xref: /titanic_41/usr/src/uts/sun4/os/startup.c (revision 94501b61e12c24a6ea3abf427022ca0d4a302f3b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/intreg.h>
43 #include <sys/ivintr.h>
44 #include <sys/fpu/fpusystm.h>
45 #include <sys/iommutsb.h>
46 #include <vm/vm_dep.h>
47 #include <vm/seg_dev.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kpm.h>
50 #include <vm/seg_map.h>
51 #include <vm/seg_kp.h>
52 #include <sys/sysconf.h>
53 #include <vm/hat_sfmmu.h>
54 #include <sys/kobj.h>
55 #include <sys/sun4asi.h>
56 #include <sys/clconf.h>
57 #include <sys/platform_module.h>
58 #include <sys/panic.h>
59 #include <sys/cpu_sgnblk_defs.h>
60 #include <sys/clock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 #include <sys/traptrace.h>
65 #include <sys/memnode.h>
66 #include <sys/mem_cage.h>
67 #include <sys/mmu.h>
68 
69 extern void setup_trap_table(void);
70 extern void cpu_intrq_setup(struct cpu *);
71 extern void cpu_intrq_register(struct cpu *);
72 extern void contig_mem_init(void);
73 extern void mach_dump_buffer_init(void);
74 extern void mach_descrip_init(void);
75 extern void mach_descrip_startup_fini(void);
76 extern void mach_memscrub(void);
77 extern void mach_fpras(void);
78 extern void mach_cpu_halt_idle(void);
79 extern void mach_hw_copy_limit(void);
80 extern void load_mach_drivers(void);
81 extern void load_tod_module(void);
82 #pragma weak load_tod_module
83 
84 extern int ndata_alloc_mmfsa(struct memlist *ndata);
85 #pragma weak ndata_alloc_mmfsa
86 
87 extern void cif_init(void);
88 #pragma weak cif_init
89 
90 extern void parse_idprom(void);
91 extern void add_vx_handler(char *, int, void (*)(cell_t *));
92 extern void mem_config_init(void);
93 extern void memseg_remap_init(void);
94 
95 extern void mach_kpm_init(void);
96 
97 /*
98  * External Data:
99  */
100 extern int vac_size;	/* cache size in bytes */
101 extern uint_t vac_mask;	/* VAC alignment consistency mask */
102 extern uint_t vac_colors;
103 
104 /*
105  * Global Data Definitions:
106  */
107 
108 /*
109  * XXX - Don't port this to new architectures
110  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
111  * 'romp' has no use with a prom with an IEEE 1275 client interface.
112  * The driver doesn't use the value, but it depends on the symbol.
113  */
114 void *romp;		/* veritas driver won't load without romp 4154976 */
115 /*
116  * Declare these as initialized data so we can patch them.
117  */
118 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
119 pgcnt_t segkpsize =
120     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
121 uint_t segmap_percent = 12; /* Size of segmap segment */
122 
123 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
124 int vac_copyback = 1;
125 char *cache_mode = NULL;
126 int use_mix = 1;
127 int prom_debug = 0;
128 
129 struct bootops *bootops = 0;	/* passed in from boot in %o2 */
130 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
131 uint_t	tba_taken_over = 0;
132 
133 caddr_t s_text;			/* start of kernel text segment */
134 caddr_t e_text;			/* end of kernel text segment */
135 caddr_t s_data;			/* start of kernel data segment */
136 caddr_t e_data;			/* end of kernel data segment */
137 
138 caddr_t modtext;		/* beginning of module text */
139 size_t	modtext_sz;		/* size of module text */
140 caddr_t moddata;		/* beginning of module data reserve */
141 caddr_t e_moddata;		/* end of module data reserve */
142 
143 /*
144  * End of first block of contiguous kernel in 32-bit virtual address space
145  */
146 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
147 
148 caddr_t		ncbase;		/* beginning of non-cached segment */
149 caddr_t		ncend;		/* end of non-cached segment */
150 caddr_t		sdata;		/* beginning of data segment */
151 
152 caddr_t		extra_etva;	/* beginning of unused nucleus text */
153 pgcnt_t		extra_etpg;	/* number of pages of unused nucleus text */
154 
155 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
156 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
157 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
158 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
159 
160 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
161 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
162 
163 uintptr_t shm_alignment;	/* VAC address consistency modulus */
164 struct memlist *phys_install;	/* Total installed physical memory */
165 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
166 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
167 struct memlist ndata;		/* memlist of nucleus allocatable memory */
168 int memexp_flag;		/* memory expansion card flag */
169 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
170 pgcnt_t obp_pages;		/* Physical pages used by OBP */
171 
172 /*
173  * VM data structures
174  */
175 long page_hashsz;		/* Size of page hash table (power of two) */
176 struct page *pp_base;		/* Base of system page struct array */
177 size_t pp_sz;			/* Size in bytes of page struct array */
178 struct page **page_hash;	/* Page hash table */
179 struct seg ktextseg;		/* Segment used for kernel executable image */
180 struct seg kvalloc;		/* Segment used for "valloc" mapping */
181 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
182 struct seg ktexthole;		/* Segment used for nucleus text hole */
183 struct seg kmapseg;		/* Segment used for generic kernel mappings */
184 struct seg kpmseg;		/* Segment used for physical mapping */
185 struct seg kdebugseg;		/* Segment used for the kernel debugger */
186 
187 uintptr_t kpm_pp_base;		/* Base of system kpm_page array */
188 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
189 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
190 
191 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
192 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
193 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
194 
195 /*
196  * debugger pages (if allocated)
197  */
198 struct vnode kdebugvp;
199 
200 /*
201  * Segment for relocated kernel structures in 64-bit large RAM kernels
202  */
203 struct seg kmem64;
204 
205 struct memseg *memseg_base;
206 size_t memseg_sz;		/* Used to translate a va to page */
207 struct vnode unused_pages_vp;
208 
209 /*
210  * VM data structures allocated early during boot.
211  */
212 size_t pagehash_sz;
213 uint64_t memlist_sz;
214 
215 char tbr_wr_addr_inited = 0;
216 
217 
218 /*
219  * Static Routines:
220  */
221 static void memlist_add(uint64_t, uint64_t, struct memlist **,
222 	struct memlist **);
223 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t,
224 	pgcnt_t);
225 static void kvm_init(void);
226 
227 static void startup_init(void);
228 static void startup_memlist(void);
229 static void startup_modules(void);
230 static void startup_bop_gone(void);
231 static void startup_vm(void);
232 static void startup_end(void);
233 static void setup_cage_params(void);
234 static void startup_create_io_node(void);
235 
236 static pgcnt_t npages;
237 static struct memlist *memlist;
238 void *memlist_end;
239 
240 static pgcnt_t bop_alloc_pages;
241 static caddr_t hblk_base;
242 uint_t hblk_alloc_dynamic = 0;
243 uint_t hblk1_min = H1MIN;
244 uint_t hblk8_min;
245 
246 
247 /*
248  * Hooks for unsupported platforms and down-rev firmware
249  */
250 int iam_positron(void);
251 #pragma weak iam_positron
252 static void do_prom_version_check(void);
253 static void kpm_init(void);
254 static void kpm_npages_setup(int);
255 static void kpm_memseg_init(void);
256 
257 /*
258  * After receiving a thermal interrupt, this is the number of seconds
259  * to delay before shutting off the system, assuming
260  * shutdown fails.  Use /etc/system to change the delay if this isn't
261  * large enough.
262  */
263 int thermal_powerdown_delay = 1200;
264 
265 /*
266  * Used to hold off page relocations into the cage until OBP has completed
267  * its boot-time handoff of its resources to the kernel.
268  */
269 int page_relocate_ready = 0;
270 
271 /*
272  * Enable some debugging messages concerning memory usage...
273  */
274 #ifdef  DEBUGGING_MEM
275 static int debugging_mem;
276 static void
277 printmemlist(char *title, struct memlist *list)
278 {
279 	if (!debugging_mem)
280 		return;
281 
282 	printf("%s\n", title);
283 
284 	while (list) {
285 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
286 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
287 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
288 		list = list->next;
289 	}
290 }
291 
292 void
293 printmemseg(struct memseg *memseg)
294 {
295 	if (!debugging_mem)
296 		return;
297 
298 	printf("memseg\n");
299 
300 	while (memseg) {
301 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
302 		    "pfn = 0x%x, epfn = 0x%x\n",
303 		    memseg->pages, memseg->epages,
304 		    memseg->pages_base, memseg->pages_end);
305 		memseg = memseg->next;
306 	}
307 }
308 
309 #define	debug_pause(str)	halt((str))
310 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
311 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
312 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
313 #define	MPRINTF3(str, a, b, c) \
314 	if (debugging_mem) prom_printf((str), (a), (b), (c))
315 #else	/* DEBUGGING_MEM */
316 #define	MPRINTF(str)
317 #define	MPRINTF1(str, a)
318 #define	MPRINTF2(str, a, b)
319 #define	MPRINTF3(str, a, b, c)
320 #endif	/* DEBUGGING_MEM */
321 
322 /* Simple message to indicate that the bootops pointer has been zeroed */
323 #ifdef DEBUG
324 static int bootops_gone_on = 0;
325 #define	BOOTOPS_GONE() \
326 	if (bootops_gone_on) \
327 		prom_printf("The bootops vec is zeroed now!\n");
328 #else
329 #define	BOOTOPS_GONE()
330 #endif /* DEBUG */
331 
332 /*
333  * Monitor pages may not be where this says they are.
334  * and the debugger may not be there either.
335  *
336  * Note that 'pages' here are *physical* pages, which are 8k on sun4u.
337  *
338  *                        Physical memory layout
339  *                     (not necessarily contiguous)
340  *                       (THIS IS SOMEWHAT WRONG)
341  *                       /-----------------------\
342  *                       |       monitor pages   |
343  *             availmem -|-----------------------|
344  *                       |                       |
345  *                       |       page pool       |
346  *                       |                       |
347  *                       |-----------------------|
348  *                       |   configured tables   |
349  *                       |       buffers         |
350  *            firstaddr -|-----------------------|
351  *                       |   hat data structures |
352  *                       |-----------------------|
353  *                       |    kernel data, bss   |
354  *                       |-----------------------|
355  *                       |    interrupt stack    |
356  *                       |-----------------------|
357  *                       |    kernel text (RO)   |
358  *                       |-----------------------|
359  *                       |    trap table (4k)    |
360  *                       |-----------------------|
361  *               page 1  |      panicbuf         |
362  *                       |-----------------------|
363  *               page 0  |       reclaimed       |
364  *                       |_______________________|
365  *
366  *
367  *
368  *                    Kernel's Virtual Memory Layout.
369  *                       /-----------------------\
370  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
371  *                       |   OBP's virtual page  |
372  *                       |        tables         |
373  * 0xFFFFFFFC.00000000  -|-----------------------|-
374  *                       :                       :
375  *                       :                       :
376  * 0xFFFFFE00.00000000  -|-----------------------|-
377  *                       |                       |  Ultrasparc I/II support
378  *                       |    segkpm segment     |  up to 2TB of physical
379  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
380  *                       |                       |
381  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
382  *                       :                       :
383  *                       :                       :
384  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
385  *                       |                       |      ^
386  *                       |  UltraSPARC I/II call |      |
387  *                       | bug requires an extra |      |
388  *                       | 4 GB of space between |      |
389  *                       |   hole and used RAM   |	|
390  *                       |                       |      |
391  * 0xFFFFF800.00000000  -|-----------------------|-     |
392  *                       |                       |      |
393  *                       | Virtual Address Hole  |   UltraSPARC
394  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
395  *                       |                       |      |
396  * 0x00000800.00000000  -|-----------------------|-     |
397  *                       |                       |      |
398  *                       |  UltraSPARC I/II call |      |
399  *                       | bug requires an extra |      |
400  *                       | 4 GB of space between |      |
401  *                       |   hole and used RAM   |      |
402  *                       |                       |      v
403  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
404  *                       :                       :		   ^
405  *                       :                       :		   |
406  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
407  *                       |                       |		   |
408  *                       |   64-bit kernel ONLY  |		   |
409  *                       |                       |		   |
410  *                       |    kmem64 segment     |		   |
411  *                       |                       |		   |
412  *                       | (Relocated extra HME  |	     Approximately
413  *                       |   block allocations,  |	    1 TB of virtual
414  *                       |   memnode freelists,  |	     address space
415  *                       |    HME hash buckets,  |		   |
416  *                       | mml_table, kpmp_table,|		   |
417  *                       |  page_t array and     |		   |
418  *                       |  hashblock pool to    |		   |
419  *                       |   avoid hard-coded    |		   |
420  *                       |     32-bit vaddr      |		   |
421  *                       |     limitations)      |		   |
422  *                       |                       |		   v
423  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
424  *                       |                       |
425  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
426  *                       |                       |
427  * 0x00000300.00000000  -|-----------------------|- SYSBASE
428  *                       :                       :
429  *                       :                       :
430  *                      -|-----------------------|-
431  *                       |                       |
432  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
433  *                       |                       |               256G MAX)
434  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
435  *                       :                       :
436  *                       :                       :
437  *                      -|-----------------------|-
438  *                       |                       |
439  *                       |       segkp           |    SEGKPSIZE (2GB)
440  *                       |                       |
441  *                       |                       |
442  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
443  *                       |                       |
444  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
445  *                       |                       |       (SEGKPBASE - 0x400000)
446  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
447  *                       |                       |       (MEMSCRUBBASE - NCARGS)
448  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
449  *                       |                       |       (ARGSBASE - PPMAPSIZE)
450  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
451  *                       |                       |
452  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
453  *                       |                       |
454  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
455  *                       :                       :
456  *                       :                       :
457  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
458  *                       |                       |
459  *                       |         OBP           |
460  *                       |                       |
461  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
462  *                       |         kmdb          |
463  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
464  *                       :                       :
465  *                       :                       :
466  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
467  *                       |                       |
468  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
469  *                       |                       |    ~64MB)
470  * 0x00000000.78002000  -|-----------------------|
471  *                       |     panicbuf          |
472  * 0x00000000.78000000  -|-----------------------|- SYSBASE32
473  *                       :                       :
474  *                       :                       :
475  *                       |                       |
476  *                       |-----------------------|- econtig32
477  *                       |    vm structures      |
478  * 0x00000000.01C00000   |-----------------------|- nalloc_end
479  *                       |         TSBs          |
480  *                       |-----------------------|- end/nalloc_base
481  *                       |   kernel data & bss   |
482  * 0x00000000.01800000  -|-----------------------|
483  *                       :   nucleus text hole   :
484  * 0x00000000.01400000  -|-----------------------|
485  *                       :                       :
486  *                       |-----------------------|
487  *                       |      module text      |
488  *                       |-----------------------|- e_text/modtext
489  *                       |      kernel text      |
490  *                       |-----------------------|
491  *                       |    trap table (48k)   |
492  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
493  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
494  *                       |-----------------------|
495  *                       |                       |
496  *                       |        invalid        |
497  *                       |                       |
498  * 0x00000000.00000000  _|_______________________|
499  *
500  *
501  *
502  *                   32-bit User Virtual Memory Layout.
