1/* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21/* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26#pragma ident "%Z%%M% %I% %E% SMI" 27 28#if !defined(lint) 29#include "assym.h" 30#endif /* !lint */ 31 32/* 33 * General assembly language routines. 34 * It is the intent of this file to contain routines that are 35 * specific to cpu architecture. 36 */ 37 38/* 39 * WARNING: If you add a fast trap handler which can be invoked by a 40 * non-privileged user, you may have to use the FAST_TRAP_DONE macro 41 * instead of "done" instruction to return back to the user mode. See 42 * comments for the "fast_trap_done" entry point for more information. 43 */ 44#define FAST_TRAP_DONE \ 45 ba,a fast_trap_done 46 47/* 48 * Override GET_NATIVE_TIME for the cpu module code. This is not 49 * guaranteed to be exactly one instruction, be careful of using 50 * the macro in delay slots. 51 * 52 * Do not use any instruction that modifies condition codes as the 53 * caller may depend on these to remain unchanged across the macro. 54 */ 55#if defined(CHEETAH) || defined(OLYMPUS_C) 56 57#define GET_NATIVE_TIME(out, scr1, scr2) \ 58 rd STICK, out 59#define DELTA_NATIVE_TIME(delta, reg, scr1, scr2, scr3) \ 60 rd STICK, reg; \ 61 add reg, delta, reg; \ 62 wr reg, STICK 63#define RD_TICKCMPR(out, scr) \ 64 rd STICK_COMPARE, out 65#define WR_TICKCMPR(in, scr1, scr2, label) \ 66 wr in, STICK_COMPARE 67 68#elif defined(HUMMINGBIRD) 69#include <sys/spitregs.h> 70 71/* 72 * the current hummingbird version of %stick and %stick_cmp 73 * were both implemented as (2) 32-bit locations in ASI_IO space; 74 * the hdwr should support atomic r/w; meanwhile: ugly alert! ... 75 * 76 * 64-bit opcodes are required, but move only 32-bits: 77 * 78 * ldxa [phys]ASI_IO, %dst reads the low 32-bits from phys into %dst 79 * stxa %src, [phys]ASI_IO writes the low 32-bits from %src into phys 80 * 81 * reg equivalent [phys]ASI_IO 82 * ------------------ --------------- 83 * %stick_cmp low-32 0x1FE.0000.F060 84 * %stick_cmp high-32 0x1FE.0000.F068 85 * %stick low-32 0x1FE.0000.F070 86 * %stick high-32 0x1FE.0000.F078 87 */ 88#define HSTC_LOW 0x60 /* stick_cmp low 32-bits */ 89#define HSTC_HIGH 0x68 /* stick_cmp high 32-bits */ 90#define HST_LOW 0x70 /* stick low 32-bits */ 91#define HST_HIGH 0x78 /* stick high 32-bits */ 92#define HST_DIFF 0x08 /* low<-->high diff */ 93 94/* 95 * Any change in the number of instructions in SETL41() 96 * will affect SETL41_OFF 97 */ 98#define SETL41(reg, byte) \ 99 sethi %hi(0x1FE00000), reg; /* 0000.0000.1FE0.0000 */ \ 100 or reg, 0xF, reg; /* 0000.0000.1FE0.000F */ \ 101 sllx reg, 12, reg; /* 0000.01FE.0000.F000 */ \ 102 or reg, byte, reg; /* 0000.01FE.0000.F0xx */ 103 104/* 105 * SETL41_OFF is used to calulate the relative PC value when a 106 * branch instruction needs to go over SETL41() macro 107 */ 108#define SETL41_OFF 16 109 110/* 111 * reading stick requires 2 loads, and there could be an intervening 112 * low-to-high 32-bit rollover resulting in a return value that is 113 * off by about (2 ^ 32); this rare case is prevented by re-reading 114 * the low-32 bits after the high-32 and verifying the "after" value 115 * is >= the "before" value; if not, increment the high-32 value. 116 * 117 * this method is limited to 1 rollover, and based on the fixed 118 * stick-frequency (5555555), requires the loads to complete within 119 * 773 seconds; incrementing the high-32 value will not overflow for 120 * about 52644 years. 121 * 122 * writing stick requires 2 stores; if the old/new low-32 value is 123 * near 0xffffffff, there could be another rollover (also rare). 124 * to prevent this, we first write a 0 to the low-32, then write 125 * new values to the high-32 then the low-32. 126 * 127 * When we detect a carry in the lower %stick register, we need to 128 * read HST_HIGH again. However at the point where we detect this, 129 * we need to rebuild the register address HST_HIGH.This involves more 130 * than one instructions and a branch is unavoidable. However, most of 131 * the time, there is no carry. So we take the penalty of a branch 132 * instruction only when there is carry (less frequent). 133 * 134 * For GET_NATIVE_TIME(), we start afresh and branch to SETL41(). 135 * For DELTA_NATIVE_TIME(), we branch to just after SETL41() since 136 * addr already points to HST_LOW. 137 * 138 * NOTE: this method requires disabling interrupts before using 139 * DELTA_NATIVE_TIME. 140 */ 141#define GET_NATIVE_TIME(out, scr, tmp) \ 142 SETL41(scr, HST_LOW); \ 143 ldxa [scr]ASI_IO, tmp; \ 144 inc HST_DIFF, scr; \ 145 ldxa [scr]ASI_IO, out; \ 146 dec HST_DIFF, scr; \ 147 ldxa [scr]ASI_IO, scr; \ 148 sub scr, tmp, tmp; \ 149 brlz,pn tmp, .