1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <vm/hat.h> 28 #include <vm/hat_sfmmu.h> 29 #include <vm/page.h> 30 #include <sys/pte.h> 31 #include <sys/systm.h> 32 #include <sys/mman.h> 33 #include <sys/sysmacros.h> 34 #include <sys/machparam.h> 35 #include <sys/vtrace.h> 36 #include <sys/kmem.h> 37 #include <sys/mmu.h> 38 #include <sys/cmn_err.h> 39 #include <sys/cpu.h> 40 #include <sys/cpuvar.h> 41 #include <sys/debug.h> 42 #include <sys/lgrp.h> 43 #include <sys/archsystm.h> 44 #include <sys/machsystm.h> 45 #include <sys/vmsystm.h> 46 #include <sys/bitmap.h> 47 #include <vm/as.h> 48 #include <vm/seg.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kp.h> 51 #include <vm/seg_kpm.h> 52 #include <vm/rm.h> 53 #include <vm/vm_dep.h> 54 #include <sys/t_lock.h> 55 #include <sys/vm_machparam.h> 56 #include <sys/promif.h> 57 #include <sys/prom_isa.h> 58 #include <sys/prom_plat.h> 59 #include <sys/prom_debug.h> 60 #include <sys/privregs.h> 61 #include <sys/bootconf.h> 62 #include <sys/memlist.h> 63 #include <sys/memlist_plat.h> 64 #include <sys/cpu_module.h> 65 #include <sys/reboot.h> 66 #include <sys/kdi.h> 67 68 /* 69 * Static routines 70 */ 71 static void sfmmu_map_prom_mappings(struct translation *, size_t); 72 static struct translation *read_prom_mappings(size_t *); 73 static void sfmmu_reloc_trap_handler(void *, void *, size_t); 74 75 /* 76 * External routines 77 */ 78 extern void sfmmu_remap_kernel(void); 79 extern void sfmmu_patch_utsb(void); 80 81 /* 82 * Global Data: 83 */ 84 extern caddr_t textva, datava; 85 extern tte_t ktext_tte, kdata_tte; /* ttes for kernel text and data */ 86 extern int enable_bigktsb; 87 extern int kmem64_smchunks; 88 89 uint64_t memsegspa = (uintptr_t)MSEG_NULLPTR_PA; /* memsegs physical linkage */ 90 uint64_t memseg_phash[N_MEM_SLOTS]; /* use physical memseg addresses */ 91 92 int sfmmu_kern_mapped = 0; 93 94 /* 95 * DMMU primary context register for the kernel context. Machine specific code 96 * inserts correct page size codes when necessary 97 */ 98 uint64_t kcontextreg = KCONTEXT; 99 100 #ifdef DEBUG 101 static int ndata_middle_hole_detected = 0; 102 #endif 103 104 /* Extern Global Data */ 105 106 extern int page_relocate_ready; 107 108 /* 109 * Controls the logic which enables the use of the 110 * QUAD_LDD_PHYS ASI for TSB accesses. 111 */ 112 extern int ktsb_phys; 113 114 /* 115 * Global Routines called from within: 116 * usr/src/uts/sun4u 117 * usr/src/uts/sfmmu 118 * usr/src/uts/sun 119 */ 120 121 pfn_t 122 va_to_pfn(void *vaddr) 123 { 124 u_longlong_t physaddr; 125 int mode, valid; 126 127 if (tba_taken_over) 128 return (hat_getpfnum(kas.a_hat, (caddr_t)vaddr)); 129 130 #if !defined(C_OBP) 131 if (!kmem64_smchunks && 132 (caddr_t)vaddr >= kmem64_base && (caddr_t)vaddr < kmem64_end) { 133 if (kmem64_pabase == (uint64_t)-1) 134 prom_panic("va_to_pfn: kmem64_pabase not init"); 135 physaddr = kmem64_pabase + ((caddr_t)vaddr - kmem64_base); 136 return ((pfn_t)physaddr >> MMU_PAGESHIFT); 137 } 138 #endif /* !C_OBP */ 139 140 if ((prom_translate_virt(vaddr, &valid, &physaddr, &mode) != -1) && 141 (valid == -1)) { 142 return ((pfn_t)(physaddr >> MMU_PAGESHIFT)); 143 } 144 return (PFN_INVALID); 145 } 146 147 uint64_t 148 va_to_pa(void *vaddr) 149 { 150 pfn_t pfn; 151 152 if ((pfn = va_to_pfn(vaddr)) == PFN_INVALID) 153 return ((uint64_t)-1); 154 return (((uint64_t)pfn << MMU_PAGESHIFT) | 155 ((uint64_t)vaddr & MMU_PAGEOFFSET)); 156 } 157 158 void 159 hat_kern_setup(void) 160 { 161 struct translation *trans_root; 162 size_t ntrans_root; 163 extern void startup_fixup_physavail(void); 164 165 /* 166 * These are the steps we take to take over the mmu from the prom. 167 * 168 * (1) Read the prom's mappings through the translation property. 169 * (2) Remap the kernel text and kernel data with 2 locked 4MB ttes. 170 * Create the the hmeblks for these 2 ttes at this time. 171 * (3) Create hat structures for all other prom mappings. Since the 172 * kernel text and data hme_blks have already been created we 173 * skip the equivalent prom's mappings. 174 * (4) Initialize the tsb and its corresponding hardware regs. 175 * (5) Take over the trap table (currently in startup). 