1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Support for Olympus-C (SPARC64-VI) and Jupiter (SPARC64-VII). 28 */ 29 30 #include <sys/types.h> 31 #include <sys/systm.h> 32 #include <sys/ddi.h> 33 #include <sys/sysmacros.h> 34 #include <sys/archsystm.h> 35 #include <sys/vmsystm.h> 36 #include <sys/machparam.h> 37 #include <sys/machsystm.h> 38 #include <sys/machthread.h> 39 #include <sys/cpu.h> 40 #include <sys/cmp.h> 41 #include <sys/elf_SPARC.h> 42 #include <vm/vm_dep.h> 43 #include <vm/hat_sfmmu.h> 44 #include <vm/seg_kpm.h> 45 #include <vm/seg_kmem.h> 46 #include <sys/cpuvar.h> 47 #include <sys/opl_olympus_regs.h> 48 #include <sys/opl_module.h> 49 #include <sys/async.h> 50 #include <sys/cmn_err.h> 51 #include <sys/debug.h> 52 #include <sys/dditypes.h> 53 #include <sys/cpu_module.h> 54 #include <sys/sysmacros.h> 55 #include <sys/intreg.h> 56 #include <sys/clock.h> 57 #include <sys/platform_module.h> 58 #include <sys/ontrap.h> 59 #include <sys/panic.h> 60 #include <sys/memlist.h> 61 #include <sys/ndifm.h> 62 #include <sys/ddifm.h> 63 #include <sys/fm/protocol.h> 64 #include <sys/fm/util.h> 65 #include <sys/fm/cpu/SPARC64-VI.h> 66 #include <sys/dtrace.h> 67 #include <sys/watchpoint.h> 68 #include <sys/promif.h> 69 70 /* 71 * Internal functions. 72 */ 73 static int cpu_sync_log_err(void *flt); 74 static void cpu_payload_add_aflt(struct async_flt *, nvlist_t *, nvlist_t *); 75 static void opl_cpu_sync_error(struct regs *, ulong_t, ulong_t, uint_t, uint_t); 76 static int cpu_flt_in_memory(opl_async_flt_t *, uint64_t); 77 static int prom_SPARC64VII_support_enabled(void); 78 static void opl_ta3(); 79 static int plat_prom_preserve_kctx_is_supported(void); 80 81 /* 82 * Error counters resetting interval. 83 */ 84 static int opl_async_check_interval = 60; /* 1 min */ 85 86 uint_t cpu_impl_dual_pgsz = 1; 87 88 /* 89 * PA[22:0] represent Displacement in Jupiter 90 * configuration space. 91 */ 92 uint_t root_phys_addr_lo_mask = 0x7fffffu; 93 94 /* 95 * set in /etc/system to control logging of user BERR/TO's 96 */ 97 int cpu_berr_to_verbose = 0; 98 99 /* 100 * Set to 1 if booted with all Jupiter cpus (all-Jupiter features enabled). 101 */ 102 int cpu_alljupiter = 0; 103 104 /* 105 * The sfmmu_cext field to be used by processes in a shared context domain. 106 */ 107 static uchar_t shctx_cext = TAGACCEXT_MKSZPAIR(DEFAULT_ISM_PAGESZC, TTE8K); 108 109 static int min_ecache_size; 110 static uint_t priv_hcl_1; 111 static uint_t priv_hcl_2; 112 static uint_t priv_hcl_4; 113 static uint_t priv_hcl_8; 114 115 /* 116 * Olympus error log 117 */ 118 static opl_errlog_t *opl_err_log; 119 static int opl_cpu0_log_setup; 120 121 /* 122 * OPL ta 3 save area. 123 */ 124 char *opl_ta3_save; 125 126 /* 127 * UE is classified into four classes (MEM, CHANNEL, CPU, PATH). 128 * No any other ecc_type_info insertion is allowed in between the following 129 * four UE classess. 130 */ 131 ecc_type_to_info_t ecc_type_to_info[] = { 132 SFSR_UE, "UE ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE, 133 "Uncorrectable ECC", FM_EREPORT_PAYLOAD_SYNC, 134 FM_EREPORT_CPU_UE_MEM, 135 SFSR_UE, "UE ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE, 136 "Uncorrectable ECC", FM_EREPORT_PAYLOAD_SYNC, 137 FM_EREPORT_CPU_UE_CHANNEL, 138 SFSR_UE, "UE ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE, 139 "Uncorrectable ECC", FM_EREPORT_PAYLOAD_SYNC, 140 FM_EREPORT_CPU_UE_CPU, 141 SFSR_UE, "UE ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE, 142 "Uncorrectable ECC", FM_EREPORT_PAYLOAD_SYNC, 143 FM_EREPORT_CPU_UE_PATH, 144 SFSR_BERR, "BERR ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS, 145 "Bus Error", FM_EREPORT_PAYLOAD_SYNC, 146 FM_EREPORT_CPU_BERR, 147 SFSR_TO, "TO ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS, 148 "Bus Timeout", FM_EREPORT_PAYLOAD_SYNC, 149 FM_EREPORT_CPU_BTO, 150 SFSR_TLB_MUL, "TLB_MUL ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS, 151 "TLB MultiHit", FM_EREPORT_PAYLOAD_SYNC, 152 FM_EREPORT_CPU_MTLB, 153 SFSR_TLB_PRT, "TLB_PRT ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS, 154 "TLB Parity", FM_EREPORT_PAYLOAD_SYNC, 155 FM_EREPORT_CPU_TLBP, 156 157 UGESR_IAUG_CRE, "IAUG_CRE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 158 "IAUG CRE", FM_EREPORT_PAYLOAD_URGENT, 159 FM_EREPORT_CPU_CRE, 160 UGESR_IAUG_TSBCTXT, "IAUG_TSBCTXT", 161 OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 162 "IAUG TSBCTXT", FM_EREPORT_PAYLOAD_URGENT, 163 FM_EREPORT_CPU_TSBCTX, 164 UGESR_IUG_TSBP, "IUG_TSBP", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 165 "IUG TSBP", FM_EREPORT_PAYLOAD_URGENT, 166 FM_EREPORT_CPU_TSBP, 167 UGESR_IUG_PSTATE, "IUG_PSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 168 "IUG PSTATE", FM_EREPORT_PAYLOAD_URGENT, 169 FM_EREPORT_CPU_PSTATE, 170 UGESR_IUG_TSTATE, "IUG_TSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 171 "IUG TSTATE", FM_EREPORT_PAYLOAD_URGENT, 172 FM_EREPORT_CPU_TSTATE, 173 UGESR_IUG_F, "IUG_F", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 174 "IUG FREG", FM_EREPORT_PAYLOAD_URGENT, 175 FM_EREPORT_CPU_IUG_F, 176 UGESR_IUG_R, "IUG_R", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 177 "IUG RREG", FM_EREPORT_PAYLOAD_URGENT, 178 FM_EREPORT_CPU_IUG_R, 179 UGESR_AUG_SDC, "AUG_SDC", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 180 "AUG SDC", FM_EREPORT_PAYLOAD_URGENT, 181 FM_EREPORT_CPU_SDC, 182 UGESR_IUG_WDT, "IUG_WDT", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 183 "IUG WDT", FM_EREPORT_PAYLOAD_URGENT, 184 FM_EREPORT_CPU_WDT, 185 UGESR_IUG_DTLB, "IUG_DTLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 186 "IUG DTLB", FM_EREPORT_PAYLOAD_URGENT, 187 FM_EREPORT_CPU_DTLB, 188 UGESR_IUG_ITLB, "IUG_ITLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 189 "IUG ITLB", FM_EREPORT_PAYLOAD_URGENT, 190 FM_EREPORT_CPU_ITLB, 191 UGESR_IUG_COREERR, "IUG_COREERR", 192 OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 193 "IUG COREERR", FM_EREPORT_PAYLOAD_URGENT, 194 FM_EREPORT_CPU_CORE, 195 UGESR_MULTI_DAE, "MULTI_DAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 196 "MULTI DAE", FM_EREPORT_PAYLOAD_URGENT, 197 FM_EREPORT_CPU_DAE, 198 UGESR_MULTI_IAE, "MULTI_IAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 199 "MULTI IAE", FM_EREPORT_PAYLOAD_URGENT, 200 FM_EREPORT_CPU_IAE, 201 UGESR_MULTI_UGE, "MULTI_UGE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT, 202 "MULTI UGE", FM_EREPORT_PAYLOAD_URGENT, 203 FM_EREPORT_CPU_UGE, 204 0, NULL, 0, 0, 205 NULL, 0, 0, 206 }; 207 208 int (*p2get_mem_info)(int synd_code, uint64_t paddr, 209 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, 210 int *segsp, int *banksp, int *mcidp); 211 212 213 /* 214 * Setup trap handlers for 0xA, 0x32, 0x40 trap types 215 * and "ta 3" and "ta 4". 216 */ 217 void 218 cpu_init_trap(void) 219 { 220 OPL_SET_TRAP(tt0_iae, opl_serr_instr); 221 OPL_SET_TRAP(tt1_iae, opl_serr_instr); 222 OPL_SET_TRAP(tt0_dae, opl_serr_instr); 223 OPL_SET_TRAP(tt1_dae, opl_serr_instr); 224 OPL_SET_TRAP(tt0_asdat, opl_ugerr_instr); 225 OPL_SET_TRAP(tt1_asdat, opl_ugerr_instr); 226 OPL_SET_TRAP(tt0_flushw, opl_ta3_instr); 227 OPL_PATCH_28(opl_cleanw_patch, opl_ta4_instr); 228 } 229 230 static int 231 getintprop(pnode_t node, char *name, int deflt) 232 { 233 int value; 234 235 switch (prom_getproplen(node, name)) { 236 case sizeof (int): 237 (void) prom_getprop(node, name, (caddr_t)&value); 238 break; 239 240 default: 241 value = deflt; 242 break; 243 } 244 245 return (value); 246 } 247 248 /* 249 * Set the magic constants of the implementation. 250 */ 251 /*ARGSUSED*/ 252 void 253 cpu_fiximp(pnode_t dnode) 254 { 255 int i, a; 256 extern int vac_size, vac_shift; 257 extern uint_t vac_mask; 258 259 static struct { 260 char *name; 261 int *var; 262 int defval; 263 } prop[] = { 264 "l1-dcache-size", &dcache_size, OPL_DCACHE_SIZE, 265 "l1-dcache-line-size", &dcache_linesize, OPL_DCACHE_LSIZE, 266 "l1-icache-size", &icache_size, OPL_ICACHE_SIZE, 267 "l1-icache-line-size", &icache_linesize, OPL_ICACHE_LSIZE, 268 "l2-cache-size", &ecache_size, OPL_ECACHE_SIZE, 269 "l2-cache-line-size", &ecache_alignsize, OPL_ECACHE_LSIZE, 270 "l2-cache-associativity", &ecache_associativity, OPL_ECACHE_NWAY 271 }; 272 273 for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++) 274 *prop[i].var = getintprop(dnode, prop[i].name, prop[i].defval); 275 276 ecache_setsize = ecache_size / ecache_associativity; 277 278 vac_size = OPL_VAC_SIZE; 279 vac_mask = MMU_PAGEMASK & (vac_size - 1); 280 i = 0; a = vac_size; 281 while (a >>= 1) 282 ++i; 283 vac_shift = i; 284 shm_alignment = vac_size; 285 vac = 1; 286 } 287 288 /* 289 * Enable features for Jupiter-only domains. 