503  *                       /-----------------------\
504  *                       |                       |
505  *                       |        invalid        |
506  *                       |                       |
507  *          0xFFC00000  -|-----------------------|- USERLIMIT
508  *                       |       user stack      |
509  *                       :                       :
510  *                       :                       :
511  *                       :                       :
512  *                       |       user data       |
513  *                      -|-----------------------|-
514  *                       |       user text       |
515  *          0x00002000  -|-----------------------|-
516  *                       |       invalid         |
517  *          0x00000000  _|_______________________|
518  *
519  *
520  *
521  *                   64-bit User Virtual Memory Layout.
522  *                       /-----------------------\
523  *                       |                       |
524  *                       |        invalid        |
525  *                       |                       |
526  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
527  *                       |       user stack      |
528  *                       :                       :
529  *                       :                       :
530  *                       :                       :
531  *                       |       user data       |
532  *                      -|-----------------------|-
533  *                       |       user text       |
534  *  0x00000000.00100000 -|-----------------------|-
535  *                       |       invalid         |
536  *  0x00000000.00000000 _|_______________________|
537  */
538 
539 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
540 extern uint64_t ecache_flush_address(void);
541 
542 #pragma weak load_platform_modules
543 #pragma weak plat_startup_memlist
544 #pragma weak ecache_init_scrub_flush_area
545 #pragma weak ecache_flush_address
546 
547 
548 /*
549  * By default the DR Cage is enabled for maximum OS
550  * MPSS performance.  Users needing to disable the cage mechanism
551  * can set this variable to zero via /etc/system.
552  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
553  * will result in loss of DR functionality.
554  * Platforms wishing to disable kernel Cage by default
555  * should do so in their set_platform_defaults() routine.
556  */
557 int	kernel_cage_enable = 1;
558 
559 static void
560 setup_cage_params(void)
561 {
562 	void (*func)(void);
563 
564 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
565 	if (func != NULL) {
566 		(*func)();
567 		return;
568 	}
569 
570 	if (kernel_cage_enable == 0) {
571 		return;
572 	}
573 	kcage_range_lock();
574 	if (kcage_range_init(phys_avail, 1) == 0) {
575 		kcage_init(total_pages / 256);
576 	}
577 	kcage_range_unlock();
578 
579 	if (kcage_on) {
580 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
581 	} else {
582 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
583 	}
584 
585 }
586 
587 /*
588  * Machine-dependent startup code
589  */
590 void
591 startup(void)
592 {
593 	startup_init();
594 	if (&startup_platform)
595 		startup_platform();
596 	startup_memlist();
597 	startup_modules();
598 	setup_cage_params();
599 	startup_bop_gone();
600 	startup_vm();
601 	startup_end();
602 }
603 
604 struct regs sync_reg_buf;
605 uint64_t sync_tt;
606 
607 void
608 sync_handler(void)
609 {
610 	struct  trap_info 	ti;
611 	int i;
612 
613 	/*
614 	 * Prevent trying to talk to the other CPUs since they are
615 	 * sitting in the prom and won't reply.
616 	 */
617 	for (i = 0; i < NCPU; i++) {
618 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
619 			cpu[i]->cpu_flags &= ~CPU_READY;
620 			cpu[i]->cpu_flags |= CPU_QUIESCED;
621 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
622 		}
623 	}
624 
625 	/*
626 	 * We've managed to get here without going through the
627 	 * normal panic code path. Try and save some useful
628 	 * information.
629 	 */
630 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
631 		ti.trap_type = sync_tt;
632 		ti.trap_regs = &sync_reg_buf;
633 		ti.trap_addr = NULL;
634 		ti.trap_mmu_fsr = 0x0;
635 
636 		curthread->t_panic_trap = &ti;
637 	}
638 
639 	/*
640 	 * If we're re-entering the panic path, update the signature
641 	 * block so that the SC knows we're in the second part of panic.
642 	 */
643 	if (panicstr)
644 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
645 
646 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
647 	panic("sync initiated");
648 }
649 
650 
651 static void
652 startup_init(void)
653 {
654 	/*
655 	 * We want to save the registers while we're still in OBP
656 	 * so that we know they haven't been fiddled with since.
657 	 * (In principle, OBP can't change them just because it
658 	 * makes a callback, but we'd rather not depend on that
659 	 * behavior.)
660 	 */
661 	char		sync_str[] =
662 		"warning @ warning off : sync "
663 		"%%tl-c %%tstate h# %p x! "
664 		"%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
665 		"%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
666 		"%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
667 		"%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
668 		"%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
669 		"%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
670 		"%%y h# %p l! %%tl-c %%tt h# %p x! "
671 		"sync ; warning !";
672 
673 	/*
674 	 * 20 == num of %p substrings
675 	 * 16 == max num of chars %p will expand to.
676 	 */
677 	char 		bp[sizeof (sync_str) + 16 * 20];
678 
679 	(void) check_boot_version(BOP_GETVERSION(bootops));
680 
681 	/*
682 	 * Initialize ptl1 stack for the 1st CPU.
683 	 */
684 	ptl1_init_cpu(&cpu0);
685 
686 	/*
687 	 * Initialize the address map for cache consistent mappings
688 	 * to random pages; must be done after vac_size is set.
689 	 */
690 	ppmapinit();
691 
692 	/*
693 	 * Initialize the PROM callback handler.
694 	 */
695 	init_vx_handler();
696 
697 	/*
698 	 * have prom call sync_callback() to handle the sync and
699 	 * save some useful information which will be stored in the
700 	 * core file later.
701 	 */
702 	(void) sprintf((char *)bp, sync_str,
703 		(void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
704 		(void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
705 		(void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
706 		(void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
707 		(void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
708 		(void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
709 		(void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
710 		(void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
711 		(void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
712 		(void *)&sync_reg_buf.r_y, (void *)&sync_tt);
713 	prom_interpret(bp, 0, 0, 0, 0, 0);
714 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
715 }
716 
717 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
718 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
719 
720 #define	IVSIZE	((MAXIVNUM * sizeof (intr_vec_t *)) + \
721 		(MAX_RSVD_IV * sizeof (intr_vec_t)) + \
722 		(MAX_RSVD_IVX * sizeof (intr_vecx_t)))
723 
724 /*
725  * As OBP takes up some RAM when the system boots, pages will already be "lost"
726  * to the system and reflected in npages by the time we see it.
727  *
728  * We only want to allocate kernel structures in the 64-bit virtual address
729  * space on systems with enough RAM to make the overhead of keeping track of
730  * an extra kernel memory segment worthwhile.
731  *
732  * Since OBP has already performed its memory allocations by this point, if we
733  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
734  * memory in the 64-bit virtual address space; otherwise keep allocations
735  * contiguous with we've mapped so far in the 32-bit virtual address space.
736  */
737 #define	MINMOVE_RAM_MB	((size_t)1900)
738 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
739 
740 pgcnt_t	tune_npages = (pgcnt_t)
741 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
742 
743 static void
744 startup_memlist(void)
745 {
746 	size_t alloc_sz;
747 	size_t ctrs_sz;
748 	caddr_t alloc_base;
749 	caddr_t ctrs_base, ctrs_end;
750 	caddr_t memspace;
751 	caddr_t va;
752 	int memblocks = 0;
753 	struct memlist *cur;
754 	size_t syslimit = (size_t)SYSLIMIT;
755 	size_t sysbase = (size_t)SYSBASE;
756 	int alloc_alignsize = MMU_PAGESIZE;
757 	extern void page_coloring_init(void);
758 
759 	/*
760 	 * Initialize enough of the system to allow kmem_alloc to work by
761 	 * calling boot to allocate its memory until the time that
762 	 * kvm_init is completed.  The page structs are allocated after
763 	 * rounding up end to the nearest page boundary; the memsegs are
764 	 * initialized and the space they use comes from the kernel heap.
765 	 * With appropriate initialization, they can be reallocated later
766 	 * to a size appropriate for the machine's configuration.
767 	 *
768 	 * At this point, memory is allocated for things that will never
769 	 * need to be freed, this used to be "valloced".  This allows a
770 	 * savings as the pages don't need page structures to describe
771 	 * them because them will not be managed by the vm system.
772 	 */
773 
774 	/*
775 	 * We're loaded by boot with the following configuration (as
776 	 * specified in the sun4u/conf/Mapfile):
777 	 *
778 	 * 	text:		4 MB chunk aligned on a 4MB boundary
779 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
780 	 *
781 	 * These two chunks will eventually be mapped by 2 locked 4MB
782 	 * ttes and will represent the nucleus of the kernel.  This gives
783 	 * us some free space that is already allocated, some or all of
784 	 * which is made available to kernel module text.
785 	 *
786 	 * The free space in the data-bss chunk is used for nucleus
787 	 * allocatable data structures and we reserve it using the
788 	 * nalloc_base and nalloc_end variables.  This space is currently
789 	 * being used for hat data structures required for tlb miss
790 	 * handling operations.  We align nalloc_base to a l2 cache
791 	 * linesize because this is the line size the hardware uses to
792 	 * maintain cache coherency.
793 	 * 256K is carved out for module data.
794 	 */
795 
796 	nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
797 	moddata = nalloc_base;
798 	e_moddata = nalloc_base + MODDATA;
799 	nalloc_base = e_moddata;
800 
801 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
802 	valloc_base = nalloc_base;
803 
804 	/*
805 	 * Calculate the start of the data segment.
806 	 */
807 	sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M);
808 
809 	PRM_DEBUG(moddata);
810 	PRM_DEBUG(nalloc_base);
811 	PRM_DEBUG(nalloc_end);
812 	PRM_DEBUG(sdata);
813 
814 	/*
815 	 * Remember any slop after e_text so we can give it to the modules.
816 	 */
817 	PRM_DEBUG(e_text);
818 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
819 	if (((uintptr_t)modtext & MMU_PAGEMASK4M) != (uintptr_t)s_text)
820 		panic("nucleus text overflow");
821 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
822 	    modtext;
823 	PRM_DEBUG(modtext);
824 	PRM_DEBUG(modtext_sz);
825 
826 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
827 	    &boot_physavail, &boot_physavail_len,
828 	    &boot_virtavail, &boot_virtavail_len);
829 	/*
830 	 * Remember what the physically available highest page is
831 	 * so that dumpsys works properly, and find out how much
832 	 * memory is installed.
833 	 */
834 	installed_top_size_memlist_array(boot_physinstalled,
835 	    boot_physinstalled_len, &physmax, &physinstalled);
836 	PRM_DEBUG(physinstalled);
837 	PRM_DEBUG(physmax);
838 
839 	/* Fill out memory nodes config structure */
840 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
841 
842 	/*
843 	 * Get the list of physically available memory to size
844 	 * the number of page structures needed.
845 	 */
846 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
847 	/*
848 	 * This first snap shot of npages can represent the pages used
849 	 * by OBP's text and data approximately. This is used in the
850 	 * the calculation of the kernel size
851 	 */
852 	obp_pages = physinstalled - npages;
853 
854 
855 	/*
856 	 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the
857 	 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently
858 	 * 2MB) and any excess pages are put on physavail.  The assumption is
859 	 * that small-memory systems will need more pages more than they'll
860 	 * need efficiently-mapped module texts.
