xref: /titanic_41/usr/src/uts/sun4/os/startup.c (revision 4ef135ebdb1da7fd227e3b45fabfa88b85fc5083)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/intreg.h>
43 #include <sys/ivintr.h>
44 #include <sys/fpu/fpusystm.h>
45 #include <sys/iommutsb.h>
46 #include <vm/vm_dep.h>
47 #include <vm/seg_dev.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kpm.h>
50 #include <vm/seg_map.h>
51 #include <vm/seg_kp.h>
52 #include <sys/sysconf.h>
53 #include <vm/hat_sfmmu.h>
54 #include <sys/kobj.h>
55 #include <sys/sun4asi.h>
56 #include <sys/clconf.h>
57 #include <sys/platform_module.h>
58 #include <sys/panic.h>
59 #include <sys/cpu_sgnblk_defs.h>
60 #include <sys/clock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 #include <sys/traptrace.h>
65 #include <sys/memnode.h>
66 #include <sys/mem_cage.h>
67 
68 extern void setup_trap_table(void);
69 extern void cpu_intrq_setup(struct cpu *);
70 extern void cpu_intrq_register(struct cpu *);
71 extern void contig_mem_init(void);
72 extern void mach_dump_buffer_init(void);
73 extern void mach_descrip_init(void);
74 extern void mach_memscrub(void);
75 extern void mach_fpras(void);
76 extern void mach_cpu_halt_idle(void);
77 extern void mach_hw_copy_limit(void);
78 extern void load_tod_module(void);
79 #pragma weak load_tod_module
80 
81 extern int ndata_alloc_mmfsa(struct memlist *ndata);
82 #pragma weak ndata_alloc_mmfsa
83 
84 extern void parse_idprom(void);
85 extern void add_vx_handler(char *, int, void (*)(cell_t *));
86 extern void mem_config_init(void);
87 extern void memseg_remap_init(void);
88 
89 /*
90  * External Data:
91  */
92 extern int vac_size;	/* cache size in bytes */
93 extern uint_t vac_mask;	/* VAC alignment consistency mask */
94 extern uint_t vac_colors;
95 
96 /*
97  * Global Data Definitions:
98  */
99 
100 /*
101  * XXX - Don't port this to new architectures
102  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
103  * 'romp' has no use with a prom with an IEEE 1275 client interface.
104  * The driver doesn't use the value, but it depends on the symbol.
105  */
106 void *romp;		/* veritas driver won't load without romp 4154976 */
107 /*
108  * Declare these as initialized data so we can patch them.
109  */
110 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
111 pgcnt_t segkpsize =
112     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
113 uint_t segmap_percent = 12; /* Size of segmap segment */
114 
115 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
116 int vac_copyback = 1;
117 char *cache_mode = NULL;
118 int use_mix = 1;
119 int prom_debug = 0;
120 int usb_node_debug = 0;
121 
122 struct bootops *bootops = 0;	/* passed in from boot in %o2 */
123 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
124 uint_t	tba_taken_over = 0;
125 
126 caddr_t s_text;			/* start of kernel text segment */
127 caddr_t e_text;			/* end of kernel text segment */
128 caddr_t s_data;			/* start of kernel data segment */
129 caddr_t e_data;			/* end of kernel data segment */
130 
131 caddr_t modtext;		/* beginning of module text */
132 size_t	modtext_sz;		/* size of module text */
133 caddr_t moddata;		/* beginning of module data reserve */
134 caddr_t e_moddata;		/* end of module data reserve */
135 
136 /*
137  * End of first block of contiguous kernel in 32-bit virtual address space
138  */
139 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
140 
141 caddr_t		ncbase;		/* beginning of non-cached segment */
142 caddr_t		ncend;		/* end of non-cached segment */
143 caddr_t		sdata;		/* beginning of data segment */
144 
145 caddr_t		extra_etva;	/* beginning of unused nucleus text */
146 pgcnt_t		extra_etpg;	/* number of pages of unused nucleus text */
147 
148 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
149 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
150 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
151 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
152 
153 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
154 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
155 
156 uintptr_t shm_alignment = 0;	/* VAC address consistency modulus */
157 struct memlist *phys_install;	/* Total installed physical memory */
158 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
159 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
160 struct memlist ndata;		/* memlist of nucleus allocatable memory */
161 int memexp_flag;		/* memory expansion card flag */
162 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
163 pgcnt_t obp_pages;		/* Physical pages used by OBP */
164 
165 /*
166  * VM data structures
167  */
168 long page_hashsz;		/* Size of page hash table (power of two) */
169 struct page *pp_base;		/* Base of system page struct array */
170 size_t pp_sz;			/* Size in bytes of page struct array */
171 struct page **page_hash;	/* Page hash table */
172 struct seg ktextseg;		/* Segment used for kernel executable image */
173 struct seg kvalloc;		/* Segment used for "valloc" mapping */
174 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
175 struct seg ktexthole;		/* Segment used for nucleus text hole */
176 struct seg kmapseg;		/* Segment used for generic kernel mappings */
177 struct seg kpmseg;		/* Segment used for physical mapping */
178 struct seg kdebugseg;		/* Segment used for the kernel debugger */
179 
180 uintptr_t kpm_pp_base;		/* Base of system kpm_page array */
181 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
182 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
183 
184 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
185 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
186 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
187 
188 /*
189  * debugger pages (if allocated)
190  */
191 struct vnode kdebugvp;
192 
193 /*
194  * Segment for relocated kernel structures in 64-bit large RAM kernels
195  */
196 struct seg kmem64;
197 
198 struct memseg *memseg_base;
199 size_t memseg_sz;		/* Used to translate a va to page */
200 struct vnode unused_pages_vp;
201 
202 /*
203  * VM data structures allocated early during boot.
204  */
205 size_t pagehash_sz;
206 uint64_t memlist_sz;
207 
208 char tbr_wr_addr_inited = 0;
209 
210 
211 /*
212  * Static Routines:
213  */
214 static void memlist_add(uint64_t, uint64_t, struct memlist **,
215 	struct memlist **);
216 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t,
217 	pgcnt_t);
218 static void kvm_init(void);
219 
220 static void startup_init(void);
221 static void startup_memlist(void);
222 static void startup_modules(void);
223 static void startup_bop_gone(void);
224 static void startup_vm(void);
225 static void startup_end(void);
226 static void setup_cage_params(void);
227 static void startup_create_input_node(void);
228 
229 static pgcnt_t npages;
230 static struct memlist *memlist;
231 void *memlist_end;
232 
233 static pgcnt_t bop_alloc_pages;
234 static caddr_t hblk_base;
235 uint_t hblk_alloc_dynamic = 0;
236 uint_t hblk1_min = H1MIN;
237 uint_t hblk8_min;
238 
239 
240 /*
241  * Hooks for unsupported platforms and down-rev firmware
242  */
243 int iam_positron(void);
244 #pragma weak iam_positron
245 static void do_prom_version_check(void);
246 static void kpm_init(void);
247 static void kpm_npages_setup(int);
248 static void kpm_memseg_init(void);
249 
250 /*
251  * After receiving a thermal interrupt, this is the number of seconds
252  * to delay before shutting off the system, assuming
253  * shutdown fails.  Use /etc/system to change the delay if this isn't
254  * large enough.
255  */
256 int thermal_powerdown_delay = 1200;
257 
258 /*
259  * Used to hold off page relocations into the cage until OBP has completed
260  * its boot-time handoff of its resources to the kernel.
261  */
262 int page_relocate_ready = 0;
263 
264 /*
265  * Enable some debugging messages concerning memory usage...
266  */
267 #ifdef  DEBUGGING_MEM
268 static int debugging_mem;
269 static void
270 printmemlist(char *title, struct memlist *list)
271 {
272 	if (!debugging_mem)
273 		return;
274 
275 	printf("%s\n", title);
276 
277 	while (list) {
278 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
279 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
280 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
281 		list = list->next;
282 	}
283 }
284 
285 void
286 printmemseg(struct memseg *memseg)
287 {
288 	if (!debugging_mem)
289 		return;
290 
291 	printf("memseg\n");
292 
293 	while (memseg) {
294 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
295 		    "pfn = 0x%x, epfn = 0x%x\n",
296 		    memseg->pages, memseg->epages,
297 		    memseg->pages_base, memseg->pages_end);
298 		memseg = memseg->next;
299 	}
300 }
301 
302 #define	debug_pause(str)	halt((str))
303 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
304 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
305 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
306 #define	MPRINTF3(str, a, b, c) \
307 	if (debugging_mem) prom_printf((str), (a), (b), (c))
308 #else	/* DEBUGGING_MEM */
309 #define	MPRINTF(str)
310 #define	MPRINTF1(str, a)
311 #define	MPRINTF2(str, a, b)
312 #define	MPRINTF3(str, a, b, c)
313 #endif	/* DEBUGGING_MEM */
314 
315 /* Simple message to indicate that the bootops pointer has been zeroed */
316 #ifdef DEBUG
317 static int bootops_gone_on = 0;
318 #define	BOOTOPS_GONE() \
319 	if (bootops_gone_on) \
320 		prom_printf("The bootops vec is zeroed now!\n");
321 #else
322 #define	BOOTOPS_GONE()
323 #endif /* DEBUG */
324 
325 /*
326  * Monitor pages may not be where this says they are.
327  * and the debugger may not be there either.
328  *
329  * Note that 'pages' here are *physical* pages, which are 8k on sun4u.
330  *
331  *                        Physical memory layout
332  *                     (not necessarily contiguous)
333  *                       (THIS IS SOMEWHAT WRONG)
334  *                       /-----------------------\
335  *                       |       monitor pages   |
336  *             availmem -|-----------------------|
337  *                       |                       |
338  *                       |       page pool       |
339  *                       |                       |
340  *                       |-----------------------|
341  *                       |   configured tables   |
342  *                       |       buffers         |
343  *            firstaddr -|-----------------------|
344  *                       |   hat data structures |
345  *                       |-----------------------|
346  *                       |    kernel data, bss   |
347  *                       |-----------------------|
348  *                       |    interrupt stack    |
349  *                       |-----------------------|
350  *                       |    kernel text (RO)   |
351  *                       |-----------------------|
352  *                       |    trap table (4k)    |
353  *                       |-----------------------|
354  *               page 1  |      panicbuf         |
355  *                       |-----------------------|
356  *               page 0  |       reclaimed       |
357  *                       |_______________________|
358  *
359  *
360  *
361  *                    Kernel's Virtual Memory Layout.
362  *                       /-----------------------\
363  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
364  *                       |   OBP's virtual page  |
365  *                       |        tables         |
366  * 0xFFFFFFFC.00000000  -|-----------------------|-
367  *                       :                       :
368  *                       :                       :
369  * 0xFFFFFE00.00000000  -|-----------------------|-
370  *                       |                       |  Ultrasparc I/II support
371  *                       |    segkpm segment     |  up to 2TB of physical
372  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
373  *                       |                       |
374  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
375  *                       :                       :
376  *                       :                       :
377  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
378  *                       |                       |      ^
379  *                       |  UltraSPARC I/II call |      |
380  *                       | bug requires an extra |      |
381  *                       | 4 GB of space between |      |
382  *                       |   hole and used RAM   |	|
383  *                       |                       |      |
384  * 0xFFFFF800.00000000  -|-----------------------|-     |
385  *                       |                       |      |
386  *                       | Virtual Address Hole  |   UltraSPARC
387  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
388  *                       |                       |      |
389  * 0x00000800.00000000  -|-----------------------|-     |
390  *                       |                       |      |
391  *                       |  UltraSPARC I/II call |      |
392  *                       | bug requires an extra |      |
393  *                       | 4 GB of space between |      |
394  *                       |   hole and used RAM   |      |
395  *                       |                       |      v
396  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
397  *                       :                       :		   ^
398  *                       :                       :		   |
399  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
400  *                       |                       |		   |
401  *                       |   64-bit kernel ONLY  |		   |
402  *                       |                       |		   |
403  *                       |    kmem64 segment     |		   |
404  *                       |                       |		   |
405  *                       | (Relocated extra HME  |	     Approximately
406  *                       |   block allocations,  |	    1 TB of virtual
407  *                       |   memnode freelists,  |	     address space
408  *                       |    HME hash buckets,  |		   |
409  *                       | mml_table, kpmp_table,|		   |
410  *                       |  page_t array and     |		   |
411  *                       |  hashblock pool to    |		   |
412  *                       |   avoid hard-coded    |		   |
413  *                       |     32-bit vaddr      |		   |
414  *                       |     limitations)      |		   |
415  *                       |                       |		   v
416  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
417  *                       |                       |
418  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
419  *                       |                       |
420  * 0x00000300.00000000  -|-----------------------|- SYSBASE
421  *                       :                       :
422  *                       :                       :
423  *                      -|-----------------------|-
424  *                       |                       |
425  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
426  *                       |                       |               256G MAX)
427  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
428  *                       :                       :
429  *                       :                       :
430  *                      -|-----------------------|-
431  *                       |                       |
432  *                       |       segkp           |    SEGKPSIZE (2GB)
433  *                       |                       |
434  *                       |                       |
435  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
436  *                       |                       |
437  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
438  *                       |                       |       (SEGKPBASE - 0x400000)
439  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
440  *                       |                       |       (MEMSCRUBBASE - NCARGS)
441  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
442  *                       |                       |       (ARGSBASE - PPMAPSIZE)
443  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
444  *                       |                       |
445  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
446  *                       |                       |
447  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
448  *                       :                       :
449  *                       :                       :
450  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
451  *                       |                       |
452  *                       |         OBP           |
453  *                       |                       |
454  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
455  *                       |         kmdb          |
456  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
457  *                       :                       :
458  *                       :                       :
459  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
460  *                       |                       |
461  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
462  *                       |                       |    ~64MB)
463  * 0x00000000.78002000  -|-----------------------|
464  *                       |     panicbuf          |
465  * 0x00000000.78000000  -|-----------------------|- SYSBASE32
466  *                       :                       :
467  *                       :                       :
468  *                       |                       |
469  *                       |-----------------------|- econtig32
470  *                       |    vm structures      |
471  * 0x00000000.01C00000   |-----------------------|- nalloc_end
472  *                       |         TSBs          |
473  *                       |-----------------------|- end/nalloc_base
474  *                       |   kernel data & bss   |
475  * 0x00000000.01800000  -|-----------------------|
476  *                       :   nucleus text hole   :
477  * 0x00000000.01400000  -|-----------------------|
478  *                       :                       :
479  *                       |-----------------------|
480  *                       |      module text      |
481  *                       |-----------------------|- e_text/modtext
482  *                       |      kernel text      |
483  *                       |-----------------------|
484  *                       |    trap table (48k)   |
485  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
486  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
487  *                       |-----------------------|
488  *                       |                       |
489  *                       |        invalid        |
490  *                       |                       |
491  * 0x00000000.00000000  _|_______________________|
492  *
493  *
494  *
495  *                   32-bit User Virtual Memory Layout.
