1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/machsystm.h> 28 #include <sys/archsystm.h> 29 #include <sys/vm.h> 30 #include <sys/cpu.h> 31 #include <sys/atomic.h> 32 #include <sys/reboot.h> 33 #include <sys/kdi.h> 34 #include <sys/bootconf.h> 35 #include <sys/memlist_plat.h> 36 #include <sys/memlist_impl.h> 37 #include <sys/prom_plat.h> 38 #include <sys/prom_isa.h> 39 #include <sys/autoconf.h> 40 #include <sys/intreg.h> 41 #include <sys/ivintr.h> 42 #include <sys/fpu/fpusystm.h> 43 #include <sys/iommutsb.h> 44 #include <vm/vm_dep.h> 45 #include <vm/seg_dev.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kpm.h> 48 #include <vm/seg_map.h> 49 #include <vm/seg_kp.h> 50 #include <sys/sysconf.h> 51 #include <vm/hat_sfmmu.h> 52 #include <sys/kobj.h> 53 #include <sys/sun4asi.h> 54 #include <sys/clconf.h> 55 #include <sys/platform_module.h> 56 #include <sys/panic.h> 57 #include <sys/cpu_sgnblk_defs.h> 58 #include <sys/clock.h> 59 #include <sys/cmn_err.h> 60 #include <sys/promif.h> 61 #include <sys/prom_debug.h> 62 #include <sys/traptrace.h> 63 #include <sys/memnode.h> 64 #include <sys/mem_cage.h> 65 #include <sys/mmu.h> 66 67 extern void setup_trap_table(void); 68 extern int cpu_intrq_setup(struct cpu *); 69 extern void cpu_intrq_register(struct cpu *); 70 extern void contig_mem_init(void); 71 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t); 72 extern void mach_dump_buffer_init(void); 73 extern void mach_descrip_init(void); 74 extern void mach_descrip_startup_fini(void); 75 extern void mach_memscrub(void); 76 extern void mach_fpras(void); 77 extern void mach_cpu_halt_idle(void); 78 extern void mach_hw_copy_limit(void); 79 extern void load_mach_drivers(void); 80 extern void load_tod_module(void); 81 #pragma weak load_tod_module 82 83 extern int ndata_alloc_mmfsa(struct memlist *ndata); 84 #pragma weak ndata_alloc_mmfsa 85 86 extern void cif_init(void); 87 #pragma weak cif_init 88 89 extern void parse_idprom(void); 90 extern void add_vx_handler(char *, int, void (*)(cell_t *)); 91 extern void mem_config_init(void); 92 extern void memseg_remap_init(void); 93 94 extern void mach_kpm_init(void); 95 extern void pcf_init(); 96 extern int size_pse_array(pgcnt_t, int); 97 extern void pg_init(); 98 99 /* 100 * External Data: 101 */ 102 extern int vac_size; /* cache size in bytes */ 103 extern uint_t vac_mask; /* VAC alignment consistency mask */ 104 extern uint_t vac_colors; 105 106 /* 107 * Global Data Definitions: 108 */ 109 110 /* 111 * XXX - Don't port this to new architectures 112 * A 3rd party volume manager driver (vxdm) depends on the symbol romp. 113 * 'romp' has no use with a prom with an IEEE 1275 client interface. 114 * The driver doesn't use the value, but it depends on the symbol. 115 */ 116 void *romp; /* veritas driver won't load without romp 4154976 */ 117 /* 118 * Declare these as initialized data so we can patch them. 119 */ 120 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 121 pgcnt_t segkpsize = 122 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 123 uint_t segmap_percent = 6; /* Size of segmap segment */ 124 125 int use_cache = 1; /* cache not reliable (605 bugs) with MP */ 126 int vac_copyback = 1; 127 char *cache_mode = NULL; 128 int use_mix = 1; 129 int prom_debug = 0; 130 131 caddr_t boot_tba; /* %tba at boot - used by kmdb */ 132 uint_t tba_taken_over = 0; 133 134 caddr_t s_text; /* start of kernel text segment */ 135 caddr_t e_text; /* end of kernel text segment */ 136 caddr_t s_data; /* start of kernel data segment */ 137 caddr_t e_data; /* end of kernel data segment */ 138 139 caddr_t modtext; /* beginning of module text */ 140 size_t modtext_sz; /* size of module text */ 141 caddr_t moddata; /* beginning of module data reserve */ 142 caddr_t e_moddata; /* end of module data reserve */ 143 144 /* 145 * End of first block of contiguous kernel in 32-bit virtual address space 146 */ 147 caddr_t econtig32; /* end of first blk of contiguous kernel */ 148 149 caddr_t ncbase; /* beginning of non-cached segment */ 150 caddr_t ncend; /* end of non-cached segment */ 151 152 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ 153 caddr_t nalloc_base; /* beginning of nucleus allocation */ 154 caddr_t nalloc_end; /* end of nucleus allocatable memory */ 155 caddr_t valloc_base; /* beginning of kvalloc segment */ 156 157 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ 158 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ 159 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */ 160 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */ 161 int kmem64_szc; /* page size code */ 162 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */ 163 164 uintptr_t shm_alignment; /* VAC address consistency modulus */ 165 struct memlist *phys_install; /* Total installed physical memory */ 166 struct memlist *phys_avail; /* Available (unreserved) physical memory */ 167 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ 168 struct memlist *nopp_list; /* pages with no backing page structs */ 169 struct memlist ndata; /* memlist of nucleus allocatable memory */ 170 int memexp_flag; /* memory expansion card flag */ 171 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ 172 pgcnt_t obp_pages; /* Physical pages used by OBP */ 173 174 /* 175 * VM data structures 176 */ 177 long page_hashsz; /* Size of page hash table (power of two) */ 178 struct page *pp_base; /* Base of system page struct array */ 179 size_t pp_sz; /* Size in bytes of page struct array */ 180 struct page **page_hash; /* Page hash table */ 181 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 182 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 183 int pse_shift; /* log2(pse_table_size) */ 184 struct seg ktextseg; /* Segment used for kernel executable image */ 185 struct seg kvalloc; /* Segment used for "valloc" mapping */ 186 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 187 struct seg ktexthole; /* Segment used for nucleus text hole */ 188 struct seg kmapseg; /* Segment used for generic kernel mappings */ 189 struct seg kpmseg; /* Segment used for physical mapping */ 190 struct seg kdebugseg; /* Segment used for the kernel debugger */ 191 192 void *kpm_pp_base; /* Base of system kpm_page array */ 193 size_t kpm_pp_sz; /* Size of system kpm_page array */ 194 pgcnt_t kpm_npages; /* How many kpm pages are managed */ 195 196 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 197 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 198 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 199 200 int segzio_fromheap = 0; /* zio allocations occur from heap */ 201 caddr_t segzio_base; /* Base address of segzio */ 202 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 203 204 /* 205 * debugger pages (if allocated) 206 */ 207 struct vnode kdebugvp; 208 209 /* 210 * VA range available to the debugger 211 */ 212 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 213 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 214 215 /* 216 * Segment for relocated kernel structures in 64-bit large RAM kernels 217 */ 218 struct seg kmem64; 219 220 struct memseg *memseg_free; 221 222 struct vnode unused_pages_vp; 223 224 /* 225 * VM data structures allocated early during boot. 226 */ 227 size_t pagehash_sz; 228 uint64_t memlist_sz; 229 230 char tbr_wr_addr_inited = 0; 231 232 caddr_t mpo_heap32_buf = NULL; 233 size_t mpo_heap32_bufsz = 0; 234 235 /* 236 * Static Routines: 237 */ 238 static int ndata_alloc_memseg(struct memlist *, size_t); 239 static void memlist_new(uint64_t, uint64_t, struct memlist **); 240 static void memlist_add(uint64_t, uint64_t, 241 struct memlist **, struct memlist **); 242 static void kphysm_init(void); 243 static void kvm_init(void); 244 static void install_kmem64_tte(void); 245 246 static void startup_init(void); 247 static void startup_memlist(void); 248 static void startup_modules(void); 249 static void startup_bop_gone(void); 250 static void startup_vm(void); 251 static void startup_end(void); 252 static void setup_cage_params(void); 253 static void startup_create_io_node(void); 254 255 static pgcnt_t npages; 256 static struct memlist *memlist; 257 void *memlist_end; 258 259 static pgcnt_t bop_alloc_pages; 260 static caddr_t hblk_base; 261 uint_t hblk_alloc_dynamic = 0; 262 uint_t hblk1_min = H1MIN; 263 264 265 /* 266 * Hooks for unsupported platforms and down-rev firmware 267 */ 268 int iam_positron(void); 269 #pragma weak iam_positron 270 static void do_prom_version_check(void); 271 272 /* 273 * After receiving a thermal interrupt, this is the number of seconds 274 * to delay before shutting off the system, assuming 275 * shutdown fails. Use /etc/system to change the delay if this isn't 276 * large enough. 277 */ 278 int thermal_powerdown_delay = 1200; 279 280 /* 281 * Used to hold off page relocations into the cage until OBP has completed 282 * its boot-time handoff of its resources to the kernel. 283 */ 284 int page_relocate_ready = 0; 285 286 /* 287 * Indicate if kmem64 allocation was done in small chunks 288 */ 289 int kmem64_smchunks = 0; 290 291 /* 292 * Enable some debugging messages concerning memory usage... 293 */ 294 #ifdef DEBUGGING_MEM 295 static int debugging_mem; 296 static void 297 printmemlist(char *title, struct memlist *list) 298 { 299 if (!debugging_mem) 300 return; 301 302 printf("%s\n", title); 303 304 while (list) { 305 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", 306 (uint32_t)(list->address >> 32), (uint32_t)list->address, 307 (uint32_t)(list->size >> 32), (uint32_t)(list->size)); 308 list = list->next; 309 } 310 } 311 312 void 313 printmemseg(struct memseg *memseg) 314 { 315 if (!debugging_mem) 316 return; 317 318 printf("memseg\n"); 319 320 while (memseg) { 321 prom_printf("\tpage = 0x%p, epage = 0x%p, " 322 "pfn = 0x%x, epfn = 0x%x\n", 323 memseg->pages, memseg->epages, 324 memseg->pages_base, memseg->pages_end); 325 memseg = memseg->next; 326 } 327 } 328 329 #define debug_pause(str) halt((str)) 330 #define MPRINTF(str) if (debugging_mem) prom_printf((str)) 331 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) 332 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) 333 #define MPRINTF3(str, a, b, c) \ 334 if (debugging_mem) prom_printf((str), (a), (b), (c)) 335 #else /* DEBUGGING_MEM */ 336 #define MPRINTF(str) 337 #define MPRINTF1(str, a) 338 #define MPRINTF2(str, a, b) 339 #define MPRINTF3(str, a, b, c) 340 #endif /* DEBUGGING_MEM */ 341 342 343 /* 344 * 345 * Kernel's Virtual Memory Layout. 