1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * UNIX machine dependent virtual memory support. 30 */ 31 32 #include <sys/vm.h> 33 #include <sys/exec.h> 34 35 #include <sys/exechdr.h> 36 #include <vm/seg_kmem.h> 37 #include <sys/atomic.h> 38 #include <sys/archsystm.h> 39 #include <sys/machsystm.h> 40 #include <sys/kdi.h> 41 #include <sys/cpu_module.h> 42 43 #include <vm/hat_sfmmu.h> 44 45 #include <sys/memnode.h> 46 47 #include <sys/mem_config.h> 48 #include <sys/mem_cage.h> 49 #include <vm/vm_dep.h> 50 #include <vm/page.h> 51 #include <sys/platform_module.h> 52 53 /* 54 * These variables are set by module specific config routines. 55 * They are only set by modules which will use physical cache page coloring. 56 */ 57 int do_pg_coloring = 0; 58 59 /* 60 * These variables can be conveniently patched at kernel load time to 61 * prevent do_pg_coloring from being enabled by 62 * module specific config routines. 63 */ 64 65 int use_page_coloring = 1; 66 67 /* 68 * initialized by page_coloring_init() 69 */ 70 extern uint_t page_colors; 71 extern uint_t page_colors_mask; 72 extern uint_t page_coloring_shift; 73 int cpu_page_colors; 74 uint_t vac_colors = 0; 75 uint_t vac_colors_mask = 0; 76 77 /* cpu specific coloring initialization */ 78 extern void page_coloring_init_cpu(); 79 #pragma weak page_coloring_init_cpu 80 81 /* 82 * get the ecache setsize for the current cpu. 83 */ 84 #define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize) 85 86 plcnt_t plcnt; /* page list count */ 87 88 /* 89 * This variable is set by the cpu module to contain the lowest 90 * address not affected by the SF_ERRATA_57 workaround. It should 91 * remain 0 if the workaround is not needed. 92 */ 93 #if defined(SF_ERRATA_57) 94 caddr_t errata57_limit; 95 #endif 96 97 extern void page_relocate_hash(page_t *, page_t *); 98 99 /* 100 * these must be defined in platform specific areas 101 */ 102 extern void map_addr_proc(caddr_t *, size_t, offset_t, int, caddr_t, 103 struct proc *, uint_t); 104 extern page_t *page_get_freelist(struct vnode *, u_offset_t, struct seg *, 105 caddr_t, size_t, uint_t, struct lgrp *); 106 /* 107 * Convert page frame number to an OBMEM page frame number 108 * (i.e. put in the type bits -- zero for this implementation) 109 */ 110 pfn_t 111 impl_obmem_pfnum(pfn_t pf) 112 { 113 return (pf); 114 } 115 116 /* 117 * Use physmax to determine the highest physical page of DRAM memory 118 * It is assumed that any physical addresses above physmax is in IO space. 119 * We don't bother checking the low end because we assume that memory space 120 * begins at physical page frame 0. 121 * 122 * Return 1 if the page frame is onboard DRAM memory, else 0. 123 * Returns 0 for nvram so it won't be cached. 124 */ 125 int 126 pf_is_memory(pfn_t pf) 127 { 128 /* We must be IO space */ 129 if (pf > physmax) 130 return (0); 131 132 /* We must be memory space */ 133 return (1); 134 } 135 136 /* 137 * Handle a pagefault. 138 */ 139 faultcode_t 140 pagefault(caddr_t addr, enum fault_type type, enum seg_rw rw, int iskernel) 141 { 142 struct as *as; 143 struct proc *p; 144 faultcode_t res; 145 caddr_t base; 146 size_t len; 147 int err; 148 149 if (INVALID_VADDR(addr)) 150 return (FC_NOMAP); 151 152 if (iskernel) { 153 as = &kas; 154 } else { 155 p = curproc; 156 as = p->p_as; 157 #if defined(SF_ERRATA_57) 158 /* 159 * Prevent infinite loops due to a segment driver 160 * setting the execute permissions and the sfmmu hat 161 * silently ignoring them. 162 */ 163 if (rw == S_EXEC && AS_TYPE_64BIT(as) && 164 addr < errata57_limit) { 165 res = FC_NOMAP; 166 goto out; 167 } 168 #endif 169 } 170 171 /* 172 * Dispatch pagefault. 