1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <vm/hat.h> 30 #include <vm/hat_sfmmu.h> 31 #include <vm/page.h> 32 #include <sys/pte.h> 33 #include <sys/systm.h> 34 #include <sys/mman.h> 35 #include <sys/sysmacros.h> 36 #include <sys/machparam.h> 37 #include <sys/vtrace.h> 38 #include <sys/kmem.h> 39 #include <sys/mmu.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cpu.h> 42 #include <sys/cpuvar.h> 43 #include <sys/debug.h> 44 #include <sys/lgrp.h> 45 #include <sys/archsystm.h> 46 #include <sys/machsystm.h> 47 #include <sys/vmsystm.h> 48 #include <sys/bitmap.h> 49 #include <vm/as.h> 50 #include <vm/seg.h> 51 #include <vm/seg_kmem.h> 52 #include <vm/seg_kp.h> 53 #include <vm/seg_kpm.h> 54 #include <vm/rm.h> 55 #include <vm/vm_dep.h> 56 #include <sys/t_lock.h> 57 #include <sys/vm_machparam.h> 58 #include <sys/promif.h> 59 #include <sys/prom_isa.h> 60 #include <sys/prom_plat.h> 61 #include <sys/prom_debug.h> 62 #include <sys/privregs.h> 63 #include <sys/bootconf.h> 64 #include <sys/memlist.h> 65 #include <sys/memlist_plat.h> 66 #include <sys/cpu_module.h> 67 #include <sys/reboot.h> 68 #include <sys/kdi.h> 69 70 /* 71 * Static routines 72 */ 73 static void sfmmu_map_prom_mappings(struct translation *, size_t); 74 static struct translation *read_prom_mappings(size_t *); 75 static void sfmmu_reloc_trap_handler(void *, void *, size_t); 76 77 /* 78 * External routines 79 */ 80 extern void sfmmu_remap_kernel(void); 81 extern void sfmmu_patch_utsb(void); 82 83 /* 84 * Global Data: 85 */ 86 extern caddr_t textva, datava; 87 extern tte_t ktext_tte, kdata_tte; /* ttes for kernel text and data */ 88 extern int enable_bigktsb; 89 90 uint64_t memsegspa = (uintptr_t)MSEG_NULLPTR_PA; /* memsegs physical linkage */ 91 uint64_t memseg_phash[N_MEM_SLOTS]; /* use physical memseg addresses */ 92 93 int sfmmu_kern_mapped = 0; 94 95 /* 96 * DMMU primary context register for the kernel context. Machine specific code 97 * inserts correct page size codes when necessary 98 */ 99 uint64_t kcontextreg = KCONTEXT; 100 101 #ifdef DEBUG 102 static int ndata_middle_hole_detected = 0; 103 #endif 104 105 /* Extern Global Data */ 106 107 extern int page_relocate_ready; 108 109 /* 110 * Controls the logic which enables the use of the 111 * QUAD_LDD_PHYS ASI for TSB accesses. 112 */ 113 extern int ktsb_phys; 114 115 /* 116 * Global Routines called from within: 117 * usr/src/uts/sun4u 118 * usr/src/uts/sfmmu 119 * usr/src/uts/sun 120 */ 121 122 pfn_t 123 va_to_pfn(void *vaddr) 124 { 125 u_longlong_t physaddr; 126 int mode, valid; 127 128 if (tba_taken_over) 129 return (hat_getpfnum(kas.a_hat, (caddr_t)vaddr)); 130 131 #if !defined(C_OBP) 132 if ((caddr_t)vaddr >= kmem64_base && (caddr_t)vaddr < kmem64_end) { 133 if (kmem64_pabase == (uint64_t)-1) 134 prom_panic("va_to_pfn: kmem64_pabase not init"); 135 physaddr = kmem64_pabase + ((caddr_t)vaddr - kmem64_base); 136 return ((pfn_t)physaddr >> MMU_PAGESHIFT); 137 } 138 #endif /* !C_OBP */ 139 140 if ((prom_translate_virt(vaddr, &valid, &physaddr, &mode) != -1) && 141 (valid == -1)) { 142 return ((pfn_t)(physaddr >> MMU_PAGESHIFT)); 143 } 144 return (PFN_INVALID); 145 } 146 147 uint64_t 148 va_to_pa(void *vaddr) 149 { 150 pfn_t pfn; 151 152 if ((pfn = va_to_pfn(vaddr)) == PFN_INVALID) 153 return ((uint64_t)-1); 154 return (((uint64_t)pfn << MMU_PAGESHIFT) | 155 ((uint64_t)vaddr & MMU_PAGEOFFSET)); 156 } 157 158 void 159 hat_kern_setup(void) 160 { 161 struct translation *trans_root; 162 size_t ntrans_root; 163 extern void startup_fixup_physavail(void); 164 165 /* 166 * These are the steps we take to take over the mmu from the prom. 167 * 168 * (1) Read the prom's mappings through the translation property. 169 * (2) Remap the kernel text and kernel data with 2 locked 4MB ttes. 170 * Create the the hmeblks for these 2 ttes at this time. 171 * (3) Create hat structures for all other prom mappings. Since the 172 * kernel text and data hme_blks have already been created we 173 * skip the equivalent prom's mappings. 174 * (4) Initialize the tsb and its corresponding hardware regs. 175 * (5) Take over the trap table (currently in startup). 176 * (6) Up to this point it is possible the prom required some of its 177 * locked tte's. Now that we own the trap table we remove them. 178 */ 179 180 ktsb_pbase = va_to_pa(ktsb_base); 181 ktsb4m_pbase = va_to_pa(ktsb4m_base); 182 PRM_DEBUG(ktsb_pbase); 183 PRM_DEBUG(ktsb4m_pbase); 184 185 sfmmu_patch_ktsb(); 186 sfmmu_patch_utsb(); 187 sfmmu_patch_mmu_asi(ktsb_phys); 188 189 sfmmu_init_tsbs(); 190 191 if (kpm_enable) { 192 sfmmu_kpm_patch_tlbm(); 193 if (kpm_smallpages == 0) { 194 sfmmu_kpm_patch_tsbm(); 195 } 196 } 197 198 if (!shctx_on || disable_shctx) { 199 sfmmu_patch_shctx(); 200 } 201 202 /* 203 * The 8K-indexed kernel TSB space is used to hold 204 * translations below... 