xref: /titanic_41/usr/src/uts/sun4/os/mp_startup.c (revision afd1ac7b1c9a8cdf273c865aa5e9a14620341443)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/sysmacros.h>
30 #include <sys/prom_plat.h>
31 #include <sys/prom_debug.h>
32 #include <vm/hat_sfmmu.h>
33 #include <vm/seg_kp.h>
34 #include <vm/seg_kmem.h>
35 #include <sys/machsystm.h>
36 #include <sys/callb.h>
37 #include <sys/cpu_module.h>
38 #include <sys/chip.h>
39 #include <sys/dtrace.h>
40 #include <sys/reboot.h>
41 #include <sys/kdi.h>
42 
43 #ifdef TRAPTRACE
44 #include <sys/traptrace.h>
45 #include <sys/bootconf.h>
46 #endif /* TRAPTRACE */
47 
48 #include <sys/cpu_sgnblk_defs.h>
49 
50 extern void cpu_intrq_setup(struct cpu *);
51 extern void cpu_intrq_register(struct cpu *);
52 
53 struct cpu	*cpus;	/* pointer to other cpus; dynamically allocate */
54 struct cpu	*cpu[NCPU];	/* pointers to all CPUs */
55 uint64_t	cpu_pa[NCPU];	/* pointers to all CPUs in PA */
56 cpu_core_t	cpu_core[NCPU];	/* cpu_core structures */
57 
58 #ifdef TRAPTRACE
59 caddr_t	ttrace_buf;	/* bop alloced traptrace for all cpus except 0 */
60 #endif /* TRAPTRACE */
61 
62 /* bit mask of cpus ready for x-calls, protected by cpu_lock */
63 cpuset_t cpu_ready_set;
64 
65 /* bit mask used to communicate with cpus during bringup */
66 static cpuset_t proxy_ready_set;
67 
68 static void	slave_startup(void);
69 
70 /*
71  * Defined in $KARCH/os/mach_mp_startup.c
72  */
73 #pragma weak init_cpu_info
74 
75 /*
76  * Amount of time (in milliseconds) we should wait before giving up on CPU
77  * initialization and assuming that the CPU we're trying to wake up is dead
78  * or out of control.
79  */
80 #define	CPU_WAKEUP_GRACE_MSEC 1000
81 
82 /*
83  * MP configurations may reserve additional interrupt request entries.
84  * intr_add_{div,max} can be modified to tune memory usage.
85  */
86 
87 uint_t	intr_add_div = 1;			/* 1=worst case memory usage */
88 size_t	intr_add_max = 0;
89 
90 /* intr_add_{pools,head,tail} calculated based on intr_add_{div,max} */
91 
92 size_t	intr_add_pools = 0;			/* additional pools per cpu */
93 struct intr_req	*intr_add_head = (struct intr_req *)NULL;
94 #ifdef	DEBUG
95 struct intr_req	*intr_add_tail = (struct intr_req *)NULL;
96 #endif	/* DEBUG */
97 
98 
99 #ifdef	TRAPTRACE
100 /*
101  * This function bop allocs traptrace buffers for all cpus
102  * other than boot cpu.
103  */
104 caddr_t
105 trap_trace_alloc(caddr_t base)
106 {
107 	caddr_t	vaddr;
108 	extern int max_ncpus;
109 
110 	if (max_ncpus == 1) {
111 		return (base);
112 	}
113 
114 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, base, (TRAP_TBUF_SIZE *
115 		(max_ncpus - 1)), TRAP_TBUF_SIZE)) == NULL) {
116 		panic("traptrace_alloc: can't bop alloc");
117 	}
118 	ttrace_buf = vaddr;
119 	PRM_DEBUG(ttrace_buf);
120 	return (vaddr + (TRAP_TBUF_SIZE * (max_ncpus - 1)));
121 }
122 #endif	/* TRAPTRACE */
123 
124 /*
125  * common slave cpu initialization code
126  */
127 void
128 common_startup_init(cpu_t *cp, int cpuid)
129 {
130 	kthread_id_t tp;
131 	sfmmu_t *sfmmup;
132 	caddr_t	sp;
133 
134 	/*
135 	 * Allocate and initialize the startup thread for this CPU.
