEVEL;
5696 
5697 		when.cyt_when = 0;	/* Start immediately */
5698 		when.cyt_interval = NANOSEC / csi->csi_freq;
5699 
5700 		csi->csi_omni_cyc_id = cyclic_add_omni(&omni_hdlr);
5701 		csi->csi_offline_cyc_id = cyclic_add(&offline_hdlr, &when);
5702 	}
5703 	register_cpu_setup_func(cpu_scrub_cpu_setup, NULL);
5704 	mutex_exit(&cpu_lock);
5705 }
5706 
5707 /*
5708  * Indicate that the specified cpu is idle.
5709  */
5710 void
5711 cpu_idle_ecache_scrub(struct cpu *cp)
5712 {
5713 	if (CPU_PRIVATE(cp) != NULL) {
5714 		ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(cp, chpr_scrub_misc);
5715 		csmp->chsm_ecache_busy = ECACHE_CPU_IDLE;
5716 	}
5717 }
5718 
5719 /*
5720  * Indicate that the specified cpu is busy.
5721  */
5722 void
5723 cpu_busy_ecache_scrub(struct cpu *cp)
5724 {
5725 	if (CPU_PRIVATE(cp) != NULL) {
5726 		ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(cp, chpr_scrub_misc);
5727 		csmp->chsm_ecache_busy = ECACHE_CPU_BUSY;
5728 	}
5729 }
5730 
5731 /*
5732  * Initialization for cache scrubbing for the specified cpu.
5733  */
5734 void
5735 cpu_init_ecache_scrub_dr(struct cpu *cp)
5736 {
5737 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(cp, chpr_scrub_misc);
5738 	int cpuid = cp->cpu_id;
5739 
5740 	/* initialize the number of lines in the caches */
5741 	csmp->chsm_ecache_nlines = cpunodes[cpuid].ecache_size /
5742 	    cpunodes[cpuid].ecache_linesize;
5743 	csmp->chsm_icache_nlines = CPU_PRIVATE_VAL(cp, chpr_icache_size) /
5744 	    CPU_PRIVATE_VAL(cp, chpr_icache_linesize);
5745 
5746 	/*
5747 	 * do_scrub() and do_scrub_offline() check both the global
5748 	 * ?cache_scrub_enable and this per-cpu enable variable.  All scrubbers
5749 	 * check this value before scrubbing.  Currently, we use it to
5750 	 * disable the E$ scrubber on multi-core cpus or while running at
5751 	 * slowed speed.  For now, just turn everything on and allow
5752 	 * cpu_init_private() to change it if necessary.
5753 	 */
5754 	csmp->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
5755 	csmp->chsm_enable[CACHE_SCRUBBER_INFO_D] = 1;
5756 	csmp->chsm_enable[CACHE_SCRUBBER_INFO_I] = 1;
5757 
5758 	cpu_busy_ecache_scrub(cp);
5759 }
5760 
5761 /*
5762  * Un-initialization for cache scrubbing for the specified cpu.
5763  */
5764 static void
5765 cpu_uninit_ecache_scrub_dr(struct cpu *cp)
5766 {
5767 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(cp, chpr_scrub_misc);
5768 
5769 	/*
5770 	 * un-initialize bookkeeping for cache scrubbing
5771 	 */
5772 	bzero(csmp, sizeof (ch_scrub_misc_t));
5773 
5774 	cpu_idle_ecache_scrub(cp);
5775 }
5776 
5777 /*
5778  * Called periodically on each CPU to scrub the D$.
5779  */
5780 static void
5781 scrub_dcache(int how_many)
5782 {
5783 	int i;
5784 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5785 	int index = csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_D];
5786 
5787 	/*
5788 	 * scrub the desired number of lines
5789 	 */
5790 	for (i = 0; i < how_many; i++) {
5791 		/*
5792 		 * scrub a D$ line
5793 		 */
5794 		dcache_inval_line(index);
5795 
5796 		/*
5797 		 * calculate the next D$ line to scrub, assumes
5798 		 * that dcache_nlines is a power of 2
5799 		 */
5800 		index = (index + 1) & (dcache_nlines - 1);
5801 	}
5802 
5803 	/*
5804 	 * set the scrub index for the next visit
5805 	 */
5806 	csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_D] = index;
5807 }
5808 
5809 /*
5810  * Handler for D$ scrub inum softint. Call scrub_dcache until
5811  * we decrement the outstanding request count to zero.
5812  */
5813 /*ARGSUSED*/
5814 static uint_t
5815 scrub_dcache_line_intr(caddr_t arg1, caddr_t arg2)
5816 {
5817 	int i;
5818 	int how_many;
5819 	int outstanding;
5820 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5821 	uint32_t *countp = &csmp->chsm_outstanding[CACHE_SCRUBBER_INFO_D];
5822 	struct scrub_info *csi = (struct scrub_info *)arg1;
5823 	int scan_rate = (csmp->chsm_ecache_busy == ECACHE_CPU_IDLE) ?
5824 		dcache_scan_rate_idle : dcache_scan_rate_busy;
5825 
5826 	/*
5827 	 * The scan rates are expressed in units of tenths of a
5828 	 * percent.  A scan rate of 1000 (100%) means the whole
5829 	 * cache is scanned every second.
5830 	 */
5831 	how_many = (dcache_nlines * scan_rate) / (1000 * csi->csi_freq);
5832 
5833 	do {
5834 		outstanding = *countp;
5835 		for (i = 0; i < outstanding; i++) {
5836 			scrub_dcache(how_many);
5837 		}
5838 	} while (atomic_add_32_nv(countp, -outstanding));
5839 
5840 	return (DDI_INTR_CLAIMED);
5841 }
5842 
5843 /*
5844  * Called periodically on each CPU to scrub the I$. The I$ is scrubbed
5845  * by invalidating lines. Due to the characteristics of the ASI which
5846  * is used to invalidate an I$ line, the entire I$ must be invalidated
5847  * vs. an individual I$ line.
5848  */
5849 static void
5850 scrub_icache(int how_many)
5851 {
5852 	int i;
5853 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5854 	int index = csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_I];
5855 	int icache_nlines = csmp->chsm_icache_nlines;
5856 
5857 	/*
5858 	 * scrub the desired number of lines
5859 	 */
5860 	for (i = 0; i < how_many; i++) {
5861 		/*
5862 		 * since the entire I$ must be scrubbed at once,
5863 		 * wait until the index wraps to zero to invalidate
5864 		 * the entire I$
5865 		 */
5866 		if (index == 0) {
5867 			icache_inval_all();
5868 		}
5869 
5870 		/*
5871 		 * calculate the next I$ line to scrub, assumes
5872 		 * that chsm_icache_nlines is a power of 2
5873 		 */
5874 		index = (index + 1) & (icache_nlines - 1);
5875 	}
5876 
5877 	/*
5878 	 * set the scrub index for the next visit
5879 	 */
5880 	csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_I] = index;
5881 }
5882 
5883 /*
5884  * Handler for I$ scrub inum softint. Call scrub_icache until
5885  * we decrement the outstanding request count to zero.
5886  */
5887 /*ARGSUSED*/
5888 static uint_t
5889 scrub_icache_line_intr(caddr_t arg1, caddr_t arg2)
5890 {
5891 	int i;
5892 	int how_many;
5893 	int outstanding;
5894 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5895 	uint32_t *countp = &csmp->chsm_outstanding[CACHE_SCRUBBER_INFO_I];
5896 	struct scrub_info *csi = (struct scrub_info *)arg1;
5897 	int scan_rate = (csmp->chsm_ecache_busy == ECACHE_CPU_IDLE) ?
5898 	    icache_scan_rate_idle : icache_scan_rate_busy;
5899 	int icache_nlines = csmp->chsm_icache_nlines;
5900 
5901 	/*
5902 	 * The scan rates are expressed in units of tenths of a
5903 	 * percent.  A scan rate of 1000 (100%) means the whole
5904 	 * cache is scanned every second.
5905 	 */
5906 	how_many = (icache_nlines * scan_rate) / (1000 * csi->csi_freq);
5907 
5908 	do {
5909 		outstanding = *countp;
5910 		for (i = 0; i < outstanding; i++) {
5911 			scrub_icache(how_many);
5912 		}
5913 	} while (atomic_add_32_nv(countp, -outstanding));
5914 
5915 	return (DDI_INTR_CLAIMED);
5916 }
5917 
5918 /*
5919  * Called periodically on each CPU to scrub the E$.
