1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/kstat.h> 30 #include <sys/param.h> 31 #include <sys/stack.h> 32 #include <sys/regset.h> 33 #include <sys/thread.h> 34 #include <sys/proc.h> 35 #include <sys/procfs_isa.h> 36 #include <sys/kmem.h> 37 #include <sys/cpuvar.h> 38 #include <sys/systm.h> 39 #include <sys/machpcb.h> 40 #include <sys/machasi.h> 41 #include <sys/vis.h> 42 #include <sys/fpu/fpusystm.h> 43 #include <sys/cpu_module.h> 44 #include <sys/privregs.h> 45 #include <sys/archsystm.h> 46 #include <sys/atomic.h> 47 #include <sys/cmn_err.h> 48 #include <sys/time.h> 49 #include <sys/clock.h> 50 #include <sys/cmp.h> 51 #include <sys/platform_module.h> 52 #include <sys/bl.h> 53 #include <sys/nvpair.h> 54 #include <sys/kdi_impl.h> 55 #include <sys/machsystm.h> 56 #include <sys/sysmacros.h> 57 #include <sys/promif.h> 58 #include <sys/pool_pset.h> 59 #include <sys/mem.h> 60 #include <sys/dumphdr.h> 61 #include <vm/seg_kmem.h> 62 #include <sys/hold_page.h> 63 #include <sys/cpu.h> 64 65 int maxphys = MMU_PAGESIZE * 16; /* 128k */ 66 int klustsize = MMU_PAGESIZE * 16; /* 128k */ 67 68 /* 69 * Initialize kernel thread's stack. 70 */ 71 caddr_t 72 thread_stk_init(caddr_t stk) 73 { 74 kfpu_t *fp; 75 ulong_t align; 76 77 /* allocate extra space for floating point state */ 78 stk -= SA(sizeof (kfpu_t) + GSR_SIZE); 79 align = (uintptr_t)stk & 0x3f; 80 stk -= align; /* force v9_fpu to be 16 byte aligned */ 81 fp = (kfpu_t *)stk; 82 fp->fpu_fprs = 0; 83 84 stk -= SA(MINFRAME); 85 return (stk); 86 } 87 88 #define WIN32_SIZE (MAXWIN * sizeof (struct rwindow32)) 89 #define WIN64_SIZE (MAXWIN * sizeof (struct rwindow64)) 90 91 kmem_cache_t *wbuf32_cache; 92 kmem_cache_t *wbuf64_cache; 93 94 void 95 lwp_stk_cache_init(void) 96 { 97 /* 98 * Window buffers are allocated from the static arena 99 * because they are accessed at TL>0. We also must use 100 * KMC_NOHASH to prevent them from straddling page 101 * boundaries as they are accessed by physical address. 102 */ 103 wbuf32_cache = kmem_cache_create("wbuf32_cache", WIN32_SIZE, 104 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 105 wbuf64_cache = kmem_cache_create("wbuf64_cache", WIN64_SIZE, 106 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 107 } 108 109 /* 110 * Initialize lwp's kernel stack. 111 * Note that now that the floating point register save area (kfpu_t) 112 * has been broken out from machpcb and aligned on a 64 byte boundary so that 113 * we can do block load/stores to/from it, there are a couple of potential 114 * optimizations to save stack space. 1. The floating point register save 115 * area could be aligned on a 16 byte boundary, and the floating point code 116 * changed to (a) check the alignment and (b) use different save/restore 117 * macros depending upon the alignment. 2. The lwp_stk_init code below 118 * could be changed to calculate if less space would be wasted if machpcb 119 * was first instead of second. However there is a REGOFF macro used in 120 * locore, syscall_trap, machdep and mlsetup that assumes that the saved 121 * register area is a fixed distance from the %sp, and would have to be 122 * changed to a pointer or something...JJ said later. 