496  *                       /-----------------------\
497  *                       |                       |
498  *                       |        invalid        |
499  *                       |                       |
500  *          0xFFC00000  -|-----------------------|- USERLIMIT
501  *                       |       user stack      |
502  *                       :                       :
503  *                       :                       :
504  *                       :                       :
505  *                       |       user data       |
506  *                      -|-----------------------|-
507  *                       |       user text       |
508  *          0x00002000  -|-----------------------|-
509  *                       |       invalid         |
510  *          0x00000000  _|_______________________|
511  *
512  *
513  *
514  *                   64-bit User Virtual Memory Layout.
515  *                       /-----------------------\
516  *                       |                       |
517  *                       |        invalid        |
518  *                       |                       |
519  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
520  *                       |       user stack      |
521  *                       :                       :
522  *                       :                       :
523  *                       :                       :
524  *                       |       user data       |
525  *                      -|-----------------------|-
526  *                       |       user text       |
527  *  0x00000000.00100000 -|-----------------------|-
528  *                       |       invalid         |
529  *  0x00000000.00000000 _|_______________________|
530  */
531 
532 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
533 extern uint64_t ecache_flush_address(void);
534 
535 #pragma weak load_platform_modules
536 #pragma weak starcat_startup_memlist
537 #pragma weak ecache_init_scrub_flush_area
538 #pragma weak ecache_flush_address
539 
540 
541 /*
542  * By default the DR Cage is enabled for maximum OS
543  * MPSS performance.  Users needing to disable the cage mechanism
544  * can set this variable to zero via /etc/system.
545  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
546  * will result in loss of DR functionality.
547  * Platforms wishing to disable kernel Cage by default
548  * should do so in their set_platform_defaults() routine.
549  */
550 int	kernel_cage_enable = 1;
551 
552 static void
553 setup_cage_params(void)
554 {
555 	void (*func)(void);
556 
557 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
558 	if (func != NULL) {
559 		(*func)();
560 		return;
561 	}
562 
563 	if (kernel_cage_enable == 0) {
564 		return;
565 	}
566 	kcage_range_lock();
567 	if (kcage_range_init(phys_avail, 1) == 0) {
568 		kcage_init(total_pages / 256);
569 	}
570 	kcage_range_unlock();
571 
572 	if (kcage_on) {
573 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
574 	} else {
575 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
576 	}
577 
578 }
579 
580 /*
581  * Machine-dependent startup code
582  */
583 void
584 startup(void)
585 {
586 	startup_init();
587 	if (&startup_platform)
588 		startup_platform();
589 	startup_memlist();
590 	startup_modules();
591 	setup_cage_params();
592 	startup_bop_gone();
593 	startup_vm();
594 	startup_end();
595 }
596 
597 struct regs sync_reg_buf;
598 uint64_t sync_tt;
599 
600 void
601 sync_handler(void)
602 {
603 	struct  trap_info 	ti;
604 	int i;
605 
606 	/*
607 	 * Prevent trying to talk to the other CPUs since they are
608 	 * sitting in the prom and won't reply.
609 	 */
610 	for (i = 0; i < NCPU; i++) {
611 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
612 			cpu[i]->cpu_flags &= ~CPU_READY;
613 			cpu[i]->cpu_flags |= CPU_QUIESCED;
614 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
615 		}
616 	}
617 
618 	/*
619 	 * We've managed to get here without going through the
620 	 * normal panic code path. Try and save some useful
621 	 * information.
622 	 */
623 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
624 		ti.trap_type = sync_tt;
625 		ti.trap_regs = &sync_reg_buf;
626 		ti.trap_addr = NULL;
627 		ti.trap_mmu_fsr = 0x0;
628 
629 		curthread->t_panic_trap = &ti;
630 	}
631 
632 	/*
633 	 * If we're re-entering the panic path, update the signature
634 	 * block so that the SC knows we're in the second part of panic.
635 	 */
636 	if (panicstr)
637 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
638 
639 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
640 	panic("sync initiated");
641 }
642 
643 
644 static void
645 startup_init(void)
646 {
647 	/*
648 	 * We want to save the registers while we're still in OBP
649 	 * so that we know they haven't been fiddled with since.
650 	 * (In principle, OBP can't change them just because it
651 	 * makes a callback, but we'd rather not depend on that
652 	 * behavior.)
653 	 */
654 	char		sync_str[] =
655 		"warning @ warning off : sync "
656 		"%%tl-c %%tstate h# %p x! "
657 		"%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
658 		"%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
659 		"%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
660 		"%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
661 		"%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
662 		"%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
663 		"%%y h# %p l! %%tl-c %%tt h# %p x! "
664 		"sync ; warning !";
665 
666 	/*
667 	 * 20 == num of %p substrings
668 	 * 16 == max num of chars %p will expand to.
669 	 */
670 	char 		bp[sizeof (sync_str) + 16 * 20];
671 
672 	(void) check_boot_version(BOP_GETVERSION(bootops));
673 
674 	/*
675 	 * Initialize ptl1 stack for the 1st CPU.
676 	 */
677 	ptl1_init_cpu(&cpu0);
678 
679 	/*
680 	 * Initialize the address map for cache consistent mappings
681 	 * to random pages; must be done after vac_size is set.
682 	 */
683 	ppmapinit();
684 
685 	/*
686 	 * Initialize the PROM callback handler.
687 	 */
688 	init_vx_handler();
689 
690 	/*
691 	 * have prom call sync_callback() to handle the sync and
692 	 * save some useful information which will be stored in the
693 	 * core file later.
694 	 */
695 	(void) sprintf((char *)bp, sync_str,
696 		(void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
697 		(void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
698 		(void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
699 		(void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
700 		(void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
701 		(void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
702 		(void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
703 		(void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
704 		(void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
705 		(void *)&sync_reg_buf.r_y, (void *)&sync_tt);
706 	prom_interpret(bp, 0, 0, 0, 0, 0);
707 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
708 }
709 
710 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
711 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
712 
713 #define	IVSIZE	((MAXIVNUM + 1) * sizeof (struct intr_vector))
714 
715 /*
716  * As OBP takes up some RAM when the system boots, pages will already be "lost"
717  * to the system and reflected in npages by the time we see it.
718  *
719  * We only want to allocate kernel structures in the 64-bit virtual address
720  * space on systems with enough RAM to make the overhead of keeping track of
721  * an extra kernel memory segment worthwhile.
722  *
723  * Since OBP has already performed its memory allocations by this point, if we
724  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
725  * memory in the 64-bit virtual address space; otherwise keep allocations
726  * contiguous with we've mapped so far in the 32-bit virtual address space.
727  */
728 #define	MINMOVE_RAM_MB	((size_t)1900)
729 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
730 
731 pgcnt_t	tune_npages = (pgcnt_t)
732 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
733 
734 static void
735 startup_memlist(void)
736 {
737 	size_t alloc_sz;
738 	size_t ctrs_sz;
739 	caddr_t alloc_base;
740 	caddr_t ctrs_base, ctrs_end;
741 	caddr_t memspace;
742 	caddr_t va;
743 	int memblocks = 0;
744 	struct memlist *cur;
745 	size_t syslimit = (size_t)SYSLIMIT;
746 	size_t sysbase = (size_t)SYSBASE;
747 	int alloc_alignsize = MMU_PAGESIZE;
748 	extern void page_coloring_init(void);
749 
750 	/*
751 	 * Initialize enough of the system to allow kmem_alloc to work by
752 	 * calling boot to allocate its memory until the time that
753 	 * kvm_init is completed.  The page structs are allocated after
754 	 * rounding up end to the nearest page boundary; the memsegs are
755 	 * initialized and the space they use comes from the kernel heap.
756 	 * With appropriate initialization, they can be reallocated later
757 	 * to a size appropriate for the machine's configuration.
758 	 *
759 	 * At this point, memory is allocated for things that will never
760 	 * need to be freed, this used to be "valloced".  This allows a
761 	 * savings as the pages don't need page structures to describe
762 	 * them because them will not be managed by the vm system.
763 	 */
764 
765 	/*
766 	 * We're loaded by boot with the following configuration (as
767 	 * specified in the sun4u/conf/Mapfile):
768 	 *
769 	 * 	text:		4 MB chunk aligned on a 4MB boundary
770 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
771 	 *
772 	 * These two chunks will eventually be mapped by 2 locked 4MB
773 	 * ttes and will represent the nucleus of the kernel.  This gives
774 	 * us some free space that is already allocated, some or all of
775 	 * which is made available to kernel module text.
776 	 *
777 	 * The free space in the data-bss chunk is used for nucleus
778 	 * allocatable data structures and we reserve it using the
779 	 * nalloc_base and nalloc_end variables.  This space is currently
780 	 * being used for hat data structures required for tlb miss
781 	 * handling operations.  We align nalloc_base to a l2 cache
782 	 * linesize because this is the line size the hardware uses to
783 	 * maintain cache coherency.
784 	 * 256K is carved out for module data.
785 	 */
786 
787 	nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
788 	moddata = nalloc_base;
789 	e_moddata = nalloc_base + MODDATA;
790 	nalloc_base = e_moddata;
791 
792 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
793 	valloc_base = nalloc_base;
794 
795 	/*
796 	 * Calculate the start of the data segment.
797 	 */
798 	sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M);
799 
800 	PRM_DEBUG(moddata);
801 	PRM_DEBUG(nalloc_base);
802 	PRM_DEBUG(nalloc_end);
803 	PRM_DEBUG(sdata);
804 
805 	/*
806 	 * Remember any slop after e_text so we can give it to the modules.
807 	 */
808 	PRM_DEBUG(e_text);
809 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
810 	if (((uintptr_t)modtext & MMU_PAGEMASK4M) != (uintptr_t)s_text)
811 		panic("nucleus text overflow");
812 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
813 	    modtext;
814 	PRM_DEBUG(modtext);
815 	PRM_DEBUG(modtext_sz);
816 
817 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
818 	    &boot_physavail, &boot_physavail_len,
819 	    &boot_virtavail, &boot_virtavail_len);
820 	/*
821 	 * Remember what the physically available highest page is
822 	 * so that dumpsys works properly, and find out how much
823 	 * memory is installed.
824 	 */
825 	installed_top_size_memlist_array(boot_physinstalled,
826 	    boot_physinstalled_len, &physmax, &physinstalled);
827 	PRM_DEBUG(physinstalled);
828 	PRM_DEBUG(physmax);
829 
830 	/* Fill out memory nodes config structure */
831 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
832 
833 	/*
834 	 * Get the list of physically available memory to size
835 	 * the number of page structures needed.
836 	 */
837 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
838 	/*
839 	 * This first snap shot of npages can represent the pages used
840 	 * by OBP's text and data approximately. This is used in the
841 	 * the calculation of the kernel size
842 	 */
843 	obp_pages = physinstalled - npages;
844 
845 
846 	/*
847 	 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the
848 	 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently
849 	 * 2MB) and any excess pages are put on physavail.  The assumption is
850 	 * that small-memory systems will need more pages more than they'll
851 	 * need efficiently-mapped module texts.