173 */ 174 res = as_fault(as->a_hat, as, addr, 1, type, rw); 175 176 /* 177 * If this isn't a potential unmapped hole in the user's 178 * UNIX data or stack segments, just return status info. 179 */ 180 if (!(res == FC_NOMAP && iskernel == 0)) 181 goto out; 182 183 /* 184 * Check to see if we happened to faulted on a currently unmapped 185 * part of the UNIX data or stack segments. If so, create a zfod 186 * mapping there and then try calling the fault routine again. 187 */ 188 base = p->p_brkbase; 189 len = p->p_brksize; 190 191 if (addr < base || addr >= base + len) { /* data seg? */ 192 base = (caddr_t)(p->p_usrstack - p->p_stksize); 193 len = p->p_stksize; 194 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 195 /* not in either UNIX data or stack segments */ 196 res = FC_NOMAP; 197 goto out; 198 } 199 } 200 201 /* the rest of this function implements a 3.X 4.X 5.X compatibility */ 202 /* This code is probably not needed anymore */ 203 204 /* expand the gap to the page boundaries on each side */ 205 len = (((uintptr_t)base + len + PAGEOFFSET) & PAGEMASK) - 206 ((uintptr_t)base & PAGEMASK); 207 base = (caddr_t)((uintptr_t)base & PAGEMASK); 208 209 as_rangelock(as); 210 as_purge(as); 211 if (as_gap(as, PAGESIZE, &base, &len, AH_CONTAIN, addr) == 0) { 212 err = as_map(as, base, len, segvn_create, zfod_argsp); 213 as_rangeunlock(as); 214 if (err) { 215 res = FC_MAKE_ERR(err); 216 goto out; 217 } 218 } else { 219 /* 220 * This page is already mapped by another thread after we 221 * returned from as_fault() above. We just fallthrough 222 * as_fault() below. 223 */ 224 as_rangeunlock(as); 225 } 226 227 res = as_fault(as->a_hat, as, addr, 1, F_INVAL, rw); 228 229 out: 230 231 return (res); 232 } 233 234 /* 235 * This is the routine which defines the address limit implied 236 * by the flag '_MAP_LOW32'. USERLIMIT32 matches the highest 237 * mappable address in a 32-bit process on this platform (though 238 * perhaps we should make it be UINT32_MAX here?) 239 */ 240 void 241 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 242 { 243 struct proc *p = curproc; 244 caddr_t userlimit = flags & _MAP_LOW32 ? 245 (caddr_t)USERLIMIT32 : p->p_as->a_userlimit; 246 map_addr_proc(addrp, len, off, vacalign, userlimit, p, flags); 247 } 248 249 /* 250 * Some V9 CPUs have holes in the middle of the 64-bit virtual address range. 251 */ 252 caddr_t hole_start, hole_end; 253 254 /* 255 * kpm mapping window 256 */ 257 caddr_t kpm_vbase; 258 size_t kpm_size; 259 uchar_t kpm_size_shift; 260 261 int valid_va_range_aligned_wraparound; 262 /* 263 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 264 * addresses at least "minlen" long, where the base of the range is at "off" 265 * phase from an "align" boundary and there is space for a "redzone"-sized 266 * redzone on either side of the range. On success, 1 is returned and *basep 267 * and *lenp are adjusted to describe the acceptable range (including 268 * the redzone). On failure, 0 is returned. 