205 */ 206 trans_root = read_prom_mappings(&ntrans_root); 207 sfmmu_remap_kernel(); 208 startup_fixup_physavail(); 209 mmu_init_kernel_pgsz(kas.a_hat); 210 sfmmu_map_prom_mappings(trans_root, ntrans_root); 211 212 /* 213 * We invalidate 8K kernel TSB because we used it in 214 * sfmmu_map_prom_mappings() 215 */ 216 sfmmu_inv_tsb(ktsb_base, ktsb_sz); 217 sfmmu_inv_tsb(ktsb4m_base, ktsb4m_sz); 218 219 sfmmu_init_ktsbinfo(); 220 221 222 sfmmu_kern_mapped = 1; 223 224 /* 225 * hments have been created for mapped pages, and thus we're ready 226 * for kmdb to start using its own trap table. It walks the hments 227 * to resolve TLB misses, and can't be used until they're ready. 228 */ 229 if (boothowto & RB_DEBUG) 230 kdi_dvec_vmready(); 231 } 232 233 /* 234 * Macro used below to convert the prom's 32-bit high and low fields into 235 * a value appropriate for the 64-bit kernel. 236 */ 237 238 #define COMBINE(hi, lo) (((uint64_t)(uint32_t)(hi) << 32) | (uint32_t)(lo)) 239 240 /* 241 * Track larges pages used. 242 * Provides observability for this feature on non-debug kernels. 243 */ 244 ulong_t map_prom_lpcount[MMU_PAGE_SIZES]; 245 246 /* 247 * This function traverses the prom mapping list and creates equivalent 248 * mappings in the sfmmu mapping hash. 249 */ 250 static void 251 sfmmu_map_prom_mappings(struct translation *trans_root, size_t ntrans_root) 252 { 253 struct translation *promt; 254 tte_t tte, oldtte, *ttep; 255 pfn_t pfn, oldpfn, basepfn; 256 caddr_t vaddr; 257 size_t size, offset; 258 unsigned long i; 259 uint_t attr; 260 page_t *pp; 261 extern struct memlist *virt_avail; 262 263 ttep = &tte; 264 for (i = 0, promt = trans_root; i < ntrans_root; i++, promt++) { 265 ASSERT(promt->tte_hi != 0); 266 ASSERT32(promt->virt_hi == 0 && promt->size_hi == 0); 267 268 vaddr = (caddr_t)COMBINE(promt->virt_hi, promt->virt_lo); 269 270 /* 271 * hack until we get rid of map-for-unix 272 */ 273 if (vaddr < (caddr_t)KERNELBASE) 274 continue; 275 276 ttep->tte_inthi = promt->tte_hi; 277 ttep->tte_intlo = promt->tte_lo; 278 attr = PROC_DATA | HAT_NOSYNC; 279 #if defined(TTE_IS_GLOBAL) 280 if (TTE_IS_GLOBAL(ttep)) { 281 /* 282 * The prom better not use global translations 283 * because a user process might use the same 284 * virtual addresses 285 */ 286 cmn_err(CE_PANIC, "map_prom: global translation"); 287 TTE_SET_LOFLAGS(ttep, TTE_GLB_INT, 0); 288 } 289 #endif 290 if (TTE_IS_LOCKED(ttep)) { 291 /* clear the lock bits */ 292 TTE_CLR_LOCKED(ttep); 293 } 294 attr |= (TTE_IS_VCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEVTTE; 295 attr |= (TTE_IS_PCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEPTTE; 296 attr |= (TTE_IS_SIDEFFECT(ttep)) ? SFMMU_SIDEFFECT : 0; 297 attr |= (TTE_IS_IE(ttep)) ? HAT_STRUCTURE_LE : 0; 298 299 size = COMBINE(promt->size_hi, promt->size_lo); 300 offset = 0; 301 basepfn = TTE_TO_PFN((caddr_t)COMBINE(promt->virt_hi, 302 promt->virt_lo), ttep); 303 while (size) { 304 vaddr = (caddr_t)(COMBINE(promt->virt_hi, 305 promt->virt_lo) + offset); 306 307 /* 308 * make sure address is not in virt-avail list 309 */ 310 if (address_in_memlist(virt_avail, (uint64_t)vaddr, 311 size)) { 312 cmn_err(CE_PANIC, "map_prom: inconsistent " 313 "translation/avail lists"); 314 } 315 316 pfn = basepfn + mmu_btop(offset); 317 if (pf_is_memory(pfn)) { 318 if (attr & SFMMU_UNCACHEPTTE) { 319 cmn_err(CE_PANIC, "map_prom: " 320 "uncached prom memory page"); 321 } 322 } else { 323 if (!(attr & SFMMU_SIDEFFECT)) { 324 cmn_err(CE_PANIC, "map_prom: prom " 325 "i/o page without side-effect"); 326 } 327 } 328 329 /* 330 * skip kmem64 area 331 */ 332 if (vaddr >= kmem64_base && 333 vaddr < kmem64_aligned_end) { 334 #if !defined(C_OBP) 335 cmn_err(CE_PANIC, 336 "unexpected kmem64 prom mapping\n"); 337 #else /* !C_OBP */ 338 size_t mapsz; 339 340 if (ptob(pfn) != 341 kmem64_pabase + (vaddr - kmem64_base)) { 342 cmn_err(CE_PANIC, 343 "unexpected kmem64 prom mapping\n"); 344 } 345 346 mapsz = kmem64_aligned_end - vaddr; 347 if (mapsz >= size) { 348 break; 349 } 350 size -= mapsz; 351 offset += mapsz; 352 continue; 353 #endif /* !C_OBP */ 354 } 355 356 oldpfn = sfmmu_vatopfn(vaddr, KHATID, &oldtte); 357 ASSERT(oldpfn != PFN_SUSPENDED); 358 ASSERT(page_relocate_ready == 0); 359 360 if (oldpfn != PFN_INVALID) { 361 /* 362 * mapping already exists. 