xref: /titanic_41/usr/src/uts/sun4/vm/vm_dep.c (revision 450396635f70344c58b6b1e4db38cf17ff34445c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * UNIX machine dependent virtual memory support.
30  */
31 
32 #include <sys/vm.h>
33 #include <sys/exec.h>
34 
35 #include <sys/exechdr.h>
36 #include <vm/seg_kmem.h>
37 #include <sys/atomic.h>
38 #include <sys/archsystm.h>
39 #include <sys/machsystm.h>
40 #include <sys/kdi.h>
41 #include <sys/cpu_module.h>
42 
43 #include <vm/hat_sfmmu.h>
44 
45 #include <sys/memnode.h>
46 
47 #include <sys/mem_config.h>
48 #include <sys/mem_cage.h>
49 #include <vm/vm_dep.h>
50 #include <vm/page.h>
51 #include <sys/platform_module.h>
52 
53 /*
54  * These variables are set by module specific config routines.
55  * They are only set by modules which will use physical cache page coloring.
56  */
57 int do_pg_coloring = 0;
58 
59 /*
60  * These variables can be conveniently patched at kernel load time to
61  * prevent do_pg_coloring from being enabled by
62  * module specific config routines.
63  */
64 
65 int use_page_coloring = 1;
66 
67 /*
68  * initialized by page_coloring_init()
69  */
70 extern uint_t page_colors;
71 extern uint_t page_colors_mask;
72 extern uint_t page_coloring_shift;
73 int cpu_page_colors;
74 uint_t vac_colors = 0;
75 uint_t vac_colors_mask = 0;
76 
77 /* cpu specific coloring initialization */
78 extern void page_coloring_init_cpu();
79 #pragma weak page_coloring_init_cpu
80 
81 /*
82  * get the ecache setsize for the current cpu.
83  */
84 #define	CPUSETSIZE()	(cpunodes[CPU->cpu_id].ecache_setsize)
85 
86 plcnt_t		plcnt;		/* page list count */
87 
88 /*
89  * This variable is set by the cpu module to contain the lowest
90  * address not affected by the SF_ERRATA_57 workaround.  It should
91  * remain 0 if the workaround is not needed.
92  */
93 #if defined(SF_ERRATA_57)
94 caddr_t errata57_limit;
95 #endif
96 
97 extern void page_relocate_hash(page_t *, page_t *);
98 
99 /*
100  * these must be defined in platform specific areas
101  */
102 extern void map_addr_proc(caddr_t *, size_t, offset_t, int, caddr_t,
103 	struct proc *, uint_t);
104 extern page_t *page_get_freelist(struct vnode *, u_offset_t, struct seg *,
105 	caddr_t, size_t, uint_t, struct lgrp *);
106 /*
107  * Convert page frame number to an OBMEM page frame number
108  * (i.e. put in the type bits -- zero for this implementation)
109  */
110 pfn_t
111 impl_obmem_pfnum(pfn_t pf)
112 {
113 	return (pf);
114 }
115 
116 /*
117  * Use physmax to determine the highest physical page of DRAM memory
118  * It is assumed that any physical addresses above physmax is in IO space.
119  * We don't bother checking the low end because we assume that memory space
120  * begins at physical page frame 0.
121  *
122  * Return 1 if the page frame is onboard DRAM memory, else 0.
123  * Returns 0 for nvram so it won't be cached.
124  */
125 int
126 pf_is_memory(pfn_t pf)
127 {
128 	/* We must be IO space */
129 	if (pf > physmax)
130 		return (0);
131 
132 	/* We must be memory space */
133 	return (1);
134 }
135 
136 /*
137  * Handle a pagefault.
138  */
139 faultcode_t
140 pagefault(caddr_t addr, enum fault_type type, enum seg_rw rw, int iskernel)
141 {
142 	struct as *as;
143 	struct proc *p;
144 	faultcode_t res;
145 	caddr_t base;
146 	size_t len;
147 	int err;
148 
149 	if (INVALID_VADDR(addr))
150 		return (FC_NOMAP);
151 
152 	if (iskernel) {
153 		as = &kas;
154 	} else {
155 		p = curproc;
156 		as = p->p_as;
157 #if defined(SF_ERRATA_57)
158 		/*
159 		 * Prevent infinite loops due to a segment driver
160 		 * setting the execute permissions and the sfmmu hat
161 		 * silently ignoring them.
162 		 */
163 		if (rw == S_EXEC && AS_TYPE_64BIT(as) &&
164 		    addr < errata57_limit) {
165 			res = FC_NOMAP;
166 			goto out;
167 		}
168 #endif
169 	}
170 
171 	/*
172 	 * Dispatch pagefault.