346 * /-----------------------\ 347 * 0xFFFFFFFF.FFFFFFFF -| |- 348 * | OBP's virtual page | 349 * | tables | 350 * 0xFFFFFFFC.00000000 -|-----------------------|- 351 * : : 352 * : : 353 * -|-----------------------|- 354 * | segzio | (base and size vary) 355 * 0xFFFFFE00.00000000 -|-----------------------|- 356 * | | Ultrasparc I/II support 357 * | segkpm segment | up to 2TB of physical 358 * | (64-bit kernel ONLY) | memory, VAC has 2 colors 359 * | | 360 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment 361 * : : 362 * : : 363 * 0xFFFFF810.00000000 -|-----------------------|- hole_end 364 * | | ^ 365 * | UltraSPARC I/II call | | 366 * | bug requires an extra | | 367 * | 4 GB of space between | | 368 * | hole and used RAM | | 369 * | | | 370 * 0xFFFFF800.00000000 -|-----------------------|- | 371 * | | | 372 * | Virtual Address Hole | UltraSPARC 373 * | on UltraSPARC I/II | I/II * ONLY * 374 * | | | 375 * 0x00000800.00000000 -|-----------------------|- | 376 * | | | 377 * | UltraSPARC I/II call | | 378 * | bug requires an extra | | 379 * | 4 GB of space between | | 380 * | hole and used RAM | | 381 * | | v 382 * 0x000007FF.00000000 -|-----------------------|- hole_start ----- 383 * : : ^ 384 * : : | 385 * |-----------------------| | 386 * | | | 387 * | ecache flush area | | 388 * | (twice largest e$) | | 389 * | | | 390 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ | 391 * | overmapped area | alignend_end | 392 * | (kmem64_alignsize | | 393 * | boundary) | | 394 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | 395 * | | | 396 * | 64-bit kernel ONLY | | 397 * | | | 398 * | kmem64 segment | | 399 * | | | 400 * | (Relocated extra HME | Approximately 401 * | block allocations, | 1 TB of virtual 402 * | memnode freelists, | address space 403 * | HME hash buckets, | | 404 * | mml_table, kpmp_table,| | 405 * | page_t array and | | 406 * | hashblock pool to | | 407 * | avoid hard-coded | | 408 * | 32-bit vaddr | | 409 * | limitations) | | 410 * | | v 411 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) 412 * | | 413 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) 414 * | | 415 * 0x00000300.00000000 -|-----------------------|- SYSBASE 416 * : : 417 * : : 418 * -|-----------------------|- 419 * | | 420 * | segmap segment | SEGMAPSIZE (1/8th physmem, 421 * | | 256G MAX) 422 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE 423 * : : 424 * : : 425 * -|-----------------------|- 426 * | | 427 * | segkp | SEGKPSIZE (2GB) 428 * | | 429 * | | 430 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE 431 * | | 432 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE 433 * | | (SEGKPBASE - 0x400000) 434 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE 435 * | | (MEMSCRUBBASE - NCARGS) 436 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE 437 * | | (ARGSBASE - PPMAPSIZE) 438 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE 439 * | | 440 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE 441 * | | 442 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE 443 * : : 444 * : : 445 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR 446 * | | 447 * | OBP | 448 * | | 449 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR 450 * | kmdb | 451 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE 452 * : : 453 * : : 454 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 455 * | | 456 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = 457 * | | ~64MB) 458 * 0x00000000.70002000 -|-----------------------| 459 * | panicbuf | 460 * 0x00000000.70000000 -|-----------------------|- SYSBASE32 461 * | boot-time | 462 * | temporary space | 463 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE 464 * : : 465 * : : 466 * | | 467 * |-----------------------|- econtig32 468 * | vm structures | 469 * 0x00000000.01C00000 |-----------------------|- nalloc_end 470 * | TSBs | 471 * |-----------------------|- end/nalloc_base 472 * | kernel data & bss | 473 * 0x00000000.01800000 -|-----------------------| 474 * : nucleus text hole : 475 * 0x00000000.01400000 -|-----------------------| 476 * : : 477 * |-----------------------| 478 * | module text | 479 * |-----------------------|- e_text/modtext 480 * | kernel text | 481 * |-----------------------| 482 * | trap table (48k) | 483 * 0x00000000.01000000 -|-----------------------|- KERNELBASE 484 * | reserved for trapstat |} TSTAT_TOTAL_SIZE 485 * |-----------------------| 486 * | | 487 * | invalid | 488 * | | 489 * 0x00000000.00000000 _|_______________________| 490 * 491 * 492 * 493 * 32-bit User Virtual Memory Layout. 494 * /-----------------------\ 495 * | | 496 * | invalid | 497 * | | 498 * 0xFFC00000 -|-----------------------|- USERLIMIT 499 * | user stack | 500 * : : 501 * : : 502 * : : 503 * | user data | 504 * -|-----------------------|- 505 * | user text | 506 * 0x00002000 -|-----------------------|- 507 * | invalid | 508 * 0x00000000 _|_______________________| 509 * 510 * 511 * 512 * 64-bit User Virtual Memory Layout. 513 * /-----------------------\ 514 * | | 515 * | invalid | 516 * | | 517 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT 518 * | user stack | 519 * : : 520 * : : 521 * : : 522 * | user data | 523 * -|-----------------------|- 524 * | user text | 525 * 0x00000000.01000000 -|-----------------------|- 526 * | invalid | 527 * 0x00000000.00000000 _|_______________________| 528 */ 529 530 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); 531 extern uint64_t ecache_flush_address(void); 532 533 #pragma weak load_platform_modules 534 #pragma weak plat_startup_memlist 535 #pragma weak ecache_init_scrub_flush_area 536 #pragma weak ecache_flush_address 537 538 539 /* 540 * By default the DR Cage is enabled for maximum OS 541 * MPSS performance. Users needing to disable the cage mechanism 542 * can set this variable to zero via /etc/system. 543 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) 544 * will result in loss of DR functionality. 545 * Platforms wishing to disable kernel Cage by default 546 * should do so in their set_platform_defaults() routine. 547 */ 548 int kernel_cage_enable = 1; 549 550 static void 551 setup_cage_params(void) 552 { 553 void (*func)(void); 554 555 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); 556 if (func != NULL) { 557 (*func)(); 558 return; 559 } 560 561 if (kernel_cage_enable == 0) { 562 return; 563 } 564 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256); 565 566 if (kcage_on) { 567 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); 568 } else { 569 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); 570 } 571 572 } 573 574 /* 575 * Machine-dependent startup code 576 */ 577 void 578 startup(void) 579 { 580 startup_init(); 581 if (&startup_platform) 582 startup_platform(); 583 startup_memlist(); 584 startup_modules(); 585 setup_cage_params(); 586 startup_bop_gone(); 587 startup_vm(); 588 startup_end(); 589 } 590 591 struct regs sync_reg_buf; 592 uint64_t sync_tt; 593 594 void 595 sync_handler(void) 596 { 597 struct panic_trap_info ti; 598 int i; 599 600 /* 601 * Prevent trying to talk to the other CPUs since they are 602 * sitting in the prom and won't reply. 603 */ 604 for (i = 0; i < NCPU; i++) { 605 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { 606 cpu[i]->cpu_flags &= ~CPU_READY; 607 cpu[i]->cpu_flags |= CPU_QUIESCED; 608 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 609 } 610 } 611 612 /* 613 * We've managed to get here without going through the 614 * normal panic code path. Try and save some useful 615 * information. 616 */ 617 if (!panicstr && (curthread->t_panic_trap == NULL)) { 618 ti.trap_type = sync_tt; 619 ti.trap_regs = &sync_reg_buf; 620 ti.trap_addr = NULL; 621 ti.trap_mmu_fsr = 0x0; 622 623 curthread->t_panic_trap = &ti; 624 } 625 626 /* 627 * If we're re-entering the panic path, update the signature 628 * block so that the SC knows we're in the second part of panic. 629 */ 630 if (panicstr) 631 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 632 633 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ 634 panic("sync initiated"); 635 } 636 637 638 static void 639 startup_init(void) 640 { 641 /* 642 * We want to save the registers while we're still in OBP 643 * so that we know they haven't been fiddled with since. 644 * (In principle, OBP can't change them just because it 645 * makes a callback, but we'd rather not depend on that 646 * behavior.) 647 */ 648 char sync_str[] = 649 "warning @ warning off : sync " 650 "%%tl-c %%tstate h# %p x! " 651 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " 652 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " 653 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " 654 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " 655 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " 656 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " 657 "%%y h# %p l! %%tl-c %%tt h# %p x! " 658 "sync ; warning !"; 659 660 /* 661 * 20 == num of %p substrings 662 * 16 == max num of chars %p will expand to. 663 */ 664 char bp[sizeof (sync_str) + 16 * 20]; 665 666 /* 667 * Initialize ptl1 stack for the 1st CPU. 668 */ 669 ptl1_init_cpu(&cpu0); 670 671 /* 672 * Initialize the address map for cache consistent mappings 673 * to random pages; must be done after vac_size is set. 674 */ 675 ppmapinit(); 676 677 /* 678 * Initialize the PROM callback handler. 679 */ 680 init_vx_handler(); 681 682 /* 683 * have prom call sync_callback() to handle the sync and 684 * save some useful information which will be stored in the 685 * core file later. 686 */ 687 (void) sprintf((char *)bp, sync_str, 688 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, 689 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, 690 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, 691 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, 692 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, 693 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, 694 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, 695 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, 696 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, 697 (void *)&sync_reg_buf.r_y, (void *)&sync_tt); 698 prom_interpret(bp, 0, 0, 0, 0, 0); 699 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); 700 } 701 702 703 size_t 704 calc_pp_sz(pgcnt_t npages) 705 { 706 707 return (npages * sizeof (struct page)); 708 } 709 710 size_t 711 calc_kpmpp_sz(pgcnt_t npages) 712 { 713 714 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; 715 kpm_pgsz = 1ull << kpm_pgshft; 716 kpm_pgoff = kpm_pgsz - 1; 717 kpmp2pshft = kpm_pgshft - PAGESHIFT; 718 kpmpnpgs = 1 << kpmp2pshft; 719 720 if (kpm_smallpages == 0) { 721 /* 722 * Avoid fragmentation problems in kphysm_init() 723 * by allocating for all of physical memory 724 */ 725 kpm_npages = ptokpmpr(physinstalled); 726 return (kpm_npages * sizeof (kpm_page_t)); 727 } else { 728 kpm_npages = npages; 729 return (kpm_npages * sizeof (kpm_spage_t)); 730 } 731 } 732 733 size_t 734 calc_pagehash_sz(pgcnt_t npages) 735 { 736 737 /* 738 * The page structure hash table size is a power of 2 739 * such that the average hash chain length is PAGE_HASHAVELEN. 740 */ 741 page_hashsz = npages / PAGE_HASHAVELEN; 742 page_hashsz = 1 << highbit(page_hashsz); 743 return (page_hashsz * sizeof (struct page *)); 744 } 745 746 int testkmem64_smchunks = 0; 747 748 int 749 alloc_kmem64(caddr_t base, caddr_t end) 750 { 751 int i; 752 caddr_t aligned_end = NULL; 753 754 if (testkmem64_smchunks) 755 return (1); 756 757 /* 758 * Make one large memory alloc after figuring out the 64-bit size. This 759 * will enable use of the largest page size appropriate for the system 760 * architecture. 761 */ 762 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K)); 763 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc))); 764 for (i = max_bootlp_tteszc; i >= TTE8K; i--) { 765 size_t alloc_size, alignsize; 766 #if !defined(C_OBP) 767 unsigned long long pa; 768 #endif /* !C_OBP */ 769 770 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) 771 continue; 772 alignsize = TTEBYTES(i); 773 kmem64_szc = i; 774 775 /* limit page size for small memory */ 776 if (mmu_btop(alignsize) > (npages >> 2)) 777 continue; 778 779 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize); 780 alloc_size = aligned_end - base; 781 #if !defined(C_OBP) 782 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) { 783 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) { 784 kmem64_pabase = pa; 785 kmem64_aligned_end = aligned_end; 786 install_kmem64_tte(); 787 break; 788 } else { 789 prom_free_phys(alloc_size, pa); 790 } 791 } 792 #else /* !C_OBP */ 793 if (prom_alloc(base, alloc_size, alignsize) == base) { 794 kmem64_pabase = va_to_pa(kmem64_base); 795 kmem64_aligned_end = aligned_end; 796 break; 797 } 798 #endif /* !C_OBP */ 799 if (i == TTE8K) { 800 #ifdef sun4v 801 /* return failure to try small allocations */ 802 return (1); 803 #else 804 prom_panic("kmem64 allocation failure"); 805 #endif 806 } 807 } 808 ASSERT(aligned_end != NULL); 809 return (0); 810 } 811 812 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail; 813 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; 814 815 #define IVSIZE roundup(((MAXIVNUM * sizeof (intr_vec_t *)) + \ 816 (MAX_RSVD_IV * sizeof (intr_vec_t)) + \ 817 (MAX_RSVD_IVX * sizeof (intr_vecx_t))), PAGESIZE) 818 819 #if !defined(C_OBP) 820 /* 821 * Install a temporary tte handler in OBP for kmem64 area. 822 * 823 * We map kmem64 area with large pages before the trap table is taken 824 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in 825 * the same area. Duplicate tlb entries with different page sizes 826 * cause unpredicatble behavior. To avoid this, we don't create 827 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to 828 * OBP). Instead, we manage translations with a temporary va>tte-data 829 * handler (kmem64-tte). This handler is replaced by unix-tte when 830 * the trap table is taken over. 831 * 832 * The temporary handler knows the physical address of the kmem64 833 * area. It uses the prom's pgmap@ Forth word for other addresses. 