861 	 */
862 	if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) &&
863 	    modtext_sz > MODTEXT_SM_CAP) {
864 		extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP);
865 		modtext_sz = MODTEXT_SM_CAP;
866 	} else
867 		extra_etpg = 0;
868 	PRM_DEBUG(extra_etpg);
869 	PRM_DEBUG(modtext_sz);
870 	extra_etva = modtext + modtext_sz;
871 	PRM_DEBUG(extra_etva);
872 
873 	/*
874 	 * Account for any pages after e_text and e_data.
875 	 */
876 	npages += extra_etpg;
877 	npages += mmu_btopr(nalloc_end - nalloc_base);
878 	PRM_DEBUG(npages);
879 
880 	/*
881 	 * npages is the maximum of available physical memory possible.
882 	 * (ie. it will never be more than this)
883 	 */
884 
885 	/*
886 	 * initialize the nucleus memory allocator.
887 	 */
888 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
889 
890 	/*
891 	 * Allocate mmu fault status area from the nucleus data area.
892 	 */
893 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
894 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
895 
896 	/*
897 	 * Allocate kernel TSBs from the nucleus data area.
898 	 */
899 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
900 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
901 
902 	/*
903 	 * Allocate dmv dispatch table from the nucleus data area.
904 	 */
905 	if (ndata_alloc_dmv(&ndata) != 0)
906 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
907 
908 
909 	page_coloring_init();
910 
911 	/*
912 	 * Allocate page_freelists bin headers for memnode 0 from the
913 	 * nucleus data area.
914 	 */
915 	if (ndata_alloc_page_freelists(&ndata, 0) != 0)
916 		cmn_err(CE_PANIC,
917 		    "no more nucleus memory after page free lists alloc");
918 
919 	if (kpm_enable) {
920 		kpm_init();
921 		/*
922 		 * kpm page space -- Update kpm_npages and make the
923 		 * same assumption about fragmenting as it is done
924 		 * for memseg_sz.
925 		 */
926 		kpm_npages_setup(memblocks + 4);
927 	}
928 
929 	/*
930 	 * Allocate hat related structs from the nucleus data area.
931 	 */
932 	if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0)
933 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
934 
935 	/*
936 	 * We want to do the BOP_ALLOCs before the real allocation of page
937 	 * structs in order to not have to allocate page structs for this
938 	 * memory.  We need to calculate a virtual address because we want
939 	 * the page structs to come before other allocations in virtual address
940 	 * space.  This is so some (if not all) of page structs can actually
941 	 * live in the nucleus.
942 	 */
943 
944 	/*
945 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
946 	 *
947 	 * There are comments all over the SFMMU code warning of dire
948 	 * consequences if the TSBs are moved out of 32-bit space.  This
949 	 * is largely because the asm code uses "sethi %hi(addr)"-type
950 	 * instructions which will not provide the expected result if the
951 	 * address is a 64-bit one.
952 	 *
953 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
954 	 */
955 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
956 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
957 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
958 	PRM_DEBUG(alloc_base);
959 
960 	/*
961 	 * Allocate IOMMU TSB array.  We do this here so that the physical
962 	 * memory gets deducted from the PROM's physical memory list.
963 	 */
964 	alloc_base = iommu_tsb_init(alloc_base);
965 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
966 	    ecache_alignsize);
967 	PRM_DEBUG(alloc_base);
968 
969 	/*
970 	 * Platforms like Starcat and OPL need special structures assigned in
971 	 * 32-bit virtual address space because their probing routines execute
972 	 * FCode, and FCode can't handle 64-bit virtual addresses...
973 	 */
974 	if (&plat_startup_memlist) {
975 		alloc_base = plat_startup_memlist(alloc_base);
976 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
977 		    ecache_alignsize);
978 		PRM_DEBUG(alloc_base);
979 	}
980 
981 	/*
982 	 * If we have enough memory, use 4M pages for alignment because it
983 	 * greatly reduces the number of TLB misses we take albeit at the cost
984 	 * of possible RAM wastage (degenerate case of 4 MB - MMU_PAGESIZE per
985 	 * allocation.) Still, the speedup on large memory systems (e.g. > 64
986 	 * GB) is quite noticeable, so it is worth the effort to do if we can.
987 	 *
988 	 * Note, however, that this speedup will only occur if the boot PROM
989 	 * uses the largest possible MMU page size possible to map memory
990 	 * requests that are properly aligned and sized (for example, a request
991 	 * for a multiple of 4MB of memory aligned to a 4MB boundary will
992 	 * result in a mapping using a 4MB MMU page.)
993 	 *
994 	 * Even then, the large page mappings will only speed things up until
995 	 * the startup process proceeds a bit further, as when
996 	 * sfmmu_map_prom_mappings() copies page mappings from the PROM to the
997 	 * kernel it remaps everything but the TSBs using 8K pages anyway...
998 	 *
999 	 * At some point in the future, sfmmu_map_prom_mappings() will be
1000 	 * rewritten to copy memory mappings to the kernel using the same MMU
1001 	 * page sizes the PROM used.  When that occurs, if the PROM did use
1002 	 * large MMU pages to map memory, the alignment/sizing work we're
1003 	 * doing now should give us a nice extra performance boost, albeit at
1004 	 * the cost of greater RAM usage...
1005 	 */
1006 	alloc_alignsize = ((npages >= tune_npages) ? MMU_PAGESIZE4M :
1007 	    MMU_PAGESIZE);
1008 
1009 	PRM_DEBUG(tune_npages);
1010 	PRM_DEBUG(alloc_alignsize);
1011 
1012 	/*
1013 	 * Save off where the contiguous allocations to date have ended
1014 	 * in econtig32.
1015 	 */
1016 	econtig32 = alloc_base;
1017 	PRM_DEBUG(econtig32);
1018 
1019 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1020 		cmn_err(CE_PANIC, "econtig32 too big");
1021 
1022 	/*
1023 	 * To avoid memory allocation collisions in the 32-bit virtual address
1024 	 * space, make allocations from this point forward in 64-bit virtual
1025 	 * address space starting at syslimit and working up.  Also use the
1026 	 * alignment specified by alloc_alignsize, as we may be able to save
1027 	 * ourselves TLB misses by using larger page sizes if they're
1028 	 * available.
1029 	 *
1030 	 * All this is needed because on large memory systems, the default
1031 	 * Solaris allocations will collide with SYSBASE32, which is hard
1032 	 * coded to be at the virtual address 0x78000000.  Therefore, on 64-bit
1033 	 * kernels, move the allocations to a location in the 64-bit virtual
1034 	 * address space space, allowing those structures to grow without
1035 	 * worry.
1036 	 *
1037 	 * On current CPUs we'll run out of physical memory address bits before
1038 	 * we need to worry about the allocations running into anything else in
1039 	 * VM or the virtual address holes on US-I and II, as there's currently
1040 	 * about 1 TB of addressable space before the US-I/II VA hole.
1041 	 */
1042 	kmem64_base = (caddr_t)syslimit;
1043 	PRM_DEBUG(kmem64_base);
1044 
1045 	alloc_base = (caddr_t)roundup((uintptr_t)kmem64_base, alloc_alignsize);
1046 
1047 	/*
1048 	 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate
1049 	 * them here.
1050 	 */
1051 	if (khme_hash == NULL || uhme_hash == NULL) {
1052 		/*
1053 		 * alloc_hme_buckets() will align alloc_base properly before
1054 		 * assigning the hash buckets, so we don't need to do it
1055 		 * before the call...
1056 		 */
1057 		alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize);
1058 
1059 		PRM_DEBUG(alloc_base);
1060 		PRM_DEBUG(khme_hash);
1061 		PRM_DEBUG(uhme_hash);
1062 	}
1063 
1064 	/*
1065 	 * Allocate the remaining page freelists.  NUMA systems can
1066 	 * have lots of page freelists, one per node, which quickly
1067 	 * outgrow the amount of nucleus memory available.
1068 	 */
1069 	if (max_mem_nodes > 1) {
1070 		int mnode;
1071 		caddr_t alloc_start = alloc_base;
1072 
1073 		for (mnode = 1; mnode < max_mem_nodes; mnode++) {
1074 			alloc_base = alloc_page_freelists(mnode, alloc_base,
1075 				ecache_alignsize);
1076 		}
1077 
1078 		if (alloc_base > alloc_start) {
1079 			alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1080 				alloc_alignsize);
1081 			if ((caddr_t)BOP_ALLOC(bootops, alloc_start,
1082 				alloc_base - alloc_start,
1083 				alloc_alignsize) != alloc_start)
1084 				cmn_err(CE_PANIC,
1085 					"Unable to alloc page freelists\n");
1086 		}
1087 
1088 		PRM_DEBUG(alloc_base);
1089 	}
1090 
1091 	if (!mml_table) {
1092 		size_t mmltable_sz;
1093 
1094 		/*
1095 		 * We need to allocate the mml_table here because there
1096 		 * was not enough space within the nucleus.
1097 		 */
1098 		mmltable_sz = sizeof (kmutex_t) * mml_table_sz;
1099 		alloc_sz = roundup(mmltable_sz, alloc_alignsize);
1100 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1101 		    alloc_alignsize);
1102 
1103 		if ((mml_table = (kmutex_t *)BOP_ALLOC(bootops, alloc_base,
1104 		    alloc_sz, alloc_alignsize)) != (kmutex_t *)alloc_base)
1105 			panic("mml_table alloc failure");
1106 
1107 		alloc_base += alloc_sz;
1108 		PRM_DEBUG(mml_table);
1109 		PRM_DEBUG(alloc_base);
1110 	}
1111 
1112 	if (kpm_enable && !(kpmp_table || kpmp_stable)) {
1113 		size_t kpmptable_sz;
1114 		caddr_t table;
1115 
1116 		/*
1117 		 * We need to allocate either kpmp_table or kpmp_stable here
1118 		 * because there was not enough space within the nucleus.
1119 		 */
1120 		kpmptable_sz = (kpm_smallpages == 0) ?
1121 				sizeof (kpm_hlk_t) * kpmp_table_sz :
1122 				sizeof (kpm_shlk_t) * kpmp_stable_sz;
1123 
1124 		alloc_sz = roundup(kpmptable_sz, alloc_alignsize);
1125 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1126 		    alloc_alignsize);
1127 
1128 		table = BOP_ALLOC(bootops, alloc_base, alloc_sz,
1129 				alloc_alignsize);
1130 
1131 		if (table != alloc_base)
1132 			panic("kpmp_table or kpmp_stable alloc failure");
1133 
1134 		if (kpm_smallpages == 0) {
1135 			kpmp_table = (kpm_hlk_t *)table;
1136 			PRM_DEBUG(kpmp_table);
1137 		} else {
1138 			kpmp_stable = (kpm_shlk_t *)table;
1139 			PRM_DEBUG(kpmp_stable);
1140 		}
1141 
1142 		alloc_base += alloc_sz;
1143 		PRM_DEBUG(alloc_base);
1144 	}
1145 
1146 	if (&ecache_init_scrub_flush_area) {
1147 		/*
1148 		 * Pass alloc_base directly, as the routine itself is
1149 		 * responsible for any special alignment requirements...
1150 		 */
1151 		alloc_base = ecache_init_scrub_flush_area(alloc_base);
1152 		PRM_DEBUG(alloc_base);
1153 	}
1154 
1155 	/*
1156 	 * Take the most current snapshot we can by calling mem-update.
1157 	 */
1158 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1159 	    &boot_physavail, &boot_physavail_len,
1160 	    &boot_virtavail, &boot_virtavail_len);
1161 
1162 	/*
1163 	 * Reset npages and memblocks based on boot_physavail list.
1164 	 */
1165 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
1166 	PRM_DEBUG(npages);
1167 
1168 	/*
1169 	 * Account for extra memory after e_text.
1170 	 */
1171 	npages += extra_etpg;
1172 
1173 	/*
1174 	 * Calculate the largest free memory chunk in the nucleus data area.
1175 	 * We need to figure out if page structs can fit in there or not.
1176 	 * We also make sure enough page structs get created for any physical
1177 	 * memory we might be returning to the system.
1178 	 */
1179 	ndata_remain_sz = ndata_maxsize(&ndata);
1180 	PRM_DEBUG(ndata_remain_sz);
1181 
1182 	pp_sz = sizeof (struct page) * npages;
1183 
1184 	/*
1185 	 * Here's a nice bit of code based on somewhat recursive logic:
1186 	 *
1187 	 * If the page array would fit within the nucleus, we want to
1188 	 * add npages to cover any extra memory we may be returning back
1189 	 * to the system.
1190 	 *
1191 	 * HOWEVER, the page array is sized by calculating the size of
1192 	 * (struct page * npages), as are the pagehash table, ctrs and
1193 	 * memseg_list, so the very act of performing the calculation below may
1194 	 * in fact make the array large enough that it no longer fits in the
1195 	 * nucleus, meaning there would now be a much larger area of the
1196 	 * nucleus free that should really be added to npages, which would
1197 	 * make the page array that much larger, and so on.