852 	 */
853 	if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) &&
854 	    modtext_sz > MODTEXT_SM_CAP) {
855 		extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP);
856 		modtext_sz = MODTEXT_SM_CAP;
857 	} else
858 		extra_etpg = 0;
859 	PRM_DEBUG(extra_etpg);
860 	PRM_DEBUG(modtext_sz);
861 	extra_etva = modtext + modtext_sz;
862 	PRM_DEBUG(extra_etva);
863 
864 	/*
865 	 * Account for any pages after e_text and e_data.
866 	 */
867 	npages += extra_etpg;
868 	npages += mmu_btopr(nalloc_end - nalloc_base);
869 	PRM_DEBUG(npages);
870 
871 	/*
872 	 * npages is the maximum of available physical memory possible.
873 	 * (ie. it will never be more than this)
874 	 */
875 
876 	/*
877 	 * initialize the nucleus memory allocator.
878 	 */
879 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
880 
881 	/*
882 	 * Allocate mmu fault status area from the nucleus data area.
883 	 */
884 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
885 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
886 
887 	/*
888 	 * Allocate kernel TSBs from the nucleus data area.
889 	 */
890 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
891 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
892 
893 	/*
894 	 * Allocate cpus structs from the nucleus data area.
895 	 */
896 	if (ndata_alloc_cpus(&ndata) != 0)
897 		cmn_err(CE_PANIC, "no more nucleus memory after cpu alloc");
898 
899 	/*
900 	 * Allocate dmv dispatch table from the nucleus data area.
901 	 */
902 	if (ndata_alloc_dmv(&ndata) != 0)
903 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
904 
905 
906 	page_coloring_init();
907 
908 	/*
909 	 * Allocate page_freelists bin headers for memnode 0 from the
910 	 * nucleus data area.
911 	 */
912 	if (ndata_alloc_page_freelists(&ndata, 0) != 0)
913 		cmn_err(CE_PANIC,
914 		    "no more nucleus memory after page free lists alloc");
915 
916 	if (kpm_enable) {
917 		kpm_init();
918 		/*
919 		 * kpm page space -- Update kpm_npages and make the
920 		 * same assumption about fragmenting as it is done
921 		 * for memseg_sz.
922 		 */
923 		kpm_npages_setup(memblocks + 4);
924 	}
925 
926 	/*
927 	 * Allocate hat related structs from the nucleus data area.
928 	 */
929 	if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0)
930 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
931 
932 	/*
933 	 * We want to do the BOP_ALLOCs before the real allocation of page
934 	 * structs in order to not have to allocate page structs for this
935 	 * memory.  We need to calculate a virtual address because we want
936 	 * the page structs to come before other allocations in virtual address
937 	 * space.  This is so some (if not all) of page structs can actually
938 	 * live in the nucleus.
939 	 */
940 
941 	/*
942 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
943 	 *
944 	 * There are comments all over the SFMMU code warning of dire
945 	 * consequences if the TSBs are moved out of 32-bit space.  This
946 	 * is largely because the asm code uses "sethi %hi(addr)"-type
947 	 * instructions which will not provide the expected result if the
948 	 * address is a 64-bit one.
949 	 *
950 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
951 	 */
952 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
953 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
954 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
955 	PRM_DEBUG(alloc_base);
956 
957 	/*
958 	 * Allocate IOMMU TSB array.  We do this here so that the physical
959 	 * memory gets deducted from the PROM's physical memory list.
960 	 */
961 	alloc_base = iommu_tsb_init(alloc_base);
962 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
963 	    ecache_alignsize);
964 	PRM_DEBUG(alloc_base);
965 
966 	/*
967 	 * Starcat needs its special structures assigned in 32-bit virtual
968 	 * address space because its probing routines execute FCode, and FCode
969 	 * can't handle 64-bit virtual addresses...
970 	 */
971 	if (&starcat_startup_memlist) {
972 		alloc_base = starcat_startup_memlist(alloc_base);
973 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
974 		    ecache_alignsize);
975 		PRM_DEBUG(alloc_base);
976 	}
977 
978 	/*
979 	 * If we have enough memory, use 4M pages for alignment because it
980 	 * greatly reduces the number of TLB misses we take albeit at the cost
981 	 * of possible RAM wastage (degenerate case of 4 MB - MMU_PAGESIZE per
982 	 * allocation.) Still, the speedup on large memory systems (e.g. > 64
983 	 * GB) is quite noticeable, so it is worth the effort to do if we can.
984 	 *
985 	 * Note, however, that this speedup will only occur if the boot PROM
986 	 * uses the largest possible MMU page size possible to map memory
987 	 * requests that are properly aligned and sized (for example, a request
988 	 * for a multiple of 4MB of memory aligned to a 4MB boundary will
989 	 * result in a mapping using a 4MB MMU page.)
990 	 *
991 	 * Even then, the large page mappings will only speed things up until
992 	 * the startup process proceeds a bit further, as when
993 	 * sfmmu_map_prom_mappings() copies page mappings from the PROM to the
994 	 * kernel it remaps everything but the TSBs using 8K pages anyway...
995 	 *
996 	 * At some point in the future, sfmmu_map_prom_mappings() will be
997 	 * rewritten to copy memory mappings to the kernel using the same MMU
998 	 * page sizes the PROM used.  When that occurs, if the PROM did use
999 	 * large MMU pages to map memory, the alignment/sizing work we're
1000 	 * doing now should give us a nice extra performance boost, albeit at
1001 	 * the cost of greater RAM usage...
1002 	 */
1003 	alloc_alignsize = ((npages >= tune_npages) ? MMU_PAGESIZE4M :
1004 	    MMU_PAGESIZE);
1005 
1006 	PRM_DEBUG(tune_npages);
1007 	PRM_DEBUG(alloc_alignsize);
1008 
1009 	/*
1010 	 * Save off where the contiguous allocations to date have ended
1011 	 * in econtig32.
1012 	 */
1013 	econtig32 = alloc_base;
1014 	PRM_DEBUG(econtig32);
1015 
1016 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1017 		cmn_err(CE_PANIC, "econtig32 too big");
1018 
1019 	/*
1020 	 * To avoid memory allocation collisions in the 32-bit virtual address
1021 	 * space, make allocations from this point forward in 64-bit virtual
1022 	 * address space starting at syslimit and working up.  Also use the
1023 	 * alignment specified by alloc_alignsize, as we may be able to save
1024 	 * ourselves TLB misses by using larger page sizes if they're
1025 	 * available.
1026 	 *
1027 	 * All this is needed because on large memory systems, the default
1028 	 * Solaris allocations will collide with SYSBASE32, which is hard
1029 	 * coded to be at the virtual address 0x78000000.  Therefore, on 64-bit
1030 	 * kernels, move the allocations to a location in the 64-bit virtual
1031 	 * address space space, allowing those structures to grow without
1032 	 * worry.
1033 	 *
1034 	 * On current CPUs we'll run out of physical memory address bits before
1035 	 * we need to worry about the allocations running into anything else in
1036 	 * VM or the virtual address holes on US-I and II, as there's currently
1037 	 * about 1 TB of addressable space before the US-I/II VA hole.
1038 	 */
1039 	kmem64_base = (caddr_t)syslimit;
1040 	PRM_DEBUG(kmem64_base);
1041 
1042 	alloc_base = (caddr_t)roundup((uintptr_t)kmem64_base, alloc_alignsize);
1043 
1044 	/*
1045 	 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate
1046 	 * them here.
1047 	 */
1048 	if (khme_hash == NULL || uhme_hash == NULL) {
1049 		/*
1050 		 * alloc_hme_buckets() will align alloc_base properly before
1051 		 * assigning the hash buckets, so we don't need to do it
1052 		 * before the call...
1053 		 */
1054 		alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize);
1055 
1056 		PRM_DEBUG(alloc_base);
1057 		PRM_DEBUG(khme_hash);
1058 		PRM_DEBUG(uhme_hash);
1059 	}
1060 
1061 	/*
1062 	 * Allocate the remaining page freelists.  NUMA systems can
1063 	 * have lots of page freelists, one per node, which quickly
1064 	 * outgrow the amount of nucleus memory available.
1065 	 */
1066 	if (max_mem_nodes > 1) {
1067 		int mnode;
1068 		caddr_t alloc_start = alloc_base;
1069 
1070 		for (mnode = 1; mnode < max_mem_nodes; mnode++) {
1071 			alloc_base = alloc_page_freelists(mnode, alloc_base,
1072 				ecache_alignsize);
1073 		}
1074 
1075 		if (alloc_base > alloc_start) {
1076 			alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1077 				alloc_alignsize);
1078 			if ((caddr_t)BOP_ALLOC(bootops, alloc_start,
1079 				alloc_base - alloc_start,
1080 				alloc_alignsize) != alloc_start)
1081 				cmn_err(CE_PANIC,
1082 					"Unable to alloc page freelists\n");
1083 		}
1084 
1085 		PRM_DEBUG(alloc_base);
1086 	}
1087 
1088 	if (!mml_table) {
1089 		size_t mmltable_sz;
1090 
1091 		/*
1092 		 * We need to allocate the mml_table here because there
1093 		 * was not enough space within the nucleus.
1094 		 */
1095 		mmltable_sz = sizeof (kmutex_t) * mml_table_sz;
1096 		alloc_sz = roundup(mmltable_sz, alloc_alignsize);
1097 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1098 		    alloc_alignsize);
1099 
1100 		if ((mml_table = (kmutex_t *)BOP_ALLOC(bootops, alloc_base,
1101 		    alloc_sz, alloc_alignsize)) != (kmutex_t *)alloc_base)
1102 			panic("mml_table alloc failure");
1103 
1104 		alloc_base += alloc_sz;
1105 		PRM_DEBUG(mml_table);
1106 		PRM_DEBUG(alloc_base);
1107 	}
1108 
1109 	if (kpm_enable && !(kpmp_table || kpmp_stable)) {
1110 		size_t kpmptable_sz;
1111 		caddr_t table;
1112 
1113 		/*
1114 		 * We need to allocate either kpmp_table or kpmp_stable here
1115 		 * because there was not enough space within the nucleus.
1116 		 */
1117 		kpmptable_sz = (kpm_smallpages == 0) ?
1118 				sizeof (kpm_hlk_t) * kpmp_table_sz :
1119 				sizeof (kpm_shlk_t) * kpmp_stable_sz;
1120 
1121 		alloc_sz = roundup(kpmptable_sz, alloc_alignsize);
1122 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1123 		    alloc_alignsize);
1124 
1125 		table = BOP_ALLOC(bootops, alloc_base, alloc_sz,
1126 				alloc_alignsize);
1127 
1128 		if (table != alloc_base)
1129 			panic("kpmp_table or kpmp_stable alloc failure");
1130 
1131 		if (kpm_smallpages == 0) {
1132 			kpmp_table = (kpm_hlk_t *)table;
1133 			PRM_DEBUG(kpmp_table);
1134 		} else {
1135 			kpmp_stable = (kpm_shlk_t *)table;
1136 			PRM_DEBUG(kpmp_stable);
1137 		}
1138 
1139 		alloc_base += alloc_sz;
1140 		PRM_DEBUG(alloc_base);
1141 	}
1142 
1143 	if (&ecache_init_scrub_flush_area) {
1144 		/*
1145 		 * Pass alloc_base directly, as the routine itself is
1146 		 * responsible for any special alignment requirements...
1147 		 */
1148 		alloc_base = ecache_init_scrub_flush_area(alloc_base);
1149 		PRM_DEBUG(alloc_base);
1150 	}
1151 
1152 	/*
1153 	 * Take the most current snapshot we can by calling mem-update.
1154 	 */
1155 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1156 	    &boot_physavail, &boot_physavail_len,
1157 	    &boot_virtavail, &boot_virtavail_len);
1158 
1159 	/*
1160 	 * Reset npages and memblocks based on boot_physavail list.
1161 	 */
1162 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
1163 	PRM_DEBUG(npages);
1164 
1165 	/*
1166 	 * Account for extra memory after e_text.
1167 	 */
1168 	npages += extra_etpg;
1169 
1170 	/*
1171 	 * Calculate the largest free memory chunk in the nucleus data area.
1172 	 * We need to figure out if page structs can fit in there or not.
1173 	 * We also make sure enough page structs get created for any physical
1174 	 * memory we might be returning to the system.
1175 	 */
1176 	ndata_remain_sz = ndata_maxsize(&ndata);
1177 	PRM_DEBUG(ndata_remain_sz);
1178 
1179 	pp_sz = sizeof (struct page) * npages;
1180 
1181 	/*
1182 	 * Here's a nice bit of code based on somewhat recursive logic:
1183 	 *
1184 	 * If the page array would fit within the nucleus, we want to
1185 	 * add npages to cover any extra memory we may be returning back
1186 	 * to the system.
1187 	 *
1188 	 * HOWEVER, the page array is sized by calculating the size of
1189 	 * (struct page * npages), as are the pagehash table, ctrs and
1190 	 * memseg_list, so the very act of performing the calculation below may
1191 	 * in fact make the array large enough that it no longer fits in the
1192 	 * nucleus, meaning there would now be a much larger area of the
1193 	 * nucleus free that should really be added to npages, which would
1194 	 * make the page array that much larger, and so on.