5920  */
5921 static void
5922 scrub_ecache(int how_many)
5923 {
5924 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5925 	int i;
5926 	int cpuid = CPU->cpu_id;
5927 	int index = csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
5928 	int nlines = csmp->chsm_ecache_nlines;
5929 	int linesize = cpunodes[cpuid].ecache_linesize;
5930 	int ec_set_size = cpu_ecache_set_size(CPU);
5931 
5932 	/*
5933 	 * scrub the desired number of lines
5934 	 */
5935 	for (i = 0; i < how_many; i++) {
5936 		/*
5937 		 * scrub the E$ line
5938 		 */
5939 		ecache_flush_line(ecache_flushaddr + (index * linesize),
5940 		    ec_set_size);
5941 
5942 		/*
5943 		 * calculate the next E$ line to scrub based on twice
5944 		 * the number of E$ lines (to displace lines containing
5945 		 * flush area data), assumes that the number of lines
5946 		 * is a power of 2
5947 		 */
5948 		index = (index + 1) & ((nlines << 1) - 1);
5949 	}
5950 
5951 	/*
5952 	 * set the ecache scrub index for the next visit
5953 	 */
5954 	csmp->chsm_flush_index[CACHE_SCRUBBER_INFO_E] = index;
5955 }
5956 
5957 /*
5958  * Handler for E$ scrub inum softint. Call the E$ scrubber until
5959  * we decrement the outstanding request count to zero.
5960  *
5961  * Due to interactions with cpu_scrub_cpu_setup(), the outstanding count may
5962  * become negative after the atomic_add_32_nv().  This is not a problem, as
5963  * the next trip around the loop won't scrub anything, and the next add will
5964  * reset the count back to zero.
5965  */
5966 /*ARGSUSED*/
5967 static uint_t
5968 scrub_ecache_line_intr(caddr_t arg1, caddr_t arg2)
5969 {
5970 	int i;
5971 	int how_many;
5972 	int outstanding;
5973 	ch_scrub_misc_t *csmp = CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
5974 	uint32_t *countp = &csmp->chsm_outstanding[CACHE_SCRUBBER_INFO_E];
5975 	struct scrub_info *csi = (struct scrub_info *)arg1;
5976 	int scan_rate = (csmp->chsm_ecache_busy == ECACHE_CPU_IDLE) ?
5977 		ecache_scan_rate_idle : ecache_scan_rate_busy;
5978 	int ecache_nlines = csmp->chsm_ecache_nlines;
5979 
5980 	/*
5981 	 * The scan rates are expressed in units of tenths of a
5982 	 * percent.  A scan rate of 1000 (100%) means the whole
5983 	 * cache is scanned every second.
5984 	 */
5985 	how_many = (ecache_nlines * scan_rate) / (1000 * csi->csi_freq);
5986 
5987 	do {
5988 		outstanding = *countp;
5989 		for (i = 0; i < outstanding; i++) {
5990 			scrub_ecache(how_many);
5991 		}
5992 	} while (atomic_add_32_nv(countp, -outstanding));
5993 
5994 	return (DDI_INTR_CLAIMED);
5995 }
5996 
5997 /*
5998  * Timeout function to reenable CE
5999  */
6000 static void
6001 cpu_delayed_check_ce_errors(void *arg)
6002 {
6003 	if (!taskq_dispatch(ch_check_ce_tq, cpu_check_ce_errors, arg,
6004 	    TQ_NOSLEEP)) {
6005 		(void) timeout(cpu_delayed_check_ce_errors, arg,
6006 		    drv_usectohz((clock_t)cpu_ceen_delay_secs * MICROSEC));
6007 	}
6008 }
6009 
6010 /*
6011  * CE Deferred Re-enable after trap.
6012  *
6013  * When the CPU gets a disrupting trap for any of the errors
6014  * controlled by the CEEN bit, CEEN is disabled in the trap handler
6015  * immediately. To eliminate the possibility of multiple CEs causing
6016  * recursive stack overflow in the trap handler, we cannot
6017  * reenable CEEN while still running in the trap handler. Instead,
6018  * after a CE is logged on a CPU, we schedule a timeout function,
6019  * cpu_check_ce_errors(), to trigger after cpu_ceen_delay_secs
6020  * seconds. This function will check whether any further CEs
6021  * have occurred on that CPU, and if none have, will reenable CEEN.
6022  *
6023  * If further CEs have occurred while CEEN is disabled, another
6024  * timeout will be scheduled. This is to ensure that the CPU can
6025  * make progress in the face of CE 'storms', and that it does not
6026  * spend all its time logging CE errors.
6027  */
6028 static void
6029 cpu_check_ce_errors(void *arg)
6030 {
6031 	int	cpuid = (int)(uintptr_t)arg;
6032 	cpu_t	*cp;
6033 
6034 	/*
6035 	 * We acquire cpu_lock.
6036 	 */
6037 	ASSERT(curthread->t_pil == 0);
6038 
6039 	/*
6040 	 * verify that the cpu is still around, DR
6041 	 * could have got there first ...
6042 	 */
6043 	mutex_enter(&cpu_lock);
6044 	cp = cpu_get(cpuid);
6045 	if (cp == NULL) {
6046 		mutex_exit(&cpu_lock);
6047 		return;
6048 	}
6049 	/*
6050 	 * make sure we don't migrate across CPUs
6051 	 * while checking our CE status.
6052 	 */
6053 	kpreempt_disable();
6054 
6055 	/*
6056 	 * If we are running on the CPU that got the
6057 	 * CE, we can do the checks directly.
6058 	 */
6059 	if (cp->cpu_id == CPU->cpu_id) {
6060 		mutex_exit(&cpu_lock);
6061 		cpu_check_ce(TIMEOUT_CEEN_CHECK, 0, 0, 0);
6062 		kpreempt_enable();
6063 		return;
6064 	}
6065 	kpreempt_enable();
6066 
6067 	/*
6068 	 * send an x-call to get the CPU that originally
6069 	 * got the CE to do the necessary checks. If we can't
6070 	 * send the x-call, reschedule the timeout, otherwise we
6071 	 * lose CEEN forever on that CPU.
6072 	 */
6073 	if (CPU_XCALL_READY(cp->cpu_id) && (!(cp->cpu_flags & CPU_QUIESCED))) {
6074 		xc_one(cp->cpu_id, (xcfunc_t *)cpu_check_ce,
6075 		    TIMEOUT_CEEN_CHECK, 0);
6076 		mutex_exit(&cpu_lock);
6077 	} else {
6078 		/*
6079 		 * When the CPU is not accepting xcalls, or
6080 		 * the processor is offlined, we don't want to
6081 		 * incur the extra overhead of trying to schedule the
6082 		 * CE timeout indefinitely. However, we don't want to lose
6083 		 * CE checking forever.
6084 		 *
6085 		 * Keep rescheduling the timeout, accepting the additional
6086 		 * overhead as the cost of correctness in the case where we get
6087 		 * a CE, disable CEEN, offline the CPU during the
6088 		 * the timeout interval, and then online it at some
6089 		 * point in the future. This is unlikely given the short
6090 		 * cpu_ceen_delay_secs.
6091 		 */
6092 		mutex_exit(&cpu_lock);
6093 		(void) timeout(cpu_delayed_check_ce_errors,
6094 		    (void *)(uintptr_t)cp->cpu_id,
6095 		    drv_usectohz((clock_t)cpu_ceen_delay_secs * MICROSEC));
6096 	}
6097 }
6098 
6099 /*
6100  * This routine will check whether CEs have occurred while
6101  * CEEN is disabled. Any CEs detected will be logged and, if
6102  * possible, scrubbed.
6103  *
6104  * The memscrubber will also use this routine to clear any errors
6105  * caused by its scrubbing with CEEN disabled.
6106  *
6107  * flag == SCRUBBER_CEEN_CHECK
6108  *		called from memscrubber, just check/scrub, no reset
6109  *		paddr 	physical addr. for start of scrub pages
6110  *		vaddr 	virtual addr. for scrub area
6111  *		psz	page size of area to be scrubbed
6112  *
6113  * flag == TIMEOUT_CEEN_CHECK
6114  *		timeout function has triggered, reset timeout or CEEN
6115  *
6116  * Note: We must not migrate cpus during this function.  This can be
6117  * achieved by one of:
6118  *    - invoking as target of an x-call in which case we're at XCALL_PIL
6119  *	The flag value must be first xcall argument.
