1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * UNIX machine dependent virtual memory support. 28 */ 29 30 #ifndef _VM_DEP_H 31 #define _VM_DEP_H 32 33 #pragma ident "%Z%%M% %I% %E% SMI" 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 #include <vm/hat_sfmmu.h> 40 #include <sys/archsystm.h> 41 #include <sys/memnode.h> 42 43 #define GETTICK() gettick() 44 45 /* 46 * Per page size free lists. Allocated dynamically. 47 */ 48 #define MAX_MEM_TYPES 2 /* 0 = reloc, 1 = noreloc */ 49 #define MTYPE_RELOC 0 50 #define MTYPE_NORELOC 1 51 52 #define PP_2_MTYPE(pp) (PP_ISNORELOC(pp) ? MTYPE_NORELOC : MTYPE_RELOC) 53 54 #define MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) \ 55 mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC; 56 57 /* mtype init for page_get_replacement_page */ 58 #define MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt) \ 59 mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC; 60 61 #define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \ 62 ASSERT(mtype != MTYPE_NORELOC); \ 63 pfnlo = mem_node_config[mnode].physbase; \ 64 pfnhi = mem_node_config[mnode].physmax; 65 66 /* 67 * candidate counters in vm_pagelist.c are indexed by color and range 68 */ 69 #define MAX_MNODE_MRANGES MAX_MEM_TYPES 70 #define MNODE_RANGE_CNT(mnode) MAX_MNODE_MRANGES 71 #define MNODE_MAX_MRANGE(mnode) (MAX_MEM_TYPES - 1) 72 #define MTYPE_2_MRANGE(mnode, mtype) (mtype) 73 74 /* 75 * Internal PG_ flags. 76 */ 77 #define PGI_RELOCONLY 0x10000 /* acts in the opposite sense to PG_NORELOC */ 78 #define PGI_NOCAGE 0x20000 /* indicates Cage is disabled */ 79 #define PGI_PGCPHIPRI 0x40000 /* page_get_contig_page priority allocation */ 80 #define PGI_PGCPSZC0 0x80000 /* relocate base pagesize page */ 81 82 /* 83 * PGI mtype flags - should not overlap PGI flags 84 */ 85 #define PGI_MT_RANGE 0x1000000 /* mtype range */ 86 #define PGI_MT_NEXT 0x2000000 /* get next mtype */ 87 88 extern page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES]; 89 extern page_t ***page_cachelists[MAX_MEM_TYPES]; 90 91 #define PAGE_FREELISTS(mnode, szc, color, mtype) \ 92 (*(page_freelists[szc][mtype][mnode] + (color))) 93 94 #define PAGE_CACHELISTS(mnode, color, mtype) \ 95 (*(page_cachelists[mtype][mnode] + (color))) 96 97 /* 98 * There are 'page_colors' colors/bins. Spread them out under a 99 * couple of locks. There are mutexes for both the page freelist 100 * and the page cachelist. We want enough locks to make contention 101 * reasonable, but not too many -- otherwise page_freelist_lock() gets 102 * so expensive that it becomes the bottleneck! 103 */ 104 #define NPC_MUTEX 16 105 106 extern kmutex_t *fpc_mutex[NPC_MUTEX]; 107 extern kmutex_t *cpc_mutex[NPC_MUTEX]; 108 109 /* 110 * Iterator provides the info needed to convert RA to PA. 111 * MEM_NODE_ITERATOR_INIT() should be called before 112 * PAGE_NEXT_PFN_FOR_COLOR() if pfn was not obtained via a previous 113 * PAGE_NEXT_PFN_FOR_COLOR() call. Iterator caches color 2 hash 114 * translations requiring initializer call if color or ceq_mask changes, 115 * even if pfn doesn't. MEM_NODE_ITERATOR_INIT() must also be called before 116 * PFN_2_COLOR() that uses a valid iterator argument. 