363 * Verify they are equal 364 */ 365 if (pfn != oldpfn) { 366 cmn_err(CE_PANIC, "map_prom: mapping " 367 "conflict (va=0x%p pfn=%p, " 368 "oldpfn=%p)", 369 (void *)vaddr, (void *)pfn, 370 (void *)oldpfn); 371 } 372 size -= MMU_PAGESIZE; 373 offset += MMU_PAGESIZE; 374 continue; 375 } 376 377 pp = page_numtopp_nolock(pfn); 378 if ((pp != NULL) && PP_ISFREE((page_t *)pp)) { 379 cmn_err(CE_PANIC, "map_prom: " 380 "prom-mapped page (va 0x%p, pfn 0x%p) " 381 "on free list", (void *)vaddr, (void *)pfn); 382 } 383 384 sfmmu_memtte(ttep, pfn, attr, TTE8K); 385 sfmmu_tteload(kas.a_hat, ttep, vaddr, pp, 386 HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD); 387 size -= MMU_PAGESIZE; 388 offset += MMU_PAGESIZE; 389 } 390 } 391 392 /* 393 * We claimed kmem64 from prom, so now we need to load tte. 394 */ 395 if (kmem64_base != NULL) { 396 pgcnt_t pages; 397 size_t psize; 398 int pszc; 399 400 pszc = kmem64_szc; 401 #ifdef sun4u 402 if (pszc > TTE8K) { 403 pszc = segkmem_lpszc; 404 } 405 #endif /* sun4u */ 406 psize = TTEBYTES(pszc); 407 pages = btop(psize); 408 basepfn = kmem64_pabase >> MMU_PAGESHIFT; 409 vaddr = kmem64_base; 410 while (vaddr < kmem64_end) { 411 sfmmu_memtte(ttep, basepfn, 412 PROC_DATA | HAT_NOSYNC, pszc); 413 sfmmu_tteload(kas.a_hat, ttep, vaddr, NULL, 414 HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD); 415 vaddr += psize; 416 basepfn += pages; 417 } 418 map_prom_lpcount[pszc] = 419 ((caddr_t)P2ROUNDUP((uintptr_t)kmem64_end, psize) - 420 kmem64_base) >> TTE_PAGE_SHIFT(pszc); 421 } 422 } 423 424 #undef COMBINE /* local to previous routine */ 425 426 /* 427 * This routine reads in the "translations" property in to a buffer and 428 * returns a pointer to this buffer and the number of translations. 429 */ 430 static struct translation * 431 read_prom_mappings(size_t *ntransrootp) 432 { 433 char *prop = "translations"; 434 size_t translen; 435 pnode_t node; 436 struct translation *transroot; 437 438 /* 439 * the "translations" property is associated with the mmu node 440 */ 441 node = (pnode_t)prom_getphandle(prom_mmu_ihandle()); 442 443 /* 444 * We use the TSB space to read in the prom mappings. This space 445 * is currently not being used because we haven't taken over the 446 * trap table yet. It should be big enough to hold the mappings. 447 */ 448 if ((translen = prom_getproplen(node, prop)) == -1) 449 cmn_err(CE_PANIC, "no translations property"); 450 *ntransrootp = translen / sizeof (*transroot); 451 translen = roundup(translen, MMU_PAGESIZE); 452 PRM_DEBUG(translen); 453 if (translen > TSB_BYTES(ktsb_szcode)) 454 cmn_err(CE_PANIC, "not enough space for translations"); 455 456 transroot = (struct translation *)ktsb_base; 457 ASSERT(transroot); 458 if (prom_getprop(node, prop, (caddr_t)transroot) == -1) { 459 cmn_err(CE_PANIC, "translations getprop failed"); 460 } 461 return (transroot); 462 } 463 464 /* 465 * Init routine of the nucleus data memory allocator. 466 * 467 * The nucleus data memory allocator is organized in ecache_alignsize'd 468 * memory chunks. Memory allocated by ndata_alloc() will never be freed. 469 * 470 * The ndata argument is used as header of the ndata freelist. 471 * Other freelist nodes are placed in the nucleus memory itself 472 * at the beginning of a free memory chunk. Therefore a freelist 473 * node (struct memlist) must fit into the smallest allocatable 474 * memory chunk (ecache_alignsize bytes). 475 * 476 * The memory interval [base, end] passed to ndata_alloc_init() must be 477 * bzero'd to allow the allocator to return bzero'd memory easily. 478 */ 479 void 480 ndata_alloc_init(struct memlist *ndata, uintptr_t base, uintptr_t end) 481 { 482 ASSERT(sizeof (struct memlist) <= ecache_alignsize); 483 484 base = roundup(base, ecache_alignsize); 485 end = end - end % ecache_alignsize; 486 487 ASSERT(base < end); 488 489 ndata->address = base; 490 ndata->size = end - base; 491 ndata->next = NULL; 492 ndata->prev = NULL; 493 } 494 495 /* 496 * Deliver the size of the largest free memory chunk. 497 */ 498 size_t 499 ndata_maxsize(struct memlist *ndata) 500 { 501 size_t chunksize = ndata->size; 502 503 while ((ndata = ndata->next) != NULL) { 504 if (chunksize < ndata->size) 505 chunksize = ndata->size; 506 } 507 508 return (chunksize); 509 } 510 511 /* 512 * This is a special function to figure out if the memory chunk needed 513 * for the page structs can fit in the nucleus or not. If it fits the 514 * function calculates and returns the possible remaining ndata size 515 * in the last element if the size needed for page structs would be 516 * allocated from the nucleus. 