176 * (6) Up to this point it is possible the prom required some of its 177 * locked tte's. Now that we own the trap table we remove them. 178 */ 179 180 ktsb_pbase = va_to_pa(ktsb_base); 181 ktsb4m_pbase = va_to_pa(ktsb4m_base); 182 PRM_DEBUG(ktsb_pbase); 183 PRM_DEBUG(ktsb4m_pbase); 184 185 sfmmu_patch_ktsb(); 186 sfmmu_patch_utsb(); 187 sfmmu_patch_mmu_asi(ktsb_phys); 188 189 sfmmu_init_tsbs(); 190 191 if (kpm_enable) { 192 sfmmu_kpm_patch_tlbm(); 193 if (kpm_smallpages == 0) { 194 sfmmu_kpm_patch_tsbm(); 195 } 196 } 197 198 if (!shctx_on) { 199 sfmmu_patch_shctx(); 200 } 201 202 if (&mmu_enable_pgsz_search) { 203 mmu_enable_pgsz_search(); 204 } 205 206 /* 207 * The 8K-indexed kernel TSB space is used to hold 208 * translations below... 209 */ 210 trans_root = read_prom_mappings(&ntrans_root); 211 sfmmu_remap_kernel(); 212 startup_fixup_physavail(); 213 mmu_init_kernel_pgsz(kas.a_hat); 214 sfmmu_map_prom_mappings(trans_root, ntrans_root); 215 216 /* 217 * We invalidate 8K kernel TSB because we used it in 218 * sfmmu_map_prom_mappings() 219 */ 220 sfmmu_inv_tsb(ktsb_base, ktsb_sz); 221 sfmmu_inv_tsb(ktsb4m_base, ktsb4m_sz); 222 223 sfmmu_init_ktsbinfo(); 224 225 226 sfmmu_kern_mapped = 1; 227 228 /* 229 * hments have been created for mapped pages, and thus we're ready 230 * for kmdb to start using its own trap table. It walks the hments 231 * to resolve TLB misses, and can't be used until they're ready. 232 */ 233 if (boothowto & RB_DEBUG) 234 kdi_dvec_vmready(); 235 } 236 237 /* 238 * Macro used below to convert the prom's 32-bit high and low fields into 239 * a value appropriate for the 64-bit kernel. 240 */ 241 242 #define COMBINE(hi, lo) (((uint64_t)(uint32_t)(hi) << 32) | (uint32_t)(lo)) 243 244 /* 245 * Track larges pages used. 246 * Provides observability for this feature on non-debug kernels. 247 */ 248 ulong_t map_prom_lpcount[MMU_PAGE_SIZES]; 249 250 /* 251 * This function traverses the prom mapping list and creates equivalent 252 * mappings in the sfmmu mapping hash. 253 */ 254 static void 255 sfmmu_map_prom_mappings(struct translation *trans_root, size_t ntrans_root) 256 { 257 struct translation *promt; 258 tte_t tte, oldtte, *ttep; 259 pfn_t pfn, oldpfn, basepfn; 260 caddr_t vaddr; 261 size_t size, offset; 262 unsigned long i; 263 uint_t attr; 264 page_t *pp; 265 extern struct memlist *virt_avail; 266 char buf[256]; 267 268 ttep = &tte; 269 for (i = 0, promt = trans_root; i < ntrans_root; i++, promt++) { 270 ASSERT(promt->tte_hi != 0); 271 ASSERT32(promt->virt_hi == 0 && promt->size_hi == 0); 272 273 vaddr = (caddr_t)COMBINE(promt->virt_hi, promt->virt_lo); 274 275 /* 276 * hack until we get rid of map-for-unix 277 */ 278 if (vaddr < (caddr_t)KERNELBASE) 279 continue; 280 281 ttep->tte_inthi = promt->tte_hi; 282 ttep->tte_intlo = promt->tte_lo; 283 attr = PROC_DATA | HAT_NOSYNC; 284 #if defined(TTE_IS_GLOBAL) 285 if (TTE_IS_GLOBAL(ttep)) { 286 /* 287 * The prom better not use global translations 288 * because a user process might use the same 289 * virtual addresses 290 */ 291 prom_panic("sfmmu_map_prom_mappings: global" 292 " translation"); 293 TTE_SET_LOFLAGS(ttep, TTE_GLB_INT, 0); 294 } 295 #endif 296 if (TTE_IS_LOCKED(ttep)) { 297 /* clear the lock bits */ 298 TTE_CLR_LOCKED(ttep); 299 } 300 attr |= (TTE_IS_VCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEVTTE; 301 attr |= (TTE_IS_PCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEPTTE; 302 attr |= (TTE_IS_SIDEFFECT(ttep)) ? SFMMU_SIDEFFECT : 0; 303 attr |= (TTE_IS_IE(ttep)) ? HAT_STRUCTURE_LE : 0; 304 305 size = COMBINE(promt->size_hi, promt->size_lo); 306 offset = 0; 307 basepfn = TTE_TO_PFN((caddr_t)COMBINE(promt->virt_hi, 308 promt->virt_lo), ttep); 309 while (size) { 310 vaddr = (caddr_t)(COMBINE(promt->virt_hi, 311 promt->virt_lo) + offset); 312 313 /* 314 * make sure address is not in virt-avail list 315 */ 316 if (address_in_memlist(virt_avail, (uint64_t)vaddr, 317 size)) { 318 prom_panic("sfmmu_map_prom_mappings:" 319 " inconsistent translation/avail lists"); 320 } 321 322 pfn = basepfn + mmu_btop(offset); 323 if (pf_is_memory(pfn)) { 324 if (attr & SFMMU_UNCACHEPTTE) { 325 prom_panic("sfmmu_map_prom_mappings:" 326 " uncached prom memory page"); 327 } 328 } else { 329 if (!