117 */ 118 #ifdef sun4v 119 120 typedef struct mem_node_iterator { 121 uint_t mi_mnode; /* mnode in which to iterate */ 122 int mi_init; /* set to 1 when first init */ 123 int mi_last_mblock; /* last mblock visited */ 124 uint_t mi_hash_ceq_mask; /* cached copy of ceq_mask */ 125 uint_t mi_hash_color; /* cached copy of color */ 126 uint_t mi_mnode_mask; /* number of mask bits */ 127 uint_t mi_mnode_pfn_shift; /* mnode position in pfn */ 128 pfn_t mi_mblock_base; /* first valid pfn in current mblock */ 129 pfn_t mi_mblock_end; /* last valid pfn in current mblock */ 130 pfn_t mi_ra_to_pa; /* ra adjustment for current mblock */ 131 pfn_t mi_mnode_pfn_mask; /* mask to obtain mnode id bits */ 132 } mem_node_iterator_t; 133 134 #define MEM_NODE_ITERATOR_DECL(it) \ 135 mem_node_iterator_t it 136 #define MEM_NODE_ITERATOR_INIT(pfn, mnode, it) \ 137 (pfn) = plat_mem_node_iterator_init((pfn), (mnode), (it), 1) 138 139 extern pfn_t plat_mem_node_iterator_init(pfn_t, int, 140 mem_node_iterator_t *, int); 141 extern pfn_t plat_rapfn_to_papfn(pfn_t); 142 extern int interleaved_mnodes; 143 144 #else /* sun4v */ 145 146 #define MEM_NODE_ITERATOR_DECL(it) \ 147 void *it = NULL 148 #define MEM_NODE_ITERATOR_INIT(pfn, mnode, it) 149 150 #endif /* sun4v */ 151 152 /* 153 * Return the mnode limits so that hpc_counters length and base 154 * index can be determined. When interleaved_mnodes is set, we 155 * create an array only for the first mnode that exists. All other 156 * mnodes will share the array in this case. 157 * If interleaved_mnodes is not set, simply return the limits for 158 * the given mnode. 159 */ 160 #define HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first) \ 161 if (!interleaved_mnodes) { \ 162 (physbase) = mem_node_config[(mnode)].physbase; \ 163 (physmax) = mem_node_config[(mnode)].physmax; \ 164 (first) = (mnode); \ 165 } else if ((first) < 0) { \ 166 mem_node_max_range(&(physbase), &(physmax)); \ 167 (first) = (mnode); \ 168 } 169 170 #define PAGE_CTRS_WRITE_LOCK(mnode) \ 171 if (!interleaved_mnodes) { \ 172 rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER); \ 173 page_freelist_lock(mnode); \ 174 } else { \ 175 /* changing shared hpm_counters */ \ 176 int _i; \ 177 for (_i = 0; _i < max_mem_nodes; _i++) { \ 178 rw_enter(&page_ctrs_rwlock[_i], RW_WRITER); \ 179 page_freelist_lock(_i); \ 180 } \ 181 } 182 183 #define PAGE_CTRS_WRITE_UNLOCK(mnode) \ 184 if (!interleaved_mnodes) { \ 185 page_freelist_unlock(mnode); \ 186 rw_exit(&page_ctrs_rwlock[(mnode)]); \ 187 } else { \ 188 int _i; \ 189 for (_i = 0; _i < max_mem_nodes; _i++) { \ 190 page_freelist_unlock(_i); \ 191 rw_exit(&page_ctrs_rwlock[_i]); \ 192 } \ 193 } 194 195 /* 196 * cpu specific color conversion functions 197 */ 198 extern uint_t page_get_nsz_color_mask_cpu(uchar_t, uint_t); 199 #pragma weak page_get_nsz_color_mask_cpu 200 201 extern uint_t page_get_nsz_color_cpu(uchar_t, uint_t); 202 #pragma weak page_get_nsz_color_cpu 203 204 extern uint_t page_get_color_shift_cpu(uchar_t, uchar_t); 205 #pragma weak page_get_color_shift_cpu 206 207 extern uint_t page_convert_color_cpu(uint_t, uchar_t, uchar_t); 208 #pragma weak page_convert_color_cpu 209 210 extern pfn_t page_next_pfn_for_color_cpu(pfn_t, 211 uchar_t, uint_t, uint_t, uint_t, void *); 212 #pragma weak page_next_pfn_for_color_cpu 213 214 extern uint_t page_pfn_2_color_cpu(pfn_t, uchar_t, void *); 215 #pragma weak page_pfn_2_color_cpu 216 217 #define PAGE_GET_COLOR_SHIFT(szc, nszc) \ 218 ((&page_get_color_shift_cpu != NULL) ? \ 219 page_get_color_shift_cpu(szc, nszc) : \ 220 (hw_page_array[(nszc)].hp_shift - \ 221 hw_page_array[(szc)].hp_shift)) 222 223 #define PAGE_CONVERT_COLOR(ncolor, szc, nszc) \ 224 ((&page_convert_color_cpu != NULL) ? \ 225 page_convert_color_cpu(ncolor, szc, nszc) : \ 226 ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc)))) 227 228 #define PFN_2_COLOR(pfn, szc, it) \ 229 ((&page_pfn_2_color_cpu != NULL) ? \ 230 