1195 	 *
1196 	 * This also ignores the memory possibly used in the nucleus for the
1197 	 * the page hash, ctrs and memseg list and the fact that whether they
1198 	 * fit there or not varies with the npages calculation below, but we
1199 	 * don't even factor them into the equation at this point; perhaps we
1200 	 * should or perhaps we should just take the approach that the few
1201 	 * extra pages we could add via this calculation REALLY aren't worth
1202 	 * the hassle...
1203 	 */
1204 	if (ndata_remain_sz > pp_sz) {
1205 		size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize);
1206 
1207 		npages += mmu_btop(spare);
1208 
1209 		pp_sz = npages * sizeof (struct page);
1210 
1211 		pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize);
1212 	}
1213 
1214 	/*
1215 	 * If physmem is patched to be non-zero, use it instead of
1216 	 * the monitor value unless physmem is larger than the total
1217 	 * amount of memory on hand.
1218 	 */
1219 	if (physmem == 0 || physmem > npages)
1220 		physmem = npages;
1221 
1222 	/*
1223 	 * If pp_base is NULL that means the routines above have determined
1224 	 * the page array will not fit in the nucleus; we'll have to
1225 	 * BOP_ALLOC() ourselves some space for them.
1226 	 */
1227 	if (pp_base == NULL) {
1228 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1229 		    alloc_alignsize);
1230 
1231 		alloc_sz = roundup(pp_sz, alloc_alignsize);
1232 
1233 		if ((pp_base = (struct page *)BOP_ALLOC(bootops,
1234 		    alloc_base, alloc_sz, alloc_alignsize)) !=
1235 		    (struct page *)alloc_base)
1236 			panic("page alloc failure");
1237 
1238 		alloc_base += alloc_sz;
1239 	}
1240 
1241 	/*
1242 	 * The page structure hash table size is a power of 2
1243 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1244 	 */
1245 	page_hashsz = npages / PAGE_HASHAVELEN;
1246 	page_hashsz = 1 << highbit((ulong_t)page_hashsz);
1247 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1248 
1249 	/*
1250 	 * We want to TRY to fit the page structure hash table,
1251 	 * the page size free list counters, the memseg list and
1252 	 * and the kpm page space in the nucleus if possible.
1253 	 *
1254 	 * alloc_sz counts how much memory needs to be allocated by
1255 	 * BOP_ALLOC().
1256 	 */
1257 	page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize);
1258 
1259 	alloc_sz = (page_hash == NULL ? pagehash_sz : 0);
1260 
1261 	/*
1262 	 * Size up per page size free list counters.
1263 	 */
1264 	ctrs_sz = page_ctrs_sz();
1265 	ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize);
1266 
1267 	if (ctrs_base == NULL)
1268 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz;
1269 
1270 	/*
1271 	 * The memseg list is for the chunks of physical memory that
1272 	 * will be managed by the vm system.  The number calculated is
1273 	 * a guess as boot may fragment it more when memory allocations
1274 	 * are made before kphysm_init().  Currently, there are two
1275 	 * allocations before then, so we assume each causes fragmen-
1276 	 * tation, and add a couple more for good measure.
1277 	 */
1278 	memseg_sz = sizeof (struct memseg) * (memblocks + 4);
1279 	memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize);
1280 
1281 	if (memseg_base == NULL)
1282 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz;
1283 
1284 
1285 	if (kpm_enable) {
1286 		/*
1287 		 * kpm page space -- Update kpm_npages and make the
1288 		 * same assumption about fragmenting as it is done
1289 		 * for memseg_sz above.
1290 		 */
1291 		kpm_npages_setup(memblocks + 4);
1292 		kpm_pp_sz = (kpm_smallpages == 0) ?
1293 				kpm_npages * sizeof (kpm_page_t):
1294 				kpm_npages * sizeof (kpm_spage_t);
1295 
1296 		kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz,
1297 		    ecache_alignsize);
1298 
1299 		if (kpm_pp_base == NULL)
1300 			alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1301 			    kpm_pp_sz;
1302 	}
1303 
1304 	if (alloc_sz > 0) {
1305 		uintptr_t bop_base;
1306 
1307 		/*
1308 		 * We need extra memory allocated through BOP_ALLOC.
1309 		 */
1310 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1311 		    alloc_alignsize);
1312 
1313 		alloc_sz = roundup(alloc_sz, alloc_alignsize);
1314 
1315 		if ((bop_base = (uintptr_t)BOP_ALLOC(bootops, alloc_base,
1316 		    alloc_sz, alloc_alignsize)) != (uintptr_t)alloc_base)
1317 			panic("system page struct alloc failure");
1318 
1319 		alloc_base += alloc_sz;
1320 
1321 		if (page_hash == NULL) {
1322 			page_hash = (struct page **)bop_base;
1323 			bop_base = roundup(bop_base + pagehash_sz,
1324 			    ecache_alignsize);
1325 		}
1326 
1327 		if (ctrs_base == NULL) {
1328 			ctrs_base = (caddr_t)bop_base;
1329 			bop_base = roundup(bop_base + ctrs_sz,
1330 			    ecache_alignsize);
1331 		}
1332 
1333 		if (memseg_base == NULL) {
1334 			memseg_base = (struct memseg *)bop_base;
1335 			bop_base = roundup(bop_base + memseg_sz,
1336 			    ecache_alignsize);
1337 		}
1338 
1339 		if (kpm_enable && kpm_pp_base == NULL) {
1340 			kpm_pp_base = (uintptr_t)bop_base;
1341 			bop_base = roundup(bop_base + kpm_pp_sz,
1342 			    ecache_alignsize);
1343 		}
1344 
1345 		ASSERT(bop_base <= (uintptr_t)alloc_base);
1346 	}
1347 
1348 	/*
1349 	 * Initialize per page size free list counters.
1350 	 */
1351 	ctrs_end = page_ctrs_alloc(ctrs_base);
1352 	ASSERT(ctrs_base + ctrs_sz >= ctrs_end);
1353 
1354 	PRM_DEBUG(page_hash);
1355 	PRM_DEBUG(memseg_base);
1356 	PRM_DEBUG(kpm_pp_base);
1357 	PRM_DEBUG(kpm_pp_sz);
1358 	PRM_DEBUG(pp_base);
1359 	PRM_DEBUG(pp_sz);
1360 	PRM_DEBUG(alloc_base);
1361 
1362 #ifdef	TRAPTRACE
1363 	/*
1364 	 * Allocate trap trace buffer last so as not to affect
1365 	 * the 4M alignments of the allocations above on V9 SPARCs...
1366 	 */
1367 	alloc_base = trap_trace_alloc(alloc_base);
1368 	PRM_DEBUG(alloc_base);
1369 #endif	/* TRAPTRACE */
1370 
1371 	if (kmem64_base) {
1372 		/*
1373 		 * Set the end of the kmem64 segment for V9 SPARCs, if
1374 		 * appropriate...
1375 		 */
1376 		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base,
1377 		    alloc_alignsize);
1378 
1379 		PRM_DEBUG(kmem64_base);
1380 		PRM_DEBUG(kmem64_end);
1381 	}
1382 
1383 	/*
1384 	 * Allocate space for the interrupt vector table.
1385 	 */
1386 	memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vector,
1387 	    IVSIZE, MMU_PAGESIZE);
1388 	if (memspace != (caddr_t)intr_vector)
1389 		panic("interrupt table allocation failure");
1390 
1391 	/*
1392 	 * The memory lists from boot are allocated from the heap arena
1393 	 * so that later they can be freed and/or reallocated.
1394 	 */
1395 	if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1)
1396 		panic("could not retrieve property \"extent\"");
1397 
1398 	/*
1399 	 * Between now and when we finish copying in the memory lists,
1400 	 * allocations happen so the space gets fragmented and the
1401 	 * lists longer.  Leave enough space for lists twice as long
1402 	 * as what boot says it has now; roundup to a pagesize.
1403 	 * Also add space for the final phys-avail copy in the fixup
1404 	 * routine.
1405 	 */
1406 	va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE +
1407 	    roundup(IVSIZE, MMU_PAGESIZE));
1408 	memlist_sz *= 4;
1409 	memlist_sz = roundup(memlist_sz, MMU_PAGESIZE);
1410 	memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN);
1411 	if (memspace == NULL)
1412 		halt("Boot allocation failed.");
1413 
1414 	memlist = (struct memlist *)memspace;
1415 	memlist_end = (char *)memspace + memlist_sz;
1416 
1417 	PRM_DEBUG(memlist);
1418 	PRM_DEBUG(memlist_end);
1419 	PRM_DEBUG(sysbase);
1420 	PRM_DEBUG(syslimit);
1421 
1422 	kernelheap_init((void *)sysbase, (void *)syslimit,
1423 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1424 
1425 	/*
1426 	 * Take the most current snapshot we can by calling mem-update.
1427 	 */
1428 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1429 	    &boot_physavail, &boot_physavail_len,
1430 	    &boot_virtavail, &boot_virtavail_len);
1431 
1432 	/*
1433 	 * Remove the space used by BOP_ALLOC from the kernel heap
1434 	 * plus the area actually used by the OBP (if any)
1435 	 * ignoring virtual addresses in virt_avail, above syslimit.
1436 	 */
1437 	virt_avail = memlist;
1438 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1439 
1440 	for (cur = virt_avail; cur->next; cur = cur->next) {
1441 		uint64_t range_base, range_size;
1442 
1443 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1444 			continue;
1445 		if (range_base >= (uint64_t)syslimit)
1446 			break;
1447 		/*
1448 		 * Limit the range to end at syslimit.
1449 		 */
1450 		range_size = MIN(cur->next->address,
1451 		    (uint64_t)syslimit) - range_base;
1452 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1453 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1454 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1455 	}
1456 
1457 	phys_avail = memlist;
1458 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1459 	    &memlist, 0, 0);
1460 
1461 	/*
1462 	 * Add any extra memory after e_text to the phys_avail list, as long
1463 	 * as there's at least a page to add.
1464 	 */
1465 	if (extra_etpg)
1466 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1467 		    &memlist, &phys_avail);
1468 
1469 	/*
1470 	 * Add any extra memory after e_data to the phys_avail list as long
1471 	 * as there's at least a page to add.  Usually, there isn't any,
1472 	 * since extra HME blocks typically get allocated there first before
1473 	 * using RAM elsewhere.
1474 	 */
1475 	if ((nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE)) == NULL)
1476 		nalloc_base = nalloc_end;
1477 	ndata_remain_sz = nalloc_end - nalloc_base;
1478 
1479 	if (ndata_remain_sz >= MMU_PAGESIZE)
1480 		memlist_add(va_to_pa(nalloc_base),
1481 		    (uint64_t)ndata_remain_sz, &memlist, &phys_avail);
1482 
1483 	PRM_DEBUG(memlist);
1484 	PRM_DEBUG(memlist_sz);
1485 	PRM_DEBUG(memspace);
1486 
1487 	if ((caddr_t)memlist > (memspace + memlist_sz))
1488 		panic("memlist overflow");
1489 
1490 	PRM_DEBUG(pp_base);
1491 	PRM_DEBUG(memseg_base);
1492 	PRM_DEBUG(npages);
1493 
1494 	/*
1495 	 * Initialize the page structures from the memory lists.
1496 	 */
1497 	kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages);
1498 
1499 	availrmem_initial = availrmem = freemem;
1500 	PRM_DEBUG(availrmem);
1501 
1502 	/*
1503 	 * Some of the locks depend on page_hashsz being set!
1504 	 * kmem_init() depends on this; so, keep it here.
1505 	 */
1506 	page_lock_init();
1507 
1508 	/*
1509 	 * Initialize kernel memory allocator.
1510 	 */
1511 	kmem_init();
1512 
1513 	/*
1514 	 * Initialize bp_mapin().
1515 	 */
1516 	bp_init(shm_alignment, HAT_STRICTORDER);
1517 
1518 	/*
1519 	 * Reserve space for panicbuf and intr_vector from the 32-bit heap
1520 	 */
1521 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1522 	    panicbuf, panicbuf + PANICBUFSIZE,
1523 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1524 
1525 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1526 	    intr_vector, (caddr_t)intr_vector + IVSIZE,
1527 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1528 
1529 	mem_config_init();
1530 }
1531 
1532 static void
1533 startup_modules(void)
1534 {
1535 	int proplen, nhblk1, nhblk8;
1536 	size_t  nhblksz;
1537 	pgcnt_t hblk_pages, pages_per_hblk;
1538 	size_t hme8blk_sz, hme1blk_sz;
1539 
1540 	/*
1541 	 * Log any optional messages from the boot program
1542 	 */
1543 	proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message");
1544 	if (proplen > 0) {
1545 		char *msg;
1546 		size_t len = (size_t)proplen;
1547 
1548 		msg = kmem_zalloc(len, KM_SLEEP);
1549 		(void) BOP_GETPROP(bootops, "boot-message", msg);
1550 		cmn_err(CE_CONT, "?%s\n", msg);
1551 		kmem_free(msg, len);
1552 	}
1553 
1554 	/*
1555 	 * Let the platforms have a chance to change default
1556 	 * values before reading system file.
