1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * UNIX machine dependent virtual memory support. 28 */ 29 30 #ifndef _VM_DEP_H 31 #define _VM_DEP_H 32 33 #pragma ident "%Z%%M% %I% %E% SMI" 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 #include <vm/hat_sfmmu.h> 40 #include <sys/archsystm.h> 41 #include <sys/memnode.h> 42 43 #define GETTICK() gettick() 44 45 /* 46 * Per page size free lists. Allocated dynamically. 47 */ 48 #define MAX_MEM_TYPES 2 /* 0 = reloc, 1 = noreloc */ 49 #define MTYPE_RELOC 0 50 #define MTYPE_NORELOC 1 51 52 #define PP_2_MTYPE(pp) (PP_ISNORELOC(pp) ? MTYPE_NORELOC : MTYPE_RELOC) 53 54 #define MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) \ 55 mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC; 56 57 /* mtype init for page_get_replacement_page */ 58 #define MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt) \ 59 mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC; 60 61 #define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \ 62 ASSERT(mtype != MTYPE_NORELOC); \ 63 pfnlo = mem_node_config[mnode].physbase; \ 64 pfnhi = mem_node_config[mnode].physmax; 65 66 /* 67 * candidate counters in vm_pagelist.c are indexed by color and range 68 */ 69 #define MAX_MNODE_MRANGES MAX_MEM_TYPES 70 #define MNODE_RANGE_CNT(mnode) MAX_MNODE_MRANGES 71 #define MNODE_MAX_MRANGE(mnode) (MAX_MEM_TYPES - 1) 72 #define MTYPE_2_MRANGE(mnode, mtype) (mtype) 73 74 /* 75 * Internal PG_ flags. 76 */ 77 #define PGI_RELOCONLY 0x10000 /* acts in the opposite sense to PG_NORELOC */ 78 #define PGI_NOCAGE 0x20000 /* indicates Cage is disabled */ 79 #define PGI_PGCPHIPRI 0x40000 /* page_get_contig_page priority allocation */ 80 #define PGI_PGCPSZC0 0x80000 /* relocate base pagesize page */ 81 82 /* 83 * PGI mtype flags - should not overlap PGI flags 84 */ 85 #define PGI_MT_RANGE 0x1000000 /* mtype range */ 86 #define PGI_MT_NEXT 0x2000000 /* get next mtype */ 87 88 extern page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES]; 89 extern page_t ***page_cachelists[MAX_MEM_TYPES]; 90 91 #define PAGE_FREELISTS(mnode, szc, color, mtype) \ 92 (*(page_freelists[szc][mtype][mnode] + (color))) 93 94 #define PAGE_CACHELISTS(mnode, color, mtype) \ 95 (*(page_cachelists[mtype][mnode] + (color))) 96 97 /* 98 * There are 'page_colors' colors/bins. Spread them out under a 99 * couple of locks. There are mutexes for both the page freelist 100 * and the page cachelist. We want enough locks to make contention 101 * reasonable, but not too many -- otherwise page_freelist_lock() gets 102 * so expensive that it becomes the bottleneck! 103 */ 104 #define NPC_MUTEX 16 105 106 extern kmutex_t *fpc_mutex[NPC_MUTEX]; 107 extern kmutex_t *cpc_mutex[NPC_MUTEX]; 108 109 /* 110 * Iterator provides the info needed to convert RA to PA. 111 * MEM_NODE_ITERATOR_INIT() should be called before 112 * PAGE_NEXT_PFN_FOR_COLOR() if pfn was not obtained via a previous 113 * PAGE_NEXT_PFN_FOR_COLOR() call. Iterator caches color 2 hash 114 * translations requiring initializer call if color or ceq_mask changes, 115 * even if pfn doesn't. MEM_NODE_ITERATOR_INIT() must also be called before 116 * PFN_2_COLOR() that uses a valid iterator argument. 