123 */ 124 caddr_t 125 lwp_stk_init(klwp_t *lwp, caddr_t stk) 126 { 127 struct machpcb *mpcb; 128 kfpu_t *fp; 129 uintptr_t aln; 130 131 stk -= SA(sizeof (kfpu_t) + GSR_SIZE); 132 aln = (uintptr_t)stk & 0x3F; 133 stk -= aln; 134 fp = (kfpu_t *)stk; 135 stk -= SA(sizeof (struct machpcb)); 136 mpcb = (struct machpcb *)stk; 137 bzero(mpcb, sizeof (struct machpcb)); 138 bzero(fp, sizeof (kfpu_t) + GSR_SIZE); 139 lwp->lwp_regs = (void *)&mpcb->mpcb_regs; 140 lwp->lwp_fpu = (void *)fp; 141 mpcb->mpcb_fpu = fp; 142 mpcb->mpcb_fpu->fpu_q = mpcb->mpcb_fpu_q; 143 mpcb->mpcb_thread = lwp->lwp_thread; 144 mpcb->mpcb_wbcnt = 0; 145 if (lwp->lwp_procp->p_model == DATAMODEL_ILP32) { 146 mpcb->mpcb_wstate = WSTATE_USER32; 147 mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf32_cache, KM_SLEEP); 148 } else { 149 mpcb->mpcb_wstate = WSTATE_USER64; 150 mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf64_cache, KM_SLEEP); 151 } 152 ASSERT(((uintptr_t)mpcb->mpcb_wbuf & 7) == 0); 153 mpcb->mpcb_wbuf_pa = va_to_pa(mpcb->mpcb_wbuf); 154 mpcb->mpcb_pa = va_to_pa(mpcb); 155 return (stk); 156 } 157 158 void 159 lwp_stk_fini(klwp_t *lwp) 160 { 161 struct machpcb *mpcb = lwptompcb(lwp); 162 163 /* 164 * there might be windows still in the wbuf due to unmapped 165 * stack, misaligned stack pointer, etc. We just free it. 166 */ 167 mpcb->mpcb_wbcnt = 0; 168 if (mpcb->mpcb_wstate == WSTATE_USER32) 169 kmem_cache_free(wbuf32_cache, mpcb->mpcb_wbuf); 170 else 171 kmem_cache_free(wbuf64_cache, mpcb->mpcb_wbuf); 172 mpcb->mpcb_wbuf = NULL; 173 mpcb->mpcb_wbuf_pa = -1; 174 } 175 176 177 /* 178 * Copy regs from parent to child. 179 */ 180 void 181 lwp_forkregs(klwp_t *lwp, klwp_t *clwp) 182 { 183 kthread_t *t, *pt = lwptot(lwp); 184 struct machpcb *mpcb = lwptompcb(clwp); 185 struct machpcb *pmpcb = lwptompcb(lwp); 186 kfpu_t *fp, *pfp = lwptofpu(lwp); 187 caddr_t wbuf; 188 uint_t wstate; 189 190 t = mpcb->mpcb_thread; 191 /* 192 * remember child's fp and wbuf since they will get erased during 193 * the bcopy. 194 */ 195 fp = mpcb->mpcb_fpu; 196 wbuf = mpcb->mpcb_wbuf; 197 wstate = mpcb->mpcb_wstate; 198 /* 199 * Don't copy mpcb_frame since we hand-crafted it 200 * in thread_load(). 201 */ 202 bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct machpcb) - REGOFF); 203 mpcb->mpcb_thread = t; 204 mpcb->mpcb_fpu = fp; 205 fp->fpu_q = mpcb->mpcb_fpu_q; 206 207 /* 208 * It is theoretically possibly for the lwp's wstate to 209 * be different from its value assigned in lwp_stk_init, 210 * since lwp_stk_init assumed the data model of the process. 211 * Here, we took on the data model of the cloned lwp. 212 */ 213 if (mpcb->mpcb_wstate != wstate) { 214 if (wstate == WSTATE_USER32) { 215 kmem_cache_free(wbuf32_cache, wbuf); 216 wbuf = kmem_cache_alloc(wbuf64_cache, KM_SLEEP); 217 wstate = WSTATE_USER64; 218 } else { 219 kmem_cache_free(wbuf64_cache, wbuf); 220 wbuf = kmem_cache_alloc(wbuf32_cache, KM_SLEEP); 221 wstate = WSTATE_USER32; 222 } 223 } 224 225 mpcb->mpcb_pa = va_to_pa(mpcb); 226 mpcb->mpcb_wbuf = wbuf; 227 mpcb->mpcb_wbuf_pa = va_to_pa(wbuf); 228 229 ASSERT(mpcb->mpcb_wstate == wstate); 230 231 if (mpcb->mpcb_wbcnt != 0) { 232 bcopy(pmpcb->mpcb_wbuf, mpcb->mpcb_wbuf, 233 mpcb->mpcb_wbcnt * ((mpcb->mpcb_wstate == WSTATE_USER32) ? 