(attr & SFMMU_SIDEFFECT)) { 330 prom_panic("sfmmu_map_prom_mappings:" 331 " prom i/o page without" 332 " side-effect"); 333 } 334 } 335 336 /* 337 * skip kmem64 area 338 */ 339 if (!kmem64_smchunks && 340 vaddr >= kmem64_base && 341 vaddr < kmem64_aligned_end) { 342 #if !defined(C_OBP) 343 prom_panic("sfmmu_map_prom_mappings:" 344 " unexpected kmem64 prom mapping"); 345 #else /* !C_OBP */ 346 size_t mapsz; 347 348 if (ptob(pfn) != 349 kmem64_pabase + (vaddr - kmem64_base)) { 350 prom_panic("sfmmu_map_prom_mappings:" 351 " unexpected kmem64 prom mapping"); 352 } 353 354 mapsz = kmem64_aligned_end - vaddr; 355 if (mapsz >= size) { 356 break; 357 } 358 size -= mapsz; 359 offset += mapsz; 360 continue; 361 #endif /* !C_OBP */ 362 } 363 364 oldpfn = sfmmu_vatopfn(vaddr, KHATID, &oldtte); 365 ASSERT(oldpfn != PFN_SUSPENDED); 366 ASSERT(page_relocate_ready == 0); 367 368 if (oldpfn != PFN_INVALID) { 369 /* 370 * mapping already exists. 371 * Verify they are equal 372 */ 373 if (pfn != oldpfn) { 374 (void) snprintf(buf, sizeof (buf), 375 "sfmmu_map_prom_mappings: mapping" 376 " conflict (va = 0x%p, pfn = 0x%p," 377 " oldpfn = 0x%p)", (void *)vaddr, 378 (void *)pfn, (void *)oldpfn); 379 prom_panic(buf); 380 } 381 size -= MMU_PAGESIZE; 382 offset += MMU_PAGESIZE; 383 continue; 384 } 385 386 pp = page_numtopp_nolock(pfn); 387 if ((pp != NULL) && PP_ISFREE((page_t *)pp)) { 388 (void) snprintf(buf, sizeof (buf), 389 "sfmmu_map_prom_mappings: prom-mapped" 390 " page (va = 0x%p, pfn = 0x%p) on free list", 391 (void *)vaddr, (void *)pfn); 392 prom_panic(buf); 393 } 394 395 sfmmu_memtte(ttep, pfn, attr, TTE8K); 396 sfmmu_tteload(kas.a_hat, ttep, vaddr, pp, 397 HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD); 398 size -= MMU_PAGESIZE; 399 offset += MMU_PAGESIZE; 400 } 401 } 402 403 /* 404 * We claimed kmem64 from prom, so now we need to load tte. 405 */ 406 if (!kmem64_smchunks && kmem64_base != NULL) { 407 pgcnt_t pages; 408 size_t psize; 409 int pszc; 410 411 pszc = kmem64_szc; 412 #ifdef sun4u 413 if (pszc > TTE8K) { 414 pszc = segkmem_lpszc; 415 } 416 #endif /* sun4u */ 417 psize = TTEBYTES(pszc); 418 pages = btop(psize); 419 basepfn = kmem64_pabase >> MMU_PAGESHIFT; 420 vaddr = kmem64_base; 421 while (vaddr < kmem64_end) { 422 sfmmu_memtte(ttep, basepfn, 423 PROC_DATA | HAT_NOSYNC, pszc); 424 sfmmu_tteload(kas.a_hat, ttep, vaddr, NULL, 425 HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD); 426 vaddr += psize; 427 basepfn += pages; 428 } 429 map_prom_lpcount[pszc] = 430 ((caddr_t)P2ROUNDUP((uintptr_t)kmem64_end, psize) - 431 kmem64_base) >> TTE_PAGE_SHIFT(pszc); 432 } 433 } 434 435 #undef COMBINE /* local to previous routine */ 436 437 /* 438 * This routine reads in the "translations" property in to a buffer and 439 * returns a pointer to this buffer and the number of translations. 440 */ 441 static struct translation * 442 read_prom_mappings(size_t *ntransrootp) 443 { 444 char *prop = "translations"; 445 size_t translen; 446 pnode_t node; 447 struct translation *transroot; 448 449 /* 450 * the "translations" property is associated with the mmu node 451 */ 452 node = (pnode_t)prom_getphandle(prom_mmu_ihandle()); 453 454 /* 455 * We use the TSB space to read in the prom mappings. This space 456 * is currently not being used because we haven't taken over the 457 * trap table yet. It should be big enough to hold the mappings. 458 */ 459 if ((translen = prom_getproplen(node, prop)) == -1) 460 cmn_err(CE_PANIC, "no translations property"); 461 *ntransrootp = translen / sizeof (*transroot); 462 translen = roundup(translen, MMU_PAGESIZE); 463 PRM_DEBUG(translen); 464 if (translen > TSB_BYTES(ktsb_szcode)) 465 cmn_err(CE_PANIC, "not enough space for translations"); 466 467 transroot = (struct translation *)ktsb_base; 468 ASSERT(transroot); 469 if (prom_getprop(node, prop, (caddr_t)transroot) == -1) { 470 cmn_err(CE_PANIC, "translations getprop failed"); 471 } 472 return (transroot); 473 } 474 475 /* 476 * Init routine of the nucleus data memory allocator. 477 * 478 * The nucleus data memory allocator is organized in ecache_alignsize'd 479 * memory chunks. Memory allocated by ndata_alloc() will never be freed. 480 * 481 * The ndata argument is used as header of the ndata freelist. 482 * Other freelist nodes are placed in the nucleus memory itself 483 * at the beginning of a free memory chunk. Therefore a freelist 484 * node (struct memlist) must fit into the smallest allocatable 485 * memory chunk (ecache_alignsize bytes). 