290 */ 291 void 292 cpu_fix_alljupiter(void) 293 { 294 if (!prom_SPARC64VII_support_enabled()) { 295 /* 296 * Do not enable all-Jupiter features and do not turn on 297 * the cpu_alljupiter flag. 298 */ 299 return; 300 } 301 302 cpu_alljupiter = 1; 303 304 /* 305 * Enable ima hwcap for Jupiter-only domains. DR will prevent 306 * addition of Olympus-C to all-Jupiter domains to preserve ima 307 * hwcap semantics. 308 */ 309 cpu_hwcap_flags |= AV_SPARC_IMA; 310 311 /* 312 * Enable shared context support. 313 */ 314 shctx_on = 1; 315 } 316 317 #ifdef OLYMPUS_C_REV_B_ERRATA_XCALL 318 /* 319 * Quick and dirty way to redefine locally in 320 * OPL the value of IDSR_BN_SETS to 31 instead 321 * of the standard 32 value. This is to workaround 322 * REV_B of Olympus_c processor's problem in handling 323 * more than 31 xcall broadcast. 324 */ 325 #undef IDSR_BN_SETS 326 #define IDSR_BN_SETS 31 327 #endif /* OLYMPUS_C_REV_B_ERRATA_XCALL */ 328 329 void 330 send_mondo_set(cpuset_t set) 331 { 332 int lo, busy, nack, shipped = 0; 333 uint16_t i, cpuids[IDSR_BN_SETS]; 334 uint64_t idsr, nackmask = 0, busymask, curnack, curbusy; 335 uint64_t starttick, endtick, tick, lasttick; 336 #if (NCPU > IDSR_BN_SETS) 337 int index = 0; 338 int ncpuids = 0; 339 #endif 340 #ifdef OLYMPUS_C_REV_A_ERRATA_XCALL 341 int bn_sets = IDSR_BN_SETS; 342 uint64_t ver; 343 344 ASSERT(NCPU > bn_sets); 345 #endif 346 347 ASSERT(!CPUSET_ISNULL(set)); 348 starttick = lasttick = gettick(); 349 350 #ifdef OLYMPUS_C_REV_A_ERRATA_XCALL 351 ver = ultra_getver(); 352 if (((ULTRA_VER_IMPL(ver)) == OLYMPUS_C_IMPL) && 353 ((OLYMPUS_REV_MASK(ver)) == OLYMPUS_C_A)) 354 bn_sets = 1; 355 #endif 356 357 #if (NCPU <= IDSR_BN_SETS) 358 for (i = 0; i < NCPU; i++) 359 if (CPU_IN_SET(set, i)) { 360 shipit(i, shipped); 361 nackmask |= IDSR_NACK_BIT(shipped); 362 cpuids[shipped++] = i; 363 CPUSET_DEL(set, i); 364 if (CPUSET_ISNULL(set)) 365 break; 366 } 367 CPU_STATS_ADDQ(CPU, sys, xcalls, shipped); 368 #else 369 for (i = 0; i < NCPU; i++) 370 if (CPU_IN_SET(set, i)) { 371 ncpuids++; 372 373 /* 374 * Ship only to the first (IDSR_BN_SETS) CPUs. If we 375 * find we have shipped to more than (IDSR_BN_SETS) 376 * CPUs, set "index" to the highest numbered CPU in 377 * the set so we can ship to other CPUs a bit later on. 378 */ 379 #ifdef OLYMPUS_C_REV_A_ERRATA_XCALL 380 if (shipped < bn_sets) { 381 #else 382 if (shipped < IDSR_BN_SETS) { 383 #endif 384 shipit(i, shipped); 385 nackmask |= IDSR_NACK_BIT(shipped); 386 cpuids[shipped++] = i; 387 CPUSET_DEL(set, i); 388 if (CPUSET_ISNULL(set)) 389 break; 390 } else 391 index = (int)i; 392 } 393 394 CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids); 395 #endif 396 397 busymask = IDSR_NACK_TO_BUSY(nackmask); 398 busy = nack = 0; 399 endtick = starttick + xc_tick_limit; 400 for (;;) { 401 idsr = getidsr(); 402 #if (NCPU <= IDSR_BN_SETS) 403 if (idsr == 0) 404 break; 405 #else 406 if (idsr == 0 && shipped == ncpuids) 407 break; 408 #endif 409 tick = gettick(); 410 /* 411 * If there is a big jump between the current tick 412 * count and lasttick, we have probably hit a break 413 * point. Adjust endtick accordingly to avoid panic. 414 */ 415 if (tick > (lasttick + xc_tick_jump_limit)) 416 endtick += (tick - lasttick); 417 lasttick = tick; 418 if (tick > endtick) { 419 if (panic_quiesce) 420 return; 421 cmn_err(CE_CONT, "send mondo timeout [%d NACK %d " 422 "BUSY]\nIDSR 0x%" PRIx64 " cpuids:", 423 nack, busy, idsr); 424 #ifdef OLYMPUS_C_REV_A_ERRATA_XCALL 425 for (i = 0; i < bn_sets; i++) { 426 #else 427 for (i = 0; i < IDSR_BN_SETS; i++) { 428 #endif 429 if (idsr & (IDSR_NACK_BIT(i) | 430 IDSR_BUSY_BIT(i))) { 431 cmn_err(CE_CONT, " 0x%x", cpuids[i]); 432 } 433 } 434 cmn_err(CE_CONT, "\n"); 435 cmn_err(CE_PANIC, "send_mondo_set: timeout"); 436 } 437 curnack = idsr & nackmask; 438 curbusy = idsr & busymask; 439 440 #ifdef OLYMPUS_C_REV_B_ERRATA_XCALL 441 /* 442 * Only proceed to send more xcalls if all the 443 * cpus in the previous IDSR_BN_SETS were completed. 444 */ 445 if (curbusy) { 446 busy++; 447 continue; 448 } 449 #endif /* OLYMPUS_C_REV_B_ERRATA_XCALL */ 450 451 #if (NCPU > IDSR_BN_SETS) 452 if (shipped < ncpuids) { 453 uint64_t cpus_left; 454 uint16_t next = (uint16_t)index; 455 456 cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) & 457 busymask; 458 459 if (cpus_left) { 460 do { 461 /* 462 * Sequence through and ship to the 463 * remainder of the CPUs in the system 464 * (e.g. other than the first 465 * (IDSR_BN_SETS)) in reverse order. 466 */ 467 lo = lowbit(cpus_left) - 1; 468 i = IDSR_BUSY_IDX(lo); 469 shipit(next, i); 470 shipped++; 471 cpuids[i] = next; 472 473 /* 474 * If we've processed all the CPUs, 475 * exit the loop now and save 476 * instructions. 477 */ 478 if (shipped == ncpuids) 479 break; 480 481 for ((index = ((int)next - 1)); 482 index >= 0; index--) 483 if (CPU_IN_SET(set, index)) { 484 next = (uint16_t)index; 485 break; 486 } 487 488 cpus_left &= ~(1ull << lo); 489 } while (cpus_left); 490 continue; 491 } 492 } 493 #endif 494 #ifndef OLYMPUS_C_REV_B_ERRATA_XCALL 495 if (curbusy) { 496 busy++; 497 continue; 498 } 499 #endif /* OLYMPUS_C_REV_B_ERRATA_XCALL */ 500 #ifdef SEND_MONDO_STATS 501 { 502 int n = gettick() - starttick; 503 if (n < 8192) 504 x_nack_stimes[n >> 7]++; 505 } 506 #endif 507 while (gettick() < (tick + sys_clock_mhz)) 508 ; 509 do { 510 lo = lowbit(curnack) - 1; 511 i = IDSR_NACK_IDX(lo); 512 shipit(cpuids[i], i); 513 curnack &= ~(1ull << lo); 514 } while (curnack); 515 nack++; 516 busy = 0; 517 } 518 #ifdef SEND_MONDO_STATS 519 { 520 int n = gettick() - starttick; 521 if (n < 8192) 522 x_set_stimes[n >> 7]++; 523 else 524 x_set_ltimes[(n >> 13) & 0xf]++; 525 } 526 x_set_cpus[shipped]++; 527 #endif 528 } 529 530 /* 531 * Cpu private initialization. 532 */ 533 void 534 cpu_init_private(struct cpu *cp) 535 { 536 if (!((IS_OLYMPUS_C(cpunodes[cp->cpu_id].implementation)) || 537 (IS_JUPITER(cpunodes[cp->cpu_id].implementation)))) { 538 cmn_err(CE_PANIC, "CPU%d Impl %d: Only SPARC64-VI(I) is " 539 "supported", cp->cpu_id, 540 cpunodes[cp->cpu_id].implementation); 541 } 542 543 adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size); 544 } 545 546 void 547 cpu_setup(void) 548 { 549 extern int at_flags; 550 extern int cpc_has_overflow_intr; 551 uint64_t cpu0_log; 552 extern uint64_t opl_cpu0_err_log; 553 554 /* 555 * Initialize Error log Scratch register for error handling. 556 */ 557 558 cpu0_log = va_to_pa(&opl_cpu0_err_log); 559 opl_error_setup(cpu0_log); 560 opl_cpu0_log_setup = 1; 561 562 /* 563 * Enable MMU translating multiple page sizes for 564 * sITLB and sDTLB. 565 */ 566 cpu_early_feature_init(); 567 568 /* 569 * Setup chip-specific trap handlers. 570 */ 571 cpu_init_trap(); 572 573 cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT); 574 575 at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3; 576 577 /* 578 * Due to the number of entries in the fully-associative tlb 579 * this may have to be tuned lower than in spitfire. 580 */ 581 pp_slots = MIN(8, MAXPP_SLOTS); 582 583 /* 584 * Block stores do not invalidate all pages of the d$, pagecopy 585 * et. al. need virtual translations with virtual coloring taken 586 * into consideration. prefetch/ldd will pollute the d$ on the 587 * load side. 588 */ 589 pp_consistent_coloring = PPAGE_STORE_VCOLORING | PPAGE_LOADS_POLLUTE; 590 591 if (use_page_coloring) { 592 do_pg_coloring = 1; 593 } 594 595 isa_list = 596 "sparcv9+vis2 sparcv9+vis sparcv9 " 597 "sparcv8plus+vis2 sparcv8plus+vis sparcv8plus " 598 "sparcv8 sparcv8-fsmuld sparcv7 sparc"; 599 600 cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2 | 601 AV_SPARC_POPC | AV_SPARC_FMAF; 602 603 /* 604 * On SPARC64-VI, there's no hole in the virtual address space 605 */ 606 hole_start = hole_end = 0; 607 608 /* 609 * The kpm mapping window. 610 * kpm_size: 611 * The size of a single kpm range. 612 * The overall size will be: kpm_size * vac_colors. 613 * kpm_vbase: 614 * The virtual start address of the kpm range within the kernel 615 * virtual address space. kpm_vbase has to be kpm_size aligned. 616 */ 617 kpm_size = (size_t)(128ull * 1024 * 1024 * 1024 * 1024); /* 128TB */ 618 kpm_size_shift = 47; 619 kpm_vbase = (caddr_t)0x8000000000000000ull; /* 8EB */ 620 kpm_smallpages = 1; 621 622 /* 623 * The traptrace code uses either %tick or %stick for 624 * timestamping. We have %stick so we can use it. 625 */ 626 traptrace_use_stick = 1; 627 628 /* 629 * SPARC64-VI has a performance counter overflow interrupt 630 */ 631 cpc_has_overflow_intr = 1; 632 633 /* 634 * Declare that this architecture/cpu combination does not support 635 * fpRAS. 636 */ 637 fpras_implemented = 0; 638 } 639 640 /* 641 * Called by setcpudelay 642 */ 643 void 644 cpu_init_tick_freq(void) 645 { 646 /* 647 * For SPARC64-VI we want to use the system clock rate as 648 * the basis for low level timing, due to support of mixed 649 * speed CPUs and power managment. 