234 sizeof (struct rwindow32) : sizeof (struct rwindow64))); 235 } 236 237 if (pt == curthread) 238 pfp->fpu_fprs = _fp_read_fprs(); 239 if ((pfp->fpu_en) || (pfp->fpu_fprs & FPRS_FEF)) { 240 if (pt == curthread && fpu_exists) { 241 save_gsr(clwp->lwp_fpu); 242 } else { 243 uint64_t gsr; 244 gsr = get_gsr(lwp->lwp_fpu); 245 set_gsr(gsr, clwp->lwp_fpu); 246 } 247 fp_fork(lwp, clwp); 248 } 249 } 250 251 /* 252 * Free lwp fpu regs. 253 */ 254 void 255 lwp_freeregs(klwp_t *lwp, int isexec) 256 { 257 kfpu_t *fp = lwptofpu(lwp); 258 259 if (lwptot(lwp) == curthread) 260 fp->fpu_fprs = _fp_read_fprs(); 261 if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) 262 fp_free(fp, isexec); 263 } 264 265 /* 266 * This function is currently unused on sparc. 267 */ 268 /*ARGSUSED*/ 269 void 270 lwp_attach_brand_hdlrs(klwp_t *lwp) 271 {} 272 273 /* 274 * fill in the extra register state area specified with the 275 * specified lwp's platform-dependent non-floating-point extra 276 * register state information 277 */ 278 /* ARGSUSED */ 279 void 280 xregs_getgfiller(klwp_id_t lwp, caddr_t xrp) 281 { 282 /* for sun4u nothing to do here, added for symmetry */ 283 } 284 285 /* 286 * fill in the extra register state area specified with the specified lwp's 287 * platform-dependent floating-point extra register state information. 288 * NOTE: 'lwp' might not correspond to 'curthread' since this is 289 * called from code in /proc to get the registers of another lwp. 290 */ 291 void 292 xregs_getfpfiller(klwp_id_t lwp, caddr_t xrp) 293 { 294 prxregset_t *xregs = (prxregset_t *)xrp; 295 kfpu_t *fp = lwptofpu(lwp); 296 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 297 uint64_t gsr; 298 299 /* 300 * fp_fksave() does not flush the GSR register into 301 * the lwp area, so do it now 302 */ 303 kpreempt_disable(); 304 if (ttolwp(curthread) == lwp && fpu_exists) { 305 fp->fpu_fprs = _fp_read_fprs(); 306 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 307 _fp_write_fprs(fprs); 308 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 309 } 310 save_gsr(fp); 311 } 312 gsr = get_gsr(fp); 313 kpreempt_enable(); 314 PRXREG_GSR(xregs) = gsr; 315 } 316 317 /* 318 * set the specified lwp's platform-dependent non-floating-point 319 * extra register state based on the specified input 320 */ 321 /* ARGSUSED */ 322 void 323 xregs_setgfiller(klwp_id_t lwp, caddr_t xrp) 324 { 325 /* for sun4u nothing to do here, added for symmetry */ 326 } 327 328 /* 329 * set the specified lwp's platform-dependent floating-point 330 * extra register state based on the specified input 331 */ 332 void 333 xregs_setfpfiller(klwp_id_t lwp, caddr_t xrp) 334 { 335 prxregset_t *xregs = (prxregset_t *)xrp; 336 kfpu_t *fp = lwptofpu(lwp); 337 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 338 uint64_t gsr = PRXREG_GSR(xregs); 339 340 kpreempt_disable(); 341 set_gsr(gsr, lwptofpu(lwp)); 342 343 if ((lwp == ttolwp(curthread)) && fpu_exists) { 344 fp->fpu_fprs = _fp_read_fprs(); 345 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 346 _fp_write_fprs(fprs); 347 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 348 } 349 restore_gsr(lwptofpu(lwp)); 350 } 351 kpreempt_enable(); 352 } 353 354 /* 355 * fill in the sun4u asrs, ie, the lwp's