-(SETL41_OFF+24); \ 150 sllx out, 32, out; \ 151 or out, scr, out 152#define DELTA_NATIVE_TIME(delta, addr, high, low, tmp) \ 153 SETL41(addr, HST_LOW); \ 154 ldxa [addr]ASI_IO, tmp; \ 155 inc HST_DIFF, addr; \ 156 ldxa [addr]ASI_IO, high; \ 157 dec HST_DIFF, addr; \ 158 ldxa [addr]ASI_IO, low; \ 159 sub low, tmp, tmp; \ 160 brlz,pn tmp, .-24; \ 161 sllx high, 32, high; \ 162 or high, low, high; \ 163 add high, delta, high; \ 164 srl high, 0, low; \ 165 srlx high, 32, high; \ 166 stxa %g0, [addr]ASI_IO; \ 167 inc HST_DIFF, addr; \ 168 stxa high, [addr]ASI_IO; \ 169 dec HST_DIFF, addr; \ 170 stxa low, [addr]ASI_IO 171#define RD_TICKCMPR(out, scr) \ 172 SETL41(scr, HSTC_LOW); \ 173 ldxa [scr]ASI_IO, out; \ 174 inc HST_DIFF, scr; \ 175 ldxa [scr]ASI_IO, scr; \ 176 sllx scr, 32, scr; \ 177 or scr, out, out 178#define WR_TICKCMPR(in, scra, scrd, label) \ 179 SETL41(scra, HSTC_HIGH); \ 180 srlx in, 32, scrd; \ 181 stxa scrd, [scra]ASI_IO; \ 182 dec HST_DIFF, scra; \ 183 stxa in, [scra]ASI_IO 184 185#else /* !CHEETAH && !HUMMINGBIRD */ 186 187#define GET_NATIVE_TIME(out, scr1, scr2) \ 188 rdpr %tick, out 189#define DELTA_NATIVE_TIME(delta, reg, scr1, scr2, scr3) \ 190 rdpr %tick, reg; \ 191 add reg, delta, reg; \ 192 wrpr reg, %tick 193#define RD_TICKCMPR(out, scr) \ 194 rd TICK_COMPARE, out 195#ifdef BB_ERRATA_1 /* writes to TICK_COMPARE may fail */ 196/* 197 * Writes to the TICK_COMPARE register sometimes fail on blackbird modules. 198 * The failure occurs only when the following instruction decodes to wr or 199 * wrpr. The workaround is to immediately follow writes to TICK_COMPARE 200 * with a read, thus stalling the pipe and keeping following instructions 201 * from causing data corruption. Aligning to a quadword will ensure these 202 * two instructions are not split due to i$ misses. 203 */ 204#define WR_TICKCMPR(cmpr,scr1,scr2,label) \ 205 ba,a .bb_errata_1.label ;\ 206 .align 64 ;\ 207.bb_errata_1.label: ;\ 208 wr cmpr, TICK_COMPARE ;\ 209 rd TICK_COMPARE, %g0 210#else /* BB_ERRATA_1 */ 211#define WR_TICKCMPR(in,scr1,scr2,label) \ 212 wr in, TICK_COMPARE 213#endif /* BB_ERRATA_1 */ 214 215#endif /* !CHEETAH && !HUMMINGBIRD */ 216 217#include <sys/clock.h> 218 219#if defined(lint) 220#include <sys/types.h> 221#include <sys/scb.h> 222#include <sys/systm.h> 223#include <sys/regset.h> 224#include <sys/sunddi.h> 225#include <sys/lockstat.h> 226#endif /* lint */ 227 228 229#include <sys/asm_linkage.h> 230#include <sys/privregs.h> 231#include <sys/machparam.h> /* To get SYSBASE and PAGESIZE */ 232#include <sys/machthread.h> 233#include <sys/clock.h> 234#include <sys/intreg.h> 235#include <sys/psr_compat.h> 236#include <sys/isa_defs.h> 237#include <sys/dditypes.h> 238#include <sys/intr.h> 239 240#if !defined(lint) 241#include "assym.h" 242#endif /* !lint */ 243 244#if defined(lint) 245 246uint_t 247get_impl(void) 248{ return (0); } 249 250#else /* lint */ 251 252 ENTRY(get_impl) 253 GET_CPU_IMPL(%o0) 254 retl 255 nop 256 SET_SIZE(get_impl) 257 258#endif /* lint */ 259 260#if defined(lint) 261/* 262 * Softint generated when counter field of tick reg matches value field 263 * of tick_cmpr reg 264 */ 265/*ARGSUSED*/ 266void 267tickcmpr_set(uint64_t clock_cycles) 268{} 269 270#else /* lint */ 271 272 ENTRY_NP(tickcmpr_set) 273 ! get 64-bit clock_cycles interval 274 mov %o0, %o2 275 mov 8, %o3 ! A reasonable initial step size 2761: 277 WR_TICKCMPR(%o2,%o4,%o5,__LINE__) ! Write to TICK_CMPR 278 279 GET_NATIVE_TIME(%o0, %o4, %o5) ! Read %tick to confirm the 280 sllx %o0, 1, %o0 ! value we wrote was in the future. 281 srlx %o0, 1, %o0 282 283 cmp %o2, %o0 ! If the value we wrote was in the 284 bg,pt %xcc, 2f ! future, then blow out of here. 285 sllx %o3, 1, %o3 ! If not, then double our step size, 286 ba,pt %xcc, 1b ! and take another lap. 287 add %o0, %o3, %o2 ! 2882: 289 retl 290 nop 291 SET_SIZE(tickcmpr_set) 292 293#endif /* lint */ 294 295#if defined(lint) 296 297void 298tickcmpr_disable(void) 299{} 300 301#else /* lint */ 302 303 ENTRY_NP(tickcmpr_disable) 304 mov 1, %g1 305 sllx %g1, TICKINT_DIS_SHFT, %o0 306 WR_TICKCMPR(%o0,%o4,%o5,__LINE__) ! Write to TICK_CMPR 307 retl 308 nop 309 SET_SIZE(tickcmpr_disable) 310 311#endif /* lint */ 312 313#if defined(lint) 314 315/* 316 * tick_write_delta() increments %tick by the specified delta. This should 317 * only be called after a CPR event to assure that gethrtime() continues to 318 * increase monotonically. Obviously, writing %tick needs to de done very 319 * carefully to avoid introducing unnecessary %tick skew across CPUs. For 320 * this reason, we make sure we're i-cache hot before actually writing to 321 * %tick. 322 */ 323/*ARGSUSED*/ 324void 325tick_write_delta(uint64_t delta) 326{} 327 328#else /* lint */ 329 330#ifdef DEBUG 331 .seg ".text" 332tick_write_panic: 333 .asciz "tick_write_delta: interrupts already disabled on entry" 334#endif /* DEBUG */ 335 336 ENTRY_NP(tick_write_delta) 337 rdpr %pstate, %g1 338#ifdef DEBUG 339 andcc %g1, PSTATE_IE, %g0 ! If DEBUG, check that interrupts 340 bnz 0f ! aren't already disabled. 