1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * UNIX machine dependent virtual memory support. 30 */ 31 32 #include <sys/vm.h> 33 #include <sys/exec.h> 34 35 #include <sys/exechdr.h> 36 #include <vm/seg_kmem.h> 37 #include <sys/atomic.h> 38 #include <sys/archsystm.h> 39 #include <sys/machsystm.h> 40 #include <sys/kdi.h> 41 #include <sys/cpu_module.h> 42 43 #include <vm/hat_sfmmu.h> 44 45 #include <sys/memnode.h> 46 47 #include <sys/mem_config.h> 48 #include <sys/mem_cage.h> 49 #include <vm/vm_dep.h> 50 #include <vm/page.h> 51 #include <sys/platform_module.h> 52 53 /* 54 * These variables are set by module specific config routines. 55 * They are only set by modules which will use physical cache page coloring. 56 */ 57 int do_pg_coloring = 0; 58 59 /* 60 * These variables can be conveniently patched at kernel load time to 61 * prevent do_pg_coloring from being enabled by 62 * module specific config routines. 63 */ 64 65 int use_page_coloring = 1; 66 67 /* 68 * initialized by page_coloring_init() 69 */ 70 extern uint_t page_colors; 71 extern uint_t page_colors_mask; 72 extern uint_t page_coloring_shift; 73 int cpu_page_colors; 74 uint_t vac_colors = 0; 75 uint_t vac_colors_mask = 0; 76 77 /* cpu specific coloring initialization */ 78 extern void page_coloring_init_cpu(); 79 #pragma weak page_coloring_init_cpu 80 81 /* 82 * get the ecache setsize for the current cpu. 83 */ 84 #define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize) 85 86 plcnt_t plcnt; /* page list count */ 87 88 /* 89 * This variable is set by the cpu module to contain the lowest 90 * address not affected by the SF_ERRATA_57 workaround. It should 91 * remain 0 if the workaround is not needed. 92 */ 93 #if defined(SF_ERRATA_57) 94 caddr_t errata57_limit; 95 #endif 96 97 extern void page_relocate_hash(page_t *, page_t *); 98 99 /* 100 * these must be defined in platform specific areas 101 */ 102 extern void map_addr_proc(caddr_t *, size_t, offset_t, int, caddr_t, 103 struct proc *, uint_t); 104 extern page_t *page_get_freelist(struct vnode *, u_offset_t, struct seg *, 105 caddr_t, size_t, uint_t, struct lgrp *); 106 /* 107 * Convert page frame number to an OBMEM page frame number 108 * (i.e. put in the type bits -- zero for this implementation) 109 */ 110 pfn_t 111 impl_obmem_pfnum(pfn_t pf) 112 { 113 return (pf); 114 } 115 116 /* 117 * Use physmax to determine the highest physical page of DRAM memory 118 * It is assumed that any physical addresses above physmax is in IO space. 119 * We don't bother checking the low end because we assume that memory space 120 * begins at physical page frame 0. 121 * 122 * Return 1 if the page frame is onboard DRAM memory, else 0. 123 * Returns 0 for nvram so it won't be cached. 124 */ 125 int 126 pf_is_memory(pfn_t pf) 127 { 128 /* We must be IO space */ 129 if (pf > physmax) 130 return (0); 131 132 /* We must be memory space */ 133 return (1); 134 } 135 136 /* 137 * Handle a pagefault. 138 */ 139 faultcode_t 140 pagefault(caddr_t addr, enum fault_type type, enum seg_rw rw, int iskernel) 141 { 142 struct as *as; 143 struct proc *p; 144 faultcode_t res; 145 caddr_t base; 146 size_t len; 147 int err; 148 149 if (INVALID_VADDR(addr)) 150 return (FC_NOMAP); 151 152 if (iskernel) { 153 as = &kas; 154 } else { 155 p = curproc; 156 as = p->p_as; 157 #if defined(SF_ERRATA_57) 158 /* 159 * Prevent infinite loops due to a segment driver 160 * setting the execute permissions and the sfmmu hat 161 * silently ignoring them. 162 */ 163 if (rw == S_EXEC && AS_TYPE_64BIT(as) && 164 addr < errata57_limit) { 165 res = FC_NOMAP; 166 goto out; 167 } 168 #endif 169 } 170 171 /* 172 * Dispatch pagefault. 