1198 	 *
1199 	 * This also ignores the memory possibly used in the nucleus for the
1200 	 * the page hash, ctrs and memseg list and the fact that whether they
1201 	 * fit there or not varies with the npages calculation below, but we
1202 	 * don't even factor them into the equation at this point; perhaps we
1203 	 * should or perhaps we should just take the approach that the few
1204 	 * extra pages we could add via this calculation REALLY aren't worth
1205 	 * the hassle...
1206 	 */
1207 	if (ndata_remain_sz > pp_sz) {
1208 		size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize);
1209 
1210 		npages += mmu_btop(spare);
1211 
1212 		pp_sz = npages * sizeof (struct page);
1213 
1214 		pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize);
1215 	}
1216 
1217 	/*
1218 	 * If physmem is patched to be non-zero, use it instead of
1219 	 * the monitor value unless physmem is larger than the total
1220 	 * amount of memory on hand.
1221 	 */
1222 	if (physmem == 0 || physmem > npages)
1223 		physmem = npages;
1224 
1225 	/*
1226 	 * If pp_base is NULL that means the routines above have determined
1227 	 * the page array will not fit in the nucleus; we'll have to
1228 	 * BOP_ALLOC() ourselves some space for them.
1229 	 */
1230 	if (pp_base == NULL) {
1231 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1232 		    alloc_alignsize);
1233 
1234 		alloc_sz = roundup(pp_sz, alloc_alignsize);
1235 
1236 		if ((pp_base = (struct page *)BOP_ALLOC(bootops,
1237 		    alloc_base, alloc_sz, alloc_alignsize)) !=
1238 		    (struct page *)alloc_base)
1239 			panic("page alloc failure");
1240 
1241 		alloc_base += alloc_sz;
1242 	}
1243 
1244 	/*
1245 	 * The page structure hash table size is a power of 2
1246 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1247 	 */
1248 	page_hashsz = npages / PAGE_HASHAVELEN;
1249 	page_hashsz = 1 << highbit((ulong_t)page_hashsz);
1250 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1251 
1252 	/*
1253 	 * We want to TRY to fit the page structure hash table,
1254 	 * the page size free list counters, the memseg list and
1255 	 * and the kpm page space in the nucleus if possible.
1256 	 *
1257 	 * alloc_sz counts how much memory needs to be allocated by
1258 	 * BOP_ALLOC().
1259 	 */
1260 	page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize);
1261 
1262 	alloc_sz = (page_hash == NULL ? pagehash_sz : 0);
1263 
1264 	/*
1265 	 * Size up per page size free list counters.
1266 	 */
1267 	ctrs_sz = page_ctrs_sz();
1268 	ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize);
1269 
1270 	if (ctrs_base == NULL)
1271 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz;
1272 
1273 	/*
1274 	 * The memseg list is for the chunks of physical memory that
1275 	 * will be managed by the vm system.  The number calculated is
1276 	 * a guess as boot may fragment it more when memory allocations
1277 	 * are made before kphysm_init().  Currently, there are two
1278 	 * allocations before then, so we assume each causes fragmen-
1279 	 * tation, and add a couple more for good measure.
1280 	 */
1281 	memseg_sz = sizeof (struct memseg) * (memblocks + 4);
1282 	memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize);
1283 
1284 	if (memseg_base == NULL)
1285 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz;
1286 
1287 
1288 	if (kpm_enable) {
1289 		/*
1290 		 * kpm page space -- Update kpm_npages and make the
1291 		 * same assumption about fragmenting as it is done
1292 		 * for memseg_sz above.
1293 		 */
1294 		kpm_npages_setup(memblocks + 4);
1295 		kpm_pp_sz = (kpm_smallpages == 0) ?
1296 				kpm_npages * sizeof (kpm_page_t):
1297 				kpm_npages * sizeof (kpm_spage_t);
1298 
1299 		kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz,
1300 		    ecache_alignsize);
1301 
1302 		if (kpm_pp_base == NULL)
1303 			alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1304 			    kpm_pp_sz;
1305 	}
1306 
1307 	if (alloc_sz > 0) {
1308 		uintptr_t bop_base;
1309 
1310 		/*
1311 		 * We need extra memory allocated through BOP_ALLOC.
1312 		 */
1313 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1314 		    alloc_alignsize);
1315 
1316 		alloc_sz = roundup(alloc_sz, alloc_alignsize);
1317 
1318 		if ((bop_base = (uintptr_t)BOP_ALLOC(bootops, alloc_base,
1319 		    alloc_sz, alloc_alignsize)) != (uintptr_t)alloc_base)
1320 			panic("system page struct alloc failure");
1321 
1322 		alloc_base += alloc_sz;
1323 
1324 		if (page_hash == NULL) {
1325 			page_hash = (struct page **)bop_base;
1326 			bop_base = roundup(bop_base + pagehash_sz,
1327 			    ecache_alignsize);
1328 		}
1329 
1330 		if (ctrs_base == NULL) {
1331 			ctrs_base = (caddr_t)bop_base;
1332 			bop_base = roundup(bop_base + ctrs_sz,
1333 			    ecache_alignsize);
1334 		}
1335 
1336 		if (memseg_base == NULL) {
1337 			memseg_base = (struct memseg *)bop_base;
1338 			bop_base = roundup(bop_base + memseg_sz,
1339 			    ecache_alignsize);
1340 		}
1341 
1342 		if (kpm_enable && kpm_pp_base == NULL) {
1343 			kpm_pp_base = (uintptr_t)bop_base;
1344 			bop_base = roundup(bop_base + kpm_pp_sz,
1345 			    ecache_alignsize);
1346 		}
1347 
1348 		ASSERT(bop_base <= (uintptr_t)alloc_base);
1349 	}
1350 
1351 	/*
1352 	 * Initialize per page size free list counters.
1353 	 */
1354 	ctrs_end = page_ctrs_alloc(ctrs_base);
1355 	ASSERT(ctrs_base + ctrs_sz >= ctrs_end);
1356 
1357 	PRM_DEBUG(page_hash);
1358 	PRM_DEBUG(memseg_base);
1359 	PRM_DEBUG(kpm_pp_base);
1360 	PRM_DEBUG(kpm_pp_sz);
1361 	PRM_DEBUG(pp_base);
1362 	PRM_DEBUG(pp_sz);
1363 	PRM_DEBUG(alloc_base);
1364 
1365 #ifdef	TRAPTRACE
1366 	/*
1367 	 * Allocate trap trace buffer last so as not to affect
1368 	 * the 4M alignments of the allocations above on V9 SPARCs...
1369 	 */
1370 	alloc_base = trap_trace_alloc(alloc_base);
1371 	PRM_DEBUG(alloc_base);
1372 #endif	/* TRAPTRACE */
1373 
1374 	if (kmem64_base) {
1375 		/*
1376 		 * Set the end of the kmem64 segment for V9 SPARCs, if
1377 		 * appropriate...
1378 		 */
1379 		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base,
1380 		    alloc_alignsize);
1381 
1382 		PRM_DEBUG(kmem64_base);
1383 		PRM_DEBUG(kmem64_end);
1384 	}
1385 
1386 	/*
1387 	 * Allocate space for the interrupt vector table and also for the
1388 	 * reserved interrupt vector data structures.
1389 	 */
1390 	memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vec_table,
1391 	    IVSIZE, MMU_PAGESIZE);
1392 	if (memspace != (caddr_t)intr_vec_table)
1393 		panic("interrupt vector table allocation failure");
1394 
1395 	/*
1396 	 * The memory lists from boot are allocated from the heap arena
1397 	 * so that later they can be freed and/or reallocated.
1398 	 */
1399 	if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1)
1400 		panic("could not retrieve property \"extent\"");
1401 
1402 	/*
1403 	 * Between now and when we finish copying in the memory lists,
1404 	 * allocations happen so the space gets fragmented and the
1405 	 * lists longer.  Leave enough space for lists twice as long
1406 	 * as what boot says it has now; roundup to a pagesize.
1407 	 * Also add space for the final phys-avail copy in the fixup
1408 	 * routine.
1409 	 */
1410 	va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE +
1411 	    roundup(IVSIZE, MMU_PAGESIZE));
1412 	memlist_sz *= 4;
1413 	memlist_sz = roundup(memlist_sz, MMU_PAGESIZE);
1414 	memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN);
1415 	if (memspace == NULL)
1416 		halt("Boot allocation failed.");
1417 
1418 	memlist = (struct memlist *)memspace;
1419 	memlist_end = (char *)memspace + memlist_sz;
1420 
1421 	PRM_DEBUG(memlist);
1422 	PRM_DEBUG(memlist_end);
1423 	PRM_DEBUG(sysbase);
1424 	PRM_DEBUG(syslimit);
1425 
1426 	kernelheap_init((void *)sysbase, (void *)syslimit,
1427 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1428 
1429 	/*
1430 	 * Take the most current snapshot we can by calling mem-update.
1431 	 */
1432 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1433 	    &boot_physavail, &boot_physavail_len,
1434 	    &boot_virtavail, &boot_virtavail_len);
1435 
1436 	/*
1437 	 * Remove the space used by BOP_ALLOC from the kernel heap
1438 	 * plus the area actually used by the OBP (if any)
1439 	 * ignoring virtual addresses in virt_avail, above syslimit.
1440 	 */
1441 	virt_avail = memlist;
1442 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1443 
1444 	for (cur = virt_avail; cur->next; cur = cur->next) {
1445 		uint64_t range_base, range_size;
1446 
1447 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1448 			continue;
1449 		if (range_base >= (uint64_t)syslimit)
1450 			break;
1451 		/*
1452 		 * Limit the range to end at syslimit.
1453 		 */
1454 		range_size = MIN(cur->next->address,
1455 		    (uint64_t)syslimit) - range_base;
1456 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1457 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1458 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1459 	}
1460 
1461 	phys_avail = memlist;
1462 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1463 	    &memlist, 0, 0);
1464 
1465 	/*
1466 	 * Add any extra memory after e_text to the phys_avail list, as long
1467 	 * as there's at least a page to add.
1468 	 */
1469 	if (extra_etpg)
1470 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1471 		    &memlist, &phys_avail);
1472 
1473 	/*
1474 	 * Add any extra memory after e_data to the phys_avail list as long
1475 	 * as there's at least a page to add.  Usually, there isn't any,
1476 	 * since extra HME blocks typically get allocated there first before
1477 	 * using RAM elsewhere.
1478 	 */
1479 	if ((nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE)) == NULL)
1480 		nalloc_base = nalloc_end;
1481 	ndata_remain_sz = nalloc_end - nalloc_base;
1482 
1483 	if (ndata_remain_sz >= MMU_PAGESIZE)
1484 		memlist_add(va_to_pa(nalloc_base),
1485 		    (uint64_t)ndata_remain_sz, &memlist, &phys_avail);
1486 
1487 	PRM_DEBUG(memlist);
1488 	PRM_DEBUG(memlist_sz);
1489 	PRM_DEBUG(memspace);
1490 
1491 	if ((caddr_t)memlist > (memspace + memlist_sz))
1492 		panic("memlist overflow");
1493 
1494 	PRM_DEBUG(pp_base);
1495 	PRM_DEBUG(memseg_base);
1496 	PRM_DEBUG(npages);
1497 
1498 	/*
1499 	 * Initialize the page structures from the memory lists.
1500 	 */
1501 	kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages);
1502 
1503 	availrmem_initial = availrmem = freemem;
1504 	PRM_DEBUG(availrmem);
1505 
1506 	/*
1507 	 * Some of the locks depend on page_hashsz being set!
1508 	 * kmem_init() depends on this; so, keep it here.
1509 	 */
1510 	page_lock_init();
1511 
1512 	/*
1513 	 * Initialize kernel memory allocator.
1514 	 */
1515 	kmem_init();
1516 
1517 	/*
1518 	 * Initialize bp_mapin().
1519 	 */
1520 	bp_init(shm_alignment, HAT_STRICTORDER);
1521 
1522 	/*
1523 	 * Reserve space for panicbuf, intr_vec_table and reserved interrupt
1524 	 * vector data structures from the 32-bit heap.
1525 	 */
1526 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1527 	    panicbuf, panicbuf + PANICBUFSIZE,
1528 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1529 
1530 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1531 	    intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
1532 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1533 
1534 	mem_config_init();
1535 }
1536 
1537 static void
1538 startup_modules(void)
1539 {
1540 	int proplen, nhblk1, nhblk8;
1541 	size_t  nhblksz;
1542 	pgcnt_t hblk_pages, pages_per_hblk;
1543 	size_t hme8blk_sz, hme1blk_sz;
1544 
1545 	/*
1546 	 * Log any optional messages from the boot program
1547 	 */
1548 	proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message");
1549 	if (proplen > 0) {
1550 		char *msg;
1551 		size_t len = (size_t)proplen;
1552 
1553 		msg = kmem_zalloc(len, KM_SLEEP);
1554 		(void) BOP_GETPROP(bootops, "boot-message", msg);
1555 		cmn_err(CE_CONT, "?%s\n", msg);
1556 		kmem_free(msg, len);
1557 	}
1558 
1559 	/*
1560 	 * Let the platforms have a chance to change default
1561 	 * values before reading system file.