341 sethi %hi(tick_write_panic), %o1 342 save %sp, -SA(MINFRAME), %sp ! get a new window to preserve caller 343 call panic 344 or %i1, %lo(tick_write_panic), %o0 345#endif /* DEBUG */ 3460: wrpr %g1, PSTATE_IE, %pstate ! Disable interrupts 347 mov %o0, %o2 348 ba 0f ! Branch to cache line-aligned instr. 349 nop 350 .align 16 3510: nop ! The next 3 instructions are now hot. 352 DELTA_NATIVE_TIME(%o2, %o3, %o4, %o5, %g2) ! read/inc/write %tick 353 354 retl ! Return 355 wrpr %g0, %g1, %pstate ! delay: Re-enable interrupts 356#endif /* lint */ 357 358#if defined(lint) 359/* 360 * return 1 if disabled 361 */ 362 363int 364tickcmpr_disabled(void) 365{ return (0); } 366 367#else /* lint */ 368 369 ENTRY_NP(tickcmpr_disabled) 370 RD_TICKCMPR(%g1, %o0) 371 retl 372 srlx %g1, TICKINT_DIS_SHFT, %o0 373 SET_SIZE(tickcmpr_disabled) 374 375#endif /* lint */ 376 377/* 378 * Get current tick 379 */ 380#if defined(lint) 381 382u_longlong_t 383gettick(void) 384{ return (0); } 385 386#else /* lint */ 387 388 ENTRY(gettick) 389 GET_NATIVE_TIME(%o0, %o2, %o3) 390 retl 391 nop 392 SET_SIZE(gettick) 393 394#endif /* lint */ 395 396 397/* 398 * Return the counter portion of the tick register. 399 */ 400 401#if defined(lint) 402 403uint64_t 404gettick_counter(void) 405{ return(0); } 406 407#else /* lint */ 408 409 ENTRY_NP(gettick_counter) 410 rdpr %tick, %o0 411 sllx %o0, 1, %o0 412 retl 413 srlx %o0, 1, %o0 ! shake off npt bit 414 SET_SIZE(gettick_counter) 415#endif /* lint */ 416 417/* 418 * Provide a C callable interface to the trap that reads the hi-res timer. 419 * Returns 64-bit nanosecond timestamp in %o0 and %o1. 420 */ 421 422#if defined(lint) 423 424hrtime_t 425gethrtime(void) 426{ 427 return ((hrtime_t)0); 428} 429 430hrtime_t 431gethrtime_unscaled(void) 432{ 433 return ((hrtime_t)0); 434} 435 436hrtime_t 437gethrtime_max(void) 438{ 439 return ((hrtime_t)0); 440} 441 442void 443scalehrtime(hrtime_t *hrt) 444{ 445 *hrt = 0; 446} 447 448void 449gethrestime(timespec_t *tp) 450{ 451 tp->tv_sec = 0; 452 tp->tv_nsec = 0; 453} 454 455time_t 456gethrestime_sec(void) 457{ 458 return (0); 459} 460 461void 462gethrestime_lasttick(timespec_t *tp) 463{ 464 tp->tv_sec = 0; 465 tp->tv_nsec = 0; 466} 467 468/*ARGSUSED*/ 469void 470hres_tick(void) 471{ 472} 473 474void 475panic_hres_tick(void) 476{ 477} 478 479#else /* lint */ 480 481 ENTRY_NP(gethrtime) 482 GET_HRTIME(%g1, %o0, %o1, %o2, %o3, %o4, %o5, %g2) 483 ! %g1 = hrtime 484 retl 485 mov %g1, %o0 486 SET_SIZE(gethrtime) 487 488 ENTRY_NP(gethrtime_unscaled) 489 GET_NATIVE_TIME(%g1, %o2, %o3) ! %g1 = native time 490 retl 491 mov %g1, %o0 492 SET_SIZE(gethrtime_unscaled) 493 494 ENTRY_NP(gethrtime_waitfree) 495 ALTENTRY(dtrace_gethrtime) 496 GET_NATIVE_TIME(%g1, %o2, %o3) ! %g1 = native time 497 NATIVE_TIME_TO_NSEC(%g1, %o2, %o3) 498 retl 499 mov %g1, %o0 500 SET_SIZE(dtrace_gethrtime) 501 SET_SIZE(gethrtime_waitfree) 502 503 ENTRY(gethrtime_max) 504 NATIVE_TIME_MAX(%g1) 505 NATIVE_TIME_TO_NSEC(%g1, %o0, %o1) 506 507 ! hrtime_t's are signed, max hrtime_t must be positive 508 mov -1, %o2 509 brlz,a %g1, 1f 510 srlx %o2, 1, %g1 5111: 512 retl 513 mov %g1, %o0 514 SET_SIZE(gethrtime_max) 515 516 ENTRY(scalehrtime) 517 ldx [%o0], %o1 518 NATIVE_TIME_TO_NSEC(%o1, %o2, %o3) 519 retl 520 stx %o1, [%o0] 521 SET_SIZE(scalehrtime) 522 523/* 524 * Fast trap to return a timestamp, uses trap window, leaves traps 525 * disabled. Returns a 64-bit nanosecond timestamp in %o0 and %o1. 526 * 527 * This is the handler for the ST_GETHRTIME trap. 528 */ 529 530 ENTRY_NP(get_timestamp) 531 GET_HRTIME(%g1, %g2, %g3, %g4, %g5, %o0, %o1, %o2) ! %g1 = hrtime 532 srlx %g1, 32, %o0 ! %o0 = hi32(%g1) 533 srl %g1, 0, %o1 ! %o1 = lo32(%g1) 534 FAST_TRAP_DONE 535 SET_SIZE(get_timestamp) 536 537/* 538 * Macro to convert GET_HRESTIME() bits into a timestamp. 539 * 540 * We use two separate macros so that the platform-dependent GET_HRESTIME() 541 * can be as small as possible; CONV_HRESTIME() implements the generic part. 542 */ 543#define CONV_HRESTIME(hrestsec, hrestnsec, adj, nslt, nano) \ 544 brz,pt adj, 3f; /* no adjustments, it's easy */ \ 545 add hrestnsec, nslt, hrestnsec; /* hrest.tv_nsec += nslt */ \ 546 brlz,pn adj, 2f; /* if hrestime_adj negative */ \ 547 srlx nslt, ADJ_SHIFT, nslt; /* delay: nslt >>= 4 */ \ 548 subcc adj, nslt, %g0; /* hrestime_adj - nslt/16 */ \ 549 movg %xcc, nslt, adj; /* adj by min(adj, nslt/16) */ \ 550 ba 3f; /* go convert to sec/nsec */ \ 551 add hrestnsec, adj, hrestnsec; /* delay: apply adjustment */ \ 5522: addcc adj, nslt, %g0; /* hrestime_adj + nslt/16 */ \ 553 bge,a,pt %xcc, 3f; /* is adj less negative? */ \ 554 add hrestnsec, adj, hrestnsec; /* yes: hrest.nsec += adj */ \ 555 sub hrestnsec, nslt, hrestnsec; /* no: hrest.nsec -= nslt/16 */ \ 5563: cmp hrestnsec, nano; /* more than a billion? */ \ 557 bl,pt %xcc, 4f; /* if not, we're done */ \ 558 nop; /* delay: do nothing :( */ \ 559 add hrestsec, 1, hrestsec; /* hrest.tv_sec++; */ \ 560 sub hrestnsec, nano, hrestnsec; /* hrest.tv_nsec -= NANOSEC; */ \ 561 ba,a 3b; /* check >= billion again */ \ 5624: 563 564 ENTRY_NP(gethrestime) 565 GET_HRESTIME(%o1, %o2, %o3, %o4, %o5, %g1, %g2, %g3, %g4) 566 CONV_HRESTIME(%o1, %o2, %o3, %o4, %o5) 567 stn %o1, [%o0] 568 retl 569 stn %o2, [%o0 + CLONGSIZE] 570 SET_SIZE(gethrestime) 571 572/* 573 * Similar to gethrestime(), but gethrestime_sec() returns current hrestime 574 * seconds. 