173 	 */
174 	res = as_fault(as->a_hat, as, addr, 1, type, rw);
175 
176 	/*
177 	 * If this isn't a potential unmapped hole in the user's
178 	 * UNIX data or stack segments, just return status info.
179 	 */
180 	if (!(res == FC_NOMAP && iskernel == 0))
181 		goto out;
182 
183 	/*
184 	 * Check to see if we happened to faulted on a currently unmapped
185 	 * part of the UNIX data or stack segments.  If so, create a zfod
186 	 * mapping there and then try calling the fault routine again.
187 	 */
188 	base = p->p_brkbase;
189 	len = p->p_brksize;
190 
191 	if (addr < base || addr >= base + len) {		/* data seg? */
192 		base = (caddr_t)(p->p_usrstack - p->p_stksize);
193 		len = p->p_stksize;
194 		if (addr < base || addr >= p->p_usrstack) {	/* stack seg? */
195 			/* not in either UNIX data or stack segments */
196 			res = FC_NOMAP;
197 			goto out;
198 		}
199 	}
200 
201 	/* the rest of this function implements a 3.X 4.X 5.X compatibility */
202 	/* This code is probably not needed anymore */
203 
204 	/* expand the gap to the page boundaries on each side */
205 	len = (((uintptr_t)base + len + PAGEOFFSET) & PAGEMASK) -
206 	    ((uintptr_t)base & PAGEMASK);
207 	base = (caddr_t)((uintptr_t)base & PAGEMASK);
208 
209 	as_rangelock(as);
210 	as_purge(as);
211 	if (as_gap(as, PAGESIZE, &base, &len, AH_CONTAIN, addr) == 0) {
212 		err = as_map(as, base, len, segvn_create, zfod_argsp);
213 		as_rangeunlock(as);
214 		if (err) {
215 			res = FC_MAKE_ERR(err);
216 			goto out;
217 		}
218 	} else {
219 		/*
220 		 * This page is already mapped by another thread after we
221 		 * returned from as_fault() above.  We just fallthrough
222 		 * as_fault() below.
223 		 */
224 		as_rangeunlock(as);
225 	}
226 
227 	res = as_fault(as->a_hat, as, addr, 1, F_INVAL, rw);
228 
229 out:
230 
231 	return (res);
232 }
233 
234 /*
235  * This is the routine which defines the address limit implied
236  * by the flag '_MAP_LOW32'.  USERLIMIT32 matches the highest
237  * mappable address in a 32-bit process on this platform (though
238  * perhaps we should make it be UINT32_MAX here?)
239  */
240 void
241 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
242 {
243 	struct proc *p = curproc;
244 	caddr_t userlimit = flags & _MAP_LOW32 ?
245 	    (caddr_t)USERLIMIT32 : p->p_as->a_userlimit;
246 	map_addr_proc(addrp, len, off, vacalign, userlimit, p, flags);
247 }
248 
249 /*
250  * Some V9 CPUs have holes in the middle of the 64-bit virtual address range.
251  */
252 caddr_t	hole_start, hole_end;
253 
254 /*
255  * kpm mapping window
256  */
257 caddr_t kpm_vbase;
258 size_t  kpm_size;
259 uchar_t kpm_size_shift;
260 
261 int valid_va_range_aligned_wraparound;
262 /*
263  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
264  * addresses at least "minlen" long, where the base of the range is at "off"
265  * phase from an "align" boundary and there is space for a "redzone"-sized
266  * redzone on either side of the range.  On success, 1 is returned and *basep
267  * and *lenp are adjusted to describe the acceptable range (including
268  * the redzone).  On failure, 0 is returned.
269  */
270 int
271 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir,
272     size_t align, size_t redzone, size_t off)
273 {
274 	caddr_t hi, lo;
275 	size_t tot_len;
276 
277 	ASSERT(align == 0 ? off == 0 : off < align);
278 	ASSERT(ISP2(align));
279 	ASSERT(align == 0 || align >= PAGESIZE);
280 
281 	lo = *basep;
282 	hi = lo + *lenp;
283 	tot_len = minlen + 2 * redzone;	/* need at least this much space */
284 
285 	/* If hi rolled over the top try cutting back. */
286 	if (hi < lo) {
287 		*lenp = 0UL - (uintptr_t)lo - 1UL;
288 		/* Trying to see if this really happens, and then if so, why */
289 		valid_va_range_aligned_wraparound++;
290 		hi = lo + *lenp;
291 	}
292 	if (*lenp < tot_len) {
293 		return (0);
294 	}
295 
296 	/*
297 	 * Deal with a possible hole in the address range between
298 	 * hole_start and hole_end that should never be mapped by the MMU.