173 */ 174 res = as_fault(as->a_hat, as, addr, 1, type, rw); 175 176 /* 177 * If this isn't a potential unmapped hole in the user's 178 * UNIX data or stack segments, just return status info. 179 */ 180 if (!(res == FC_NOMAP && iskernel == 0)) 181 goto out; 182 183 /* 184 * Check to see if we happened to faulted on a currently unmapped 185 * part of the UNIX data or stack segments. If so, create a zfod 186 * mapping there and then try calling the fault routine again. 187 */ 188 base = p->p_brkbase; 189 len = p->p_brksize; 190 191 if (addr < base || addr >= base + len) { /* data seg? */ 192 base = (caddr_t)(p->p_usrstack - p->p_stksize); 193 len = p->p_stksize; 194 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 195 /* not in either UNIX data or stack segments */ 196 res = FC_NOMAP; 197 goto out; 198 } 199 } 200 201 /* the rest of this function implements a 3.X 4.X 5.X compatibility */ 202 /* This code is probably not needed anymore */ 203 204 /* expand the gap to the page boundaries on each side */ 205 len = (((uintptr_t)base + len + PAGEOFFSET) & PAGEMASK) - 206 ((uintptr_t)base & PAGEMASK); 207 base = (caddr_t)((uintptr_t)base & PAGEMASK); 208 209 as_rangelock(as); 210 as_purge(as); 211 if (as_gap(as, PAGESIZE, &base, &len, AH_CONTAIN, addr) == 0) { 212 err = as_map(as, base, len, segvn_create, zfod_argsp); 213 as_rangeunlock(as); 214 if (err) { 215 res = FC_MAKE_ERR(err); 216 goto out; 217 } 218 } else { 219 /* 220 * This page is already mapped by another thread after we 221 * returned from as_fault() above. We just fallthrough 222 * as_fault() below. 223 */ 224 as_rangeunlock(as); 225 } 226 227 res = as_fault(as->a_hat, as, addr, 1, F_INVAL, rw); 228 229 out: 230 231 return (res); 232 } 233 234 /* 235 * This is the routine which defines the address limit implied 236 * by the flag '_MAP_LOW32'. USERLIMIT32 matches the highest 237 * mappable address in a 32-bit process on this platform (though 238 * perhaps we should make it be UINT32_MAX here?) 239 */ 240 void 241 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 242 { 243 struct proc *p = curproc; 244 caddr_t userlimit = flags & _MAP_LOW32 ? 245 (caddr_t)USERLIMIT32 : p->p_as->a_userlimit; 246 map_addr_proc(addrp, len, off, vacalign, userlimit, p, flags); 247 } 248 249 /* 250 * Some V9 CPUs have holes in the middle of the 64-bit virtual address range. 251 */ 252 caddr_t hole_start, hole_end; 253 254 /* 255 * kpm mapping window 256 */ 257 caddr_t kpm_vbase; 258 size_t kpm_size; 259 uchar_t kpm_size_shift; 260 261 /* 262 * Determine whether [base, base+len] contains a mapable range of 263 * addresses at least minlen long. base and len are adjusted if 264 * required to provide a mapable range. 