117 */ 118 #ifdef sun4v 119 120 typedef struct mem_node_iterator { 121 uint_t mi_mnode; /* mnode in which to iterate */ 122 int mi_init; /* set to 1 when first init */ 123 int mi_last_mblock; /* last mblock visited */ 124 uint_t mi_hash_ceq_mask; /* cached copy of ceq_mask */ 125 uint_t mi_hash_color; /* cached copy of color */ 126 uint_t mi_mnode_mask; /* number of mask bits */ 127 uint_t mi_mnode_pfn_shift; /* mnode position in pfn */ 128 pfn_t mi_mblock_base; /* first valid pfn in current mblock */ 129 pfn_t mi_mblock_end; /* last valid pfn in current mblock */ 130 pfn_t mi_ra_to_pa; /* ra adjustment for current mblock */ 131 pfn_t mi_mnode_pfn_mask; /* mask to obtain mnode id bits */ 132 } mem_node_iterator_t; 133 134 #define MEM_NODE_ITERATOR_DECL(it) \ 135 mem_node_iterator_t it 136 #define MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) \ 137 (pfn) = plat_mem_node_iterator_init((pfn), (mnode), (szc), (it), 1) 138 139 extern pfn_t plat_mem_node_iterator_init(pfn_t, int, uchar_t, 140 mem_node_iterator_t *, int); 141 extern pfn_t plat_rapfn_to_papfn(pfn_t); 142 extern int interleaved_mnodes; 143 144 #else /* sun4v */ 145 146 #define MEM_NODE_ITERATOR_DECL(it) \ 147 void *it = NULL 148 #define MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) 149 150 #endif /* sun4v */ 151 152 /* 153 * Return the mnode limits so that hpc_counters length and base 154 * index can be determined. When interleaved_mnodes is set, we 155 * create an array only for the first mnode that exists. All other 156 * mnodes will share the array in this case. 157 * If interleaved_mnodes is not set, simply return the limits for 158 * the given mnode. 159 */ 160 #define HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first) \ 161 if (!interleaved_mnodes) { \ 162 (physbase) = mem_node_config[(mnode)].physbase; \ 163 (physmax) = mem_node_config[(mnode)].physmax; \ 164 (first) = (mnode); \ 165 } else if ((first) < 0) { \ 166 mem_node_max_range(&(physbase), &(physmax)); \ 167 (first) = (mnode); \ 168 } 169 170 #define PAGE_CTRS_WRITE_LOCK(mnode) \ 171 if (!interleaved_mnodes) { \ 172 rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER); \ 173 page_freelist_lock(mnode); \ 174 } else { \ 175 /* changing shared hpm_counters */ \ 176 int _i; \ 177 for (_i = 0; _i < max_mem_nodes; _i++) { \ 178 rw_enter(&page_ctrs_rwlock[_i], RW_WRITER); \ 179 page_freelist_lock(_i); \ 180 } \ 181 } 182 183 #define PAGE_CTRS_WRITE_UNLOCK(mnode) \ 184 if (!interleaved_mnodes) { \ 185 page_freelist_unlock(mnode); \ 186 rw_exit(&page_ctrs_rwlock[(mnode)]); \ 187 } else { \ 188 int _i; \ 189 for (_i = 0; _i < max_mem_nodes; _i++) { \ 190 page_freelist_unlock(_i); \ 191 rw_exit(&page_ctrs_rwlock[_i]); \ 192 } \ 193 } 194 195 /* 196 * cpu specific color conversion functions 197 */ 198 extern uint_t page_get_nsz_color_mask_cpu(uchar_t, uint_t); 199 #pragma weak page_get_nsz_color_mask_cpu 200 201 extern uint_t page_get_nsz_color_cpu(uchar_t, uint_t); 202 #pragma weak page_get_nsz_color_cpu 203 204 extern uint_t page_get_color_shift_cpu(uchar_t, uchar_t); 205 #pragma weak page_get_color_shift_cpu 206 207 extern uint_t page_convert_color_cpu(uint_t, uchar_t, uchar_t); 208 #pragma weak page_convert_color_cpu 209 210 extern pfn_t page_next_pfn_for_color_cpu(pfn_t, 211 uchar_t, uint_t, uint_t, uint_t, void *); 212 #pragma weak page_next_pfn_for_color_cpu 213 214 extern uint_t page_pfn_2_color_cpu(pfn_t, uchar_t, void *); 215 #pragma weak page_pfn_2_color_cpu 216 217 #define PAGE_GET_COLOR_SHIFT(szc, nszc) \ 218 ((&page_get_color_shift_cpu != NULL) ? \ 219 page_get_color_shift_cpu(szc, nszc) : \ 220 (hw_page_array[(nszc)].hp_shift - \ 221 hw_page_array[(szc)].hp_shift)) 222 223 #define PAGE_CONVERT_COLOR(ncolor, szc, nszc) \ 224 ((&page_convert_color_cpu != NULL) ? \ 225 page_convert_color_cpu(ncolor, szc, nszc) : \ 226 ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc)))) 227 228 #define PFN_2_COLOR(pfn, szc, it) \ 229 ((&page_pfn_2_color_cpu != NULL) ? \ 230 page_pfn_2_color_cpu(pfn, szc, it) : \ 231 ((pfn & (hw_page_array[0].hp_colors - 1)) >> \ 232 (hw_page_array[szc].hp_shift - \ 233 hw_page_array[0].hp_shift))) 234 235 #define PNUM_SIZE(szc) \ 236 (hw_page_array[(szc)].hp_pgcnt) 237 #define PNUM_SHIFT(szc) \ 238 (hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift) 239 #define PAGE_GET_SHIFT(szc) \ 240 (hw_page_array[(szc)].hp_shift) 241 #define PAGE_GET_PAGECOLORS(szc) \ 242 (hw_page_array[(szc)].hp_colors) 243 244 /* 245 * This macro calculates the next sequential pfn with the specified 246 * color using color equivalency mask 247 */ 248 #define PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it) \ 249 { \ 250 ASSERT(((color) & ~(ceq_mask)) == 0); \ 251 if (&page_next_pfn_for_color_cpu == NULL) { \ 252 uint_t pfn_shift = PAGE_BSZS_SHIFT(szc); \ 253 pfn_t spfn = pfn >> pfn_shift; \ 254 pfn_t stride = (ceq_mask) + 1; \ 255 ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0); \ 256 if (((spfn ^ (color)) & (ceq_mask)) == 0) { \ 257 pfn += stride << pfn_shift; \ 258 } else { \ 259 pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color); \ 260 pfn = (pfn > spfn ? pfn : pfn + stride) << \ 261 pfn_shift; \ 262 } \ 263 } else { \ 264 pfn = page_next_pfn_for_color_cpu(pfn, szc, color, \ 265 ceq_mask, color_mask, it); \ 266 } \ 267 } 268 269 /* get the color equivalency mask for the next szc */ 270 #define PAGE_GET_NSZ_MASK(szc, mask) \ 271 ((&page_get_nsz_color_mask_cpu == NULL) ? \ 272 ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) : \ 273 page_get_nsz_color_mask_cpu(szc, mask)) 274 275 /* get the color of the next szc */ 276 #define PAGE_GET_NSZ_COLOR(szc, color) \ 277 ((&page_get_nsz_color_cpu == NULL) ? \ 278 ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) : \ 279 page_get_nsz_color_cpu(szc, color)) 280 281 /* Find the bin for the given page if it was of size szc */ 282 #define PP_2_BIN_SZC(pp, szc) (PFN_2_COLOR(pp->p_pagenum, szc, (void *)(-1))) 283 284 #define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc)) 285 286 #define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum)) 287 288 #define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \ 289 &fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \ 290 &cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode]) 291 292 #define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode]) 293 #define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode]) 294 295 #define PFN_BASE(pfnum, szc) (pfnum & ~((1 << PAGE_BSZS_SHIFT(szc)) - 1)) 296 297 /* 298 * this structure is used for walking free page lists 299 * controls when to split large pages into smaller pages, 300 * and when to coalesce smaller pages into larger pages 301 */ 302 typedef struct page_list_walker { 303 uint_t plw_colors; /* num of colors for szc */ 304 uint_t plw_color_mask; /* colors-1 */ 305 uint_t plw_bin_step; /* next bin: 1 or 2 */ 306 uint_t plw_count; /* loop count */ 307 uint_t plw_bin0; /* starting bin */ 308 uint_t plw_bin_marker; /* bin after initial jump */ 309 uint_t plw_bin_split_prev; /* last bin we tried to split */ 310 uint_t plw_do_split; /* set if OK to split */ 311 uint_t plw_split_next; /* next bin to split */ 312 uint_t plw_ceq_dif; /* number of different color groups */ 313 /* to check */ 314 uint_t plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */ 315 uint_t plw_bins[MMU_PAGE_SIZES + 1]; /* num of bins */ 316 } page_list_walker_t; 317 318 void page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin, 319 int can_split, int use_ceq, page_list_walker_t *plw); 