page_pfn_2_color_cpu(pfn, szc, it) : \ 231 ((pfn & (hw_page_array[0].hp_colors - 1)) >> \ 232 (hw_page_array[szc].hp_shift - \ 233 hw_page_array[0].hp_shift))) 234 235 #define PNUM_SIZE(szc) \ 236 (hw_page_array[(szc)].hp_pgcnt) 237 #define PNUM_SHIFT(szc) \ 238 (hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift) 239 #define PAGE_GET_SHIFT(szc) \ 240 (hw_page_array[(szc)].hp_shift) 241 #define PAGE_GET_PAGECOLORS(szc) \ 242 (hw_page_array[(szc)].hp_colors) 243 244 /* 245 * This macro calculates the next sequential pfn with the specified 246 * color using color equivalency mask 247 */ 248 #define PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it) \ 249 ASSERT(((color) & ~(ceq_mask)) == 0); \ 250 if (&page_next_pfn_for_color_cpu == NULL) { \ 251 uint_t pfn_shift = PAGE_BSZS_SHIFT(szc); \ 252 pfn_t spfn = pfn >> pfn_shift; \ 253 pfn_t stride = (ceq_mask) + 1; \ 254 ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0); \ 255 if (((spfn ^ (color)) & (ceq_mask)) == 0) { \ 256 pfn += stride << pfn_shift; \ 257 } else { \ 258 pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color); \ 259 pfn = (pfn > spfn ? pfn : pfn + stride) << pfn_shift; \ 260 } \ 261 } else { \ 262 pfn = page_next_pfn_for_color_cpu(pfn, szc, color, \ 263 ceq_mask, color_mask, it); \ 264 } 265 266 /* get the color equivalency mask for the next szc */ 267 #define PAGE_GET_NSZ_MASK(szc, mask) \ 268 ((&page_get_nsz_color_mask_cpu == NULL) ? \ 269 ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) : \ 270 page_get_nsz_color_mask_cpu(szc, mask)) 271 272 /* get the color of the next szc */ 273 #define PAGE_GET_NSZ_COLOR(szc, color) \ 274 ((&page_get_nsz_color_cpu == NULL) ? \ 275 ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) : \ 276 page_get_nsz_color_cpu(szc, color)) 277 278 /* Find the bin for the given page if it was of size szc */ 279 #define PP_2_BIN_SZC(pp, szc) (PFN_2_COLOR(pp->p_pagenum, szc, (void *)(-1))) 280 281 #define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc)) 282 283 #define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum)) 284 285 #define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \ 286 &fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \ 287 &cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode]) 288 289 #define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode]) 290 #define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode]) 291 292 #define PFN_BASE(pfnum, szc) (pfnum & ~((1 << PAGE_BSZS_SHIFT(szc)) - 1)) 293 294 /* 295 * this structure is used for walking free page lists 296 * controls when to split large pages into smaller pages, 297 * and when to coalesce smaller pages into larger pages 298 */ 299 typedef struct page_list_walker { 300 uint_t plw_colors; /* num of colors for szc */ 301 uint_t plw_color_mask; /* colors-1 */ 302 uint_t plw_bin_step; /* next bin: 1 or 2 */ 303 uint_t plw_count; /* loop count */ 304 uint_t plw_bin0; /* starting bin */ 305 uint_t plw_bin_marker; /* bin after initial jump */ 306 uint_t plw_bin_split_prev; /* last bin we tried to split */ 307 uint_t plw_do_split; /* set if OK to split */ 308 uint_t plw_split_next; /* next bin to split */ 309 uint_t plw_ceq_dif; /* number of different color groups */ 310 /* to check */ 311 uint_t plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */ 312 uint_t plw_bins[MMU_PAGE_SIZES + 1]; /* num of bins */ 313 } page_list_walker_t; 314 315 void page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin, 316 int can_split, int use_ceq, page_list_walker_t *plw); 317 318 typedef char