265 */ 266 /* ARGSUSED */ 267 int 268 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 269 { 270 caddr_t hi, lo; 271 272 lo = *basep; 273 hi = lo + *lenp; 274 275 /* 276 * If hi rolled over the top, try cutting back. 277 */ 278 if (hi < lo) { 279 size_t newlen = 0 - (uintptr_t)lo - 1l; 280 281 if (newlen + (uintptr_t)hi < minlen) 282 return (0); 283 if (newlen < minlen) 284 return (0); 285 *lenp = newlen; 286 } else if (hi - lo < minlen) 287 return (0); 288 289 /* 290 * Deal with a possible hole in the address range between 291 * hole_start and hole_end that should never be mapped by the MMU. 292 */ 293 hi = lo + *lenp; 294 295 if (lo < hole_start) { 296 if (hi > hole_start) 297 if (hi < hole_end) 298 hi = hole_start; 299 else 300 /* lo < hole_start && hi >= hole_end */ 301 if (dir == AH_LO) { 302 /* 303 * prefer lowest range 304 */ 305 if (hole_start - lo >= minlen) 306 hi = hole_start; 307 else if (hi - hole_end >= minlen) 308 lo = hole_end; 309 else 310 return (0); 311 } else { 312 /* 313 * prefer highest range 314 */ 315 if (hi - hole_end >= minlen) 316 lo = hole_end; 317 else if (hole_start - lo >= minlen) 318 hi = hole_start; 319 else 320 return (0); 321 } 322 } else { 323 /* lo >= hole_start */ 324 if (hi < hole_end) 325 return (0); 326 if (lo < hole_end) 327 lo = hole_end; 328 } 329 330 if (hi - lo < minlen) 331 return (0); 332 333 *basep = lo; 334 *lenp = hi - lo; 335 336 return (1); 337 } 338 339 /* 340 * Determine whether [addr, addr+len] with protections `prot' are valid 341 * for a user address space. 342 */ 343 /*ARGSUSED*/ 344 int 345 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 346 caddr_t userlimit) 347 { 348 caddr_t eaddr = addr + len; 349 350 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 351 return (RANGE_BADADDR); 352 353 /* 354 * Determine if the address range falls within an illegal 355 * range of the MMU. 356 */ 357 if (eaddr > hole_start && addr < hole_end) 358 return (RANGE_BADADDR); 359 360 #if defined(SF_ERRATA_57) 361 /* 362 * Make sure USERLIMIT isn't raised too high 363 */ 364 ASSERT64(addr <= (caddr_t)0xffffffff80000000ul || 365 errata57_limit == 0); 366 367 if (AS_TYPE_64BIT(as) && 368 (addr < errata57_limit) && 369 (prot & PROT_EXEC)) 370 return (RANGE_BADPROT); 371 #endif /* SF_ERRATA57 */ 372 return (RANGE_OKAY); 373 } 374 375 /* 376 * Routine used to check to see if an a.out can be executed 377 * by the current machine/architecture. 378 */ 379 int 380 chkaout(struct exdata *exp) 381 { 382 if (exp->ux_mach == M_SPARC) 383 return (0); 384 else 385 return (ENOEXEC); 386 } 387 388 /* 389 * The following functions return information about an a.out 390 * which is used when a program is executed. 391 */ 392 393 /* 394 * Return the load memory address for the data segment. 395 */ 396 caddr_t 397 getdmem(struct exec *exp) 398 { 399 /* 400 * XXX - Sparc Reference Hack approaching 401 * Remember that we are loading 402 * 8k executables into a 4k machine 403 * DATA_ALIGN == 2 * PAGESIZE 404 */ 405 if (exp->a_text) 406 return ((caddr_t)(roundup(USRTEXT + exp->a_text, DATA_ALIGN))); 407 else 408 return ((caddr_t)USRTEXT); 409 } 410 411 /* 412 * Return the starting disk address for the data segment. 413 */ 414 ulong_t 415 getdfile(struct exec *exp) 416 { 417 if (exp->a_magic == ZMAGIC) 418 return (exp->a_text); 419 else 420 return (sizeof (struct exec) + exp->a_text); 421 } 422 423 /* 424 * Return the load memory address for the text segment. 425 */ 426 427 /*ARGSUSED*/ 428 caddr_t 429 gettmem(struct exec *exp) 430 { 431 return ((caddr_t)USRTEXT); 432 } 433 434 /* 435 * Return the file byte offset for the text segment. 436 */ 437 uint_t 438 gettfile(struct exec *exp) 439 { 440 if (exp->a_magic == ZMAGIC) 441 return (0); 442 else 443 return (sizeof (struct exec)); 444 } 445 446 void 447 getexinfo( 448 struct exdata *edp_in, 449 struct exdata *edp_out, 450 int *pagetext, 451 int *pagedata) 452 { 453 *edp_out = *edp_in; /* structure copy */ 454 455 if ((edp_in->ux_mag == ZMAGIC) && 456 ((edp_in->vp->v_flag & VNOMAP) == 0)) { 457 *pagetext = 1; 458 *pagedata = 1; 459 } else { 460 *pagetext = 0; 461 *pagedata = 0; 462 } 463 } 464 465 /* 466 * Return non 0 value if the address may cause a VAC alias with KPM mappings. 