1562 	 */
1563 	if (&set_platform_defaults)
1564 		set_platform_defaults();
1565 
1566 	/*
1567 	 * Calculate default settings of system parameters based upon
1568 	 * maxusers, yet allow to be overridden via the /etc/system file.
1569 	 */
1570 	param_calc(0);
1571 
1572 	mod_setup();
1573 
1574 	/*
1575 	 * If this is a positron, complain and halt.
1576 	 */
1577 	if (&iam_positron && iam_positron()) {
1578 		cmn_err(CE_WARN, "This hardware platform is not supported"
1579 		    " by this release of Solaris.\n");
1580 #ifdef DEBUG
1581 		prom_enter_mon();	/* Type 'go' to resume */
1582 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1583 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1584 
1585 #else /* DEBUG */
1586 		halt(0);
1587 #endif /* DEBUG */
1588 	}
1589 
1590 	/*
1591 	 * If we are running firmware that isn't 64-bit ready
1592 	 * then complain and halt.
1593 	 */
1594 	do_prom_version_check();
1595 
1596 	/*
1597 	 * Initialize system parameters
1598 	 */
1599 	param_init();
1600 
1601 	/*
1602 	 * maxmem is the amount of physical memory we're playing with.
1603 	 */
1604 	maxmem = physmem;
1605 
1606 	/* Set segkp limits. */
1607 	ncbase = (caddr_t)SEGDEBUGBASE;
1608 	ncend = (caddr_t)SEGDEBUGBASE;
1609 
1610 	/*
1611 	 * Initialize the hat layer.
1612 	 */
1613 	hat_init();
1614 
1615 	/*
1616 	 * Initialize segment management stuff.
1617 	 */
1618 	seg_init();
1619 
1620 	/*
1621 	 * Create the va>tte handler, so the prom can understand
1622 	 * kernel translations.  The handler is installed later, just
1623 	 * as we are about to take over the trap table from the prom.
1624 	 */
1625 	create_va_to_tte();
1626 
1627 	/*
1628 	 * Load the forthdebugger (optional)
1629 	 */
1630 	forthdebug_init();
1631 
1632 	/*
1633 	 * Create OBP node for console input callbacks
1634 	 * if it is needed.
1635 	 */
1636 	startup_create_io_node();
1637 
1638 	if (modloadonly("fs", "specfs") == -1)
1639 		halt("Can't load specfs");
1640 
1641 	if (modloadonly("fs", "devfs") == -1)
1642 		halt("Can't load devfs");
1643 
1644 	if (modloadonly("misc", "swapgeneric") == -1)
1645 		halt("Can't load swapgeneric");
1646 
1647 	(void) modloadonly("sys", "lbl_edition");
1648 
1649 	dispinit();
1650 
1651 	/*
1652 	 * Infer meanings to the members of the idprom buffer.
1653 	 */
1654 	parse_idprom();
1655 
1656 	/* Read cluster configuration data. */
1657 	clconf_init();
1658 
1659 	setup_ddi();
1660 
1661 	/*
1662 	 * Lets take this opportunity to load the root device.
1663 	 */
1664 	if (loadrootmodules() != 0)
1665 		debug_enter("Can't load the root filesystem");
1666 
1667 	/*
1668 	 * Load tod driver module for the tod part found on this system.
1669 	 * Recompute the cpu frequency/delays based on tod as tod part
1670 	 * tends to keep time more accurately.
1671 	 */
1672 	if (&load_tod_module)
1673 		load_tod_module();
1674 
1675 	/*
1676 	 * Allow platforms to load modules which might
1677 	 * be needed after bootops are gone.
1678 	 */
1679 	if (&load_platform_modules)
1680 		load_platform_modules();
1681 
1682 	setcpudelay();
1683 
1684 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1685 	    &boot_physavail, &boot_physavail_len,
1686 	    &boot_virtavail, &boot_virtavail_len);
1687 
1688 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1689 
1690 	/*
1691 	 * Calculation and allocation of hmeblks needed to remap
1692 	 * the memory allocated by PROM till now:
1693 	 *
1694 	 * (1)  calculate how much virtual memory has been bop_alloc'ed.
1695 	 * (2)  roundup this memory to span of hme8blk, i.e. 64KB
1696 	 * (3)  calculate number of hme8blk's needed to remap this memory
1697 	 * (4)  calculate amount of memory that's consumed by these hme8blk's
1698 	 * (5)  add memory calculated in steps (2) and (4) above.
1699 	 * (6)  roundup this memory to span of hme8blk, i.e. 64KB
1700 	 * (7)  calculate number of hme8blk's needed to remap this memory
1701 	 * (8)  calculate amount of memory that's consumed by these hme8blk's
1702 	 * (9)  allocate additional hme1blk's to hold large mappings.
1703 	 *	H8TOH1 determines this.  The current SWAG gives enough hblk1's
1704 	 *	to remap everything with 4M mappings.
1705 	 * (10) account for partially used hblk8's due to non-64K aligned
1706 	 *	PROM mapping entries.
1707 	 * (11) add memory calculated in steps (8), (9), and (10) above.
1708 	 * (12) kmem_zalloc the memory calculated in (11); since segkmem
1709 	 *	is not ready yet, this gets bop_alloc'ed.
1710 	 * (13) there will be very few bop_alloc's after this point before
1711 	 *	trap table takes over
1712 	 */
1713 
1714 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures. */
1715 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1716 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1717 
1718 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1719 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1720 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1721 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1722 	hblk_pages = btopr(nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz);
1723 	bop_alloc_pages += hblk_pages;
1724 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1725 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1726 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1727 	if (nhblk1 < hblk1_min)
1728 		nhblk1 = hblk1_min;
1729 	if (nhblk8 < hblk8_min)
1730 		nhblk8 = hblk8_min;
1731 
1732 	/*
1733 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1734 	 * boundary, the number of hblk8's needed to map the entries in the
1735 	 * boot_virtavail list needs to be adjusted to take this into
1736 	 * consideration.  Thus, we need to add additional hblk8's since it
1737 	 * is possible that an hblk8 will not have all 8 slots used due to
1738 	 * alignment constraints.  Since there were boot_virtavail_len entries
1739 	 * in that list, we need to add that many hblk8's to the number
1740 	 * already calculated to make sure we don't underestimate.
1741 	 */
1742 	nhblk8 += boot_virtavail_len;
1743 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1744 
1745 	/* Allocate in pagesize chunks */
1746 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1747 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1748 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1749 }
1750 
1751 static void
1752 startup_bop_gone(void)
1753 {
1754 	extern int bop_io_quiesced;
1755 
1756 	/*
1757 	 * Destroy the MD initialized at startup
1758 	 * The startup initializes the MD framework
1759 	 * using prom and BOP alloc free it now.
1760 	 */
1761 	mach_descrip_startup_fini();
1762 
1763 	/*
1764 	 * Call back into boot and release boots resources.
1765 	 */
1766 	BOP_QUIESCE_IO(bootops);
1767 	bop_io_quiesced = 1;
1768 
1769 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1770 	    &boot_physavail, &boot_physavail_len,
1771 	    &boot_virtavail, &boot_virtavail_len);
1772 	/*
1773 	 * Copy physinstalled list into kernel space.
1774 	 */
1775 	phys_install = memlist;
1776 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1777 
1778 	/*
1779 	 * setup physically contiguous area twice as large as the ecache.
1780 	 * this is used while doing displacement flush of ecaches
1781 	 */
1782 	if (&ecache_flush_address) {
1783 		ecache_flushaddr = ecache_flush_address();
1784 		if (ecache_flushaddr == (uint64_t)-1) {
1785 			cmn_err(CE_PANIC,
1786 			    "startup: no memory to set ecache_flushaddr");
1787 		}
1788 	}
1789 
1790 	/*
1791 	 * Virtual available next.
1792 	 */
1793 	ASSERT(virt_avail != NULL);
1794 	memlist_free_list(virt_avail);
1795 	virt_avail = memlist;
1796 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1797 
1798 	/*
1799 	 * Last chance to ask our booter questions ..
1800 	 */
1801 }
1802 
1803 
1804 /*
1805  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1806  * allocations have been performed.  We can't call it in startup_bop_gone
1807  * since later operations can cause obp to allocate more memory.
1808  */
1809 void
1810 startup_fixup_physavail(void)
1811 {
1812 	struct memlist *cur;
1813 
1814 	/*
1815 	 * take the most current snapshot we can by calling mem-update
1816 	 */
1817 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1818 	    &boot_physavail, &boot_physavail_len,
1819 	    &boot_virtavail, &boot_virtavail_len);
1820 
1821 	/*
1822 	 * Copy phys_avail list, again.
1823 	 * Both the kernel/boot and the prom have been allocating
1824 	 * from the original list we copied earlier.
1825 	 */
1826 	cur = memlist;
1827 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1828 	    &memlist, 0, 0);
1829 
1830 	/*
1831 	 * Add any extra memory after e_text we added to the phys_avail list
1832 	 * back to the old list.
1833 	 */
1834 	if (extra_etpg)
1835 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1836 		    &memlist, &cur);
1837 	if (ndata_remain_sz >= MMU_PAGESIZE)
1838 		memlist_add(va_to_pa(nalloc_base),
1839 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1840 
1841 	/*
1842 	 * There isn't any bounds checking on the memlist area
1843 	 * so ensure it hasn't overgrown.
1844 	 */
1845 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1846 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1847 
1848 	/*
1849 	 * The kernel removes the pages that were allocated for it from
1850 	 * the freelist, but we now have to find any -extra- pages that
1851 	 * the prom has allocated for it's own book-keeping, and remove
1852 	 * them from the freelist too. sigh.
1853 	 */
1854 	fix_prom_pages(phys_avail, cur);
1855 
1856 	ASSERT(phys_avail != NULL);
1857 	memlist_free_list(phys_avail);
1858 	phys_avail = cur;
1859 
1860 	/*
1861 	 * We're done with boot.  Just after this point in time, boot
1862 	 * gets unmapped, so we can no longer rely on its services.
1863 	 * Zero the bootops to indicate this fact.
1864 	 */
1865 	bootops = (struct bootops *)NULL;
1866 	BOOTOPS_GONE();
1867 }
1868 
1869 static void
1870 startup_vm(void)
1871 {
1872 	size_t	i;
1873 	struct segmap_crargs a;
1874 	struct segkpm_crargs b;
1875 
1876 	uint64_t avmem;
1877 	caddr_t va;
1878 	pgcnt_t	max_phys_segkp;
1879 	int	mnode;
1880 
1881 	extern int use_brk_lpg, use_stk_lpg;
1882 
1883 	/*
1884 	 * get prom's mappings, create hments for them and switch
1885 	 * to the kernel context.
1886 	 */
1887 	hat_kern_setup();
1888 
1889 	/*
1890 	 * Take over trap table
1891 	 */
1892 	setup_trap_table();
1893 
1894 	/*
1895 	 * Install the va>tte handler, so that the prom can handle
1896 	 * misses and understand the kernel table layout in case
1897 	 * we need call into the prom.
1898 	 */
1899 	install_va_to_tte();
1900 
1901 	/*
1902 	 * Set a flag to indicate that the tba has been taken over.
1903 	 */
1904 	tba_taken_over = 1;
1905 
1906 	/* initialize MMU primary context register */
1907 	mmu_init_kcontext();
1908 
1909 	/*
1910 	 * The boot cpu can now take interrupts, x-calls, x-traps
1911 	 */
1912 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1913 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1914 
1915 	/*
1916 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1917 	 */
1918 	tbr_wr_addr_inited = 1;
1919 
1920 	/*
1921 	 * Initialize VM system, and map kernel address space.
1922 	 */
1923 	kvm_init();
1924 
1925 	/*
1926 	 * XXX4U: previously, we initialized and turned on
1927 	 * the caches at this point. But of course we have
1928 	 * nothing to do, as the prom has already done this
1929 	 * for us -- main memory must be E$able at all times.
1930 	 */
1931 
1932 	/*
1933 	 * If the following is true, someone has patched
1934 	 * phsymem to be less than the number of pages that
1935 	 * the system actually has.  Remove pages until system
1936 	 * memory is limited to the requested amount.  Since we
1937 	 * have allocated page structures for all pages, we
1938 	 * correct the amount of memory we want to remove
1939 	 * by the size of the memory used to hold page structures
1940 	 * for the non-used pages.
1941 	 */
1942 	if (physmem < npages) {
1943 		pgcnt_t diff, off;
1944 		struct page *pp;
1945 		struct seg kseg;
1946 
1947 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1948 
1949 		off = 0;
1950 		diff = npages - physmem;
1951 		diff -= mmu_btopr(diff * sizeof (struct page));
1952 		kseg.s_as = &kas;
1953 		while (diff--) {
1954 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1955 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1956 			    &kseg, (caddr_t)off);
1957 			if (pp == NULL)
1958 				cmn_err(CE_PANIC, "limited physmem too much!");
1959 			page_io_unlock(pp);
1960 			page_downgrade(pp);
1961 			availrmem--;
1962 			off += MMU_PAGESIZE;
1963 		}
1964 	}
1965 
1966 	/*
1967 	 * When printing memory, show the total as physmem less
1968 	 * that stolen by a debugger.