575 */ 576 ENTRY_NP(gethrestime_sec) 577 GET_HRESTIME(%o0, %o2, %o3, %o4, %o5, %g1, %g2, %g3, %g4) 578 CONV_HRESTIME(%o0, %o2, %o3, %o4, %o5) 579 retl ! %o0 current hrestime seconds 580 nop 581 SET_SIZE(gethrestime_sec) 582 583/* 584 * Returns the hrestime on the last tick. This is simpler than gethrestime() 585 * and gethrestime_sec(): no conversion is required. gethrestime_lasttick() 586 * follows the same locking algorithm as GET_HRESTIME and GET_HRTIME, 587 * outlined in detail in clock.h. (Unlike GET_HRESTIME/GET_HRTIME, we don't 588 * rely on load dependencies to effect the membar #LoadLoad, instead declaring 589 * it explicitly.) 590 */ 591 ENTRY_NP(gethrestime_lasttick) 592 sethi %hi(hres_lock), %o1 5930: 594 lduw [%o1 + %lo(hres_lock)], %o2 ! Load lock value 595 membar #LoadLoad ! Load of lock must complete 596 andn %o2, 1, %o2 ! Mask off lowest bit 597 ldn [%o1 + %lo(hrestime)], %g1 ! Seconds. 598 add %o1, %lo(hrestime), %o4 599 ldn [%o4 + CLONGSIZE], %g2 ! Nanoseconds. 600 membar #LoadLoad ! All loads must complete 601 lduw [%o1 + %lo(hres_lock)], %o3 ! Reload lock value 602 cmp %o3, %o2 ! If lock is locked or has 603 bne 0b ! changed, retry. 604 stn %g1, [%o0] ! Delay: store seconds 605 retl 606 stn %g2, [%o0 + CLONGSIZE] ! Delay: store nanoseconds 607 SET_SIZE(gethrestime_lasttick) 608 609/* 610 * Fast trap for gettimeofday(). Returns a timestruc_t in %o0 and %o1. 611 * 612 * This is the handler for the ST_GETHRESTIME trap. 613 */ 614 615 ENTRY_NP(get_hrestime) 616 GET_HRESTIME(%o0, %o1, %g1, %g2, %g3, %g4, %g5, %o2, %o3) 617 CONV_HRESTIME(%o0, %o1, %g1, %g2, %g3) 618 FAST_TRAP_DONE 619 SET_SIZE(get_hrestime) 620 621/* 622 * Fast trap to return lwp virtual time, uses trap window, leaves traps 623 * disabled. Returns a 64-bit number in %o0:%o1, which is the number 624 * of nanoseconds consumed. 625 * 626 * This is the handler for the ST_GETHRVTIME trap. 627 * 628 * Register usage: 629 * %o0, %o1 = return lwp virtual time 630 * %o2 = CPU/thread 631 * %o3 = lwp 632 * %g1 = scratch 633 * %g5 = scratch 634 */ 635 ENTRY_NP(get_virtime) 636 GET_NATIVE_TIME(%g5, %g1, %g2) ! %g5 = native time in ticks 637 CPU_ADDR(%g2, %g3) ! CPU struct ptr to %g2 638 ldn [%g2 + CPU_THREAD], %g2 ! thread pointer to %g2 639 ldn [%g2 + T_LWP], %g3 ! lwp pointer to %g3 640 641 /* 642 * Subtract start time of current microstate from time 643 * of day to get increment for lwp virtual time. 644 */ 645 ldx [%g3 + LWP_STATE_START], %g1 ! ms_state_start 646 sub %g5, %g1, %g5 647 648 /* 649 * Add current value of ms_acct[LMS_USER] 650 */ 651 ldx [%g3 + LWP_ACCT_USER], %g1 ! ms_acct[LMS_USER] 652 add %g5, %g1, %g5 653 NATIVE_TIME_TO_NSEC(%g5, %g1, %o0) 654 655 srl %g5, 0, %o1 ! %o1 = lo32(%g5) 656 srlx %g5, 32, %o0 ! %o0 = hi32(%g5) 657 658 FAST_TRAP_DONE 659 SET_SIZE(get_virtime) 660 661 662 663 .seg ".text" 664hrtime_base_panic: 665 .asciz "hrtime_base stepping back" 666 667 668 ENTRY_NP(hres_tick) 669 save %sp, -SA(MINFRAME), %sp ! get a new window 670 671 sethi %hi(hrestime), %l4 672 ldstub [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5 ! try locking 6737: tst %l5 674 bz,pt %xcc, 8f ! if we got it, drive on 675 ld [%l4 + %lo(nsec_scale)], %l5 ! delay: %l5 = scaling factor 676 ldub [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5 6779: tst %l5 678 bz,a,pn %xcc, 7b 679 ldstub [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5 680 ba,pt %xcc, 9b 681 ldub [%l4 + %lo(hres_lock + HRES_LOCK_OFFSET)], %l5 6828: 683 membar #StoreLoad|#StoreStore 684 685 ! 686 ! update hres_last_tick. %l5 has the scaling factor (nsec_scale). 687 ! 688 ldx [%l4 + %lo(hrtime_base)], %g1 ! load current hrtime_base 689 GET_NATIVE_TIME(%l0, %l3, %l6) ! current native time 690 stx %l0, [%l4 + %lo(hres_last_tick)]! prev = current 691 ! convert native time to nsecs 692 NATIVE_TIME_TO_NSEC_SCALE(%l0, %l5, %l2, NSEC_SHIFT) 693 694 sub %l0, %g1, %i1 ! get accurate nsec delta 695 696 ldx [%l4 + %lo(hrtime_base)], %l1 697 cmp %l1, %l0 698 bg,pn %xcc, 9f 699 nop 700 701 stx %l0, [%l4 + %lo(hrtime_base)] ! update hrtime_base 702 703 ! 704 ! apply adjustment, if any 705 ! 706 ldx [%l4 + %lo(hrestime_adj)], %l0 ! %l0 = hrestime_adj 707 brz %l0, 2f 708 ! hrestime_adj == 0 ? 