467 * KPM selects an address such that it's equal offset modulo shm_alignment and 468 * assumes it can't be in VAC conflict with any larger than PAGESIZE mapping. 469 */ 470 int 471 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 472 { 473 if (vac) { 474 return (((uintptr_t)addr ^ off) & shm_alignment - 1); 475 } else { 476 return (0); 477 } 478 } 479 480 /* 481 * Sanity control. Don't use large pages regardless of user 482 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 483 * The units for this variable is 8K pages. 484 */ 485 pgcnt_t shm_lpg_min_physmem = 131072; /* 1GB */ 486 pgcnt_t privm_lpg_min_physmem = 131072; /* 1GB */ 487 488 static size_t 489 map_pgszheap(struct proc *p, caddr_t addr, size_t len) 490 { 491 size_t pgsz = MMU_PAGESIZE; 492 int szc; 493 494 /* 495 * If len is zero, retrieve from proc and don't demote the page size. 496 * Use atleast the default pagesize. 497 */ 498 if (len == 0) { 499 len = p->p_brkbase + p->p_brksize - p->p_bssbase; 500 } 501 len = MAX(len, default_uheap_lpsize); 502 503 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) { 504 pgsz = hw_page_array[szc].hp_size; 505 if ((disable_auto_data_large_pages & (1 << szc)) || 506 pgsz > max_uheap_lpsize) 507 continue; 508 if (len >= pgsz) { 509 break; 510 } 511 } 512 513 /* 514 * If addr == 0 we were called by memcntl() when the 515 * size code is 0. Don't set pgsz less than current size. 516 */ 517 if (addr == 0 && (pgsz < hw_page_array[p->p_brkpageszc].hp_size)) { 518 pgsz = hw_page_array[p->p_brkpageszc].hp_size; 519 } 520 521 return (pgsz); 522 } 523 524 static size_t 525 map_pgszstk(struct proc *p, caddr_t addr, size_t len) 526 { 527 size_t pgsz = MMU_PAGESIZE; 528 int szc; 529 530 /* 531 * If len is zero, retrieve from proc and don't demote the page size. 532 * Use atleast the default pagesize. 533 */ 534 if (len == 0) { 535 len = p->p_stksize; 536 } 537 len = MAX(len, default_ustack_lpsize); 538 539 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) { 540 pgsz = hw_page_array[szc].hp_size; 541 if ((disable_auto_data_large_pages & (1 << szc)) || 542 pgsz > max_ustack_lpsize) 543 continue; 544 if (len >= pgsz) { 545 break; 546 } 547 } 548 549 /* 550 * If addr == 0 we were called by memcntl() or exec_args() when the 551 * size code is 0. Don't set pgsz less than current size. 552 */ 553 if (addr == 0 && (pgsz < hw_page_array[p->p_stkpageszc].hp_size)) { 554 pgsz = hw_page_array[p->p_stkpageszc].hp_size; 555 } 556 557 return (pgsz); 558 } 559 560 static size_t 561 map_pgszism(caddr_t addr, size_t len) 562 { 563 uint_t szc; 564 size_t pgsz; 565 566 for (szc = mmu_page_sizes - 1; szc >= TTE4M; szc--) { 567 if (disable_ism_large_pages & (1 << szc)) 568 continue; 569 570 pgsz = hw_page_array[szc].hp_size; 571 if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz)) 572 return (pgsz); 573 } 574 575 return (DEFAULT_ISM_PAGESIZE); 576 } 577 578 /* 579 * Suggest a page size to be used to map a segment of type maptype and length 580 * len. Returns a page size (not a size code). 