650 */ 651 if (system_clock_freq == 0) 652 cmn_err(CE_PANIC, "setcpudelay: invalid system_clock_freq"); 653 654 sys_tick_freq = system_clock_freq; 655 } 656 657 #ifdef SEND_MONDO_STATS 658 uint32_t x_one_stimes[64]; 659 uint32_t x_one_ltimes[16]; 660 uint32_t x_set_stimes[64]; 661 uint32_t x_set_ltimes[16]; 662 uint32_t x_set_cpus[NCPU]; 663 uint32_t x_nack_stimes[64]; 664 #endif 665 666 /* 667 * Note: A version of this function is used by the debugger via the KDI, 668 * and must be kept in sync with this version. Any changes made to this 669 * function to support new chips or to accomodate errata must also be included 670 * in the KDI-specific version. See us3_kdi.c. 671 */ 672 void 673 send_one_mondo(int cpuid) 674 { 675 int busy, nack; 676 uint64_t idsr, starttick, endtick, tick, lasttick; 677 uint64_t busymask; 678 679 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 680 starttick = lasttick = gettick(); 681 shipit(cpuid, 0); 682 endtick = starttick + xc_tick_limit; 683 busy = nack = 0; 684 busymask = IDSR_BUSY; 685 for (;;) { 686 idsr = getidsr(); 687 if (idsr == 0) 688 break; 689 690 tick = gettick(); 691 /* 692 * If there is a big jump between the current tick 693 * count and lasttick, we have probably hit a break 694 * point. Adjust endtick accordingly to avoid panic. 695 */ 696 if (tick > (lasttick + xc_tick_jump_limit)) 697 endtick += (tick - lasttick); 698 lasttick = tick; 699 if (tick > endtick) { 700 if (panic_quiesce) 701 return; 702 cmn_err(CE_PANIC, "send mondo timeout (target 0x%x) " 703 "[%d NACK %d BUSY]", cpuid, nack, busy); 704 } 705 706 if (idsr & busymask) { 707 busy++; 708 continue; 709 } 710 drv_usecwait(1); 711 shipit(cpuid, 0); 712 nack++; 713 busy = 0; 714 } 715 #ifdef SEND_MONDO_STATS 716 { 717 int n = gettick() - starttick; 718 if (n < 8192) 719 x_one_stimes[n >> 7]++; 720 else 721 x_one_ltimes[(n >> 13) & 0xf]++; 722 } 723 #endif 724 } 725 726 /* 727 * init_mmu_page_sizes is set to one after the bootup time initialization 728 * via mmu_init_mmu_page_sizes, to indicate that mmu_page_sizes has a 729 * valid value. 730 * 731 * mmu_disable_ism_large_pages and mmu_disable_large_pages are the mmu-specific 732 * versions of disable_ism_large_pages and disable_large_pages, and feed back 733 * into those two hat variables at hat initialization time. 734 * 735 */ 736 int init_mmu_page_sizes = 0; 737 738 static uint_t mmu_disable_large_pages = 0; 739 static uint_t mmu_disable_ism_large_pages = ((1 << TTE64K) | 740 (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M)); 741 static uint_t mmu_disable_auto_data_large_pages = ((1 << TTE64K) | 742 (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M)); 743 static uint_t mmu_disable_auto_text_large_pages = ((1 << TTE64K) | 744 (1 << TTE512K)); 745 746 /* 747 * Re-initialize mmu_page_sizes and friends, for SPARC64-VI mmu support. 748 * Called during very early bootup from check_cpus_set(). 749 * Can be called to verify that mmu_page_sizes are set up correctly. 750 * 751 * Set Olympus defaults. We do not use the function parameter. 752 */ 753 /*ARGSUSED*/ 754 void 755 mmu_init_scd(sf_scd_t *scdp) 756 { 757 scdp->scd_sfmmup->sfmmu_cext = shctx_cext; 758 } 759 760 /*ARGSUSED*/ 761 int 762 mmu_init_mmu_page_sizes(int32_t not_used) 763 { 764 if (!init_mmu_page_sizes) { 765 mmu_page_sizes = MMU_PAGE_SIZES; 766 mmu_hashcnt = MAX_HASHCNT; 767 mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE; 768 mmu_exported_pagesize_mask = (1 << TTE8K) | 769 (1 << TTE64K) | (1 << TTE512K) | (1 << TTE4M) | 770 (1 << TTE32M) | (1 << TTE256M); 771 init_mmu_page_sizes = 1; 772 return (0); 773 } 774 return (1); 775 } 776 777 /* SPARC64-VI worst case DTLB parameters */ 778 #ifndef LOCKED_DTLB_ENTRIES 779 #define LOCKED_DTLB_ENTRIES 5 /* 2 user TSBs, 2 nucleus, + OBP */ 780 #endif 781 #define TOTAL_DTLB_ENTRIES 32 782 #define AVAIL_32M_ENTRIES 0 783 #define AVAIL_256M_ENTRIES 0 784 #define AVAIL_DTLB_ENTRIES (TOTAL_DTLB_ENTRIES - LOCKED_DTLB_ENTRIES) 785 static uint64_t ttecnt_threshold[MMU_PAGE_SIZES] = { 786 AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES, 787 AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES, 788 AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES}; 789 790 /* 791 * The function returns the mmu-specific values for the 792 * hat's disable_large_pages, disable_ism_large_pages, and 793 * disable_auto_data_large_pages and 794 * disable_text_data_large_pages variables. 795 */ 796 uint_t 797 mmu_large_pages_disabled(uint_t flag) 798 { 799 uint_t pages_disable = 0; 800 extern int use_text_pgsz64K; 801 extern int use_text_pgsz512K; 802 803 if (flag == HAT_LOAD) { 804 pages_disable = mmu_disable_large_pages; 805 } else if (flag == HAT_LOAD_SHARE) { 806 pages_disable = mmu_disable_ism_large_pages; 807 } else if (flag == HAT_AUTO_DATA) { 808 pages_disable = mmu_disable_auto_data_large_pages; 809 } else if (flag == HAT_AUTO_TEXT) { 810 pages_disable = mmu_disable_auto_text_large_pages; 811 if (use_text_pgsz512K) { 812 pages_disable &= ~(1 << TTE512K); 813 } 814 if (use_text_pgsz64K) { 815 pages_disable &= ~(1 << TTE64K); 816 } 817 } 818 return (pages_disable); 819 } 820 821 /* 822 * mmu_init_large_pages is called with the desired ism_pagesize parameter. 823 * It may be called from set_platform_defaults, if some value other than 4M 824 * is desired. mmu_ism_pagesize is the tunable. If it has a bad value, 825 * then only warn, since it would be bad form to panic due to a user typo. 826 * 827 * The function re-initializes the mmu_disable_ism_large_pages variable. 828 */ 829 void 830 mmu_init_large_pages(size_t ism_pagesize) 831 { 832 833 switch (ism_pagesize) { 834 case MMU_PAGESIZE4M: 835 mmu_disable_ism_large_pages = ((1 << TTE64K) | 836 (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M)); 837 mmu_disable_auto_data_large_pages = ((1 << TTE64K) | 838 (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M)); 839 shctx_cext = TAGACCEXT_MKSZPAIR(TTE4M, TTE8K); 840 break; 841 case MMU_PAGESIZE32M: 842 mmu_disable_ism_large_pages = ((1 << TTE64K) | 843 (1 << TTE512K) | (1 << TTE256M)); 844 mmu_disable_auto_data_large_pages = ((1 << TTE64K) | 845 (1 << TTE512K) | (1 << TTE4M) | (1 << TTE256M)); 846 adjust_data_maxlpsize(ism_pagesize); 847 shctx_cext = TAGACCEXT_MKSZPAIR(TTE32M, TTE8K); 848 break; 849 case MMU_PAGESIZE256M: 850 mmu_disable_ism_large_pages = ((1 << TTE64K) | 851 (1 << TTE512K) | (1 << TTE32M)); 852 mmu_disable_auto_data_large_pages = ((1 << TTE64K) | 853 (1 << TTE512K) | (1 << TTE4M) | (1 << TTE32M)); 854 adjust_data_maxlpsize(ism_pagesize); 855 shctx_cext = TAGACCEXT_MKSZPAIR(TTE256M, TTE8K); 856 break; 857 default: 858 cmn_err(CE_WARN, "Unrecognized mmu_ism_pagesize value 0x%lx", 859 ism_pagesize); 860 break; 861 } 862 } 863 864 /* 865 * Function to reprogram the TLBs when page sizes used 866 * by a process change significantly. 867 */ 868 static void 869 mmu_setup_page_sizes(struct hat *hat, uint64_t *ttecnt, uint8_t *tmp_pgsz) 870 { 871 uint8_t pgsz0, pgsz1; 872 873 /* 874 * Don't program 2nd dtlb for kernel and ism hat 875 */ 876 ASSERT(hat->sfmmu_ismhat == NULL); 877 ASSERT(hat != ksfmmup); 878 879 /* 880 * hat->sfmmu_pgsz[] is an array whose elements 881 * contain a sorted order of page sizes. Element 882 * 0 is the most commonly used page size, followed 883 * by element 1, and so on. 884 * 885 * ttecnt[] is an array of per-page-size page counts 886 * mapped into the process. 887 * 888 * If the HAT's choice for page sizes is unsuitable, 889 * we can override it here. The new values written 890 * to the array will be handed back to us later to 891 * do the actual programming of the TLB hardware. 892 * 893 */ 894 pgsz0 = (uint8_t)MIN(tmp_pgsz[0], tmp_pgsz[1]); 895 pgsz1 = (uint8_t)MAX(tmp_pgsz[0], tmp_pgsz[1]); 896 897 /* 898 * This implements PAGESIZE programming of the sTLB 899 * if large TTE counts don't exceed the thresholds. 900 */ 901 if (ttecnt[pgsz0] < ttecnt_threshold[pgsz0]) 902 pgsz0 = page_szc(MMU_PAGESIZE); 903 if (ttecnt[pgsz1] < ttecnt_threshold[pgsz1]) 904 pgsz1 = page_szc(MMU_PAGESIZE); 905 tmp_pgsz[0] = pgsz0; 906 tmp_pgsz[1] = pgsz1; 907 /* otherwise, accept what the HAT chose for us */ 908 } 909 910 /* 911 * The HAT calls this function when an MMU context is allocated so that we 912 * can reprogram the large TLBs appropriately for the new process using 913 * the context. 914 * 915 * The caller must hold the HAT lock. 916 */ 917 void 918 mmu_set_ctx_page_sizes(struct hat *hat) 919 { 920 uint8_t pgsz0, pgsz1; 921 uint8_t new_cext; 922 923 ASSERT(sfmmu_hat_lock_held(hat)); 924 /* 925 * Don't program 2nd dtlb for kernel and ism hat 926 */ 927 if (hat->sfmmu_ismhat || hat == ksfmmup) 928 return; 929 930 /* 931 * If supported, reprogram the TLBs to a larger pagesize. 