834 * 835 * We have to use BOP_ALLOC() method for C-OBP platforms because 836 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti 837 * sun4u platforms. On sun4u we flush tlb after trap table is taken 838 * over if we use large pages for kernel heap and kmem64. Since sun4u 839 * prom (unlike sun4v) calls va>tte-data first for client address 840 * translation prom's ttes for kmem64 can't get into TLB even if we 841 * later switch to prom's trap table again. C-OBP uses 4M pages for 842 * client mappings when possible so on all platforms we get the 843 * benefit from large mappings for kmem64 area immediately during 844 * boot. 845 * 846 * pseudo code: 847 * if (context != 0) { 848 * return false 849 * } else if (miss_va in range[kmem64_base, kmem64_end)) { 850 * tte = tte_template + 851 * (((miss_va & pagemask) - kmem64_base)); 852 * return tte, true 853 * } else { 854 * return pgmap@ result 855 * } 856 */ 857 char kmem64_obp_str[] = 858 "h# %lx constant kmem64-base " 859 "h# %lx constant kmem64-end " 860 "h# %lx constant kmem64-pagemask " 861 "h# %lx constant kmem64-template " 862 863 ": kmem64-tte ( addr cnum -- false | tte-data true ) " 864 " if ( addr ) " 865 " drop false exit then ( false ) " 866 " dup kmem64-base kmem64-end within if ( addr ) " 867 " kmem64-pagemask and ( addr' ) " 868 " kmem64-base - ( addr' ) " 869 " kmem64-template + ( tte ) " 870 " true ( tte true ) " 871 " else ( addr ) " 872 " pgmap@ ( tte ) " 873 " dup 0< if true else drop false then ( tte true | false ) " 874 " then ( tte true | false ) " 875 "; " 876 877 "' kmem64-tte is va>tte-data " 878 ; 879 880 static void 881 install_kmem64_tte() 882 { 883 char b[sizeof (kmem64_obp_str) + (4 * 16)]; 884 tte_t tte; 885 886 PRM_DEBUG(kmem64_pabase); 887 PRM_DEBUG(kmem64_szc); 888 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT, 889 PROC_DATA | HAT_NOSYNC | HAT_ATTR_NOSOFTEXEC, kmem64_szc); 890 PRM_DEBUG(tte.ll); 891 (void) sprintf(b, kmem64_obp_str, 892 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll); 893 ASSERT(strlen(b) < sizeof (b)); 894 prom_interpret(b, 0, 0, 0, 0, 0); 895 } 896 #endif /* !C_OBP */ 897 898 /* 899 * As OBP takes up some RAM when the system boots, pages will already be "lost" 900 * to the system and reflected in npages by the time we see it. 901 * 902 * We only want to allocate kernel structures in the 64-bit virtual address 903 * space on systems with enough RAM to make the overhead of keeping track of 904 * an extra kernel memory segment worthwhile. 905 * 906 * Since OBP has already performed its memory allocations by this point, if we 907 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map 908 * memory in the 64-bit virtual address space; otherwise keep allocations 909 * contiguous with we've mapped so far in the 32-bit virtual address space. 910 */ 911 #define MINMOVE_RAM_MB ((size_t)1900) 912 #define MB_TO_BYTES(mb) ((mb) * 1048576ul) 913 #define BYTES_TO_MB(b) ((b) / 1048576ul) 914 915 pgcnt_t tune_npages = (pgcnt_t) 916 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); 917 918 #pragma weak page_set_colorequiv_arr_cpu 919 extern void page_set_colorequiv_arr_cpu(void); 920 extern void page_set_colorequiv_arr(void); 921 922 static pgcnt_t ramdisk_npages; 923 static struct memlist *old_phys_avail; 924 925 kcage_dir_t kcage_startup_dir = KCAGE_DOWN; 926 927 static void 928 startup_memlist(void) 929 { 930 size_t hmehash_sz, pagelist_sz, tt_sz; 931 size_t psetable_sz; 932 caddr_t alloc_base; 933 caddr_t memspace; 934 struct memlist *cur; 935 size_t syslimit = (size_t)SYSLIMIT; 936 size_t sysbase = (size_t)SYSBASE; 937 938 /* 939 * Initialize enough of the system to allow kmem_alloc to work by 940 * calling boot to allocate its memory until the time that 941 * kvm_init is completed. The page structs are allocated after 942 * rounding up end to the nearest page boundary; the memsegs are 943 * initialized and the space they use comes from the kernel heap. 944 * With appropriate initialization, they can be reallocated later 945 * to a size appropriate for the machine's configuration. 946 * 947 * At this point, memory is allocated for things that will never 948 * need to be freed, this used to be "valloced". This allows a 949 * savings as the pages don't need page structures to describe 950 * them because them will not be managed by the vm system. 951 */ 952 953 /* 954 * We're loaded by boot with the following configuration (as 955 * specified in the sun4u/conf/Mapfile): 956 * 957 * text: 4 MB chunk aligned on a 4MB boundary 958 * data & bss: 4 MB chunk aligned on a 4MB boundary 959 * 960 * These two chunks will eventually be mapped by 2 locked 4MB 961 * ttes and will represent the nucleus of the kernel. This gives 962 * us some free space that is already allocated, some or all of 963 * which is made available to kernel module text. 964 * 965 * The free space in the data-bss chunk is used for nucleus 966 * allocatable data structures and we reserve it using the 967 * nalloc_base and nalloc_end variables. This space is currently 968 * being used for hat data structures required for tlb miss 969 * handling operations. We align nalloc_base to a l2 cache 970 * linesize because this is the line size the hardware uses to 971 * maintain cache coherency. 972 * 512K is carved out for module data. 973 */ 974 975 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); 976 e_moddata = moddata + MODDATA; 977 nalloc_base = e_moddata; 978 979 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); 980 valloc_base = nalloc_base; 981 982 /* 983 * Calculate the start of the data segment. 984 */ 985 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data) 986 prom_panic("nucleus data overflow"); 987 988 PRM_DEBUG(moddata); 989 PRM_DEBUG(nalloc_base); 990 PRM_DEBUG(nalloc_end); 991 992 /* 993 * Remember any slop after e_text so we can give it to the modules. 994 */ 995 PRM_DEBUG(e_text); 996 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); 997 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text) 998 prom_panic("nucleus text overflow"); 999 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - 1000 modtext; 1001 PRM_DEBUG(modtext); 1002 PRM_DEBUG(modtext_sz); 1003 1004 init_boot_memlists(); 1005 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1006 &boot_physavail, &boot_physavail_len, 1007 &boot_virtavail, &boot_virtavail_len); 1008 1009 /* 1010 * Remember what the physically available highest page is 1011 * so that dumpsys works properly, and find out how much 1012 * memory is installed. 1013 */ 1014 installed_top_size_memlist_array(boot_physinstalled, 1015 boot_physinstalled_len, &physmax, &physinstalled); 1016 PRM_DEBUG(physinstalled); 1017 PRM_DEBUG(physmax); 1018 1019 /* Fill out memory nodes config structure */ 1020 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); 1021 1022 /* 1023 * npages is the maximum of available physical memory possible. 1024 * (ie. it will never be more than this) 1025 * 1026 * When we boot from a ramdisk, the ramdisk memory isn't free, so 1027 * using phys_avail will underestimate what will end up being freed. 1028 * A better initial guess is just total memory minus the kernel text 1029 */ 1030 npages = physinstalled - btop(MMU_PAGESIZE4M); 1031 1032 /* 1033 * First allocate things that can go in the nucleus data page 1034 * (fault status, TSBs, dmv, CPUs) 1035 */ 1036 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); 1037 1038 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) 1039 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); 1040 1041 if (ndata_alloc_tsbs(&ndata, npages) != 0) 1042 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); 1043 1044 if (ndata_alloc_dmv(&ndata) != 0) 1045 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); 1046 1047 if (ndata_alloc_page_mutexs(&ndata) != 0) 1048 cmn_err(CE_PANIC, 1049 "no more nucleus memory after page free lists alloc"); 1050 1051 if (ndata_alloc_hat(&ndata, npages) != 0) 1052 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); 1053 1054 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0) 1055 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc"); 1056 1057 /* 1058 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1059 * 1060 * There are comments all over the SFMMU code warning of dire 1061 * consequences if the TSBs are moved out of 32-bit space. This 1062 * is largely because the asm code uses "sethi %hi(addr)"-type 1063 * instructions which will not provide the expected result if the 1064 * address is a 64-bit one. 1065 * 1066 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1067 */ 1068 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); 1069 PRM_DEBUG(alloc_base); 1070 1071 alloc_base = sfmmu_ktsb_alloc(alloc_base); 1072 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1073 PRM_DEBUG(alloc_base); 1074 1075 /* 1076 * Allocate IOMMU TSB array. We do this here so that the physical 1077 * memory gets deducted from the PROM's physical memory list. 1078 */ 1079 alloc_base = iommu_tsb_init(alloc_base); 1080 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1081 PRM_DEBUG(alloc_base); 1082 1083 /* 1084 * Allow for an early allocation of physically contiguous memory. 1085 */ 1086 alloc_base = contig_mem_prealloc(alloc_base, npages); 1087 1088 /* 1089 * Platforms like Starcat and OPL need special structures assigned in 1090 * 32-bit virtual address space because their probing routines execute 1091 * FCode, and FCode can't handle 64-bit virtual addresses... 1092 */ 1093 if (&plat_startup_memlist) { 1094 alloc_base = plat_startup_memlist(alloc_base); 1095 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1096 ecache_alignsize); 1097 PRM_DEBUG(alloc_base); 1098 } 1099 1100 /* 1101 * Save off where the contiguous allocations to date have ended 1102 * in econtig32. 1103 */ 1104 econtig32 = alloc_base; 1105 PRM_DEBUG(econtig32); 1106 if (econtig32 > (caddr_t)KERNEL_LIMIT32) 1107 cmn_err(CE_PANIC, "econtig32 too big"); 1108 1109 pp_sz = calc_pp_sz(npages); 1110 PRM_DEBUG(pp_sz); 1111 if (kpm_enable) { 1112 kpm_pp_sz = calc_kpmpp_sz(npages); 1113 PRM_DEBUG(kpm_pp_sz); 1114 } 1115 1116 hmehash_sz = calc_hmehash_sz(npages); 1117 PRM_DEBUG(hmehash_sz); 1118 1119 pagehash_sz = calc_pagehash_sz(npages); 1120 PRM_DEBUG(pagehash_sz); 1121 1122 pagelist_sz = calc_free_pagelist_sz(); 1123 PRM_DEBUG(pagelist_sz); 1124 1125 #ifdef TRAPTRACE 1126 tt_sz = calc_traptrace_sz(); 1127 PRM_DEBUG(tt_sz); 1128 #else 1129 tt_sz = 0; 1130 #endif /* TRAPTRACE */ 1131 1132 /* 1133 * Place the array that protects pp->p_selock in the kmem64 wad. 1134 */ 1135 pse_shift = size_pse_array(npages, max_ncpus); 1136 PRM_DEBUG(pse_shift); 1137 pse_table_size = 1 << pse_shift; 1138 PRM_DEBUG(pse_table_size); 1139 psetable_sz = roundup( 1140 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize); 1141 PRM_DEBUG(psetable_sz); 1142 1143 /* 1144 * Now allocate the whole wad 1145 */ 1146 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz + 1147 pagelist_sz + tt_sz + psetable_sz; 1148 kmem64_sz = roundup(kmem64_sz, PAGESIZE); 1149 kmem64_base = (caddr_t)syslimit; 1150 kmem64_end = kmem64_base + kmem64_sz; 1151 if (alloc_kmem64(kmem64_base, kmem64_end)) { 1152 /* 1153 * Attempt for kmem64 to allocate one big 1154 * contiguous chunk of memory failed. 1155 * We get here because we are sun4v. 1156 * We will proceed by breaking up 1157 * the allocation into two attempts. 1158 * First, we allocate kpm_pp_sz, hmehash_sz, 1159 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as 1160 * one contiguous chunk. This is a much smaller 1161 * chunk and we should get it, if not we panic. 1162 * Note that hmehash and tt need to be physically 1163 * (in the real address sense) contiguous. 1164 * Next, we use bop_alloc_chunk() to 1165 * to allocate the page_t structures. 1166 * This will allow the page_t to be allocated 1167 * in multiple smaller chunks. 