320 321 typedef char hpmctr_t; 322 323 #ifdef DEBUG 324 #define CHK_LPG(pp, szc) chk_lpg(pp, szc) 325 extern void chk_lpg(page_t *, uchar_t); 326 #else 327 #define CHK_LPG(pp, szc) 328 #endif 329 330 /* 331 * page list count per mnode and type. 332 */ 333 typedef struct { 334 pgcnt_t plc_mt_pgmax; /* max page cnt */ 335 pgcnt_t plc_mt_clpgcnt; /* cache list cnt */ 336 pgcnt_t plc_mt_flpgcnt; /* free list cnt - small pages */ 337 pgcnt_t plc_mt_lgpgcnt; /* free list cnt - large pages */ 338 #ifdef DEBUG 339 struct { 340 pgcnt_t plc_mts_pgcnt; /* per page size count */ 341 int plc_mts_colors; 342 pgcnt_t *plc_mtsc_pgcnt; /* per color bin count */ 343 } plc_mts[MMU_PAGE_SIZES]; 344 #endif 345 } plcnt_t[MAX_MEM_NODES][MAX_MEM_TYPES]; 346 347 #ifdef DEBUG 348 349 #define PLCNT_SZ(ctrs_sz) { \ 350 int szc; \ 351 for (szc = 0; szc < mmu_page_sizes; szc++) { \ 352 int colors = page_get_pagecolors(szc); \ 353 ctrs_sz += (max_mem_nodes * MAX_MEM_TYPES * \ 354 colors * sizeof (pgcnt_t)); \ 355 } \ 356 } 357 358 #define PLCNT_INIT(base) { \ 359 int mn, mt, szc, colors; \ 360 for (szc = 0; szc < mmu_page_sizes; szc++) { \ 361 colors = page_get_pagecolors(szc); \ 362 for (mn = 0; mn < max_mem_nodes; mn++) { \ 363 for (mt = 0; mt < MAX_MEM_TYPES; mt++) { \ 364 plcnt[mn][mt].plc_mts[szc]. \ 365 plc_mts_colors = colors; \ 366 plcnt[mn][mt].plc_mts[szc]. \ 367 plc_mtsc_pgcnt = (pgcnt_t *)base; \ 368 base += (colors * sizeof (pgcnt_t)); \ 369 } \ 370 } \ 371 } \ 372 } 373 374 #define PLCNT_DO(pp, mn, mtype, szc, cnt, flags) { \ 375 int bin = PP_2_BIN(pp); \ 376 if (flags & PG_CACHE_LIST) \ 377 atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt); \ 378 else if (szc) \ 379 atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt); \ 380 else \ 381 atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt); \ 382 atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].plc_mts_pgcnt, \ 383 cnt); \ 384 atomic_add_long(&plcnt[mn][mtype].plc_mts[szc]. \ 385 plc_mtsc_pgcnt[bin], cnt); \ 386 } 387 388 #else 389 390 #define PLCNT_SZ(ctrs_sz) 391 392 #define PLCNT_INIT(base) 393 394 /* PG_FREE_LIST may not be explicitly set in flags for large pages */ 395 396 #define PLCNT_DO(pp, mn, mtype, szc, cnt, flags) { \ 397 if (flags & PG_CACHE_LIST) \ 398 atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt); \ 399 else if (szc) \ 400 atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt); \ 401 else \ 402 atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt); \ 403 } 404 405 #endif 406 407 #define PLCNT_INCR(pp, mn, mtype, szc, flags) { \ 408 long cnt = (1 << PAGE_BSZS_SHIFT(szc)); \ 409 PLCNT_DO(pp, mn, mtype, szc, cnt, flags); \ 410 } 411 412 #define PLCNT_DECR(pp, mn, mtype, szc, flags) { \ 413 long cnt = ((-1) << PAGE_BSZS_SHIFT(szc)); \ 414 PLCNT_DO(pp, mn, mtype, szc, cnt, flags); \ 415 } 416 417 /* 418 * macros to update page list max counts - done when pages transferred 419 * from RELOC to NORELOC mtype (kcage_init or kcage_assimilate_page). 420 */ 421 422 #define PLCNT_XFER_NORELOC(pp) { \ 423 long cnt = (1 << PAGE_BSZS_SHIFT((pp)->p_szc)); \ 424 int mn = PP_2_MEM_NODE(pp); \ 425 atomic_add_long(&plcnt[mn][MTYPE_NORELOC].plc_mt_pgmax, cnt); \ 426 atomic_add_long(&plcnt[mn][MTYPE_RELOC].plc_mt_pgmax, -cnt); \ 427 } 428 429 /* 430 * macro to modify the page list max counts when memory is added to 431 * the page lists during startup (add_physmem) or during a DR operation 432 * when memory is added (kphysm_add_memory_dynamic) or deleted 433 * (kphysm_del_cleanup). 