1557 	 */
1558 	if (&set_platform_defaults)
1559 		set_platform_defaults();
1560 
1561 	/*
1562 	 * Calculate default settings of system parameters based upon
1563 	 * maxusers, yet allow to be overridden via the /etc/system file.
1564 	 */
1565 	param_calc(0);
1566 
1567 	mod_setup();
1568 
1569 	/*
1570 	 * If this is a positron, complain and halt.
1571 	 */
1572 	if (&iam_positron && iam_positron()) {
1573 		cmn_err(CE_WARN, "This hardware platform is not supported"
1574 		    " by this release of Solaris.\n");
1575 #ifdef DEBUG
1576 		prom_enter_mon();	/* Type 'go' to resume */
1577 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1578 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1579 
1580 #else /* DEBUG */
1581 		halt(0);
1582 #endif /* DEBUG */
1583 	}
1584 
1585 	/*
1586 	 * If we are running firmware that isn't 64-bit ready
1587 	 * then complain and halt.
1588 	 */
1589 	do_prom_version_check();
1590 
1591 	/*
1592 	 * Initialize system parameters
1593 	 */
1594 	param_init();
1595 
1596 	/*
1597 	 * maxmem is the amount of physical memory we're playing with.
1598 	 */
1599 	maxmem = physmem;
1600 
1601 	/* Set segkp limits. */
1602 	ncbase = (caddr_t)SEGDEBUGBASE;
1603 	ncend = (caddr_t)SEGDEBUGBASE;
1604 
1605 	/*
1606 	 * Initialize the hat layer.
1607 	 */
1608 	hat_init();
1609 
1610 	/*
1611 	 * Initialize segment management stuff.
1612 	 */
1613 	seg_init();
1614 
1615 	/*
1616 	 * Create the va>tte handler, so the prom can understand
1617 	 * kernel translations.  The handler is installed later, just
1618 	 * as we are about to take over the trap table from the prom.
1619 	 */
1620 	create_va_to_tte();
1621 
1622 	/*
1623 	 * Load the forthdebugger (optional)
1624 	 */
1625 	forthdebug_init();
1626 
1627 	/*
1628 	 * Create OBP node for console input callbacks
1629 	 * if it is needed.
1630 	 */
1631 	startup_create_input_node();
1632 
1633 	if (modloadonly("fs", "specfs") == -1)
1634 		halt("Can't load specfs");
1635 
1636 	if (modloadonly("fs", "devfs") == -1)
1637 		halt("Can't load devfs");
1638 
1639 	if (modloadonly("misc", "swapgeneric") == -1)
1640 		halt("Can't load swapgeneric");
1641 
1642 	dispinit();
1643 
1644 	/*
1645 	 * Infer meanings to the members of the idprom buffer.
1646 	 */
1647 	parse_idprom();
1648 
1649 	/* Read cluster configuration data. */
1650 	clconf_init();
1651 
1652 	setup_ddi();
1653 
1654 	/*
1655 	 * Lets take this opportunity to load the root device.
1656 	 */
1657 	if (loadrootmodules() != 0)
1658 		debug_enter("Can't load the root filesystem");
1659 
1660 	/*
1661 	 * Load tod driver module for the tod part found on this system.
1662 	 * Recompute the cpu frequency/delays based on tod as tod part
1663 	 * tends to keep time more accurately.
1664 	 */
1665 	if (&load_tod_module)
1666 		load_tod_module();
1667 
1668 	/*
1669 	 * Allow platforms to load modules which might
1670 	 * be needed after bootops are gone.
1671 	 */
1672 	if (&load_platform_modules)
1673 		load_platform_modules();
1674 
1675 	setcpudelay();
1676 
1677 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1678 	    &boot_physavail, &boot_physavail_len,
1679 	    &boot_virtavail, &boot_virtavail_len);
1680 
1681 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1682 
1683 	/*
1684 	 * Calculation and allocation of hmeblks needed to remap
1685 	 * the memory allocated by PROM till now:
1686 	 *
1687 	 * (1)  calculate how much virtual memory has been bop_alloc'ed.
1688 	 * (2)  roundup this memory to span of hme8blk, i.e. 64KB
1689 	 * (3)  calculate number of hme8blk's needed to remap this memory
1690 	 * (4)  calculate amount of memory that's consumed by these hme8blk's
1691 	 * (5)  add memory calculated in steps (2) and (4) above.
1692 	 * (6)  roundup this memory to span of hme8blk, i.e. 64KB
1693 	 * (7)  calculate number of hme8blk's needed to remap this memory
1694 	 * (8)  calculate amount of memory that's consumed by these hme8blk's
1695 	 * (9)  allocate additional hme1blk's to hold large mappings.
1696 	 *	H8TOH1 determines this.  The current SWAG gives enough hblk1's
1697 	 *	to remap everything with 4M mappings.
1698 	 * (10) account for partially used hblk8's due to non-64K aligned
1699 	 *	PROM mapping entries.
1700 	 * (11) add memory calculated in steps (8), (9), and (10) above.
1701 	 * (12) kmem_zalloc the memory calculated in (11); since segkmem
1702 	 *	is not ready yet, this gets bop_alloc'ed.
1703 	 * (13) there will be very few bop_alloc's after this point before
1704 	 *	trap table takes over
1705 	 */
1706 
1707 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures. */
1708 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1709 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1710 
1711 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1712 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1713 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1714 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1715 	hblk_pages = btopr(nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz);
1716 	bop_alloc_pages += hblk_pages;
1717 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1718 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1719 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1720 	if (nhblk1 < hblk1_min)
1721 		nhblk1 = hblk1_min;
1722 	if (nhblk8 < hblk8_min)
1723 		nhblk8 = hblk8_min;
1724 
1725 	/*
1726 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1727 	 * boundary, the number of hblk8's needed to map the entries in the
1728 	 * boot_virtavail list needs to be adjusted to take this into
1729 	 * consideration.  Thus, we need to add additional hblk8's since it
1730 	 * is possible that an hblk8 will not have all 8 slots used due to
1731 	 * alignment constraints.  Since there were boot_virtavail_len entries
1732 	 * in that list, we need to add that many hblk8's to the number
1733 	 * already calculated to make sure we don't underestimate.
1734 	 */
1735 	nhblk8 += boot_virtavail_len;
1736 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1737 
1738 	/* Allocate in pagesize chunks */
1739 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1740 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1741 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1742 }
1743 
1744 static void
1745 startup_bop_gone(void)
1746 {
1747 	extern int bop_io_quiesced;
1748 
1749 	/*
1750 	 * Call back into boot and release boots resources.
1751 	 */
1752 	BOP_QUIESCE_IO(bootops);
1753 	bop_io_quiesced = 1;
1754 
1755 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1756 	    &boot_physavail, &boot_physavail_len,
1757 	    &boot_virtavail, &boot_virtavail_len);
1758 	/*
1759 	 * Copy physinstalled list into kernel space.
1760 	 */
1761 	phys_install = memlist;
1762 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1763 
1764 	/*
1765 	 * setup physically contiguous area twice as large as the ecache.
1766 	 * this is used while doing displacement flush of ecaches
1767 	 */
1768 	if (&ecache_flush_address) {
1769 		ecache_flushaddr = ecache_flush_address();
1770 		if (ecache_flushaddr == (uint64_t)-1) {
1771 			cmn_err(CE_PANIC,
1772 			    "startup: no memory to set ecache_flushaddr");
1773 		}
1774 	}
1775 
1776 	/*
1777 	 * Virtual available next.
1778 	 */
1779 	ASSERT(virt_avail != NULL);
1780 	memlist_free_list(virt_avail);
1781 	virt_avail = memlist;
1782 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1783 
1784 	/*
1785 	 * Last chance to ask our booter questions ..
1786 	 */
1787 }
1788 
1789 
1790 /*
1791  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1792  * allocations have been performed.  We can't call it in startup_bop_gone
1793  * since later operations can cause obp to allocate more memory.
1794  */
1795 void
1796 startup_fixup_physavail(void)
1797 {
1798 	struct memlist *cur;
1799 
1800 	/*
1801 	 * take the most current snapshot we can by calling mem-update
1802 	 */
1803 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1804 	    &boot_physavail, &boot_physavail_len,
1805 	    &boot_virtavail, &boot_virtavail_len);
1806 
1807 	/*
1808 	 * Copy phys_avail list, again.
1809 	 * Both the kernel/boot and the prom have been allocating
1810 	 * from the original list we copied earlier.
1811 	 */
1812 	cur = memlist;
1813 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1814 	    &memlist, 0, 0);
1815 
1816 	/*
1817 	 * Add any extra memory after e_text we added to the phys_avail list
1818 	 * back to the old list.
1819 	 */
1820 	if (extra_etpg)
1821 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1822 		    &memlist, &cur);
1823 	if (ndata_remain_sz >= MMU_PAGESIZE)
1824 		memlist_add(va_to_pa(nalloc_base),
1825 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1826 
1827 	/*
1828 	 * There isn't any bounds checking on the memlist area
1829 	 * so ensure it hasn't overgrown.
1830 	 */
1831 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1832 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1833 
1834 	/*
1835 	 * The kernel removes the pages that were allocated for it from
1836 	 * the freelist, but we now have to find any -extra- pages that
1837 	 * the prom has allocated for it's own book-keeping, and remove
1838 	 * them from the freelist too. sigh.
1839 	 */
1840 	fix_prom_pages(phys_avail, cur);
1841 
1842 	ASSERT(phys_avail != NULL);
1843 	memlist_free_list(phys_avail);
1844 	phys_avail = cur;
1845 
1846 	/*
1847 	 * We're done with boot.  Just after this point in time, boot
1848 	 * gets unmapped, so we can no longer rely on its services.
1849 	 * Zero the bootops to indicate this fact.
1850 	 */
1851 	bootops = (struct bootops *)NULL;
1852 	BOOTOPS_GONE();
1853 }
1854 
1855 static void
1856 startup_vm(void)
1857 {
1858 	size_t	i;
1859 	struct segmap_crargs a;
1860 	struct segkpm_crargs b;
1861 
1862 	uint64_t avmem;
1863 	caddr_t va;
1864 	pgcnt_t	max_phys_segkp;
1865 	int	mnode;
1866 
1867 	extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg;
1868 
1869 	/*
1870 	 * get prom's mappings, create hments for them and switch
1871 	 * to the kernel context.
1872 	 */
1873 	hat_kern_setup();
1874 
1875 	/*
1876 	 * Take over trap table
1877 	 */
1878 	setup_trap_table();
1879 
1880 	/*
1881 	 * Install the va>tte handler, so that the prom can handle
1882 	 * misses and understand the kernel table layout in case
1883 	 * we need call into the prom.
1884 	 */
1885 	install_va_to_tte();
1886 
1887 	/*
1888 	 * Set a flag to indicate that the tba has been taken over.
1889 	 */
1890 	tba_taken_over = 1;
1891 
1892 	/* initialize MMU primary context register */
1893 	mmu_init_kcontext();
1894 
1895 	/*
1896 	 * The boot cpu can now take interrupts, x-calls, x-traps
1897 	 */
1898 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1899 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1900 
1901 	/*
1902 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1903 	 */
1904 	tbr_wr_addr_inited = 1;
1905 
1906 	/*
1907 	 * Initialize VM system, and map kernel address space.
1908 	 */
1909 	kvm_init();
1910 
1911 	/*
1912 	 * XXX4U: previously, we initialized and turned on
1913 	 * the caches at this point. But of course we have
1914 	 * nothing to do, as the prom has already done this
1915 	 * for us -- main memory must be E$able at all times.
1916 	 */
1917 
1918 	/*
1919 	 * If the following is true, someone has patched
1920 	 * phsymem to be less than the number of pages that
1921 	 * the system actually has.  Remove pages until system
1922 	 * memory is limited to the requested amount.  Since we
1923 	 * have allocated page structures for all pages, we
1924 	 * correct the amount of memory we want to remove
1925 	 * by the size of the memory used to hold page structures
1926 	 * for the non-used pages.
1927 	 */
1928 	if (physmem < npages) {
1929 		pgcnt_t diff, off;
1930 		struct page *pp;
1931 		struct seg kseg;
1932 
1933 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1934 
1935 		off = 0;
1936 		diff = npages - physmem;
1937 		diff -= mmu_btopr(diff * sizeof (struct page));
1938 		kseg.s_as = &kas;
1939 		while (diff--) {
1940 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1941 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1942 			    &kseg, (caddr_t)off);
1943 			if (pp == NULL)
1944 				cmn_err(CE_PANIC, "limited physmem too much!");
1945 			page_io_unlock(pp);
1946 			page_downgrade(pp);
1947 			availrmem--;
1948 			off += MMU_PAGESIZE;
1949 		}
1950 	}
1951 
1952 	/*
1953 	 * When printing memory, show the total as physmem less
1954 	 * that stolen by a debugger.