1168 * In doing so, the assumption that page_t is 1169 * physically contiguous no longer hold, this is ok 1170 * for sun4v but not for sun4u. 1171 */ 1172 size_t tmp_size; 1173 caddr_t tmp_base; 1174 1175 pp_sz = roundup(pp_sz, PAGESIZE); 1176 1177 /* 1178 * Allocate kpm_pp_sz, hmehash_sz, 1179 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz 1180 */ 1181 tmp_base = kmem64_base + pp_sz; 1182 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz + 1183 pagelist_sz + tt_sz + psetable_sz, PAGESIZE); 1184 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0) 1185 prom_panic("kmem64 prom_alloc contig failed"); 1186 PRM_DEBUG(tmp_base); 1187 PRM_DEBUG(tmp_size); 1188 1189 /* 1190 * Allocate the page_ts 1191 */ 1192 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0) 1193 prom_panic("kmem64 bop_alloc_chunk page_t failed"); 1194 PRM_DEBUG(kmem64_base); 1195 PRM_DEBUG(pp_sz); 1196 1197 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size; 1198 ASSERT(kmem64_aligned_end >= kmem64_end); 1199 1200 kmem64_smchunks = 1; 1201 } else { 1202 1203 /* 1204 * We need to adjust pp_sz for the normal 1205 * case where kmem64 can allocate one large chunk 1206 */ 1207 if (kpm_smallpages == 0) { 1208 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page)); 1209 } else { 1210 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) + 1211 sizeof (kpm_spage_t)); 1212 } 1213 pp_sz = npages * sizeof (struct page); 1214 } 1215 1216 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase)) 1217 cmn_err(CE_PANIC, "not enough kmem64 space"); 1218 PRM_DEBUG(kmem64_base); 1219 PRM_DEBUG(kmem64_end); 1220 PRM_DEBUG(kmem64_aligned_end); 1221 1222 /* 1223 * ... and divy it up 1224 */ 1225 alloc_base = kmem64_base; 1226 1227 pp_base = (page_t *)alloc_base; 1228 alloc_base += pp_sz; 1229 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1230 PRM_DEBUG(pp_base); 1231 PRM_DEBUG(npages); 1232 1233 if (kpm_enable) { 1234 kpm_pp_base = alloc_base; 1235 if (kpm_smallpages == 0) { 1236 /* kpm_npages based on physinstalled, don't reset */ 1237 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t); 1238 } else { 1239 kpm_npages = ptokpmpr(npages); 1240 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t); 1241 } 1242 alloc_base += kpm_pp_sz; 1243 alloc_base = 1244 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1245 PRM_DEBUG(kpm_pp_base); 1246 } 1247 1248 alloc_base = alloc_hmehash(alloc_base); 1249 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1250 PRM_DEBUG(alloc_base); 1251 1252 page_hash = (page_t **)alloc_base; 1253 alloc_base += pagehash_sz; 1254 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1255 PRM_DEBUG(page_hash); 1256 1257 alloc_base = alloc_page_freelists(alloc_base); 1258 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1259 PRM_DEBUG(alloc_base); 1260 1261 #ifdef TRAPTRACE 1262 ttrace_buf = alloc_base; 1263 alloc_base += tt_sz; 1264 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1265 PRM_DEBUG(alloc_base); 1266 #endif /* TRAPTRACE */ 1267 1268 pse_mutex = (pad_mutex_t *)alloc_base; 1269 alloc_base += psetable_sz; 1270 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1271 PRM_DEBUG(alloc_base); 1272 1273 /* 1274 * Note that if we use small chunk allocations for 1275 * kmem64, we need to ensure kmem64_end is the same as 1276 * kmem64_aligned_end to prevent subsequent logic from 1277 * trying to reuse the overmapping. 1278 * Otherwise we adjust kmem64_end to what we really allocated. 1279 */ 1280 if (kmem64_smchunks) { 1281 kmem64_end = kmem64_aligned_end; 1282 } else { 1283 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE); 1284 } 1285 kmem64_sz = kmem64_end - kmem64_base; 1286 1287 if (&ecache_init_scrub_flush_area) { 1288 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end); 1289 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase)); 1290 } 1291 1292 /* 1293 * If physmem is patched to be non-zero, use it instead of 1294 * the monitor value unless physmem is larger than the total 1295 * amount of memory on hand. 1296 */ 1297 if (physmem == 0 || physmem > npages) 1298 physmem = npages; 1299 1300 /* 1301 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot 1302 * is mounted as root. This memory is held down by OBP and unlike 1303 * the stub boot_archive is never released. 1304 * 1305 * In order to get things sized correctly on lower memory 1306 * machines (where the memory used by the ramdisk represents 1307 * a significant portion of memory), physmem is adjusted. 1308 * 1309 * This is done by subtracting the ramdisk_size which is set 1310 * to the size of the ramdisk (in Kb) in /etc/system at the 1311 * time the miniroot archive is constructed. 1312 */ 1313 if (root_is_ramdisk == B_TRUE) { 1314 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE; 1315 physmem -= ramdisk_npages; 1316 } 1317 1318 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0)) 1319 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc"); 1320 1321 /* 1322 * Allocate space for the interrupt vector table. 1323 */ 1324 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE); 1325 if (memspace != (caddr_t)intr_vec_table) 1326 prom_panic("interrupt vector table allocation failure"); 1327 1328 /* 1329 * Between now and when we finish copying in the memory lists, 1330 * allocations happen so the space gets fragmented and the 1331 * lists longer. Leave enough space for lists twice as 1332 * long as we have now; then roundup to a pagesize. 1333 */ 1334 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() + 1335 prom_phys_avail_len() + prom_virt_avail_len()); 1336 memlist_sz *= 2; 1337 memlist_sz = roundup(memlist_sz, PAGESIZE); 1338 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize); 1339 if (memspace == NULL) 1340 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc"); 1341 1342 memlist = (struct memlist *)memspace; 1343 memlist_end = (char *)memspace + memlist_sz; 1344 PRM_DEBUG(memlist); 1345 PRM_DEBUG(memlist_end); 1346 1347 PRM_DEBUG(sysbase); 1348 PRM_DEBUG(syslimit); 1349 kernelheap_init((void *)sysbase, (void *)syslimit, 1350 (caddr_t)sysbase + PAGESIZE, NULL, NULL); 1351 1352 /* 1353 * Take the most current snapshot we can by calling mem-update. 1354 */ 1355 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1356 &boot_physavail, &boot_physavail_len, 1357 &boot_virtavail, &boot_virtavail_len); 1358 1359 /* 1360 * Remove the space used by prom_alloc from the kernel heap 1361 * plus the area actually used by the OBP (if any) 1362 * ignoring virtual addresses in virt_avail, above syslimit. 1363 */ 1364 virt_avail = memlist; 1365 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1366 1367 for (cur = virt_avail; cur->next; cur = cur->next) { 1368 uint64_t range_base, range_size; 1369 1370 if ((range_base = cur->address + cur->size) < (uint64_t)sysbase) 1371 continue; 1372 if (range_base >= (uint64_t)syslimit) 1373 break; 1374 /* 1375 * Limit the range to end at syslimit. 1376 */ 1377 range_size = MIN(cur->next->address, 1378 (uint64_t)syslimit) - range_base; 1379 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, 1380 0, 0, (void *)range_base, (void *)(range_base + range_size), 1381 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1382 } 1383 1384 phys_avail = memlist; 1385 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1386 1387 /* 1388 * Add any extra memory at the end of the ndata region if there's at 1389 * least a page to add. There might be a few more pages available in 1390 * the middle of the ndata region, but for now they are ignored. 1391 */ 1392 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end); 1393 if (nalloc_base == NULL) 1394 nalloc_base = nalloc_end; 1395 ndata_remain_sz = nalloc_end - nalloc_base; 1396 1397 /* 1398 * Copy physinstalled list into kernel space. 1399 */ 1400 phys_install = memlist; 1401 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); 1402 1403 /* 1404 * Create list of physical addrs we don't need pp's for: 1405 * kernel text 4M page 1406 * kernel data 4M page - ndata_remain_sz 1407 * kmem64 pages 1408 * 1409 * NB if adding any pages here, make sure no kpm page 1410 * overlaps can occur (see ASSERTs in kphysm_memsegs) 1411 */ 1412 nopp_list = memlist; 1413 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist); 1414 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz, 1415 &memlist, &nopp_list); 1416 1417 /* Don't add to nopp_list if kmem64 was allocated in smchunks */ 1418 if (!kmem64_smchunks) 1419 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list); 1420 1421 if ((caddr_t)memlist > (memspace + memlist_sz)) 1422 prom_panic("memlist overflow"); 1423 1424 /* 1425 * Size the pcf array based on the number of cpus in the box at 1426 * boot time. 1427 */ 1428 pcf_init(); 1429 1430 /* 1431 * Initialize the page structures from the memory lists. 1432 */ 1433 kphysm_init(); 1434 1435 availrmem_initial = availrmem = freemem; 1436 PRM_DEBUG(availrmem); 1437 1438 /* 1439 * Some of the locks depend on page_hashsz being set! 1440 * kmem_init() depends on this; so, keep it here. 1441 */ 1442 page_lock_init(); 1443 1444 /* 1445 * Initialize kernel memory allocator. 1446 */ 1447 kmem_init(); 1448 1449 /* 1450 * Factor in colorequiv to check additional 'equivalent' bins 1451 */ 1452 if (&page_set_colorequiv_arr_cpu != NULL) 1453 page_set_colorequiv_arr_cpu(); 1454 else 1455 page_set_colorequiv_arr(); 1456 1457 /* 1458 * Initialize bp_mapin(). 1459 */ 1460 bp_init(shm_alignment, HAT_STRICTORDER); 1461 1462 /* 1463 * Reserve space for panicbuf, intr_vec_table, reserved interrupt 1464 * vector data structures and MPO mblock structs from the 32-bit heap. 1465 */ 1466 (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0, 1467 panicbuf, panicbuf + PANICBUFSIZE, 1468 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1469 1470 (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0, 1471 intr_vec_table, (caddr_t)intr_vec_table + IVSIZE, 1472 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1473 1474 if (mpo_heap32_bufsz > (size_t)0) { 1475 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz, 1476 PAGESIZE, 0, 0, mpo_heap32_buf, 1477 mpo_heap32_buf + mpo_heap32_bufsz, 1478 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1479 } 1480 mem_config_init(); 1481 } 1482 1483 static void 1484 startup_modules(void) 1485 { 1486 int nhblk1, nhblk8; 1487 size_t nhblksz; 1488 pgcnt_t pages_per_hblk; 1489 size_t hme8blk_sz, hme1blk_sz; 1490 1491 /* 1492 * Let the platforms have a chance to change default 1493 * values before reading system file. 1494 */ 1495 if (&set_platform_defaults) 1496 set_platform_defaults(); 1497 1498 /* 1499 * Calculate default settings of system parameters based upon 1500 * maxusers, yet allow to be overridden via the /etc/system file. 1501 */ 1502 param_calc(0); 1503 1504 mod_setup(); 1505 1506 /* 1507 * If this is a positron, complain and halt. 1508 */ 1509 if (&iam_positron && iam_positron()) { 1510 cmn_err(CE_WARN, "This hardware platform is not supported" 1511 " by this release of Solaris.\n"); 1512 #ifdef DEBUG 1513 prom_enter_mon(); /* Type 'go' to resume */ 1514 cmn_err(CE_WARN, "Booting an unsupported platform.\n"); 1515 cmn_err(CE_WARN, "Booting with down-rev firmware.\n"); 1516 1517 #else /* DEBUG */ 1518 halt(0); 1519 #endif /* DEBUG */ 1520 } 1521 1522 /* 1523 * If we are running firmware that isn't 64-bit ready 1524 * then complain and halt. 1525 */ 1526 do_prom_version_check(); 1527 1528 /* 1529 * Initialize system parameters 1530 */ 1531 param_init(); 1532 1533 /* 1534 * maxmem is the amount of physical memory we're playing with. 1535 */ 1536 maxmem = physmem; 1537 1538 /* Set segkp limits. */ 1539 ncbase = kdi_segdebugbase; 1540 ncend = kdi_segdebugbase; 1541 1542 /* 1543 * Initialize the hat layer. 1544 */ 1545 hat_init(); 1546 1547 /* 1548 * Initialize segment management stuff. 1549 */ 1550 seg_init(); 1551 1552 /* 1553 * Create the va>tte handler, so the prom can understand 1554 * kernel translations. The handler is installed later, just 1555 * as we are about to take over the trap table from the prom. 1556 */ 1557 create_va_to_tte(); 1558 1559 /* 1560 * Load the forthdebugger (optional) 1561 */ 1562 forthdebug_init(); 1563 1564 /* 1565 * Create OBP node for console input callbacks 1566 * if it is needed. 1567 */ 1568 startup_create_io_node(); 1569 1570 if (modloadonly("fs", "specfs") == -1) 1571 halt("Can't load specfs"); 1572 1573 if (modloadonly("fs", "devfs") == -1) 1574 halt("Can't load devfs"); 1575 1576 if (modloadonly("misc", "swapgeneric") == -1) 1577 halt("Can't load swapgeneric"); 1578 1579 (void) modloadonly("sys", "lbl_edition"); 1580 1581 dispinit(); 1582 1583 /* 1584 * Infer meanings to the members of the idprom buffer. 