136 	 */
137 	tp = thread_create(NULL, 0, slave_startup, NULL, 0, &p0,
138 	    TS_STOPPED, maxclsyspri);
139 
140 	/*
141 	 * Set state to TS_ONPROC since this thread will start running
142 	 * as soon as the CPU comes online.
143 	 *
144 	 * All the other fields of the thread structure are setup by
145 	 * thread_create().
146 	 */
147 	THREAD_ONPROC(tp, cp);
148 	tp->t_preempt = 1;
149 	tp->t_bound_cpu = cp;
150 	tp->t_affinitycnt = 1;
151 	tp->t_cpu = cp;
152 	tp->t_disp_queue = cp->cpu_disp;
153 
154 	sfmmup = astosfmmu(&kas);
155 	CPUSET_ADD(sfmmup->sfmmu_cpusran, cpuid);
156 
157 	/*
158 	 * Setup thread to start in slave_startup.
159 	 */
160 	sp = tp->t_stk;
161 	tp->t_pc = (uintptr_t)slave_startup - 8;
162 	tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS;
163 
164 	cp->cpu_id = cpuid;
165 	cp->cpu_self = cp;
166 	cp->cpu_thread = tp;
167 	cp->cpu_lwp = NULL;
168 	cp->cpu_dispthread = tp;
169 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
170 	cp->cpu_startup_thread = tp;
171 }
172 
173 /*
174  * parametric flag setting functions.  these routines set the cpu
175  * state just prior to releasing the slave cpu.
176  */
177 void
178 cold_flag_set(int cpuid)
179 {
180 	cpu_t *cp;
181 
182 	ASSERT(MUTEX_HELD(&cpu_lock));
183 
184 	cp = cpu[cpuid];
185 	cp->cpu_flags |= CPU_RUNNING | CPU_ENABLE | CPU_EXISTS;
186 	cpu_add_active(cp);
187 	/*
188 	 * Add CPU_READY after the cpu_add_active() call
189 	 * to avoid pausing cp.
190 	 */
191 	cp->cpu_flags |= CPU_READY;		/* ready */
192 	cpu_set_state(cp);
193 }
194 
195 static void
196 warm_flag_set(int cpuid)
197 {
198 	cpu_t *cp;
199 
200 	ASSERT(MUTEX_HELD(&cpu_lock));
201 
202 	/*
203 	 * warm start activates cpus into the OFFLINE state
204 	 */
205 	cp = cpu[cpuid];
206 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS
207 		| CPU_OFFLINE | CPU_QUIESCED;
208 	cpu_set_state(cp);
209 }
210 
211 /*
212  * Internal cpu startup sequencer
213  * The sequence is as follows:
214  *
215  * MASTER	SLAVE
216  * -------	----------
217  * assume the kernel data is initialized
218  * clear the proxy bit
219  * start the slave cpu
220  * wait for the slave cpu to set the proxy
221  *
222  *		the slave runs slave_startup and then sets the proxy
223  *		the slave waits for the master to add slave to the ready set
224  *
225  * the master finishes the initialization and
226  * adds the slave to the ready set
227  *
228  *		the slave exits the startup thread and is running
229  */
230 void
231 start_cpu(int cpuid, void(*flag_func)(int))
232 {
233 	extern caddr_t cpu_startup;
234 	int timout;
235 
236 	ASSERT(MUTEX_HELD(&cpu_lock));
237 
238 	/*
239 	 * Before we begin the dance, tell DTrace that we're about to start
240 	 * a CPU.
241 	 */
242 	if (dtrace_cpustart_init != NULL)
243 		(*dtrace_cpustart_init)();
244 
245 	/* start the slave cpu */
246 	CPUSET_DEL(proxy_ready_set, cpuid);
247 	if (prom_test("SUNW,start-cpu-by-cpuid") == 0) {
248 		(void) prom_startcpu_bycpuid(cpuid, (caddr_t)&cpu_startup,
249 		    cpuid);
250 	} else {
251 		/* "by-cpuid" interface didn't exist.  Do it the old way */
252 		pnode_t nodeid = cpunodes[cpuid].nodeid;
253 
254 		ASSERT(nodeid != (pnode_t)0);
255 		(void) prom_startcpu(nodeid, (caddr_t)&cpu_startup, cpuid);
256 	}
257 
258 	/* wait for the slave cpu to check in. */
259 	for (timout = CPU_WAKEUP_GRACE_MSEC; timout; timout--) {
260 		if (CPU_IN_SET(proxy_ready_set, cpuid))
261 			break;
262 		DELAY(1000);
263 	}
264 	if (timout == 0) {
265 		panic("cpu%d failed to start (2)", cpuid);
266 	}
267 
268 	/*
269 	 * The slave has started; we can tell DTrace that it's safe again.