1955 	 */
1956 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1957 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1958 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1959 
1960 	avmem = (uint64_t)freemem << PAGESHIFT;
1961 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1962 
1963 	/* For small memory systems disable automatic large pages. */
1964 	if (physmem < auto_lpg_min_physmem) {
1965 		exec_lpg_disable = 1;
1966 		use_brk_lpg = 0;
1967 		use_stk_lpg = 0;
1968 		use_zmap_lpg = 0;
1969 	}
1970 
1971 	/*
1972 	 * Perform platform specific freelist processing
1973 	 */
1974 	if (&plat_freelist_process) {
1975 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
1976 			if (mem_node_config[mnode].exists)
1977 				plat_freelist_process(mnode);
1978 	}
1979 
1980 	/*
1981 	 * Initialize the segkp segment type.  We position it
1982 	 * after the configured tables and buffers (whose end
1983 	 * is given by econtig) and before V_WKBASE_ADDR.
1984 	 * Also in this area is segkmap (size SEGMAPSIZE).
1985 	 */
1986 
1987 	/* XXX - cache alignment? */
1988 	va = (caddr_t)SEGKPBASE;
1989 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1990 
1991 	max_phys_segkp = (physmem * 2);
1992 
1993 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1994 		segkpsize = btop(SEGKPDEFSIZE);
1995 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
1996 		    "segkpsize has been reset to %ld pages", segkpsize);
1997 	}
1998 
1999 	i = ptob(MIN(segkpsize, max_phys_segkp));
2000 
2001 	rw_enter(&kas.a_lock, RW_WRITER);
2002 	if (seg_attach(&kas, va, i, segkp) < 0)
2003 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
2004 	if (segkp_create(segkp) != 0)
2005 		cmn_err(CE_PANIC, "startup: segkp_create failed");
2006 	rw_exit(&kas.a_lock);
2007 
2008 	/*
2009 	 * kpm segment
2010 	 */
2011 	segmap_kpm = kpm_enable &&
2012 		segmap_kpm && PAGESIZE == MAXBSIZE;
2013 
2014 	if (kpm_enable) {
2015 		rw_enter(&kas.a_lock, RW_WRITER);
2016 
2017 		/*
2018 		 * The segkpm virtual range range is larger than the
2019 		 * actual physical memory size and also covers gaps in
2020 		 * the physical address range for the following reasons:
2021 		 * . keep conversion between segkpm and physical addresses
2022 		 *   simple, cheap and unambiguous.
2023 		 * . avoid extension/shrink of the the segkpm in case of DR.
2024 		 * . avoid complexity for handling of virtual addressed
2025 		 *   caches, segkpm and the regular mapping scheme must be
2026 		 *   kept in sync wrt. the virtual color of mapped pages.
2027 		 * Any accesses to virtual segkpm ranges not backed by
2028 		 * physical memory will fall through the memseg pfn hash
2029 		 * and will be handled in segkpm_fault.
2030 		 * Additional kpm_size spaces needed for vac alias prevention.
2031 		 */
2032 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
2033 		    segkpm) < 0)
2034 			cmn_err(CE_PANIC, "cannot attach segkpm");
2035 
2036 		b.prot = PROT_READ | PROT_WRITE;
2037 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
2038 
2039 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2040 			panic("segkpm_create segkpm");
2041 
2042 		rw_exit(&kas.a_lock);
2043 	}
2044 
2045 	/*
2046 	 * Now create generic mapping segment.  This mapping
2047 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2048 	 * virtual address is greater than the amount of free
2049 	 * memory that is available, then we trim back the
2050 	 * segment size to that amount
2051 	 */
2052 	va = (caddr_t)SEGMAPBASE;
2053 
2054 	/*
2055 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2056 	 */
2057 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2058 
2059 	/*
2060 	 * Set size of segmap to percentage of freemem at boot,
2061 	 * but stay within the allowable range
2062 	 * Note we take percentage  before converting from pages
2063 	 * to bytes to avoid an overflow on 32-bit kernels.
2064 	 */
2065 	i = mmu_ptob((freemem * segmap_percent) / 100);
2066 
2067 	if (i < MINMAPSIZE)
2068 		i = MINMAPSIZE;
2069 
2070 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2071 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2072 
2073 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2074 
2075 	rw_enter(&kas.a_lock, RW_WRITER);
2076 	if (seg_attach(&kas, va, i, segkmap) < 0)
2077 		cmn_err(CE_PANIC, "cannot attach segkmap");
2078 
2079 	a.prot = PROT_READ | PROT_WRITE;
2080 	a.shmsize = shm_alignment;
2081 	a.nfreelist = 0;	/* use segmap driver defaults */
2082 
2083 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2084 		panic("segmap_create segkmap");
2085 	rw_exit(&kas.a_lock);
2086 
2087 	segdev_init();
2088 }
2089 
2090 static void
2091 startup_end(void)
2092 {
2093 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2094 		panic("memlist overflow 2");
2095 	memlist_free_block((caddr_t)memlist,
2096 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2097 	memlist = NULL;
2098 
2099 	/* enable page_relocation since OBP is now done */
2100 	page_relocate_ready = 1;
2101 
2102 	/*
2103 	 * Perform tasks that get done after most of the VM
2104 	 * initialization has been done but before the clock
2105 	 * and other devices get started.
2106 	 */
2107 	kern_setup1();
2108 
2109 	/*
2110 	 * Intialize the VM arenas for allocating physically
2111 	 * contiguus memory chunk for interrupt queues snd
2112 	 * allocate/register boot cpu's queues, if any and
2113 	 * allocate dump buffer for sun4v systems to store
2114 	 * extra crash information during crash dump
2115 	 */
2116 	contig_mem_init();
2117 	mach_descrip_init();
2118 	cpu_intrq_setup(CPU);
2119 	cpu_intrq_register(CPU);
2120 	mach_htraptrace_init();
2121 	mach_htraptrace_setup(CPU->cpu_id);
2122 	mach_htraptrace_configure(CPU->cpu_id);
2123 	mach_dump_buffer_init();
2124 
2125 	/*
2126 	 * Initialize interrupt related stuff
2127 	 */
2128 	init_intr_threads(CPU);
2129 
2130 	(void) splzs();			/* allow hi clock ints but not zs */
2131 
2132 	/*
2133 	 * Initialize errors.
2134 	 */
2135 	error_init();
2136 
2137 	/*
2138 	 * Note that we may have already used kernel bcopy before this
2139 	 * point - but if you really care about this, adb the use_hw_*
2140 	 * variables to 0 before rebooting.
2141 	 */
2142 	mach_hw_copy_limit();
2143 
2144 	/*
2145 	 * Install the "real" preemption guards before DDI services
2146 	 * are available.
2147 	 */
2148 	(void) prom_set_preprom(kern_preprom);
2149 	(void) prom_set_postprom(kern_postprom);
2150 	CPU->cpu_m.mutex_ready = 1;
2151 
2152 	/*
2153 	 * Initialize segnf (kernel support for non-faulting loads).
2154 	 */
2155 	segnf_init();
2156 
2157 	/*
2158 	 * Configure the root devinfo node.
2159 	 */
2160 	configure();		/* set up devices */
2161 	mach_cpu_halt_idle();
2162 }
2163 
2164 
2165 void
2166 post_startup(void)
2167 {
2168 #ifdef	PTL1_PANIC_DEBUG
2169 	extern void init_ptl1_thread(void);
2170 #endif	/* PTL1_PANIC_DEBUG */
2171 	extern void abort_sequence_init(void);
2172 
2173 	/*
2174 	 * Set the system wide, processor-specific flags to be passed
2175 	 * to userland via the aux vector for performance hints and
2176 	 * instruction set extensions.
2177 	 */
2178 	bind_hwcap();
2179 
2180 	/*
2181 	 * Startup memory scrubber (if any)
2182 	 */
2183 	mach_memscrub();
2184 
2185 	/*
2186 	 * Allocate soft interrupt to handle abort sequence.
2187 	 */
2188 	abort_sequence_init();
2189 
2190 	/*
2191 	 * Configure the rest of the system.
2192 	 * Perform forceloading tasks for /etc/system.
2193 	 */
2194 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2195 	/*
2196 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2197 	 * ON4.0: This must be fixed or restated in /etc/systems.
2198 	 */
2199 	(void) modload("fs", "procfs");
2200 
2201 	if (&load_platform_drivers)
2202 		load_platform_drivers();
2203 
2204 	/* load vis simulation module, if we are running w/fpu off */
2205 	if (!fpu_exists) {
2206 		if (modload("misc", "vis") == -1)
2207 			halt("Can't load vis");
2208 	}
2209 
2210 	mach_fpras();
2211 
2212 	maxmem = freemem;
2213 
2214 #ifdef	PTL1_PANIC_DEBUG
2215 	init_ptl1_thread();
2216 #endif	/* PTL1_PANIC_DEBUG */
2217 }
2218 
2219 #ifdef	PTL1_PANIC_DEBUG
2220 int		ptl1_panic_test = 0;
2221 int		ptl1_panic_xc_one_test = 0;
2222 int		ptl1_panic_xc_all_test = 0;
2223 int		ptl1_panic_xt_one_test = 0;
2224 int		ptl1_panic_xt_all_test = 0;
2225 kthread_id_t	ptl1_thread_p = NULL;
2226 kcondvar_t	ptl1_cv;
2227 kmutex_t	ptl1_mutex;
2228 int		ptl1_recurse_count_threshold = 0x40;
2229 int		ptl1_recurse_trap_threshold = 0x3d;
2230 extern void	ptl1_recurse(int, int);
2231 extern void	ptl1_panic_xt(int, int);
2232 
2233 /*
2234  * Called once per second by timeout() to wake up
2235  * the ptl1_panic thread to see if it should cause
2236  * a trap to the ptl1_panic() code.
2237  */
2238 /* ARGSUSED */
2239 static void
2240 ptl1_wakeup(void *arg)
2241 {
2242 	mutex_enter(&ptl1_mutex);
2243 	cv_signal(&ptl1_cv);
2244 	mutex_exit(&ptl1_mutex);
2245 }
2246 
2247 /*
2248  * ptl1_panic cross call function:
2249  *     Needed because xc_one() and xc_some() can pass
2250  *	64 bit args but ptl1_recurse() expects ints.
2251  */
2252 static void
2253 ptl1_panic_xc(void)
2254 {
2255 	ptl1_recurse(ptl1_recurse_count_threshold,
2256 	    ptl1_recurse_trap_threshold);
2257 }
2258 
2259 /*
2260  * The ptl1 thread waits for a global flag to be set
2261  * and uses the recurse thresholds to set the stack depth
2262  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2263  * or indirectly via the cross call and cross trap functions.
2264  *
2265  * This is useful testing stack overflows and normal
2266  * ptl1_panic() states with a know stack frame.
2267  *
2268  * ptl1_recurse() is an asm function in ptl1_panic.s that
2269  * sets the {In, Local, Out, and Global} registers to a
2270  * know state on the stack and just prior to causing a
2271  * test ptl1_panic trap.
2272  */
2273 static void
2274 ptl1_thread(void)
2275 {
2276 	mutex_enter(&ptl1_mutex);
2277 	while (ptl1_thread_p) {
2278 		cpuset_t	other_cpus;
2279 		int		cpu_id;
2280 		int		my_cpu_id;
2281 		int		target_cpu_id;
2282 		int		target_found;
2283 
2284 		if (ptl1_panic_test) {
2285 			ptl1_recurse(ptl1_recurse_count_threshold,
2286 			    ptl1_recurse_trap_threshold);
2287 		}
2288 
2289 		/*
2290 		 * Find potential targets for x-call and x-trap,
2291 		 * if any exist while preempt is disabled we
2292 		 * start a ptl1_panic if requested via a
2293 		 * globals.
2294 		 */
2295 		kpreempt_disable();
2296 		my_cpu_id = CPU->cpu_id;
2297 		other_cpus = cpu_ready_set;
2298 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2299 		target_found = 0;
2300 		if (!CPUSET_ISNULL(other_cpus)) {
2301 			/*
2302 			 * Pick the first one
2303 			 */
2304 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2305 				if (cpu_id == my_cpu_id)
2306 					continue;
2307 
2308 				if (CPU_XCALL_READY(cpu_id)) {
2309 					target_cpu_id = cpu_id;
2310 					target_found = 1;
2311 					break;
2312 				}
2313 			}
2314 			ASSERT(target_found);
2315 
2316 			if (ptl1_panic_xc_one_test) {
2317 				xc_one(target_cpu_id,
2318 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2319 			}
2320 			if (ptl1_panic_xc_all_test) {
2321 				xc_some(other_cpus,
2322 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2323 			}
2324 			if (ptl1_panic_xt_one_test) {
2325 				xt_one(target_cpu_id,
2326 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2327 			}
2328 			if (ptl1_panic_xt_all_test) {
2329 				xt_some(other_cpus,
2330 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2331 			}
2332 		}
2333 		kpreempt_enable();
2334 		(void) timeout(ptl1_wakeup, NULL, hz);
2335 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2336 	}
2337 	mutex_exit(&ptl1_mutex);
2338 }
2339 
2340 /*
2341  * Called during early startup to create the ptl1_thread
2342  */
2343 void
2344 init_ptl1_thread(void)
2345 {
2346 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2347 	    &p0, TS_RUN, 0);
2348 }
2349 #endif	/* PTL1_PANIC_DEBUG */
2350 
2351 
2352 /*
2353  * Add to a memory list.