hpmctr_t; 319 320 #ifdef DEBUG 321 #define CHK_LPG(pp, szc) chk_lpg(pp, szc) 322 extern void chk_lpg(page_t *, uchar_t); 323 #else 324 #define CHK_LPG(pp, szc) 325 #endif 326 327 /* 328 * page list count per mnode and type. 329 */ 330 typedef struct { 331 pgcnt_t plc_mt_pgmax; /* max page cnt */ 332 pgcnt_t plc_mt_clpgcnt; /* cache list cnt */ 333 pgcnt_t plc_mt_flpgcnt; /* free list cnt - small pages */ 334 pgcnt_t plc_mt_lgpgcnt; /* free list cnt - large pages */ 335 #ifdef DEBUG 336 struct { 337 pgcnt_t plc_mts_pgcnt; /* per page size count */ 338 int plc_mts_colors; 339 pgcnt_t *plc_mtsc_pgcnt; /* per color bin count */ 340 } plc_mts[MMU_PAGE_SIZES]; 341 #endif 342 } plcnt_t[MAX_MEM_NODES][MAX_MEM_TYPES]; 343 344 #ifdef DEBUG 345 346 #define PLCNT_SZ(ctrs_sz) { \ 347 int szc; \ 348 for (szc = 0; szc < mmu_page_sizes; szc++) { \ 349 int colors = page_get_pagecolors(szc); \ 350 ctrs_sz += (max_mem_nodes * MAX_MEM_TYPES * \ 351 colors * sizeof (pgcnt_t)); \ 352 } \ 353 } 354 355 #define PLCNT_INIT(base) { \ 356 int mn, mt, szc, colors; \ 357 for (szc = 0; szc < mmu_page_sizes; szc++) { \ 358 colors = page_get_pagecolors(szc); \ 359 for (mn = 0; mn < max_mem_nodes; mn++) { \ 360 for (mt = 0; mt < MAX_MEM_TYPES; mt++) { \ 361 plcnt[mn][mt].plc_mts[szc]. \ 362 plc_mts_colors = colors; \ 363 plcnt[mn][mt].plc_mts[szc]. \ 364 plc_mtsc_pgcnt = (pgcnt_t *)base; \ 365 base += (colors * sizeof (pgcnt_t)); \ 366 } \ 367 } \ 368 } \ 369 } 370 371 #define PLCNT_DO(pp, mn, mtype, szc, cnt, flags) { \ 372 int bin = PP_2_BIN(pp); \ 373 if (flags & PG_CACHE_LIST) \ 374 atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt); \ 375 else if (szc) \ 376 atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt); \ 377 else \ 378 atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt); \ 379 atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].plc_mts_pgcnt, \ 380 cnt); \ 381 atomic_add_long(&plcnt[mn][mtype].plc_mts[szc]. \ 382 plc_mtsc_pgcnt[bin], cnt); \ 383 } 384 385 #else 386 387 #define PLCNT_SZ(ctrs_sz) 388 389 #define PLCNT_INIT(base) 390 391 /* PG_FREE_LIST may not be explicitly set in flags for large pages */ 392 393 #define PLCNT_DO(pp, mn, mtype, szc, cnt, flags) { \ 394 if (flags & PG_CACHE_LIST) \ 395 atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt); \ 396 else if (szc) \ 397 atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt); \ 398 else \ 399 atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt); \ 400 } 401 402 #endif 403 404 #define PLCNT_INCR(pp, mn, mtype, szc, flags) { \ 405 long cnt = (1 << PAGE_BSZS_SHIFT(szc)); \ 406 PLCNT_DO(pp, mn, mtype, szc, cnt, flags); \ 407 } 408 409 #define PLCNT_DECR(pp, mn, mtype, szc, flags) { \ 410 long cnt = ((-1) << PAGE_BSZS_SHIFT(szc)); \ 411 PLCNT_DO(pp, mn, mtype, szc, cnt, flags); \ 412 } 413 414 /* 415 * macros to update page list max counts - done when pages transferred 416 * from RELOC to NORELOC mtype (kcage_init or kcage_assimilate_page). 417 */ 418 419 #define PLCNT_XFER_NORELOC(pp) { \ 420 long cnt = (1 << PAGE_BSZS_SHIFT((pp)->p_szc)); \ 421 int mn = PP_2_MEM_NODE(pp); \ 422 atomic_add_long(&plcnt[mn][MTYPE_NORELOC].plc_mt_pgmax, cnt); \ 423 atomic_add_long(&plcnt[mn][MTYPE_RELOC].plc_mt_pgmax, -cnt); \ 424 } 425 426 /* 427 * macro to modify the page list max counts when memory is added to 428 * the page lists during startup (add_physmem) or during a DR operation 429 * when memory is added (kphysm_add_memory_dynamic) or deleted 430 * (kphysm_del_cleanup). 