709 ! yes, skip adjustments 710 clr %l5 ! delay: set adj to zero 711 tst %l0 ! is hrestime_adj >= 0 ? 712 bge,pt %xcc, 1f ! yes, go handle positive case 713 srl %i1, ADJ_SHIFT, %l5 ! delay: %l5 = adj 714 715 addcc %l0, %l5, %g0 ! hrestime_adj < -adj ? 716 bl,pt %xcc, 2f ! yes, use current adj 717 neg %l5 ! delay: %l5 = -adj 718 ba,pt %xcc, 2f 719 mov %l0, %l5 ! no, so set adj = hrestime_adj 7201: 721 subcc %l0, %l5, %g0 ! hrestime_adj < adj ? 722 bl,a,pt %xcc, 2f ! yes, set adj = hrestime_adj 723 mov %l0, %l5 ! delay: adj = hrestime_adj 7242: 725 ldx [%l4 + %lo(timedelta)], %l0 ! %l0 = timedelta 726 sub %l0, %l5, %l0 ! timedelta -= adj 727 728 stx %l0, [%l4 + %lo(timedelta)] ! store new timedelta 729 stx %l0, [%l4 + %lo(hrestime_adj)] ! hrestime_adj = timedelta 730 731 or %l4, %lo(hrestime), %l2 732 ldn [%l2], %i2 ! %i2:%i3 = hrestime sec:nsec 733 ldn [%l2 + CLONGSIZE], %i3 734 add %i3, %l5, %i3 ! hrestime.nsec += adj 735 add %i3, %i1, %i3 ! hrestime.nsec += nslt 736 737 set NANOSEC, %l5 ! %l5 = NANOSEC 738 cmp %i3, %l5 739 bl,pt %xcc, 5f ! if hrestime.tv_nsec < NANOSEC 740 sethi %hi(one_sec), %i1 ! delay 741 add %i2, 0x1, %i2 ! hrestime.tv_sec++ 742 sub %i3, %l5, %i3 ! hrestime.tv_nsec - NANOSEC 743 mov 0x1, %l5 744 st %l5, [%i1 + %lo(one_sec)] 7455: 746 stn %i2, [%l2] 747 stn %i3, [%l2 + CLONGSIZE] ! store the new hrestime 748 749 membar #StoreStore 750 751 ld [%l4 + %lo(hres_lock)], %i1 752 inc %i1 ! release lock 753 st %i1, [%l4 + %lo(hres_lock)] ! clear hres_lock 754 755 ret 756 restore 757 7589: 759 ! 760 ! release hres_lock 761 ! 762 ld [%l4 + %lo(hres_lock)], %i1 763 inc %i1 764 st %i1, [%l4 + %lo(hres_lock)] 765 766 sethi %hi(hrtime_base_panic), %o0 767 call panic 768 or %o0, %lo(hrtime_base_panic), %o0 769 770 SET_SIZE(hres_tick) 771 772#endif /* lint */ 773 774#if !defined(lint) && !defined(__lint) 775 776 .seg ".text" 777kstat_q_panic_msg: 778 .asciz "kstat_q_exit: qlen == 0" 779 780 ENTRY(kstat_q_panic) 781 save %sp, -SA(MINFRAME), %sp 782 sethi %hi(kstat_q_panic_msg), %o0 783 call panic 784 or %o0, %lo(kstat_q_panic_msg), %o0 785 /*NOTREACHED*/ 786 SET_SIZE(kstat_q_panic) 787 788#define BRZPN brz,pn 789#define BRZPT brz,pt 790 791#define KSTAT_Q_UPDATE(QOP, QBR, QZERO, QRETURN, QTYPE) \ 792 ld [%o0 + QTYPE/**/CNT], %o1; /* %o1 = old qlen */ \ 793 QOP %o1, 1, %o2; /* %o2 = new qlen */ \ 794 QBR %o1, QZERO; /* done if qlen == 0 */ \ 795 st %o2, [%o0 + QTYPE/**/CNT]; /* delay: save qlen */ \ 796 ldx [%o0 + QTYPE/**/LASTUPDATE], %o3; \ 797 ldx [%o0 + QTYPE/**/TIME], %o4; /* %o4 = old time */ \ 798 ldx [%o0 + QTYPE/**/LENTIME], %o5; /* %o5 = old lentime */ \ 799 sub %g1, %o3, %o2; /* %o2 = time delta */ \ 800 mulx %o1, %o2, %o3; /* %o3 = cur lentime */ \ 801 add %o4, %o2, %o4; /* %o4 = new time */ \ 802 add %o5, %o3, %o5; /* %o5 = new lentime */ \ 803 stx %o4, [%o0 + QTYPE/**/TIME]; /* save time */ \ 804 stx %o5, [%o0 + QTYPE/**/LENTIME]; /* save lentime */ \ 805QRETURN; \ 806 stx %g1, [%o0 + QTYPE/**/LASTUPDATE]; /* lastupdate = now */ 807 808 .align 16 809 ENTRY(kstat_waitq_enter) 810 GET_NATIVE_TIME(%g1, %g2, %g3) 811 KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_W) 812 SET_SIZE(kstat_waitq_enter) 813 814 .align 16 815 ENTRY(kstat_waitq_exit) 816 GET_NATIVE_TIME(%g1, %g2, %g3) 817 KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, retl, KSTAT_IO_W) 818 SET_SIZE(kstat_waitq_exit) 819 820 .align 16 821 ENTRY(kstat_runq_enter) 822 GET_NATIVE_TIME(%g1, %g2, %g3) 823 KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_R) 824 SET_SIZE(kstat_runq_enter) 825 826 .align 16 827 ENTRY(kstat_runq_exit) 828 GET_NATIVE_TIME(%g1, %g2, %g3) 829 KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, retl, KSTAT_IO_R) 830 SET_SIZE(kstat_runq_exit) 831 832 .align 16 833 ENTRY(kstat_waitq_to_runq) 834 GET_NATIVE_TIME(%g1, %g2, %g3) 835 KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, 1:, KSTAT_IO_W) 836 KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_R) 837 SET_SIZE(kstat_waitq_to_runq) 838 839 .align 16 840 ENTRY(kstat_runq_back_to_waitq) 841 GET_NATIVE_TIME(%g1, %g2, %g3) 842 KSTAT_Q_UPDATE(sub, BRZPN, kstat_q_panic, 1:, KSTAT_IO_R) 843 KSTAT_Q_UPDATE(add, BRZPT, 1f, 1:retl, KSTAT_IO_W) 844 SET_SIZE(kstat_runq_back_to_waitq) 845 846#endif /* !(lint || __lint) */ 847 848#ifdef lint 849 850int64_t timedelta; 851hrtime_t hres_last_tick; 852timestruc_t hrestime; 853int64_t hrestime_adj; 854int hres_lock; 855uint_t nsec_scale; 856hrtime_t hrtime_base; 857int traptrace_use_stick; 858 859#else /* lint */ 860 /* 861 * -- WARNING -- 862 * 863 * The following variables MUST be together on a 128-byte boundary. 864 * In addition to the primary performance motivation (having them all 865 * on the same cache line(s)), code here and in the GET*TIME() macros 866 * assumes that they all have the same high 22 address bits (so 867 * there's only one sethi). 