581 */ 582 /* ARGSUSED */ 583 size_t 584 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 585 { 586 size_t pgsz = MMU_PAGESIZE; 587 588 ASSERT(maptype != MAPPGSZ_VA); 589 590 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 591 return (MMU_PAGESIZE); 592 } 593 594 switch (maptype) { 595 case MAPPGSZ_ISM: 596 pgsz = map_pgszism(addr, len); 597 break; 598 599 case MAPPGSZ_STK: 600 if (max_ustack_lpsize > MMU_PAGESIZE) { 601 pgsz = map_pgszstk(p, addr, len); 602 } 603 break; 604 605 case MAPPGSZ_HEAP: 606 if (max_uheap_lpsize > MMU_PAGESIZE) { 607 pgsz = map_pgszheap(p, addr, len); 608 } 609 break; 610 } 611 return (pgsz); 612 } 613 614 615 /* assumes TTE8K...TTE4M == szc */ 616 617 static uint_t 618 map_szcvec(caddr_t addr, size_t size, uintptr_t off, int disable_lpgs, 619 size_t max_lpsize, size_t min_physmem) 620 { 621 caddr_t eaddr = addr + size; 622 uint_t szcvec = 0; 623 caddr_t raddr; 624 caddr_t readdr; 625 size_t pgsz; 626 int i; 627 628 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 629 return (0); 630 } 631 for (i = mmu_page_sizes - 1; i > 0; i--) { 632 if (disable_lpgs & (1 << i)) { 633 continue; 634 } 635 pgsz = page_get_pagesize(i); 636 if (pgsz > max_lpsize) { 637 continue; 638 } 639 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 640 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 641 if (raddr < addr || raddr >= readdr) { 642 continue; 643 } 644 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 645 continue; 646 } 647 szcvec |= (1 << i); 648 /* 649 * And or in the remaining enabled page sizes. 650 */ 651 szcvec |= P2PHASE(~disable_lpgs, (1 << i)); 652 szcvec &= ~1; /* no need to return 8K pagesize */ 653 break; 654 } 655 return (szcvec); 656 } 657 658 /* 659 * Return a bit vector of large page size codes that 660 * can be used to map [addr, addr + len) region. 661 */ 662 /* ARGSUSED */ 663 uint_t 664 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 665 int memcntl) 666 { 667 if (flags & MAP_TEXT) { 668 return (map_szcvec(addr, size, off, disable_auto_text_large_pages, 669 max_utext_lpsize, shm_lpg_min_physmem)); 670 671 } else if (flags & MAP_INITDATA) { 672 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 673 max_uidata_lpsize, privm_lpg_min_physmem)); 674 675 } else if (type == MAPPGSZC_SHM) { 676 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 677 max_shm_lpsize, shm_lpg_min_physmem)); 678 679 } else if (type == MAPPGSZC_HEAP) { 680 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 681 max_uheap_lpsize, privm_lpg_min_physmem)); 682 683 } else if (type == MAPPGSZC_STACK) { 684 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 685 max_ustack_lpsize, privm_lpg_min_physmem)); 686 687 } else { 688 return (map_szcvec(addr, size, off, disable_auto_data_large_pages, 689 max_privmap_lpsize, privm_lpg_min_physmem)); 690 } 691 } 692 693 /* 694 * Anchored in the table below are counters used to keep track 695 * of free contiguous physical memory. Each element of the table contains 696 * the array of counters, the size of array which is allocated during 697 * startup based on physmax and a shift value used to convert a pagenum 698 * into a counter array index or vice versa. The table has page size 699 * for rows and region size for columns: 700 * 701 * page_counters[page_size][region_size] 702 * 703 * page_size: TTE size code of pages on page_size freelist. 704 * 705 * region_size: TTE size code of a candidate larger page made up 706 * made up of contiguous free page_size pages. 