486 * 487 * The memory interval [base, end] passed to ndata_alloc_init() must be 488 * bzero'd to allow the allocator to return bzero'd memory easily. 489 */ 490 void 491 ndata_alloc_init(struct memlist *ndata, uintptr_t base, uintptr_t end) 492 { 493 ASSERT(sizeof (struct memlist) <= ecache_alignsize); 494 495 base = roundup(base, ecache_alignsize); 496 end = end - end % ecache_alignsize; 497 498 ASSERT(base < end); 499 500 ndata->address = base; 501 ndata->size = end - base; 502 ndata->next = NULL; 503 ndata->prev = NULL; 504 } 505 506 /* 507 * Deliver the size of the largest free memory chunk. 508 */ 509 size_t 510 ndata_maxsize(struct memlist *ndata) 511 { 512 size_t chunksize = ndata->size; 513 514 while ((ndata = ndata->next) != NULL) { 515 if (chunksize < ndata->size) 516 chunksize = ndata->size; 517 } 518 519 return (chunksize); 520 } 521 522 523 /* 524 * Allocate the last properly aligned memory chunk. 525 * This function is called when no more large nucleus memory chunks 526 * will be allocated. The remaining free nucleus memory at the end 527 * of the nucleus can be added to the phys_avail list. 528 */ 529 void * 530 ndata_extra_base(struct memlist *ndata, size_t alignment, caddr_t endaddr) 531 { 532 uintptr_t base; 533 size_t wasteage = 0; 534 #ifdef DEBUG 535 static int called = 0; 536 537 if (called++ > 0) 538 cmn_err(CE_PANIC, "ndata_extra_base() called more than once"); 539 #endif /* DEBUG */ 540 541 /* 542 * The alignment needs to be a multiple of ecache_alignsize. 543 */ 544 ASSERT((alignment % ecache_alignsize) == 0); 545 546 while (ndata->next != NULL) { 547 wasteage += ndata->size; 548 ndata = ndata->next; 549 } 550 551 base = roundup(ndata->address, alignment); 552 553 if (base >= ndata->address + ndata->size) 554 return (NULL); 555 556 if ((caddr_t)(ndata->address + ndata->size) != endaddr) { 557 #ifdef DEBUG 558 ndata_middle_hole_detected = 1; /* see if we hit this again */ 559 #endif 560 return (NULL); 561 } 562 563 if (base == ndata->address) { 564 if (ndata->prev != NULL) 565 ndata->prev->next = NULL; 566 else 567 ndata->size = 0; 568 569 bzero((void *)base, sizeof (struct memlist)); 570 571 } else { 572 ndata->size = base - ndata->address; 573 wasteage += ndata->size; 574 } 575 PRM_DEBUG(wasteage); 576 577 return ((void *)base); 578 } 579 580 /* 581 * Select the best matching buffer, avoid memory fragmentation. 582 */ 583 static struct memlist * 584 ndata_select_chunk(struct memlist *ndata, size_t wanted, size_t alignment) 585 { 586 struct memlist *fnd_below = NULL; 587 struct memlist *fnd_above = NULL; 588 struct memlist *fnd_unused = NULL; 589 struct memlist *frlist; 590 uintptr_t base; 591 uintptr_t end; 592 size_t below; 593 size_t above; 594 size_t unused; 595 size_t best_below = ULONG_MAX; 596 size_t best_above = ULONG_MAX; 597 size_t best_unused = ULONG_MAX; 598 599 ASSERT(ndata != NULL); 600 601 /* 602 * Look for the best matching buffer, avoid memory fragmentation. 603 * The following strategy is used, try to find 604 * 1. an exact fitting buffer 605 * 2. avoid wasting any space below the buffer, take first 606 * fitting buffer 607 * 3. avoid wasting any space above the buffer, take first 608 * fitting buffer 609 * 4. avoid wasting space, take first fitting buffer 610 * 5. take the last buffer in chain 611 */ 612 for (frlist = ndata; frlist != NULL; frlist = frlist->next) { 613 base = roundup(frlist->address, alignment); 614 end = roundup(base + wanted, ecache_alignsize); 615 616 if (end > frlist->address + frlist->size) 617 continue; 618 619 below = (base - frlist->address) / ecache_alignsize; 620 above = (frlist->address + frlist->size - end) / 621 ecache_alignsize; 622 unused = below + above; 623 624 if (unused == 0) 625 return (frlist); 626 627 if (frlist->next == NULL) 628 break; 629 630 if (below < best_below) { 631 best_below = below; 632 fnd_below = frlist; 633 } 634 635 if (above < best_above) { 636 best_above = above; 637 fnd_above = frlist; 638 } 639 640 if (unused < best_unused) { 641 best_unused = unused; 642 fnd_unused = frlist; 643 } 644 } 645 646 if (best_below == 0) 647 return (fnd_below); 648 if (best_above == 0) 649 return (fnd_above); 650 if (best_unused < ULONG_MAX) 651 return (fnd_unused); 652 653 return (frlist); 654 } 655 656 /* 657 * Nucleus data memory allocator. 