868 */ 869 .seg ".data" 870 .global timedelta, hres_last_tick, hrestime, hrestime_adj 871 .global hres_lock, nsec_scale, hrtime_base, traptrace_use_stick 872 .global nsec_shift, adj_shift 873 874 /* XXX - above comment claims 128-bytes is necessary */ 875 .align 64 876timedelta: 877 .word 0, 0 /* int64_t */ 878hres_last_tick: 879 .word 0, 0 /* hrtime_t */ 880hrestime: 881 .nword 0, 0 /* 2 longs */ 882hrestime_adj: 883 .word 0, 0 /* int64_t */ 884hres_lock: 885 .word 0 886nsec_scale: 887 .word 0 888hrtime_base: 889 .word 0, 0 890traptrace_use_stick: 891 .word 0 892nsec_shift: 893 .word NSEC_SHIFT 894adj_shift: 895 .word ADJ_SHIFT 896 897#endif /* lint */ 898 899 900/* 901 * drv_usecwait(clock_t n) [DDI/DKI - section 9F] 902 * usec_delay(int n) [compatibility - should go one day] 903 * Delay by spinning. 904 * 905 * delay for n microseconds. numbers <= 0 delay 1 usec 906 * 907 * With UltraSPARC-III the combination of supporting mixed-speed CPUs 908 * and variable clock rate for power management requires that we 909 * use %stick to implement this routine. 910 * 911 * For OPL platforms that support the "sleep" instruction, we 912 * conditionally (ifdef'ed) insert a "sleep" instruction in 913 * the loop. Note that theoritically we should have move (duplicated) 914 * the code down to spitfire/us3/opl specific asm files - but this 915 * is alot of code duplication just to add one "sleep" instruction. 916 * We chose less code duplication for this. 917 */ 918 919#if defined(lint) 920 921/*ARGSUSED*/ 922void 923drv_usecwait(clock_t n) 924{} 925 926/*ARGSUSED*/ 927void 928usec_delay(int n) 929{} 930 931#else /* lint */ 932 933 ENTRY(drv_usecwait) 934 ALTENTRY(usec_delay) 935 brlez,a,pn %o0, 0f 936 mov 1, %o0 9370: 938 sethi %hi(sticks_per_usec), %o1 939 lduw [%o1 + %lo(sticks_per_usec)], %o1 940 mulx %o1, %o0, %o1 ! Scale usec to ticks 941 inc %o1 ! We don't start on a tick edge 942 GET_NATIVE_TIME(%o2, %o3, %o4) 943 add %o1, %o2, %o1 944 9451: 946#ifdef _OPL 947 .word 0x81b01060 ! insert "sleep" instruction 948#endif /* _OPL */ ! use byte code for now 949 cmp %o1, %o2 950 GET_NATIVE_TIME(%o2, %o3, %o4) 951 bgeu,pt %xcc, 1b 952 nop 953 retl 954 nop 955 SET_SIZE(usec_delay) 956 SET_SIZE(drv_usecwait) 957#endif /* lint */ 958 959#if defined(lint) 960 961/* ARGSUSED */ 962void 963pil14_interrupt(int level) 964{} 965 966#else /* lint */ 967 968/* 969 * Level-14 interrupt prologue. 970 */ 971 ENTRY_NP(pil14_interrupt) 972 CPU_ADDR(%g1, %g2) 973 rdpr %pil, %g6 ! %g6 = interrupted PIL 974 stn %g6, [%g1 + CPU_PROFILE_PIL] ! record interrupted PIL 975 rdpr %tstate, %g6 976 rdpr %tpc, %g5 977 btst TSTATE_PRIV, %g6 ! trap from supervisor mode? 978 bnz,a,pt %xcc, 1f 979 stn %g5, [%g1 + CPU_PROFILE_PC] ! if so, record kernel PC 980 stn %g5, [%g1 + CPU_PROFILE_UPC] ! if not, record user PC 981 ba pil_interrupt_common ! must be large-disp branch 982 stn %g0, [%g1 + CPU_PROFILE_PC] ! zero kernel PC 9831: ba pil_interrupt_common ! must be large-disp branch 984 stn %g0, [%g1 + CPU_PROFILE_UPC] ! zero user PC 985 SET_SIZE(pil14_interrupt) 986 987 ENTRY_NP(tick_rtt) 988 ! 989 ! Load TICK_COMPARE into %o5; if bit 63 is set, then TICK_COMPARE is 990 ! disabled. If TICK_COMPARE is enabled, we know that we need to 991 ! reenqueue the interrupt request structure. We'll then check TICKINT 992 ! in SOFTINT; if it's set, then we know that we were in a TICK_COMPARE 993 ! interrupt. In this case, TICK_COMPARE may have been rewritten 994 ! recently; we'll compare %o5 to the current time to verify that it's 995 ! in the future. 996 ! 997 ! Note that %o5 is live until after 1f. 998 ! XXX - there is a subroutine call while %o5 is live! 999 ! 1000 RD_TICKCMPR(%o5, %g1) 1001 srlx %o5, TICKINT_DIS_SHFT, %g1 1002 brnz,pt %g1, 2f 1003 nop 1004 1005 rdpr %pstate, %g5 1006 andn %g5, PSTATE_IE, %g1 1007 wrpr %g0, %g1, %pstate ! Disable vec interrupts 1008 1009 sethi %hi(cbe_level14_inum), %o1 1010 ldx [%o1 + %lo(cbe_level14_inum)], %o1 1011 call intr_enqueue_req ! preserves %o5 and %g5 1012 mov PIL_14, %o0 1013 1014 ! Check SOFTINT for TICKINT/STICKINT 1015 rd SOFTINT, %o4 1016 set (TICK_INT_MASK | STICK_INT_MASK), %o0 1017 andcc %o4, %o0, %g0 1018 bz,a,pn %icc, 2f 1019 wrpr %g0, %g5, %pstate ! Enable vec interrupts 1020 1021 ! clear TICKINT/STICKINT 1022 wr %o0, CLEAR_SOFTINT 1023 1024 ! 1025 ! Now that we've cleared TICKINT, we can reread %tick and confirm 1026 ! that the value we programmed is still in the future. If it isn't, 1027 ! we need to reprogram TICK_COMPARE to fire as soon as possible. 1028 ! 1029 GET_NATIVE_TIME(%o0, %g1, %g2) ! %o0 = tick 1030 sllx %o0, 1, %o0 ! Clear the DIS bit 1031 srlx %o0, 1, %o0 1032 cmp %o5, %o0 ! In the future? 1033 bg,a,pt %xcc, 2f ! Yes, drive on. 1034 wrpr %g0, %g5, %pstate ! delay: enable vec intr 1035 1036 ! 