1585 */ 1586 parse_idprom(); 1587 1588 /* Read cluster configuration data. */ 1589 clconf_init(); 1590 1591 setup_ddi(); 1592 1593 /* 1594 * Lets take this opportunity to load the root device. 1595 */ 1596 if (loadrootmodules() != 0) 1597 debug_enter("Can't load the root filesystem"); 1598 1599 /* 1600 * Load tod driver module for the tod part found on this system. 1601 * Recompute the cpu frequency/delays based on tod as tod part 1602 * tends to keep time more accurately. 1603 */ 1604 if (&load_tod_module) 1605 load_tod_module(); 1606 1607 /* 1608 * Allow platforms to load modules which might 1609 * be needed after bootops are gone. 1610 */ 1611 if (&load_platform_modules) 1612 load_platform_modules(); 1613 1614 setcpudelay(); 1615 1616 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1617 &boot_physavail, &boot_physavail_len, 1618 &boot_virtavail, &boot_virtavail_len); 1619 1620 /* 1621 * Calculation and allocation of hmeblks needed to remap 1622 * the memory allocated by PROM till now. 1623 * Overestimate the number of hblk1 elements by assuming 1624 * worst case of TTE64K mappings. 1625 * sfmmu_hblk_alloc will panic if this calculation is wrong. 1626 */ 1627 bop_alloc_pages = btopr(kmem64_end - kmem64_base); 1628 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K)); 1629 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1630 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min; 1631 1632 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); 1633 1634 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */ 1635 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 1636 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 1637 1638 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz); 1639 1640 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); 1641 nhblk8 = 0; 1642 while (bop_alloc_pages > 1) { 1643 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1644 nhblk8 += bop_alloc_pages /= pages_per_hblk; 1645 bop_alloc_pages *= hme8blk_sz; 1646 bop_alloc_pages = btopr(bop_alloc_pages); 1647 } 1648 nhblk8 += 2; 1649 1650 /* 1651 * Since hblk8's can hold up to 64k of mappings aligned on a 64k 1652 * boundary, the number of hblk8's needed to map the entries in the 1653 * boot_virtavail list needs to be adjusted to take this into 1654 * consideration. Thus, we need to add additional hblk8's since it 1655 * is possible that an hblk8 will not have all 8 slots used due to 1656 * alignment constraints. Since there were boot_virtavail_len entries 1657 * in that list, we need to add that many hblk8's to the number 1658 * already calculated to make sure we don't underestimate. 1659 */ 1660 nhblk8 += boot_virtavail_len; 1661 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; 1662 1663 /* Allocate in pagesize chunks */ 1664 nhblksz = roundup(nhblksz, MMU_PAGESIZE); 1665 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); 1666 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); 1667 } 1668 1669 static void 1670 startup_bop_gone(void) 1671 { 1672 1673 /* 1674 * Destroy the MD initialized at startup 1675 * The startup initializes the MD framework 1676 * using prom and BOP alloc free it now. 1677 */ 1678 mach_descrip_startup_fini(); 1679 1680 /* 1681 * We're done with prom allocations. 1682 */ 1683 bop_fini(); 1684 1685 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1686 &boot_physavail, &boot_physavail_len, 1687 &boot_virtavail, &boot_virtavail_len); 1688 1689 /* 1690 * setup physically contiguous area twice as large as the ecache. 1691 * this is used while doing displacement flush of ecaches 1692 */ 1693 if (&ecache_flush_address) { 1694 ecache_flushaddr = ecache_flush_address(); 1695 if (ecache_flushaddr == (uint64_t)-1) { 1696 cmn_err(CE_PANIC, 1697 "startup: no memory to set ecache_flushaddr"); 1698 } 1699 } 1700 1701 /* 1702 * Virtual available next. 1703 */ 1704 ASSERT(virt_avail != NULL); 1705 memlist_free_list(virt_avail); 1706 virt_avail = memlist; 1707 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1708 1709 } 1710 1711 1712 /* 1713 * startup_fixup_physavail - called from mach_sfmmu.c after the final 1714 * allocations have been performed. We can't call it in startup_bop_gone 1715 * since later operations can cause obp to allocate more memory. 1716 */ 1717 void 1718 startup_fixup_physavail(void) 1719 { 1720 struct memlist *cur; 1721 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end; 1722 1723 PRM_DEBUG(kmem64_overmap_size); 1724 1725 /* 1726 * take the most current snapshot we can by calling mem-update 1727 */ 1728 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1729 &boot_physavail, &boot_physavail_len, 1730 &boot_virtavail, &boot_virtavail_len); 1731 1732 /* 1733 * Copy phys_avail list, again. 1734 * Both the kernel/boot and the prom have been allocating 1735 * from the original list we copied earlier. 1736 */ 1737 cur = memlist; 1738 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1739 1740 /* 1741 * Add any unused kmem64 memory from overmapped page 1742 * (Note: va_to_pa does not work for kmem64_end) 1743 */ 1744 if (kmem64_overmap_size) { 1745 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base), 1746 kmem64_overmap_size, &memlist, &cur); 1747 } 1748 1749 /* 1750 * Add any extra memory after e_data we added to the phys_avail list 1751 * back to the old list. 1752 */ 1753 if (ndata_remain_sz >= MMU_PAGESIZE) 1754 memlist_add(va_to_pa(nalloc_base), 1755 (uint64_t)ndata_remain_sz, &memlist, &cur); 1756 1757 /* 1758 * There isn't any bounds checking on the memlist area 1759 * so ensure it hasn't overgrown. 1760 */ 1761 if ((caddr_t)memlist > (caddr_t)memlist_end) 1762 cmn_err(CE_PANIC, "startup: memlist size exceeded"); 1763 1764 /* 1765 * The kernel removes the pages that were allocated for it from 1766 * the freelist, but we now have to find any -extra- pages that 1767 * the prom has allocated for it's own book-keeping, and remove 1768 * them from the freelist too. sigh. 1769 */ 1770 sync_memlists(phys_avail, cur); 1771 1772 ASSERT(phys_avail != NULL); 1773 1774 old_phys_avail = phys_avail; 1775 phys_avail = cur; 1776 } 1777 1778 void 1779 update_kcage_ranges(uint64_t addr, uint64_t len) 1780 { 1781 pfn_t base = btop(addr); 1782 pgcnt_t num = btop(len); 1783 int rv; 1784 1785 rv = kcage_range_add(base, num, kcage_startup_dir); 1786 1787 if (rv == ENOMEM) { 1788 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage", 1789 (len == 0 ? 0 : BYTES_TO_MB(len))); 1790 } else if (rv != 0) { 1791 /* catch this in debug kernels */ 1792 ASSERT(0); 1793 1794 cmn_err(CE_WARN, "unexpected kcage_range_add" 1795 " return value %d", rv); 1796 } 1797 } 1798 1799 static void 1800 startup_vm(void) 1801 { 1802 size_t i; 1803 struct segmap_crargs a; 1804 struct segkpm_crargs b; 1805 1806 uint64_t avmem; 1807 caddr_t va; 1808 pgcnt_t max_phys_segkp; 1809 int mnode; 1810 1811 extern int use_brk_lpg, use_stk_lpg; 1812 1813 /* 1814 * get prom's mappings, create hments for them and switch 1815 * to the kernel context. 1816 */ 1817 hat_kern_setup(); 1818 1819 /* 1820 * Take over trap table 1821 */ 1822 setup_trap_table(); 1823 1824 /* 1825 * Install the va>tte handler, so that the prom can handle 1826 * misses and understand the kernel table layout in case 1827 * we need call into the prom. 1828 */ 1829 install_va_to_tte(); 1830 1831 /* 1832 * Set a flag to indicate that the tba has been taken over. 1833 */ 1834 tba_taken_over = 1; 1835 1836 /* initialize MMU primary context register */ 1837 mmu_init_kcontext(); 1838 1839 /* 1840 * The boot cpu can now take interrupts, x-calls, x-traps 1841 */ 1842 CPUSET_ADD(cpu_ready_set, CPU->cpu_id); 1843 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); 1844 1845 /* 1846 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. 1847 */ 1848 tbr_wr_addr_inited = 1; 1849 1850 /* 1851 * Initialize VM system, and map kernel address space. 1852 */ 1853 kvm_init(); 1854 1855 ASSERT(old_phys_avail != NULL && phys_avail != NULL); 1856 if (kernel_cage_enable) { 1857 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges); 1858 } 1859 memlist_free_list(old_phys_avail); 1860 1861 /* 1862 * If the following is true, someone has patched 1863 * phsymem to be less than the number of pages that 1864 * the system actually has. Remove pages until system 1865 * memory is limited to the requested amount. Since we 1866 * have allocated page structures for all pages, we 1867 * correct the amount of memory we want to remove 1868 * by the size of the memory used to hold page structures 1869 * for the non-used pages. 1870 */ 1871 if (physmem + ramdisk_npages < npages) { 1872 pgcnt_t diff, off; 1873 struct page *pp; 1874 struct seg kseg; 1875 1876 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); 1877 1878 off = 0; 1879 diff = npages - (physmem + ramdisk_npages); 1880 diff -= mmu_btopr(diff * sizeof (struct page)); 1881 kseg.s_as = &kas; 1882 while (diff--) { 1883 pp = page_create_va(&unused_pages_vp, (offset_t)off, 1884 MMU_PAGESIZE, PG_WAIT | PG_EXCL, 1885 &kseg, (caddr_t)off); 1886 if (pp == NULL) 1887 cmn_err(CE_PANIC, "limited physmem too much!"); 1888 page_io_unlock(pp); 1889 page_downgrade(pp); 1890 availrmem--; 1891 off += MMU_PAGESIZE; 1892 } 1893 } 1894 1895 /* 1896 * When printing memory, show the total as physmem less 1897 * that stolen by a debugger. 1898 */ 1899 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", 1900 (ulong_t)(physinstalled) << (PAGESHIFT - 10), 1901 (ulong_t)(physinstalled) << (PAGESHIFT - 12)); 1902 1903 avmem = (uint64_t)freemem << PAGESHIFT; 1904 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); 1905 1906 /* 1907 * For small memory systems disable automatic large pages. 1908 */ 1909 if (physmem < privm_lpg_min_physmem) { 1910 use_brk_lpg = 0; 1911 use_stk_lpg = 0; 1912 } 1913 1914 /* 1915 * Perform platform specific freelist processing 1916 */ 1917 if (&plat_freelist_process) { 1918 for (mnode = 0; mnode < max_mem_nodes; mnode++) 1919 if (mem_node_config[mnode].exists) 1920 plat_freelist_process(mnode); 1921 } 1922 1923 /* 1924 * Initialize the segkp segment type. We position it 1925 * after the configured tables and buffers (whose end 1926 * is given by econtig) and before V_WKBASE_ADDR. 1927 * Also in this area is segkmap (size SEGMAPSIZE). 1928 */ 1929 1930 /* XXX - cache alignment? */ 1931 va = (caddr_t)SEGKPBASE; 1932 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); 1933 1934 max_phys_segkp = (physmem * 2); 1935 1936 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { 1937 segkpsize = btop(SEGKPDEFSIZE); 1938 cmn_err(CE_WARN, "Illegal value for segkpsize. " 1939 "segkpsize has been reset to %ld pages", segkpsize); 1940 } 1941 1942 i = ptob(MIN(segkpsize, max_phys_segkp)); 1943 1944 rw_enter(&kas.a_lock, RW_WRITER); 1945 if (seg_attach(&kas, va, i, segkp) < 0) 1946 cmn_err(CE_PANIC, "startup: cannot attach segkp"); 1947 if (segkp_create(segkp) != 0) 1948 cmn_err(CE_PANIC, "startup: segkp_create failed"); 1949 rw_exit(&kas.a_lock); 1950 1951 /* 1952 * kpm segment 1953 */ 1954 segmap_kpm = kpm_enable && 1955 segmap_kpm && PAGESIZE == MAXBSIZE; 1956 1957 if (kpm_enable) { 1958 rw_enter(&kas.a_lock, RW_WRITER); 1959 1960 /* 1961 * The segkpm virtual range range is larger than the 1962 * actual physical memory size and also covers gaps in 1963 * the physical address range for the following reasons: 1964 * . keep conversion between segkpm and physical addresses 1965 * simple, cheap and unambiguous. 1966 * . avoid extension/shrink of the the segkpm in case of DR. 1967 * . avoid complexity for handling of virtual addressed 1968 * caches, segkpm and the regular mapping scheme must be 1969 * kept in sync wrt. the virtual color of mapped pages. 1970 * Any accesses to virtual segkpm ranges not backed by 1971 * physical memory will fall through the memseg pfn hash 1972 * and will be handled in segkpm_fault. 1973 * Additional kpm_size spaces needed for vac alias prevention. 