269 */ 270 int 271 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir, 272 size_t align, size_t redzone, size_t off) 273 { 274 caddr_t hi, lo; 275 size_t tot_len; 276 277 ASSERT(align == 0 ? off == 0 : off < align); 278 ASSERT(ISP2(align)); 279 ASSERT(align == 0 || align >= PAGESIZE); 280 281 lo = *basep; 282 hi = lo + *lenp; 283 tot_len = minlen + 2 * redzone; /* need at least this much space */ 284 285 /* If hi rolled over the top try cutting back. */ 286 if (hi < lo) { 287 *lenp = 0UL - (uintptr_t)lo - 1UL; 288 /* Trying to see if this really happens, and then if so, why */ 289 valid_va_range_aligned_wraparound++; 290 hi = lo + *lenp; 291 } 292 if (*lenp < tot_len) { 293 return (0); 294 } 295 296 /* 297 * Deal with a possible hole in the address range between 298 * hole_start and hole_end that should never be mapped by the MMU. 299 */ 300 301 if (lo < hole_start) { 302 if (hi > hole_start) 303 if (hi < hole_end) 304 hi = hole_start; 305 else 306 /* lo < hole_start && hi >= hole_end */ 307 if (dir == AH_LO) { 308 /* 309 * prefer lowest range 310 */ 311 if (hole_start - lo >= tot_len) 312 hi = hole_start; 313 else if (hi - hole_end >= tot_len) 314 lo = hole_end; 315 else 316 return (0); 317 } else { 318 /* 319 * prefer highest range 320 */ 321 if (hi - hole_end >= tot_len) 322 lo = hole_end; 323 else if (hole_start - lo >= tot_len) 324 hi = hole_start; 325 else 326 return (0); 327 } 328 } else { 329 /* lo >= hole_start */ 330 if (hi < hole_end) 331 return (0); 332 if (lo < hole_end) 333 lo = hole_end; 334 } 335 336 /* Check if remaining length is too small */ 337 if (hi - lo < tot_len) { 338 return (0); 339 } 340 if (align > 1) { 341 caddr_t tlo = lo + redzone; 342 caddr_t thi = hi - redzone; 343 tlo = (caddr_t)P2PHASEUP((uintptr_t)tlo, align, off); 344 if (tlo < lo + redzone) { 345 return (0); 346 } 347 if (thi < tlo || thi - tlo < minlen) { 348 return (0); 349 } 350 } 351 *basep = lo; 352 *lenp = hi - lo; 353 return (1); 354 } 355 356 /* 357 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 358 * addresses at least "minlen" long. On success, 1 is returned and *basep 359 * and *lenp are adjusted to describe the acceptable range. On failure, 0 360 * is returned. 361 */ 362 int 363 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 364 { 365 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0)); 366 } 367 368 /* 369 * Determine whether [addr, addr+len] with protections `prot' are valid 370 * for a user address space. 371 */ 372 /*ARGSUSED*/ 373 int 374 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 375 caddr_t userlimit) 376 { 377 caddr_t eaddr = addr + len; 378 379 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 380 return (RANGE_BADADDR); 381 382 /* 383 * Determine if the address range falls within an illegal 384 * range of the MMU. 385 */ 386 if (eaddr > hole_start && addr < hole_end) 387 return (RANGE_BADADDR); 388 389 #if defined(SF_ERRATA_57) 390 /* 391 * Make sure USERLIMIT isn't raised too high 392 */ 393 ASSERT64(addr <= (caddr_t)0xffffffff80000000ul || 394 errata57_limit == 0); 395 396 if (AS_TYPE_64BIT(as) && 397 (addr < errata57_limit) && 398 (prot & PROT_EXEC)) 399 return (RANGE_BADPROT); 400 #endif /* SF_ERRATA57 */ 401 return (RANGE_OKAY); 402 } 403 404 /* 405 * Routine used to check to see if an a.out can be executed 406 * by the current machine/architecture. 407 */ 408 int 409 chkaout(struct exdata *exp) 410 { 411 if (exp->ux_mach == M_SPARC) 412 return (0); 413 else 414 return (ENOEXEC); 415 } 416 417 /* 418 * The following functions return information about an a.out 419 * which is used when a program is executed. 420 */ 421 422 /* 423 * Return the load memory address for the data segment. 424 */ 425 caddr_t 426 getdmem(struct exec *exp) 427 { 428 /* 429 * XXX - Sparc Reference Hack approaching 430 * Remember that we are loading 431 * 8k executables into a 4k machine 432 * DATA_ALIGN == 2 * PAGESIZE 433 */ 434 if (exp->a_text) 435 return ((caddr_t)(roundup(USRTEXT + exp->a_text, DATA_ALIGN))); 436 else 437 return ((caddr_t)USRTEXT); 438 } 439 440 /* 441 * Return the starting disk address for the data segment. 