658 * The granularity of the allocator is ecache_alignsize. 659 * See also comment for ndata_alloc_init(). 660 */ 661 void * 662 ndata_alloc(struct memlist *ndata, size_t wanted, size_t alignment) 663 { 664 struct memlist *found; 665 struct memlist *fnd_above; 666 uintptr_t base; 667 uintptr_t end; 668 size_t below; 669 size_t above; 670 671 /* 672 * Look for the best matching buffer, avoid memory fragmentation. 673 */ 674 if ((found = ndata_select_chunk(ndata, wanted, alignment)) == NULL) 675 return (NULL); 676 677 /* 678 * Allocate the nucleus data buffer. 679 */ 680 base = roundup(found->address, alignment); 681 end = roundup(base + wanted, ecache_alignsize); 682 ASSERT(end <= found->address + found->size); 683 684 below = base - found->address; 685 above = found->address + found->size - end; 686 ASSERT(above == 0 || (above % ecache_alignsize) == 0); 687 688 if (below >= ecache_alignsize) { 689 /* 690 * There is free memory below the allocated memory chunk. 691 */ 692 found->size = below - below % ecache_alignsize; 693 694 if (above) { 695 fnd_above = (struct memlist *)end; 696 fnd_above->address = end; 697 fnd_above->size = above; 698 699 if ((fnd_above->next = found->next) != NULL) 700 found->next->prev = fnd_above; 701 fnd_above->prev = found; 702 found->next = fnd_above; 703 } 704 705 return ((void *)base); 706 } 707 708 if (found->prev == NULL) { 709 /* 710 * The first chunk (ndata) is selected. 711 */ 712 ASSERT(found == ndata); 713 if (above) { 714 found->address = end; 715 found->size = above; 716 } else if (found->next != NULL) { 717 found->address = found->next->address; 718 found->size = found->next->size; 719 if ((found->next = found->next->next) != NULL) 720 found->next->prev = found; 721 722 bzero((void *)found->address, sizeof (struct memlist)); 723 } else { 724 found->address = end; 725 found->size = 0; 726 } 727 728 return ((void *)base); 729 } 730 731 /* 732 * Not the first chunk. 733 */ 734 if (above) { 735 fnd_above = (struct memlist *)end; 736 fnd_above->address = end; 737 fnd_above->size = above; 738 739 if ((fnd_above->next = found->next) != NULL) 740 fnd_above->next->prev = fnd_above; 741 fnd_above->prev = found->prev; 742 found->prev->next = fnd_above; 743 744 } else { 745 if ((found->prev->next = found->next) != NULL) 746 found->next->prev = found->prev; 747 } 748 749 bzero((void *)found->address, sizeof (struct memlist)); 750 751 return ((void *)base); 752 } 753 754 /* 755 * Size the kernel TSBs based upon the amount of physical 756 * memory in the system. 757 */ 758 static void 759 calc_tsb_sizes(pgcnt_t npages) 760 { 761 PRM_DEBUG(npages); 762 763 if (npages <= TSB_FREEMEM_MIN) { 764 ktsb_szcode = TSB_128K_SZCODE; 765 enable_bigktsb = 0; 766 } else if (npages <= TSB_FREEMEM_LARGE / 2) { 767 ktsb_szcode = TSB_256K_SZCODE; 768 enable_bigktsb = 0; 769 } else if (npages <= TSB_FREEMEM_LARGE) { 770 ktsb_szcode = TSB_512K_SZCODE; 771 enable_bigktsb = 0; 772 } else if (npages <= TSB_FREEMEM_LARGE * 2 || 773 enable_bigktsb == 0) { 774 ktsb_szcode = TSB_1M_SZCODE; 775 enable_bigktsb = 0; 776 } else { 777 ktsb_szcode = highbit(npages - 1); 778 ktsb_szcode -= TSB_START_SIZE; 779 ktsb_szcode = MAX(ktsb_szcode, MIN_BIGKTSB_SZCODE); 780 ktsb_szcode = MIN(ktsb_szcode, MAX_BIGKTSB_SZCODE); 781 } 782 783 /* 784 * We choose the TSB to hold kernel 4M mappings to have twice 785 * the reach as the primary kernel TSB since this TSB will 786 * potentially (currently) be shared by both mappings to all of 787 * physical memory plus user TSBs. If this TSB has to be in nucleus 788 * (only for Spitfire and Cheetah) limit its size to 64K. 789 */ 790 ktsb4m_szcode = highbit((2 * npages) / TTEPAGES(TTE4M) - 1); 791 ktsb4m_szcode -= TSB_START_SIZE; 792 ktsb4m_szcode = MAX(ktsb4m_szcode, TSB_MIN_SZCODE); 793 ktsb4m_szcode = MIN(ktsb4m_szcode, TSB_SOFTSZ_MASK); 794 if ((enable_bigktsb == 0 || ktsb_phys == 0) && ktsb4m_szcode > 795 TSB_64K_SZCODE) { 796 ktsb4m_szcode = TSB_64K_SZCODE; 797 max_bootlp_tteszc = TTE8K; 798 } 799 800 ktsb_sz = TSB_BYTES(ktsb_szcode); /* kernel 8K tsb size */ 801 ktsb4m_sz = TSB_BYTES(ktsb4m_szcode); /* kernel 4M tsb size */ 802 } 803 804 /* 805 * Allocate kernel TSBs from nucleus data memory. 806 * The function return 0 on success and -1 on failure. 