1974 */ 1975 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, 1976 segkpm) < 0) 1977 cmn_err(CE_PANIC, "cannot attach segkpm"); 1978 1979 b.prot = PROT_READ | PROT_WRITE; 1980 b.nvcolors = shm_alignment >> MMU_PAGESHIFT; 1981 1982 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 1983 panic("segkpm_create segkpm"); 1984 1985 rw_exit(&kas.a_lock); 1986 1987 mach_kpm_init(); 1988 } 1989 1990 if (!segzio_fromheap) { 1991 size_t size; 1992 size_t physmem_b = mmu_ptob(physmem); 1993 1994 /* size is in bytes, segziosize is in pages */ 1995 if (segziosize == 0) { 1996 size = physmem_b; 1997 } else { 1998 size = mmu_ptob(segziosize); 1999 } 2000 2001 if (size < SEGZIOMINSIZE) { 2002 size = SEGZIOMINSIZE; 2003 } else if (size > SEGZIOMAXSIZE) { 2004 size = SEGZIOMAXSIZE; 2005 /* 2006 * On 64-bit x86, we only have 2TB of KVA. This exists 2007 * for parity with x86. 2008 * 2009 * SEGZIOMAXSIZE is capped at 512gb so that segzio 2010 * doesn't consume all of KVA. However, if we have a 2011 * system that has more thant 512gb of physical memory, 2012 * we can actually consume about half of the difference 2013 * between 512gb and the rest of the available physical 2014 * memory. 2015 */ 2016 if (physmem_b > SEGZIOMAXSIZE) { 2017 size += (physmem_b - SEGZIOMAXSIZE) / 2; 2018 } 2019 } 2020 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE)); 2021 /* put the base of the ZIO segment after the kpm segment */ 2022 segzio_base = kpm_vbase + (kpm_size * vac_colors); 2023 PRM_DEBUG(segziosize); 2024 PRM_DEBUG(segzio_base); 2025 2026 /* 2027 * On some platforms, kvm_init is called after the kpm 2028 * sizes have been determined. On SPARC, kvm_init is called 2029 * before, so we have to attach the kzioseg after kvm is 2030 * initialized, otherwise we'll try to allocate from the boot 2031 * area since the kernel heap hasn't yet been configured. 2032 */ 2033 rw_enter(&kas.a_lock, RW_WRITER); 2034 2035 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2036 &kzioseg); 2037 (void) segkmem_zio_create(&kzioseg); 2038 2039 /* create zio area covering new segment */ 2040 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2041 2042 rw_exit(&kas.a_lock); 2043 } 2044 2045 2046 /* 2047 * Now create generic mapping segment. This mapping 2048 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total 2049 * virtual address is greater than the amount of free 2050 * memory that is available, then we trim back the 2051 * segment size to that amount 2052 */ 2053 va = (caddr_t)SEGMAPBASE; 2054 2055 /* 2056 * 1201049: segkmap base address must be MAXBSIZE aligned 2057 */ 2058 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); 2059 2060 /* 2061 * Set size of segmap to percentage of freemem at boot, 2062 * but stay within the allowable range 2063 * Note we take percentage before converting from pages 2064 * to bytes to avoid an overflow on 32-bit kernels. 2065 */ 2066 i = mmu_ptob((freemem * segmap_percent) / 100); 2067 2068 if (i < MINMAPSIZE) 2069 i = MINMAPSIZE; 2070 2071 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) 2072 i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); 2073 2074 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ 2075 2076 rw_enter(&kas.a_lock, RW_WRITER); 2077 if (seg_attach(&kas, va, i, segkmap) < 0) 2078 cmn_err(CE_PANIC, "cannot attach segkmap"); 2079 2080 a.prot = PROT_READ | PROT_WRITE; 2081 a.shmsize = shm_alignment; 2082 a.nfreelist = 0; /* use segmap driver defaults */ 2083 2084 if (segmap_create(segkmap, (caddr_t)&a) != 0) 2085 panic("segmap_create segkmap"); 2086 rw_exit(&kas.a_lock); 2087 2088 segdev_init(); 2089 } 2090 2091 static void 2092 startup_end(void) 2093 { 2094 if ((caddr_t)memlist > (caddr_t)memlist_end) 2095 panic("memlist overflow 2"); 2096 memlist_free_block((caddr_t)memlist, 2097 ((caddr_t)memlist_end - (caddr_t)memlist)); 2098 memlist = NULL; 2099 2100 /* enable page_relocation since OBP is now done */ 2101 page_relocate_ready = 1; 2102 2103 /* 2104 * Perform tasks that get done after most of the VM 2105 * initialization has been done but before the clock 2106 * and other devices get started. 2107 */ 2108 kern_setup1(); 2109 2110 /* 2111 * Perform CPC initialization for this CPU. 2112 */ 2113 kcpc_hw_init(); 2114 2115 /* 2116 * Intialize the VM arenas for allocating physically 2117 * contiguus memory chunk for interrupt queues snd 2118 * allocate/register boot cpu's queues, if any and 2119 * allocate dump buffer for sun4v systems to store 2120 * extra crash information during crash dump 2121 */ 2122 contig_mem_init(); 2123 mach_descrip_init(); 2124 2125 if (cpu_intrq_setup(CPU)) { 2126 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id); 2127 } 2128 cpu_intrq_register(CPU); 2129 mach_htraptrace_setup(CPU->cpu_id); 2130 mach_htraptrace_configure(CPU->cpu_id); 2131 mach_dump_buffer_init(); 2132 2133 /* 2134 * Initialize interrupt related stuff 2135 */ 2136 cpu_intr_alloc(CPU, NINTR_THREADS); 2137 2138 (void) splzs(); /* allow hi clock ints but not zs */ 2139 2140 /* 2141 * Initialize errors. 2142 */ 2143 error_init(); 2144 2145 /* 2146 * Note that we may have already used kernel bcopy before this 2147 * point - but if you really care about this, adb the use_hw_* 2148 * variables to 0 before rebooting. 2149 */ 2150 mach_hw_copy_limit(); 2151 2152 /* 2153 * Install the "real" preemption guards before DDI services 2154 * are available. 2155 */ 2156 (void) prom_set_preprom(kern_preprom); 2157 (void) prom_set_postprom(kern_postprom); 2158 CPU->cpu_m.mutex_ready = 1; 2159 2160 /* 2161 * Initialize segnf (kernel support for non-faulting loads). 2162 */ 2163 segnf_init(); 2164 2165 /* 2166 * Configure the root devinfo node. 2167 */ 2168 configure(); /* set up devices */ 2169 mach_cpu_halt_idle(); 2170 } 2171 2172 2173 void 2174 post_startup(void) 2175 { 2176 #ifdef PTL1_PANIC_DEBUG 2177 extern void init_ptl1_thread(void); 2178 #endif /* PTL1_PANIC_DEBUG */ 2179 extern void abort_sequence_init(void); 2180 2181 /* 2182 * Set the system wide, processor-specific flags to be passed 2183 * to userland via the aux vector for performance hints and 2184 * instruction set extensions. 2185 */ 2186 bind_hwcap(); 2187 2188 /* 2189 * Startup memory scrubber (if any) 2190 */ 2191 mach_memscrub(); 2192 2193 /* 2194 * Allocate soft interrupt to handle abort sequence. 2195 */ 2196 abort_sequence_init(); 2197 2198 /* 2199 * Configure the rest of the system. 2200 * Perform forceloading tasks for /etc/system. 2201 */ 2202 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2203 /* 2204 * ON4.0: Force /proc module in until clock interrupt handle fixed 2205 * ON4.0: This must be fixed or restated in /etc/systems. 2206 */ 2207 (void) modload("fs", "procfs"); 2208 2209 /* load machine class specific drivers */ 2210 load_mach_drivers(); 2211 2212 /* load platform specific drivers */ 2213 if (&load_platform_drivers) 2214 load_platform_drivers(); 2215 2216 /* load vis simulation module, if we are running w/fpu off */ 2217 if (!fpu_exists) { 2218 if (modload("misc", "vis") == -1) 2219 halt("Can't load vis"); 2220 } 2221 2222 mach_fpras(); 2223 2224 maxmem = freemem; 2225 2226 pg_init(); 2227 2228 #ifdef PTL1_PANIC_DEBUG 2229 init_ptl1_thread(); 2230 #endif /* PTL1_PANIC_DEBUG */ 2231 } 2232 2233 #ifdef PTL1_PANIC_DEBUG 2234 int ptl1_panic_test = 0; 2235 int ptl1_panic_xc_one_test = 0; 2236 int ptl1_panic_xc_all_test = 0; 2237 int ptl1_panic_xt_one_test = 0; 2238 int ptl1_panic_xt_all_test = 0; 2239 kthread_id_t ptl1_thread_p = NULL; 2240 kcondvar_t ptl1_cv; 2241 kmutex_t ptl1_mutex; 2242 int ptl1_recurse_count_threshold = 0x40; 2243 int ptl1_recurse_trap_threshold = 0x3d; 2244 extern void ptl1_recurse(int, int); 2245 extern void ptl1_panic_xt(int, int); 2246 2247 /* 2248 * Called once per second by timeout() to wake up 2249 * the ptl1_panic thread to see if it should cause 2250 * a trap to the ptl1_panic() code. 2251 */ 2252 /* ARGSUSED */ 2253 static void 2254 ptl1_wakeup(void *arg) 2255 { 2256 mutex_enter(&ptl1_mutex); 2257 cv_signal(&ptl1_cv); 2258 mutex_exit(&ptl1_mutex); 2259 } 2260 2261 /* 2262 * ptl1_panic cross call function: 2263 * Needed because xc_one() and xc_some() can pass 2264 * 64 bit args but ptl1_recurse() expects ints. 2265 */ 2266 static void 2267 ptl1_panic_xc(void) 2268 { 2269 ptl1_recurse(ptl1_recurse_count_threshold, 2270 ptl1_recurse_trap_threshold); 2271 } 2272 2273 /* 2274 * The ptl1 thread waits for a global flag to be set 2275 * and uses the recurse thresholds to set the stack depth 2276 * to cause a ptl1_panic() directly via a call to ptl1_recurse 2277 * or indirectly via the cross call and cross trap functions. 2278 * 2279 * This is useful testing stack overflows and normal 2280 * ptl1_panic() states with a know stack frame. 2281 * 2282 * ptl1_recurse() is an asm function in ptl1_panic.s that 2283 * sets the {In, Local, Out, and Global} registers to a 2284 * know state on the stack and just prior to causing a 2285 * test ptl1_panic trap. 2286 */ 2287 static void 2288 ptl1_thread(void) 2289 { 2290 mutex_enter(&ptl1_mutex); 2291 while (ptl1_thread_p) { 2292 cpuset_t other_cpus; 2293 int cpu_id; 2294 int my_cpu_id; 2295 int target_cpu_id; 2296 int target_found; 2297 2298 if (ptl1_panic_test) { 2299 ptl1_recurse(ptl1_recurse_count_threshold, 2300 ptl1_recurse_trap_threshold); 2301 } 2302 2303 /* 2304 * Find potential targets for x-call and x-trap, 2305 * if any exist while preempt is disabled we 2306 * start a ptl1_panic if requested via a 2307 * globals. 2308 */ 2309 kpreempt_disable(); 2310 my_cpu_id = CPU->cpu_id; 2311 other_cpus = cpu_ready_set; 2312 CPUSET_DEL(other_cpus, CPU->cpu_id); 2313 target_found = 0; 2314 if (!CPUSET_ISNULL(other_cpus)) { 2315 /* 2316 * Pick the first one 2317 */ 2318 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { 2319 if (cpu_id == my_cpu_id) 2320 continue; 2321 2322 if (CPU_XCALL_READY(cpu_id)) { 2323 target_cpu_id = cpu_id; 2324 target_found = 1; 2325 break; 2326 } 2327 } 2328 ASSERT(target_found); 2329 2330 if (ptl1_panic_xc_one_test) { 2331 xc_one(target_cpu_id, 2332 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2333 } 2334 if (ptl1_panic_xc_all_test) { 2335 xc_some(other_cpus, 2336 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2337 } 2338 if (ptl1_panic_xt_one_test) { 2339 xt_one(target_cpu_id, 2340 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2341 } 2342 if (ptl1_panic_xt_all_test) { 2343 xt_some(other_cpus, 2344 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2345 } 2346 } 2347 kpreempt_enable(); 2348 (void) timeout(ptl1_wakeup, NULL, hz); 2349 (void) cv_wait(&ptl1_cv, &ptl1_mutex); 2350 } 2351 mutex_exit(&ptl1_mutex); 2352 } 2353 2354 /* 2355 * Called during early startup to create the ptl1_thread 2356 */ 2357 void 2358 init_ptl1_thread(void) 2359 { 2360 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, 2361 &p0, TS_RUN, 0); 2362 } 2363 #endif /* PTL1_PANIC_DEBUG */ 2364 2365 2366 static void 2367 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp) 2368 { 2369 struct memlist *new; 2370 2371 new = *memlistp; 2372 new->address = start; 2373 new->size = len; 2374 *memlistp = new + 1; 2375 } 2376 2377 /* 2378 * Add to a memory list. 2379 * start = start of new memory segment 2380 * len = length of new memory segment in bytes 2381 * memlistp = pointer to array of available memory segment structures 2382 * curmemlistp = memory list to which to add segment. 2383 */ 2384 static void 2385 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, 2386 struct memlist **curmemlistp) 2387 { 2388 struct memlist *new = *memlistp; 2389 2390 memlist_new(start, len, memlistp); 2391 memlist_insert(new, curmemlistp); 2392 } 2393 2394 static int 2395 ndata_alloc_memseg(struct memlist *ndata, size_t avail) 2396 { 2397 int nseg; 2398 size_t memseg_sz; 2399 struct memseg *msp; 2400 2401 /* 2402 * The memseg list is for the chunks of physical memory that 2403 * will be managed by the vm system. The number calculated is 2404 * a guess as boot may fragment it more when memory allocations 2405 * are made before kphysm_init(). 2406 */ 2407 memseg_sz = (avail + 10) * sizeof (struct memseg); 2408 memseg_sz = roundup(memseg_sz, PAGESIZE); 2409 nseg = memseg_sz / sizeof (struct memseg); 2410 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize); 2411 if (msp == NULL) 2412 return (1); 2413 PRM_DEBUG(memseg_free); 2414 2415 while (nseg--) { 2416 msp->next = memseg_free; 2417 memseg_free = msp; 2418 msp++; 2419 } 2420 return (0); 2421 } 2422 2423 /* 2424 * In the case of architectures that support dynamic addition of 2425 * memory at run-time there are two cases where memsegs need to 2426 * be initialized and added to the memseg list. 2427 * 1) memsegs that are constructed at startup. 