299 	 */
300 
301 	if (lo < hole_start) {
302 		if (hi > hole_start)
303 			if (hi < hole_end)
304 				hi = hole_start;
305 			else
306 				/* lo < hole_start && hi >= hole_end */
307 				if (dir == AH_LO) {
308 					/*
309 					 * prefer lowest range
310 					 */
311 					if (hole_start - lo >= tot_len)
312 						hi = hole_start;
313 					else if (hi - hole_end >= tot_len)
314 						lo = hole_end;
315 					else
316 						return (0);
317 				} else {
318 					/*
319 					 * prefer highest range
320 					 */
321 					if (hi - hole_end >= tot_len)
322 						lo = hole_end;
323 					else if (hole_start - lo >= tot_len)
324 						hi = hole_start;
325 					else
326 						return (0);
327 				}
328 	} else {
329 		/* lo >= hole_start */
330 		if (hi < hole_end)
331 			return (0);
332 		if (lo < hole_end)
333 			lo = hole_end;
334 	}
335 
336 	/* Check if remaining length is too small */
337 	if (hi - lo < tot_len) {
338 		return (0);
339 	}
340 	if (align > 1) {
341 		caddr_t tlo = lo + redzone;
342 		caddr_t thi = hi - redzone;
343 		tlo = (caddr_t)P2PHASEUP((uintptr_t)tlo, align, off);
344 		if (tlo < lo + redzone) {
345 			return (0);
346 		}
347 		if (thi < tlo || thi - tlo < minlen) {
348 			return (0);
349 		}
350 	}
351 	*basep = lo;
352 	*lenp = hi - lo;
353 	return (1);
354 }
355 
356 /*
357  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
358  * addresses at least "minlen" long.  On success, 1 is returned and *basep
359  * and *lenp are adjusted to describe the acceptable range.  On failure, 0
360  * is returned.
361  */
362 int
363 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
364 {
365 	return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0));
366 }
367 
368 /*
369  * Determine whether [addr, addr+len] with protections `prot' are valid
370  * for a user address space.
371  */
372 /*ARGSUSED*/
373 int
374 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
375     caddr_t userlimit)
376 {
377 	caddr_t eaddr = addr + len;
378 
379 	if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
380 		return (RANGE_BADADDR);
381 
382 	/*
383 	 * Determine if the address range falls within an illegal
384 	 * range of the MMU.
385 	 */
386 	if (eaddr > hole_start && addr < hole_end)
387 		return (RANGE_BADADDR);
388 
389 #if defined(SF_ERRATA_57)
390 	/*
391 	 * Make sure USERLIMIT isn't raised too high
392 	 */
393 	ASSERT64(addr <= (caddr_t)0xffffffff80000000ul ||
394 	    errata57_limit == 0);
395 
396 	if (AS_TYPE_64BIT(as) &&
397 	    (addr < errata57_limit) &&
398 	    (prot & PROT_EXEC))
399 		return (RANGE_BADPROT);
400 #endif /* SF_ERRATA57 */
401 	return (RANGE_OKAY);
402 }
403 
404 /*
405  * Routine used to check to see if an a.out can be executed
406  * by the current machine/architecture.
407  */
408 int
409 chkaout(struct exdata *exp)
410 {
411 	if (exp->ux_mach == M_SPARC)
412 		return (0);
413 	else
414 		return (ENOEXEC);
415 }
416 
417 /*
418  * The following functions return information about an a.out
419  * which is used when a program is executed.
420  */
421 
422 /*
423  * Return the load memory address for the data segment.
424  */
425 caddr_t
426 getdmem(struct exec *exp)
427 {
428 	/*
429 	 * XXX - Sparc Reference Hack approaching
430 	 * Remember that we are loading
431 	 * 8k executables into a 4k machine
432 	 * DATA_ALIGN == 2 * PAGESIZE
433 	 */
434 	if (exp->a_text)
435 		return ((caddr_t)(roundup(USRTEXT + exp->a_text, DATA_ALIGN)));
436 	else
437 		return ((caddr_t)USRTEXT);
438 }
439 
440 /*
441  * Return the starting disk address for the data segment.
442  */
443 ulong_t
444 getdfile(struct exec *exp)
445 {
446 	if (exp->a_magic == ZMAGIC)
447 		return (exp->a_text);
448 	else
449 		return (sizeof (struct exec) + exp->a_text);
450 }
451 
452 /*
453  * Return the load memory address for the text segment.