807 */ 808 int 809 ndata_alloc_tsbs(struct memlist *ndata, pgcnt_t npages) 810 { 811 /* 812 * Set ktsb_phys to 1 if the processor supports ASI_QUAD_LDD_PHYS. 813 */ 814 sfmmu_setup_4lp(); 815 816 /* 817 * Size the kernel TSBs based upon the amount of physical 818 * memory in the system. 819 */ 820 calc_tsb_sizes(npages); 821 822 /* 823 * Allocate the 8K kernel TSB if it belongs inside the nucleus. 824 */ 825 if (enable_bigktsb == 0) { 826 if ((ktsb_base = ndata_alloc(ndata, ktsb_sz, ktsb_sz)) == NULL) 827 return (-1); 828 ASSERT(!((uintptr_t)ktsb_base & (ktsb_sz - 1))); 829 830 PRM_DEBUG(ktsb_base); 831 PRM_DEBUG(ktsb_sz); 832 PRM_DEBUG(ktsb_szcode); 833 } 834 835 /* 836 * Next, allocate 4M kernel TSB from the nucleus since it's small. 837 */ 838 if (ktsb4m_szcode <= TSB_64K_SZCODE) { 839 840 ktsb4m_base = ndata_alloc(ndata, ktsb4m_sz, ktsb4m_sz); 841 if (ktsb4m_base == NULL) 842 return (-1); 843 ASSERT(!((uintptr_t)ktsb4m_base & (ktsb4m_sz - 1))); 844 845 PRM_DEBUG(ktsb4m_base); 846 PRM_DEBUG(ktsb4m_sz); 847 PRM_DEBUG(ktsb4m_szcode); 848 } 849 850 return (0); 851 } 852 853 size_t 854 calc_hmehash_sz(pgcnt_t npages) 855 { 856 ulong_t hme_buckets; 857 858 /* 859 * The number of buckets in the hme hash tables 860 * is a power of 2 such that the average hash chain length is 861 * HMENT_HASHAVELEN. The number of buckets for the user hash is 862 * a function of physical memory and a predefined overmapping factor. 863 * The number of buckets for the kernel hash is a function of 864 * physical memory only. 865 */ 866 hme_buckets = (npages * HMEHASH_FACTOR) / 867 (HMENT_HASHAVELEN * (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT)); 868 869 uhmehash_num = (int)MIN(hme_buckets, MAX_UHME_BUCKETS); 870 871 if (uhmehash_num > USER_BUCKETS_THRESHOLD) { 872 /* 873 * if uhmehash_num is not power of 2 round it down to the 874 * next power of 2. 875 */ 876 uint_t align = 1 << (highbit(uhmehash_num - 1) - 1); 877 uhmehash_num = P2ALIGN(uhmehash_num, align); 878 } else 879 uhmehash_num = 1 << highbit(uhmehash_num - 1); 880 881 hme_buckets = npages / (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT); 882 khmehash_num = (int)MIN(hme_buckets, MAX_KHME_BUCKETS); 883 khmehash_num = 1 << highbit(khmehash_num - 1); 884 khmehash_num = MAX(khmehash_num, MIN_KHME_BUCKETS); 885 886 return ((uhmehash_num + khmehash_num) * sizeof (struct hmehash_bucket)); 887 } 888 889 caddr_t 890 alloc_hmehash(caddr_t alloc_base) 891 { 892 size_t khmehash_sz, uhmehash_sz; 893 894 khme_hash = (struct hmehash_bucket *)alloc_base; 895 khmehash_sz = khmehash_num * sizeof (struct hmehash_bucket); 896 alloc_base += khmehash_sz; 897 898 uhme_hash = (struct hmehash_bucket *)alloc_base; 899 uhmehash_sz = uhmehash_num * sizeof (struct hmehash_bucket); 900 alloc_base += uhmehash_sz; 901 902 PRM_DEBUG(khme_hash); 903 PRM_DEBUG(uhme_hash); 904 905 return (alloc_base); 906 } 907 908 /* 909 * Allocate hat structs from the nucleus data memory. 910 */ 911 int 912 ndata_alloc_hat(struct memlist *ndata, pgcnt_t npages) 913 { 914 size_t mml_alloc_sz; 915 size_t cb_alloc_sz; 916 917 /* 918 * For the page mapping list mutex array we allocate one mutex 919 * for every 128 pages (1 MB) with a minimum of 64 entries and 920 * a maximum of 8K entries. For the initial computation npages 921 * is rounded up (ie. 1 << highbit(npages * 1.5 / 128)) 922 * 923 * mml_shift is roughly log2(mml_table_sz) + 3 for MLIST_HASH 924 */ 925 mml_table_sz = 1 << highbit((npages * 3) / 256); 926 if (mml_table_sz < 64) 927 mml_table_sz = 64; 928 else if (mml_table_sz > 8192) 929 mml_table_sz = 8192; 930 mml_shift = highbit(mml_table_sz) + 3; 931 932 PRM_DEBUG(mml_table_sz); 933 PRM_DEBUG(mml_shift); 934 935 mml_alloc_sz = mml_table_sz * sizeof (kmutex_t); 936 937 mml_table = ndata_alloc(ndata, mml_alloc_sz, ecache_alignsize); 938 if (mml_table == NULL) 939 return (-1); 940 PRM_DEBUG(mml_table); 941 942 cb_alloc_sz = sfmmu_max_cb_id * sizeof (struct sfmmu_callback); 943 PRM_DEBUG(cb_alloc_sz); 944 sfmmu_cb_table = ndata_alloc(ndata, cb_alloc_sz, ecache_alignsize); 945 if (sfmmu_cb_table == NULL) 946 return (-1); 947 PRM_DEBUG(sfmmu_cb_table); 948 949 return (0); 950 } 951 952 int 953 ndata_alloc_kpm(struct memlist *ndata, pgcnt_t kpm_npages) 954 { 955 size_t kpmp_alloc_sz; 956 957 /* 958 * For the kpm_page mutex array we allocate one mutex every 16 959 * kpm pages (64MB). In smallpage mode we allocate one mutex 960 * every 8K pages. The minimum is set to 64 entries and the 961 * maximum to 8K entries. 