517 */ 518 size_t 519 ndata_spare(struct memlist *ndata, size_t wanted, size_t alignment) 520 { 521 struct memlist *frlist; 522 uintptr_t base; 523 uintptr_t end; 524 525 for (frlist = ndata; frlist != NULL; frlist = frlist->next) { 526 base = roundup(frlist->address, alignment); 527 end = roundup(base + wanted, ecache_alignsize); 528 529 if (end <= frlist->address + frlist->size) { 530 if (frlist->next == NULL) 531 return (frlist->address + frlist->size - end); 532 533 while (frlist->next != NULL) 534 frlist = frlist->next; 535 536 return (frlist->size); 537 } 538 } 539 540 return (0); 541 } 542 543 /* 544 * Allocate the last properly aligned memory chunk. 545 * This function is called when no more large nucleus memory chunks 546 * will be allocated. The remaining free nucleus memory at the end 547 * of the nucleus can be added to the phys_avail list. 548 */ 549 void * 550 ndata_extra_base(struct memlist *ndata, size_t alignment, caddr_t endaddr) 551 { 552 uintptr_t base; 553 size_t wasteage = 0; 554 #ifdef DEBUG 555 static int called = 0; 556 557 if (called++ > 0) 558 cmn_err(CE_PANIC, "ndata_extra_base() called more than once"); 559 #endif /* DEBUG */ 560 561 /* 562 * The alignment needs to be a multiple of ecache_alignsize. 563 */ 564 ASSERT((alignment % ecache_alignsize) == 0); 565 566 while (ndata->next != NULL) { 567 wasteage += ndata->size; 568 ndata = ndata->next; 569 } 570 571 base = roundup(ndata->address, alignment); 572 573 if (base >= ndata->address + ndata->size) 574 return (NULL); 575 576 if ((caddr_t)(ndata->address + ndata->size) != endaddr) { 577 #ifdef DEBUG 578 ndata_middle_hole_detected = 1; /* see if we hit this again */ 579 #endif 580 return (NULL); 581 } 582 583 if (base == ndata->address) { 584 if (ndata->prev != NULL) 585 ndata->prev->next = NULL; 586 else 587 ndata->size = 0; 588 589 bzero((void *)base, sizeof (struct memlist)); 590 591 } else { 592 ndata->size = base - ndata->address; 593 wasteage += ndata->size; 594 } 595 PRM_DEBUG(wasteage); 596 597 return ((void *)base); 598 } 599 600 /* 601 * Select the best matching buffer, avoid memory fragmentation. 602 */ 603 static struct memlist * 604 ndata_select_chunk(struct memlist *ndata, size_t wanted, size_t alignment) 605 { 606 struct memlist *fnd_below = NULL; 607 struct memlist *fnd_above = NULL; 608 struct memlist *fnd_unused = NULL; 609 struct memlist *frlist; 610 uintptr_t base; 611 uintptr_t end; 612 size_t below; 613 size_t above; 614 size_t unused; 615 size_t best_below = ULONG_MAX; 616 size_t best_above = ULONG_MAX; 617 size_t best_unused = ULONG_MAX; 618 619 ASSERT(ndata != NULL); 620 621 /* 622 * Look for the best matching buffer, avoid memory fragmentation. 623 * The following strategy is used, try to find 624 * 1. an exact fitting buffer 625 * 2. avoid wasting any space below the buffer, take first 626 * fitting buffer 627 * 3. avoid wasting any space above the buffer, take first 628 * fitting buffer 629 * 4. avoid wasting space, take first fitting buffer 630 * 5. take the last buffer in chain 631 */ 632 for (frlist = ndata; frlist != NULL; frlist = frlist->next) { 633 base = roundup(frlist->address, alignment); 634 end = roundup(base + wanted, ecache_alignsize); 635 636 if (end > frlist->address + frlist->size) 637 continue; 638 639 below = (base - frlist->address) / ecache_alignsize; 640 above = (frlist->address + frlist->size - end) / 641 ecache_alignsize; 642 unused = below + above; 643 644 if (unused == 0) 645 return (frlist); 646 647 if (frlist->next == NULL) 648 break; 649 650 if (below < best_below) { 651 best_below = below; 652 fnd_below = frlist; 653 } 654 655 if (above < best_above) { 656 best_above = above; 657 fnd_above = frlist; 658 } 659 660 if (unused < best_unused) { 661 best_unused = unused; 662 fnd_unused = frlist; 663 } 664 } 665 666 if (best_below == 0) 667 return (fnd_below); 668 if (best_above == 0) 669 return (fnd_above); 670 if (best_unused < ULONG_MAX) 671 return (fnd_unused); 672 673 return (frlist); 674 } 675 676 /* 677 * Nucleus data memory allocator. 678 * The granularity of the allocator is ecache_alignsize. 679 * See also comment for ndata_alloc_init(). 680 */ 681 void * 682 ndata_alloc(struct memlist *ndata, size_t wanted, size_t alignment) 683 { 684 struct memlist *found; 685 struct memlist *fnd_above; 686 uintptr_t base; 687 uintptr_t end; 688 size_t below; 689 size_t above; 690 691 /* 692 * Look for the best matching buffer, avoid memory fragmentation. 693 */ 694 if ((found = ndata_select_chunk(ndata, wanted, alignment)) == NULL) 695 return (NULL); 696 697 /* 698 * Allocate the nucleus data buffer. 