6120  *    - disabling kernel preemption.  This should be done for very short
6121  *	periods so is not suitable for SCRUBBER_CEEN_CHECK where we might
6122  *	scrub an extended area with cpu_check_block.  The call for
6123  *	TIMEOUT_CEEN_CHECK uses this so cpu_check_ce must be kept
6124  *	brief for this case.
6125  *    - binding to a cpu, eg with thread_affinity_set().  This is used
6126  *	in the SCRUBBER_CEEN_CHECK case, but is not practical for
6127  *	the TIMEOUT_CEEN_CHECK because both need cpu_lock.
6128  */
6129 void
6130 cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t psz)
6131 {
6132 	ch_cpu_errors_t	cpu_error_regs;
6133 	uint64_t	ec_err_enable;
6134 	uint64_t	page_offset;
6135 
6136 	/* Read AFSR */
6137 	get_cpu_error_state(&cpu_error_regs);
6138 
6139 	/*
6140 	 * If no CEEN errors have occurred during the timeout
6141 	 * interval, it is safe to re-enable CEEN and exit.
6142 	 */
6143 	if ((cpu_error_regs.afsr & C_AFSR_CECC_ERRS) == 0) {
6144 		if (flag == TIMEOUT_CEEN_CHECK &&
6145 		    !((ec_err_enable = get_error_enable()) & EN_REG_CEEN))
6146 			set_error_enable(ec_err_enable | EN_REG_CEEN);
6147 		return;
6148 	}
6149 
6150 	/*
6151 	 * Ensure that CEEN was not reenabled (maybe by DR) before
6152 	 * we log/clear the error.
6153 	 */
6154 	if ((ec_err_enable = get_error_enable()) & EN_REG_CEEN)
6155 	    set_error_enable(ec_err_enable & ~EN_REG_CEEN);
6156 
6157 	/*
6158 	 * log/clear the CE. If CE_CEEN_DEFER is passed, the
6159 	 * timeout will be rescheduled when the error is logged.
6160 	 */
6161 	if (!(cpu_error_regs.afsr & cpu_ce_not_deferred))
6162 	    cpu_ce_detected(&cpu_error_regs,
6163 		CE_CEEN_DEFER | CE_CEEN_TIMEOUT);
6164 	else
6165 	    cpu_ce_detected(&cpu_error_regs, CE_CEEN_TIMEOUT);
6166 
6167 	/*
6168 	 * If the memory scrubber runs while CEEN is
6169 	 * disabled, (or if CEEN is disabled during the
6170 	 * scrub as a result of a CE being triggered by
6171 	 * it), the range being scrubbed will not be
6172 	 * completely cleaned. If there are multiple CEs
6173 	 * in the range at most two of these will be dealt
6174 	 * with, (one by the trap handler and one by the
6175 	 * timeout). It is also possible that none are dealt
6176 	 * with, (CEEN disabled and another CE occurs before
6177 	 * the timeout triggers). So to ensure that the
6178 	 * memory is actually scrubbed, we have to access each
6179 	 * memory location in the range and then check whether
6180 	 * that access causes a CE.
6181 	 */
6182 	if (flag == SCRUBBER_CEEN_CHECK && va) {
6183 		if ((cpu_error_regs.afar >= pa) &&
6184 		    (cpu_error_regs.afar < (pa + psz))) {
6185 			/*
6186 			 * Force a load from physical memory for each
6187 			 * 64-byte block, then check AFSR to determine
6188 			 * whether this access caused an error.
6189 			 *
6190 			 * This is a slow way to do a scrub, but as it will
6191 			 * only be invoked when the memory scrubber actually
6192 			 * triggered a CE, it should not happen too
6193 			 * frequently.
6194 			 *
6195 			 * cut down what we need to check as the scrubber
6196 			 * has verified up to AFAR, so get it's offset
6197 			 * into the page and start there.
6198 			 */
6199 			page_offset = (uint64_t)(cpu_error_regs.afar &
6200 			    (psz - 1));
6201 			va = (caddr_t)(va + (P2ALIGN(page_offset, 64)));
6202 			psz -= (uint_t)(P2ALIGN(page_offset, 64));
6203 			cpu_check_block((caddr_t)(P2ALIGN((uint64_t)va, 64)),
6204 			    psz);
6205 		}
6206 	}
6207 
6208 	/*
6209 	 * Reset error enable if this CE is not masked.
6210 	 */
6211 	if ((flag == TIMEOUT_CEEN_CHECK) &&
6212 	    (cpu_error_regs.afsr & cpu_ce_not_deferred))
6213 	    set_error_enable(ec_err_enable | EN_REG_CEEN);
6214 
6215 }
6216 
6217 /*
6218  * Attempt a cpu logout for an error that we did not trap for, such
6219  * as a CE noticed with CEEN off.  It is assumed that we are still running
6220  * on the cpu that took the error and that we cannot migrate.  Returns
6221  * 0 on success, otherwise nonzero.
6222  */
6223 static int
6224 cpu_ce_delayed_ec_logout(uint64_t afar)
6225 {
6226 	ch_cpu_logout_t *clop;
6227 
6228 	if (CPU_PRIVATE(CPU) == NULL)
6229 		return (0);
6230 
6231 	clop = CPU_PRIVATE_PTR(CPU, chpr_cecc_logout);
6232 	if (cas64(&clop->clo_data.chd_afar, LOGOUT_INVALID, afar) !=
6233 	    LOGOUT_INVALID)
6234 		return (0);
6235 
6236 	cpu_delayed_logout(afar, clop);
6237 	return (1);
6238 }
6239 
6240 /*
6241  * We got an error while CEEN was disabled. We
6242  * need to clean up after it and log whatever
6243  * information we have on the CE.
6244  */
6245 void
6246 cpu_ce_detected(ch_cpu_errors_t *cpu_error_regs, int flag)
6247 {
6248 	ch_async_flt_t 	ch_flt;
6249 	struct async_flt *aflt;
6250 	char 		pr_reason[MAX_REASON_STRING];
6251 
6252 	bzero(&ch_flt, sizeof (ch_async_flt_t));
6253 	ch_flt.flt_trapped_ce = flag;
6254 	aflt = (struct async_flt *)&ch_flt;
6255 	aflt->flt_stat = cpu_error_regs->afsr & C_AFSR_MASK;
6256 	ch_flt.afsr_ext = cpu_error_regs->afsr_ext;
6257 	ch_flt.afsr_errs = (cpu_error_regs->afsr_ext & C_AFSR_EXT_ALL_ERRS) |
6258 	    (cpu_error_regs->afsr & C_AFSR_ALL_ERRS);
6259 	aflt->flt_addr = cpu_error_regs->afar;
6260 #if defined(SERRANO)
6261 	ch_flt.afar2 = cpu_error_regs->afar2;
6262 #endif	/* SERRANO */
6263 	aflt->flt_pc = NULL;
6264 	aflt->flt_priv = ((cpu_error_regs->afsr & C_AFSR_PRIV) != 0);
6265 	aflt->flt_tl = 0;
6266 	aflt->flt_panic = 0;
6267 	cpu_log_and_clear_ce(&ch_flt);
6268 
6269 	/*
6270 	 * check if we caused any errors during cleanup
6271 	 */
6272 	if (clear_errors(&ch_flt)) {
6273 		pr_reason[0] = '\0';
6274 		(void) cpu_queue_events(&ch_flt, pr_reason, ch_flt.afsr_errs,
6275 		    NULL);
6276 	}
6277 }
6278 
6279 /*
6280  * Log/clear CEEN-controlled disrupting errors
6281  */
6282 static void
6283 cpu_log_and_clear_ce(ch_async_flt_t *ch_flt)
6284 {
6285 	struct async_flt *aflt;
6286 	uint64_t afsr, afsr_errs;
6287 	ch_cpu_logout_t *clop;
6288 	char 		pr_reason[MAX_REASON_STRING];
6289 	on_trap_data_t	*otp = curthread->t_ontrap;
6290 
6291 	aflt = (struct async_flt *)ch_flt;
6292 	afsr = aflt->flt_stat;
6293 	afsr_errs = ch_flt->afsr_errs;
6294 	aflt->flt_id = gethrtime_waitfree();
6295 	aflt->flt_bus_id = getprocessorid();
6296 	aflt->flt_inst = CPU->cpu_id;
6297 	aflt->flt_prot = AFLT_PROT_NONE;
6298 	aflt->flt_class = CPU_FAULT;
6299 	aflt->flt_status = ECC_C_TRAP;
6300 
6301 	pr_reason[0] = '\0';
6302 	/*
6303 	 * Get the CPU log out info for Disrupting Trap.