707 * 708 * As you go across a page_size row increasing region_size each 709 * element keeps track of how many (region_size - 1) size groups 710 * made up of page_size free pages can be coalesced into a 711 * regsion_size page. Yuck! Lets try an example: 712 * 713 * page_counters[1][3] is the table element used for identifying 714 * candidate 4M pages from contiguous pages off the 64K free list. 715 * Each index in the page_counters[1][3].array spans 4M. Its the 716 * number of free 512K size (regsion_size - 1) groups of contiguous 717 * 64K free pages. So when page_counters[1][3].counters[n] == 8 718 * we know we have a candidate 4M page made up of 512K size groups 719 * of 64K free pages. 720 */ 721 722 /* 723 * Per page size free lists. 3rd (max_mem_nodes) and 4th (page coloring bins) 724 * dimensions are allocated dynamically. 725 */ 726 page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES]; 727 728 /* 729 * For now there is only a single size cache list. 730 * Allocated dynamically. 731 */ 732 page_t ***page_cachelists[MAX_MEM_TYPES]; 733 734 kmutex_t *fpc_mutex[NPC_MUTEX]; 735 kmutex_t *cpc_mutex[NPC_MUTEX]; 736 737 caddr_t 738 alloc_page_freelists(int mnode, caddr_t alloc_base, int alloc_align) 739 { 740 int mtype; 741 uint_t szc; 742 743 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, alloc_align); 744 745 /* 746 * We only support small pages in the cachelist. 747 */ 748 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 749 page_cachelists[mtype][mnode] = (page_t **)alloc_base; 750 alloc_base += (sizeof (page_t *) * page_get_pagecolors(0)); 751 /* 752 * Allocate freelists bins for all 753 * supported page sizes. 754 */ 755 for (szc = 0; szc < mmu_page_sizes; szc++) { 756 page_freelists[szc][mtype][mnode] = 757 (page_t **)alloc_base; 758 alloc_base += ((sizeof (page_t *) * 759 page_get_pagecolors(szc))); 760 } 761 } 762 763 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, alloc_align); 764 765 return (alloc_base); 766 } 767 768 /* 769 * Allocate page_freelists bin headers for a memnode from the 770 * nucleus data area. This is the first time that mmu_page_sizes is 771 * used during sun4u bootup, so check mmu_page_sizes initialization. 772 */ 773 int 774 ndata_alloc_page_freelists(struct memlist *ndata, int mnode) 775 { 776 size_t alloc_sz; 777 caddr_t alloc_base; 778 caddr_t end; 779 int mtype; 780 uint_t szc; 781 int32_t allp = 0; 782 783 if (&mmu_init_mmu_page_sizes) { 784 if (!mmu_init_mmu_page_sizes(allp)) { 785 cmn_err(CE_PANIC, "mmu_page_sizes %d not initialized", 786 mmu_page_sizes); 787 } 788 } 789 ASSERT(mmu_page_sizes >= DEFAULT_MMU_PAGE_SIZES); 790 791 /* first time called - allocate max_mem_nodes dimension */ 792 if (mnode == 0) { 793 int i; 794 795 /* page_cachelists */ 796 alloc_sz = MAX_MEM_TYPES * max_mem_nodes * 797 sizeof (page_t **); 798 799 /* page_freelists */ 800 alloc_sz += MAX_MEM_TYPES * mmu_page_sizes * max_mem_nodes * 801 sizeof (page_t **); 802 803 /* fpc_mutex and cpc_mutex */ 804 alloc_sz += 2 * NPC_MUTEX * max_mem_nodes * sizeof (kmutex_t); 805 806 alloc_base = ndata_alloc(ndata, alloc_sz, ecache_alignsize); 807 if (alloc_base == NULL) 808 return (-1); 809 810 ASSERT(((uintptr_t)alloc_base & (ecache_alignsize - 1)) == 0); 811 812 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 813 page_cachelists[mtype] = (page_t ***)alloc_base; 814 alloc_base += (max_mem_nodes * sizeof (page_t **)); 815 for (szc = 0; szc < mmu_page_sizes; szc++) { 816 page_freelists[szc][mtype] = 817 (page_t ***)alloc_base; 818 alloc_base += (max_mem_nodes * 819 sizeof (page_t **)); 820 } 821 } 822 for (i = 0; i < NPC_MUTEX; i++) { 823 fpc_mutex[i] = (kmutex_t *)alloc_base; 824 alloc_base += (sizeof (kmutex_t) * max_mem_nodes); 825 cpc_mutex[i] = (kmutex_t *)alloc_base; 826 alloc_base += (sizeof (kmutex_t) * max_mem_nodes); 827 } 828 alloc_sz = 0; 829 } 830 831 /* 832 * Calculate the size needed by alloc_page_freelists(). 