431 */ 432 #define PLCNT_MODIFY_MAX(pfn, cnt) { \ 433 spgcnt_t _cnt = (spgcnt_t)(cnt); \ 434 pgcnt_t _acnt = ABS(_cnt); \ 435 int _mn; \ 436 pgcnt_t _np; \ 437 if (&plat_mem_node_intersect_range != NULL) { \ 438 for (_mn = 0; _mn < max_mem_nodes; _mn++) { \ 439 plat_mem_node_intersect_range((pfn), _acnt, _mn, &_np);\ 440 if (_np == 0) \ 441 continue; \ 442 atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \ 443 (_cnt < 0) ? -_np : _np); \ 444 } \ 445 } else { \ 446 pfn_t _pfn = (pfn); \ 447 pfn_t _endpfn = _pfn + _acnt; \ 448 while (_pfn < _endpfn) { \ 449 _mn = PFN_2_MEM_NODE(_pfn); \ 450 _np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - \ 451 _pfn; \ 452 _pfn += _np; \ 453 atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \ 454 (_cnt < 0) ? -_np : _np); \ 455 } \ 456 } \ 457 } 458 459 extern plcnt_t plcnt; 460 461 #define MNODE_PGCNT(mn) \ 462 (plcnt[mn][MTYPE_RELOC].plc_mt_clpgcnt + \ 463 plcnt[mn][MTYPE_NORELOC].plc_mt_clpgcnt + \ 464 plcnt[mn][MTYPE_RELOC].plc_mt_flpgcnt + \ 465 plcnt[mn][MTYPE_NORELOC].plc_mt_flpgcnt + \ 466 plcnt[mn][MTYPE_RELOC].plc_mt_lgpgcnt + \ 467 plcnt[mn][MTYPE_NORELOC].plc_mt_lgpgcnt) 468 469 #define MNODETYPE_PGCNT(mn, mtype) \ 470 (plcnt[mn][mtype].plc_mt_clpgcnt + \ 471 plcnt[mn][mtype].plc_mt_flpgcnt + \ 472 plcnt[mn][mtype].plc_mt_lgpgcnt) 473 474 /* 475 * macros to loop through the mtype range - MTYPE_START returns -1 in 476 * mtype if no pages in mnode/mtype and possibly NEXT mtype. 477 */ 478 #define MTYPE_START(mnode, mtype, flags) { \ 479 if (plcnt[mnode][mtype].plc_mt_pgmax == 0) { \ 480 ASSERT(mtype == MTYPE_RELOC || \ 481 MNODETYPE_PGCNT(mnode, mtype) == 0 || \ 482 plcnt[mnode][mtype].plc_mt_pgmax != 0); \ 483 MTYPE_NEXT(mnode, mtype, flags); \ 484 } \ 485 } 486 487 /* 488 * if allocation from the RELOC pool failed and there is sufficient cage 489 * memory, attempt to allocate from the NORELOC pool. 490 */ 491 #define MTYPE_NEXT(mnode, mtype, flags) { \ 492 if (!(flags & (PG_NORELOC | PGI_NOCAGE | PGI_RELOCONLY)) && \ 493 (kcage_freemem >= kcage_lotsfree)) { \ 494 if (plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax == 0) { \ 495 ASSERT(MNODETYPE_PGCNT(mnode, MTYPE_NORELOC) == 0 || \ 496 plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax != 0); \ 497 mtype = -1; \ 498 } else { \ 499 mtype = MTYPE_NORELOC; \ 500 flags |= PG_NORELOC; \ 501 } \ 502 } else { \ 503 mtype = -1; \ 504 } \ 505 } 506 507 /* 508 * get the ecache setsize for the current cpu. 509 */ 510 #define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize) 511 512 extern struct cpu cpu0; 513 #define CPU0 &cpu0 514 515 #define PAGE_BSZS_SHIFT(szc) TTE_BSZS_SHIFT(szc) 516 /* 517 * For sfmmu each larger page is 8 times the size of the previous 518 * size page. 519 */ 520 #define FULL_REGION_CNT(rg_szc) (8) 521 522 /* 523 * The counter base must be per page_counter element to prevent 524 * races when re-indexing, and the base page size element should 525 * be aligned on a boundary of the given region size. 526 * 527 * We also round up the number of pages spanned by the counters 528 * for a given region to PC_BASE_ALIGN in certain situations to simplify 529 * the coding for some non-performance critical routines. 