6304 	 */
6305 	if (CPU_PRIVATE(CPU) == NULL) {
6306 		clop = NULL;
6307 		ch_flt->flt_diag_data.chd_afar = LOGOUT_INVALID;
6308 	} else {
6309 		clop = CPU_PRIVATE_PTR(CPU, chpr_cecc_logout);
6310 	}
6311 
6312 	if (clop && ch_flt->flt_trapped_ce & CE_CEEN_TIMEOUT) {
6313 		ch_cpu_errors_t cpu_error_regs;
6314 
6315 		get_cpu_error_state(&cpu_error_regs);
6316 		(void) cpu_ce_delayed_ec_logout(cpu_error_regs.afar);
6317 		clop->clo_data.chd_afsr = cpu_error_regs.afsr;
6318 		clop->clo_data.chd_afar = cpu_error_regs.afar;
6319 		clop->clo_data.chd_afsr_ext = cpu_error_regs.afsr_ext;
6320 		clop->clo_sdw_data.chd_afsr = cpu_error_regs.shadow_afsr;
6321 		clop->clo_sdw_data.chd_afar = cpu_error_regs.shadow_afar;
6322 		clop->clo_sdw_data.chd_afsr_ext =
6323 		    cpu_error_regs.shadow_afsr_ext;
6324 #if defined(SERRANO)
6325 		clop->clo_data.chd_afar2 = cpu_error_regs.afar2;
6326 #endif	/* SERRANO */
6327 		ch_flt->flt_data_incomplete = 1;
6328 
6329 		/*
6330 		 * The logging/clear code expects AFSR/AFAR to be cleared.
6331 		 * The trap handler does it for CEEN enabled errors
6332 		 * so we need to do it here.
6333 		 */
6334 		set_cpu_error_state(&cpu_error_regs);
6335 	}
6336 
6337 #if defined(JALAPENO) || defined(SERRANO)
6338 	/*
6339 	 * FRC: Can't scrub memory as we don't have AFAR for Jalapeno.
6340 	 * For Serrano, even thou we do have the AFAR, we still do the
6341 	 * scrub on the RCE side since that's where the error type can
6342 	 * be properly classified as intermittent, persistent, etc.
6343 	 *
6344 	 * CE/RCE:  If error is in memory and AFAR is valid, scrub the memory.
6345 	 * Must scrub memory before cpu_queue_events, as scrubbing memory sets
6346 	 * the flt_status bits.
6347 	 */
6348 	if ((afsr & (C_AFSR_CE|C_AFSR_RCE)) &&
6349 	    (cpu_flt_in_memory(ch_flt, (afsr & C_AFSR_CE)) ||
6350 	    cpu_flt_in_memory(ch_flt, (afsr & C_AFSR_RCE)))) {
6351 		cpu_ce_scrub_mem_err(aflt, B_TRUE);
6352 	}
6353 #else /* JALAPENO || SERRANO */
6354 	/*
6355 	 * CE/EMC:  If error is in memory and AFAR is valid, scrub the memory.
6356 	 * Must scrub memory before cpu_queue_events, as scrubbing memory sets
6357 	 * the flt_status bits.
6358 	 */
6359 	if (afsr & (C_AFSR_CE|C_AFSR_EMC)) {
6360 		if (cpu_flt_in_memory(ch_flt, (afsr & C_AFSR_CE)) ||
6361 		    cpu_flt_in_memory(ch_flt, (afsr & C_AFSR_EMC))) {
6362 			cpu_ce_scrub_mem_err(aflt, B_TRUE);
6363 		}
6364 	}
6365 
6366 #endif /* JALAPENO || SERRANO */
6367 
6368 	/*
6369 	 * Update flt_prot if this error occurred under on_trap protection.
6370 	 */
6371 	if (otp != NULL && (otp->ot_prot & OT_DATA_EC))
6372 		aflt->flt_prot = AFLT_PROT_EC;
6373 
6374 	/*
6375 	 * Queue events on the async event queue, one event per error bit.
6376 	 */
6377 	if (cpu_queue_events(ch_flt, pr_reason, afsr_errs, clop) == 0 ||
6378 	    (afsr_errs & (C_AFSR_CECC_ERRS | C_AFSR_EXT_CECC_ERRS)) == 0) {
6379 		ch_flt->flt_type = CPU_INV_AFSR;
6380 		cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_INVALID_AFSR,
6381 		    (void *)ch_flt, sizeof (ch_async_flt_t), ue_queue,
6382 		    aflt->flt_panic);
6383 	}
6384 
6385 	/*
6386 	 * Zero out + invalidate CPU logout.
6387 	 */
6388 	if (clop) {
6389 		bzero(clop, sizeof (ch_cpu_logout_t));
6390 		clop->clo_data.chd_afar = LOGOUT_INVALID;
6391 	}
6392 
6393 	/*
6394 	 * If either a CPC, WDC or EDC error has occurred while CEEN
6395 	 * was disabled, we need to flush either the entire
6396 	 * E$ or an E$ line.
6397 	 */
6398 #if defined(JALAPENO) || defined(SERRANO)
6399 	if (afsr & (C_AFSR_EDC | C_AFSR_CPC | C_AFSR_CPU | C_AFSR_WDC))
6400 #else	/* JALAPENO || SERRANO */
6401 	if (afsr_errs & (C_AFSR_EDC | C_AFSR_CPC | C_AFSR_WDC | C_AFSR_L3_EDC |
6402 	    C_AFSR_L3_CPC | C_AFSR_L3_WDC))
6403 #endif	/* JALAPENO || SERRANO */
6404 		cpu_error_ecache_flush(ch_flt);
6405 
6406 }
6407 
6408 /*
6409  * depending on the error type, we determine whether we
6410  * need to flush the entire ecache or just a line.
6411  */
6412 static int
6413 cpu_error_ecache_flush_required(ch_async_flt_t *ch_flt)
6414 {
6415 	struct async_flt *aflt;
6416 	uint64_t	afsr;
6417 	uint64_t	afsr_errs = ch_flt->afsr_errs;
6418 
6419 	aflt = (struct async_flt *)ch_flt;
6420 	afsr = aflt->flt_stat;
6421 
6422 	/*
6423 	 * If we got multiple errors, no point in trying
6424 	 * the individual cases, just flush the whole cache
6425 	 */
6426 	if (afsr & C_AFSR_ME) {
6427 		return (ECACHE_FLUSH_ALL);
6428 	}
6429 
6430 	/*
6431 	 * If either a CPC, WDC or EDC error has occurred while CEEN
6432 	 * was disabled, we need to flush entire E$. We can't just
6433 	 * flush the cache line affected as the ME bit
6434 	 * is not set when multiple correctable errors of the same
6435 	 * type occur, so we might have multiple CPC or EDC errors,
6436 	 * with only the first recorded.
6437 	 */
6438 #if defined(JALAPENO) || defined(SERRANO)
6439 	if (afsr & (C_AFSR_CPC | C_AFSR_CPU | C_AFSR_EDC | C_AFSR_WDC)) {
6440 #else	/* JALAPENO || SERRANO */
6441 	if (afsr_errs & (C_AFSR_CPC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_L3_CPC |
6442 	    C_AFSR_L3_EDC | C_AFSR_L3_WDC)) {
6443 #endif	/* JALAPENO || SERRANO */
6444 		return (ECACHE_FLUSH_ALL);
6445 	}
6446 
6447 #if defined(JALAPENO) || defined(SERRANO)
6448 	/*
6449 	 * If only UE or RUE is set, flush the Ecache line, otherwise
6450 	 * flush the entire Ecache.
6451 	 */
6452 	if (afsr & (C_AFSR_UE|C_AFSR_RUE)) {
6453 		if ((afsr & C_AFSR_ALL_ERRS) == C_AFSR_UE ||
6454 		    (afsr & C_AFSR_ALL_ERRS) == C_AFSR_RUE) {
6455 			return (ECACHE_FLUSH_LINE);
6456 		} else {
6457 			return (ECACHE_FLUSH_ALL);
6458 		}
6459 	}
6460 #else /* JALAPENO || SERRANO */
6461 	/*
6462 	 * If UE only is set, flush the Ecache line, otherwise
6463 	 * flush the entire Ecache.