699 */ 700 base = roundup(found->address, alignment); 701 end = roundup(base + wanted, ecache_alignsize); 702 ASSERT(end <= found->address + found->size); 703 704 below = base - found->address; 705 above = found->address + found->size - end; 706 ASSERT(above == 0 || (above % ecache_alignsize) == 0); 707 708 if (below >= ecache_alignsize) { 709 /* 710 * There is free memory below the allocated memory chunk. 711 */ 712 found->size = below - below % ecache_alignsize; 713 714 if (above) { 715 fnd_above = (struct memlist *)end; 716 fnd_above->address = end; 717 fnd_above->size = above; 718 719 if ((fnd_above->next = found->next) != NULL) 720 found->next->prev = fnd_above; 721 fnd_above->prev = found; 722 found->next = fnd_above; 723 } 724 725 return ((void *)base); 726 } 727 728 if (found->prev == NULL) { 729 /* 730 * The first chunk (ndata) is selected. 731 */ 732 ASSERT(found == ndata); 733 if (above) { 734 found->address = end; 735 found->size = above; 736 } else if (found->next != NULL) { 737 found->address = found->next->address; 738 found->size = found->next->size; 739 if ((found->next = found->next->next) != NULL) 740 found->next->prev = found; 741 742 bzero((void *)found->address, sizeof (struct memlist)); 743 } else { 744 found->address = end; 745 found->size = 0; 746 } 747 748 return ((void *)base); 749 } 750 751 /* 752 * Not the first chunk. 753 */ 754 if (above) { 755 fnd_above = (struct memlist *)end; 756 fnd_above->address = end; 757 fnd_above->size = above; 758 759 if ((fnd_above->next = found->next) != NULL) 760 fnd_above->next->prev = fnd_above; 761 fnd_above->prev = found->prev; 762 found->prev->next = fnd_above; 763 764 } else { 765 if ((found->prev->next = found->next) != NULL) 766 found->next->prev = found->prev; 767 } 768 769 bzero((void *)found->address, sizeof (struct memlist)); 770 771 return ((void *)base); 772 } 773 774 /* 775 * Size the kernel TSBs based upon the amount of physical 776 * memory in the system. 777 */ 778 static void 779 calc_tsb_sizes(pgcnt_t npages) 780 { 781 PRM_DEBUG(npages); 782 783 if (npages <= TSB_FREEMEM_MIN) { 784 ktsb_szcode = TSB_128K_SZCODE; 785 enable_bigktsb = 0; 786 } else if (npages <= TSB_FREEMEM_LARGE / 2) { 787 ktsb_szcode = TSB_256K_SZCODE; 788 enable_bigktsb = 0; 789 } else if (npages <= TSB_FREEMEM_LARGE) { 790 ktsb_szcode = TSB_512K_SZCODE; 791 enable_bigktsb = 0; 792 } else if (npages <= TSB_FREEMEM_LARGE * 2 || 793 enable_bigktsb == 0) { 794 ktsb_szcode = TSB_1M_SZCODE; 795 enable_bigktsb = 0; 796 } else { 797 ktsb_szcode = highbit(npages - 1); 798 ktsb_szcode -= TSB_START_SIZE; 799 ktsb_szcode = MAX(ktsb_szcode, MIN_BIGKTSB_SZCODE); 800 ktsb_szcode = MIN(ktsb_szcode, MAX_BIGKTSB_SZCODE); 801 } 802 803 /* 804 * We choose the TSB to hold kernel 4M mappings to have twice 805 * the reach as the primary kernel TSB since this TSB will 806 * potentially (currently) be shared by both mappings to all of 807 * physical memory plus user TSBs. If this TSB has to be in nucleus 808 * (only for Spitfire and Cheetah) limit its size to 64K. 809 */ 810 ktsb4m_szcode = highbit((2 * npages) / TTEPAGES(TTE4M) - 1); 811 ktsb4m_szcode -= TSB_START_SIZE; 812 ktsb4m_szcode = MAX(ktsb4m_szcode, TSB_MIN_SZCODE); 813 ktsb4m_szcode = MIN(ktsb4m_szcode, TSB_SOFTSZ_MASK); 814 if ((enable_bigktsb == 0 || ktsb_phys == 0) && ktsb4m_szcode > 815 TSB_64K_SZCODE) { 816 ktsb4m_szcode = TSB_64K_SZCODE; 817 max_bootlp_tteszc = TTE8K; 818 } 819 820 ktsb_sz = TSB_BYTES(ktsb_szcode); /* kernel 8K tsb size */ 821 ktsb4m_sz = TSB_BYTES(ktsb4m_szcode); /* kernel 4M tsb size */ 822 } 823 824 /* 825 * Allocate kernel TSBs from nucleus data memory. 826 * The function return 0 on success and -1 on failure. 827 */ 828 int 829 ndata_alloc_tsbs(struct memlist *ndata, pgcnt_t npages) 830 { 831 /* 832 * Set ktsb_phys to 1 if the processor supports ASI_QUAD_LDD_PHYS. 833 */ 834 sfmmu_setup_4lp(); 835 836 /* 837 * Size the kernel TSBs based upon the amount of physical 838 * memory in the system. 839 */ 840 calc_tsb_sizes(npages); 841 842 /* 843 * Allocate the 8K kernel TSB if it belongs inside the nucleus. 844 */ 845 if (enable_bigktsb == 0) { 846 if ((ktsb_base = ndata_alloc(ndata, ktsb_sz, ktsb_sz)) == NULL) 847 return (-1); 848 ASSERT(!((uintptr_t)ktsb_base & (ktsb_sz - 1))); 849 850 PRM_DEBUG(ktsb_base); 851 PRM_DEBUG(ktsb_sz); 852 PRM_DEBUG(ktsb_szcode); 853 } 854 855 /* 856 * Next, allocate 4M kernel TSB from the nucleus since it's small. 