434 */ 435 #define PLCNT_MODIFY_MAX(pfn, cnt) { \ 436 spgcnt_t _cnt = (spgcnt_t)(cnt); \ 437 pgcnt_t _acnt = ABS(_cnt); \ 438 int _mn; \ 439 pgcnt_t _np; \ 440 if (&plat_mem_node_intersect_range != NULL) { \ 441 for (_mn = 0; _mn < max_mem_nodes; _mn++) { \ 442 plat_mem_node_intersect_range((pfn), _acnt, _mn, &_np);\ 443 if (_np == 0) \ 444 continue; \ 445 atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \ 446 (_cnt < 0) ? -_np : _np); \ 447 } \ 448 } else { \ 449 pfn_t _pfn = (pfn); \ 450 pfn_t _endpfn = _pfn + _acnt; \ 451 while (_pfn < _endpfn) { \ 452 _mn = PFN_2_MEM_NODE(_pfn); \ 453 _np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - \ 454 _pfn; \ 455 _pfn += _np; \ 456 atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \ 457 (_cnt < 0) ? -_np : _np); \ 458 } \ 459 } \ 460 } 461 462 extern plcnt_t plcnt; 463 464 #define MNODE_PGCNT(mn) \ 465 (plcnt[mn][MTYPE_RELOC].plc_mt_clpgcnt + \ 466 plcnt[mn][MTYPE_NORELOC].plc_mt_clpgcnt + \ 467 plcnt[mn][MTYPE_RELOC].plc_mt_flpgcnt + \ 468 plcnt[mn][MTYPE_NORELOC].plc_mt_flpgcnt + \ 469 plcnt[mn][MTYPE_RELOC].plc_mt_lgpgcnt + \ 470 plcnt[mn][MTYPE_NORELOC].plc_mt_lgpgcnt) 471 472 #define MNODETYPE_PGCNT(mn, mtype) \ 473 (plcnt[mn][mtype].plc_mt_clpgcnt + \ 474 plcnt[mn][mtype].plc_mt_flpgcnt + \ 475 plcnt[mn][mtype].plc_mt_lgpgcnt) 476 477 /* 478 * macros to loop through the mtype range - MTYPE_START returns -1 in 479 * mtype if no pages in mnode/mtype and possibly NEXT mtype. 480 */ 481 #define MTYPE_START(mnode, mtype, flags) { \ 482 if (plcnt[mnode][mtype].plc_mt_pgmax == 0) { \ 483 ASSERT(mtype == MTYPE_RELOC || \ 484 MNODETYPE_PGCNT(mnode, mtype) == 0 || \ 485 plcnt[mnode][mtype].plc_mt_pgmax != 0); \ 486 MTYPE_NEXT(mnode, mtype, flags); \ 487 } \ 488 } 489 490 /* 491 * if allocation from the RELOC pool failed and there is sufficient cage 492 * memory, attempt to allocate from the NORELOC pool. 493 */ 494 #define MTYPE_NEXT(mnode, mtype, flags) { \ 495 if (!(flags & (PG_NORELOC | PGI_NOCAGE | PGI_RELOCONLY)) && \ 496 (kcage_freemem >= kcage_lotsfree)) { \ 497 if (plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax == 0) { \ 498 ASSERT(MNODETYPE_PGCNT(mnode, MTYPE_NORELOC) == 0 || \ 499 plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax != 0); \ 500 mtype = -1; \ 501 } else { \ 502 mtype = MTYPE_NORELOC; \ 503 flags |= PG_NORELOC; \ 504 } \ 505 } else { \ 506 mtype = -1; \ 507 } \ 508 } 509 510 /* 511 * get the ecache setsize for the current cpu. 512 */ 513 #define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize) 514 515 extern struct cpu cpu0; 516 #define CPU0 &cpu0 517 518 #define PAGE_BSZS_SHIFT(szc) TTE_BSZS_SHIFT(szc) 519 /* 520 * For sfmmu each larger page is 8 times the size of the previous 521 * size page. 522 */ 523 #define FULL_REGION_CNT(rg_szc) (8) 524 525 /* 526 * The counter base must be per page_counter element to prevent 527 * races when re-indexing, and the base page size element should 528 * be aligned on a boundary of the given region size. 529 * 530 * We also round up the number of pages spanned by the counters 531 * for a given region to PC_BASE_ALIGN in certain situations to simplify 532 * the coding for some non-performance critical routines. 