6464 	 */
6465 	if (afsr_errs & C_AFSR_UE) {
6466 		if ((afsr_errs & (C_AFSR_ALL_ERRS | C_AFSR_EXT_ALL_ERRS)) ==
6467 		    C_AFSR_UE) {
6468 			return (ECACHE_FLUSH_LINE);
6469 		} else {
6470 			return (ECACHE_FLUSH_ALL);
6471 		}
6472 	}
6473 #endif /* JALAPENO || SERRANO */
6474 
6475 	/*
6476 	 * EDU: If EDU only is set, flush the ecache line, otherwise
6477 	 * flush the entire Ecache.
6478 	 */
6479 	if (afsr_errs & (C_AFSR_EDU | C_AFSR_L3_EDU)) {
6480 		if (((afsr_errs & ~C_AFSR_EDU) == 0) ||
6481 		    ((afsr_errs & ~C_AFSR_L3_EDU) == 0)) {
6482 			return (ECACHE_FLUSH_LINE);
6483 		} else {
6484 			return (ECACHE_FLUSH_ALL);
6485 		}
6486 	}
6487 
6488 	/*
6489 	 * BERR: If BERR only is set, flush the Ecache line, otherwise
6490 	 * flush the entire Ecache.
6491 	 */
6492 	if (afsr_errs & C_AFSR_BERR) {
6493 		if ((afsr_errs & ~C_AFSR_BERR) == 0) {
6494 			return (ECACHE_FLUSH_LINE);
6495 		} else {
6496 			return (ECACHE_FLUSH_ALL);
6497 		}
6498 	}
6499 
6500 	return (0);
6501 }
6502 
6503 void
6504 cpu_error_ecache_flush(ch_async_flt_t *ch_flt)
6505 {
6506 	int	ecache_flush_flag =
6507 	    cpu_error_ecache_flush_required(ch_flt);
6508 
6509 	/*
6510 	 * Flush Ecache line or entire Ecache based on above checks.
6511 	 */
6512 	if (ecache_flush_flag == ECACHE_FLUSH_ALL)
6513 		cpu_flush_ecache();
6514 	else if (ecache_flush_flag == ECACHE_FLUSH_LINE) {
6515 		cpu_flush_ecache_line(ch_flt);
6516 	}
6517 
6518 }
6519 
6520 /*
6521  * Extract the PA portion from the E$ tag.
6522  */
6523 uint64_t
6524 cpu_ectag_to_pa(int setsize, uint64_t tag)
6525 {
6526 	if (IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
6527 		return (JG_ECTAG_TO_PA(setsize, tag));
6528 	else if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
6529 		return (PN_L3TAG_TO_PA(tag));
6530 	else
6531 		return (CH_ECTAG_TO_PA(setsize, tag));
6532 }
6533 
6534 /*
6535  * Convert the E$ tag PA into an E$ subblock index.
6536  */
6537 static int
6538 cpu_ectag_pa_to_subblk(int cachesize, uint64_t subaddr)
6539 {
6540 	if (IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
6541 		return (JG_ECTAG_PA_TO_SUBBLK(cachesize, subaddr));
6542 	else if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
6543 		/* Panther has only one subblock per line */
6544 		return (0);
6545 	else
6546 		return (CH_ECTAG_PA_TO_SUBBLK(cachesize, subaddr));
6547 }
6548 
6549 /*
6550  * All subblocks in an E$ line must be invalid for
6551  * the line to be invalid.
6552  */
6553 int
6554 cpu_ectag_line_invalid(int cachesize, uint64_t tag)
6555 {
6556 	if (IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
6557 		return (JG_ECTAG_LINE_INVALID(cachesize, tag));
6558 	else if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
6559 		return (PN_L3_LINE_INVALID(tag));
6560 	else
6561 		return (CH_ECTAG_LINE_INVALID(cachesize, tag));
6562 }
6563 
6564 /*
6565  * Extract state bits for a subblock given the tag.  Note that for Panther
6566  * this works on both l2 and l3 tags.
6567  */
6568 static int
6569 cpu_ectag_pa_to_subblk_state(int cachesize, uint64_t subaddr, uint64_t tag)
6570 {
6571 	if (IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
6572 		return (JG_ECTAG_PA_TO_SUBBLK_STATE(cachesize, subaddr, tag));
6573 	else if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
6574 		return (tag & CH_ECSTATE_MASK);
6575 	else
6576 		return (CH_ECTAG_PA_TO_SUBBLK_STATE(cachesize, subaddr, tag));
6577 }
6578 
6579 /*
6580  * Cpu specific initialization.
6581  */
6582 void
6583 cpu_mp_init(void)
6584 {
6585 #ifdef	CHEETAHPLUS_ERRATUM_25
6586 	if (cheetah_sendmondo_recover) {
6587 		cheetah_nudge_init();
6588 	}
6589 #endif
6590 }
6591 
6592 void
6593 cpu_ereport_post(struct async_flt *aflt)
6594 {
6595 	char *cpu_type, buf[FM_MAX_CLASS];
6596 	nv_alloc_t *nva = NULL;
6597 	nvlist_t *ereport, *detector, *resource;
6598 	errorq_elem_t *eqep;
6599 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
6600 	char unum[UNUM_NAMLEN];
6601 	int synd_code;
6602 	uint8_t msg_type;
6603 	plat_ecc_ch_async_flt_t	plat_ecc_ch_flt;
6604 
6605 	if (aflt->flt_panic || panicstr) {
6606 		eqep = errorq_reserve(ereport_errorq);
6607 		if (eqep == NULL)
6608 			return;
6609 		ereport = errorq_elem_nvl(ereport_errorq, eqep);
6610 		nva = errorq_elem_nva(ereport_errorq, eqep);
6611 	} else {
6612 		ereport = fm_nvlist_create(nva);
6613 	}
6614 
6615 	/*
6616 	 * Create the scheme "cpu" FMRI.
6617 	 */
6618 	detector = fm_nvlist_create(nva);
6619 	resource = fm_nvlist_create(nva);
6620 	switch (cpunodes[aflt->flt_inst].implementation) {
6621 	case CHEETAH_IMPL:
6622 		cpu_type = FM_EREPORT_CPU_USIII;
6623 		break;
6624 	case CHEETAH_PLUS_IMPL:
6625 		cpu_type = FM_EREPORT_CPU_USIIIplus;
6626 		break;
6627 	case JALAPENO_IMPL:
6628 		cpu_type = FM_EREPORT_CPU_USIIIi;
6629 		break;
6630 	case SERRANO_IMPL:
6631 		cpu_type = FM_EREPORT_CPU_USIIIiplus;
6632 		break;
6633 	case JAGUAR_IMPL:
6634 		cpu_type = FM_EREPORT_CPU_USIV;
6635 		break;
6636 	case PANTHER_IMPL:
6637 		cpu_type = FM_EREPORT_CPU_USIVplus;
6638 		break;
6639 	default:
6640 		cpu_type = FM_EREPORT_CPU_UNSUPPORTED;
6641 		break;
6642 	}
6643 
6644 	cpu_fmri_cpu_set(detector, aflt->flt_inst);
6645 
6646 	/*
6647 	 * Encode all the common data into the ereport.
6648 	 */
6649 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s",
6650 		FM_ERROR_CPU, cpu_type, aflt->flt_erpt_class);
6651 
6652 	fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
6653 	    fm_ena_generate_cpu(aflt->flt_id, aflt->flt_inst, FM_ENA_FMT1),
6654 	    detector, NULL);
6655 
6656 	/*
6657 	 * Encode the error specific data that was saved in
6658 	 * the async_flt structure into the ereport.
6659 	 */
6660 	cpu_payload_add_aflt(aflt, ereport, resource,
6661 	    &plat_ecc_ch_flt.ecaf_afar_status,
6662 	    &plat_ecc_ch_flt.ecaf_synd_status);
6663 
6664 	if (aflt->flt_panic || panicstr) {
6665 		errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
6666 	} else {
6667 		(void) fm_ereport_post(ereport, EVCH_TRYHARD);
6668 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
6669 		fm_nvlist_destroy(detector, FM_NVA_FREE);
6670 		fm_nvlist_destroy(resource, FM_NVA_FREE);
6671 	}
6672 	/*
6673 	 * Send the enhanced error information (plat_ecc_error2_data_t)
6674 	 * to the SC olny if it can process it.