442 */ 443 ulong_t 444 getdfile(struct exec *exp) 445 { 446 if (exp->a_magic == ZMAGIC) 447 return (exp->a_text); 448 else 449 return (sizeof (struct exec) + exp->a_text); 450 } 451 452 /* 453 * Return the load memory address for the text segment. 454 */ 455 456 /*ARGSUSED*/ 457 caddr_t 458 gettmem(struct exec *exp) 459 { 460 return ((caddr_t)USRTEXT); 461 } 462 463 /* 464 * Return the file byte offset for the text segment. 465 */ 466 uint_t 467 gettfile(struct exec *exp) 468 { 469 if (exp->a_magic == ZMAGIC) 470 return (0); 471 else 472 return (sizeof (struct exec)); 473 } 474 475 void 476 getexinfo( 477 struct exdata *edp_in, 478 struct exdata *edp_out, 479 int *pagetext, 480 int *pagedata) 481 { 482 *edp_out = *edp_in; /* structure copy */ 483 484 if ((edp_in->ux_mag == ZMAGIC) && 485 ((edp_in->vp->v_flag & VNOMAP) == 0)) { 486 *pagetext = 1; 487 *pagedata = 1; 488 } else { 489 *pagetext = 0; 490 *pagedata = 0; 491 } 492 } 493 494 /* 495 * Return non 0 value if the address may cause a VAC alias with KPM mappings. 496 * KPM selects an address such that it's equal offset modulo shm_alignment and 497 * assumes it can't be in VAC conflict with any larger than PAGESIZE mapping. 498 */ 499 int 500 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 501 { 502 if (vac) { 503 return (((uintptr_t)addr ^ off) & shm_alignment - 1); 504 } else { 505 return (0); 506 } 507 } 508 509 /* 510 * Sanity control. Don't use large pages regardless of user 511 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 512 * The units for this variable is 8K pages. 513 */ 514 pgcnt_t shm_lpg_min_physmem = 131072; /* 1GB */ 515 pgcnt_t privm_lpg_min_physmem = 131072; /* 1GB */ 516 517 static size_t 518 map_pgszheap(struct proc *p, caddr_t addr, size_t len) 519 { 520 size_t pgsz = MMU_PAGESIZE; 521 int szc; 522 523 /* 524 * If len is zero, retrieve from proc and don't demote the page size. 525 * Use atleast the default pagesize. 526 */ 527 if (len == 0) { 528 len = p->p_brkbase + p->p_brksize - p->p_bssbase; 529 } 530 len = MAX(len, default_uheap_lpsize); 531 532 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) { 533 pgsz = hw_page_array[szc].hp_size; 534 if ((disable_auto_data_large_pages & (1 << szc)) || 535 pgsz > max_uheap_lpsize) 536 continue; 537 if (len >= pgsz) { 538 break; 539 } 540 } 541 542 /* 543 * If addr == 0 we were called by memcntl() when the 544 * size code is 0. Don't set pgsz less than current size. 545 */ 546 if (addr == 0 && (pgsz < hw_page_array[p->p_brkpageszc].hp_size)) { 547 pgsz = hw_page_array[p->p_brkpageszc].hp_size; 548 } 549 550 return (pgsz); 551 } 552 553 static size_t 554 map_pgszstk(struct proc *p, caddr_t addr, size_t len) 555 { 556 size_t pgsz = MMU_PAGESIZE; 557 int szc; 558 559 /* 560 * If len is zero, retrieve from proc and don't demote the page size. 561 * Use atleast the default pagesize. 562 */ 563 if (len == 0) { 564 len = p->p_stksize; 565 } 566 len = MAX(len, default_ustack_lpsize); 567 568 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) { 569 pgsz = hw_page_array[szc].hp_size; 570 if ((disable_auto_data_large_pages & (1 << szc)) || 571 pgsz > max_ustack_lpsize) 572 continue; 573 if (len >= pgsz) { 574 break; 575 } 576 } 577 578 /* 579 * If addr == 0 we were called by memcntl() or exec_args() when the 580 * size code is 0. Don't set pgsz less than current size. 581 */ 582 if (addr == 0 && (pgsz < hw_page_array[p->p_stkpageszc].hp_size)) { 583 pgsz = hw_page_array[p->p_stkpageszc].hp_size; 