530 */ 531 #define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(mmu_page_sizes-1)) 532 #define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1) 533 534 extern int ecache_alignsize; 535 #define L2CACHE_ALIGN ecache_alignsize 536 #define L2CACHE_ALIGN_MAX 512 537 538 extern int update_proc_pgcolorbase_after_fork; 539 extern int consistent_coloring; 540 extern uint_t vac_colors_mask; 541 extern int vac_size; 542 extern int vac_shift; 543 544 /* 545 * Kernel mem segment in 64-bit space 546 */ 547 extern caddr_t kmem64_base, kmem64_end, kmem64_aligned_end; 548 extern int kmem64_alignsize, kmem64_szc; 549 extern uint64_t kmem64_pabase; 550 extern int max_bootlp_tteszc; 551 552 /* 553 * Maximum and default values for user heap, stack, private and shared 554 * anonymous memory, and user text and initialized data. 555 * 556 * Initial values are defined in architecture specific mach_vm_dep.c file. 557 * Used by map_pgsz*() routines. 558 */ 559 extern size_t max_uheap_lpsize; 560 extern size_t default_uheap_lpsize; 561 extern size_t max_ustack_lpsize; 562 extern size_t default_ustack_lpsize; 563 extern size_t max_privmap_lpsize; 564 extern size_t max_uidata_lpsize; 565 extern size_t max_utext_lpsize; 566 extern size_t max_shm_lpsize; 567 568 /* 569 * For adjusting the default lpsize, for DTLB-limited page sizes. 570 */ 571 extern void adjust_data_maxlpsize(size_t ismpagesize); 572 573 /* 574 * Sanity control. Don't use large pages regardless of user 575 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 576 * The units for this variable are 8K pages. 577 */ 578 extern pgcnt_t privm_lpg_min_physmem; 579 extern pgcnt_t shm_lpg_min_physmem; 580 581 /* 582 * AS_2_BIN macro controls the page coloring policy. 583 * 0 (default) uses various vaddr bits 584 * 1 virtual=paddr 585 * 2 bin hopping 586 */ 587 #define AS_2_BIN(as, seg, vp, addr, bin, szc) \ 588 switch (consistent_coloring) { \ 589 default: \ 590 cmn_err(CE_WARN, \ 591 "AS_2_BIN: bad consistent coloring value"); \ 592 /* assume default algorithm -> continue */ \ 593 case 0: { \ 594 uint32_t ndx, new; \ 595 int slew = 0; \ 596 pfn_t pfn; \ 597 \ 598 if (vp != NULL && IS_SWAPVP(vp) && \ 599 seg->s_ops == &segvn_ops) \ 600 slew = as_color_bin(as); \ 601 \ 602 pfn = ((uintptr_t)addr >> MMU_PAGESHIFT) + \ 603 (((uintptr_t)addr >> page_coloring_shift) << \ 604 (vac_shift - MMU_PAGESHIFT)); \ 605 if ((szc) == 0 || &page_pfn_2_color_cpu == NULL) { \ 606 pfn += slew; \ 607 bin = PFN_2_COLOR(pfn, szc, NULL); \ 608 } else { \ 609 bin = PFN_2_COLOR(pfn, szc, NULL); \ 610 bin += slew >> (vac_shift - MMU_PAGESHIFT); \ 611 bin &= hw_page_array[(szc)].hp_colors - 1; \ 612 } \ 613 break; \ 614 } \ 615 case 1: \ 616 bin = PFN_2_COLOR(((uintptr_t)addr >> MMU_PAGESHIFT), \ 617 szc, NULL); \ 618 break; \ 619 case 2: { \ 620 int cnt = as_color_bin(as); \ 621 uint_t color_mask = page_get_pagecolors(0) - 1; \ 622 \ 623 /* make sure physical color aligns with vac color */ \ 624 while ((cnt & vac_colors_mask) != \ 625 addr_to_vcolor(addr)) { \ 626 cnt++; \ 627 } \ 628 bin = cnt = cnt & color_mask; \ 629 bin >>= PAGE_GET_COLOR_SHIFT(0, szc); \ 630 /* update per as page coloring fields */ \ 631 cnt = (cnt + 1) & color_mask; \ 632 if (cnt == (as_color_start(as) & color_mask)) { \ 633 cnt = as_color_start(as) = as_color_start(as) + \ 634 PGCLR_LOOPFACTOR; \ 635 } \ 636 as_color_bin(as) = cnt & color_mask; \ 637 break; \ 638 } \ 639 } \ 640 ASSERT(bin < page_get_pagecolors(szc)); 641 642 /* 643 * cpu private vm data - accessed thru CPU->cpu_vm_data 644 * vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock() 645 * vc_pnext_memseg: tracks last memseg visited in page_nextn() 646 * vc_kmptr: unaligned kmem pointer for this vm_cpu_data_t 647 * vc_kmsize: orignal kmem size for this vm_cpu_data_t 648 */ 649 650 typedef struct { 651 struct memseg *vc_pnum_memseg; 652 struct memseg *vc_pnext_memseg; 653 void *vc_kmptr; 654 size_t vc_kmsize; 655 } vm_cpu_data_t; 656 657 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */ 658 #define VM_CPU_DATA_PADSIZE \ 659 (P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX)) 660 661 /* for boot cpu before kmem is initialized */ 662 extern char vm_cpu_data0[]; 663 664 /* 665 * Function to get an ecache color bin: F(as, cnt, vcolor). 