833 */ 834 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 835 alloc_sz += sizeof (page_t *) * page_get_pagecolors(0); 836 837 for (szc = 0; szc < mmu_page_sizes; szc++) 838 alloc_sz += sizeof (page_t *) * 839 page_get_pagecolors(szc); 840 } 841 842 alloc_base = ndata_alloc(ndata, alloc_sz, ecache_alignsize); 843 if (alloc_base == NULL) 844 return (-1); 845 846 end = alloc_page_freelists(mnode, alloc_base, ecache_alignsize); 847 ASSERT((uintptr_t)end == roundup((uintptr_t)alloc_base + alloc_sz, 848 ecache_alignsize)); 849 850 return (0); 851 } 852 853 /* 854 * To select our starting bin, we stride through the bins with a stride 855 * of 337. Why 337? It's prime, it's largeish, and it performs well both 856 * in simulation and practice for different workloads on varying cache sizes. 857 */ 858 uint32_t color_start_current = 0; 859 uint32_t color_start_stride = 337; 860 int color_start_random = 0; 861 862 /* ARGSUSED */ 863 uint_t 864 get_color_start(struct as *as) 865 { 866 uint32_t old, new; 867 868 if (consistent_coloring == 2 || color_start_random) { 869 return ((uint_t)(((gettick()) << (vac_shift - MMU_PAGESHIFT)) & 870 (hw_page_array[0].hp_colors - 1))); 871 } 872 873 do { 874 old = color_start_current; 875 new = old + (color_start_stride << (vac_shift - MMU_PAGESHIFT)); 876 } while (cas32(&color_start_current, old, new) != old); 877 878 return ((uint_t)(new)); 879 } 880 881 /* 882 * Called once at startup from kphysm_init() -- before memialloc() 883 * is invoked to do the 1st page_free()/page_freelist_add(). 884 * 885 * initializes page_colors and page_colors_mask based on ecache_setsize. 886 * 887 * Also initializes the counter locks. 888 */ 889 void 890 page_coloring_init() 891 { 892 int a, i; 893 uint_t colors; 894 895 if (do_pg_coloring == 0) { 896 page_colors = 1; 897 for (i = 0; i < mmu_page_sizes; i++) { 898 colorequivszc[i] = 0; 899 hw_page_array[i].hp_colors = 1; 900 } 901 return; 902 } 903 904 /* 905 * Calculate page_colors from ecache_setsize. ecache_setsize contains 906 * the max ecache setsize of all cpus configured in the system or, for 907 * cheetah+ systems, the max possible ecache setsize for all possible 908 * cheetah+ cpus. 909 */ 910 page_colors = ecache_setsize / MMU_PAGESIZE; 911 page_colors_mask = page_colors - 1; 912 913 vac_colors = vac_size / MMU_PAGESIZE; 914 vac_colors_mask = vac_colors -1; 915 916 page_coloring_shift = 0; 917 a = ecache_setsize; 918 while (a >>= 1) { 919 page_coloring_shift++; 920 } 921 922 /* initialize number of colors per page size */ 923 for (i = 0; i < mmu_page_sizes; i++) { 924 hw_page_array[i].hp_colors = (page_colors_mask >> 925 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 926 + 1; 927 colorequivszc[i] = 0; 928 } 929 930 /* 931 * initialize cpu_page_colors if ecache setsizes are homogenous. 932 * cpu_page_colors set to -1 during DR operation or during startup 933 * if setsizes are heterogenous. 934 * 935 * The value of cpu_page_colors determines if additional color bins 936 * need to be checked for a particular color in the page_get routines. 