6675 	 */
6676 
6677 	if (&plat_ecc_capability_sc_get &&
6678 	    plat_ecc_capability_sc_get(PLAT_ECC_ERROR2_MESSAGE)) {
6679 		msg_type = cpu_flt_bit_to_plat_error(aflt);
6680 		if (msg_type != PLAT_ECC_ERROR2_NONE) {
6681 			/*
6682 			 * If afar status is not invalid do a unum lookup.
6683 			 */
6684 			if (plat_ecc_ch_flt.ecaf_afar_status !=
6685 			    AFLT_STAT_INVALID) {
6686 				synd_code = synd_to_synd_code(
6687 				    plat_ecc_ch_flt.ecaf_synd_status,
6688 				    aflt->flt_synd, ch_flt->flt_bit);
6689 				(void) cpu_get_mem_unum_synd(synd_code,
6690 				    aflt, unum);
6691 			} else {
6692 				unum[0] = '\0';
6693 			}
6694 			plat_ecc_ch_flt.ecaf_sdw_afar = ch_flt->flt_sdw_afar;
6695 			plat_ecc_ch_flt.ecaf_sdw_afsr = ch_flt->flt_sdw_afsr;
6696 			plat_ecc_ch_flt.ecaf_afsr_ext = ch_flt->afsr_ext;
6697 			plat_ecc_ch_flt.ecaf_sdw_afsr_ext =
6698 			    ch_flt->flt_sdw_afsr_ext;
6699 
6700 			if (&plat_log_fruid_error2)
6701 				plat_log_fruid_error2(msg_type, unum, aflt,
6702 				    &plat_ecc_ch_flt);
6703 		}
6704 	}
6705 }
6706 
6707 void
6708 cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
6709 {
6710 	int status;
6711 	ddi_fm_error_t de;
6712 
6713 	bzero(&de, sizeof (ddi_fm_error_t));
6714 
6715 	de.fme_version = DDI_FME_VERSION;
6716 	de.fme_ena = fm_ena_generate_cpu(aflt->flt_id, aflt->flt_inst,
6717 	    FM_ENA_FMT1);
6718 	de.fme_flag = expected;
6719 	de.fme_bus_specific = (void *)aflt->flt_addr;
6720 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
6721 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL))
6722 		aflt->flt_panic = 1;
6723 }
6724 
6725 void
6726 cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz,
6727     errorq_t *eqp, uint_t flag)
6728 {
6729 	struct async_flt *aflt = (struct async_flt *)payload;
6730 
6731 	aflt->flt_erpt_class = error_class;
6732 	errorq_dispatch(eqp, payload, payload_sz, flag);
6733 }
6734 
6735 /*
6736  * This routine may be called by the IO module, but does not do
6737  * anything in this cpu module. The SERD algorithm is handled by
6738  * cpumem-diagnosis engine instead.
6739  */
6740 /*ARGSUSED*/
6741 void
6742 cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum)
6743 {}
6744 
6745 void
6746 adjust_hw_copy_limits(int ecache_size)
6747 {
6748 	/*
6749 	 * Set hw copy limits.
6750 	 *
6751 	 * /etc/system will be parsed later and can override one or more
6752 	 * of these settings.
6753 	 *
6754 	 * At this time, ecache size seems only mildly relevant.
6755 	 * We seem to run into issues with the d-cache and stalls
6756 	 * we see on misses.
6757 	 *
6758 	 * Cycle measurement indicates that 2 byte aligned copies fare
6759 	 * little better than doing things with VIS at around 512 bytes.
6760 	 * 4 byte aligned shows promise until around 1024 bytes. 8 Byte
6761 	 * aligned is faster whenever the source and destination data
6762 	 * in cache and the total size is less than 2 Kbytes.  The 2K
6763 	 * limit seems to be driven by the 2K write cache.
6764 	 * When more than 2K of copies are done in non-VIS mode, stores
6765 	 * backup in the write cache.  In VIS mode, the write cache is
6766 	 * bypassed, allowing faster cache-line writes aligned on cache
6767 	 * boundaries.
6768 	 *
6769 	 * In addition, in non-VIS mode, there is no prefetching, so
6770 	 * for larger copies, the advantage of prefetching to avoid even
6771 	 * occasional cache misses is enough to justify using the VIS code.
6772 	 *
6773 	 * During testing, it was discovered that netbench ran 3% slower
6774 	 * when hw_copy_limit_8 was 2K or larger.  Apparently for server
6775 	 * applications, data is only used once (copied to the output
6776 	 * buffer, then copied by the network device off the system).  Using
6777 	 * the VIS copy saves more L2 cache state.  Network copies are
6778 	 * around 1.3K to 1.5K in size for historical reasons.
6779 	 *
6780 	 * Therefore, a limit of 1K bytes will be used for the 8 byte
6781 	 * aligned copy even for large caches and 8 MB ecache.  The
6782 	 * infrastructure to allow different limits for different sized
6783 	 * caches is kept to allow further tuning in later releases.
6784 	 */
6785 
6786 	if (min_ecache_size == 0 && use_hw_bcopy) {
6787 		/*
6788 		 * First time through - should be before /etc/system
6789 		 * is read.
6790 		 * Could skip the checks for zero but this lets us
6791 		 * preserve any debugger rewrites.
6792 		 */
6793 		if (hw_copy_limit_1 == 0) {
6794 			hw_copy_limit_1 = VIS_COPY_THRESHOLD;
6795 			priv_hcl_1 = hw_copy_limit_1;
6796 		}
6797 		if (hw_copy_limit_2 == 0) {
6798 			hw_copy_limit_2 = 2 * VIS_COPY_THRESHOLD;
6799 			priv_hcl_2 = hw_copy_limit_2;
6800 		}
6801 		if (hw_copy_limit_4 == 0) {
6802 			hw_copy_limit_4 = 4 * VIS_COPY_THRESHOLD;
6803 			priv_hcl_4 = hw_copy_limit_4;
6804 		}
6805 		if (hw_copy_limit_8 == 0) {
6806 			hw_copy_limit_8 = 4 * VIS_COPY_THRESHOLD;
6807 			priv_hcl_8 = hw_copy_limit_8;
6808 		}
6809 		min_ecache_size = ecache_size;
6810 	} else {
6811 		/*
6812 		 * MP initialization. Called *after* /etc/system has
6813 		 * been parsed. One CPU has already been initialized.
6814 		 * Need to cater for /etc/system having scragged one
6815 		 * of our values.
6816 		 */
6817 		if (ecache_size == min_ecache_size) {
6818 			/*
6819 			 * Same size ecache. We do nothing unless we
6820 			 * have a pessimistic ecache setting. In that
6821 			 * case we become more optimistic (if the cache is
6822 			 * large enough).
6823 			 */
6824 			if (hw_copy_limit_8 == 4 * VIS_COPY_THRESHOLD) {
6825 				/*
6826 				 * Need to adjust hw_copy_limit* from our
6827 				 * pessimistic uniprocessor value to a more
6828 				 * optimistic UP value *iff* it hasn't been
6829 				 * reset.
6830 				 */
6831 				if ((ecache_size > 1048576) &&
6832 				    (priv_hcl_8 == hw_copy_limit_8)) {
6833 					if (ecache_size <= 2097152)
6834 						hw_copy_limit_8 = 4 *
6835 						    VIS_COPY_THRESHOLD;
6836 					else if (ecache_size <= 4194304)
6837 						hw_copy_limit_8 = 4 *
6838 						    VIS_COPY_THRESHOLD;
6839 					else
6840 						hw_copy_limit_8 = 4 *
6841 						    VIS_COPY_THRESHOLD;
6842 					priv_hcl_8 = hw_copy_limit_8;
6843 				}
6844 			}
6845 		} else if (ecache_size < min_ecache_size) {
6846 			/*
6847 			 * A different ecache size. Can this even happen?
6848 			 */
6849 			if (priv_hcl_8 == hw_copy_limit_8) {
6850 				/*
6851 				 * The previous value that we set
6852 				 * is unchanged (i.e., it hasn't been
6853 				 * scragged by /etc/system). Rewrite it.