857 */ 858 if (ktsb4m_szcode <= TSB_64K_SZCODE) { 859 860 ktsb4m_base = ndata_alloc(ndata, ktsb4m_sz, ktsb4m_sz); 861 if (ktsb4m_base == NULL) 862 return (-1); 863 ASSERT(!((uintptr_t)ktsb4m_base & (ktsb4m_sz - 1))); 864 865 PRM_DEBUG(ktsb4m_base); 866 PRM_DEBUG(ktsb4m_sz); 867 PRM_DEBUG(ktsb4m_szcode); 868 } 869 870 return (0); 871 } 872 873 /* 874 * Allocate hat structs from the nucleus data memory. 875 */ 876 int 877 ndata_alloc_hat(struct memlist *ndata, pgcnt_t npages, pgcnt_t kpm_npages) 878 { 879 size_t mml_alloc_sz; 880 size_t cb_alloc_sz; 881 int max_nucuhme_buckets = MAX_NUCUHME_BUCKETS; 882 int max_nuckhme_buckets = MAX_NUCKHME_BUCKETS; 883 ulong_t hme_buckets; 884 885 if (enable_bigktsb) { 886 ASSERT((max_nucuhme_buckets + max_nuckhme_buckets) * 887 sizeof (struct hmehash_bucket) <= 888 TSB_BYTES(TSB_1M_SZCODE)); 889 890 max_nucuhme_buckets *= 2; 891 max_nuckhme_buckets *= 2; 892 } 893 894 /* 895 * The number of buckets in the hme hash tables 896 * is a power of 2 such that the average hash chain length is 897 * HMENT_HASHAVELEN. The number of buckets for the user hash is 898 * a function of physical memory and a predefined overmapping factor. 899 * The number of buckets for the kernel hash is a function of 900 * physical memory only. 901 */ 902 hme_buckets = (npages * HMEHASH_FACTOR) / 903 (HMENT_HASHAVELEN * (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT)); 904 905 uhmehash_num = (int)MIN(hme_buckets, MAX_UHME_BUCKETS); 906 907 if (uhmehash_num > USER_BUCKETS_THRESHOLD) { 908 /* 909 * if uhmehash_num is not power of 2 round it down to the 910 * next power of 2. 911 */ 912 uint_t align = 1 << (highbit(uhmehash_num - 1) - 1); 913 uhmehash_num = P2ALIGN(uhmehash_num, align); 914 } else 915 uhmehash_num = 1 << highbit(uhmehash_num - 1); 916 917 hme_buckets = npages / (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT); 918 khmehash_num = (int)MIN(hme_buckets, MAX_KHME_BUCKETS); 919 khmehash_num = 1 << highbit(khmehash_num - 1); 920 khmehash_num = MAX(khmehash_num, MIN_KHME_BUCKETS); 921 922 if ((khmehash_num > max_nuckhme_buckets) || 923 (uhmehash_num > max_nucuhme_buckets)) { 924 khme_hash = NULL; 925 uhme_hash = NULL; 926 } else { 927 size_t hmehash_sz = (uhmehash_num + khmehash_num) * 928 sizeof (struct hmehash_bucket); 929 930 if ((khme_hash = ndata_alloc(ndata, hmehash_sz, 931 ecache_alignsize)) != NULL) 932 uhme_hash = &khme_hash[khmehash_num]; 933 else 934 uhme_hash = NULL; 935 936 PRM_DEBUG(hmehash_sz); 937 } 938 939 PRM_DEBUG(khme_hash); 940 PRM_DEBUG(khmehash_num); 941 PRM_DEBUG(uhme_hash); 942 PRM_DEBUG(uhmehash_num); 943 944 /* 945 * For the page mapping list mutex array we allocate one mutex 946 * for every 128 pages (1 MB) with a minimum of 64 entries and 947 * a maximum of 8K entries. For the initial computation npages 948 * is rounded up (ie. 1 << highbit(npages * 1.5 / 128)) 949 * 950 * mml_shift is roughly log2(mml_table_sz) + 3 for MLIST_HASH 951 * 952 * It is not required that this be allocated from the nucleus, 953 * but it is desirable. So we first allocate from the nucleus 954 * everything that must be there. Having done so, if mml_table 955 * will fit within what remains of the nucleus then it will be 956 * allocated here. If not, set mml_table to NULL, which will cause 957 * startup_memlist() to BOP_ALLOC() space for it after our return... 958 */ 959 mml_table_sz = 1 << highbit((npages * 3) / 256); 960 if (mml_table_sz < 64) 961 mml_table_sz = 64; 962 else if (mml_table_sz > 8192) 963 mml_table_sz = 8192; 964 mml_shift = highbit(mml_table_sz) + 3; 965 966 PRM_DEBUG(mml_table_sz); 967 PRM_DEBUG(mml_shift); 968 969 mml_alloc_sz = mml_table_sz * sizeof (kmutex_t); 970 971 mml_table = ndata_alloc(ndata, mml_alloc_sz, ecache_alignsize); 972 973 PRM_DEBUG(mml_table); 974 975 cb_alloc_sz = sfmmu_max_cb_id * sizeof (struct sfmmu_callback); 976 PRM_DEBUG(cb_alloc_sz); 977 sfmmu_cb_table = ndata_alloc(ndata, cb_alloc_sz, ecache_alignsize); 978 PRM_DEBUG(sfmmu_cb_table); 979 980 /* 981 * For the kpm_page mutex array we allocate one mutex every 16 982 * kpm pages (64MB). In smallpage mode we allocate one mutex 983 * every 8K pages. The minimum is set to 64 entries and the 984 * maximum to 8K entries. 985 * 986 * It is not required that this be allocated from the nucleus, 987 * but it is desirable. So we first allocate from the nucleus 988 * everything that must be there. Having done so, if kpmp_table 989 * or kpmp_stable will fit within what remains of the nucleus 990 * then it will be allocated here. If not, startup_memlist() 991 * will use BOP_ALLOC() space for it after our return... 