2354  * start = start of new memory segment
2355  * len = length of new memory segment in bytes
2356  * memlistp = pointer to array of available memory segment structures
2357  * curmemlistp = memory list to which to add segment.
2358  */
2359 static void
2360 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2361 	struct memlist **curmemlistp)
2362 {
2363 	struct memlist *new;
2364 
2365 	new = *memlistp;
2366 	new->address = start;
2367 	new->size = len;
2368 	*memlistp = new + 1;
2369 
2370 	memlist_insert(new, curmemlistp);
2371 }
2372 
2373 /*
2374  * In the case of architectures that support dynamic addition of
2375  * memory at run-time there are two cases where memsegs need to
2376  * be initialized and added to the memseg list.
2377  * 1) memsegs that are constructed at startup.
2378  * 2) memsegs that are constructed at run-time on
2379  *    hot-plug capable architectures.
2380  * This code was originally part of the function kphysm_init().
2381  */
2382 
2383 static void
2384 memseg_list_add(struct memseg *memsegp)
2385 {
2386 	struct memseg **prev_memsegp;
2387 	pgcnt_t num;
2388 
2389 	/* insert in memseg list, decreasing number of pages order */
2390 
2391 	num = MSEG_NPAGES(memsegp);
2392 
2393 	for (prev_memsegp = &memsegs; *prev_memsegp;
2394 	    prev_memsegp = &((*prev_memsegp)->next)) {
2395 		if (num > MSEG_NPAGES(*prev_memsegp))
2396 			break;
2397 	}
2398 
2399 	memsegp->next = *prev_memsegp;
2400 	*prev_memsegp = memsegp;
2401 
2402 	if (kpm_enable) {
2403 		memsegp->nextpa = (memsegp->next) ?
2404 			va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2405 
2406 		if (prev_memsegp != &memsegs) {
2407 			struct memseg *msp;
2408 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2409 				offsetof(struct memseg, next));
2410 			msp->nextpa = va_to_pa(memsegp);
2411 		} else {
2412 			memsegspa = va_to_pa(memsegs);
2413 		}
2414 	}
2415 }
2416 
2417 /*
2418  * PSM add_physmem_cb(). US-II and newer processors have some
2419  * flavor of the prefetch capability implemented. We exploit
2420  * this capability for optimum performance.
2421  */
2422 #define	PREFETCH_BYTES	64
2423 
2424 void
2425 add_physmem_cb(page_t *pp, pfn_t pnum)
2426 {
2427 	extern void	 prefetch_page_w(void *);
2428 
2429 	pp->p_pagenum = pnum;
2430 
2431 	/*
2432 	 * Prefetch one more page_t into E$. To prevent future
2433 	 * mishaps with the sizeof(page_t) changing on us, we
2434 	 * catch this on debug kernels if we can't bring in the
2435 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2436 	 * also, sun4u/cpu/cpu_module.c
2437 	 */
2438 	/*LINTED*/
2439 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2440 	prefetch_page_w((char *)pp);
2441 }
2442 
2443 /*
2444  * kphysm_init() tackles the problem of initializing physical memory.
2445  * The old startup made some assumptions about the kernel living in
2446  * physically contiguous space which is no longer valid.
2447  */
2448 static void
2449 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages,
2450 	uintptr_t kpm_pp, pgcnt_t kpm_npages)
2451 {
2452 	struct memlist	*pmem;
2453 	struct memseg	*msp;
2454 	pfn_t		 base;
2455 	pgcnt_t		 num;
2456 	pfn_t		 lastseg_pages_end = 0;
2457 	pgcnt_t		 nelem_used = 0;
2458 
2459 	ASSERT(page_hash != NULL && page_hashsz != 0);
2460 
2461 	msp = memsegp;
2462 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2463 
2464 		/*
2465 		 * Build the memsegs entry
2466 		 */
2467 		num = btop(pmem->size);
2468 		if (num > npages)
2469 			num = npages;
2470 		npages -= num;
2471 		base = btop(pmem->address);
2472 
2473 		msp->pages = pp;
2474 		msp->epages = pp + num;
2475 		msp->pages_base = base;
2476 		msp->pages_end = base + num;
2477 
2478 		if (kpm_enable) {
2479 			pfn_t pbase_a;
2480 			pfn_t pend_a;
2481 			pfn_t prev_pend_a;
2482 			pgcnt_t	nelem;
2483 
2484 			msp->pagespa = va_to_pa(pp);
2485 			msp->epagespa = va_to_pa(pp + num);
2486 			pbase_a = kpmptop(ptokpmp(base));
2487 			pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs;
2488 			nelem = ptokpmp(pend_a - pbase_a);
2489 			msp->kpm_nkpmpgs = nelem;
2490 			msp->kpm_pbase = pbase_a;
2491 			if (lastseg_pages_end) {
2492 				/*
2493 				 * Assume phys_avail is in ascending order
2494 				 * of physical addresses.
2495 				 */
2496 				ASSERT(base + num > lastseg_pages_end);
2497 				prev_pend_a = kpmptop(
2498 				    ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs;
2499 
2500 				if (prev_pend_a > pbase_a) {
2501 					/*
2502 					 * Overlap, more than one memseg may
2503 					 * point to the same kpm_page range.
2504 					 */
2505 					if (kpm_smallpages == 0) {
2506 						msp->kpm_pages =
2507 						    (kpm_page_t *)kpm_pp - 1;
2508 						kpm_pp = (uintptr_t)
2509 							((kpm_page_t *)kpm_pp
2510 							+ nelem - 1);
2511 					} else {
2512 						msp->kpm_spages =
2513 						    (kpm_spage_t *)kpm_pp - 1;
2514 						kpm_pp = (uintptr_t)
2515 							((kpm_spage_t *)kpm_pp
2516 							+ nelem - 1);
2517 					}
2518 					nelem_used += nelem - 1;
2519 
2520 				} else {
2521 					if (kpm_smallpages == 0) {
2522 						msp->kpm_pages =
2523 						    (kpm_page_t *)kpm_pp;
2524 						kpm_pp = (uintptr_t)
2525 							((kpm_page_t *)kpm_pp
2526 							+ nelem);
2527 					} else {
2528 						msp->kpm_spages =
2529 						    (kpm_spage_t *)kpm_pp;
2530 						kpm_pp = (uintptr_t)
2531 							((kpm_spage_t *)
2532 							kpm_pp + nelem);
2533 					}
2534 					nelem_used += nelem;
2535 				}
2536 
2537 			} else {
2538 				if (kpm_smallpages == 0) {
2539 					msp->kpm_pages = (kpm_page_t *)kpm_pp;
2540 					kpm_pp = (uintptr_t)
2541 						((kpm_page_t *)kpm_pp + nelem);
2542 				} else {
2543 					msp->kpm_spages = (kpm_spage_t *)kpm_pp;
2544 					kpm_pp = (uintptr_t)
2545 						((kpm_spage_t *)kpm_pp + nelem);
2546 				}
2547 				nelem_used = nelem;
2548 			}
2549 
2550 			if (nelem_used > kpm_npages)
2551 				panic("kphysm_init: kpm_pp overflow\n");
2552 
2553 			msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
2554 			lastseg_pages_end = msp->pages_end;
2555 		}
2556 
2557 		memseg_list_add(msp);
2558 
2559 		/*
2560 		 * add_physmem() initializes the PSM part of the page
2561 		 * struct by calling the PSM back with add_physmem_cb().
2562 		 * In addition it coalesces pages into larger pages as
2563 		 * it initializes them.
2564 		 */
2565 		add_physmem(pp, num, base);
2566 		pp += num;
2567 		msp++;
2568 	}
2569 
2570 	build_pfn_hash();
2571 }
2572 
2573 /*
2574  * Kernel VM initialization.
2575  * Assumptions about kernel address space ordering:
2576  *	(1) gap (user space)
2577  *	(2) kernel text
2578  *	(3) kernel data/bss
2579  *	(4) gap
2580  *	(5) kernel data structures
2581  *	(6) gap
2582  *	(7) debugger (optional)
2583  *	(8) monitor
2584  *	(9) gap (possibly null)
2585  *	(10) dvma
2586  *	(11) devices
2587  */
2588 static void
2589 kvm_init(void)
2590 {
2591 	/*
2592 	 * Put the kernel segments in kernel address space.
2593 	 */
2594 	rw_enter(&kas.a_lock, RW_WRITER);
2595 	as_avlinit(&kas);
2596 
2597 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2598 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2599 	(void) segkmem_create(&ktextseg);
2600 
2601 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2602 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2603 	(void) segkmem_create(&ktexthole);
2604 
2605 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2606 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2607 	(void) segkmem_create(&kvalloc);
2608 
2609 	if (kmem64_base) {
2610 	    (void) seg_attach(&kas, (caddr_t)kmem64_base,
2611 		(size_t)(kmem64_end - kmem64_base), &kmem64);
2612 	    (void) segkmem_create(&kmem64);
2613 	}
2614 
2615 	/*
2616 	 * We're about to map out /boot.  This is the beginning of the
2617 	 * system resource management transition. We can no longer
2618 	 * call into /boot for I/O or memory allocations.
2619 	 */
2620 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2621 	(void) segkmem_create(&kvseg);
2622 	hblk_alloc_dynamic = 1;
2623 
2624 	/*
2625 	 * we need to preallocate pages for DR operations before enabling large
2626 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2627 	 */
2628 	memseg_remap_init();
2629 
2630 	/* at this point we are ready to use large page heap */
2631 	segkmem_heap_lp_init();
2632 
2633 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2634 	    &kvseg32);
2635 	(void) segkmem_create(&kvseg32);
2636 
2637 	/*
2638 	 * Create a segment for the debugger.
2639 	 */
2640 	(void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE,
2641 	    &kdebugseg);
2642 	(void) segkmem_create(&kdebugseg);
2643 
2644 	rw_exit(&kas.a_lock);
2645 }
2646 
2647 char obp_tte_str[] =
2648 	"h# %x constant MMU_PAGESHIFT "
2649 	"h# %x constant TTE8K "
2650 	"h# %x constant SFHME_SIZE "
2651 	"h# %x constant SFHME_TTE "
2652 	"h# %x constant HMEBLK_TAG "
2653 	"h# %x constant HMEBLK_NEXT "
2654 	"h# %x constant HMEBLK_MISC "
2655 	"h# %x constant HMEBLK_HME1 "
2656 	"h# %x constant NHMENTS "
2657 	"h# %x constant HBLK_SZMASK "
2658 	"h# %x constant HBLK_RANGE_SHIFT "
2659 	"h# %x constant HMEBP_HBLK "
2660 	"h# %x constant HMEBUCKET_SIZE "
2661 	"h# %x constant HTAG_SFMMUPSZ "
2662 	"h# %x constant HTAG_REHASHSZ "
2663 	"h# %x constant mmu_hashcnt "
2664 	"h# %p constant uhme_hash "
2665 	"h# %p constant khme_hash "
2666 	"h# %x constant UHMEHASH_SZ "
2667 	"h# %x constant KHMEHASH_SZ "
2668 	"h# %p constant KHATID "
2669 	"h# %x constant CTX_SIZE "
2670 	"h# %x constant CTX_SFMMU "
2671 	"h# %p constant ctxs "
2672 	"h# %x constant ASI_MEM "
2673 
2674 	": PHYS-X@ ( phys -- data ) "
2675 	"   ASI_MEM spacex@ "
2676 	"; "
2677 
2678 	": PHYS-W@ ( phys -- data ) "
2679 	"   ASI_MEM spacew@ "
2680 	"; "
2681 
2682 	": PHYS-L@ ( phys -- data ) "
2683 	"   ASI_MEM spaceL@ "
2684 	"; "
2685 
2686 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2687 	"   3 * MMU_PAGESHIFT + "
2688 	"; "
2689 
2690 	": TTE_IS_VALID ( ttep -- flag ) "
2691 	"   PHYS-X@ 0< "
2692 	"; "
2693 
2694 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2695 	"   dup TTE8K =  if "
2696 	"      drop HBLK_RANGE_SHIFT "
2697 	"   else "
2698 	"      TTE_PAGE_SHIFT "
2699 	"   then "
2700 	"; "
2701 
2702 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2703 	"   tuck >> swap MMU_PAGESHIFT - << "
2704 	"; "
2705 
2706 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2707 	"   >> over xor swap                    ( hash sfmmup ) "
2708 	"   KHATID <>  if                       ( hash ) "
2709 	"      UHMEHASH_SZ and                  ( bucket ) "
2710 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2711 	"   else                                ( hash ) "
2712 	"      KHMEHASH_SZ and                  ( bucket ) "
2713 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2714 	"   then                                ( hmebp ) "
2715 	"; "
2716 
2717 	": HME_HASH_TABLE_SEARCH "
2718 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2719 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2720 	"      dup if   		( sfmmup hmeblkp ) ( r: hblktag ) "
2721 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2722 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2723 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2724 	"	     else						  "
2725 	"	     	  hmeblk_next + phys-x@ false 			  "
2726 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2727 	"	     then  						  "
2728 	"	  else							  "
2729 	"	     hmeblk_next + phys-x@ false 			  "
2730 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2731 	"	  then 							  "
2732 	"      else							  "
2733 	"         true 							  "
2734 	"      then  							  "
2735 	"   until r> drop 						  "
2736 	"; "
2737 
2738 	": CNUM_TO_SFMMUP ( cnum -- sfmmup ) "
2739 	"   CTX_SIZE * ctxs + CTX_SFMMU + "
2740 	"x@ "
2741 	"; "
2742 
2743 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2744 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE      ( sfmmup rehash bspage ) "
2745 	"   HTAG_REHASHSZ << or nip		     ( hblktag ) "
2746 	"; "
2747 
2748 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2749 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2750 	"   TTE8K =  if                            ( hmeblkp addr ) "
2751 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2752 	"   else                                   ( hmeblkp addr ) "
2753 	"      drop 0                              ( hmeblkp 0 ) "
2754 	"   then                                   ( hmeblkp hme-index ) "
2755 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2756 	"   SFHME_TTE +                            ( ttep ) "
2757 	"; "
2758 
2759 	": unix-tte ( addr cnum -- false | tte-data true ) "
2760 	"      CNUM_TO_SFMMUP                 ( addr sfmmup ) "
2761 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2762 	"         2dup swap i HME_HASH_SHIFT  "
2763 					"( addr sfmmup sfmmup addr hmeshift ) "
2764 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2765 	"         over i 4 pick               "
2766 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2767 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2768 	"         HME_HASH_TABLE_SEARCH       "
2769 					"( addr sfmmup { null | hmeblkp } ) "
2770 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2771 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2772 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2773 	"               PHYS-X@ true          ( tte-data true ) "
2774 	"            else                     ( invalid-tte ) "
2775 	"               drop false            ( false ) "
2776 	"            then                     ( false | tte-data true ) "
2777 	"            unloop exit              ( false | tte-data true ) "
2778 	"         then                        ( addr sfmmup ) "
2779 	"      loop                           ( addr sfmmup ) "
2780 	"      2drop false                    ( false ) "
2781 	"; "
2782 ;
2783 
2784 void
2785 create_va_to_tte(void)
2786 {
2787 	char *bp;
2788 	extern int khmehash_num, uhmehash_num;
2789 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2790 
2791 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2792 
2793 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2794 
2795 	/*
2796 	 * Teach obp how to parse our sw ttes.