932 */ 933 if (hat->sfmmu_scdp != NULL) { 934 new_cext = hat->sfmmu_scdp->scd_sfmmup->sfmmu_cext; 935 ASSERT(new_cext == shctx_cext); 936 } else { 937 pgsz0 = hat->sfmmu_pgsz[0]; 938 pgsz1 = hat->sfmmu_pgsz[1]; 939 ASSERT(pgsz0 < mmu_page_sizes); 940 ASSERT(pgsz1 < mmu_page_sizes); 941 new_cext = TAGACCEXT_MKSZPAIR(pgsz1, pgsz0); 942 } 943 if (hat->sfmmu_cext != new_cext) { 944 #ifdef DEBUG 945 int i; 946 /* 947 * assert cnum should be invalid, this is because pagesize 948 * can only be changed after a proc's ctxs are invalidated. 949 */ 950 for (i = 0; i < max_mmu_ctxdoms; i++) { 951 ASSERT(hat->sfmmu_ctxs[i].cnum == INVALID_CONTEXT); 952 } 953 #endif /* DEBUG */ 954 hat->sfmmu_cext = new_cext; 955 } 956 /* 957 * sfmmu_setctx_sec() will take care of the 958 * rest of the dirty work for us. 959 */ 960 } 961 962 /* 963 * This function assumes that there are either four or six supported page 964 * sizes and at most two programmable TLBs, so we need to decide which 965 * page sizes are most important and then adjust the TLB page sizes 966 * accordingly (if supported). 967 * 968 * If these assumptions change, this function will need to be 969 * updated to support whatever the new limits are. 970 */ 971 void 972 mmu_check_page_sizes(sfmmu_t *sfmmup, uint64_t *ttecnt) 973 { 974 uint64_t sortcnt[MMU_PAGE_SIZES]; 975 uint8_t tmp_pgsz[MMU_PAGE_SIZES]; 976 uint8_t i, j, max; 977 uint16_t oldval, newval; 978 979 /* 980 * We only consider reprogramming the TLBs if one or more of 981 * the two most used page sizes changes and we're using 982 * large pages in this process. 983 */ 984 if (SFMMU_LGPGS_INUSE(sfmmup)) { 985 /* Sort page sizes. */ 986 for (i = 0; i < mmu_page_sizes; i++) { 987 sortcnt[i] = ttecnt[i]; 988 } 989 for (j = 0; j < mmu_page_sizes; j++) { 990 for (i = mmu_page_sizes - 1, max = 0; i > 0; i--) { 991 if (sortcnt[i] > sortcnt[max]) 992 max = i; 993 } 994 tmp_pgsz[j] = max; 995 sortcnt[max] = 0; 996 } 997 998 oldval = sfmmup->sfmmu_pgsz[0] << 8 | sfmmup->sfmmu_pgsz[1]; 999 1000 mmu_setup_page_sizes(sfmmup, ttecnt, tmp_pgsz); 1001 1002 /* Check 2 largest values after the sort. */ 1003 newval = tmp_pgsz[0] << 8 | tmp_pgsz[1]; 1004 if (newval != oldval) { 1005 sfmmu_reprog_pgsz_arr(sfmmup, tmp_pgsz); 1006 } 1007 } 1008 } 1009 1010 /* 1011 * Return processor specific async error structure 1012 * size used. 1013 */ 1014 int 1015 cpu_aflt_size(void) 1016 { 1017 return (sizeof (opl_async_flt_t)); 1018 } 1019 1020 /* 1021 * The cpu_sync_log_err() function is called via the [uc]e_drain() function to 1022 * post-process CPU events that are dequeued. As such, it can be invoked 1023 * from softint context, from AST processing in the trap() flow, or from the 1024 * panic flow. We decode the CPU-specific data, and take appropriate actions. 1025 * Historically this entry point was used to log the actual cmn_err(9F) text; 1026 * now with FMA it is used to prepare 'flt' to be converted into an ereport. 1027 * With FMA this function now also returns a flag which indicates to the 1028 * caller whether the ereport should be posted (1) or suppressed (0). 1029 */ 1030 /*ARGSUSED*/ 1031 static int 1032 cpu_sync_log_err(void *flt) 1033 { 1034 opl_async_flt_t *opl_flt = (opl_async_flt_t *)flt; 1035 struct async_flt *aflt = (struct async_flt *)flt; 1036 1037 /* 1038 * No extra processing of urgent error events. 1039 * Always generate ereports for these events. 1040 */ 1041 if (aflt->flt_status == OPL_ECC_URGENT_TRAP) 1042 return (1); 1043 1044 /* 1045 * Additional processing for synchronous errors. 1046 */ 1047 switch (opl_flt->flt_type) { 1048 case OPL_CPU_INV_SFSR: 1049 return (1); 1050 1051 case OPL_CPU_SYNC_UE: 1052 /* 1053 * The validity: SFSR_MK_UE bit has been checked 1054 * in opl_cpu_sync_error() 1055 * No more check is required. 1056 * 1057 * opl_flt->flt_eid_mod and flt_eid_sid have been set by H/W, 1058 * and they have been retrieved in cpu_queue_events() 1059 */ 1060 1061 if (opl_flt->flt_eid_mod == OPL_ERRID_MEM) { 1062 ASSERT(aflt->flt_in_memory); 1063 /* 1064 * We want to skip logging only if ALL the following 1065 * conditions are true: 1066 * 1067 * 1. We are not panicing already. 1068 * 2. The error is a memory error. 1069 * 3. There is only one error. 1070 * 4. The error is on a retired page. 1071 * 5. The error occurred under on_trap 1072 * protection AFLT_PROT_EC 1073 */ 1074 if (!panicstr && aflt->flt_prot == AFLT_PROT_EC && 1075 page_retire_check(aflt->flt_addr, NULL) == 0) { 1076 /* 1077 * Do not log an error from 1078 * the retired page 1079 */ 1080 softcall(ecc_page_zero, (void *)aflt->flt_addr); 1081 return (0); 1082 } 1083 if (!panicstr) 1084 cpu_page_retire(opl_flt); 1085 } 1086 return (1); 1087 1088 case OPL_CPU_SYNC_OTHERS: 1089 /* 1090 * For the following error cases, the processor HW does 1091 * not set the flt_eid_mod/flt_eid_sid. Instead, SW will attempt 1092 * to assign appropriate values here to reflect what we 1093 * think is the most likely cause of the problem w.r.t to 1094 * the particular error event. For Buserr and timeout 1095 * error event, we will assign OPL_ERRID_CHANNEL as the 1096 * most likely reason. For TLB parity or multiple hit 1097 * error events, we will assign the reason as 1098 * OPL_ERRID_CPU (cpu related problem) and set the 1099 * flt_eid_sid to point to the cpuid. 1100 */ 1101 1102 if (opl_flt->flt_bit & (SFSR_BERR|SFSR_TO)) { 1103 /* 1104 * flt_eid_sid will not be used for this case. 1105 */ 1106 opl_flt->flt_eid_mod = OPL_ERRID_CHANNEL; 1107 } 1108 if (opl_flt->flt_bit & (SFSR_TLB_MUL|SFSR_TLB_PRT)) { 1109 opl_flt->flt_eid_mod = OPL_ERRID_CPU; 1110 opl_flt->flt_eid_sid = aflt->flt_inst; 1111 } 1112 1113 /* 1114 * In case of no effective error bit 1115 */ 1116 if ((opl_flt->flt_bit & SFSR_ERRS) == 0) { 1117 opl_flt->flt_eid_mod = OPL_ERRID_CPU; 1118 opl_flt->flt_eid_sid = aflt->flt_inst; 1119 } 1120 break; 1121 1122 default: 1123 return (1); 1124 } 1125 return (1); 1126 } 1127 1128 /* 1129 * Retire the bad page that may contain the flushed error. 1130 */ 1131 void 1132 cpu_page_retire(opl_async_flt_t *opl_flt) 1133 { 1134 struct async_flt *aflt = (struct async_flt *)opl_flt; 1135 (void) page_retire(aflt->flt_addr, PR_UE); 1136 } 1137 1138 /* 1139 * Invoked by error_init() early in startup and therefore before 1140 * startup_errorq() is called to drain any error Q - 1141 * 1142 * startup() 1143 * startup_end() 1144 * error_init() 1145 * cpu_error_init() 1146 * errorq_init() 1147 * errorq_drain() 1148 * start_other_cpus() 1149 * 1150 * The purpose of this routine is to create error-related taskqs. Taskqs 1151 * are used for this purpose because cpu_lock can't be grabbed from interrupt 1152 * context. 1153 * 1154 */ 1155 /*ARGSUSED*/ 1156 void 1157 cpu_error_init(int items) 1158 { 1159 opl_err_log = (opl_errlog_t *) 1160 kmem_alloc(ERRLOG_ALLOC_SZ, KM_SLEEP); 1161 if ((uint64_t)opl_err_log & MMU_PAGEOFFSET) 1162 cmn_err(CE_PANIC, "The base address of the error log " 1163 "is not page aligned"); 1164 } 1165 1166 /* 1167 * We route all errors through a single switch statement. 1168 */ 1169 void 1170 cpu_ue_log_err(struct async_flt *aflt) 1171 { 1172 switch (aflt->flt_class) { 1173 case CPU_FAULT: 1174 if (cpu_sync_log_err(aflt)) 1175 cpu_ereport_post(aflt); 1176 break; 1177 1178 case BUS_FAULT: 1179 bus_async_log_err(aflt); 1180 break; 1181 1182 default: 1183 cmn_err(CE_WARN, "discarding async error %p with invalid " 1184 "fault class (0x%x)", (void *)aflt, aflt->flt_class); 1185 return; 1186 } 1187 } 1188 1189 /* 1190 * Routine for panic hook callback from panic_idle(). 1191 * 1192 * Nothing to do here. 1193 */ 1194 void 1195 cpu_async_panic_callb(void) 1196 { 1197 } 1198 1199 /* 1200 * Routine to return a string identifying the physical name 1201 * associated with a memory/cache error. 1202 */ 1203 /*ARGSUSED*/ 1204 int 1205 cpu_get_mem_unum(int synd_status, ushort_t flt_synd, uint64_t flt_stat, 1206 uint64_t flt_addr, int flt_bus_id, int flt_in_memory, 1207 ushort_t flt_status, char *buf, int buflen, int *lenp) 1208 { 1209 int synd_code; 1210 int ret; 1211 1212 /* 1213 * An AFSR of -1 defaults to a memory syndrome. 1214 */ 1215 synd_code = (int)flt_synd; 1216 1217 if (&plat_get_mem_unum) { 1218 if ((ret = plat_get_mem_unum(synd_code, flt_addr, flt_bus_id, 1219 flt_in_memory, flt_status, buf, buflen, lenp)) != 0) { 1220 buf[0] = '\0'; 1221 *lenp = 0; 1222 } 1223 return (ret); 1224 } 1225 buf[0] = '\0'; 1226 *lenp = 0; 1227 return (ENOTSUP); 1228 } 1229 1230 /* 1231 * Wrapper for cpu_get_mem_unum() routine that takes an 1232 * async_flt struct rather than explicit arguments. 