533 */ 534 #define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(mmu_page_sizes-1)) 535 #define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1) 536 537 extern int ecache_alignsize; 538 #define L2CACHE_ALIGN ecache_alignsize 539 #define L2CACHE_ALIGN_MAX 512 540 541 extern int update_proc_pgcolorbase_after_fork; 542 extern int consistent_coloring; 543 extern uint_t vac_colors_mask; 544 extern int vac_size; 545 extern int vac_shift; 546 547 /* 548 * Kernel mem segment in 64-bit space 549 */ 550 extern caddr_t kmem64_base, kmem64_end, kmem64_aligned_end; 551 extern int kmem64_alignsize, kmem64_szc; 552 extern uint64_t kmem64_pabase; 553 extern int max_bootlp_tteszc; 554 555 /* 556 * Maximum and default values for user heap, stack, private and shared 557 * anonymous memory, and user text and initialized data. 558 * 559 * Initial values are defined in architecture specific mach_vm_dep.c file. 560 * Used by map_pgsz*() routines. 561 */ 562 extern size_t max_uheap_lpsize; 563 extern size_t default_uheap_lpsize; 564 extern size_t max_ustack_lpsize; 565 extern size_t default_ustack_lpsize; 566 extern size_t max_privmap_lpsize; 567 extern size_t max_uidata_lpsize; 568 extern size_t max_utext_lpsize; 569 extern size_t max_shm_lpsize; 570 571 /* 572 * For adjusting the default lpsize, for DTLB-limited page sizes. 573 */ 574 extern void adjust_data_maxlpsize(size_t ismpagesize); 575 576 /* 577 * Sanity control. Don't use large pages regardless of user 578 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 579 * The units for this variable are 8K pages. 580 */ 581 extern pgcnt_t privm_lpg_min_physmem; 582 extern pgcnt_t shm_lpg_min_physmem; 583 584 /* 585 * AS_2_BIN macro controls the page coloring policy. 586 * 0 (default) uses various vaddr bits 587 * 1 virtual=paddr 588 * 2 bin hopping 589 */ 590 #define AS_2_BIN(as, seg, vp, addr, bin, szc) \ 591 switch (consistent_coloring) { \ 592 default: \ 593 cmn_err(CE_WARN, \ 594 "AS_2_BIN: bad consistent coloring value"); \ 595 /* assume default algorithm -> continue */ \ 596 case 0: { \ 597 uint32_t ndx, new; \ 598 int slew = 0; \ 599 pfn_t pfn; \ 600 \ 601 if (vp != NULL && IS_SWAPVP(vp) && \ 602 seg->s_ops == &segvn_ops) \ 603 slew = as_color_bin(as); \ 604 \ 605 pfn = ((uintptr_t)addr >> MMU_PAGESHIFT) + \ 606 (((uintptr_t)addr >> page_coloring_shift) << \ 607 (vac_shift - MMU_PAGESHIFT)); \ 608 if ((szc) == 0 || &page_pfn_2_color_cpu == NULL) { \ 609 pfn += slew; \ 610 bin = PFN_2_COLOR(pfn, szc, NULL); \ 611 } else { \ 612 bin = PFN_2_COLOR(pfn, szc, NULL); \ 613 bin += slew >> (vac_shift - MMU_PAGESHIFT); \ 614 bin &= hw_page_array[(szc)].hp_colors - 1; \ 615 } \ 616 break; \ 617 } \ 618 case 1: \ 619 bin = PFN_2_COLOR(((uintptr_t)addr >> MMU_PAGESHIFT), \ 620 szc, NULL); \ 621 break; \ 622 case 2: { \ 623 int cnt = as_color_bin(as); \ 624 uint_t color_mask = page_get_pagecolors(0) - 1; \ 625 \ 626 /* make sure physical color aligns with vac color */ \ 627 while ((cnt & vac_colors_mask) != \ 628 addr_to_vcolor(addr)) { \ 629 cnt++; \ 630 } \ 631 bin = cnt = cnt & color_mask; \ 632 bin >>= PAGE_GET_COLOR_SHIFT(0, szc); \ 633 /* update per as page coloring fields */ \ 634 cnt = (cnt + 1) & color_mask; \ 635 if (cnt == (as_color_start(as) & color_mask)) { \ 636 cnt = as_color_start(as) = as_color_start(as) + \ 637 PGCLR_LOOPFACTOR; \ 638 } \ 639 as_color_bin(as) = cnt & color_mask; \ 640 break; \ 641 } \ 642 } \ 643 ASSERT(bin < page_get_pagecolors(szc)); 644 645 /* 646 * cpu private vm data - accessed thru CPU->cpu_vm_data 647 * vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock() 648 * vc_pnext_memseg: tracks last memseg visited in page_nextn() 649 * vc_kmptr: unaligned kmem pointer for this vm_cpu_data_t 650 * vc_kmsize: orignal kmem size for this vm_cpu_data_t 651 */ 652 653 typedef struct { 654 struct memseg *vc_pnum_memseg; 655 struct memseg *vc_pnext_memseg; 656 void *vc_kmptr; 657 size_t vc_kmsize; 658 } vm_cpu_data_t; 659 660 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */ 661 #define VM_CPU_DATA_PADSIZE \ 662 (P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX)) 663 664 /* for boot cpu before kmem is initialized */ 665 extern char vm_cpu_data0[]; 666 667 /* 668 * Function to get an ecache color bin: F(as, cnt, vcolor). 