666 * the goal of this function is to: 667 * - to spread a processes' physical pages across the entire ecache to 668 * maximize its use. 669 * - to minimize vac flushes caused when we reuse a physical page on a 670 * different vac color than it was previously used. 671 * - to prevent all processes to use the same exact colors and trash each 672 * other. 673 * 674 * cnt is a bin ptr kept on a per as basis. As we page_create we increment 675 * the ptr so we spread out the physical pages to cover the entire ecache. 676 * The virtual color is made a subset of the physical color in order to 677 * in minimize virtual cache flushing. 678 * We add in the as to spread out different as. This happens when we 679 * initialize the start count value. 680 * sizeof(struct as) is 60 so we shift by 3 to get into the bit range 681 * that will tend to change. For example, on spitfire based machines 682 * (vcshft == 1) contigous as are spread bu ~6 bins. 683 * vcshft provides for proper virtual color alignment. 684 * In theory cnt should be updated using cas only but if we are off by one 685 * or 2 it is no big deal. 686 * We also keep a start value which is used to randomize on what bin we 687 * start counting when it is time to start another loop. This avoids 688 * contigous allocations of ecache size to point to the same bin. 689 * Why 3? Seems work ok. Better than 7 or anything larger. 690 */ 691 #define PGCLR_LOOPFACTOR 3 692 693 /* 694 * When a bin is empty, and we can't satisfy a color request correctly, 695 * we scan. If we assume that the programs have reasonable spatial 696 * behavior, then it will not be a good idea to use the adjacent color. 697 * Using the adjacent color would result in virtually adjacent addresses 698 * mapping into the same spot in the cache. So, if we stumble across 699 * an empty bin, skip a bunch before looking. After the first skip, 700 * then just look one bin at a time so we don't miss our cache on 701 * every look. Be sure to check every bin. Page_create() will panic 702 * if we miss a page. 703 * 704 * This also explains the `<=' in the for loops in both page_get_freelist() 705 * and page_get_cachelist(). Since we checked the target bin, skipped 706 * a bunch, then continued one a time, we wind up checking the target bin 707 * twice to make sure we get all of them bins. 708 */ 709 #define BIN_STEP 20 710 711 #ifdef VM_STATS 712 struct vmm_vmstats_str { 713 ulong_t pgf_alloc[MMU_PAGE_SIZES]; /* page_get_freelist */ 714 ulong_t pgf_allocok[MMU_PAGE_SIZES]; 715 ulong_t pgf_allocokrem[MMU_PAGE_SIZES]; 716 ulong_t pgf_allocfailed[MMU_PAGE_SIZES]; 717 ulong_t pgf_allocdeferred; 718 ulong_t pgf_allocretry[MMU_PAGE_SIZES]; 719 ulong_t pgc_alloc; /* page_get_cachelist */ 720 ulong_t pgc_allocok; 721 ulong_t pgc_allocokrem; 722 ulong_t pgc_allocokdeferred; 723 ulong_t pgc_allocfailed; 724 ulong_t pgcp_alloc[MMU_PAGE_SIZES]; /* page_get_contig_pages */ 725 ulong_t pgcp_allocfailed[MMU_PAGE_SIZES]; 726 ulong_t pgcp_allocempty[MMU_PAGE_SIZES]; 727 ulong_t pgcp_allocok[MMU_PAGE_SIZES]; 728 ulong_t ptcp[MMU_PAGE_SIZES]; /* page_trylock_contig_pages */ 729 ulong_t ptcpfreethresh[MMU_PAGE_SIZES]; 730 ulong_t ptcpfailexcl[MMU_PAGE_SIZES]; 731 ulong_t ptcpfailszc[MMU_PAGE_SIZES]; 732 ulong_t ptcpfailcage[MMU_PAGE_SIZES]; 733 ulong_t