1233 */ 1234 int 1235 cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt, 1236 char *buf, int buflen, int *lenp) 1237 { 1238 /* 1239 * We always pass -1 so that cpu_get_mem_unum will interpret this as a 1240 * memory error. 1241 */ 1242 return (cpu_get_mem_unum(synd_status, aflt->flt_synd, 1243 (uint64_t)-1, 1244 aflt->flt_addr, aflt->flt_bus_id, aflt->flt_in_memory, 1245 aflt->flt_status, buf, buflen, lenp)); 1246 } 1247 1248 /* 1249 * This routine is a more generic interface to cpu_get_mem_unum() 1250 * that may be used by other modules (e.g. mm). 1251 */ 1252 /*ARGSUSED*/ 1253 int 1254 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar, 1255 char *buf, int buflen, int *lenp) 1256 { 1257 int synd_status, flt_in_memory, ret; 1258 ushort_t flt_status = 0; 1259 char unum[UNUM_NAMLEN]; 1260 1261 /* 1262 * Check for an invalid address. 1263 */ 1264 if (afar == (uint64_t)-1) 1265 return (ENXIO); 1266 1267 if (synd == (uint64_t)-1) 1268 synd_status = AFLT_STAT_INVALID; 1269 else 1270 synd_status = AFLT_STAT_VALID; 1271 1272 flt_in_memory = (*afsr & SFSR_MEMORY) && 1273 pf_is_memory(afar >> MMU_PAGESHIFT); 1274 1275 ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, *afsr, afar, 1276 CPU->cpu_id, flt_in_memory, flt_status, unum, UNUM_NAMLEN, lenp); 1277 if (ret != 0) 1278 return (ret); 1279 1280 if (*lenp >= buflen) 1281 return (ENAMETOOLONG); 1282 1283 (void) strncpy(buf, unum, buflen); 1284 1285 return (0); 1286 } 1287 1288 /* 1289 * Routine to return memory information associated 1290 * with a physical address and syndrome. 1291 */ 1292 /*ARGSUSED*/ 1293 int 1294 cpu_get_mem_info(uint64_t synd, uint64_t afar, 1295 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, 1296 int *segsp, int *banksp, int *mcidp) 1297 { 1298 int synd_code = (int)synd; 1299 1300 if (afar == (uint64_t)-1) 1301 return (ENXIO); 1302 1303 if (p2get_mem_info != NULL) 1304 return ((p2get_mem_info)(synd_code, afar, mem_sizep, seg_sizep, 1305 bank_sizep, segsp, banksp, mcidp)); 1306 else 1307 return (ENOTSUP); 1308 } 1309 1310 /* 1311 * Routine to return a string identifying the physical 1312 * name associated with a cpuid. 1313 */ 1314 int 1315 cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) 1316 { 1317 int ret; 1318 char unum[UNUM_NAMLEN]; 1319 1320 if (&plat_get_cpu_unum) { 1321 if ((ret = plat_get_cpu_unum(cpuid, unum, UNUM_NAMLEN, 1322 lenp)) != 0) 1323 return (ret); 1324 } else { 1325 return (ENOTSUP); 1326 } 1327 1328 if (*lenp >= buflen) 1329 return (ENAMETOOLONG); 1330 1331 (void) strncpy(buf, unum, *lenp); 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * This routine exports the name buffer size. 1338 */ 1339 size_t 1340 cpu_get_name_bufsize() 1341 { 1342 return (UNUM_NAMLEN); 1343 } 1344 1345 /* 1346 * Flush the entire ecache by ASI_L2_CNTL.U2_FLUSH 1347 */ 1348 void 1349 cpu_flush_ecache(void) 1350 { 1351 flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size, 1352 cpunodes[CPU->cpu_id].ecache_linesize); 1353 } 1354 1355 static uint8_t 1356 flt_to_trap_type(struct async_flt *aflt) 1357 { 1358 if (aflt->flt_status & OPL_ECC_ISYNC_TRAP) 1359 return (TRAP_TYPE_ECC_I); 1360 if (aflt->flt_status & OPL_ECC_DSYNC_TRAP) 1361 return (TRAP_TYPE_ECC_D); 1362 if (aflt->flt_status & OPL_ECC_URGENT_TRAP) 1363 return (TRAP_TYPE_URGENT); 1364 return (TRAP_TYPE_UNKNOWN); 1365 } 1366 1367 /* 1368 * Encode the data saved in the opl_async_flt_t struct into 1369 * the FM ereport payload. 1370 */ 1371 /* ARGSUSED */ 1372 static void 1373 cpu_payload_add_aflt(struct async_flt *aflt, nvlist_t *payload, 1374 nvlist_t *resource) 1375 { 1376 opl_async_flt_t *opl_flt = (opl_async_flt_t *)aflt; 1377 char unum[UNUM_NAMLEN]; 1378 char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */ 1379 int len; 1380 1381 1382 if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFSR) { 1383 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFSR, 1384 DATA_TYPE_UINT64, aflt->flt_stat, NULL); 1385 } 1386 if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFAR) { 1387 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFAR, 1388 DATA_TYPE_UINT64, aflt->flt_addr, NULL); 1389 } 1390 if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_UGESR) { 1391 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_UGESR, 1392 DATA_TYPE_UINT64, aflt->flt_stat, NULL); 1393 } 1394 if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PC) { 1395 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PC, 1396 DATA_TYPE_UINT64, (uint64_t)aflt->flt_pc, NULL); 1397 } 1398 if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TL) { 1399 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TL, 1400 DATA_TYPE_UINT8, (uint8_t)aflt->flt_tl, NULL); 1401 } 1402 if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TT) { 1403 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TT, 1404 DATA_TYPE_UINT8, flt_to_trap_type(aflt), NULL); 1405 } 1406 if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PRIV) { 1407 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV, 1408 DATA_TYPE_BOOLEAN_VALUE, 1409 (aflt->flt_priv ? B_TRUE : B_FALSE), NULL); 1410 } 1411 if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_FLT_STATUS) { 1412 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_FLT_STATUS, 1413 DATA_TYPE_UINT64, (uint64_t)aflt->flt_status, NULL); 1414 } 1415 1416 switch (opl_flt->flt_eid_mod) { 1417 case OPL_ERRID_CPU: 1418 (void) snprintf(sbuf, sizeof (sbuf), "%llX", 1419 (u_longlong_t)cpunodes[opl_flt->flt_eid_sid].device_id); 1420 (void) fm_fmri_cpu_set(resource, FM_CPU_SCHEME_VERSION, 1421 NULL, opl_flt->flt_eid_sid, 1422 (uint8_t *)&cpunodes[opl_flt->flt_eid_sid].version, sbuf); 1423 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE, 1424 DATA_TYPE_NVLIST, resource, NULL); 1425 break; 1426 1427 case OPL_ERRID_CHANNEL: 1428 /* 1429 * No resource is created but the cpumem DE will find 1430 * the defective path by retreiving EID from SFSR which is 1431 * included in the payload. 1432 */ 1433 break; 1434 1435 case OPL_ERRID_MEM: 1436 (void) cpu_get_mem_unum_aflt(0, aflt, unum, UNUM_NAMLEN, &len); 1437 (void) fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION, NULL, 1438 unum, NULL, (uint64_t)-1); 1439 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE, 1440 DATA_TYPE_NVLIST, resource, NULL); 1441 break; 1442 1443 case OPL_ERRID_PATH: 1444 /* 1445 * No resource is created but the cpumem DE will find 1446 * the defective path by retreiving EID from SFSR which is 1447 * included in the payload. 1448 */ 1449 break; 1450 } 1451 } 1452 1453 /* 1454 * Returns whether fault address is valid for this error bit and 1455 * whether the address is "in memory" (i.e. pf_is_memory returns 1). 1456 */ 1457 /*ARGSUSED*/ 1458 static int 1459 cpu_flt_in_memory(opl_async_flt_t *opl_flt, uint64_t t_afsr_bit) 1460 { 1461 struct async_flt *aflt = (struct async_flt *)opl_flt; 1462 1463 if (aflt->flt_status & (OPL_ECC_SYNC_TRAP)) { 1464 return ((t_afsr_bit & SFSR_MEMORY) && 1465 pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT)); 1466 } 1467 return (0); 1468 } 1469 1470 /* 1471 * In OPL SCF does the stick synchronization. 1472 */ 1473 void 1474 sticksync_slave(void) 1475 { 1476 } 1477 1478 /* 1479 * In OPL SCF does the stick synchronization. 1480 */ 1481 void 1482 sticksync_master(void) 1483 { 1484 } 1485 1486 /* 1487 * Cpu private unitialization. OPL cpus do not use the private area. 1488 */ 1489 void 1490 cpu_uninit_private(struct cpu *cp) 1491 { 1492 cmp_delete_cpu(cp->cpu_id); 1493 } 1494 1495 /* 1496 * Always flush an entire cache. 1497 */ 1498 void 1499 cpu_error_ecache_flush(void) 1500 { 1501 cpu_flush_ecache(); 1502 } 1503 1504 void 1505 cpu_ereport_post(struct async_flt *aflt) 1506 { 1507 char *cpu_type, buf[FM_MAX_CLASS]; 1508 nv_alloc_t *nva = NULL; 1509 nvlist_t *ereport, *detector, *resource; 1510 errorq_elem_t *eqep; 1511 char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */ 1512 1513 if (aflt->flt_panic || panicstr) { 1514 eqep = errorq_reserve(ereport_errorq); 1515 if (eqep == NULL) 1516 return; 1517 ereport = errorq_elem_nvl(ereport_errorq, eqep); 1518 nva = errorq_elem_nva(ereport_errorq, eqep); 1519 } else { 1520 ereport = fm_nvlist_create(nva); 1521 } 1522 1523 /* 1524 * Create the scheme "cpu" FMRI. 1525 */ 1526 detector = fm_nvlist_create(nva); 1527 resource = fm_nvlist_create(nva); 1528 switch (cpunodes[aflt->flt_inst].implementation) { 1529 case OLYMPUS_C_IMPL: 1530 cpu_type = FM_EREPORT_CPU_SPARC64_VI; 1531 break; 1532 case JUPITER_IMPL: 1533 cpu_type = FM_EREPORT_CPU_SPARC64_VII; 1534 break; 1535 default: 1536 cpu_type = FM_EREPORT_CPU_UNSUPPORTED; 1537 break; 1538 } 1539 (void) snprintf(sbuf, sizeof (sbuf), "%llX", 1540 (u_longlong_t)cpunodes[aflt->flt_inst].device_id); 1541 (void) fm_fmri_cpu_set(detector, FM_CPU_SCHEME_VERSION, NULL, 1542 aflt->flt_inst, (uint8_t *)&cpunodes[aflt->flt_inst].version, 1543 sbuf); 1544 1545 /* 1546 * Encode all the common data into the ereport. 