270 	 */
271 	if (dtrace_cpustart_fini != NULL)
272 		(*dtrace_cpustart_fini)();
273 
274 	/* run the master side of stick synchronization for the slave cpu */
275 	sticksync_master();
276 
277 	/*
278 	 * deal with the cpu flags in a phase-specific manner
279 	 * for various reasons, this needs to run after the slave
280 	 * is checked in but before the slave is released.
281 	 */
282 	(*flag_func)(cpuid);
283 
284 	/* release the slave */
285 	CPUSET_ADD(cpu_ready_set, cpuid);
286 }
287 
288 #ifdef TRAPTRACE
289 int trap_tr0_inuse = 1;	/* it is always used on the boot cpu */
290 int trap_trace_inuse[NCPU];
291 #endif /* TRAPTRACE */
292 
293 #define	cpu_next_free	cpu_prev
294 
295 /*
296  * Routine to set up a CPU to prepare for starting it up.
297  */
298 void
299 setup_cpu_common(int cpuid)
300 {
301 	struct cpu *cp = NULL;
302 	kthread_id_t tp;
303 #ifdef TRAPTRACE
304 	int tt_index;
305 	TRAP_TRACE_CTL	*ctlp;
306 	caddr_t	newbuf;
307 #endif /* TRAPTRACE */
308 
309 	extern void idle();
310 	extern void init_intr_threads(struct cpu *);
311 
312 	ASSERT(MUTEX_HELD(&cpu_lock));
313 	ASSERT(cpu[cpuid] == NULL);
314 
315 	ASSERT(ncpus <= max_ncpus);
316 
317 #ifdef TRAPTRACE
318 	/*
319 	 * allocate a traptrace buffer for this CPU.
320 	 */
321 	ctlp = &trap_trace_ctl[cpuid];
322 	if (!trap_tr0_inuse) {
323 		trap_tr0_inuse = 1;
324 		newbuf = trap_tr0;
325 		tt_index = -1;
326 	} else {
327 		for (tt_index = 0; tt_index < (max_ncpus-1); tt_index++)
328 			if (!trap_trace_inuse[tt_index])
329 			    break;
330 		ASSERT(tt_index < max_ncpus - 1);
331 		trap_trace_inuse[tt_index] = 1;
332 		newbuf = (caddr_t)(ttrace_buf + (tt_index * TRAP_TBUF_SIZE));
333 	}
334 	ctlp->d.vaddr_base = newbuf;
335 	ctlp->d.offset = ctlp->d.last_offset = 0;
336 	ctlp->d.limit = trap_trace_bufsize;
337 	ctlp->d.paddr_base = va_to_pa(newbuf);
338 	ASSERT(ctlp->d.paddr_base != (uint64_t)-1);
339 	/*
340 	 * initialize HV trap trace buffer for other cpus
341 	 */
342 	htrap_trace_setup((newbuf + TRAP_TSIZE), cpuid);
343 #endif /* TRAPTRACE */
344 
345 	/*
346 	 * Obtain pointer to the appropriate cpu structure.
347 	 */
348 	if (cpu0.cpu_flags == 0) {
349 		cp = &cpu0;
350 	} else {
351 		/*
352 		 *  When dynamically allocating cpu structs,
353 		 *  cpus is used as a pointer to a list of freed
354 		 *  cpu structs.
355 		 */
356 		if (cpus) {
357 			/* grab the first cpu struct on the free list */
358 			cp = cpus;
359 			if (cp->cpu_next_free)
360 				cpus = cp->cpu_next_free;
361 			else
362 				cpus = NULL;
363 		}
364 	}
365 
366 	if (cp == NULL)
367 		cp = vmem_xalloc(static_alloc_arena, CPU_ALLOC_SIZE,
368 		    CPU_ALLOC_SIZE, 0, 0, NULL, NULL, VM_SLEEP);
369 
370 	bzero(cp, sizeof (*cp));
371 
372 	cp->cpu_id = cpuid;
373 	cp->cpu_self = cp;
374 
375 	/*
376 	 * Initialize ptl1_panic stack
377 	 */
378 	ptl1_init_cpu(cp);
379 
380 	/*
381 	 * Initialize the dispatcher for this CPU.