584 } 585 586 return (pgsz); 587 } 588 589 static size_t 590 map_pgszism(caddr_t addr, size_t len) 591 { 592 uint_t szc; 593 size_t pgsz; 594 595 for (szc = mmu_page_sizes - 1; szc >= TTE4M; szc--) { 596 if (disable_ism_large_pages & (1 << szc)) 597 continue; 598 599 pgsz = hw_page_array[szc].hp_size; 600 if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz)) 601 return (pgsz); 602 } 603 604 return (DEFAULT_ISM_PAGESIZE); 605 } 606 607 /* 608 * Suggest a page size to be used to map a segment of type maptype and length 609 * len. Returns a page size (not a size code). 610 */ 611 /* ARGSUSED */ 612 size_t 613 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 614 { 615 size_t pgsz = MMU_PAGESIZE; 616 617 ASSERT(maptype != MAPPGSZ_VA); 618 619 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 620 return (MMU_PAGESIZE); 621 } 622 623 switch (maptype) { 624 case MAPPGSZ_ISM: 625 pgsz = map_pgszism(addr, len); 626 break; 627 628 case MAPPGSZ_STK: 629 if (max_ustack_lpsize > MMU_PAGESIZE) { 630 pgsz = map_pgszstk(p, addr, len); 631 } 632 break; 633 634 case MAPPGSZ_HEAP: 635 if (max_uheap_lpsize > MMU_PAGESIZE) { 636 pgsz = map_pgszheap(p, addr, len); 637 } 638 break; 639 } 640 return (pgsz); 641 } 642 643 644 /* assumes TTE8K...TTE4M == szc */ 645 646 static uint_t 647 map_szcvec(caddr_t addr, size_t size, uintptr_t off, int disable_lpgs, 648 size_t max_lpsize, size_t min_physmem) 649 { 650 caddr_t eaddr = addr + size; 651 uint_t szcvec = 0; 652 caddr_t raddr; 653 caddr_t readdr; 654 size_t pgsz; 655 int i; 656 657 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 658 return (0); 659 } 660 for (i = mmu_page_sizes - 1; i > 0; i--) { 661 if (disable_lpgs & (1 << i)) { 662 continue; 663 } 664 pgsz = page_get_pagesize(i); 665 if (pgsz > max_lpsize) { 666 continue; 667 } 668 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 669 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 670 if (raddr < addr || raddr >= readdr) { 671 continue; 672 } 673 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 674 continue; 675 } 676 szcvec |= (1 << i); 677 /* 678 * And or in the remaining enabled page sizes. 679 */ 680 szcvec |= P2PHASE(~disable_lpgs, (1 << i)); 681 szcvec &= ~1; /* no need to return 8K pagesize */ 682 break; 683 } 684 return (szcvec); 685 } 686 687 /* 688 * Return a bit vector of large page size codes that 689 * can be used to map [addr, addr + len) region. 690 */ 691 /* ARGSUSED */ 692 uint_t 693 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 694 int memcntl) 695 { 696 if (flags & MAP_TEXT) { 697 return (map_szcvec(addr, size, off, 698 disable_auto_text_large_pages, 699 max_utext_lpsize, shm_lpg_min_physmem)); 700 701 } else if (flags & MAP_INITDATA) { 702 return (map_szcvec(addr, size, off, 703 disable_auto_data_large_pages, 704 max_uidata_lpsize, privm_lpg_min_physmem)); 705 706 } else if (type == MAPPGSZC_SHM) { 707 return (map_szcvec(addr, size, off, 708 disable_auto_data_large_pages, 709 max_shm_lpsize, shm_lpg_min_physmem)); 710 711 } else if (type == MAPPGSZC_HEAP) { 712 return (map_szcvec(addr, size, off, 713 disable_auto_data_large_pages, 714 max_uheap_lpsize, privm_lpg_min_physmem)); 715 716 } else if (type == MAPPGSZC_STACK) { 717 return (map_szcvec(addr, size, off, 718 disable_auto_data_large_pages, 719 max_ustack_lpsize, privm_lpg_min_physmem)); 720 721 } else { 722 return (map_szcvec(addr, size, off, 723 disable_auto_data_large_pages, 724 max_privmap_lpsize, privm_lpg_min_physmem)); 725 } 726 } 727 728 /* 729 * Anchored in the table below are counters used to keep track 730 * of free contiguous physical memory. Each element of the table contains 731 * the array of counters, the size of array which is allocated during 732 * startup based on physmax and a shift value used to convert a pagenum 733 * into a counter array index or vice versa. The table has page size 734 * for rows and region size for columns: 735 * 736 * page_counters[page_size][region_size] 737 * 738 * page_size: TTE size code of pages on page_size freelist. 