6854 				 */
6855 				if (ecache_size <= 1048576)
6856 					hw_copy_limit_8 = 8 *
6857 					    VIS_COPY_THRESHOLD;
6858 				else if (ecache_size <= 2097152)
6859 					hw_copy_limit_8 = 8 *
6860 					    VIS_COPY_THRESHOLD;
6861 				else if (ecache_size <= 4194304)
6862 					hw_copy_limit_8 = 8 *
6863 					    VIS_COPY_THRESHOLD;
6864 				else
6865 					hw_copy_limit_8 = 10 *
6866 					    VIS_COPY_THRESHOLD;
6867 				priv_hcl_8 = hw_copy_limit_8;
6868 				min_ecache_size = ecache_size;
6869 			}
6870 		}
6871 	}
6872 }
6873 
6874 /*
6875  * Called from illegal instruction trap handler to see if we can attribute
6876  * the trap to a fpras check.
6877  */
6878 int
6879 fpras_chktrap(struct regs *rp)
6880 {
6881 	int op;
6882 	struct fpras_chkfngrp *cgp;
6883 	uintptr_t tpc = (uintptr_t)rp->r_pc;
6884 
6885 	if (fpras_chkfngrps == NULL)
6886 		return (0);
6887 
6888 	cgp = &fpras_chkfngrps[CPU->cpu_id];
6889 	for (op = 0; op < FPRAS_NCOPYOPS; ++op) {
6890 		if (tpc >= (uintptr_t)&cgp->fpras_fn[op].fpras_blk0 &&
6891 		    tpc < (uintptr_t)&cgp->fpras_fn[op].fpras_chkresult)
6892 			break;
6893 	}
6894 	if (op == FPRAS_NCOPYOPS)
6895 		return (0);
6896 
6897 	/*
6898 	 * This is an fpRAS failure caught through an illegal
6899 	 * instruction - trampoline.
6900 	 */
6901 	rp->r_pc = (uintptr_t)&cgp->fpras_fn[op].fpras_trampoline;
6902 	rp->r_npc = rp->r_pc + 4;
6903 	return (1);
6904 }
6905 
6906 /*
6907  * fpras_failure is called when a fpras check detects a bad calculation
6908  * result or an illegal instruction trap is attributed to an fpras
6909  * check.  In all cases we are still bound to CPU.
6910  */
6911 int
6912 fpras_failure(int op, int how)
6913 {
6914 	int use_hw_bcopy_orig, use_hw_bzero_orig;
6915 	uint_t hcl1_orig, hcl2_orig, hcl4_orig, hcl8_orig;
6916 	ch_async_flt_t ch_flt;
6917 	struct async_flt *aflt = (struct async_flt *)&ch_flt;
6918 	struct fpras_chkfn *sfp, *cfp;
6919 	uint32_t *sip, *cip;
6920 	int i;
6921 
6922 	/*
6923 	 * We're running on a sick CPU.  Avoid further FPU use at least for
6924 	 * the time in which we dispatch an ereport and (if applicable) panic.
6925 	 */
6926 	use_hw_bcopy_orig = use_hw_bcopy;
6927 	use_hw_bzero_orig = use_hw_bzero;
6928 	hcl1_orig = hw_copy_limit_1;
6929 	hcl2_orig = hw_copy_limit_2;
6930 	hcl4_orig = hw_copy_limit_4;
6931 	hcl8_orig = hw_copy_limit_8;
6932 	use_hw_bcopy = use_hw_bzero = 0;
6933 	hw_copy_limit_1 = hw_copy_limit_2 = hw_copy_limit_4 =
6934 	    hw_copy_limit_8 = 0;
6935 
6936 	bzero(&ch_flt, sizeof (ch_async_flt_t));
6937 	aflt->flt_id = gethrtime_waitfree();
6938 	aflt->flt_class = CPU_FAULT;
6939 	aflt->flt_inst = CPU->cpu_id;
6940 	aflt->flt_status = (how << 8) | op;
6941 	aflt->flt_payload = FM_EREPORT_PAYLOAD_FPU_HWCOPY;
6942 	ch_flt.flt_type = CPU_FPUERR;
6943 
6944 	/*
6945 	 * We must panic if the copy operation had no lofault protection -
6946 	 * ie, don't panic for copyin, copyout, kcopy and bcopy called
6947 	 * under on_fault and do panic for unprotected bcopy and hwblkpagecopy.
6948 	 */
6949 	aflt->flt_panic = (curthread->t_lofault == NULL);
6950 
6951 	/*
6952 	 * XOR the source instruction block with the copied instruction
6953 	 * block - this will show us which bit(s) are corrupted.
6954 	 */
6955 	sfp = (struct fpras_chkfn *)fpras_chkfn_type1;
6956 	cfp = &fpras_chkfngrps[CPU->cpu_id].fpras_fn[op];
6957 	if (op == FPRAS_BCOPY || op == FPRAS_COPYOUT) {
6958 		sip = &sfp->fpras_blk0[0];
6959 		cip = &cfp->fpras_blk0[0];
6960 	} else {
6961 		sip = &sfp->fpras_blk1[0];
6962 		cip = &cfp->fpras_blk1[0];
6963 	}
6964 	for (i = 0; i < 16; ++i, ++sip, ++cip)
6965 		ch_flt.flt_fpdata[i] = *sip ^ *cip;
6966 
6967 	cpu_errorq_dispatch(FM_EREPORT_CPU_USIII_FPU_HWCOPY, (void *)&ch_flt,
6968 	    sizeof (ch_async_flt_t), ue_queue, aflt->flt_panic);
6969 
6970 	if (aflt->flt_panic)
6971 		fm_panic("FPU failure on CPU %d", CPU->cpu_id);
6972 
6973 	/*
6974 	 * We get here for copyin/copyout and kcopy or bcopy where the
6975 	 * caller has used on_fault.  We will flag the error so that
6976 	 * the process may be killed  The trap_async_hwerr mechanism will
6977 	 * take appropriate further action (such as a reboot, contract
6978 	 * notification etc).  Since we may be continuing we will
6979 	 * restore the global hardware copy acceleration switches.
6980 	 *
6981 	 * When we return from this function to the copy function we want to
6982 	 * avoid potentially bad data being used, ie we want the affected
6983 	 * copy function to return an error.  The caller should therefore
6984 	 * invoke its lofault handler (which always exists for these functions)
6985 	 * which will return the appropriate error.
6986 	 */
6987 	ttolwp(curthread)->lwp_pcb.pcb_flags |= ASYNC_HWERR;
6988 	aston(curthread);
6989 
6990 	use_hw_bcopy = use_hw_bcopy_orig;
6991 	use_hw_bzero = use_hw_bzero_orig;
6992 	hw_copy_limit_1 = hcl1_orig;
6993 	hw_copy_limit_2 = hcl2_orig;
6994 	hw_copy_limit_4 = hcl4_orig;
6995 	hw_copy_limit_8 = hcl8_orig;
6996 
6997 	return (1);
6998 }
6999 
7000 #define	VIS_BLOCKSIZE		64
7001 
7002 int
7003 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
7004 {
7005 	int ret, watched;
7006 
7007 	watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
7008 	ret = dtrace_blksuword32(addr, data, 0);
7009 	if (watched)
7010 		watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
7011 
7012 	return (ret);
7013 }
7014 
7015 /*
7016  * Called when a cpu enters the CPU_FAULTED state (by the cpu placing the
7017  * faulted cpu into that state).  Cross-trap to the faulted cpu to clear
7018  * CEEN from the EER to disable traps for further disrupting error types
7019  * on that cpu.  We could cross-call instead, but that has a larger
7020  * instruction and data footprint than cross-trapping, and the cpu is known
7021  * to be faulted.
7022  */
7023 
7024 void
7025 cpu_faulted_enter(struct cpu *cp)
7026 {
7027 	xt_one(cp->cpu_id, set_error_enable_tl1, EN_REG_CEEN, EER_SET_CLRBITS);
7028 }
7029 
7030 /*
7031  * Called when a cpu leaves the CPU_FAULTED state to return to one of
7032  * offline, spare, or online (by the cpu requesting this state change).
7033  * First we cross-call to clear the AFSR (and AFSR_EXT on Panther) of
7034  * disrupting error bits that have accumulated without trapping, then
7035  * we cross-trap to re-enable CEEN controlled traps.
7036  */
7037 void
7038 cpu_faulted_exit(struct cpu *cp)
7039 {
7040 	ch_cpu_errors_t cpu_error_regs;
7041 
7042 	cpu_error_regs.afsr = C_AFSR_CECC_ERRS;
7043 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation))
7044 		cpu_error_regs.afsr_ext &= C_AFSR_EXT_CECC_ERRS;
7045 	xc_one(cp->cpu_id, (xcfunc_t *)set_cpu_error_state,
7046 	    (uint64_t)&cpu_error_regs, 0);
7047 
7048 	xt_one(cp->cpu_id, set_error_enable_tl1, EN_REG_CEEN, EER_SET_SETBITS);
7049 }
7050 
7051 /*
7052  * Return 1 if the errors in ch_flt's AFSR are secondary errors caused by
7053  * the errors in the original AFSR, 0 otherwise.