382 	 */
383 	disp_cpu_init(cp);
384 
385 	cpu_vm_data_init(cp);
386 
387 	/*
388 	 * Now, initialize per-CPU idle thread for this CPU.
389 	 */
390 	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_ONPROC, -1);
391 
392 	cp->cpu_idle_thread = tp;
393 
394 	tp->t_preempt = 1;
395 	tp->t_bound_cpu = cp;
396 	tp->t_affinitycnt = 1;
397 	tp->t_cpu = cp;
398 	tp->t_disp_queue = cp->cpu_disp;
399 
400 	/*
401 	 * Registering a thread in the callback table is usually
402 	 * done in the initialization code of the thread. In this
403 	 * case, we do it right after thread creation to avoid
404 	 * blocking idle thread while registering itself. It also
405 	 * avoids the possibility of reregistration in case a CPU
406 	 * restarts its idle thread.
407 	 */
408 	CALLB_CPR_INIT_SAFE(tp, "idle");
409 
410 	init_cpu_info(cp);
411 
412 	/*
413 	 * Initialize the interrupt threads for this CPU
414 	 */
415 	init_intr_pool(cp);
416 	init_intr_threads(cp);
417 
418 	/*
419 	 * Add CPU to list of available CPUs.
420 	 * It'll be on the active list after it is started.
421 	 */
422 	cpu_add_unit(cp);
423 
424 	/*
425 	 * Allocate and init cpu module private data structures,
426 	 * including scrubber.
427 	 */
428 	cpu_init_private(cp);
429 
430 	/*
431 	 * Associate this CPU with a physical processor
432 	 */
433 	chip_cpu_init(cp);
434 
435 	cpu_intrq_setup(cp);
436 }
437 
438 /*
439  * Routine to clean up a CPU after shutting it down.
440  */
441 int
442 cleanup_cpu_common(int cpuid)
443 {
444 	struct cpu *cp;
445 #ifdef TRAPTRACE
446 	int i;
447 	TRAP_TRACE_CTL	*ctlp;
448 	caddr_t	newbuf;
449 #endif /* TRAPTRACE */
450 
451 	ASSERT(MUTEX_HELD(&cpu_lock));
452 	ASSERT(cpu[cpuid] != NULL);
453 
454 	cp = cpu[cpuid];
455 
456 	/* Free cpu module private data structures, including scrubber. */
457 	cpu_uninit_private(cp);
458 
459 	cpu_vm_data_destroy(cp);
460 
461 	/*
462 	 * Remove CPU from list of available CPUs.
463 	 */
464 	cpu_del_unit(cpuid);
465 
466 	/*
467 	 * Clean up the interrupt pool.
468 	 */
469 	cleanup_intr_pool(cp);
470 
471 	/*
472 	 * At this point, the only threads bound to this CPU should be
473 	 * special per-cpu threads: it's idle thread, it's pause thread,
474 	 * and it's interrupt threads.  Clean these up.
475 	 */
476 	cpu_destroy_bound_threads(cp);
477 
478 	/*
479 	 * Free the interrupt stack.
480 	 */
481 	segkp_release(segkp, cp->cpu_intr_stack);
482 
483 #ifdef TRAPTRACE
484 	/*
485 	 * Free the traptrace buffer for this CPU.
486 	 */
487 	ctlp = &trap_trace_ctl[cpuid];
488 	newbuf = ctlp->d.vaddr_base;
489 	i = (newbuf - ttrace_buf) / (TRAP_TBUF_SIZE);
490 	if (((newbuf - ttrace_buf) % (TRAP_TBUF_SIZE) == 0) &&
491 	    ((i >= 0) && (i < (max_ncpus-1)))) {
492 		/*
493 		 * This CPU got it's trap trace buffer from the
494 		 * boot-alloc'd bunch of them.