1969 	 */
1970 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1971 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1972 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1973 
1974 	avmem = (uint64_t)freemem << PAGESHIFT;
1975 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1976 
1977 	/*
1978 	 * For small memory systems disable automatic large pages.
1979 	 */
1980 	if (physmem < privm_lpg_min_physmem) {
1981 		use_brk_lpg = 0;
1982 		use_stk_lpg = 0;
1983 	}
1984 
1985 	/*
1986 	 * Perform platform specific freelist processing
1987 	 */
1988 	if (&plat_freelist_process) {
1989 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
1990 			if (mem_node_config[mnode].exists)
1991 				plat_freelist_process(mnode);
1992 	}
1993 
1994 	/*
1995 	 * Initialize the segkp segment type.  We position it
1996 	 * after the configured tables and buffers (whose end
1997 	 * is given by econtig) and before V_WKBASE_ADDR.
1998 	 * Also in this area is segkmap (size SEGMAPSIZE).
1999 	 */
2000 
2001 	/* XXX - cache alignment? */
2002 	va = (caddr_t)SEGKPBASE;
2003 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
2004 
2005 	max_phys_segkp = (physmem * 2);
2006 
2007 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
2008 		segkpsize = btop(SEGKPDEFSIZE);
2009 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
2010 		    "segkpsize has been reset to %ld pages", segkpsize);
2011 	}
2012 
2013 	i = ptob(MIN(segkpsize, max_phys_segkp));
2014 
2015 	rw_enter(&kas.a_lock, RW_WRITER);
2016 	if (seg_attach(&kas, va, i, segkp) < 0)
2017 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
2018 	if (segkp_create(segkp) != 0)
2019 		cmn_err(CE_PANIC, "startup: segkp_create failed");
2020 	rw_exit(&kas.a_lock);
2021 
2022 	/*
2023 	 * kpm segment
2024 	 */
2025 	segmap_kpm = kpm_enable &&
2026 		segmap_kpm && PAGESIZE == MAXBSIZE;
2027 
2028 	if (kpm_enable) {
2029 		rw_enter(&kas.a_lock, RW_WRITER);
2030 
2031 		/*
2032 		 * The segkpm virtual range range is larger than the
2033 		 * actual physical memory size and also covers gaps in
2034 		 * the physical address range for the following reasons:
2035 		 * . keep conversion between segkpm and physical addresses
2036 		 *   simple, cheap and unambiguous.
2037 		 * . avoid extension/shrink of the the segkpm in case of DR.
2038 		 * . avoid complexity for handling of virtual addressed
2039 		 *   caches, segkpm and the regular mapping scheme must be
2040 		 *   kept in sync wrt. the virtual color of mapped pages.
2041 		 * Any accesses to virtual segkpm ranges not backed by
2042 		 * physical memory will fall through the memseg pfn hash
2043 		 * and will be handled in segkpm_fault.
2044 		 * Additional kpm_size spaces needed for vac alias prevention.
2045 		 */
2046 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
2047 		    segkpm) < 0)
2048 			cmn_err(CE_PANIC, "cannot attach segkpm");
2049 
2050 		b.prot = PROT_READ | PROT_WRITE;
2051 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
2052 
2053 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2054 			panic("segkpm_create segkpm");
2055 
2056 		rw_exit(&kas.a_lock);
2057 
2058 		mach_kpm_init();
2059 	}
2060 
2061 	/*
2062 	 * Now create generic mapping segment.  This mapping
2063 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2064 	 * virtual address is greater than the amount of free
2065 	 * memory that is available, then we trim back the
2066 	 * segment size to that amount
2067 	 */
2068 	va = (caddr_t)SEGMAPBASE;
2069 
2070 	/*
2071 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2072 	 */
2073 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2074 
2075 	/*
2076 	 * Set size of segmap to percentage of freemem at boot,
2077 	 * but stay within the allowable range
2078 	 * Note we take percentage  before converting from pages
2079 	 * to bytes to avoid an overflow on 32-bit kernels.
2080 	 */
2081 	i = mmu_ptob((freemem * segmap_percent) / 100);
2082 
2083 	if (i < MINMAPSIZE)
2084 		i = MINMAPSIZE;
2085 
2086 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2087 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2088 
2089 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2090 
2091 	rw_enter(&kas.a_lock, RW_WRITER);
2092 	if (seg_attach(&kas, va, i, segkmap) < 0)
2093 		cmn_err(CE_PANIC, "cannot attach segkmap");
2094 
2095 	a.prot = PROT_READ | PROT_WRITE;
2096 	a.shmsize = shm_alignment;
2097 	a.nfreelist = 0;	/* use segmap driver defaults */
2098 
2099 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2100 		panic("segmap_create segkmap");
2101 	rw_exit(&kas.a_lock);
2102 
2103 	segdev_init();
2104 }
2105 
2106 static void
2107 startup_end(void)
2108 {
2109 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2110 		panic("memlist overflow 2");
2111 	memlist_free_block((caddr_t)memlist,
2112 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2113 	memlist = NULL;
2114 
2115 	/* enable page_relocation since OBP is now done */
2116 	page_relocate_ready = 1;
2117 
2118 	/*
2119 	 * Perform tasks that get done after most of the VM
2120 	 * initialization has been done but before the clock
2121 	 * and other devices get started.
2122 	 */
2123 	kern_setup1();
2124 
2125 	/*
2126 	 * Intialize the VM arenas for allocating physically
2127 	 * contiguus memory chunk for interrupt queues snd
2128 	 * allocate/register boot cpu's queues, if any and
2129 	 * allocate dump buffer for sun4v systems to store
2130 	 * extra crash information during crash dump
2131 	 */
2132 	contig_mem_init();
2133 	mach_descrip_init();
2134 	cpu_intrq_setup(CPU);
2135 	cpu_intrq_register(CPU);
2136 	mach_htraptrace_setup(CPU->cpu_id);
2137 	mach_htraptrace_configure(CPU->cpu_id);
2138 	mach_dump_buffer_init();
2139 
2140 	/*
2141 	 * Initialize interrupt related stuff
2142 	 */
2143 	cpu_intr_alloc(CPU, NINTR_THREADS);
2144 
2145 	(void) splzs();			/* allow hi clock ints but not zs */
2146 
2147 	/*
2148 	 * Initialize errors.
2149 	 */
2150 	error_init();
2151 
2152 	/*
2153 	 * Note that we may have already used kernel bcopy before this
2154 	 * point - but if you really care about this, adb the use_hw_*
2155 	 * variables to 0 before rebooting.
2156 	 */
2157 	mach_hw_copy_limit();
2158 
2159 	/*
2160 	 * Install the "real" preemption guards before DDI services
2161 	 * are available.
2162 	 */
2163 	(void) prom_set_preprom(kern_preprom);
2164 	(void) prom_set_postprom(kern_postprom);
2165 	CPU->cpu_m.mutex_ready = 1;
2166 
2167 	/*
2168 	 * Initialize segnf (kernel support for non-faulting loads).
2169 	 */
2170 	segnf_init();
2171 
2172 	/*
2173 	 * Configure the root devinfo node.
2174 	 */
2175 	configure();		/* set up devices */
2176 	mach_cpu_halt_idle();
2177 }
2178 
2179 
2180 void
2181 post_startup(void)
2182 {
2183 #ifdef	PTL1_PANIC_DEBUG
2184 	extern void init_ptl1_thread(void);
2185 #endif	/* PTL1_PANIC_DEBUG */
2186 	extern void abort_sequence_init(void);
2187 
2188 	/*
2189 	 * Set the system wide, processor-specific flags to be passed
2190 	 * to userland via the aux vector for performance hints and
2191 	 * instruction set extensions.
2192 	 */
2193 	bind_hwcap();
2194 
2195 	/*
2196 	 * Startup memory scrubber (if any)
2197 	 */
2198 	mach_memscrub();
2199 
2200 	/*
2201 	 * Allocate soft interrupt to handle abort sequence.
2202 	 */
2203 	abort_sequence_init();
2204 
2205 	/*
2206 	 * Configure the rest of the system.
2207 	 * Perform forceloading tasks for /etc/system.
2208 	 */
2209 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2210 	/*
2211 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2212 	 * ON4.0: This must be fixed or restated in /etc/systems.
2213 	 */
2214 	(void) modload("fs", "procfs");
2215 
2216 	/* load machine class specific drivers */
2217 	load_mach_drivers();
2218 
2219 	/* load platform specific drivers */
2220 	if (&load_platform_drivers)
2221 		load_platform_drivers();
2222 
2223 	/* load vis simulation module, if we are running w/fpu off */
2224 	if (!fpu_exists) {
2225 		if (modload("misc", "vis") == -1)
2226 			halt("Can't load vis");
2227 	}
2228 
2229 	mach_fpras();
2230 
2231 	maxmem = freemem;
2232 
2233 #ifdef	PTL1_PANIC_DEBUG
2234 	init_ptl1_thread();
2235 #endif	/* PTL1_PANIC_DEBUG */
2236 
2237 	if (&cif_init)
2238 		cif_init();
2239 }
2240 
2241 #ifdef	PTL1_PANIC_DEBUG
2242 int		ptl1_panic_test = 0;
2243 int		ptl1_panic_xc_one_test = 0;
2244 int		ptl1_panic_xc_all_test = 0;
2245 int		ptl1_panic_xt_one_test = 0;
2246 int		ptl1_panic_xt_all_test = 0;
2247 kthread_id_t	ptl1_thread_p = NULL;
2248 kcondvar_t	ptl1_cv;
2249 kmutex_t	ptl1_mutex;
2250 int		ptl1_recurse_count_threshold = 0x40;
2251 int		ptl1_recurse_trap_threshold = 0x3d;
2252 extern void	ptl1_recurse(int, int);
2253 extern void	ptl1_panic_xt(int, int);
2254 
2255 /*
2256  * Called once per second by timeout() to wake up
2257  * the ptl1_panic thread to see if it should cause
2258  * a trap to the ptl1_panic() code.
2259  */
2260 /* ARGSUSED */
2261 static void
2262 ptl1_wakeup(void *arg)
2263 {
2264 	mutex_enter(&ptl1_mutex);
2265 	cv_signal(&ptl1_cv);
2266 	mutex_exit(&ptl1_mutex);
2267 }
2268 
2269 /*
2270  * ptl1_panic cross call function:
2271  *     Needed because xc_one() and xc_some() can pass
2272  *	64 bit args but ptl1_recurse() expects ints.
2273  */
2274 static void
2275 ptl1_panic_xc(void)
2276 {
2277 	ptl1_recurse(ptl1_recurse_count_threshold,
2278 	    ptl1_recurse_trap_threshold);
2279 }
2280 
2281 /*
2282  * The ptl1 thread waits for a global flag to be set
2283  * and uses the recurse thresholds to set the stack depth
2284  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2285  * or indirectly via the cross call and cross trap functions.
2286  *
2287  * This is useful testing stack overflows and normal
2288  * ptl1_panic() states with a know stack frame.
2289  *
2290  * ptl1_recurse() is an asm function in ptl1_panic.s that
2291  * sets the {In, Local, Out, and Global} registers to a
2292  * know state on the stack and just prior to causing a
2293  * test ptl1_panic trap.
2294  */
2295 static void
2296 ptl1_thread(void)
2297 {
2298 	mutex_enter(&ptl1_mutex);
2299 	while (ptl1_thread_p) {
2300 		cpuset_t	other_cpus;
2301 		int		cpu_id;
2302 		int		my_cpu_id;
2303 		int		target_cpu_id;
2304 		int		target_found;
2305 
2306 		if (ptl1_panic_test) {
2307 			ptl1_recurse(ptl1_recurse_count_threshold,
2308 			    ptl1_recurse_trap_threshold);
2309 		}
2310 
2311 		/*
2312 		 * Find potential targets for x-call and x-trap,
2313 		 * if any exist while preempt is disabled we
2314 		 * start a ptl1_panic if requested via a
2315 		 * globals.
2316 		 */
2317 		kpreempt_disable();
2318 		my_cpu_id = CPU->cpu_id;
2319 		other_cpus = cpu_ready_set;
2320 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2321 		target_found = 0;
2322 		if (!CPUSET_ISNULL(other_cpus)) {
2323 			/*
2324 			 * Pick the first one
2325 			 */
2326 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2327 				if (cpu_id == my_cpu_id)
2328 					continue;
2329 
2330 				if (CPU_XCALL_READY(cpu_id)) {
2331 					target_cpu_id = cpu_id;
2332 					target_found = 1;
2333 					break;
2334 				}
2335 			}
2336 			ASSERT(target_found);
2337 
2338 			if (ptl1_panic_xc_one_test) {
2339 				xc_one(target_cpu_id,
2340 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2341 			}
2342 			if (ptl1_panic_xc_all_test) {
2343 				xc_some(other_cpus,
2344 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2345 			}
2346 			if (ptl1_panic_xt_one_test) {
2347 				xt_one(target_cpu_id,
2348 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2349 			}
2350 			if (ptl1_panic_xt_all_test) {
2351 				xt_some(other_cpus,
2352 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2353 			}
2354 		}
2355 		kpreempt_enable();
2356 		(void) timeout(ptl1_wakeup, NULL, hz);
2357 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2358 	}
2359 	mutex_exit(&ptl1_mutex);
2360 }
2361 
2362 /*
2363  * Called during early startup to create the ptl1_thread
2364  */
2365 void
2366 init_ptl1_thread(void)
2367 {
2368 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2369 	    &p0, TS_RUN, 0);
2370 }
2371 #endif	/* PTL1_PANIC_DEBUG */
2372 
2373 
2374 /*
2375  * Add to a memory list.