454  */
455 
456 /*ARGSUSED*/
457 caddr_t
458 gettmem(struct exec *exp)
459 {
460 	return ((caddr_t)USRTEXT);
461 }
462 
463 /*
464  * Return the file byte offset for the text segment.
465  */
466 uint_t
467 gettfile(struct exec *exp)
468 {
469 	if (exp->a_magic == ZMAGIC)
470 		return (0);
471 	else
472 		return (sizeof (struct exec));
473 }
474 
475 void
476 getexinfo(
477 	struct exdata *edp_in,
478 	struct exdata *edp_out,
479 	int *pagetext,
480 	int *pagedata)
481 {
482 	*edp_out = *edp_in;	/* structure copy */
483 
484 	if ((edp_in->ux_mag == ZMAGIC) &&
485 	    ((edp_in->vp->v_flag & VNOMAP) == 0)) {
486 		*pagetext = 1;
487 		*pagedata = 1;
488 	} else {
489 		*pagetext = 0;
490 		*pagedata = 0;
491 	}
492 }
493 
494 /*
495  * Return non 0 value if the address may cause a VAC alias with KPM mappings.
496  * KPM selects an address such that it's equal offset modulo shm_alignment and
497  * assumes it can't be in VAC conflict with any larger than PAGESIZE mapping.
498  */
499 int
500 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
501 {
502 	if (vac) {
503 		return (((uintptr_t)addr ^ off) & shm_alignment - 1);
504 	} else {
505 		return (0);
506 	}
507 }
508 
509 /*
510  * Sanity control. Don't use large pages regardless of user
511  * settings if there's less than priv or shm_lpg_min_physmem memory installed.
512  * The units for this variable is 8K pages.
513  */
514 pgcnt_t shm_lpg_min_physmem = 131072;			/* 1GB */
515 pgcnt_t privm_lpg_min_physmem = 131072;			/* 1GB */
516 
517 static size_t
518 map_pgszheap(struct proc *p, caddr_t addr, size_t len)
519 {
520 	size_t		pgsz = MMU_PAGESIZE;
521 	int		szc;
522 
523 	/*
524 	 * If len is zero, retrieve from proc and don't demote the page size.
525 	 * Use atleast the default pagesize.
526 	 */
527 	if (len == 0) {
528 		len = p->p_brkbase + p->p_brksize - p->p_bssbase;
529 	}
530 	len = MAX(len, default_uheap_lpsize);
531 
532 	for (szc = mmu_page_sizes - 1; szc >= 0; szc--) {
533 		pgsz = hw_page_array[szc].hp_size;
534 		if ((disable_auto_data_large_pages & (1 << szc)) ||
535 		    pgsz > max_uheap_lpsize)
536 			continue;
537 		if (len >= pgsz) {
538 			break;
539 		}
540 	}
541 
542 	/*
543 	 * If addr == 0 we were called by memcntl() when the
544 	 * size code is 0.  Don't set pgsz less than current size.
545 	 */
546 	if (addr == 0 && (pgsz < hw_page_array[p->p_brkpageszc].hp_size)) {
547 		pgsz = hw_page_array[p->p_brkpageszc].hp_size;
548 	}
549 
550 	return (pgsz);
551 }
552 
553 static size_t
554 map_pgszstk(struct proc *p, caddr_t addr, size_t len)
555 {
556 	size_t		pgsz = MMU_PAGESIZE;
557 	int		szc;
558 
559 	/*
560 	 * If len is zero, retrieve from proc and don't demote the page size.
561 	 * Use atleast the default pagesize.
562 	 */
563 	if (len == 0) {
564 		len = p->p_stksize;
565 	}
566 	len = MAX(len, default_ustack_lpsize);
567 
568 	for (szc = mmu_page_sizes - 1; szc >= 0; szc--) {
569 		pgsz = hw_page_array[szc].hp_size;
570 		if ((disable_auto_data_large_pages & (1 << szc)) ||
571 		    pgsz > max_ustack_lpsize)
572 			continue;
573 		if (len >= pgsz) {
574 			break;
575 		}
576 	}
577 
578 	/*
579 	 * If addr == 0 we were called by memcntl() or exec_args() when the
580 	 * size code is 0.  Don't set pgsz less than current size.