495 		 */
496 		trap_trace_inuse[i] = 0;
497 		bzero(newbuf, (TRAP_TBUF_SIZE));
498 	} else if (newbuf == trap_tr0) {
499 		trap_tr0_inuse = 0;
500 		bzero(trap_tr0, (TRAP_TBUF_SIZE));
501 	} else {
502 		cmn_err(CE_WARN, "failed to free trap trace buffer from cpu%d",
503 		    cpuid);
504 	}
505 	bzero(ctlp, sizeof (*ctlp));
506 #endif /* TRAPTRACE */
507 
508 	/*
509 	 * There is a race condition with mutex_vector_enter() which
510 	 * caches a cpu pointer. The race is detected by checking cpu_next.
511 	 */
512 	disp_cpu_fini(cp);
513 	cpu_pa[cpuid] = 0;
514 	bzero(cp, sizeof (*cp));
515 
516 	/*
517 	 * Place the freed cpu structure on the list of freed cpus.
518 	 */
519 	if (cp != &cpu0) {
520 		if (cpus) {
521 			cp->cpu_next_free = cpus;
522 			cpus = cp;
523 		}
524 		else
525 			cpus = cp;
526 	}
527 
528 	return (0);
529 }
530 
531 /*
532  * This routine is used to start a previously powered off processor.
533  * Note that restarted cpus are initialized into the offline state.
534  */
535 void
536 restart_other_cpu(int cpuid)
537 {
538 	struct cpu *cp;
539 	kthread_id_t tp;
540 	caddr_t	sp;
541 	extern void idle();
542 
543 	ASSERT(MUTEX_HELD(&cpu_lock));
544 	ASSERT(cpuid < NCPU && cpu[cpuid] != NULL);
545 
546 	/*
547 	 * Obtain pointer to the appropriate cpu structure.
548 	 */
549 	cp = cpu[cpuid];
550 
551 	common_startup_init(cp, cpuid);
552 
553 	/*
554 	 * idle thread t_lock is held when the idle thread is suspended.
555 	 * Manually unlock the t_lock of idle loop so that we can resume
556 	 * the suspended idle thread.
557 	 * Also adjust the PC of idle thread for re-retry.
558 	 */
559 	cp->cpu_intr_actv = 0;	/* clear the value from previous life */
560 	cp->cpu_m.mutex_ready = 0; /* we are not ready yet */
561 	lock_clear(&cp->cpu_idle_thread->t_lock);
562 	tp = cp->cpu_idle_thread;
563 
564 	sp = tp->t_stk;
565 	tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS;
566 	tp->t_pc = (uintptr_t)idle - 8;
567 
568 	/*
569 	 * restart the cpu now
570 	 */
571 	promsafe_pause_cpus();
572 	start_cpu(cpuid, warm_flag_set);
573 	start_cpus();
574 
575 	/* call cmn_err outside pause_cpus/start_cpus to avoid deadlock */
576 	cmn_err(CE_CONT, "!cpu%d initialization complete - restarted\n",
577 	    cpuid);
578 }
579 
580 /*
581  * Startup function executed on 'other' CPUs.  This is the first
582  * C function after cpu_start sets up the cpu registers.
583  */
584 static void
585 slave_startup(void)
586 {
587 	struct cpu	*cp = CPU;
588 	ushort_t	original_flags = cp->cpu_flags;
589 
590 #ifdef TRAPTRACE
591 	htrap_trace_register(cp->cpu_id);
592 #endif
593 	cpu_intrq_register(CPU);
594 	cp->cpu_m.mutex_ready = 1;
595 	cp->cpu_m.poke_cpu_outstanding = B_FALSE;
596 
597 	/* acknowledge that we are done with initialization */
598 	CPUSET_ADD(proxy_ready_set, cp->cpu_id);
599 
600 	/* synchronize STICK */
601 	sticksync_slave();
602 
603 	if (boothowto & RB_DEBUG)
604 		kdi_dvec_cpu_init(cp);
605 
606 	/*
607 	 * the slave will wait here forever -- assuming that the master
608 	 * will get back to us.  if it doesn't we've got bigger problems
609 	 * than a master not replying to this slave.
610 	 * the small delay improves the slave's responsiveness to the
611 	 * master's ack and decreases the time window between master and
612 	 * slave operations.