937 */ 938 if (cpu_setsize > 0 && cpu_page_colors == 0 && 939 cpu_setsize < ecache_setsize) { 940 cpu_page_colors = cpu_setsize / MMU_PAGESIZE; 941 a = lowbit(page_colors) - lowbit(cpu_page_colors); 942 ASSERT(a > 0); 943 ASSERT(a < 16); 944 945 for (i = 0; i < mmu_page_sizes; i++) { 946 if ((colors = hw_page_array[i].hp_colors) <= 1) { 947 continue; 948 } 949 while ((colors >> a) == 0) 950 a--; 951 ASSERT(a >= 0); 952 953 /* higher 4 bits encodes color equiv mask */ 954 colorequivszc[i] = (a << 4); 955 } 956 } 957 958 /* do cpu specific color initialization */ 959 if (&page_coloring_init_cpu) { 960 page_coloring_init_cpu(); 961 } 962 } 963 964 int 965 bp_color(struct buf *bp) 966 { 967 int color = -1; 968 969 if (vac) { 970 if ((bp->b_flags & B_PAGEIO) != 0) { 971 color = sfmmu_get_ppvcolor(bp->b_pages); 972 } else if (bp->b_un.b_addr != NULL) { 973 color = sfmmu_get_addrvcolor(bp->b_un.b_addr); 974 } 975 } 976 return (color < 0 ? 0 : ptob(color)); 977 } 978 979 /* 980 * Create & Initialise pageout scanner thread. The thread has to 981 * start at procedure with process pp and priority pri. 982 */ 983 void 984 pageout_init(void (*procedure)(), proc_t *pp, pri_t pri) 985 { 986 (void) thread_create(NULL, 0, procedure, NULL, 0, pp, TS_RUN, pri); 987 } 988 989 /* 990 * Function for flushing D-cache when performing module relocations 991 * to an alternate mapping. Stubbed out on all platforms except sun4u, 992 * at least for now. 993 */ 994 void 995 dcache_flushall() 996 { 997 sfmmu_cache_flushall(); 998 } 999 1000 static int 1001 kdi_range_overlap(uintptr_t va1, size_t sz1, uintptr_t va2, size_t sz2) 1002 { 1003 if (va1 < va2 && va1 + sz1 <= va2) 1004 return (0); 1005 1006 if (va2 < va1 && va2 + sz2 <= va1) 1007 return (0); 1008 1009 return (1); 1010 } 1011 1012 /* 1013 * Return the number of bytes, relative to the beginning of a given range, that 1014 * are non-toxic (can be read from and written to with relative impunity). 1015 */ 1016 size_t 1017 kdi_range_is_nontoxic(uintptr_t va, size_t sz, int write) 1018 { 1019 /* OBP reads are harmless, but we don't want people writing there */ 1020 if (write && kdi_range_overlap(va, sz, OFW_START_ADDR, OFW_END_ADDR - 1021 OFW_START_ADDR + 1)) 1022 return (va < OFW_START_ADDR ? OFW_START_ADDR - va : 0); 1023 1024 if (kdi_range_overlap(va, sz, PIOMAPBASE, PIOMAPSIZE)) 1025 return (va < PIOMAPBASE ? PIOMAPBASE - va : 0); 1026 1027 return (sz); /* no overlap */ 1028 } 1029 1030 /* 1031 * Minimum physmem required for enabling large pages for kernel heap 1032 * Currently we do not enable lp for kmem on systems with less 1033 * than 1GB of memory. This value can be changed via /etc/system 1034 */ 1035 size_t segkmem_lpminphysmem = 0x40000000; /* 1GB */ 1036 1037 /* 1038 * this function chooses large page size for kernel heap 1039 */ 1040 size_t 1041 get_segkmem_lpsize(size_t lpsize) 1042 { 1043 size_t memtotal = physmem * PAGESIZE; 1044 size_t mmusz; 1045 uint_t szc; 1046 1047 if (memtotal < segkmem_lpminphysmem) 1048 return (PAGESIZE); 1049 1050 if (plat_lpkmem_is_supported != NULL && 1051 plat_lpkmem_is_supported() == 0) 1052 return (PAGESIZE); 1053 1054 mmusz = mmu_get_kernel_lpsize(lpsize); 1055 szc = page_szc(mmusz); 1056 1057 while (szc) { 1058 if (!(disable_large_pages & (1 << szc))) 1059 return (page_get_pagesize(szc)); 1060 szc--; 1061 } 1062 return (PAGESIZE); 1063 } 1064