1037 ! If we're here, then we have programmed TICK_COMPARE with a %tick 1038 ! which is in the past; we'll now load an initial step size, and loop 1039 ! until we've managed to program TICK_COMPARE to fire in the future. 1040 ! 1041 mov 8, %o4 ! 8 = arbitrary inital step 10421: add %o0, %o4, %o5 ! Add the step 1043 WR_TICKCMPR(%o5,%g1,%g2,__LINE__) ! Write to TICK_CMPR 1044 GET_NATIVE_TIME(%o0, %g1, %g2) ! %o0 = tick 1045 sllx %o0, 1, %o0 ! Clear the DIS bit 1046 srlx %o0, 1, %o0 1047 cmp %o5, %o0 ! In the future? 1048 bg,a,pt %xcc, 2f ! Yes, drive on. 1049 wrpr %g0, %g5, %pstate ! delay: enable vec intr 1050 ba 1b ! No, try again. 1051 sllx %o4, 1, %o4 ! delay: double step size 1052 10532: ba current_thread_complete 1054 nop 1055 SET_SIZE(tick_rtt) 1056 1057#endif /* lint */ 1058 1059#if defined(lint) || defined(__lint) 1060 1061/* ARGSUSED */ 1062uint64_t 1063find_cpufrequency(volatile uchar_t *clock_ptr) 1064{ 1065 return (0); 1066} 1067 1068#else /* lint */ 1069 1070#ifdef DEBUG 1071 .seg ".text" 1072find_cpufreq_panic: 1073 .asciz "find_cpufrequency: interrupts already disabled on entry" 1074#endif /* DEBUG */ 1075 1076 ENTRY_NP(find_cpufrequency) 1077 rdpr %pstate, %g1 1078 1079#ifdef DEBUG 1080 andcc %g1, PSTATE_IE, %g0 ! If DEBUG, check that interrupts 1081 bnz 0f ! are currently enabled 1082 sethi %hi(find_cpufreq_panic), %o1 1083 call panic 1084 or %o1, %lo(find_cpufreq_panic), %o0 1085#endif /* DEBUG */ 1086 10870: 1088 wrpr %g1, PSTATE_IE, %pstate ! Disable interrupts 10893: 1090 ldub [%o0], %o1 ! Read the number of seconds 1091 mov %o1, %o2 ! remember initial value in %o2 10921: 1093 GET_NATIVE_TIME(%o3, %g4, %g5) 1094 cmp %o1, %o2 ! did the seconds register roll over? 1095 be,pt %icc, 1b ! branch back if unchanged 1096 ldub [%o0], %o2 ! delay: load the new seconds val 1097 1098 brz,pn %o2, 3b ! if the minutes just rolled over, 1099 ! the last second could have been 1100 ! inaccurate; try again. 1101 mov %o2, %o4 ! delay: store init. val. in %o2 11022: 1103 GET_NATIVE_TIME(%o5, %g4, %g5) 1104 cmp %o2, %o4 ! did the seconds register roll over? 1105 be,pt %icc, 2b ! branch back if unchanged 1106 ldub [%o0], %o4 ! delay: load the new seconds val 1107 1108 brz,pn %o4, 0b ! if the minutes just rolled over, 1109 ! the last second could have been 1110 ! inaccurate; try again. 1111 wrpr %g0, %g1, %pstate ! delay: re-enable interrupts 1112 1113 retl 1114 sub %o5, %o3, %o0 ! return the difference in ticks 1115 SET_SIZE(find_cpufrequency) 1116 1117#endif /* lint */ 1118 1119#if defined(lint) 1120/* 1121 * Prefetch a page_t for write or read, this assumes a linear 1122 * scan of sequential page_t's. 1123 */ 1124/*ARGSUSED*/ 1125void 1126prefetch_page_w(void *pp) 1127{} 1128 1129/*ARGSUSED*/ 1130void 1131prefetch_page_r(void *pp) 1132{} 1133#else /* lint */ 1134 1135#if defined(CHEETAH) || defined(CHEETAH_PLUS) || defined(JALAPENO) || \ 1136 defined(SERRANO) 1137 ! 1138 ! On US-III, the prefetch instruction queue is 8 entries deep. 1139 ! Also, prefetches for write put data in the E$, which has 1140 ! lines of 512 bytes for an 8MB cache. Each E$ line is further 1141 ! subblocked into 64 byte chunks. 1142 ! 1143 ! Since prefetch can only bring in 64 bytes at a time (See Sparc 1144 ! v9 Architecture Manual pp.204) and a page_t is 128 bytes, 1145 ! then 2 prefetches are required in order to bring an entire 1146 ! page into the E$. 1147 ! 1148 ! Since the prefetch queue is 8 entries deep, we currently can 1149 ! only have 4 prefetches for page_t's outstanding. Thus, we 1150 ! prefetch n+4 ahead of where we are now: 1151 ! 1152 ! 4 * sizeof(page_t) -> 512 1153 ! 4 * sizeof(page_t) +64 -> 576 1154 ! 1155 ! Example 1156 ! ======= 1157 ! contiguous page array in memory... 1158 ! 1159 ! |AAA1|AAA2|BBB1|BBB2|CCC1|CCC2|DDD1|DDD2|XXX1|XXX2|YYY1|YYY2|... 1160 ! ^ ^ ^ ^ ^ ^ 1161 ! pp | pp+4*sizeof(page)+64 1162 ! | 1163 ! pp+4*sizeof(page) 1164 ! 1165 ! Prefetch 1166 ! Queue 1167 ! +-------+<--- In this iteration, we're working with pp (AAA1), 1168 ! |Preftch| but we enqueue prefetch for addr = XXX1 1169 ! | XXX1 | 1170 ! +-------+<--- this queue slot will be a prefetch instruction for 1171 ! |Preftch| for addr = pp + 4*sizeof(page_t) + 64 (or second 1172 ! | XXX2 | half of page XXX) 1173 ! +-------+ 1174 ! |Preftch|<-+- The next time around this function, we'll be 1175 ! | YYY1 | | working with pp = BBB1, but will be enqueueing 1176 ! +-------+ | prefetches to for both halves of page YYY, 1177 ! |Preftch| | while both halves of page XXX are in transit 1178 ! | YYY2 |<-+ make their way into the E$. 1179 ! +-------+ 1180 ! |Preftch| 1181 ! | ZZZ1 | 1182 ! +-------+ 1183 ! . . 1184 ! : : 1185 ! 1186 ! E$ 1187 ! +============================================... 1188 ! | XXX1 | XXX2 | YYY1 | YYY2 | ZZZ1 | ZZZ2 | 1189 ! +============================================... 