962 */ 963 if (kpm_smallpages == 0) { 964 kpmp_shift = highbit(sizeof (kpm_page_t)) - 1; 965 kpmp_table_sz = 1 << highbit(kpm_npages / 16); 966 kpmp_table_sz = (kpmp_table_sz < 64) ? 64 : 967 ((kpmp_table_sz > 8192) ? 8192 : kpmp_table_sz); 968 kpmp_alloc_sz = kpmp_table_sz * sizeof (kpm_hlk_t); 969 970 kpmp_table = ndata_alloc(ndata, kpmp_alloc_sz, 971 ecache_alignsize); 972 if (kpmp_table == NULL) 973 return (-1); 974 975 PRM_DEBUG(kpmp_table); 976 PRM_DEBUG(kpmp_table_sz); 977 978 kpmp_stable_sz = 0; 979 kpmp_stable = NULL; 980 } else { 981 ASSERT(kpm_pgsz == PAGESIZE); 982 kpmp_shift = highbit(sizeof (kpm_shlk_t)) + 1; 983 kpmp_stable_sz = 1 << highbit(kpm_npages / 8192); 984 kpmp_stable_sz = (kpmp_stable_sz < 64) ? 64 : 985 ((kpmp_stable_sz > 8192) ? 8192 : kpmp_stable_sz); 986 kpmp_alloc_sz = kpmp_stable_sz * sizeof (kpm_shlk_t); 987 988 kpmp_stable = ndata_alloc(ndata, kpmp_alloc_sz, 989 ecache_alignsize); 990 if (kpmp_stable == NULL) 991 return (-1); 992 993 PRM_DEBUG(kpmp_stable); 994 PRM_DEBUG(kpmp_stable_sz); 995 996 kpmp_table_sz = 0; 997 kpmp_table = NULL; 998 } 999 PRM_DEBUG(kpmp_shift); 1000 1001 return (0); 1002 } 1003 1004 /* 1005 * This function bop allocs kernel TSBs. 1006 */ 1007 caddr_t 1008 sfmmu_ktsb_alloc(caddr_t tsbbase) 1009 { 1010 caddr_t vaddr; 1011 1012 if (enable_bigktsb) { 1013 ktsb_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb_sz); 1014 vaddr = prom_alloc(ktsb_base, ktsb_sz, ktsb_sz); 1015 if (vaddr != ktsb_base) 1016 cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc" 1017 " 8K bigktsb"); 1018 ktsb_base = vaddr; 1019 tsbbase = ktsb_base + ktsb_sz; 1020 PRM_DEBUG(ktsb_base); 1021 PRM_DEBUG(tsbbase); 1022 } 1023 1024 if (ktsb4m_szcode > TSB_64K_SZCODE) { 1025 ASSERT(ktsb_phys && enable_bigktsb); 1026 ktsb4m_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb4m_sz); 1027 vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb4m_base, ktsb4m_sz, 1028 ktsb4m_sz); 1029 if (vaddr != ktsb4m_base) 1030 cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc" 1031 " 4M bigktsb"); 1032 ktsb4m_base = vaddr; 1033 tsbbase = ktsb4m_base + ktsb4m_sz; 1034 PRM_DEBUG(ktsb4m_base); 1035 PRM_DEBUG(tsbbase); 1036 } 1037 return (tsbbase); 1038 } 1039 1040 /* 1041 * Moves code assembled outside of the trap table into the trap 1042 * table taking care to relocate relative branches to code outside 1043 * of the trap handler. 1044 */ 1045 static void 1046 sfmmu_reloc_trap_handler(void *tablep, void *start, size_t count) 1047 { 1048 size_t i; 1049 uint32_t *src; 1050 uint32_t *dst; 1051 uint32_t inst; 1052 int op, op2; 1053 int32_t offset; 1054 int disp; 1055 1056 src = start; 1057 dst = tablep; 1058 offset = src - dst; 1059 for (src = start, i = 0; i < count; i++, src++, dst++) { 1060 inst = *dst = *src; 1061 op = (inst >> 30) & 0x2; 1062 if (op == 1) { 1063 /* call */ 1064 disp = ((int32_t)inst << 2) >> 2; /* sign-extend */ 1065 if (disp + i >= 0 && disp + i < count) 1066 continue; 1067 disp += offset; 1068 inst = 0x40000000u | (disp & 0x3fffffffu); 1069 *dst = inst; 1070 } else if (op == 0) { 1071 /* branch or sethi */ 1072 op2 = (inst >> 22) & 0x7; 1073 1074 switch (op2) { 1075 case 0x3: /* BPr */ 1076 disp = (((inst >> 20) & 0x3) << 14) | 1077 (inst & 0x3fff); 1078 disp = (disp << 16) >> 16; /* sign-extend */ 1079 if (disp + i >= 0 && disp + i < count) 1080 continue; 1081 disp += offset; 1082 if (((disp << 16) >> 16) != disp) 1083 cmn_err(CE_PANIC, "bad reloc"); 1084 inst &= ~0x303fff; 1085 inst |= (disp & 0x3fff); 1086 inst |= (disp & 0xc000) << 6; 1087 break; 1088 1089 case 0x2: /* Bicc */ 1090 disp = ((int32_t)inst << 10) >> 10; 1091 if (disp + i >= 0 && disp + i < count) 1092 continue; 1093 disp += offset; 1094 if (((disp << 10) >> 10) != disp) 1095 cmn_err(CE_PANIC, "bad reloc"); 1096 inst &= ~0x3fffff; 1097 inst |= (disp & 0x3fffff); 1098 break; 1099 1100 case 0x1: /* Bpcc */ 1101 disp = ((int32_t)inst << 13) >> 13; 1102 if (disp + i >= 0 && disp + i < count) 1103 continue; 1104 disp += offset; 1105 if (((disp << 13) >> 13) != disp) 1106 cmn_err(CE_PANIC, "bad reloc"); 1107 inst &= ~0x7ffff; 1108 inst |= (disp & 0x7ffffu); 1109 break; 1110 } 1111 *dst = inst; 1112 } 1113 } 1114 flush_instr_mem(tablep, count * sizeof (uint32_t)); 1115 } 1116 1117 /* 1118 * Routine to allocate a large page to use in the TSB caches. 