2797 	 */
2798 	(void) sprintf(bp, obp_tte_str,
2799 	    MMU_PAGESHIFT,
2800 	    TTE8K,
2801 	    sizeof (struct sf_hment),
2802 	    OFFSET(struct sf_hment, hme_tte),
2803 	    OFFSET(struct hme_blk, hblk_tag),
2804 	    OFFSET(struct hme_blk, hblk_nextpa),
2805 	    OFFSET(struct hme_blk, hblk_misc),
2806 	    OFFSET(struct hme_blk, hblk_hme),
2807 	    NHMENTS,
2808 	    HBLK_SZMASK,
2809 	    HBLK_RANGE_SHIFT,
2810 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2811 	    sizeof (struct hmehash_bucket),
2812 	    HTAG_SFMMUPSZ,
2813 	    HTAG_REHASHSZ,
2814 	    mmu_hashcnt,
2815 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
2816 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
2817 	    UHMEHASH_SZ,
2818 	    KHMEHASH_SZ,
2819 	    KHATID,
2820 	    sizeof (struct ctx),
2821 	    OFFSET(struct ctx, ctx_sfmmu),
2822 	    ctxs,
2823 	    ASI_MEM);
2824 	prom_interpret(bp, 0, 0, 0, 0, 0);
2825 
2826 	kobj_free(bp, MMU_PAGESIZE);
2827 }
2828 
2829 void
2830 install_va_to_tte(void)
2831 {
2832 	/*
2833 	 * advise prom that he can use unix-tte
2834 	 */
2835 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2836 }
2837 
2838 
2839 static char *create_node =
2840 	"root-device "
2841 	"new-device "
2842 	"\" os-io\" device-name "
2843 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
2844 	"   2>r swap 2 2r> ['] $callback  catch  if "
2845 	"      2drop 3drop 0 "
2846 	"   then "
2847 	"; "
2848 	": read ( adr,len -- #read ) "
2849 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
2850 	"       ( retN ... ret1 N ) "
2851 	"       ?dup  if "
2852 	"               swap >r 1-  0  ?do  drop  loop  r> "
2853 	"       else "
2854 	"               -2 "
2855 	"       then l->n "
2856 	";    "
2857 	": write ( adr,len -- #written ) "
2858 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
2859 	"       ( retN ... ret1 N ) "
2860 	"       ?dup  if "
2861 	"               swap >r 1-  0  ?do  drop  loop  r> "
2862 	"        else "
2863 	"               0 "
2864 	"       then "
2865 	"; "
2866 	": poll-tty ( -- ) ; "
2867 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
2868 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
2869 	": cb-give/take ( $method -- ) "
2870 	"       0 -rot ['] $callback catch  ?dup  if "
2871 	"               >r 2drop 2drop r> throw "
2872 	"       else "
2873 	"               0  ?do  drop  loop "
2874 	"       then "
2875 	"; "
2876 	": give ( -- )  \" exit-input\" cb-give/take ; "
2877 	": take ( -- )  \" enter-input\" cb-give/take ; "
2878 	": open ( -- ok? )  true ; "
2879 	": close ( -- ) ; "
2880 	"finish-device "
2881 	"device-end ";
2882 
2883 /*
2884  * Create the obp input/output node only if the USB keyboard is the
2885  * standard input device.  When the USB software takes over the
2886  * input device at the time consconfig runs, it will switch OBP's
2887  * notion of the input device to this node.  Whenever the
2888  * forth user interface is used after this switch, the node will
2889  * call back into the kernel for console input.
2890  *
2891  * This callback mechanism is currently only used when the USB keyboard
2892  * is the input device.  If a serial device such as ttya or
2893  * a UART with a Type 5 keyboard attached is used, obp takes over the
2894  * serial device when the system goes to the debugger after the system is
2895  * booted.  This sharing of the relatively simple serial device is difficult
2896  * but possible.  Sharing the USB host controller is impossible due
2897  * its complexity
2898  */
2899 static void
2900 startup_create_input_node(void)
2901 {
2902 	char *stdin_path;
2903 
2904 	/*
2905 	 * If usb_node_debug is set in /etc/system
2906 	 * then the user would like to test the callbacks
2907 	 * from the input node regardless of whether or
2908 	 * not the USB keyboard is the console input.
2909 	 * This variable is useful for debugging.
2910 	 */
2911 	if (usb_node_debug) {
2912 
2913 		prom_interpret(create_node, 0, 0, 0, 0, 0);
2914 
2915 		return;
2916 	}
2917 
2918 	/* Obtain the console input device */
2919 	stdin_path = prom_stdinpath();
2920 
2921 	/*
2922 	 * If the string "usb" and "keyboard" are in the path
2923 	 * then a USB keyboard is the console input device,
2924 	 * create the node.
2925 	 */
2926 	if ((strstr(stdin_path, "usb") != 0) &&
2927 	    (strstr(stdin_path, "keyboard") != 0)) {
2928 
2929 		prom_interpret(create_node, 0, 0, 0, 0, 0);
2930 	}
2931 }
2932 
2933 
2934 static void
2935 do_prom_version_check(void)
2936 {
2937 	int i;
2938 	pnode_t node;
2939 	char buf[64];
2940 	static char drev[] = "Down-rev firmware detected%s\n"
2941 		"\tPlease upgrade to the following minimum version:\n"
2942 		"\t\t%s\n";
2943 
2944 	i = prom_version_check(buf, sizeof (buf), &node);
2945 
2946 	if (i == PROM_VER64_OK)
2947 		return;
2948 
2949 	if (i == PROM_VER64_UPGRADE) {
2950 		cmn_err(CE_WARN, drev, "", buf);
2951 
2952 #ifdef	DEBUG
2953 		prom_enter_mon();	/* Type 'go' to continue */
2954 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
2955 		return;
2956 #else
2957 		halt(0);
2958 #endif
2959 	}
2960 
2961 	/*
2962 	 * The other possibility is that this is a server running
2963 	 * good firmware, but down-rev firmware was detected on at
2964 	 * least one other cpu board. We just complain if we see
2965 	 * that.
2966 	 */
2967 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
2968 }
2969 
2970 static void
2971 kpm_init()
2972 {
2973 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
2974 	kpm_pgsz = 1ull << kpm_pgshft;
2975 	kpm_pgoff = kpm_pgsz - 1;
2976 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
2977 	kpmpnpgs = 1 << kpmp2pshft;
2978 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
2979 }
2980 
2981 void
2982 kpm_npages_setup(int memblocks)
2983 {
2984 	/*
2985 	 * npages can be scattered in a maximum of 'memblocks'
2986 	 */
2987 	kpm_npages = ptokpmpr(npages) + memblocks;
2988 }
2989 
2990 /*
2991  * Must be defined in platform dependent code.
2992  */
2993 extern caddr_t modtext;
2994 extern size_t modtext_sz;
2995 extern caddr_t moddata;
2996 
2997 #define	HEAPTEXT_ARENA(addr)	\
2998 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
2999 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3000 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3001 
3002 #define	HEAPTEXT_OVERSIZED(addr)	\
3003 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3004 
3005 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3006 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3007 kmutex_t texthole_lock;
3008 
3009 char kern_bootargs[OBP_MAXPATHLEN];
3010 
3011 void
3012 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3013 {
3014 	uintptr_t addr, limit;
3015 
3016 	addr = HEAPTEXT_BASE;
3017 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3018 
3019 	/*
3020 	 * Before we initialize the text_arena, we want to punch holes in the
3021 	 * underlying heaptext_arena.  This guarantees that for any text
3022 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3023 	 */
3024 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3025 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3026 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3027 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3028 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3029 	}
3030 
3031 	/*
3032 	 * Allocate one page at the oversize to break up the text region
3033 	 * from the oversized region.
3034 	 */
3035 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3036 	    (void *)limit, (void *)(limit + PAGESIZE),
3037 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3038 
3039 	*text_arena = vmem_create("module_text", modtext, modtext_sz,
3040 	    sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3041 	    heaptext_arena, 0, VM_SLEEP);
3042 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3043 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3044 }
3045 
3046 caddr_t
3047 kobj_text_alloc(vmem_t *arena, size_t size)
3048 {
3049 	caddr_t rval, better;
3050 
3051 	/*
3052 	 * First, try a sleeping allocation.
3053 	 */
3054 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3055 
3056 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3057 		return (rval);
3058 
3059 	/*
3060 	 * We didn't get the area that we wanted.  We're going to try to do an
3061 	 * allocation with explicit constraints.
3062 	 */
3063 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3064 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3065 	    VM_NOSLEEP | VM_BESTFIT);
3066 
3067 	if (better != NULL) {
3068 		/*
3069 		 * That worked.  Free our first attempt and return.
3070 		 */
3071 		vmem_free(arena, rval, size);
3072 		return (better);
3073 	}
3074 
3075 	/*
3076 	 * That didn't work; we'll have to return our first attempt.
3077 	 */
3078 	return (rval);
3079 }
3080 
3081 caddr_t
3082 kobj_texthole_alloc(caddr_t addr, size_t size)
3083 {
3084 	int arena = HEAPTEXT_ARENA(addr);
3085 	char c[30];
3086 	uintptr_t base;
3087 
3088 	if (HEAPTEXT_OVERSIZED(addr)) {
3089 		/*
3090 		 * If this is an oversized allocation, there is no text hole
3091 		 * available for it; return NULL.
3092 		 */
3093 		return (NULL);
3094 	}
3095 
3096 	mutex_enter(&texthole_lock);
3097 
3098 	if (texthole_arena[arena] == NULL) {
3099 		ASSERT(texthole_source[arena] == NULL);
3100 
3101 		if (arena == 0) {
3102 			texthole_source[0] = vmem_create("module_text_holesrc",
3103 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3104 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3105 			    0, VM_SLEEP);
3106 		} else {
3107 			base = HEAPTEXT_BASE +
3108 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3109 
3110 			(void) snprintf(c, sizeof (c),
3111 			    "heaptext_holesrc_%d", arena);
3112 
3113 			texthole_source[arena] = vmem_create(c, (void *)base,
3114 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3115 			    0, VM_SLEEP);
3116 		}
3117 
3118 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3119 
3120 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3121 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3122 		    texthole_source[arena], 0, VM_SLEEP);
3123 	}
3124 
3125 	mutex_exit(&texthole_lock);
3126 
3127 	ASSERT(texthole_arena[arena] != NULL);
3128 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3129 	return (vmem_alloc(texthole_arena[arena], size,
3130 	    VM_BESTFIT | VM_NOSLEEP));
3131 }
3132 
3133 void
3134 kobj_texthole_free(caddr_t addr, size_t size)
3135 {
3136 	int arena = HEAPTEXT_ARENA(addr);
3137 
3138 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3139 	ASSERT(texthole_arena[arena] != NULL);
3140 	vmem_free(texthole_arena[arena], addr, size);
3141 }
3142