1190 ! | | | | | | | 1191 ! +============================================... 1192 ! . 1193 ! : 1194 ! 1195 ! So we should expect the first four page accesses to stall 1196 ! while we warm up the cache, afterwhich, most of the pages 1197 ! will have their pp ready in the E$. 1198 ! 1199 ! Also note that if sizeof(page_t) grows beyond 128, then 1200 ! we'll need an additional prefetch to get an entire page 1201 ! into the E$, thus reducing the number of outstanding page 1202 ! prefetches to 2 (ie. 3 prefetches/page = 6 queue slots) 1203 ! etc. 1204 ! 1205 ! Cheetah+ 1206 ! ======== 1207 ! On Cheetah+ we use "#n_write" prefetches as these avoid 1208 ! unnecessary RTS->RTO bus transaction state change, and 1209 ! just issues RTO transaction. (See pp.77 of Cheetah+ Delta 1210 ! PRM). On Cheetah, #n_write prefetches are reflected with 1211 ! RTS->RTO state transition regardless. 1212 ! 1213#define STRIDE1 512 1214#define STRIDE2 576 1215 1216#if STRIDE1 != (PAGE_SIZE * 4) 1217#error "STRIDE1 != (PAGE_SIZE * 4)" 1218#endif /* STRIDE1 != (PAGE_SIZE * 4) */ 1219 1220 ENTRY(prefetch_page_w) 1221 prefetch [%o0+STRIDE1], #n_writes 1222 retl 1223 prefetch [%o0+STRIDE2], #n_writes 1224 SET_SIZE(prefetch_page_w) 1225 1226 ! 1227 ! Note on CHEETAH to prefetch for read, we really use #one_write. 1228 ! This fetches to E$ (general use) rather than P$ (floating point use). 1229 ! 1230 ENTRY(prefetch_page_r) 1231 prefetch [%o0+STRIDE1], #one_write 1232 retl 1233 prefetch [%o0+STRIDE2], #one_write 1234 SET_SIZE(prefetch_page_r) 1235 1236#elif defined(SPITFIRE) || defined(HUMMINGBIRD) 1237 1238 ! 1239 ! UltraSparcII can have up to 3 prefetches outstanding. 1240 ! A page_t is 128 bytes (2 prefetches of 64 bytes each) 1241 ! So prefetch for pp + 1, which is 1242 ! 1243 ! pp + sizeof(page_t) 1244 ! and 1245 ! pp + sizeof(page_t) + 64 1246 ! 1247#define STRIDE1 128 1248#define STRIDE2 192 1249 1250#if STRIDE1 != PAGE_SIZE 1251#error "STRIDE1 != PAGE_SIZE" 1252#endif /* STRIDE1 != PAGE_SIZE */ 1253 1254 ENTRY(prefetch_page_w) 1255 prefetch [%o0+STRIDE1], #n_writes 1256 retl 1257 prefetch [%o0+STRIDE2], #n_writes 1258 SET_SIZE(prefetch_page_w) 1259 1260 ENTRY(prefetch_page_r) 1261 prefetch [%o0+STRIDE1], #n_reads 1262 retl 1263 prefetch [%o0+STRIDE2], #n_reads 1264 SET_SIZE(prefetch_page_r) 1265 1266#elif defined(OLYMPUS_C) 1267 ! 1268 ! Prefetch strides for Olympus-C 1269 ! 1270 1271#define STRIDE1 0x440 1272#define STRIDE2 0x640 1273 1274 ENTRY(prefetch_page_w) 1275 prefetch [%o0+STRIDE1], #n_writes 1276 retl 1277 prefetch [%o0+STRIDE2], #n_writes 1278 SET_SIZE(prefetch_page_w) 1279 1280 ENTRY(prefetch_page_r) 1281 prefetch [%o0+STRIDE1], #n_writes 1282 retl 1283 prefetch [%o0+STRIDE2], #n_writes 1284 SET_SIZE(prefetch_page_r) 1285#else /* OLYMPUS_C */ 1286 1287#error "You need to fix this for your new cpu type." 1288 1289#endif /* OLYMPUS_C */ 1290 1291#endif /* lint */ 1292 1293#if defined(lint) 1294/* 1295 * Prefetch struct smap for write. 1296 */ 1297/*ARGSUSED*/ 1298void 1299prefetch_smap_w(void *smp) 1300{} 1301#else /* lint */ 1302 1303#if defined(CHEETAH) || defined(CHEETAH_PLUS) || defined(JALAPENO) || \ 1304 defined(SERRANO) 1305 1306#define PREFETCH_Q_LEN 8 1307 1308#elif defined(SPITFIRE) || defined(HUMMINGBIRD) 1309 1310#define PREFETCH_Q_LEN 3 1311 1312#elif defined(OLYMPUS_C) 1313 ! 1314 ! Use length of one for now. 1315 ! 1316#define PREFETCH_Q_LEN 1 1317 1318#else /* OLYMPUS_C */ 1319 1320#error You need to fix this for your new cpu type. 1321 1322#endif /* OLYMPUS_C */ 1323 1324#include <vm/kpm.h> 1325 1326#ifdef SEGKPM_SUPPORT 1327 1328#define SMAP_SIZE 72 1329#define SMAP_STRIDE (((PREFETCH_Q_LEN * 64) / SMAP_SIZE) * 64) 1330 1331#else /* SEGKPM_SUPPORT */ 1332 1333 ! 1334 ! The hardware will prefetch the 64 byte cache aligned block 1335 ! that contains the address specified in the prefetch instruction. 1336 ! Since the size of the smap struct is 48 bytes, issuing 1 prefetch 1337 ! per pass will suffice as long as we prefetch far enough ahead to 1338 ! make sure we don't stall for the cases where the smap object 1339 ! spans multiple hardware prefetch blocks. Let's prefetch as far 1340 ! ahead as the hardware will allow. 1341 ! 1342 ! The smap array is processed with decreasing address pointers. 1343 ! 1344#define SMAP_SIZE 48 1345#define SMAP_STRIDE (PREFETCH_Q_LEN * SMAP_SIZE) 1346 1347#endif /* SEGKPM_SUPPORT */ 1348 1349 ENTRY(prefetch_smap_w) 1350 retl 1351 prefetch [%o0-SMAP_STRIDE], #n_writes 1352 SET_SIZE(prefetch_smap_w) 1353 1354#endif /* lint */ 1355 1356#if defined(lint) || defined(__lint) 1357 1358/* ARGSUSED */ 1359uint64_t 1360getidsr(void) 1361{ return 0; } 1362 1363#else /* lint */ 1364 1365 ENTRY_NP(getidsr) 1366 retl 1367 ldxa [%g0]ASI_INTR_DISPATCH_STATUS, %o0 1368 SET_SIZE(getidsr) 1369 1370#endif /* lint */ 1371