ptcpok[MMU_PAGE_SIZES]; 734 ulong_t pgmf_alloc[MMU_PAGE_SIZES]; /* page_get_mnode_freelist */ 735 ulong_t pgmf_allocfailed[MMU_PAGE_SIZES]; 736 ulong_t pgmf_allocempty[MMU_PAGE_SIZES]; 737 ulong_t pgmf_allocok[MMU_PAGE_SIZES]; 738 ulong_t pgmc_alloc; /* page_get_mnode_cachelist */ 739 ulong_t pgmc_allocfailed; 740 ulong_t pgmc_allocempty; 741 ulong_t pgmc_allocok; 742 ulong_t pladd_free[MMU_PAGE_SIZES]; /* page_list_add/sub */ 743 ulong_t plsub_free[MMU_PAGE_SIZES]; 744 ulong_t pladd_cache; 745 ulong_t plsub_cache; 746 ulong_t plsubpages_szcbig; 747 ulong_t plsubpages_szc0; 748 ulong_t pfs_req[MMU_PAGE_SIZES]; /* page_freelist_split */ 749 ulong_t pfs_demote[MMU_PAGE_SIZES]; 750 ulong_t pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 751 ulong_t ppr_reloc[MMU_PAGE_SIZES]; /* page_relocate */ 752 ulong_t ppr_relocok[MMU_PAGE_SIZES]; 753 ulong_t ppr_relocnoroot[MMU_PAGE_SIZES]; 754 ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES]; 755 ulong_t ppr_relocnolock[MMU_PAGE_SIZES]; 756 ulong_t ppr_relocnomem[MMU_PAGE_SIZES]; 757 ulong_t ppr_krelocfail[MMU_PAGE_SIZES]; 758 ulong_t ppr_copyfail; 759 /* page coalesce counter */ 760 ulong_t page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 761 /* candidates useful */ 762 ulong_t page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 763 /* ctrs changed after locking */ 764 ulong_t page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 765 /* page_freelist_coalesce failed */ 766 ulong_t page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 767 ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */ 768 ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */ 769 }; 770 extern struct vmm_vmstats_str vmm_vmstats; 771 #endif /* VM_STATS */ 772 773 /* 774 * Used to hold off page relocations into the cage until OBP has completed 775 * its boot-time handoff of its resources to the kernel. 776 */ 777 extern int page_relocate_ready; 778 779 /* 780 * cpu/mmu-dependent vm variables may be reset at bootup. 781 */ 782 extern uint_t mmu_page_sizes; 783 extern uint_t max_mmu_page_sizes; 784 extern uint_t mmu_hashcnt; 785 extern uint_t max_mmu_hashcnt; 786 extern size_t mmu_ism_pagesize; 787 extern int mmu_exported_pagesize_mask; 788 extern uint_t mmu_exported_page_sizes; 789 extern uint_t szc_2_userszc[]; 790 extern uint_t userszc_2_szc[]; 791 792 #define USERSZC_2_SZC(userszc) (userszc_2_szc[userszc]) 793 #define SZC_2_USERSZC(szc) (szc_2_userszc[szc]) 794 795 /* 796 * Platform specific page routines 797 */ 798 extern void mach_page_add(page_t **, page_t *); 799 extern void mach_page_sub(page_t **, page_t *); 800 extern uint_t page_get_pagecolors(uint_t); 801 extern void ppcopy_kernel__relocatable(page_t *, page_t *); 802 #define ppcopy_kernel(p1, p2) ppcopy_kernel__relocatable(p1, p2) 803 804 /* 805 * platform specific large pages for kernel heap support 806 */ 807 extern size_t get_segkmem_lpsize(size_t lpsize); 808 extern size_t mmu_get_kernel_lpsize(size_t lpsize); 809 extern void mmu_init_kernel_pgsz(struct hat *hat); 810 extern void mmu_init_kcontext(); 811 extern uint64_t kcontextreg; 812 813 /* 814 * Nucleus data page allocator routines 815 */ 816 extern void ndata_alloc_init(struct memlist *, uintptr_t, uintptr_t); 817 extern void *ndata_alloc(struct memlist *, size_t, size_t); 818 extern void *ndata_extra_base(struct memlist *, size_t, caddr_t); 819 extern size_t ndata_maxsize(struct memlist *); 820 extern size_t ndata_spare(struct memlist *, size_t, size_t); 821 822 #ifdef __cplusplus 823 } 824 #endif 825 826 #endif /* _VM_DEP_H */ 827