669 * the goal of this function is to: 670 * - to spread a processes' physical pages across the entire ecache to 671 * maximize its use. 672 * - to minimize vac flushes caused when we reuse a physical page on a 673 * different vac color than it was previously used. 674 * - to prevent all processes to use the same exact colors and trash each 675 * other. 676 * 677 * cnt is a bin ptr kept on a per as basis. As we page_create we increment 678 * the ptr so we spread out the physical pages to cover the entire ecache. 679 * The virtual color is made a subset of the physical color in order to 680 * in minimize virtual cache flushing. 681 * We add in the as to spread out different as. This happens when we 682 * initialize the start count value. 683 * sizeof(struct as) is 60 so we shift by 3 to get into the bit range 684 * that will tend to change. For example, on spitfire based machines 685 * (vcshft == 1) contigous as are spread bu ~6 bins. 686 * vcshft provides for proper virtual color alignment. 687 * In theory cnt should be updated using cas only but if we are off by one 688 * or 2 it is no big deal. 689 * We also keep a start value which is used to randomize on what bin we 690 * start counting when it is time to start another loop. This avoids 691 * contigous allocations of ecache size to point to the same bin. 692 * Why 3? Seems work ok. Better than 7 or anything larger. 693 */ 694 #define PGCLR_LOOPFACTOR 3 695 696 /* 697 * When a bin is empty, and we can't satisfy a color request correctly, 698 * we scan. If we assume that the programs have reasonable spatial 699 * behavior, then it will not be a good idea to use the adjacent color. 700 * Using the adjacent color would result in virtually adjacent addresses 701 * mapping into the same spot in the cache. So, if we stumble across 702 * an empty bin, skip a bunch before looking. After the first skip, 703 * then just look one bin at a time so we don't miss our cache on 704 * every look. Be sure to check every bin. Page_create() will panic 705 * if we miss a page. 706 * 707 * This also explains the `<=' in the for loops in both page_get_freelist() 708 * and page_get_cachelist(). Since we checked the target bin, skipped 709 * a bunch, then continued one a time, we wind up checking the target bin 710 * twice to make sure we get all of them bins. 711 */ 712 #define BIN_STEP 20 713 714 #ifdef VM_STATS 715 struct vmm_vmstats_str { 716 ulong_t pgf_alloc[MMU_PAGE_SIZES]; /* page_get_freelist */ 717 ulong_t pgf_allocok[MMU_PAGE_SIZES]; 718 ulong_t pgf_allocokrem[MMU_PAGE_SIZES]; 719 ulong_t pgf_allocfailed[MMU_PAGE_SIZES]; 720 ulong_t pgf_allocdeferred; 721 ulong_t pgf_allocretry[MMU_PAGE_SIZES]; 722 ulong_t pgc_alloc; /* page_get_cachelist */ 723 ulong_t pgc_allocok; 724 ulong_t pgc_allocokrem; 725 ulong_t pgc_allocokdeferred; 726 ulong_t pgc_allocfailed; 727 ulong_t pgcp_alloc[MMU_PAGE_SIZES]; /* page_get_contig_pages */ 728 ulong_t pgcp_allocfailed[MMU_PAGE_SIZES]; 729 ulong_t pgcp_allocempty[MMU_PAGE_SIZES]; 730 ulong_t pgcp_allocok[MMU_PAGE_SIZES]; 731 ulong_t ptcp[MMU_PAGE_SIZES]; /* page_trylock_contig_pages */ 732 ulong_t ptcpfreethresh[MMU_PAGE_SIZES]; 733 ulong_t ptcpfailexcl[MMU_PAGE_SIZES]; 734 ulong_t ptcpfailszc[MMU_PAGE_SIZES]; 735 ulong_t ptcpfailcage[MMU_PAGE_SIZES]; 736 ulong_t ptcpok[MMU_PAGE_SIZES]; 737 ulong_t