platform-dependent 356 * non-floating-point extra register state information 357 */ 358 /* ARGSUSED */ 359 void 360 getasrs(klwp_t *lwp, asrset_t asr) 361 { 362 /* for sun4u nothing to do here, added for symmetry */ 363 } 364 365 /* 366 * fill in the sun4u asrs, ie, the lwp's platform-dependent 367 * floating-point extra register state information 368 */ 369 void 370 getfpasrs(klwp_t *lwp, asrset_t asr) 371 { 372 kfpu_t *fp = lwptofpu(lwp); 373 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 374 375 kpreempt_disable(); 376 if (ttolwp(curthread) == lwp) 377 fp->fpu_fprs = _fp_read_fprs(); 378 if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) { 379 if (fpu_exists && ttolwp(curthread) == lwp) { 380 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 381 _fp_write_fprs(fprs); 382 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 383 } 384 save_gsr(fp); 385 } 386 asr[ASR_GSR] = (int64_t)get_gsr(fp); 387 } 388 kpreempt_enable(); 389 } 390 391 /* 392 * set the sun4u asrs, ie, the lwp's platform-dependent 393 * non-floating-point extra register state information 394 */ 395 /* ARGSUSED */ 396 void 397 setasrs(klwp_t *lwp, asrset_t asr) 398 { 399 /* for sun4u nothing to do here, added for symmetry */ 400 } 401 402 void 403 setfpasrs(klwp_t *lwp, asrset_t asr) 404 { 405 kfpu_t *fp = lwptofpu(lwp); 406 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 407 408 kpreempt_disable(); 409 if (ttolwp(curthread) == lwp) 410 fp->fpu_fprs = _fp_read_fprs(); 411 if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) { 412 set_gsr(asr[ASR_GSR], fp); 413 if (fpu_exists && ttolwp(curthread) == lwp) { 414 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 415 _fp_write_fprs(fprs); 416 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 417 } 418 restore_gsr(fp); 419 } 420 } 421 kpreempt_enable(); 422 } 423 424 /* 425 * Create interrupt kstats for this CPU. 426 */ 427 void 428 cpu_create_intrstat(cpu_t *cp) 429 { 430 int i; 431 kstat_t *intr_ksp; 432 kstat_named_t *knp; 433 char name[KSTAT_STRLEN]; 434 zoneid_t zoneid; 435 436 ASSERT(MUTEX_HELD(&cpu_lock)); 437 438 if (pool_pset_enabled()) 439 zoneid = GLOBAL_ZONEID; 440 else 441 zoneid = ALL_ZONES; 442 443 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 444 KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 445 446 /* 447 * Initialize each PIL's named kstat 448 */ 449 if (intr_ksp != NULL) { 450 intr_ksp->ks_update = cpu_kstat_intrstat_update; 451 knp = (kstat_named_t *)intr_ksp->ks_data; 452 intr_ksp->ks_private = cp; 453 for (i = 0; i < PIL_MAX; i++) { 454 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 455 i + 1); 456 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 457 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 458 i + 1); 459 kstat_named_init(&knp[(i * 2) + 1], name, 460 KSTAT_DATA_UINT64); 461 } 462 kstat_install(intr_ksp); 463 } 464 } 465 466 /* 467 * Delete interrupt kstats for this CPU. 468 */ 469 void 470 cpu_delete_intrstat(cpu_t *cp) 471 { 472 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 473 } 474 475 /* 476 * Convert interrupt statistics from CPU ticks to nanoseconds and 477 * update kstat. 