739 * 740 * region_size: TTE size code of a candidate larger page made up 741 * made up of contiguous free page_size pages. 742 * 743 * As you go across a page_size row increasing region_size each 744 * element keeps track of how many (region_size - 1) size groups 745 * made up of page_size free pages can be coalesced into a 746 * regsion_size page. Yuck! Lets try an example: 747 * 748 * page_counters[1][3] is the table element used for identifying 749 * candidate 4M pages from contiguous pages off the 64K free list. 750 * Each index in the page_counters[1][3].array spans 4M. Its the 751 * number of free 512K size (regsion_size - 1) groups of contiguous 752 * 64K free pages. So when page_counters[1][3].counters[n] == 8 753 * we know we have a candidate 4M page made up of 512K size groups 754 * of 64K free pages. 755 */ 756 757 /* 758 * Per page size free lists. 3rd (max_mem_nodes) and 4th (page coloring bins) 759 * dimensions are allocated dynamically. 760 */ 761 page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES]; 762 763 /* 764 * For now there is only a single size cache list. 765 * Allocated dynamically. 766 */ 767 page_t ***page_cachelists[MAX_MEM_TYPES]; 768 769 kmutex_t *fpc_mutex[NPC_MUTEX]; 770 kmutex_t *cpc_mutex[NPC_MUTEX]; 771 772 /* 773 * Calculate space needed for page freelists and counters 774 */ 775 size_t 776 calc_free_pagelist_sz(void) 777 { 778 int szc; 779 size_t alloc_sz, cache_sz, free_sz; 780 781 /* 782 * one cachelist per color, node, and type 783 */ 784 cache_sz = (page_get_pagecolors(0) * sizeof (page_t *)) + 785 sizeof (page_t **); 786 cache_sz *= max_mem_nodes * MAX_MEM_TYPES; 787 788 /* 789 * one freelist per size, color, node, and type 790 */ 791 free_sz = sizeof (page_t **); 792 for (szc = 0; szc < mmu_page_sizes; szc++) 793 free_sz += sizeof (page_t *) * page_get_pagecolors(szc); 794 free_sz *= max_mem_nodes * MAX_MEM_TYPES; 795 796 alloc_sz = cache_sz + free_sz + page_ctrs_sz(); 797 return (alloc_sz); 798 } 799 800 caddr_t 801 alloc_page_freelists(caddr_t alloc_base) 802 { 803 int mnode, mtype; 804 int szc, clrs; 805 806 /* 807 * We only support small pages in the cachelist. 808 */ 809 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 810 page_cachelists[mtype] = (page_t ***)alloc_base; 811 alloc_base += (max_mem_nodes * sizeof (page_t **)); 812 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 813 page_cachelists[mtype][mnode] = (page_t **)alloc_base; 814 alloc_base += 815 (page_get_pagecolors(0) * sizeof (page_t *)); 816 } 817 } 818 819 /* 820 * Allocate freelists bins for all 821 * supported page sizes. 822 */ 823 for (szc = 0; szc < mmu_page_sizes; szc++) { 824 clrs = page_get_pagecolors(szc); 825 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 826 page_freelists[szc][mtype] = (page_t ***)alloc_base; 827 alloc_base += (max_mem_nodes * sizeof (page_t **)); 828 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 829 page_freelists[szc][mtype][mnode] = 830 (page_t **)alloc_base; 831 alloc_base += (clrs * (sizeof (page_t *))); 832 } 833 } 834 } 835 836 alloc_base = page_ctrs_alloc(alloc_base); 837 return (alloc_base); 838 } 839 840 /* 841 * Allocate page_freelists locks for a memnode from the nucleus data 842 * area. This is the first time that mmu_page_sizes is used during 843 * bootup, so check mmu_page_sizes initialization. 