992 */ 993 if (kpm_enable) { 994 size_t kpmp_alloc_sz; 995 996 if (kpm_smallpages == 0) { 997 kpmp_shift = highbit(sizeof (kpm_page_t)) - 1; 998 kpmp_table_sz = 1 << highbit(kpm_npages / 16); 999 kpmp_table_sz = (kpmp_table_sz < 64) ? 64 : 1000 ((kpmp_table_sz > 8192) ? 8192 : kpmp_table_sz); 1001 kpmp_alloc_sz = kpmp_table_sz * sizeof (kpm_hlk_t); 1002 1003 kpmp_table = ndata_alloc(ndata, kpmp_alloc_sz, 1004 ecache_alignsize); 1005 1006 PRM_DEBUG(kpmp_table); 1007 PRM_DEBUG(kpmp_table_sz); 1008 1009 kpmp_stable_sz = 0; 1010 kpmp_stable = NULL; 1011 } else { 1012 ASSERT(kpm_pgsz == PAGESIZE); 1013 kpmp_shift = highbit(sizeof (kpm_shlk_t)) + 1; 1014 kpmp_stable_sz = 1 << highbit(kpm_npages / 8192); 1015 kpmp_stable_sz = (kpmp_stable_sz < 64) ? 64 : 1016 ((kpmp_stable_sz > 8192) ? 8192 : kpmp_stable_sz); 1017 kpmp_alloc_sz = kpmp_stable_sz * sizeof (kpm_shlk_t); 1018 1019 kpmp_stable = ndata_alloc(ndata, kpmp_alloc_sz, 1020 ecache_alignsize); 1021 1022 PRM_DEBUG(kpmp_stable); 1023 PRM_DEBUG(kpmp_stable_sz); 1024 1025 kpmp_table_sz = 0; 1026 kpmp_table = NULL; 1027 } 1028 PRM_DEBUG(kpmp_shift); 1029 } 1030 1031 return (0); 1032 } 1033 1034 /* 1035 * Allocate virtual addresses at base with given alignment. 1036 * Note that there is no physical memory behind the address yet. 1037 */ 1038 caddr_t 1039 alloc_hme_buckets(caddr_t base, int alignsize) 1040 { 1041 size_t hmehash_sz = (uhmehash_num + khmehash_num) * 1042 sizeof (struct hmehash_bucket); 1043 1044 ASSERT(khme_hash == NULL); 1045 ASSERT(uhme_hash == NULL); 1046 1047 base = (caddr_t)roundup((uintptr_t)base, alignsize); 1048 hmehash_sz = roundup(hmehash_sz, alignsize); 1049 1050 khme_hash = (struct hmehash_bucket *)base; 1051 uhme_hash = (struct hmehash_bucket *)((caddr_t)khme_hash + 1052 khmehash_num * sizeof (struct hmehash_bucket)); 1053 base += hmehash_sz; 1054 return (base); 1055 } 1056 1057 /* 1058 * This function bop allocs kernel TSBs. 1059 */ 1060 caddr_t 1061 sfmmu_ktsb_alloc(caddr_t tsbbase) 1062 { 1063 caddr_t vaddr; 1064 1065 if (enable_bigktsb) { 1066 ktsb_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb_sz); 1067 vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb_base, ktsb_sz, 1068 ktsb_sz); 1069 if (vaddr != ktsb_base) 1070 cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc" 1071 " 8K bigktsb"); 1072 ktsb_base = vaddr; 1073 tsbbase = ktsb_base + ktsb_sz; 1074 PRM_DEBUG(ktsb_base); 1075 PRM_DEBUG(tsbbase); 1076 } 1077 1078 if (ktsb4m_szcode > TSB_64K_SZCODE) { 1079 ASSERT(ktsb_phys && enable_bigktsb); 1080 ktsb4m_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb4m_sz); 1081 vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb4m_base, ktsb4m_sz, 1082 ktsb4m_sz); 1083 if (vaddr != ktsb4m_base) 1084 cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc" 1085 " 4M bigktsb"); 1086 ktsb4m_base = vaddr; 1087 tsbbase = ktsb4m_base + ktsb4m_sz; 1088 PRM_DEBUG(ktsb4m_base); 1089 PRM_DEBUG(tsbbase); 1090 } 1091 return (tsbbase); 1092 } 1093 1094 /* 1095 * Moves code assembled outside of the trap table into the trap 1096 * table taking care to relocate relative branches to code outside 1097 * of the trap handler. 1098 */ 1099 static void 1100 sfmmu_reloc_trap_handler(void *tablep, void *start, size_t count) 1101 { 1102 size_t i; 1103 uint32_t *src; 1104 uint32_t *dst; 1105 uint32_t inst; 1106 int op, op2; 1107 int32_t offset; 1108 int disp; 1109 1110 src = start; 1111 dst = tablep; 1112 offset = src - dst; 1113 for (src = start, i = 0; i < count; i++, src++, dst++) { 1114 inst = *dst = *src; 1115 op = (inst >> 30) & 0x2; 1116 if (op == 1) { 1117 /* call */ 1118 disp = ((int32_t)inst << 2) >> 2; /* sign-extend */ 1119 if (disp + i >= 0 && disp + i < count) 1120 continue; 1121 disp += offset; 1122 inst = 0x40000000u | (disp & 0x3fffffffu); 1123 *dst = inst; 1124 } else if (op == 0) { 1125 /* branch or sethi */ 1126 op2 = (inst >> 22) & 0x7; 1127 1128 switch (op2) { 1129 case 0x3: /* BPr */ 1130 disp = (((inst >> 20) & 0x3) << 14) | 1131 (inst & 0x3fff); 1132 disp = (disp << 16) >> 16; /* sign-extend */ 1133 if (disp + i >= 0 && disp + i < count) 1134 continue; 1135 disp += offset; 1136 if (((disp << 16) >> 16) != disp) 1137 cmn_err(CE_PANIC, "bad reloc"); 1138 inst &= ~0x303fff; 1139 inst |= (disp & 0x3fff); 1140 inst |= (disp & 0xc000) << 6; 1141 break; 1142 1143 case 0x2: /* Bicc */ 1144 disp = ((int32_t)inst << 10) >> 10; 1145 if (disp + i >= 0 && disp + i < count) 1146 continue; 1147 disp += offset; 1148 if (((disp << 10) >> 10) != disp) 1149 cmn_err(CE_PANIC, "bad reloc"); 1150 inst &= ~0x3fffff; 1151 inst |= (disp & 0x3fffff); 1152 break; 1153 1154 case 0x1: /* Bpcc */ 1155 disp = ((int32_t)inst << 13) >> 13; 1156 if (disp + i >= 0 && disp + i < count) 1157 continue; 1158 disp += offset; 1159 if (((disp << 13) >> 13) != disp) 1160 cmn_err(CE_PANIC, "bad reloc"); 1161 inst &= ~0x7ffff; 1162 inst |= (disp & 0x7ffffu); 1163 break; 1164 } 1165 *dst = inst; 1166 } 1167 } 1168 flush_instr_mem(tablep, count * sizeof (uint32_t)); 1169 } 1170 1171 /* 1172 * Routine to allocate a large page to use in the TSB caches. 