613 	 */
614 	while (!CPU_IN_SET(cpu_ready_set, cp->cpu_id))
615 		DELAY(1);
616 
617 	/* enable interrupts */
618 	(void) spl0();
619 
620 	/*
621 	 * Signature block update to indicate that this CPU is in OS now.
622 	 * This needs to be done after the PIL is lowered since on
623 	 * some platforms the update code may block.
624 	 */
625 	CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cp->cpu_id);
626 
627 	/*
628 	 * park the slave thread in a safe/quiet state and wait for the master
629 	 * to finish configuring this CPU before proceeding to thread_exit().
630 	 */
631 	while (((volatile ushort_t)cp->cpu_flags) & CPU_QUIESCED)
632 		DELAY(1);
633 
634 	/*
635 	 * Initialize CPC CPU state.
636 	 */
637 	kcpc_hw_startup_cpu(original_flags);
638 
639 	/*
640 	 * Notify the CMT subsystem that the slave has started
641 	 */
642 	chip_cpu_startup(CPU);
643 
644 	/*
645 	 * Now we are done with the startup thread, so free it up.
646 	 */
647 	thread_exit();
648 	cmn_err(CE_PANIC, "slave_startup: cannot return");
649 	/*NOTREACHED*/
650 }
651 
652 /*
653  * 4163850 changes the allocation method for cpu structs. cpu structs
654  * are dynamically allocated. This routine now determines if additional
655  * per-cpu intr_req entries need to be allocated.
656  */
657 int
658 ndata_alloc_cpus(struct memlist *ndata)
659 {
660 	size_t real_sz;
661 	extern int niobus;
662 
663 	if (niobus > 1) {
664 
665 		/*
666 		 * Allocate additional intr_req entries if we have more than
667 		 * one io bus.  The memory to allocate is calculated from four
668 		 * variables: niobus, max_ncpus, intr_add_div, and intr_add_max.
669 		 * Allocate multiple of INTR_POOL_SIZE bytes (512).  Each cpu
670 		 * already reserves 512 bytes in its machcpu structure, so the
671 		 * worst case is (512 * (niobus - 1) * max_ncpus) add'l bytes.
672 		 *
673 		 * While niobus and max_ncpus reflect the h/w, the following
674 		 * may be tuned (before boot):
675 		 *
676 		 *	intr_add_div -	divisor for scaling the number of
677 		 *			additional intr_req entries. use '1'
678 		 *			for worst case memory, '2' for half,
679 		 *			etc.
680 		 *
681 		 *   intr_add_max - upper limit on bytes of memory to reserve
682 		 */
683 
684 		real_sz = INTR_POOL_SIZE * (niobus - 1) * max_ncpus;
685 
686 		/* tune memory usage by applying divisor and maximum */
687 
688 		if (intr_add_max == 0)
689 			intr_add_max = max_ncpus * INTR_POOL_SIZE;
690 		real_sz = MIN(intr_add_max, real_sz / MAX(intr_add_div, 1));
691 
692 		/* round down to multiple of (max_ncpus * INTR_POOL_SIZE) */
693 
694 		intr_add_pools = real_sz / (max_ncpus * INTR_POOL_SIZE);
695 		real_sz = intr_add_pools * (max_ncpus * INTR_POOL_SIZE);
696 
697 		/* actually reserve the space */
698 
699 		intr_add_head = ndata_alloc(ndata, real_sz, ecache_alignsize);
700 		if (intr_add_head == NULL)
701 			return (-1);
702 
703 		PRM_DEBUG(intr_add_head);
704 #ifdef	DEBUG
705 		intr_add_tail = (struct intr_req *)
706 		    ((uintptr_t)intr_add_head + real_sz);
707 #endif	/* DEBUG */
708 	}
709 
710 	return (0);
711 }
712 
713 
714 extern struct cpu	*cpu[NCPU];	/* pointers to all CPUs */
715 
716 extern void setup_cpu_common(int);
717 extern void common_startup_init(cpu_t *, int);
718 extern void start_cpu(int, void(*func)(int));
719 extern void cold_flag_set(int cpuid);
720 
721 /*
722  * cpu_bringup_set is a tunable (via /etc/system, debugger, etc.) that
723  * can be used during debugging to control which processors are brought
724  * online at boot time.  The variable represents a bitmap of the id's
725  * of the processors that will be brought online.  The initialization
726  * of this variable depends on the type of cpuset_t, which varies
727  * depending on the number of processors supported (see cpuvar.h).