478 */ 479 int 480 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 481 { 482 kstat_named_t *knp = ksp->ks_data; 483 cpu_t *cpup = (cpu_t *)ksp->ks_private; 484 int i; 485 486 if (rw == KSTAT_WRITE) 487 return (EACCES); 488 489 /* 490 * We use separate passes to copy and convert the statistics to 491 * nanoseconds. This assures that the snapshot of the data is as 492 * self-consistent as possible. 493 */ 494 495 for (i = 0; i < PIL_MAX; i++) { 496 knp[i * 2].value.ui64 = cpup->cpu_m.intrstat[i + 1][0]; 497 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 498 } 499 500 for (i = 0; i < PIL_MAX; i++) { 501 knp[i * 2].value.ui64 = 502 (uint64_t)tick2ns((hrtime_t)knp[i * 2].value.ui64, 503 cpup->cpu_id); 504 } 505 506 return (0); 507 } 508 509 /* 510 * Called by common/os/cpu.c for psrinfo(1m) kstats 511 */ 512 char * 513 cpu_fru_fmri(cpu_t *cp) 514 { 515 return (cpunodes[cp->cpu_id].fru_fmri); 516 } 517 518 /* 519 * An interrupt thread is ending a time slice, so compute the interval it 520 * ran for and update the statistic for its PIL. 521 */ 522 void 523 cpu_intr_swtch_enter(kthread_id_t t) 524 { 525 uint64_t interval; 526 uint64_t start; 527 cpu_t *cpu; 528 529 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 530 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 531 532 /* 533 * We could be here with a zero timestamp. This could happen if: 534 * an interrupt thread which no longer has a pinned thread underneath 535 * it (i.e. it blocked at some point in its past) has finished running 536 * its handler. intr_thread() updated the interrupt statistic for its 537 * PIL and zeroed its timestamp. Since there was no pinned thread to 538 * return to, swtch() gets called and we end up here. 539 * 540 * It can also happen if an interrupt thread in intr_thread() calls 541 * preempt. It will have already taken care of updating stats. In 542 * this event, the interrupt thread will be runnable. 543 */ 544 if (t->t_intr_start) { 545 do { 546 start = t->t_intr_start; 547 interval = gettick_counter() - start; 548 } while (cas64(&t->t_intr_start, start, 0) != start); 549 cpu = CPU; 550 if (cpu->cpu_m.divisor > 1) 551 interval *= cpu->cpu_m.divisor; 552 cpu->cpu_m.intrstat[t->t_pil][0] += interval; 553 554 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 555 interval); 556 } else 557 ASSERT(t->t_intr == NULL || t->t_state == TS_RUN); 558 } 559 560 561 /* 562 * An interrupt thread is returning from swtch(). Place a starting timestamp 563 * in its thread structure. 564 */ 565 void 566 cpu_intr_swtch_exit(kthread_id_t t) 567 { 568 uint64_t ts; 569 570 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 571 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 572 573 do { 574 ts = t->t_intr_start; 575 } while (cas64(&t->t_intr_start, ts, gettick_counter()) != ts); 576 } 577 578 579 int 580 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 581 { 582 if (&plat_blacklist) 583 return (plat_blacklist(cmd, scheme, fmri, class)); 584 585 return (ENOTSUP); 586 } 587 588 int 589 kdi_pread(caddr_t buf, size_t nbytes, uint64_t addr, size_t *ncopiedp) 590 { 591 extern void kdi_flush_caches(void); 592 size_t nread = 0; 593 uint32_t word; 594 int slop, i; 595 596 kdi_flush_caches(); 597 membar_enter(); 598 599 /* We might not begin on a word boundary. */ 600 if ((slop = addr & 3) != 0) { 601 word = ldphys(addr & ~3); 602 for (i = slop; i < 4 && nbytes > 0; i++, nbytes--, nread++) 603 *buf++ = ((uchar_t *)&word)[i]; 604 addr = roundup(addr, 4); 605 } 606 607 while (nbytes > 0) { 608 word = ldphys(addr); 609 for (i = 0; i < 4 && nbytes > 0; i++, nbytes--, nread++, addr++) 610 *buf++ = ((uchar_t *)&word)[i]; 611 } 612 613 kdi_flush_caches(); 614 615 *ncopiedp = nread; 616 return (0); 617 } 618 619 int 620 kdi_pwrite(caddr_t buf, size_t nbytes, uint64_t addr, size_t *ncopiedp) 621 { 622 extern void kdi_flush_caches(void); 623 size_t nwritten = 0; 624 uint32_t word; 625 int slop, i; 626 627 kdi_flush_caches(); 628 629 /* We might not begin on a word boundary. */ 630 if ((slop = addr & 3) != 0) { 631 word = ldphys(addr & ~3); 632 for (i = slop; i < 4 && nbytes > 0; i++, nbytes--, nwritten++) 633 ((uchar_t *)&word)[i] = *buf++; 634 stphys(addr & ~3, word); 635 addr = roundup(addr, 4); 636 } 637 638 while (nbytes > 3) { 639 for (word = 0, i = 0; i < 4; i++, nbytes--, nwritten++) 640 ((uchar_t *)&word)[i] = *buf++; 641 stphys(addr, word); 642 addr += 4; 643 } 644 645 /* We might not end with a whole word. */ 646 if (nbytes > 0) { 647 word = ldphys(addr); 648 for (i = 0; nbytes > 0; i++, nbytes--, nwritten++) 649 ((uchar_t *)&word)[i] = *buf++; 650 stphys(addr, word); 651 } 652 653 membar_enter(); 654 kdi_flush_caches(); 655 656 *ncopiedp = nwritten; 657 return (0); 658 } 659 660 static void 661 kdi_kernpanic(struct regs *regs, uint_t tt) 662 { 663 sync_reg_buf = *regs; 664 sync_tt = tt; 665 666 sync_handler(); 667 } 668 669 static void 670 kdi_plat_call(void (*platfn)(void)) 671 { 672 if (platfn != NULL) { 673 prom_suspend_prepost(); 674 platfn(); 675 prom_resume_prepost(); 676 } 677 } 678 679 void 680 mach_kdi_init(kdi_t *kdi) 681 { 682 kdi->kdi_plat_call = kdi_plat_call; 683 kdi->kdi_kmdb_enter = kmdb_enter; 684 kdi->mkdi_cpu_index = kdi_cpu_index; 685 kdi->mkdi_trap_vatotte = kdi_trap_vatotte; 686 kdi->mkdi_kernpanic = kdi_kernpanic; 687 } 688 689 690 /* 691 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 692 * long, and it fills in the array with the time spent on cpu in 693 * each of the mstates, where time is returned in nsec. 694 * 695 * No guarantee is made that the returned values in times[] will 696 * monotonically increase on sequential calls, although this will 697 * be true in the long run. Any such guarantee must be handled by 698 * the caller, if needed. This can happen if we fail to account 699 * for elapsed time due to a generation counter conflict, yet we 700 * did account for it on a prior call (see below). 701 * 702 * The complication is that the cpu in question may be updating 703 * its microstate at the same time that we are reading it. 704 * Because the microstate is only updated when the CPU's state 705 * changes, the values in cpu_intracct[] can be indefinitely out 706 * of date. To determine true current values, it is necessary to 707 * compare the current time with cpu_mstate_start, and add the 708 * difference to times[cpu_mstate]. 