1173 */ 1174 /*ARGSUSED*/ 1175 static page_t * 1176 sfmmu_tsb_page_create(void *addr, size_t size, int vmflag, void *arg) 1177 { 1178 int pgflags; 1179 1180 pgflags = PG_EXCL; 1181 if ((vmflag & VM_NOSLEEP) == 0) 1182 pgflags |= PG_WAIT; 1183 if (vmflag & VM_PANIC) 1184 pgflags |= PG_PANIC; 1185 if (vmflag & VM_PUSHPAGE) 1186 pgflags |= PG_PUSHPAGE; 1187 1188 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1189 pgflags, &kvseg, addr, arg)); 1190 } 1191 1192 /* 1193 * Allocate a large page to back the virtual address range 1194 * [addr, addr + size). If addr is NULL, allocate the virtual address 1195 * space as well. 1196 */ 1197 static void * 1198 sfmmu_tsb_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1199 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1200 void *pcarg) 1201 { 1202 page_t *ppl; 1203 page_t *rootpp; 1204 caddr_t addr = inaddr; 1205 pgcnt_t npages = btopr(size); 1206 page_t **ppa; 1207 int i = 0; 1208 1209 /* 1210 * Assuming that only TSBs will call this with size > PAGESIZE 1211 * There is no reason why this couldn't be expanded to 8k pages as 1212 * well, or other page sizes in the future .... but for now, we 1213 * only support fixed sized page requests. 1214 */ 1215 if ((inaddr == NULL) && ((addr = vmem_xalloc(vmp, size, size, 0, 0, 1216 NULL, NULL, vmflag)) == NULL)) 1217 return (NULL); 1218 1219 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1220 if (inaddr == NULL) 1221 vmem_xfree(vmp, addr, size); 1222 return (NULL); 1223 } 1224 1225 ppl = page_create_func(addr, size, vmflag, pcarg); 1226 if (ppl == NULL) { 1227 if (inaddr == NULL) 1228 vmem_xfree(vmp, addr, size); 1229 page_unresv(npages); 1230 return (NULL); 1231 } 1232 1233 rootpp = ppl; 1234 ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP); 1235 while (ppl != NULL) { 1236 page_t *pp = ppl; 1237 ppa[i++] = pp; 1238 page_sub(&ppl, pp); 1239 ASSERT(page_iolock_assert(pp)); 1240 page_io_unlock(pp); 1241 } 1242 1243 /* 1244 * Load the locked entry. It's OK to preload the entry into 1245 * the TSB since we now support large mappings in the kernel TSB. 1246 */ 1247 hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size, 1248 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, HAT_LOAD_LOCK); 1249 1250 for (--i; i >= 0; --i) { 1251 (void) page_pp_lock(ppa[i], 0, 1); 1252 page_unlock(ppa[i]); 1253 } 1254 1255 kmem_free(ppa, npages * sizeof (page_t *)); 1256 return (addr); 1257 } 1258 1259 /* Called to import new spans into the TSB vmem arenas */ 1260 void * 1261 sfmmu_tsb_segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 1262 { 1263 lgrp_id_t lgrpid = LGRP_NONE; 1264 1265 if (tsb_lgrp_affinity) { 1266 /* 1267 * Search for the vmp->lgrpid mapping by brute force; 1268 * some day vmp will have an lgrp, until then we have 1269 * to do this the hard way. 1270 */ 1271 for (lgrpid = 0; lgrpid < NLGRPS_MAX && 1272 vmp != kmem_tsb_default_arena[lgrpid]; lgrpid++); 1273 if (lgrpid == NLGRPS_MAX) 1274 lgrpid = LGRP_NONE; 1275 } 1276 1277 return (sfmmu_tsb_xalloc(vmp, NULL, size, vmflag, 0, 1278 sfmmu_tsb_page_create, lgrpid != LGRP_NONE? &lgrpid : NULL)); 1279 } 1280 1281 /* Called to free spans from the TSB vmem arenas */ 1282 void 1283 sfmmu_tsb_segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1284 { 1285 page_t *pp; 1286 caddr_t addr = inaddr; 1287 caddr_t eaddr; 1288 pgcnt_t npages = btopr(size); 1289 pgcnt_t pgs_left = npages; 1290 page_t *rootpp = NULL; 1291 1292 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1293 1294 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1295 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1296 if (pp == NULL) 1297 panic("sfmmu_tsb_segkmem_free: page not found"); 1298 1299 ASSERT(PAGE_EXCL(pp)); 1300 page_pp_unlock(pp, 0, 1); 1301 1302 if (rootpp == NULL) 1303 rootpp = pp; 1304 if (--pgs_left == 0) { 1305 /* 1306 * similar logic to segspt_free_pages, but we know we 1307 * have one large page. 1308 */ 1309 page_destroy_pages(rootpp); 1310 } 1311 } 1312 page_unresv(npages); 1313 1314 if (vmp != NULL) 1315 vmem_xfree(vmp, inaddr, size); 1316 } 1317