581 	 */
582 	if (addr == 0 && (pgsz < hw_page_array[p->p_stkpageszc].hp_size)) {
583 		pgsz = hw_page_array[p->p_stkpageszc].hp_size;
584 	}
585 
586 	return (pgsz);
587 }
588 
589 static size_t
590 map_pgszism(caddr_t addr, size_t len)
591 {
592 	uint_t szc;
593 	size_t pgsz;
594 
595 	for (szc = mmu_page_sizes - 1; szc >= TTE4M; szc--) {
596 		if (disable_ism_large_pages & (1 << szc))
597 			continue;
598 
599 		pgsz = hw_page_array[szc].hp_size;
600 		if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz))
601 			return (pgsz);
602 	}
603 
604 	return (DEFAULT_ISM_PAGESIZE);
605 }
606 
607 /*
608  * Suggest a page size to be used to map a segment of type maptype and length
609  * len.  Returns a page size (not a size code).
610  */
611 /* ARGSUSED */
612 size_t
613 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
614 {
615 	size_t	pgsz = MMU_PAGESIZE;
616 
617 	ASSERT(maptype != MAPPGSZ_VA);
618 
619 	if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
620 		return (MMU_PAGESIZE);
621 	}
622 
623 	switch (maptype) {
624 	case MAPPGSZ_ISM:
625 		pgsz = map_pgszism(addr, len);
626 		break;
627 
628 	case MAPPGSZ_STK:
629 		if (max_ustack_lpsize > MMU_PAGESIZE) {
630 			pgsz = map_pgszstk(p, addr, len);
631 		}
632 		break;
633 
634 	case MAPPGSZ_HEAP:
635 		if (max_uheap_lpsize > MMU_PAGESIZE) {
636 			pgsz = map_pgszheap(p, addr, len);
637 		}
638 		break;
639 	}
640 	return (pgsz);
641 }
642 
643 
644 /* assumes TTE8K...TTE4M == szc */
645 
646 static uint_t
647 map_szcvec(caddr_t addr, size_t size, uintptr_t off, int disable_lpgs,
648     size_t max_lpsize, size_t min_physmem)
649 {
650 	caddr_t eaddr = addr + size;
651 	uint_t szcvec = 0;
652 	caddr_t raddr;
653 	caddr_t readdr;
654 	size_t pgsz;
655 	int i;
656 
657 	if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
658 		return (0);
659 	}
660 	for (i = mmu_page_sizes - 1; i > 0; i--) {
661 		if (disable_lpgs & (1 << i)) {
662 			continue;
663 		}
664 		pgsz = page_get_pagesize(i);
665 		if (pgsz > max_lpsize) {
666 			continue;
667 		}
668 		raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
669 		readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
670 		if (raddr < addr || raddr >= readdr) {
671 			continue;
672 		}
673 		if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
674 			continue;
675 		}
676 		szcvec |= (1 << i);
677 		/*
678 		 * And or in the remaining enabled page sizes.
679 		 */
680 		szcvec |= P2PHASE(~disable_lpgs, (1 << i));
681 		szcvec &= ~1; /* no need to return 8K pagesize */
682 		break;
683 	}
684 	return (szcvec);
685 }
686 
687 /*
688  * Return a bit vector of large page size codes that
689  * can be used to map [addr, addr + len) region.
690  */
691 /* ARGSUSED */
692 uint_t
693 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
694     int memcntl)
695 {
696 	if (flags & MAP_TEXT) {
697 		return (map_szcvec(addr, size, off,
698 		    disable_auto_text_large_pages,
699 		    max_utext_lpsize, shm_lpg_min_physmem));
700 
701 	} else if (flags & MAP_INITDATA) {
702 		return (map_szcvec(addr, size, off,
703 		    disable_auto_data_large_pages,
704 		    max_uidata_lpsize, privm_lpg_min_physmem));
705 
706 	} else if (type == MAPPGSZC_SHM) {
707 		return (map_szcvec(addr, size, off,
708 		    disable_auto_data_large_pages,
709 		    max_shm_lpsize, shm_lpg_min_physmem));
710 
711 	} else if (type == MAPPGSZC_HEAP) {
712 		return (map_szcvec(addr, size, off,
713 		    disable_auto_data_large_pages,
714 		    max_uheap_lpsize, privm_lpg_min_physmem));
715 
716 	} else if (type == MAPPGSZC_STACK) {
717 		return (map_szcvec(addr, size, off,
718 		    disable_auto_data_large_pages,
719 		    max_ustack_lpsize, privm_lpg_min_physmem));
720 
721 	} else {
722 		return (map_szcvec(addr, size, off,
723 		    disable_auto_data_large_pages,
724 		    max_privmap_lpsize, privm_lpg_min_physmem));
725 	}
726 }
727 
728 /*
729  * Anchored in the table below are counters used to keep track
730  * of free contiguous physical memory. Each element of the table contains
731  * the array of counters, the size of array which is allocated during
732  * startup based on physmax and a shift value used to convert a pagenum
733  * into a counter array index or vice versa. The table has page size
734  * for rows and region size for columns:
735  *
736  *	page_counters[page_size][region_size]
737  *
738  *	page_size: 	TTE size code of pages on page_size freelist.