7054  *
7055  * For all procs if the initial error was a BERR or TO, then it is possible
7056  * that we may have caused a secondary BERR or TO in the process of logging the
7057  * inital error via cpu_run_bus_error_handlers().  If this is the case then
7058  * if the request was protected then a panic is still not necessary, if not
7059  * protected then aft_panic is already set - so either way there's no need
7060  * to set aft_panic for the secondary error.
7061  *
7062  * For Cheetah and Jalapeno, if the original error was a UE which occurred on
7063  * a store merge, then the error handling code will call cpu_deferred_error().
7064  * When clear_errors() is called, it will determine that secondary errors have
7065  * occurred - in particular, the store merge also caused a EDU and WDU that
7066  * weren't discovered until this point.
7067  *
7068  * We do three checks to verify that we are in this case.  If we pass all three
7069  * checks, we return 1 to indicate that we should not panic.  If any unexpected
7070  * errors occur, we return 0.
7071  *
7072  * For Cheetah+ and derivative procs, the store merge causes a DUE, which is
7073  * handled in cpu_disrupting_errors().  Since this function is not even called
7074  * in the case we are interested in, we just return 0 for these processors.
7075  */
7076 /*ARGSUSED*/
7077 static int
7078 cpu_check_secondary_errors(ch_async_flt_t *ch_flt, uint64_t t_afsr_errs,
7079     uint64_t t_afar)
7080 {
7081 #if defined(CHEETAH_PLUS)
7082 #else	/* CHEETAH_PLUS */
7083 	struct async_flt *aflt = (struct async_flt *)ch_flt;
7084 #endif	/* CHEETAH_PLUS */
7085 
7086 	/*
7087 	 * Was the original error a BERR or TO and only a BERR or TO
7088 	 * (multiple errors are also OK)
7089 	 */
7090 	if ((t_afsr_errs & ~(C_AFSR_BERR | C_AFSR_TO | C_AFSR_ME)) == 0) {
7091 		/*
7092 		 * Is the new error a BERR or TO and only a BERR or TO
7093 		 * (multiple errors are also OK)
7094 		 */
7095 		if ((ch_flt->afsr_errs &
7096 		    ~(C_AFSR_BERR | C_AFSR_TO | C_AFSR_ME)) == 0)
7097 			return (1);
7098 	}
7099 
7100 #if defined(CHEETAH_PLUS)
7101 	return (0);
7102 #else	/* CHEETAH_PLUS */
7103 	/*
7104 	 * Now look for secondary effects of a UE on cheetah/jalapeno
7105 	 *
7106 	 * Check the original error was a UE, and only a UE.  Note that
7107 	 * the ME bit will cause us to fail this check.
7108 	 */
7109 	if (t_afsr_errs != C_AFSR_UE)
7110 		return (0);
7111 
7112 	/*
7113 	 * Check the secondary errors were exclusively an EDU and/or WDU.
7114 	 */
7115 	if ((ch_flt->afsr_errs & ~(C_AFSR_EDU|C_AFSR_WDU)) != 0)
7116 		return (0);
7117 
7118 	/*
7119 	 * Check the AFAR of the original error and secondary errors
7120 	 * match to the 64-byte boundary
7121 	 */
7122 	if (P2ALIGN(aflt->flt_addr, 64) != P2ALIGN(t_afar, 64))
7123 		return (0);
7124 
7125 	/*
7126 	 * We've passed all the checks, so it's a secondary error!
7127 	 */
7128 	return (1);
7129 #endif	/* CHEETAH_PLUS */
7130 }
7131 
7132 /*
7133  * Translate the flt_bit or flt_type into an error type.  First, flt_bit
7134  * is checked for any valid errors.  If found, the error type is
7135  * returned. If not found, the flt_type is checked for L1$ parity errors.
7136  */
7137 /*ARGSUSED*/
7138 static uint8_t
7139 cpu_flt_bit_to_plat_error(struct async_flt *aflt)
7140 {
7141 #if defined(JALAPENO)
7142 	/*
7143 	 * Currently, logging errors to the SC is not supported on Jalapeno
7144 	 */
7145 	return (PLAT_ECC_ERROR2_NONE);
7146 #else
7147 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
7148 
7149 	switch (ch_flt->flt_bit) {
7150 	case C_AFSR_CE:
7151 		return (PLAT_ECC_ERROR2_CE);
7152 	case C_AFSR_UCC:
7153 	case C_AFSR_EDC:
7154 	case C_AFSR_WDC:
7155 	case C_AFSR_CPC:
7156 		return (PLAT_ECC_ERROR2_L2_CE);
7157 	case C_AFSR_EMC:
7158 		return (PLAT_ECC_ERROR2_EMC);
7159 	case C_AFSR_IVC:
7160 		return (PLAT_ECC_ERROR2_IVC);
7161 	case C_AFSR_UE:
7162 		return (PLAT_ECC_ERROR2_UE);
7163 	case C_AFSR_UCU:
7164 	case C_AFSR_EDU:
7165 	case C_AFSR_WDU:
7166 	case C_AFSR_CPU:
7167 		return (PLAT_ECC_ERROR2_L2_UE);
7168 	case C_AFSR_IVU:
7169 		return (PLAT_ECC_ERROR2_IVU);
7170 	case C_AFSR_TO:
7171 		return (PLAT_ECC_ERROR2_TO);
7172 	case C_AFSR_BERR:
7173 		return (PLAT_ECC_ERROR2_BERR);
7174 #if defined(CHEETAH_PLUS)
7175 	case C_AFSR_L3_EDC:
7176 	case C_AFSR_L3_UCC:
7177 	case C_AFSR_L3_CPC:
7178 	case C_AFSR_L3_WDC:
7179 		return (PLAT_ECC_ERROR2_L3_CE);
7180 	case C_AFSR_IMC:
7181 		return (PLAT_ECC_ERROR2_IMC);
7182 	case C_AFSR_TSCE:
7183 		return (PLAT_ECC_ERROR2_L2_TSCE);
7184 	case C_AFSR_THCE:
7185 		return (PLAT_ECC_ERROR2_L2_THCE);
7186 	case C_AFSR_L3_MECC:
7187 		return (PLAT_ECC_ERROR2_L3_MECC);
7188 	case C_AFSR_L3_THCE:
7189 		return (PLAT_ECC_ERROR2_L3_THCE);
7190 	case C_AFSR_L3_CPU:
7191 	case C_AFSR_L3_EDU:
7192 	case C_AFSR_L3_UCU:
7193 	case C_AFSR_L3_WDU:
7194 		return (PLAT_ECC_ERROR2_L3_UE);
7195 	case C_AFSR_DUE:
7196 		return (PLAT_ECC_ERROR2_DUE);
7197 	case C_AFSR_DTO:
7198 		return (PLAT_ECC_ERROR2_DTO);
7199 	case C_AFSR_DBERR:
7200 		return (PLAT_ECC_ERROR2_DBERR);
7201 #endif	/* CHEETAH_PLUS */
7202 	default:
7203 		switch (ch_flt->flt_type) {
7204 #if defined(CPU_IMP_L1_CACHE_PARITY)
7205 		case CPU_IC_PARITY:
7206 			return (PLAT_ECC_ERROR2_IPE);
7207 		case CPU_DC_PARITY:
7208 			if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
7209 				if (ch_flt->parity_data.dpe.cpl_cache ==
7210 				    CPU_PC_PARITY) {
7211 					return (PLAT_ECC_ERROR2_PCACHE);
7212 				}
7213 			}
7214 			return (PLAT_ECC_ERROR2_DPE);
7215 #endif /* CPU_IMP_L1_CACHE_PARITY */
7216 		case CPU_ITLB_PARITY:
7217 			return (PLAT_ECC_ERROR2_ITLB);
7218 		case CPU_DTLB_PARITY:
7219 			return (PLAT_ECC_ERROR2_DTLB);
7220 		default:
7221 			return (PLAT_ECC_ERROR2_NONE);
7222 		}
7223 	}
7224 #endif	/* JALAPENO */
7225 }
7226