pgmf_alloc[MMU_PAGE_SIZES]; /* page_get_mnode_freelist */ 738 ulong_t pgmf_allocfailed[MMU_PAGE_SIZES]; 739 ulong_t pgmf_allocempty[MMU_PAGE_SIZES]; 740 ulong_t pgmf_allocok[MMU_PAGE_SIZES]; 741 ulong_t pgmc_alloc; /* page_get_mnode_cachelist */ 742 ulong_t pgmc_allocfailed; 743 ulong_t pgmc_allocempty; 744 ulong_t pgmc_allocok; 745 ulong_t pladd_free[MMU_PAGE_SIZES]; /* page_list_add/sub */ 746 ulong_t plsub_free[MMU_PAGE_SIZES]; 747 ulong_t pladd_cache; 748 ulong_t plsub_cache; 749 ulong_t plsubpages_szcbig; 750 ulong_t plsubpages_szc0; 751 ulong_t pfs_req[MMU_PAGE_SIZES]; /* page_freelist_split */ 752 ulong_t pfs_demote[MMU_PAGE_SIZES]; 753 ulong_t pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 754 ulong_t ppr_reloc[MMU_PAGE_SIZES]; /* page_relocate */ 755 ulong_t ppr_relocok[MMU_PAGE_SIZES]; 756 ulong_t ppr_relocnoroot[MMU_PAGE_SIZES]; 757 ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES]; 758 ulong_t ppr_relocnolock[MMU_PAGE_SIZES]; 759 ulong_t ppr_relocnomem[MMU_PAGE_SIZES]; 760 ulong_t ppr_krelocfail[MMU_PAGE_SIZES]; 761 ulong_t ppr_copyfail; 762 /* page coalesce counter */ 763 ulong_t page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 764 /* candidates useful */ 765 ulong_t page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 766 /* ctrs changed after locking */ 767 ulong_t page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 768 /* page_freelist_coalesce failed */ 769 ulong_t page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 770 ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */ 771 ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */ 772 }; 773 extern struct vmm_vmstats_str vmm_vmstats; 774 #endif /* VM_STATS */ 775 776 /* 777 * Used to hold off page relocations into the cage until OBP has completed 778 * its boot-time handoff of its resources to the kernel. 779 */ 780 extern int page_relocate_ready; 781 782 /* 783 * cpu/mmu-dependent vm variables may be reset at bootup. 784 */ 785 extern uint_t mmu_page_sizes; 786 extern uint_t max_mmu_page_sizes; 787 extern uint_t mmu_hashcnt; 788 extern uint_t max_mmu_hashcnt; 789 extern size_t mmu_ism_pagesize; 790 extern int mmu_exported_pagesize_mask; 791 extern uint_t mmu_exported_page_sizes; 792 extern uint_t szc_2_userszc[]; 793 extern uint_t userszc_2_szc[]; 794 795 #define mmu_legacy_page_sizes mmu_exported_page_sizes 796 #define USERSZC_2_SZC(userszc) (userszc_2_szc[userszc]) 797 #define SZC_2_USERSZC(szc) (szc_2_userszc[szc]) 798 799 /* 800 * Platform specific page routines 801 */ 802 extern void mach_page_add(page_t **, page_t *); 803 extern void mach_page_sub(page_t **, page_t *); 804 extern uint_t page_get_pagecolors(uint_t); 805 extern void ppcopy_kernel__relocatable(page_t *, page_t *); 806 #define ppcopy_kernel(p1, p2) ppcopy_kernel__relocatable(p1, p2) 807 808 /* 809 * platform specific large pages for kernel heap support 810 */ 811 extern size_t get_segkmem_lpsize(size_t lpsize); 812 extern size_t mmu_get_kernel_lpsize(size_t lpsize); 813 extern void mmu_init_kernel_pgsz(struct hat *hat); 814 extern void mmu_init_kcontext(); 815 extern uint64_t kcontextreg; 816 817 /* 818 * Nucleus data page allocator routines 819 */ 820 extern void ndata_alloc_init(struct memlist *, uintptr_t, uintptr_t); 821 extern void *ndata_alloc(struct memlist *, size_t, size_t); 822 extern void *ndata_extra_base(struct memlist *, size_t, caddr_t); 823 extern size_t ndata_maxsize(struct memlist *); 824 extern size_t ndata_spare(struct memlist *, size_t, size_t); 825 826 #ifdef __cplusplus 827 } 828 #endif 829 830 #endif /* _VM_DEP_H */ 831