739  *
740  *	region_size:	TTE size code of a candidate larger page made up
741  *			made up of contiguous free page_size pages.
742  *
743  * As you go across a page_size row increasing region_size each
744  * element keeps track of how many (region_size - 1) size groups
745  * made up of page_size free pages can be coalesced into a
746  * regsion_size page. Yuck! Lets try an example:
747  *
748  * 	page_counters[1][3] is the table element used for identifying
749  *	candidate 4M pages from contiguous pages off the 64K free list.
750  *	Each index in the page_counters[1][3].array spans 4M. Its the
751  *	number of free 512K size (regsion_size - 1) groups of contiguous
752  *	64K free pages.	So when page_counters[1][3].counters[n] == 8
753  *	we know we have a candidate 4M page made up of 512K size groups
754  *	of 64K free pages.
755  */
756 
757 /*
758  * Per page size free lists. 3rd (max_mem_nodes) and 4th (page coloring bins)
759  * dimensions are allocated dynamically.
760  */
761 page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES];
762 
763 /*
764  * For now there is only a single size cache list.
765  * Allocated dynamically.
766  */
767 page_t ***page_cachelists[MAX_MEM_TYPES];
768 
769 kmutex_t *fpc_mutex[NPC_MUTEX];
770 kmutex_t *cpc_mutex[NPC_MUTEX];
771 
772 /*
773  * Calculate space needed for page freelists and counters
774  */
775 size_t
776 calc_free_pagelist_sz(void)
777 {
778 	int szc;
779 	size_t alloc_sz, cache_sz, free_sz;
780 
781 	/*
782 	 * one cachelist per color, node, and type
783 	 */
784 	cache_sz = (page_get_pagecolors(0) * sizeof (page_t *)) +
785 	    sizeof (page_t **);
786 	cache_sz *= max_mem_nodes * MAX_MEM_TYPES;
787 
788 	/*
789 	 * one freelist per size, color, node, and type
790 	 */
791 	free_sz = sizeof (page_t **);
792 	for (szc = 0; szc < mmu_page_sizes; szc++)
793 		free_sz += sizeof (page_t *) * page_get_pagecolors(szc);
794 	free_sz *= max_mem_nodes * MAX_MEM_TYPES;
795 
796 	alloc_sz = cache_sz + free_sz + page_ctrs_sz();
797 	return (alloc_sz);
798 }
799 
800 caddr_t
801 alloc_page_freelists(caddr_t alloc_base)
802 {
803 	int	mnode, mtype;
804 	int	szc, clrs;
805 
806 	/*
807 	 * We only support small pages in the cachelist.
808 	 */
809 	for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) {
810 		page_cachelists[mtype] = (page_t ***)alloc_base;
811 		alloc_base += (max_mem_nodes * sizeof (page_t **));
812 		for (mnode = 0; mnode < max_mem_nodes; mnode++) {
813 			page_cachelists[mtype][mnode] = (page_t **)alloc_base;
814 			alloc_base +=
815 			    (page_get_pagecolors(0) * sizeof (page_t *));
816 		}
817 	}
818 
819 	/*
820 	 * Allocate freelists bins for all
821 	 * supported page sizes.
822 	 */
823 	for (szc = 0; szc < mmu_page_sizes; szc++) {
824 		clrs = page_get_pagecolors(szc);
825 		for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) {
826 			page_freelists[szc][mtype] = (page_t ***)alloc_base;
827 			alloc_base += (max_mem_nodes * sizeof (page_t **));
828 			for (mnode = 0; mnode < max_mem_nodes; mnode++) {
829 				page_freelists[szc][mtype][mnode] =
830 				    (page_t **)alloc_base;
831 				alloc_base += (clrs * (sizeof (page_t *)));
832 			}
833 		}
834 	}
835 
836 	alloc_base = page_ctrs_alloc(alloc_base);
837 	return (alloc_base);
838 }
839 
840 /*
841  * Allocate page_freelists locks for a memnode from the nucleus data
842  * area. This is the first time that mmu_page_sizes is used during
843  * bootup, so check mmu_page_sizes initialization.