1119 */ 1120 /*ARGSUSED*/ 1121 static page_t * 1122 sfmmu_tsb_page_create(void *addr, size_t size, int vmflag, void *arg) 1123 { 1124 int pgflags; 1125 1126 pgflags = PG_EXCL; 1127 if ((vmflag & VM_NOSLEEP) == 0) 1128 pgflags |= PG_WAIT; 1129 if (vmflag & VM_PANIC) 1130 pgflags |= PG_PANIC; 1131 if (vmflag & VM_PUSHPAGE) 1132 pgflags |= PG_PUSHPAGE; 1133 1134 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1135 pgflags, &kvseg, addr, arg)); 1136 } 1137 1138 /* 1139 * Allocate a large page to back the virtual address range 1140 * [addr, addr + size). If addr is NULL, allocate the virtual address 1141 * space as well. 1142 */ 1143 static void * 1144 sfmmu_tsb_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1145 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1146 void *pcarg) 1147 { 1148 page_t *ppl; 1149 page_t *rootpp; 1150 caddr_t addr = inaddr; 1151 pgcnt_t npages = btopr(size); 1152 page_t **ppa; 1153 int i = 0; 1154 1155 /* 1156 * Assuming that only TSBs will call this with size > PAGESIZE 1157 * There is no reason why this couldn't be expanded to 8k pages as 1158 * well, or other page sizes in the future .... but for now, we 1159 * only support fixed sized page requests. 1160 */ 1161 if ((inaddr == NULL) && ((addr = vmem_xalloc(vmp, size, size, 0, 0, 1162 NULL, NULL, vmflag)) == NULL)) 1163 return (NULL); 1164 1165 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1166 if (inaddr == NULL) 1167 vmem_xfree(vmp, addr, size); 1168 return (NULL); 1169 } 1170 1171 ppl = page_create_func(addr, size, vmflag, pcarg); 1172 if (ppl == NULL) { 1173 if (inaddr == NULL) 1174 vmem_xfree(vmp, addr, size); 1175 page_unresv(npages); 1176 return (NULL); 1177 } 1178 1179 rootpp = ppl; 1180 ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP); 1181 while (ppl != NULL) { 1182 page_t *pp = ppl; 1183 ppa[i++] = pp; 1184 page_sub(&ppl, pp); 1185 ASSERT(page_iolock_assert(pp)); 1186 page_io_unlock(pp); 1187 } 1188 1189 /* 1190 * Load the locked entry. It's OK to preload the entry into 1191 * the TSB since we now support large mappings in the kernel TSB. 1192 */ 1193 hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size, 1194 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, HAT_LOAD_LOCK); 1195 1196 for (--i; i >= 0; --i) { 1197 (void) page_pp_lock(ppa[i], 0, 1); 1198 page_unlock(ppa[i]); 1199 } 1200 1201 kmem_free(ppa, npages * sizeof (page_t *)); 1202 return (addr); 1203 } 1204 1205 /* Called to import new spans into the TSB vmem arenas */ 1206 void * 1207 sfmmu_tsb_segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 1208 { 1209 lgrp_id_t lgrpid = LGRP_NONE; 1210 1211 if (tsb_lgrp_affinity) { 1212 /* 1213 * Search for the vmp->lgrpid mapping by brute force; 1214 * some day vmp will have an lgrp, until then we have 1215 * to do this the hard way. 1216 */ 1217 for (lgrpid = 0; lgrpid < NLGRPS_MAX && 1218 vmp != kmem_tsb_default_arena[lgrpid]; lgrpid++) 1219 ; 1220 if (lgrpid == NLGRPS_MAX) 1221 lgrpid = LGRP_NONE; 1222 } 1223 1224 return (sfmmu_tsb_xalloc(vmp, NULL, size, vmflag, 0, 1225 sfmmu_tsb_page_create, lgrpid != LGRP_NONE? &lgrpid : NULL)); 1226 } 1227 1228 /* Called to free spans from the TSB vmem arenas */ 1229 void 1230 sfmmu_tsb_segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1231 { 1232 page_t *pp; 1233 caddr_t addr = inaddr; 1234 caddr_t eaddr; 1235 pgcnt_t npages = btopr(size); 1236 pgcnt_t pgs_left = npages; 1237 page_t *rootpp = NULL; 1238 1239 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1240 1241 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1242 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1243 if (pp == NULL) 1244 panic("sfmmu_tsb_segkmem_free: page not found"); 1245 1246 ASSERT(PAGE_EXCL(pp)); 1247 page_pp_unlock(pp, 0, 1); 1248 1249 if (rootpp == NULL) 1250 rootpp = pp; 1251 if (--pgs_left == 0) { 1252 /* 1253 * similar logic to segspt_free_pages, but we know we 1254 * have one large page. 1255 */ 1256 page_destroy_pages(rootpp); 1257 } 1258 } 1259 page_unresv(npages); 1260 1261 if (vmp != NULL) 1262 vmem_xfree(vmp, inaddr, size); 1263 } 1264