709 * 710 * This can be a problem if those values are changing out from 711 * under us. Because the code path in new_cpu_mstate() is 712 * performance critical, we have not added a lock to it. Instead, 713 * we have added a generation counter. Before beginning 714 * modifications, the counter is set to 0. After modifications, 715 * it is set to the old value plus one. 716 * 717 * get_cpu_mstate() will not consider the values of cpu_mstate 718 * and cpu_mstate_start to be usable unless the value of 719 * cpu_mstate_gen is both non-zero and unchanged, both before and 720 * after reading the mstate information. Note that we must 721 * protect against out-of-order loads around accesses to the 722 * generation counter. Also, this is a best effort approach in 723 * that we do not retry should the counter be found to have 724 * changed. 725 * 726 * cpu_intracct[] is used to identify time spent in each CPU 727 * mstate while handling interrupts. Such time should be reported 728 * against system time, and so is subtracted out from its 729 * corresponding cpu_acct[] time and added to 730 * cpu_acct[CMS_SYSTEM]. Additionally, intracct time is stored in 731 * %ticks, but acct time may be stored as %sticks, thus requiring 732 * different conversions before they can be compared. 733 */ 734 735 void 736 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 737 { 738 int i; 739 hrtime_t now, start; 740 uint16_t gen; 741 uint16_t state; 742 hrtime_t intracct[NCMSTATES]; 743 744 /* 745 * Load all volatile state under the protection of membar. 746 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 747 * of (now - cpu_mstate_start) by a change in CPU mstate that 748 * arrives after we make our last check of cpu_mstate_gen. 749 */ 750 751 now = gethrtime_unscaled(); 752 gen = cpu->cpu_mstate_gen; 753 754 membar_consumer(); /* guarantee load ordering */ 755 start = cpu->cpu_mstate_start; 756 state = cpu->cpu_mstate; 757 for (i = 0; i < NCMSTATES; i++) { 758 intracct[i] = cpu->cpu_intracct[i]; 759 times[i] = cpu->cpu_acct[i]; 760 } 761 membar_consumer(); /* guarantee load ordering */ 762 763 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 764 times[state] += now - start; 765 766 for (i = 0; i < NCMSTATES; i++) { 767 scalehrtime(×[i]); 768 intracct[i] = tick2ns((hrtime_t)intracct[i], cpu->cpu_id); 769 } 770 771 for (i = 0; i < NCMSTATES; i++) { 772 if (i == CMS_SYSTEM) 773 continue; 774 times[i] -= intracct[i]; 775 if (times[i] < 0) { 776 intracct[i] += times[i]; 777 times[i] = 0; 778 } 779 times[CMS_SYSTEM] += intracct[i]; 780 } 781 } 782 783 void 784 mach_cpu_pause(volatile char *safe) 785 { 786 /* 787 * This cpu is now safe. 788 */ 789 *safe = PAUSE_WAIT; 790 membar_enter(); /* make sure stores are flushed */ 791 792 /* 793 * Now we wait. When we are allowed to continue, safe 794 * will be set to PAUSE_IDLE. 795 */ 796 while (*safe != PAUSE_IDLE) 797 SMT_PAUSE(); 798 } 799 800 /*ARGSUSED*/ 801 int 802 plat_mem_valid_page(uintptr_t pageaddr, uio_rw_t rw) 803 { 804 return (0); 805 } 806 807 int 808 dump_plat_addr() 809 { 810 return (0); 811 } 812 813 void 814 dump_plat_pfn() 815 { 816 } 817 818 /* ARGSUSED */ 819 int 820 dump_plat_data(void *dump_cdata) 821 { 822 return (0); 823 } 824 825 /* ARGSUSED */ 826 int 827 plat_hold_page(pfn_t pfn, int lock, page_t **pp_ret) 828 { 829 return (PLAT_HOLD_OK); 830 } 831 832 /* ARGSUSED */ 833 void 834 plat_release_page(page_t *pp) 835 { 836 } 837