844  */
845 int
846 ndata_alloc_page_mutexs(struct memlist *ndata)
847 {
848 	size_t alloc_sz;
849 	caddr_t alloc_base;
850 	int	i;
851 	void	page_coloring_init();
852 
853 	page_coloring_init();
854 	if (&mmu_init_mmu_page_sizes) {
855 		if (!mmu_init_mmu_page_sizes(0)) {
856 			cmn_err(CE_PANIC, "mmu_page_sizes %d not initialized",
857 			    mmu_page_sizes);
858 		}
859 	}
860 	ASSERT(mmu_page_sizes >= DEFAULT_MMU_PAGE_SIZES);
861 
862 	/* fpc_mutex and cpc_mutex */
863 	alloc_sz = 2 * NPC_MUTEX * max_mem_nodes * sizeof (kmutex_t);
864 
865 	alloc_base = ndata_alloc(ndata, alloc_sz, ecache_alignsize);
866 	if (alloc_base == NULL)
867 		return (-1);
868 
869 	ASSERT(((uintptr_t)alloc_base & (ecache_alignsize - 1)) == 0);
870 
871 	for (i = 0; i < NPC_MUTEX; i++) {
872 		fpc_mutex[i] = (kmutex_t *)alloc_base;
873 		alloc_base += (sizeof (kmutex_t) * max_mem_nodes);
874 		cpc_mutex[i] = (kmutex_t *)alloc_base;
875 		alloc_base += (sizeof (kmutex_t) * max_mem_nodes);
876 	}
877 	return (0);
878 }
879 
880 /*
881  * To select our starting bin, we stride through the bins with a stride
882  * of 337.  Why 337?  It's prime, it's largeish, and it performs well both
883  * in simulation and practice for different workloads on varying cache sizes.
884  */
885 uint32_t color_start_current = 0;
886 uint32_t color_start_stride = 337;
887 int color_start_random = 0;
888 
889 /* ARGSUSED */
890 uint_t
891 get_color_start(struct as *as)
892 {
893 	uint32_t old, new;
894 
895 	if (consistent_coloring == 2 || color_start_random) {
896 		return ((uint_t)(((gettick()) << (vac_shift - MMU_PAGESHIFT)) &
897 		    (hw_page_array[0].hp_colors - 1)));
898 	}
899 
900 	do {
901 		old = color_start_current;
902 		new = old + (color_start_stride << (vac_shift - MMU_PAGESHIFT));
903 	} while (cas32(&color_start_current, old, new) != old);
904 
905 	return ((uint_t)(new));
906 }
907 
908 /*
909  * Called once at startup from kphysm_init() -- before memialloc()
910  * is invoked to do the 1st page_free()/page_freelist_add().
911  *
912  * initializes page_colors and page_colors_mask based on ecache_setsize.
913  *
914  * Also initializes the counter locks.
915  */
916 void
917 page_coloring_init()
918 {
919 	int	a, i;
920 	uint_t colors;
921 
922 	if (do_pg_coloring == 0) {
923 		page_colors = 1;
924 		for (i = 0; i < mmu_page_sizes; i++) {
925 			colorequivszc[i] = 0;
926 			hw_page_array[i].hp_colors = 1;
927 		}
928 		return;
929 	}
930 
931 	/*
932 	 * Calculate page_colors from ecache_setsize. ecache_setsize contains
933 	 * the max ecache setsize of all cpus configured in the system or, for
934 	 * cheetah+ systems, the max possible ecache setsize for all possible
935 	 * cheetah+ cpus.
936 	 */
937 	page_colors = ecache_setsize / MMU_PAGESIZE;
938 	page_colors_mask = page_colors - 1;
939 
940 	vac_colors = vac_size / MMU_PAGESIZE;
941 	vac_colors_mask = vac_colors -1;
942 
943 	page_coloring_shift = 0;
944 	a = ecache_setsize;
945 	while (a >>= 1) {
946 		page_coloring_shift++;
947 	}
948 
949 	/* initialize number of colors per page size */
950 	for (i = 0; i < mmu_page_sizes; i++) {
951 		hw_page_array[i].hp_colors = (page_colors_mask >>
952 		    (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
953 		    + 1;
954 		colorequivszc[i] = 0;
955 	}
956 
957 	/*
958 	 * initialize cpu_page_colors if ecache setsizes are homogenous.
959 	 * cpu_page_colors set to -1 during DR operation or during startup
960 	 * if setsizes are heterogenous.
961 	 *
962 	 * The value of cpu_page_colors determines if additional color bins
963 	 * need to be checked for a particular color in the page_get routines.