2428 * 2) memsegs that are constructed at run-time on 2429 * hot-plug capable architectures. 2430 * This code was originally part of the function kphysm_init(). 2431 */ 2432 2433 static void 2434 memseg_list_add(struct memseg *memsegp) 2435 { 2436 struct memseg **prev_memsegp; 2437 pgcnt_t num; 2438 2439 /* insert in memseg list, decreasing number of pages order */ 2440 2441 num = MSEG_NPAGES(memsegp); 2442 2443 for (prev_memsegp = &memsegs; *prev_memsegp; 2444 prev_memsegp = &((*prev_memsegp)->next)) { 2445 if (num > MSEG_NPAGES(*prev_memsegp)) 2446 break; 2447 } 2448 2449 memsegp->next = *prev_memsegp; 2450 *prev_memsegp = memsegp; 2451 2452 if (kpm_enable) { 2453 memsegp->nextpa = (memsegp->next) ? 2454 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; 2455 2456 if (prev_memsegp != &memsegs) { 2457 struct memseg *msp; 2458 msp = (struct memseg *)((caddr_t)prev_memsegp - 2459 offsetof(struct memseg, next)); 2460 msp->nextpa = va_to_pa(memsegp); 2461 } else { 2462 memsegspa = va_to_pa(memsegs); 2463 } 2464 } 2465 } 2466 2467 /* 2468 * PSM add_physmem_cb(). US-II and newer processors have some 2469 * flavor of the prefetch capability implemented. We exploit 2470 * this capability for optimum performance. 2471 */ 2472 #define PREFETCH_BYTES 64 2473 2474 void 2475 add_physmem_cb(page_t *pp, pfn_t pnum) 2476 { 2477 extern void prefetch_page_w(void *); 2478 2479 pp->p_pagenum = pnum; 2480 2481 /* 2482 * Prefetch one more page_t into E$. To prevent future 2483 * mishaps with the sizeof(page_t) changing on us, we 2484 * catch this on debug kernels if we can't bring in the 2485 * entire hpage with 2 PREFETCH_BYTES reads. See 2486 * also, sun4u/cpu/cpu_module.c 2487 */ 2488 /*LINTED*/ 2489 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); 2490 prefetch_page_w((char *)pp); 2491 } 2492 2493 /* 2494 * Find memseg with given pfn 2495 */ 2496 static struct memseg * 2497 memseg_find(pfn_t base, pfn_t *next) 2498 { 2499 struct memseg *seg; 2500 2501 if (next != NULL) 2502 *next = LONG_MAX; 2503 for (seg = memsegs; seg != NULL; seg = seg->next) { 2504 if (base >= seg->pages_base && base < seg->pages_end) 2505 return (seg); 2506 if (next != NULL && seg->pages_base > base && 2507 seg->pages_base < *next) 2508 *next = seg->pages_base; 2509 } 2510 return (NULL); 2511 } 2512 2513 extern struct vnode prom_ppages; 2514 2515 /* 2516 * Put page allocated by OBP on prom_ppages 2517 */ 2518 static void 2519 kphysm_erase(uint64_t addr, uint64_t len) 2520 { 2521 struct page *pp; 2522 struct memseg *seg; 2523 pfn_t base = btop(addr), next; 2524 pgcnt_t num = btop(len); 2525 2526 while (num != 0) { 2527 pgcnt_t off, left; 2528 2529 seg = memseg_find(base, &next); 2530 if (seg == NULL) { 2531 if (next == LONG_MAX) 2532 break; 2533 left = MIN(next - base, num); 2534 base += left, num -= left; 2535 continue; 2536 } 2537 off = base - seg->pages_base; 2538 pp = seg->pages + off; 2539 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off); 2540 while (num != left) { 2541 /* 2542 * init it, lock it, and hashin on prom_pages vp. 2543 * 2544 * XXX vnode offsets on the prom_ppages vnode 2545 * are page numbers (gack) for >32 bit 2546 * physical memory machines. 2547 */ 2548 add_physmem_cb(pp, base); 2549 if (page_trylock(pp, SE_EXCL) == 0) 2550 cmn_err(CE_PANIC, "prom page locked"); 2551 (void) page_hashin(pp, &prom_ppages, 2552 (offset_t)base, NULL); 2553 (void) page_pp_lock(pp, 0, 1); 2554 pp++, base++, num--; 2555 } 2556 } 2557 } 2558 2559 static page_t *ppnext; 2560 static pgcnt_t ppleft; 2561 2562 static void *kpm_ppnext; 2563 static pgcnt_t kpm_ppleft; 2564 2565 /* 2566 * Create a memseg 2567 */ 2568 static void 2569 kphysm_memseg(uint64_t addr, uint64_t len) 2570 { 2571 pfn_t base = btop(addr); 2572 pgcnt_t num = btop(len); 2573 struct memseg *seg; 2574 2575 seg = memseg_free; 2576 memseg_free = seg->next; 2577 ASSERT(seg != NULL); 2578 2579 seg->pages = ppnext; 2580 seg->epages = ppnext + num; 2581 seg->pages_base = base; 2582 seg->pages_end = base + num; 2583 ppnext += num; 2584 ppleft -= num; 2585 2586 if (kpm_enable) { 2587 pgcnt_t kpnum = ptokpmpr(num); 2588 2589 if (kpnum > kpm_ppleft) 2590 panic("kphysm_memseg: kpm_pp overflow"); 2591 seg->pagespa = va_to_pa(seg->pages); 2592 seg->epagespa = va_to_pa(seg->epages); 2593 seg->kpm_pbase = kpmptop(ptokpmp(base)); 2594 seg->kpm_nkpmpgs = kpnum; 2595 /* 2596 * In the kpm_smallpage case, the kpm array 2597 * is 1-1 wrt the page array 2598 */ 2599 if (kpm_smallpages) { 2600 kpm_spage_t *kpm_pp = kpm_ppnext; 2601 2602 kpm_ppnext = kpm_pp + kpnum; 2603 seg->kpm_spages = kpm_pp; 2604 seg->kpm_pagespa = va_to_pa(seg->kpm_spages); 2605 } else { 2606 kpm_page_t *kpm_pp = kpm_ppnext; 2607 2608 kpm_ppnext = kpm_pp + kpnum; 2609 seg->kpm_pages = kpm_pp; 2610 seg->kpm_pagespa = va_to_pa(seg->kpm_pages); 2611 /* ASSERT no kpm overlaps */ 2612 ASSERT( 2613 memseg_find(base - pmodkpmp(base), NULL) == NULL); 2614 ASSERT(memseg_find( 2615 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL); 2616 } 2617 kpm_ppleft -= num; 2618 } 2619 2620 memseg_list_add(seg); 2621 } 2622 2623 /* 2624 * Add range to free list 2625 */ 2626 void 2627 kphysm_add(uint64_t addr, uint64_t len, int reclaim) 2628 { 2629 struct page *pp; 2630 struct memseg *seg; 2631 pfn_t base = btop(addr); 2632 pgcnt_t num = btop(len); 2633 2634 seg = memseg_find(base, NULL); 2635 ASSERT(seg != NULL); 2636 pp = seg->pages + (base - seg->pages_base); 2637 2638 if (reclaim) { 2639 struct page *rpp = pp; 2640 struct page *lpp = pp + num; 2641 2642 /* 2643 * page should be locked on prom_ppages 2644 * unhash and unlock it 2645 */ 2646 while (rpp < lpp) { 2647 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &prom_ppages); 2648 page_pp_unlock(rpp, 0, 1); 2649 page_hashout(rpp, NULL); 2650 page_unlock(rpp); 2651 rpp++; 2652 } 2653 } 2654 2655 /* 2656 * add_physmem() initializes the PSM part of the page 2657 * struct by calling the PSM back with add_physmem_cb(). 2658 * In addition it coalesces pages into larger pages as 2659 * it initializes them. 2660 */ 2661 add_physmem(pp, num, base); 2662 } 2663 2664 /* 2665 * kphysm_init() tackles the problem of initializing physical memory. 2666 */ 2667 static void 2668 kphysm_init(void) 2669 { 2670 struct memlist *pmem; 2671 2672 ASSERT(page_hash != NULL && page_hashsz != 0); 2673 2674 ppnext = pp_base; 2675 ppleft = npages; 2676 kpm_ppnext = kpm_pp_base; 2677 kpm_ppleft = kpm_npages; 2678 2679 /* 2680 * installed pages not on nopp_memlist go in memseg list 2681 */ 2682 diff_memlists(phys_install, nopp_list, kphysm_memseg); 2683 2684 /* 2685 * Free the avail list 2686 */ 2687 for (pmem = phys_avail; pmem != NULL; pmem = pmem->next) 2688 kphysm_add(pmem->address, pmem->size, 0); 2689 2690 /* 2691 * Erase pages that aren't available 2692 */ 2693 diff_memlists(phys_install, phys_avail, kphysm_erase); 2694 2695 build_pfn_hash(); 2696 } 2697 2698 /* 2699 * Kernel VM initialization. 2700 * Assumptions about kernel address space ordering: 2701 * (1) gap (user space) 2702 * (2) kernel text 2703 * (3) kernel data/bss 2704 * (4) gap 2705 * (5) kernel data structures 2706 * (6) gap 2707 * (7) debugger (optional) 2708 * (8) monitor 2709 * (9) gap (possibly null) 2710 * (10) dvma 2711 * (11) devices 2712 */ 2713 static void 2714 kvm_init(void) 2715 { 2716 /* 2717 * Put the kernel segments in kernel address space. 2718 */ 2719 rw_enter(&kas.a_lock, RW_WRITER); 2720 as_avlinit(&kas); 2721 2722 (void) seg_attach(&kas, (caddr_t)KERNELBASE, 2723 (size_t)(e_moddata - KERNELBASE), &ktextseg); 2724 (void) segkmem_create(&ktextseg); 2725 2726 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), 2727 (size_t)(MMU_PAGESIZE4M), &ktexthole); 2728 (void) segkmem_create(&ktexthole); 2729 2730 (void) seg_attach(&kas, (caddr_t)valloc_base, 2731 (size_t)(econtig32 - valloc_base), &kvalloc); 2732 (void) segkmem_create(&kvalloc); 2733 2734 if (kmem64_base) { 2735 (void) seg_attach(&kas, (caddr_t)kmem64_base, 2736 (size_t)(kmem64_end - kmem64_base), &kmem64); 2737 (void) segkmem_create(&kmem64); 2738 } 2739 2740 /* 2741 * We're about to map out /boot. This is the beginning of the 2742 * system resource management transition. We can no longer 2743 * call into /boot for I/O or memory allocations. 2744 */ 2745 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); 2746 (void) segkmem_create(&kvseg); 2747 hblk_alloc_dynamic = 1; 2748 2749 /* 2750 * we need to preallocate pages for DR operations before enabling large 2751 * page kernel heap because of memseg_remap_init() hat_unload() hack. 2752 */ 2753 memseg_remap_init(); 2754 2755 /* at this point we are ready to use large page heap */ 2756 segkmem_heap_lp_init(); 2757 2758 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, 2759 &kvseg32); 2760 (void) segkmem_create(&kvseg32); 2761 2762 /* 2763 * Create a segment for the debugger. 2764 */ 2765 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2766 (void) segkmem_create(&kdebugseg); 2767 2768 rw_exit(&kas.a_lock); 2769 } 2770 2771 char obp_tte_str[] = 2772 "h# %x constant MMU_PAGESHIFT " 2773 "h# %x constant TTE8K " 2774 "h# %x constant SFHME_SIZE " 2775 "h# %x constant SFHME_TTE " 2776 "h# %x constant HMEBLK_TAG " 2777 "h# %x constant HMEBLK_NEXT " 2778 "h# %x constant HMEBLK_MISC " 2779 "h# %x constant HMEBLK_HME1 " 2780 "h# %x constant NHMENTS " 2781 "h# %x constant HBLK_SZMASK " 2782 "h# %x constant HBLK_RANGE_SHIFT " 2783 "h# %x constant HMEBP_HBLK " 2784 "h# %x constant HMEBLK_ENDPA " 2785 "h# %x constant HMEBUCKET_SIZE " 2786 "h# %x constant HTAG_SFMMUPSZ " 2787 "h# %x constant HTAG_BSPAGE_SHIFT " 2788 "h# %x constant HTAG_REHASH_SHIFT " 2789 "h# %x constant SFMMU_INVALID_SHMERID " 2790 "h# %x constant mmu_hashcnt " 2791 "h# %p constant uhme_hash " 2792 "h# %p constant khme_hash " 2793 "h# %x constant UHMEHASH_SZ " 2794 "h# %x constant KHMEHASH_SZ " 2795 "h# %p constant KCONTEXT " 2796 "h# %p constant KHATID " 2797 "h# %x constant ASI_MEM " 2798 "h# %x constant SOFTEXEC " 2799 "h# %x constant EXECPRM " 2800 2801 ": PHYS-X@ ( phys -- data ) " 2802 " ASI_MEM spacex@ " 2803 "; " 2804 2805 ": PHYS-W@ ( phys -- data ) " 2806 " ASI_MEM spacew@ " 2807 "; " 2808 2809 ": PHYS-L@ ( phys -- data ) " 2810 " ASI_MEM spaceL@ " 2811 "; " 2812 2813 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " 2814 " 3 * MMU_PAGESHIFT + " 2815 "; " 2816 2817 ": TTE_IS_VALID ( ttep -- flag ) " 2818 " PHYS-X@ 0< " 2819 "; " 2820 2821 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " 2822 " dup TTE8K = if " 2823 " drop HBLK_RANGE_SHIFT " 2824 " else " 2825 " TTE_PAGE_SHIFT " 2826 " then " 2827 "; " 2828 2829 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " 2830 " tuck >> swap MMU_PAGESHIFT - << " 2831 "; " 2832 2833 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " 2834 " >> over xor swap ( hash sfmmup ) " 2835 " KHATID <> if ( hash ) " 2836 " UHMEHASH_SZ and ( bucket ) " 2837 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " 2838 " else ( hash ) " 2839 " KHMEHASH_SZ and ( bucket ) " 2840 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " 2841 " then ( hmebp ) " 2842 "; " 2843 2844 ": HME_HASH_TABLE_SEARCH " 2845 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " 2846 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " 2847 " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) " 2848 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " 2849 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " 2850 " true ( sfmmup hmeblkp true ) ( r: hblktag ) " 2851 " else " 2852 " hmeblk_next + phys-x@ false " 2853 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2854 " then " 2855 " else " 2856 " hmeblk_next + phys-x@ false " 2857 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2858 " then " 2859 " else " 2860 " drop 0 true " 2861 " then " 2862 " until r> drop " 2863 "; " 2864 2865 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " 2866 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " 2867 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )" 2868 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )" 