844 */ 845 int 846 ndata_alloc_page_mutexs(struct memlist *ndata) 847 { 848 size_t alloc_sz; 849 caddr_t alloc_base; 850 int i; 851 void page_coloring_init(); 852 853 page_coloring_init(); 854 if (&mmu_init_mmu_page_sizes) { 855 if (!mmu_init_mmu_page_sizes(0)) { 856 cmn_err(CE_PANIC, "mmu_page_sizes %d not initialized", 857 mmu_page_sizes); 858 } 859 } 860 ASSERT(mmu_page_sizes >= DEFAULT_MMU_PAGE_SIZES); 861 862 /* fpc_mutex and cpc_mutex */ 863 alloc_sz = 2 * NPC_MUTEX * max_mem_nodes * sizeof (kmutex_t); 864 865 alloc_base = ndata_alloc(ndata, alloc_sz, ecache_alignsize); 866 if (alloc_base == NULL) 867 return (-1); 868 869 ASSERT(((uintptr_t)alloc_base & (ecache_alignsize - 1)) == 0); 870 871 for (i = 0; i < NPC_MUTEX; i++) { 872 fpc_mutex[i] = (kmutex_t *)alloc_base; 873 alloc_base += (sizeof (kmutex_t) * max_mem_nodes); 874 cpc_mutex[i] = (kmutex_t *)alloc_base; 875 alloc_base += (sizeof (kmutex_t) * max_mem_nodes); 876 } 877 return (0); 878 } 879 880 /* 881 * To select our starting bin, we stride through the bins with a stride 882 * of 337. Why 337? It's prime, it's largeish, and it performs well both 883 * in simulation and practice for different workloads on varying cache sizes. 884 */ 885 uint32_t color_start_current = 0; 886 uint32_t color_start_stride = 337; 887 int color_start_random = 0; 888 889 /* ARGSUSED */ 890 uint_t 891 get_color_start(struct as *as) 892 { 893 uint32_t old, new; 894 895 if (consistent_coloring == 2 || color_start_random) { 896 return ((uint_t)(((gettick()) << (vac_shift - MMU_PAGESHIFT)) & 897 (hw_page_array[0].hp_colors - 1))); 898 } 899 900 do { 901 old = color_start_current; 902 new = old + (color_start_stride << (vac_shift - MMU_PAGESHIFT)); 903 } while (cas32(&color_start_current, old, new) != old); 904 905 return ((uint_t)(new)); 906 } 907 908 /* 909 * Called once at startup from kphysm_init() -- before memialloc() 910 * is invoked to do the 1st page_free()/page_freelist_add(). 911 * 912 * initializes page_colors and page_colors_mask based on ecache_setsize. 913 * 914 * Also initializes the counter locks. 915 */ 916 void 917 page_coloring_init() 918 { 919 int a, i; 920 uint_t colors; 921 922 if (do_pg_coloring == 0) { 923 page_colors = 1; 924 for (i = 0; i < mmu_page_sizes; i++) { 925 colorequivszc[i] = 0; 926 hw_page_array[i].hp_colors = 1; 927 } 928 return; 929 } 930 931 /* 932 * Calculate page_colors from ecache_setsize. ecache_setsize contains 933 * the max ecache setsize of all cpus configured in the system or, for 934 * cheetah+ systems, the max possible ecache setsize for all possible 935 * cheetah+ cpus. 936 */ 937 page_colors = ecache_setsize / MMU_PAGESIZE; 938 page_colors_mask = page_colors - 1; 939 940 vac_colors = vac_size / MMU_PAGESIZE; 941 vac_colors_mask = vac_colors -1; 942 943 page_coloring_shift = 0; 944 a = ecache_setsize; 945 while (a >>= 1) { 946 page_coloring_shift++; 947 } 948 949 /* initialize number of colors per page size */ 950 for (i = 0; i < mmu_page_sizes; i++) { 951 hw_page_array[i].hp_colors = (page_colors_mask >> 952 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 953 + 1; 954 colorequivszc[i] = 0; 955 } 956 957 /* 958 * initialize cpu_page_colors if ecache setsizes are homogenous. 959 * cpu_page_colors set to -1 during DR operation or during startup 960 * if setsizes are heterogenous. 