728  */
729 cpuset_t cpu_bringup_set;
730 
731 
732 /*
733  * Generic start-all cpus entry.  Typically used during cold initialization.
734  * Note that cold start cpus are initialized into the online state.
735  */
736 /*ARGSUSED*/
737 void
738 start_other_cpus(int flag)
739 {
740 	int cpuid;
741 	extern void idlestop_init(void);
742 	int bootcpu;
743 
744 	/*
745 	 * Check if cpu_bringup_set has been explicitly set before
746 	 * initializing it.
747 	 */
748 	if (CPUSET_ISNULL(cpu_bringup_set)) {
749 #ifdef MPSAS
750 		/* just CPU 0 */
751 		CPUSET_ADD(cpu_bringup_set, 0);
752 #else
753 		CPUSET_ALL(cpu_bringup_set);
754 #endif
755 	}
756 
757 	if (&cpu_feature_init)
758 		cpu_feature_init();
759 
760 	/*
761 	 * Initialize CPC.
762 	 */
763 	kcpc_hw_init();
764 
765 	mutex_enter(&cpu_lock);
766 
767 	/*
768 	 * Initialize our own cpu_info.
769 	 */
770 	init_cpu_info(CPU);
771 
772 	/*
773 	 * Initialize CPU 0 cpu module private data area, including scrubber.
774 	 */
775 	cpu_init_private(CPU);
776 
777 	/*
778 	 * perform such initialization as is needed
779 	 * to be able to take CPUs on- and off-line.
780 	 */
781 	cpu_pause_init();
782 	xc_init();		/* initialize processor crosscalls */
783 	idlestop_init();
784 
785 	if (!use_mp) {
786 		mutex_exit(&cpu_lock);
787 		cmn_err(CE_CONT, "?***** Not in MP mode\n");
788 		return;
789 	}
790 	/*
791 	 * should we be initializing this cpu?
792 	 */
793 	bootcpu = getprocessorid();
794 
795 	/*
796 	 * launch all the slave cpus now
797 	 */
798 	for (cpuid = 0; cpuid < NCPU; cpuid++) {
799 		pnode_t nodeid = cpunodes[cpuid].nodeid;
800 
801 		if (nodeid == (pnode_t)0)
802 			continue;
803 
804 		if (cpuid == bootcpu) {
805 			if (!CPU_IN_SET(cpu_bringup_set, cpuid)) {
806 				cmn_err(CE_WARN, "boot cpu not a member "
807 				    "of cpu_bringup_set, adding it");
808 				CPUSET_ADD(cpu_bringup_set, cpuid);
809 			}
810 			continue;
811 		}
812 		if (!CPU_IN_SET(cpu_bringup_set, cpuid))
813 			continue;
814 
815 		ASSERT(cpu[cpuid] == NULL);
816 
817 		setup_cpu_common(cpuid);
818 
819 		common_startup_init(cpu[cpuid], cpuid);
820 
821 		start_cpu(cpuid, cold_flag_set);
822 		/*
823 		 * Because slave_startup() gets fired off after init()
824 		 * starts, we can't use the '?' trick to do 'boot -v'
825 		 * printing - so we always direct the 'cpu .. online'
826 		 * messages to the log.
827 		 */
828 		cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
829 		    cpuid);
830 
831 		/*
832 		 * XXX: register_cpu_setup() callbacks should be called here
833 		 * with a new setup code, CPU_BOOT (or something).
834 		 */
835 		if (dtrace_cpu_init != NULL)
836 			(*dtrace_cpu_init)(cpuid);
837 	}
838 
839 	/*
840 	 * since all the cpus are online now, redistribute interrupts to them.
841 	 */
842 	intr_redist_all_cpus();
843 
844 	mutex_exit(&cpu_lock);
845 
846 	/*
847 	 * Start the Ecache scrubber.  Must be done after all calls to
848 	 * cpu_init_private for every cpu (including CPU 0).
849 	 */
850 	cpu_init_cache_scrub();
851 
852 	if (&cpu_mp_init)
853 		cpu_mp_init();
854 }
855