2376  * start = start of new memory segment
2377  * len = length of new memory segment in bytes
2378  * memlistp = pointer to array of available memory segment structures
2379  * curmemlistp = memory list to which to add segment.
2380  */
2381 static void
2382 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2383 	struct memlist **curmemlistp)
2384 {
2385 	struct memlist *new;
2386 
2387 	new = *memlistp;
2388 	new->address = start;
2389 	new->size = len;
2390 	*memlistp = new + 1;
2391 
2392 	memlist_insert(new, curmemlistp);
2393 }
2394 
2395 /*
2396  * In the case of architectures that support dynamic addition of
2397  * memory at run-time there are two cases where memsegs need to
2398  * be initialized and added to the memseg list.
2399  * 1) memsegs that are constructed at startup.
2400  * 2) memsegs that are constructed at run-time on
2401  *    hot-plug capable architectures.
2402  * This code was originally part of the function kphysm_init().
2403  */
2404 
2405 static void
2406 memseg_list_add(struct memseg *memsegp)
2407 {
2408 	struct memseg **prev_memsegp;
2409 	pgcnt_t num;
2410 
2411 	/* insert in memseg list, decreasing number of pages order */
2412 
2413 	num = MSEG_NPAGES(memsegp);
2414 
2415 	for (prev_memsegp = &memsegs; *prev_memsegp;
2416 	    prev_memsegp = &((*prev_memsegp)->next)) {
2417 		if (num > MSEG_NPAGES(*prev_memsegp))
2418 			break;
2419 	}
2420 
2421 	memsegp->next = *prev_memsegp;
2422 	*prev_memsegp = memsegp;
2423 
2424 	if (kpm_enable) {
2425 		memsegp->nextpa = (memsegp->next) ?
2426 			va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2427 
2428 		if (prev_memsegp != &memsegs) {
2429 			struct memseg *msp;
2430 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2431 				offsetof(struct memseg, next));
2432 			msp->nextpa = va_to_pa(memsegp);
2433 		} else {
2434 			memsegspa = va_to_pa(memsegs);
2435 		}
2436 	}
2437 }
2438 
2439 /*
2440  * PSM add_physmem_cb(). US-II and newer processors have some
2441  * flavor of the prefetch capability implemented. We exploit
2442  * this capability for optimum performance.
2443  */
2444 #define	PREFETCH_BYTES	64
2445 
2446 void
2447 add_physmem_cb(page_t *pp, pfn_t pnum)
2448 {
2449 	extern void	 prefetch_page_w(void *);
2450 
2451 	pp->p_pagenum = pnum;
2452 
2453 	/*
2454 	 * Prefetch one more page_t into E$. To prevent future
2455 	 * mishaps with the sizeof(page_t) changing on us, we
2456 	 * catch this on debug kernels if we can't bring in the
2457 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2458 	 * also, sun4u/cpu/cpu_module.c
2459 	 */
2460 	/*LINTED*/
2461 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2462 	prefetch_page_w((char *)pp);
2463 }
2464 
2465 /*
2466  * kphysm_init() tackles the problem of initializing physical memory.
2467  * The old startup made some assumptions about the kernel living in
2468  * physically contiguous space which is no longer valid.
2469  */
2470 static void
2471 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages,
2472 	uintptr_t kpm_pp, pgcnt_t kpm_npages)
2473 {
2474 	struct memlist	*pmem;
2475 	struct memseg	*msp;
2476 	pfn_t		 base;
2477 	pgcnt_t		 num;
2478 	pfn_t		 lastseg_pages_end = 0;
2479 	pgcnt_t		 nelem_used = 0;
2480 
2481 	ASSERT(page_hash != NULL && page_hashsz != 0);
2482 
2483 	msp = memsegp;
2484 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2485 
2486 		/*
2487 		 * Build the memsegs entry
2488 		 */
2489 		num = btop(pmem->size);
2490 		if (num > npages)
2491 			num = npages;
2492 		npages -= num;
2493 		base = btop(pmem->address);
2494 
2495 		msp->pages = pp;
2496 		msp->epages = pp + num;
2497 		msp->pages_base = base;
2498 		msp->pages_end = base + num;
2499 
2500 		if (kpm_enable) {
2501 			pfn_t pbase_a;
2502 			pfn_t pend_a;
2503 			pfn_t prev_pend_a;
2504 			pgcnt_t	nelem;
2505 
2506 			msp->pagespa = va_to_pa(pp);
2507 			msp->epagespa = va_to_pa(pp + num);
2508 			pbase_a = kpmptop(ptokpmp(base));
2509 			pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs;
2510 			nelem = ptokpmp(pend_a - pbase_a);
2511 			msp->kpm_nkpmpgs = nelem;
2512 			msp->kpm_pbase = pbase_a;
2513 			if (lastseg_pages_end) {
2514 				/*
2515 				 * Assume phys_avail is in ascending order
2516 				 * of physical addresses.
2517 				 */
2518 				ASSERT(base + num > lastseg_pages_end);
2519 				prev_pend_a = kpmptop(
2520 				    ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs;
2521 
2522 				if (prev_pend_a > pbase_a) {
2523 					/*
2524 					 * Overlap, more than one memseg may
2525 					 * point to the same kpm_page range.
2526 					 */
2527 					if (kpm_smallpages == 0) {
2528 						msp->kpm_pages =
2529 						    (kpm_page_t *)kpm_pp - 1;
2530 						kpm_pp = (uintptr_t)
2531 							((kpm_page_t *)kpm_pp
2532 							+ nelem - 1);
2533 					} else {
2534 						msp->kpm_spages =
2535 						    (kpm_spage_t *)kpm_pp - 1;
2536 						kpm_pp = (uintptr_t)
2537 							((kpm_spage_t *)kpm_pp
2538 							+ nelem - 1);
2539 					}
2540 					nelem_used += nelem - 1;
2541 
2542 				} else {
2543 					if (kpm_smallpages == 0) {
2544 						msp->kpm_pages =
2545 						    (kpm_page_t *)kpm_pp;
2546 						kpm_pp = (uintptr_t)
2547 							((kpm_page_t *)kpm_pp
2548 							+ nelem);
2549 					} else {
2550 						msp->kpm_spages =
2551 						    (kpm_spage_t *)kpm_pp;
2552 						kpm_pp = (uintptr_t)
2553 							((kpm_spage_t *)
2554 							kpm_pp + nelem);
2555 					}
2556 					nelem_used += nelem;
2557 				}
2558 
2559 			} else {
2560 				if (kpm_smallpages == 0) {
2561 					msp->kpm_pages = (kpm_page_t *)kpm_pp;
2562 					kpm_pp = (uintptr_t)
2563 						((kpm_page_t *)kpm_pp + nelem);
2564 				} else {
2565 					msp->kpm_spages = (kpm_spage_t *)kpm_pp;
2566 					kpm_pp = (uintptr_t)
2567 						((kpm_spage_t *)kpm_pp + nelem);
2568 				}
2569 				nelem_used = nelem;
2570 			}
2571 
2572 			if (nelem_used > kpm_npages)
2573 				panic("kphysm_init: kpm_pp overflow\n");
2574 
2575 			msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
2576 			lastseg_pages_end = msp->pages_end;
2577 		}
2578 
2579 		memseg_list_add(msp);
2580 
2581 		/*
2582 		 * add_physmem() initializes the PSM part of the page
2583 		 * struct by calling the PSM back with add_physmem_cb().
2584 		 * In addition it coalesces pages into larger pages as
2585 		 * it initializes them.
2586 		 */
2587 		add_physmem(pp, num, base);
2588 		pp += num;
2589 		msp++;
2590 	}
2591 
2592 	build_pfn_hash();
2593 }
2594 
2595 /*
2596  * Kernel VM initialization.
2597  * Assumptions about kernel address space ordering:
2598  *	(1) gap (user space)
2599  *	(2) kernel text
2600  *	(3) kernel data/bss
2601  *	(4) gap
2602  *	(5) kernel data structures
2603  *	(6) gap
2604  *	(7) debugger (optional)
2605  *	(8) monitor
2606  *	(9) gap (possibly null)
2607  *	(10) dvma
2608  *	(11) devices
2609  */
2610 static void
2611 kvm_init(void)
2612 {
2613 	/*
2614 	 * Put the kernel segments in kernel address space.
2615 	 */
2616 	rw_enter(&kas.a_lock, RW_WRITER);
2617 	as_avlinit(&kas);
2618 
2619 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2620 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2621 	(void) segkmem_create(&ktextseg);
2622 
2623 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2624 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2625 	(void) segkmem_create(&ktexthole);
2626 
2627 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2628 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2629 	(void) segkmem_create(&kvalloc);
2630 
2631 	if (kmem64_base) {
2632 	    (void) seg_attach(&kas, (caddr_t)kmem64_base,
2633 		(size_t)(kmem64_end - kmem64_base), &kmem64);
2634 	    (void) segkmem_create(&kmem64);
2635 	}
2636 
2637 	/*
2638 	 * We're about to map out /boot.  This is the beginning of the
2639 	 * system resource management transition. We can no longer
2640 	 * call into /boot for I/O or memory allocations.
2641 	 */
2642 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2643 	(void) segkmem_create(&kvseg);
2644 	hblk_alloc_dynamic = 1;
2645 
2646 	/*
2647 	 * we need to preallocate pages for DR operations before enabling large
2648 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2649 	 */
2650 	memseg_remap_init();
2651 
2652 	/* at this point we are ready to use large page heap */
2653 	segkmem_heap_lp_init();
2654 
2655 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2656 	    &kvseg32);
2657 	(void) segkmem_create(&kvseg32);
2658 
2659 	/*
2660 	 * Create a segment for the debugger.
2661 	 */
2662 	(void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE,
2663 	    &kdebugseg);
2664 	(void) segkmem_create(&kdebugseg);
2665 
2666 	rw_exit(&kas.a_lock);
2667 }
2668 
2669 char obp_tte_str[] =
2670 	"h# %x constant MMU_PAGESHIFT "
2671 	"h# %x constant TTE8K "
2672 	"h# %x constant SFHME_SIZE "
2673 	"h# %x constant SFHME_TTE "
2674 	"h# %x constant HMEBLK_TAG "
2675 	"h# %x constant HMEBLK_NEXT "
2676 	"h# %x constant HMEBLK_MISC "
2677 	"h# %x constant HMEBLK_HME1 "
2678 	"h# %x constant NHMENTS "
2679 	"h# %x constant HBLK_SZMASK "
2680 	"h# %x constant HBLK_RANGE_SHIFT "
2681 	"h# %x constant HMEBP_HBLK "
2682 	"h# %x constant HMEBUCKET_SIZE "
2683 	"h# %x constant HTAG_SFMMUPSZ "
2684 	"h# %x constant HTAG_REHASHSZ "
2685 	"h# %x constant mmu_hashcnt "
2686 	"h# %p constant uhme_hash "
2687 	"h# %p constant khme_hash "
2688 	"h# %x constant UHMEHASH_SZ "
2689 	"h# %x constant KHMEHASH_SZ "
2690 	"h# %p constant KCONTEXT "
2691 	"h# %p constant KHATID "
2692 	"h# %x constant ASI_MEM "
2693 
2694 	": PHYS-X@ ( phys -- data ) "
2695 	"   ASI_MEM spacex@ "
2696 	"; "
2697 
2698 	": PHYS-W@ ( phys -- data ) "
2699 	"   ASI_MEM spacew@ "
2700 	"; "
2701 
2702 	": PHYS-L@ ( phys -- data ) "
2703 	"   ASI_MEM spaceL@ "
2704 	"; "
2705 
2706 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2707 	"   3 * MMU_PAGESHIFT + "
2708 	"; "
2709 
2710 	": TTE_IS_VALID ( ttep -- flag ) "
2711 	"   PHYS-X@ 0< "
2712 	"; "
2713 
2714 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2715 	"   dup TTE8K =  if "
2716 	"      drop HBLK_RANGE_SHIFT "
2717 	"   else "
2718 	"      TTE_PAGE_SHIFT "
2719 	"   then "
2720 	"; "
2721 
2722 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2723 	"   tuck >> swap MMU_PAGESHIFT - << "
2724 	"; "
2725 
2726 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2727 	"   >> over xor swap                    ( hash sfmmup ) "
2728 	"   KHATID <>  if                       ( hash ) "
2729 	"      UHMEHASH_SZ and                  ( bucket ) "
2730 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2731 	"   else                                ( hash ) "
2732 	"      KHMEHASH_SZ and                  ( bucket ) "
2733 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2734 	"   then                                ( hmebp ) "
2735 	"; "
2736 
2737 	": HME_HASH_TABLE_SEARCH "
2738 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2739 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2740 	"      dup if   		( sfmmup hmeblkp ) ( r: hblktag ) "
2741 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2742 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2743 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2744 	"	     else						  "
2745 	"	     	  hmeblk_next + phys-x@ false 			  "
2746 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2747 	"	     then  						  "
2748 	"	  else							  "
2749 	"	     hmeblk_next + phys-x@ false 			  "
2750 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2751 	"	  then 							  "
2752 	"      else							  "
2753 	"         true 							  "
2754 	"      then  							  "
2755 	"   until r> drop 						  "
2756 	"; "
2757 
2758 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2759 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE      ( sfmmup rehash bspage ) "
2760 	"   HTAG_REHASHSZ << or nip		     ( hblktag ) "
2761 	"; "
2762 
2763 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2764 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2765 	"   TTE8K =  if                            ( hmeblkp addr ) "
2766 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2767 	"   else                                   ( hmeblkp addr ) "
2768 	"      drop 0                              ( hmeblkp 0 ) "
2769 	"   then                                   ( hmeblkp hme-index ) "
2770 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2771 	"   SFHME_TTE +                            ( ttep ) "
2772 	"; "
2773 
2774 	": unix-tte ( addr cnum -- false | tte-data true ) "
2775 	"    KCONTEXT = if                   ( addr ) "
2776 	"	KHATID                       ( addr khatid ) "
2777 	"    else                            ( addr ) "
2778 	"       drop false exit              ( false ) "
2779 	"    then "
2780 	"      ( addr khatid ) "
2781 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2782 	"         2dup swap i HME_HASH_SHIFT  "
2783 					"( addr sfmmup sfmmup addr hmeshift ) "
2784 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2785 	"         over i 4 pick               "
2786 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2787 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2788 	"         HME_HASH_TABLE_SEARCH       "
2789 					"( addr sfmmup { null | hmeblkp } ) "
2790 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2791 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2792 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2793 	"               PHYS-X@ true          ( tte-data true ) "
2794 	"            else                     ( invalid-tte ) "
2795 	"               drop false            ( false ) "
2796 	"            then                     ( false | tte-data true ) "
2797 	"            unloop exit              ( false | tte-data true ) "
2798 	"         then                        ( addr sfmmup ) "
2799 	"      loop                           ( addr sfmmup ) "
2800 	"      2drop false                    ( false ) "
2801 	"; "
2802 ;
2803 
2804 void
2805 create_va_to_tte(void)
2806 {
2807 	char *bp;
2808 	extern int khmehash_num, uhmehash_num;
2809 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2810 
2811 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2812 
2813 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2814 
2815 	/*
2816 	 * Teach obp how to parse our sw ttes.