961 * 962 * The value of cpu_page_colors determines if additional color bins 963 * need to be checked for a particular color in the page_get routines. 964 */ 965 if (cpu_setsize > 0 && cpu_page_colors == 0 && 966 cpu_setsize < ecache_setsize) { 967 cpu_page_colors = cpu_setsize / MMU_PAGESIZE; 968 a = lowbit(page_colors) - lowbit(cpu_page_colors); 969 ASSERT(a > 0); 970 ASSERT(a < 16); 971 972 for (i = 0; i < mmu_page_sizes; i++) { 973 if ((colors = hw_page_array[i].hp_colors) <= 1) { 974 continue; 975 } 976 while ((colors >> a) == 0) 977 a--; 978 ASSERT(a >= 0); 979 980 /* higher 4 bits encodes color equiv mask */ 981 colorequivszc[i] = (a << 4); 982 } 983 } 984 985 /* do cpu specific color initialization */ 986 if (&page_coloring_init_cpu) { 987 page_coloring_init_cpu(); 988 } 989 } 990 991 int 992 bp_color(struct buf *bp) 993 { 994 int color = -1; 995 996 if (vac) { 997 if ((bp->b_flags & B_PAGEIO) != 0) { 998 color = sfmmu_get_ppvcolor(bp->b_pages); 999 } else if (bp->b_un.b_addr != NULL) { 1000 color = sfmmu_get_addrvcolor(bp->b_un.b_addr); 1001 } 1002 } 1003 return (color < 0 ? 0 : ptob(color)); 1004 } 1005 1006 /* 1007 * Create & Initialise pageout scanner thread. The thread has to 1008 * start at procedure with process pp and priority pri. 1009 */ 1010 void 1011 pageout_init(void (*procedure)(), proc_t *pp, pri_t pri) 1012 { 1013 (void) thread_create(NULL, 0, procedure, NULL, 0, pp, TS_RUN, pri); 1014 } 1015 1016 /* 1017 * Function for flushing D-cache when performing module relocations 1018 * to an alternate mapping. Stubbed out on all platforms except sun4u, 1019 * at least for now. 1020 */ 1021 void 1022 dcache_flushall() 1023 { 1024 sfmmu_cache_flushall(); 1025 } 1026 1027 static int 1028 kdi_range_overlap(uintptr_t va1, size_t sz1, uintptr_t va2, size_t sz2) 1029 { 1030 if (va1 < va2 && va1 + sz1 <= va2) 1031 return (0); 1032 1033 if (va2 < va1 && va2 + sz2 <= va1) 1034 return (0); 1035 1036 return (1); 1037 } 1038 1039 /* 1040 * Return the number of bytes, relative to the beginning of a given range, that 1041 * are non-toxic (can be read from and written to with relative impunity). 1042 */ 1043 size_t 1044 kdi_range_is_nontoxic(uintptr_t va, size_t sz, int write) 1045 { 1046 /* OBP reads are harmless, but we don't want people writing there */ 1047 if (write && kdi_range_overlap(va, sz, OFW_START_ADDR, OFW_END_ADDR - 1048 OFW_START_ADDR + 1)) 1049 return (va < OFW_START_ADDR ? OFW_START_ADDR - va : 0); 1050 1051 if (kdi_range_overlap(va, sz, PIOMAPBASE, PIOMAPSIZE)) 1052 return (va < PIOMAPBASE ? PIOMAPBASE - va : 0); 1053 1054 return (sz); /* no overlap */ 1055 } 1056 1057 /* 1058 * Minimum physmem required for enabling large pages for kernel heap 1059 * Currently we do not enable lp for kmem on systems with less 1060 * than 1GB of memory. This value can be changed via /etc/system 1061 */ 1062 size_t segkmem_lpminphysmem = 0x40000000; /* 1GB */ 1063 1064 /* 1065 * this function chooses large page size for kernel heap 1066 */ 1067 size_t 1068 get_segkmem_lpsize(size_t lpsize) 1069 { 1070 size_t memtotal = physmem * PAGESIZE; 1071 size_t mmusz; 1072 uint_t szc; 1073 1074 if (memtotal < segkmem_lpminphysmem) 1075 return (PAGESIZE); 1076 1077 if (plat_lpkmem_is_supported != NULL && 1078 plat_lpkmem_is_supported() == 0) 1079 return (PAGESIZE); 1080 1081 mmusz = mmu_get_kernel_lpsize(lpsize); 1082 szc = page_szc(mmusz); 1083 1084 while (szc) { 1085 if (!(disable_large_pages & (1 << szc))) 1086 return (page_get_pagesize(szc)); 1087 szc--; 1088 } 1089 return (PAGESIZE); 1090 } 1091