1547 */ 1548 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s", 1549 FM_ERROR_CPU, cpu_type, aflt->flt_erpt_class); 1550 1551 fm_ereport_set(ereport, FM_EREPORT_VERSION, buf, 1552 fm_ena_generate(aflt->flt_id, FM_ENA_FMT1), detector, NULL); 1553 1554 /* 1555 * Encode the error specific data that was saved in 1556 * the async_flt structure into the ereport. 1557 */ 1558 cpu_payload_add_aflt(aflt, ereport, resource); 1559 1560 if (aflt->flt_panic || panicstr) { 1561 errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC); 1562 } else { 1563 (void) fm_ereport_post(ereport, EVCH_TRYHARD); 1564 fm_nvlist_destroy(ereport, FM_NVA_FREE); 1565 fm_nvlist_destroy(detector, FM_NVA_FREE); 1566 fm_nvlist_destroy(resource, FM_NVA_FREE); 1567 } 1568 } 1569 1570 void 1571 cpu_run_bus_error_handlers(struct async_flt *aflt, int expected) 1572 { 1573 int status; 1574 ddi_fm_error_t de; 1575 1576 bzero(&de, sizeof (ddi_fm_error_t)); 1577 1578 de.fme_version = DDI_FME_VERSION; 1579 de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1); 1580 de.fme_flag = expected; 1581 de.fme_bus_specific = (void *)aflt->flt_addr; 1582 status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de); 1583 if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL)) 1584 aflt->flt_panic = 1; 1585 } 1586 1587 void 1588 cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz, 1589 errorq_t *eqp, uint_t flag) 1590 { 1591 struct async_flt *aflt = (struct async_flt *)payload; 1592 1593 aflt->flt_erpt_class = error_class; 1594 errorq_dispatch(eqp, payload, payload_sz, flag); 1595 } 1596 1597 void 1598 adjust_hw_copy_limits(int ecache_size) 1599 { 1600 /* 1601 * Set hw copy limits. 1602 * 1603 * /etc/system will be parsed later and can override one or more 1604 * of these settings. 1605 * 1606 * At this time, ecache size seems only mildly relevant. 1607 * We seem to run into issues with the d-cache and stalls 1608 * we see on misses. 1609 * 1610 * Cycle measurement indicates that 2 byte aligned copies fare 1611 * little better than doing things with VIS at around 512 bytes. 1612 * 4 byte aligned shows promise until around 1024 bytes. 8 Byte 1613 * aligned is faster whenever the source and destination data 1614 * in cache and the total size is less than 2 Kbytes. The 2K 1615 * limit seems to be driven by the 2K write cache. 1616 * When more than 2K of copies are done in non-VIS mode, stores 1617 * backup in the write cache. In VIS mode, the write cache is 1618 * bypassed, allowing faster cache-line writes aligned on cache 1619 * boundaries. 1620 * 1621 * In addition, in non-VIS mode, there is no prefetching, so 1622 * for larger copies, the advantage of prefetching to avoid even 1623 * occasional cache misses is enough to justify using the VIS code. 1624 * 1625 * During testing, it was discovered that netbench ran 3% slower 1626 * when hw_copy_limit_8 was 2K or larger. Apparently for server 1627 * applications, data is only used once (copied to the output 1628 * buffer, then copied by the network device off the system). Using 1629 * the VIS copy saves more L2 cache state. Network copies are 1630 * around 1.3K to 1.5K in size for historical reasons. 1631 * 1632 * Therefore, a limit of 1K bytes will be used for the 8 byte 1633 * aligned copy even for large caches and 8 MB ecache. The 1634 * infrastructure to allow different limits for different sized 1635 * caches is kept to allow further tuning in later releases. 1636 */ 1637 1638 if (min_ecache_size == 0 && use_hw_bcopy) { 1639 /* 1640 * First time through - should be before /etc/system 1641 * is read. 1642 * Could skip the checks for zero but this lets us 1643 * preserve any debugger rewrites. 1644 */ 1645 if (hw_copy_limit_1 == 0) { 1646 hw_copy_limit_1 = VIS_COPY_THRESHOLD; 1647 priv_hcl_1 = hw_copy_limit_1; 1648 } 1649 if (hw_copy_limit_2 == 0) { 1650 hw_copy_limit_2 = 2 * VIS_COPY_THRESHOLD; 1651 priv_hcl_2 = hw_copy_limit_2; 1652 } 1653 if (hw_copy_limit_4 == 0) { 1654 hw_copy_limit_4 = 4 * VIS_COPY_THRESHOLD; 1655 priv_hcl_4 = hw_copy_limit_4; 1656 } 1657 if (hw_copy_limit_8 == 0) { 1658 hw_copy_limit_8 = 4 * VIS_COPY_THRESHOLD; 1659 priv_hcl_8 = hw_copy_limit_8; 1660 } 1661 min_ecache_size = ecache_size; 1662 } else { 1663 /* 1664 * MP initialization. Called *after* /etc/system has 1665 * been parsed. One CPU has already been initialized. 1666 * Need to cater for /etc/system having scragged one 1667 * of our values. 1668 */ 1669 if (ecache_size == min_ecache_size) { 1670 /* 1671 * Same size ecache. We do nothing unless we 1672 * have a pessimistic ecache setting. In that 1673 * case we become more optimistic (if the cache is 1674 * large enough). 1675 */ 1676 if (hw_copy_limit_8 == 4 * VIS_COPY_THRESHOLD) { 1677 /* 1678 * Need to adjust hw_copy_limit* from our 1679 * pessimistic uniprocessor value to a more 1680 * optimistic UP value *iff* it hasn't been 1681 * reset. 1682 */ 1683 if ((ecache_size > 1048576) && 1684 (priv_hcl_8 == hw_copy_limit_8)) { 1685 if (ecache_size <= 2097152) 1686 hw_copy_limit_8 = 4 * 1687 VIS_COPY_THRESHOLD; 1688 else if (ecache_size <= 4194304) 1689 hw_copy_limit_8 = 4 * 1690 VIS_COPY_THRESHOLD; 1691 else 1692 hw_copy_limit_8 = 4 * 1693 VIS_COPY_THRESHOLD; 1694 priv_hcl_8 = hw_copy_limit_8; 1695 } 1696 } 1697 } else if (ecache_size < min_ecache_size) { 1698 /* 1699 * A different ecache size. Can this even happen? 1700 */ 1701 if (priv_hcl_8 == hw_copy_limit_8) { 1702 /* 1703 * The previous value that we set 1704 * is unchanged (i.e., it hasn't been 1705 * scragged by /etc/system). Rewrite it. 1706 */ 1707 if (ecache_size <= 1048576) 1708 hw_copy_limit_8 = 8 * 1709 VIS_COPY_THRESHOLD; 1710 else if (ecache_size <= 2097152) 1711 hw_copy_limit_8 = 8 * 1712 VIS_COPY_THRESHOLD; 1713 else if (ecache_size <= 4194304) 1714 hw_copy_limit_8 = 8 * 1715 VIS_COPY_THRESHOLD; 1716 else 1717 hw_copy_limit_8 = 10 * 1718 VIS_COPY_THRESHOLD; 1719 priv_hcl_8 = hw_copy_limit_8; 1720 min_ecache_size = ecache_size; 1721 } 1722 } 1723 } 1724 } 1725 1726 #define VIS_BLOCKSIZE 64 1727 1728 int 1729 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data) 1730 { 1731 int ret, watched; 1732 1733 watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE); 1734 ret = dtrace_blksuword32(addr, data, 0); 1735 if (watched) 1736 watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE); 1737 1738 return (ret); 1739 } 1740 1741 void 1742 opl_cpu_reg_init() 1743 { 1744 uint64_t this_cpu_log; 1745 1746 if (cpu[getprocessorid()] == &cpu0 && opl_cpu0_log_setup == 1) { 1747 /* 1748 * Support for "ta 3" 1749 */ 1750 opl_ta3(); 1751 1752 /* 1753 * If we are being called at boot time on cpu0 the error 1754 * log is already set up in cpu_setup. Clear the 1755 * opl_cpu0_log_setup flag so that a subsequent DR of cpu0 will 1756 * do the proper initialization. 1757 */ 1758 opl_cpu0_log_setup = 0; 1759 return; 1760 } 1761 1762 /* 1763 * Initialize Error log Scratch register for error handling. 1764 */ 1765 1766 this_cpu_log = va_to_pa((void*)(((uint64_t)opl_err_log) + 1767 ERRLOG_BUFSZ * (getprocessorid()))); 1768 opl_error_setup(this_cpu_log); 1769 } 1770 1771 /* 1772 * Queue one event in ue_queue based on ecc_type_to_info entry. 1773 */ 1774 static void 1775 cpu_queue_one_event(opl_async_flt_t *opl_flt, char *reason, 1776 ecc_type_to_info_t *eccp) 1777 { 1778 struct async_flt *aflt = (struct async_flt *)opl_flt; 1779 1780 if (reason && 1781 strlen(reason) + strlen(eccp->ec_reason) < MAX_REASON_STRING) { 1782 (void) strcat(reason, eccp->ec_reason); 1783 } 1784 1785 opl_flt->flt_bit = eccp->ec_afsr_bit; 1786 opl_flt->flt_type = eccp->ec_flt_type; 1787 aflt->flt_in_memory = cpu_flt_in_memory(opl_flt, opl_flt->flt_bit); 1788 aflt->flt_payload = eccp->ec_err_payload; 1789 1790 ASSERT(aflt->flt_status & (OPL_ECC_SYNC_TRAP|OPL_ECC_URGENT_TRAP)); 1791 cpu_errorq_dispatch(eccp->ec_err_class, (void *)opl_flt, 1792 sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic); 1793 } 1794 1795 /* 1796 * Queue events on async event queue one event per error bit. 1797 * Return number of events queued. 1798 */ 1799 int 1800 cpu_queue_events(opl_async_flt_t *opl_flt, char *reason, uint64_t t_afsr_errs) 1801 { 1802 struct async_flt *aflt = (struct async_flt *)opl_flt; 1803 ecc_type_to_info_t *eccp; 1804 int nevents = 0; 1805 1806 /* 1807 * Queue expected errors, error bit and fault type must must match 1808 * in the ecc_type_to_info table. 