2869 " SFMMU_INVALID_SHMERID or nip ( hblktag ) " 2870 "; " 2871 2872 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " 2873 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " 2874 " TTE8K = if ( hmeblkp addr ) " 2875 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " 2876 " else ( hmeblkp addr ) " 2877 " drop 0 ( hmeblkp 0 ) " 2878 " then ( hmeblkp hme-index ) " 2879 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " 2880 " SFHME_TTE + ( ttep ) " 2881 "; " 2882 2883 ": unix-tte ( addr cnum -- false | tte-data true ) " 2884 " KCONTEXT = if ( addr ) " 2885 " KHATID ( addr khatid ) " 2886 " else ( addr ) " 2887 " drop false exit ( false ) " 2888 " then " 2889 " ( addr khatid ) " 2890 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " 2891 " 2dup swap i HME_HASH_SHIFT " 2892 "( addr sfmmup sfmmup addr hmeshift ) " 2893 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " 2894 " over i 4 pick " 2895 "( addr sfmmup hmebp sfmmup rehash addr ) " 2896 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " 2897 " HME_HASH_TABLE_SEARCH " 2898 "( addr sfmmup { null | hmeblkp } ) " 2899 " ?dup if ( addr sfmmup hmeblkp ) " 2900 " nip swap HBLK_TO_TTEP ( ttep ) " 2901 " dup TTE_IS_VALID if ( valid-ttep ) " 2902 " PHYS-X@ ( tte-data ) " 2903 " dup SOFTEXEC and 0> if ( tte-data ) " 2904 " SOFTEXEC - EXECPRM or ( tte-data ) " 2905 " then ( tte-data ) " 2906 " true ( tte-data true ) " 2907 " else ( invalid-tte ) " 2908 " drop false ( false ) " 2909 " then ( false | tte-data true ) " 2910 " unloop exit ( false | tte-data true ) " 2911 " then ( addr sfmmup ) " 2912 " loop ( addr sfmmup ) " 2913 " 2drop false ( false ) " 2914 "; " 2915 ; 2916 2917 void 2918 create_va_to_tte(void) 2919 { 2920 char *bp; 2921 extern int khmehash_num, uhmehash_num; 2922 extern struct hmehash_bucket *khme_hash, *uhme_hash; 2923 2924 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) 2925 2926 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); 2927 2928 /* 2929 * Teach obp how to parse our sw ttes. 2930 */ 2931 (void) sprintf(bp, obp_tte_str, 2932 MMU_PAGESHIFT, 2933 TTE8K, 2934 sizeof (struct sf_hment), 2935 OFFSET(struct sf_hment, hme_tte), 2936 OFFSET(struct hme_blk, hblk_tag), 2937 OFFSET(struct hme_blk, hblk_nextpa), 2938 OFFSET(struct hme_blk, hblk_misc), 2939 OFFSET(struct hme_blk, hblk_hme), 2940 NHMENTS, 2941 HBLK_SZMASK, 2942 HBLK_RANGE_SHIFT, 2943 OFFSET(struct hmehash_bucket, hmeh_nextpa), 2944 HMEBLK_ENDPA, 2945 sizeof (struct hmehash_bucket), 2946 HTAG_SFMMUPSZ, 2947 HTAG_BSPAGE_SHIFT, 2948 HTAG_REHASH_SHIFT, 2949 SFMMU_INVALID_SHMERID, 2950 mmu_hashcnt, 2951 (caddr_t)va_to_pa((caddr_t)uhme_hash), 2952 (caddr_t)va_to_pa((caddr_t)khme_hash), 2953 UHMEHASH_SZ, 2954 KHMEHASH_SZ, 2955 KCONTEXT, 2956 KHATID, 2957 ASI_MEM, 2958 icache_is_coherent ? 0 : TTE_SOFTEXEC_INT, 2959 TTE_EXECPRM_INT); 2960 prom_interpret(bp, 0, 0, 0, 0, 0); 2961 2962 kobj_free(bp, MMU_PAGESIZE); 2963 } 2964 2965 void 2966 install_va_to_tte(void) 2967 { 2968 /* 2969 * advise prom that he can use unix-tte 2970 */ 2971 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); 2972 } 2973 2974 /* 2975 * Here we add "device-type=console" for /os-io node, for currently 2976 * our kernel console output only supports displaying text and 2977 * performing cursor-positioning operations (through kernel framebuffer 2978 * driver) and it doesn't support other functionalities required for a 2979 * standard "display" device as specified in 1275 spec. The main missing 2980 * interface defined by the 1275 spec is "draw-logo". 2981 * also see the comments above prom_stdout_is_framebuffer(). 2982 */ 2983 static char *create_node = 2984 "\" /\" find-device " 2985 "new-device " 2986 "\" os-io\" device-name " 2987 "\" "OBP_DISPLAY_CONSOLE"\" device-type " 2988 ": cb-r/w ( adr,len method$ -- #read/#written ) " 2989 " 2>r swap 2 2r> ['] $callback catch if " 2990 " 2drop 3drop 0 " 2991 " then " 2992 "; " 2993 ": read ( adr,len -- #read ) " 2994 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " 2995 " ( retN ... ret1 N ) " 2996 " ?dup if " 2997 " swap >r 1- 0 ?do drop loop r> " 2998 " else " 2999 " -2 " 3000 " then " 3001 "; " 3002 ": write ( adr,len -- #written ) " 3003 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " 3004 " ( retN ... ret1 N ) " 3005 " ?dup if " 3006 " swap >r 1- 0 ?do drop loop r> " 3007 " else " 3008 " 0 " 3009 " then " 3010 "; " 3011 ": poll-tty ( -- ) ; " 3012 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " 3013 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " 3014 ": cb-give/take ( $method -- ) " 3015 " 0 -rot ['] $callback catch ?dup if " 3016 " >r 2drop 2drop r> throw " 3017 " else " 3018 " 0 ?do drop loop " 3019 " then " 3020 "; " 3021 ": give ( -- ) \" exit-input\" cb-give/take ; " 3022 ": take ( -- ) \" enter-input\" cb-give/take ; " 3023 ": open ( -- ok? ) true ; " 3024 ": close ( -- ) ; " 3025 "finish-device " 3026 "device-end "; 3027 3028 /* 3029 * Create the OBP input/output node (FCode serial driver). 3030 * It is needed for both USB console keyboard and for 3031 * the kernel terminal emulator. It is too early to check for a 3032 * kernel console compatible framebuffer now, so we create this 3033 * so that we're ready if we need to enable kernel terminal emulation. 3034 * 3035 * When the USB software takes over the input device at the time 3036 * consconfig runs, OBP's stdin is redirected to this node. 3037 * Whenever the FORTH user interface is used after this switch, 3038 * the node will call back into the kernel for console input. 3039 * If a serial device such as ttya or a UART with a Type 5 keyboard 3040 * attached is used, OBP takes over the serial device when the system 3041 * goes to the debugger after the system is booted. This sharing 3042 * of the relatively simple serial device is difficult but possible. 3043 * Sharing the USB host controller is impossible due its complexity. 3044 * 3045 * Similarly to USB keyboard input redirection, after consconfig_dacf 3046 * configures a kernel console framebuffer as the standard output 3047 * device, OBP's stdout is switched to to vector through the 3048 * /os-io node into the kernel terminal emulator. 3049 */ 3050 static void 3051 startup_create_io_node(void) 3052 { 3053 prom_interpret(create_node, 0, 0, 0, 0, 0); 3054 } 3055 3056 3057 static void 3058 do_prom_version_check(void) 3059 { 3060 int i; 3061 pnode_t node; 3062 char buf[64]; 3063 static char drev[] = "Down-rev firmware detected%s\n" 3064 "\tPlease upgrade to the following minimum version:\n" 3065 "\t\t%s\n"; 3066 3067 i = prom_version_check(buf, sizeof (buf), &node); 3068 3069 if (i == PROM_VER64_OK) 3070 return; 3071 3072 if (i == PROM_VER64_UPGRADE) { 3073 cmn_err(CE_WARN, drev, "", buf); 3074 3075 #ifdef DEBUG 3076 prom_enter_mon(); /* Type 'go' to continue */ 3077 cmn_err(CE_WARN, "Booting with down-rev firmware\n"); 3078 return; 3079 #else 3080 halt(0); 3081 #endif 3082 } 3083 3084 /* 3085 * The other possibility is that this is a server running 3086 * good firmware, but down-rev firmware was detected on at 3087 * least one other cpu board. We just complain if we see 3088 * that. 3089 */ 3090 cmn_err(CE_WARN, drev, " on one or more CPU boards", buf); 3091 } 3092 3093 3094 /* 3095 * Must be defined in platform dependent code. 3096 */ 3097 extern caddr_t modtext; 3098 extern size_t modtext_sz; 3099 extern caddr_t moddata; 3100 3101 #define HEAPTEXT_ARENA(addr) \ 3102 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ 3103 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ 3104 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) 3105 3106 #define HEAPTEXT_OVERSIZED(addr) \ 3107 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) 3108 3109 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \ 3110 (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \ 3111 ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M)) 3112 3113 vmem_t *texthole_source[HEAPTEXT_NARENAS]; 3114 vmem_t *texthole_arena[HEAPTEXT_NARENAS]; 3115 kmutex_t texthole_lock; 3116 3117 char kern_bootargs[OBP_MAXPATHLEN]; 3118 char kern_bootfile[OBP_MAXPATHLEN]; 3119 3120 void 3121 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3122 { 3123 uintptr_t addr, limit; 3124 3125 addr = HEAPTEXT_BASE; 3126 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; 3127 3128 /* 3129 * Before we initialize the text_arena, we want to punch holes in the 3130 * underlying heaptext_arena. This guarantees that for any text 3131 * address we can find a text hole less than HEAPTEXT_MAPPED away. 3132 */ 3133 for (; addr + HEAPTEXT_UNMAPPED <= limit; 3134 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { 3135 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, 3136 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), 3137 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3138 } 3139 3140 /* 3141 * Allocate one page at the oversize to break up the text region 3142 * from the oversized region. 3143 */ 3144 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, 3145 (void *)limit, (void *)(limit + PAGESIZE), 3146 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3147 3148 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL, 3149 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free, 3150 heaptext_arena, 0, VM_SLEEP); 3151 *data_arena = vmem_create("module_data", moddata, MODDATA, 1, 3152 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3153 } 3154 3155 caddr_t 3156 kobj_text_alloc(vmem_t *arena, size_t size) 3157 { 3158 caddr_t rval, better; 3159 3160 /* 3161 * First, try a sleeping allocation. 3162 */ 3163 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); 3164 3165 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) 3166 return (rval); 3167 3168 /* 3169 * We didn't get the area that we wanted. We're going to try to do an 3170 * allocation with explicit constraints. 3171 */ 3172 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, 3173 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), 3174 VM_NOSLEEP | VM_BESTFIT); 3175 3176 if (better != NULL) { 3177 /* 3178 * That worked. Free our first attempt and return. 3179 */ 3180 vmem_free(arena, rval, size); 3181 return (better); 3182 } 3183 3184 /* 3185 * That didn't work; we'll have to return our first attempt. 3186 */ 3187 return (rval); 3188 } 3189 3190 caddr_t 3191 kobj_texthole_alloc(caddr_t addr, size_t size) 3192 { 3193 int arena = HEAPTEXT_ARENA(addr); 3194 char c[30]; 3195 uintptr_t base; 3196 3197 if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) { 3198 /* 3199 * If this is an oversized allocation or it is allocated in 3200 * the nucleus data page, there is no text hole available for 3201 * it; return NULL. 3202 */ 3203 return (NULL); 3204 } 3205 3206 mutex_enter(&texthole_lock); 3207 3208 if (texthole_arena[arena] == NULL) { 3209 ASSERT(texthole_source[arena] == NULL); 3210 3211 if (arena == 0) { 3212 texthole_source[0] = vmem_create("module_text_holesrc", 3213 (void *)(KERNELBASE + MMU_PAGESIZE4M), 3214 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL, 3215 0, VM_SLEEP); 3216 } else { 3217 base = HEAPTEXT_BASE + 3218 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED); 3219 3220 (void) snprintf(c, sizeof (c), 3221 "heaptext_holesrc_%d", arena); 3222 3223 texthole_source[arena] = vmem_create(c, (void *)base, 3224 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL, 3225 0, VM_SLEEP); 3226 } 3227 3228 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena); 3229 3230 texthole_arena[arena] = vmem_create(c, NULL, 0, 3231 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free, 3232 texthole_source[arena], 0, VM_SLEEP); 3233 } 3234 3235 mutex_exit(&texthole_lock); 3236 3237 ASSERT(texthole_arena[arena] != NULL); 3238 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3239 return (vmem_alloc(texthole_arena[arena], size, 3240 VM_BESTFIT | VM_NOSLEEP)); 3241 } 3242 3243 void 3244 kobj_texthole_free(caddr_t addr, size_t size) 3245 { 3246 int arena = HEAPTEXT_ARENA(addr); 3247 3248 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3249 ASSERT(texthole_arena[arena] != NULL); 3250 vmem_free(texthole_arena[arena], addr, size); 3251 } 3252 3253 void 3254 release_bootstrap(void) 3255 { 3256 if (&cif_init) 3257 cif_init(); 3258 } 3259