964 	 */
965 	if (cpu_setsize > 0 && cpu_page_colors == 0 &&
966 	    cpu_setsize < ecache_setsize) {
967 		cpu_page_colors = cpu_setsize / MMU_PAGESIZE;
968 		a = lowbit(page_colors) - lowbit(cpu_page_colors);
969 		ASSERT(a > 0);
970 		ASSERT(a < 16);
971 
972 		for (i = 0; i < mmu_page_sizes; i++) {
973 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
974 				continue;
975 			}
976 			while ((colors >> a) == 0)
977 				a--;
978 			ASSERT(a >= 0);
979 
980 			/* higher 4 bits encodes color equiv mask */
981 			colorequivszc[i] = (a << 4);
982 		}
983 	}
984 
985 	/* do cpu specific color initialization */
986 	if (&page_coloring_init_cpu) {
987 		page_coloring_init_cpu();
988 	}
989 }
990 
991 int
992 bp_color(struct buf *bp)
993 {
994 	int color = -1;
995 
996 	if (vac) {
997 		if ((bp->b_flags & B_PAGEIO) != 0) {
998 			color = sfmmu_get_ppvcolor(bp->b_pages);
999 		} else if (bp->b_un.b_addr != NULL) {
1000 			color = sfmmu_get_addrvcolor(bp->b_un.b_addr);
1001 		}
1002 	}
1003 	return (color < 0 ? 0 : ptob(color));
1004 }
1005 
1006 /*
1007  * Create & Initialise pageout scanner thread. The thread has to
1008  * start at procedure with process pp and priority pri.
1009  */
1010 void
1011 pageout_init(void (*procedure)(), proc_t *pp, pri_t pri)
1012 {
1013 	(void) thread_create(NULL, 0, procedure, NULL, 0, pp, TS_RUN, pri);
1014 }
1015 
1016 /*
1017  * Function for flushing D-cache when performing module relocations
1018  * to an alternate mapping.  Stubbed out on all platforms except sun4u,
1019  * at least for now.
1020  */
1021 void
1022 dcache_flushall()
1023 {
1024 	sfmmu_cache_flushall();
1025 }
1026 
1027 static int
1028 kdi_range_overlap(uintptr_t va1, size_t sz1, uintptr_t va2, size_t sz2)
1029 {
1030 	if (va1 < va2 && va1 + sz1 <= va2)
1031 		return (0);
1032 
1033 	if (va2 < va1 && va2 + sz2 <= va1)
1034 		return (0);
1035 
1036 	return (1);
1037 }
1038 
1039 /*
1040  * Return the number of bytes, relative to the beginning of a given range, that
1041  * are non-toxic (can be read from and written to with relative impunity).
1042  */
1043 size_t
1044 kdi_range_is_nontoxic(uintptr_t va, size_t sz, int write)
1045 {
1046 	/* OBP reads are harmless, but we don't want people writing there */
1047 	if (write && kdi_range_overlap(va, sz, OFW_START_ADDR, OFW_END_ADDR -
1048 	    OFW_START_ADDR + 1))
1049 		return (va < OFW_START_ADDR ? OFW_START_ADDR - va : 0);
1050 
1051 	if (kdi_range_overlap(va, sz, PIOMAPBASE, PIOMAPSIZE))
1052 		return (va < PIOMAPBASE ? PIOMAPBASE - va : 0);
1053 
1054 	return (sz); /* no overlap */
1055 }
1056 
1057 /*
1058  * Minimum physmem required for enabling large pages for kernel heap
1059  * Currently we do not enable lp for kmem on systems with less
1060  * than 1GB of memory. This value can be changed via /etc/system
1061  */
1062 size_t segkmem_lpminphysmem = 0x40000000;	/* 1GB */
1063 
1064 /*
1065  * this function chooses large page size for kernel heap
1066  */
1067 size_t
1068 get_segkmem_lpsize(size_t lpsize)
1069 {
1070 	size_t memtotal = physmem * PAGESIZE;
1071 	size_t mmusz;
1072 	uint_t szc;
1073 
1074 	if (memtotal < segkmem_lpminphysmem)
1075 		return (PAGESIZE);
1076 
1077 	if (plat_lpkmem_is_supported != NULL &&
1078 	    plat_lpkmem_is_supported() == 0)
1079 		return (PAGESIZE);
1080 
1081 	mmusz = mmu_get_kernel_lpsize(lpsize);
1082 	szc = page_szc(mmusz);
1083 
1084 	while (szc) {
1085 		if (!(disable_large_pages & (1 << szc)))
1086 			return (page_get_pagesize(szc));
1087 		szc--;
1088 	}
1089 	return (PAGESIZE);
1090 }
1091