1809 */ 1810 for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL; 1811 eccp++) { 1812 if ((eccp->ec_afsr_bit & t_afsr_errs) != 0 && 1813 (eccp->ec_flags & aflt->flt_status) != 0) { 1814 /* 1815 * UE error event can be further 1816 * classified/breakdown into finer granularity 1817 * based on the flt_eid_mod value set by HW. We do 1818 * special handling here so that we can report UE 1819 * error in finer granularity as ue_mem, 1820 * ue_channel, ue_cpu or ue_path. 1821 */ 1822 if (eccp->ec_flt_type == OPL_CPU_SYNC_UE) { 1823 opl_flt->flt_eid_mod = (aflt->flt_stat & 1824 SFSR_EID_MOD) >> SFSR_EID_MOD_SHIFT; 1825 opl_flt->flt_eid_sid = (aflt->flt_stat & 1826 SFSR_EID_SID) >> SFSR_EID_SID_SHIFT; 1827 /* 1828 * Need to advance eccp pointer by flt_eid_mod 1829 * so that we get an appropriate ecc pointer 1830 * 1831 * EID # of advances 1832 * ---------------------------------- 1833 * OPL_ERRID_MEM 0 1834 * OPL_ERRID_CHANNEL 1 1835 * OPL_ERRID_CPU 2 1836 * OPL_ERRID_PATH 3 1837 */ 1838 eccp += opl_flt->flt_eid_mod; 1839 } 1840 cpu_queue_one_event(opl_flt, reason, eccp); 1841 t_afsr_errs &= ~eccp->ec_afsr_bit; 1842 nevents++; 1843 } 1844 } 1845 1846 return (nevents); 1847 } 1848 1849 /* 1850 * Sync. error wrapper functions. 1851 * We use these functions in order to transfer here from the 1852 * nucleus trap handler information about trap type (data or 1853 * instruction) and trap level (0 or above 0). This way we 1854 * get rid of using SFSR's reserved bits. 1855 */ 1856 1857 #define OPL_SYNC_TL0 0 1858 #define OPL_SYNC_TL1 1 1859 #define OPL_ISYNC_ERR 0 1860 #define OPL_DSYNC_ERR 1 1861 1862 void 1863 opl_cpu_isync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr) 1864 { 1865 uint64_t t_sfar = p_sfar; 1866 uint64_t t_sfsr = p_sfsr; 1867 1868 opl_cpu_sync_error(rp, t_sfar, t_sfsr, 1869 OPL_SYNC_TL0, OPL_ISYNC_ERR); 1870 } 1871 1872 void 1873 opl_cpu_isync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr) 1874 { 1875 uint64_t t_sfar = p_sfar; 1876 uint64_t t_sfsr = p_sfsr; 1877 1878 opl_cpu_sync_error(rp, t_sfar, t_sfsr, 1879 OPL_SYNC_TL1, OPL_ISYNC_ERR); 1880 } 1881 1882 void 1883 opl_cpu_dsync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr) 1884 { 1885 uint64_t t_sfar = p_sfar; 1886 uint64_t t_sfsr = p_sfsr; 1887 1888 opl_cpu_sync_error(rp, t_sfar, t_sfsr, 1889 OPL_SYNC_TL0, OPL_DSYNC_ERR); 1890 } 1891 1892 void 1893 opl_cpu_dsync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr) 1894 { 1895 uint64_t t_sfar = p_sfar; 1896 uint64_t t_sfsr = p_sfsr; 1897 1898 opl_cpu_sync_error(rp, t_sfar, t_sfsr, 1899 OPL_SYNC_TL1, OPL_DSYNC_ERR); 1900 } 1901 1902 /* 1903 * The fj sync err handler transfers control here for UE, BERR, TO, TLB_MUL 1904 * and TLB_PRT. 1905 * This function is designed based on cpu_deferred_error(). 1906 */ 1907 1908 static void 1909 opl_cpu_sync_error(struct regs *rp, ulong_t t_sfar, ulong_t t_sfsr, 1910 uint_t tl, uint_t derr) 1911 { 1912 opl_async_flt_t opl_flt; 1913 struct async_flt *aflt; 1914 int trampolined = 0; 1915 char pr_reason[MAX_REASON_STRING]; 1916 uint64_t log_sfsr; 1917 int expected = DDI_FM_ERR_UNEXPECTED; 1918 ddi_acc_hdl_t *hp; 1919 1920 /* 1921 * We need to look at p_flag to determine if the thread detected an 1922 * error while dumping core. We can't grab p_lock here, but it's ok 1923 * because we just need a consistent snapshot and we know that everyone 1924 * else will store a consistent set of bits while holding p_lock. We 1925 * don't have to worry about a race because SDOCORE is set once prior 1926 * to doing i/o from the process's address space and is never cleared. 1927 */ 1928 uint_t pflag = ttoproc(curthread)->p_flag; 1929 1930 pr_reason[0] = '\0'; 1931 1932 /* 1933 * handle the specific error 1934 */ 1935 bzero(&opl_flt, sizeof (opl_async_flt_t)); 1936 aflt = (struct async_flt *)&opl_flt; 1937 aflt->flt_id = gethrtime_waitfree(); 1938 aflt->flt_bus_id = getprocessorid(); 1939 aflt->flt_inst = CPU->cpu_id; 1940 aflt->flt_stat = t_sfsr; 1941 aflt->flt_addr = t_sfar; 1942 aflt->flt_pc = (caddr_t)rp->r_pc; 1943 aflt->flt_prot = (uchar_t)AFLT_PROT_NONE; 1944 aflt->flt_class = (uchar_t)CPU_FAULT; 1945 aflt->flt_priv = (uchar_t)(tl == 1 ? 1 : ((rp->r_tstate & 1946 TSTATE_PRIV) ? 1 : 0)); 1947 aflt->flt_tl = (uchar_t)tl; 1948 aflt->flt_panic = (uchar_t)(tl != 0 || aft_testfatal != 0 || 1949 (t_sfsr & (SFSR_TLB_MUL|SFSR_TLB_PRT)) != 0); 1950 aflt->flt_core = (pflag & SDOCORE) ? 1 : 0; 1951 aflt->flt_status = (derr) ? OPL_ECC_DSYNC_TRAP : OPL_ECC_ISYNC_TRAP; 1952 1953 /* 1954 * If SFSR.FV is not set, both SFSR and SFAR/SFPAR values are uncertain. 1955 * So, clear all error bits to avoid mis-handling and force the system 1956 * panicked. 1957 * We skip all the procedures below down to the panic message call. 1958 */ 1959 if (!(t_sfsr & SFSR_FV)) { 1960 opl_flt.flt_type = OPL_CPU_INV_SFSR; 1961 aflt->flt_panic = 1; 1962 aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC; 1963 cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR, (void *)&opl_flt, 1964 sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic); 1965 fm_panic("%sErrors(s)", "invalid SFSR"); 1966 } 1967 1968 /* 1969 * If either UE and MK bit is off, this is not valid UE error. 1970 * If it is not valid UE error, clear UE & MK_UE bits to prevent 1971 * mis-handling below. 1972 * aflt->flt_stat keeps the original bits as a reference. 1973 */ 1974 if ((t_sfsr & (SFSR_MK_UE|SFSR_UE)) != 1975 (SFSR_MK_UE|SFSR_UE)) { 1976 t_sfsr &= ~(SFSR_MK_UE|SFSR_UE); 1977 } 1978 1979 /* 1980 * If the trap occurred in privileged mode at TL=0, we need to check to 1981 * see if we were executing in the kernel under on_trap() or t_lofault 1982 * protection. If so, modify the saved registers so that we return 1983 * from the trap to the appropriate trampoline routine. 1984 */ 1985 if (!aflt->flt_panic && aflt->flt_priv && tl == 0) { 1986 if (curthread->t_ontrap != NULL) { 1987 on_trap_data_t *otp = curthread->t_ontrap; 1988 1989 if (otp->ot_prot & OT_DATA_EC) { 1990 aflt->flt_prot = (uchar_t)AFLT_PROT_EC; 1991 otp->ot_trap |= (ushort_t)OT_DATA_EC; 1992 rp->r_pc = otp->ot_trampoline; 1993 rp->r_npc = rp->r_pc + 4; 1994 trampolined = 1; 1995 } 1996 1997 if ((t_sfsr & (SFSR_TO | SFSR_BERR)) && 1998 (otp->ot_prot & OT_DATA_ACCESS)) { 1999 aflt->flt_prot = (uchar_t)AFLT_PROT_ACCESS; 2000 otp->ot_trap |= (ushort_t)OT_DATA_ACCESS; 2001 rp->r_pc = otp->ot_trampoline; 2002 rp->r_npc = rp->r_pc + 4; 2003 trampolined = 1; 2004 /* 2005 * for peeks and caut_gets errors are expected 2006 */ 2007 hp = (ddi_acc_hdl_t *)otp->ot_handle; 2008 if (!hp) 2009 expected = DDI_FM_ERR_PEEK; 2010 else if (hp->ah_acc.devacc_attr_access == 2011 DDI_CAUTIOUS_ACC) 2012 expected = DDI_FM_ERR_EXPECTED; 2013 } 2014 2015 } else if (curthread->t_lofault) { 2016 aflt->flt_prot = AFLT_PROT_COPY; 2017 rp->r_g1 = EFAULT; 2018 rp->r_pc = curthread->t_lofault; 2019 rp->r_npc = rp->r_pc + 4; 2020 trampolined = 1; 2021 } 2022 } 2023 2024 /* 2025 * If we're in user mode or we're doing a protected copy, we either 2026 * want the ASTON code below to send a signal to the user process 2027 * or we want to panic if aft_panic is set. 2028 * 2029 * If we're in privileged mode and we're not doing a copy, then we 2030 * need to check if we've trampolined. If we haven't trampolined, 2031 * we should panic. 2032 */ 2033 if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) { 2034 if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO))) 2035 aflt->flt_panic |= aft_panic; 2036 } else if (!trampolined) { 2037 aflt->flt_panic = 1; 2038 } 2039 2040 /* 2041 * If we've trampolined due to a privileged TO or BERR, or if an 2042 * unprivileged TO or BERR occurred, we don't want to enqueue an 2043 * event for that TO or BERR. Queue all other events (if any) besides 2044 * the TO/BERR. 2045 */ 2046 log_sfsr = t_sfsr; 2047 if (trampolined) { 2048 log_sfsr &= ~(SFSR_TO | SFSR_BERR); 2049 } else if (!aflt->flt_priv) { 2050 /* 2051 * User mode, suppress messages if 2052 * cpu_berr_to_verbose is not set. 2053 */ 2054 if (!cpu_berr_to_verbose) 2055 log_sfsr &= ~(SFSR_TO | SFSR_BERR); 2056 } 2057 2058 if (((log_sfsr & SFSR_ERRS) && (cpu_queue_events(&opl_flt, pr_reason, 2059 t_sfsr) == 0)) || ((t_sfsr & SFSR_ERRS) == 0)) { 2060 opl_flt.flt_type = OPL_CPU_INV_SFSR; 2061 aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC; 2062 cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR, (void *)&opl_flt, 2063 sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic); 2064 } 2065 2066 if (t_sfsr & (SFSR_UE|SFSR_TO|SFSR_BERR)) { 2067 cpu_run_bus_error_handlers(aflt, expected); 2068 } 2069 2070 /* 2071 * Panic here if aflt->flt_panic has been set. Enqueued errors will 2072 * be logged as part of the panic flow. 2073 */ 2074 if (aflt->flt_panic) { 2075 if (pr_reason[0] == 0) 2076 strcpy(pr_reason, "invalid SFSR "); 2077 2078 fm_panic("%sErrors(s)", pr_reason); 2079 } 2080 2081 /* 2082 * If we queued an error and we are going to return from the trap and 2083 * the error was in user mode or inside of a copy routine, set AST flag 2084 * so the queue will be drained before returning to user mode. The 2085 * AST processing will also act on our failure policy. 