2817 	 */
2818 	(void) sprintf(bp, obp_tte_str,
2819 	    MMU_PAGESHIFT,
2820 	    TTE8K,
2821 	    sizeof (struct sf_hment),
2822 	    OFFSET(struct sf_hment, hme_tte),
2823 	    OFFSET(struct hme_blk, hblk_tag),
2824 	    OFFSET(struct hme_blk, hblk_nextpa),
2825 	    OFFSET(struct hme_blk, hblk_misc),
2826 	    OFFSET(struct hme_blk, hblk_hme),
2827 	    NHMENTS,
2828 	    HBLK_SZMASK,
2829 	    HBLK_RANGE_SHIFT,
2830 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2831 	    sizeof (struct hmehash_bucket),
2832 	    HTAG_SFMMUPSZ,
2833 	    HTAG_REHASHSZ,
2834 	    mmu_hashcnt,
2835 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
2836 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
2837 	    UHMEHASH_SZ,
2838 	    KHMEHASH_SZ,
2839 	    KCONTEXT,
2840 	    KHATID,
2841 	    ASI_MEM);
2842 	prom_interpret(bp, 0, 0, 0, 0, 0);
2843 
2844 	kobj_free(bp, MMU_PAGESIZE);
2845 }
2846 
2847 void
2848 install_va_to_tte(void)
2849 {
2850 	/*
2851 	 * advise prom that he can use unix-tte
2852 	 */
2853 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2854 }
2855 
2856 
2857 /*
2858  * Because kmdb links prom_stdout_is_framebuffer into its own
2859  * module, we add "device-type=display" here for /os-io node, so that
2860  * prom_stdout_is_framebuffer still works corrrectly  after /os-io node
2861  * is registered into OBP.
2862  */
2863 static char *create_node =
2864 	"\" /\" find-device "
2865 	"new-device "
2866 	"\" os-io\" device-name "
2867 	"\" display\" device-type "
2868 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
2869 	"   2>r swap 2 2r> ['] $callback  catch  if "
2870 	"      2drop 3drop 0 "
2871 	"   then "
2872 	"; "
2873 	": read ( adr,len -- #read ) "
2874 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
2875 	"       ( retN ... ret1 N ) "
2876 	"       ?dup  if "
2877 	"               swap >r 1-  0  ?do  drop  loop  r> "
2878 	"       else "
2879 	"               -2 "
2880 	"       then "
2881 	";    "
2882 	": write ( adr,len -- #written ) "
2883 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
2884 	"       ( retN ... ret1 N ) "
2885 	"       ?dup  if "
2886 	"               swap >r 1-  0  ?do  drop  loop  r> "
2887 	"        else "
2888 	"               0 "
2889 	"       then "
2890 	"; "
2891 	": poll-tty ( -- ) ; "
2892 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
2893 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
2894 	": cb-give/take ( $method -- ) "
2895 	"       0 -rot ['] $callback catch  ?dup  if "
2896 	"               >r 2drop 2drop r> throw "
2897 	"       else "
2898 	"               0  ?do  drop  loop "
2899 	"       then "
2900 	"; "
2901 	": give ( -- )  \" exit-input\" cb-give/take ; "
2902 	": take ( -- )  \" enter-input\" cb-give/take ; "
2903 	": open ( -- ok? )  true ; "
2904 	": close ( -- ) ; "
2905 	"finish-device "
2906 	"device-end ";
2907 
2908 /*
2909  * Create the OBP input/output node (FCode serial driver).
2910  * It is needed for both USB console keyboard and for
2911  * the kernel terminal emulator.  It is too early to check for a
2912  * kernel console compatible framebuffer now, so we create this
2913  * so that we're ready if we need to enable kernel terminal emulation.
2914  *
2915  * When the USB software takes over the input device at the time
2916  * consconfig runs, OBP's stdin is redirected to this node.
2917  * Whenever the FORTH user interface is used after this switch,
2918  * the node will call back into the kernel for console input.
2919  * If a serial device such as ttya or a UART with a Type 5 keyboard
2920  * attached is used, OBP takes over the serial device when the system
2921  * goes to the debugger after the system is booted.  This sharing
2922  * of the relatively simple serial device is difficult but possible.
2923  * Sharing the USB host controller is impossible due its complexity.
2924  *
2925  * Similarly to USB keyboard input redirection, after consconfig_dacf
2926  * configures a kernel console framebuffer as the standard output
2927  * device, OBP's stdout is switched to to vector through the
2928  * /os-io node into the kernel terminal emulator.
2929  */
2930 static void
2931 startup_create_io_node(void)
2932 {
2933 	prom_interpret(create_node, 0, 0, 0, 0, 0);
2934 }
2935 
2936 
2937 static void
2938 do_prom_version_check(void)
2939 {
2940 	int i;
2941 	pnode_t node;
2942 	char buf[64];
2943 	static char drev[] = "Down-rev firmware detected%s\n"
2944 		"\tPlease upgrade to the following minimum version:\n"
2945 		"\t\t%s\n";
2946 
2947 	i = prom_version_check(buf, sizeof (buf), &node);
2948 
2949 	if (i == PROM_VER64_OK)
2950 		return;
2951 
2952 	if (i == PROM_VER64_UPGRADE) {
2953 		cmn_err(CE_WARN, drev, "", buf);
2954 
2955 #ifdef	DEBUG
2956 		prom_enter_mon();	/* Type 'go' to continue */
2957 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
2958 		return;
2959 #else
2960 		halt(0);
2961 #endif
2962 	}
2963 
2964 	/*
2965 	 * The other possibility is that this is a server running
2966 	 * good firmware, but down-rev firmware was detected on at
2967 	 * least one other cpu board. We just complain if we see
2968 	 * that.
2969 	 */
2970 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
2971 }
2972 
2973 static void
2974 kpm_init()
2975 {
2976 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
2977 	kpm_pgsz = 1ull << kpm_pgshft;
2978 	kpm_pgoff = kpm_pgsz - 1;
2979 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
2980 	kpmpnpgs = 1 << kpmp2pshft;
2981 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
2982 }
2983 
2984 void
2985 kpm_npages_setup(int memblocks)
2986 {
2987 	/*
2988 	 * npages can be scattered in a maximum of 'memblocks'
2989 	 */
2990 	kpm_npages = ptokpmpr(npages) + memblocks;
2991 }
2992 
2993 /*
2994  * Must be defined in platform dependent code.
2995  */
2996 extern caddr_t modtext;
2997 extern size_t modtext_sz;
2998 extern caddr_t moddata;
2999 
3000 #define	HEAPTEXT_ARENA(addr)	\
3001 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3002 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3003 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3004 
3005 #define	HEAPTEXT_OVERSIZED(addr)	\
3006 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3007 
3008 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3009 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3010 kmutex_t texthole_lock;
3011 
3012 char kern_bootargs[OBP_MAXPATHLEN];
3013 
3014 void
3015 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3016 {
3017 	uintptr_t addr, limit;
3018 
3019 	addr = HEAPTEXT_BASE;
3020 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3021 
3022 	/*
3023 	 * Before we initialize the text_arena, we want to punch holes in the
3024 	 * underlying heaptext_arena.  This guarantees that for any text
3025 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3026 	 */
3027 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3028 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3029 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3030 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3031 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3032 	}
3033 
3034 	/*
3035 	 * Allocate one page at the oversize to break up the text region
3036 	 * from the oversized region.
3037 	 */
3038 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3039 	    (void *)limit, (void *)(limit + PAGESIZE),
3040 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3041 
3042 	*text_arena = vmem_create("module_text", modtext, modtext_sz,
3043 	    sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3044 	    heaptext_arena, 0, VM_SLEEP);
3045 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3046 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3047 }
3048 
3049 caddr_t
3050 kobj_text_alloc(vmem_t *arena, size_t size)
3051 {
3052 	caddr_t rval, better;
3053 
3054 	/*
3055 	 * First, try a sleeping allocation.
3056 	 */
3057 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3058 
3059 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3060 		return (rval);
3061 
3062 	/*
3063 	 * We didn't get the area that we wanted.  We're going to try to do an
3064 	 * allocation with explicit constraints.
3065 	 */
3066 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3067 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3068 	    VM_NOSLEEP | VM_BESTFIT);
3069 
3070 	if (better != NULL) {
3071 		/*
3072 		 * That worked.  Free our first attempt and return.
3073 		 */
3074 		vmem_free(arena, rval, size);
3075 		return (better);
3076 	}
3077 
3078 	/*
3079 	 * That didn't work; we'll have to return our first attempt.
3080 	 */
3081 	return (rval);
3082 }
3083 
3084 caddr_t
3085 kobj_texthole_alloc(caddr_t addr, size_t size)
3086 {
3087 	int arena = HEAPTEXT_ARENA(addr);
3088 	char c[30];
3089 	uintptr_t base;
3090 
3091 	if (HEAPTEXT_OVERSIZED(addr)) {
3092 		/*
3093 		 * If this is an oversized allocation, there is no text hole
3094 		 * available for it; return NULL.
3095 		 */
3096 		return (NULL);
3097 	}
3098 
3099 	mutex_enter(&texthole_lock);
3100 
3101 	if (texthole_arena[arena] == NULL) {
3102 		ASSERT(texthole_source[arena] == NULL);
3103 
3104 		if (arena == 0) {
3105 			texthole_source[0] = vmem_create("module_text_holesrc",
3106 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3107 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3108 			    0, VM_SLEEP);
3109 		} else {
3110 			base = HEAPTEXT_BASE +
3111 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3112 
3113 			(void) snprintf(c, sizeof (c),
3114 			    "heaptext_holesrc_%d", arena);
3115 
3116 			texthole_source[arena] = vmem_create(c, (void *)base,
3117 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3118 			    0, VM_SLEEP);
3119 		}
3120 
3121 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3122 
3123 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3124 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3125 		    texthole_source[arena], 0, VM_SLEEP);
3126 	}
3127 
3128 	mutex_exit(&texthole_lock);
3129 
3130 	ASSERT(texthole_arena[arena] != NULL);
3131 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3132 	return (vmem_alloc(texthole_arena[arena], size,
3133 	    VM_BESTFIT | VM_NOSLEEP));
3134 }
3135 
3136 void
3137 kobj_texthole_free(caddr_t addr, size_t size)
3138 {
3139 	int arena = HEAPTEXT_ARENA(addr);
3140 
3141 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3142 	ASSERT(texthole_arena[arena] != NULL);
3143 	vmem_free(texthole_arena[arena], addr, size);
3144 }
3145