2086 */ 2087 if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) { 2088 int pcb_flag = 0; 2089 2090 if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO))) 2091 pcb_flag |= ASYNC_HWERR; 2092 2093 if (t_sfsr & SFSR_BERR) 2094 pcb_flag |= ASYNC_BERR; 2095 2096 if (t_sfsr & SFSR_TO) 2097 pcb_flag |= ASYNC_BTO; 2098 2099 ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag; 2100 aston(curthread); 2101 } 2102 } 2103 2104 /*ARGSUSED*/ 2105 void 2106 opl_cpu_urgent_error(struct regs *rp, ulong_t p_ugesr, ulong_t tl) 2107 { 2108 opl_async_flt_t opl_flt; 2109 struct async_flt *aflt; 2110 char pr_reason[MAX_REASON_STRING]; 2111 2112 /* normalize tl */ 2113 tl = (tl >= 2 ? 1 : 0); 2114 pr_reason[0] = '\0'; 2115 2116 bzero(&opl_flt, sizeof (opl_async_flt_t)); 2117 aflt = (struct async_flt *)&opl_flt; 2118 aflt->flt_id = gethrtime_waitfree(); 2119 aflt->flt_bus_id = getprocessorid(); 2120 aflt->flt_inst = CPU->cpu_id; 2121 aflt->flt_stat = p_ugesr; 2122 aflt->flt_pc = (caddr_t)rp->r_pc; 2123 aflt->flt_class = (uchar_t)CPU_FAULT; 2124 aflt->flt_tl = tl; 2125 aflt->flt_priv = (uchar_t)(tl == 1 ? 1 : ((rp->r_tstate & TSTATE_PRIV) ? 2126 1 : 0)); 2127 aflt->flt_status = OPL_ECC_URGENT_TRAP; 2128 aflt->flt_panic = 1; 2129 /* 2130 * HW does not set mod/sid in case of urgent error. 2131 * So we have to set it here. 2132 */ 2133 opl_flt.flt_eid_mod = OPL_ERRID_CPU; 2134 opl_flt.flt_eid_sid = aflt->flt_inst; 2135 2136 if (cpu_queue_events(&opl_flt, pr_reason, p_ugesr) == 0) { 2137 opl_flt.flt_type = OPL_CPU_INV_UGESR; 2138 aflt->flt_payload = FM_EREPORT_PAYLOAD_URGENT; 2139 cpu_errorq_dispatch(FM_EREPORT_CPU_INV_URG, (void *)&opl_flt, 2140 sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic); 2141 } 2142 2143 fm_panic("Urgent Error"); 2144 } 2145 2146 /* 2147 * Initialization error counters resetting. 2148 */ 2149 /* ARGSUSED */ 2150 static void 2151 opl_ras_online(void *arg, cpu_t *cp, cyc_handler_t *hdlr, cyc_time_t *when) 2152 { 2153 hdlr->cyh_func = (cyc_func_t)ras_cntr_reset; 2154 hdlr->cyh_level = CY_LOW_LEVEL; 2155 hdlr->cyh_arg = (void *)(uintptr_t)cp->cpu_id; 2156 2157 when->cyt_when = cp->cpu_id * (((hrtime_t)NANOSEC * 10)/ NCPU); 2158 when->cyt_interval = (hrtime_t)NANOSEC * opl_async_check_interval; 2159 } 2160 2161 void 2162 cpu_mp_init(void) 2163 { 2164 cyc_omni_handler_t hdlr; 2165 2166 hdlr.cyo_online = opl_ras_online; 2167 hdlr.cyo_offline = NULL; 2168 hdlr.cyo_arg = NULL; 2169 mutex_enter(&cpu_lock); 2170 (void) cyclic_add_omni(&hdlr); 2171 mutex_exit(&cpu_lock); 2172 } 2173 2174 int heaplp_use_stlb = 0; 2175 2176 void 2177 mmu_init_kernel_pgsz(struct hat *hat) 2178 { 2179 uint_t tte = page_szc(segkmem_lpsize); 2180 uchar_t new_cext_primary, new_cext_nucleus; 2181 2182 if (heaplp_use_stlb == 0) { 2183 /* do not reprogram stlb */ 2184 tte = TTE8K; 2185 } else if (!plat_prom_preserve_kctx_is_supported()) { 2186 /* OBP does not support non-zero primary context */ 2187 tte = TTE8K; 2188 heaplp_use_stlb = 0; 2189 } 2190 2191 new_cext_nucleus = TAGACCEXT_MKSZPAIR(tte, TTE8K); 2192 new_cext_primary = TAGACCEXT_MKSZPAIR(TTE8K, tte); 2193 2194 hat->sfmmu_cext = new_cext_primary; 2195 kcontextreg = ((uint64_t)new_cext_nucleus << CTXREG_NEXT_SHIFT) | 2196 ((uint64_t)new_cext_primary << CTXREG_EXT_SHIFT); 2197 } 2198 2199 size_t 2200 mmu_get_kernel_lpsize(size_t lpsize) 2201 { 2202 uint_t tte; 2203 2204 if (lpsize == 0) { 2205 /* no setting for segkmem_lpsize in /etc/system: use default */ 2206 return (MMU_PAGESIZE4M); 2207 } 2208 2209 for (tte = TTE8K; tte <= TTE4M; tte++) { 2210 if (lpsize == TTEBYTES(tte)) 2211 return (lpsize); 2212 } 2213 2214 return (TTEBYTES(TTE8K)); 2215 } 2216 2217 /* 2218 * Support for ta 3. 2219 * We allocate here a buffer for each cpu 2220 * for saving the current register window. 2221 */ 2222 typedef struct win_regs { 2223 uint64_t l[8]; 2224 uint64_t i[8]; 2225 } win_regs_t; 2226 static void 2227 opl_ta3(void) 2228 { 2229 /* 2230 * opl_ta3 should only be called once at boot time. 2231 */ 2232 if (opl_ta3_save == NULL) 2233 opl_ta3_save = (char *)kmem_alloc(NCPU * sizeof (win_regs_t), 2234 KM_SLEEP); 2235 } 2236 2237 /* 2238 * The following are functions that are unused in 2239 * OPL cpu module. They are defined here to resolve 2240 * dependencies in the "unix" module. 2241 * Unused functions that should never be called in 2242 * OPL are coded with ASSERT(0). 2243 */ 2244 2245 void 2246 cpu_disable_errors(void) 2247 {} 2248 2249 void 2250 cpu_enable_errors(void) 2251 { ASSERT(0); } 2252 2253 /*ARGSUSED*/ 2254 void 2255 cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t t) 2256 { ASSERT(0); } 2257 2258 /*ARGSUSED*/ 2259 void 2260 cpu_faulted_enter(struct cpu *cp) 2261 {} 2262 2263 /*ARGSUSED*/ 2264 void 2265 cpu_faulted_exit(struct cpu *cp) 2266 {} 2267 2268 /*ARGSUSED*/ 2269 void 2270 cpu_check_allcpus(struct async_flt *aflt) 2271 {} 2272 2273 /*ARGSUSED*/ 2274 void 2275 cpu_ce_log_err(struct async_flt *aflt, errorq_elem_t *t) 2276 { ASSERT(0); } 2277 2278 /*ARGSUSED*/ 2279 void 2280 cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t psz) 2281 { ASSERT(0); } 2282 2283 /*ARGSUSED*/ 2284 void 2285 cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum) 2286 { ASSERT(0); } 2287 2288 /*ARGSUSED*/ 2289 void 2290 cpu_busy_ecache_scrub(struct cpu *cp) 2291 {} 2292 2293 /*ARGSUSED*/ 2294 void 2295 cpu_idle_ecache_scrub(struct cpu *cp) 2296 {} 2297 2298 /* ARGSUSED */ 2299 void 2300 cpu_change_speed(uint64_t divisor, uint64_t arg2) 2301 { ASSERT(0); } 2302 2303 void 2304 cpu_init_cache_scrub(void) 2305 {} 2306 2307 /* ARGSUSED */ 2308 int 2309 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 2310 { 2311 if (&plat_get_mem_sid) { 2312 return (plat_get_mem_sid(unum, buf, buflen, lenp)); 2313 } else { 2314 return (ENOTSUP); 2315 } 2316 } 2317 2318 /* ARGSUSED */ 2319 int 2320 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 2321 { 2322 if (&plat_get_mem_addr) { 2323 return (plat_get_mem_addr(unum, sid, offset, addrp)); 2324 } else { 2325 return (ENOTSUP); 2326 } 2327 } 2328 2329 /* ARGSUSED */ 2330 int 2331 cpu_get_mem_offset(uint64_t flt_addr, uint64_t *offp) 2332 { 2333 if (&plat_get_mem_offset) { 2334 return (plat_get_mem_offset(flt_addr, offp)); 2335 } else { 2336 return (ENOTSUP); 2337 } 2338 } 2339 2340 /*ARGSUSED*/ 2341 void 2342 itlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag) 2343 { ASSERT(0); } 2344 2345 /*ARGSUSED*/ 2346 void 2347 dtlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag) 2348 { ASSERT(0); } 2349 2350 /*ARGSUSED*/ 2351 void 2352 read_ecc_data(struct async_flt *aflt, short verbose, short ce_err) 2353 { ASSERT(0); } 2354 2355 /*ARGSUSED*/ 2356 int 2357 ce_scrub_xdiag_recirc(struct async_flt *aflt, errorq_t *eqp, 2358 errorq_elem_t *eqep, size_t afltoffset) 2359 { 2360 ASSERT(0); 2361 return (0); 2362 } 2363 2364 /*ARGSUSED*/ 2365 char * 2366 flt_to_error_type(struct async_flt *aflt) 2367 { 2368 ASSERT(0); 2369 return (NULL); 2370 } 2371 2372 #define PROM_SPARC64VII_MODE_PROPNAME "SPARC64-VII-mode" 2373 2374 /* 2375 * Check for existence of OPL OBP property that indicates 2376 * SPARC64-VII support. By default, only enable Jupiter 2377 * features if the property is present. It will be 2378 * present in all-Jupiter domains by OBP if the domain has 2379 * been selected by the user on the system controller to 2380 * run in Jupiter mode. Basically, this OBP property must 2381 * be present to turn on the cpu_alljupiter flag. 2382 */ 2383 static int 2384 prom_SPARC64VII_support_enabled(void) 2385 { 2386 int val; 2387 2388 return ((prom_getprop(prom_rootnode(), PROM_SPARC64VII_MODE_PROPNAME, 2389 (caddr_t)&val) == 0) ? 1 : 0); 2390 } 2391 2392 #define PROM_KCTX_PRESERVED_PROPNAME "context0-page-size-preserved" 2393 2394 /* 2395 * Check for existence of OPL OBP property that indicates support for 2396 * preserving Solaris kernel page sizes when entering OBP. We need to 2397 * check the prom tree since the ddi tree is not yet built when the 2398 * platform startup sequence is called. 2399 */ 2400 static int 2401 plat_prom_preserve_kctx_is_supported(void) 2402 { 2403 pnode_t pnode; 2404 int val; 2405 2406 /* 2407 * Check for existence of context0-page-size-preserved property 2408 * in virtual-memory prom node. 2409 */ 2410 pnode = (pnode_t)prom_getphandle(prom_mmu_ihandle()); 2411 return ((prom_getprop(pnode, PROM_KCTX_PRESERVED_PROPNAME, 2412 (caddr_t)&val) == 0) ? 1 : 0); 2413 } 2414