1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/kstat.h> 27 #include <sys/param.h> 28 #include <sys/stack.h> 29 #include <sys/regset.h> 30 #include <sys/thread.h> 31 #include <sys/proc.h> 32 #include <sys/procfs_isa.h> 33 #include <sys/kmem.h> 34 #include <sys/cpuvar.h> 35 #include <sys/systm.h> 36 #include <sys/machpcb.h> 37 #include <sys/machasi.h> 38 #include <sys/vis.h> 39 #include <sys/fpu/fpusystm.h> 40 #include <sys/cpu_module.h> 41 #include <sys/privregs.h> 42 #include <sys/archsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/cmn_err.h> 45 #include <sys/time.h> 46 #include <sys/clock.h> 47 #include <sys/cmp.h> 48 #include <sys/platform_module.h> 49 #include <sys/bl.h> 50 #include <sys/nvpair.h> 51 #include <sys/kdi_impl.h> 52 #include <sys/machsystm.h> 53 #include <sys/sysmacros.h> 54 #include <sys/promif.h> 55 #include <sys/pool_pset.h> 56 #include <sys/mem.h> 57 #include <sys/dumphdr.h> 58 #include <vm/seg_kmem.h> 59 #include <sys/hold_page.h> 60 #include <sys/cpu.h> 61 #include <sys/ivintr.h> 62 #include <sys/clock_impl.h> 63 #include <sys/machclock.h> 64 65 int maxphys = MMU_PAGESIZE * 16; /* 128k */ 66 int klustsize = MMU_PAGESIZE * 16; /* 128k */ 67 68 /* 69 * Initialize kernel thread's stack. 70 */ 71 caddr_t 72 thread_stk_init(caddr_t stk) 73 { 74 kfpu_t *fp; 75 ulong_t align; 76 77 /* allocate extra space for floating point state */ 78 stk -= SA(sizeof (kfpu_t) + GSR_SIZE); 79 align = (uintptr_t)stk & 0x3f; 80 stk -= align; /* force v9_fpu to be 16 byte aligned */ 81 fp = (kfpu_t *)stk; 82 fp->fpu_fprs = 0; 83 84 stk -= SA(MINFRAME); 85 return (stk); 86 } 87 88 #define WIN32_SIZE (MAXWIN * sizeof (struct rwindow32)) 89 #define WIN64_SIZE (MAXWIN * sizeof (struct rwindow64)) 90 91 kmem_cache_t *wbuf32_cache; 92 kmem_cache_t *wbuf64_cache; 93 94 void 95 lwp_stk_cache_init(void) 96 { 97 /* 98 * Window buffers are allocated from the static arena 99 * because they are accessed at TL>0. We also must use 100 * KMC_NOHASH to prevent them from straddling page 101 * boundaries as they are accessed by physical address. 102 */ 103 wbuf32_cache = kmem_cache_create("wbuf32_cache", WIN32_SIZE, 104 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 105 wbuf64_cache = kmem_cache_create("wbuf64_cache", WIN64_SIZE, 106 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 107 } 108 109 /* 110 * Initialize lwp's kernel stack. 111 * Note that now that the floating point register save area (kfpu_t) 112 * has been broken out from machpcb and aligned on a 64 byte boundary so that 113 * we can do block load/stores to/from it, there are a couple of potential 114 * optimizations to save stack space. 1. The floating point register save 115 * area could be aligned on a 16 byte boundary, and the floating point code 116 * changed to (a) check the alignment and (b) use different save/restore 117 * macros depending upon the alignment. 2. The lwp_stk_init code below 118 * could be changed to calculate if less space would be wasted if machpcb 119 * was first instead of second. However there is a REGOFF macro used in 120 * locore, syscall_trap, machdep and mlsetup that assumes that the saved 121 * register area is a fixed distance from the %sp, and would have to be 122 * changed to a pointer or something...JJ said later. 123 */ 124 caddr_t 125 lwp_stk_init(klwp_t *lwp, caddr_t stk) 126 { 127 struct machpcb *mpcb; 128 kfpu_t *fp; 129 uintptr_t aln; 130 131 stk -= SA(sizeof (kfpu_t) + GSR_SIZE); 132 aln = (uintptr_t)stk & 0x3F; 133 stk -= aln; 134 fp = (kfpu_t *)stk; 135 stk -= SA(sizeof (struct machpcb)); 136 mpcb = (struct machpcb *)stk; 137 bzero(mpcb, sizeof (struct machpcb)); 138 bzero(fp, sizeof (kfpu_t) + GSR_SIZE); 139 lwp->lwp_regs = (void *)&mpcb->mpcb_regs; 140 lwp->lwp_fpu = (void *)fp; 141 mpcb->mpcb_fpu = fp; 142 mpcb->mpcb_fpu->fpu_q = mpcb->mpcb_fpu_q; 143 mpcb->mpcb_thread = lwp->lwp_thread; 144 mpcb->mpcb_wbcnt = 0; 145 if (lwp->lwp_procp->p_model == DATAMODEL_ILP32) { 146 mpcb->mpcb_wstate = WSTATE_USER32; 147 mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf32_cache, KM_SLEEP); 148 } else { 149 mpcb->mpcb_wstate = WSTATE_USER64; 150 mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf64_cache, KM_SLEEP); 151 } 152 ASSERT(((uintptr_t)mpcb->mpcb_wbuf & 7) == 0); 153 mpcb->mpcb_wbuf_pa = va_to_pa(mpcb->mpcb_wbuf); 154 mpcb->mpcb_pa = va_to_pa(mpcb); 155 return (stk); 156 } 157 158 void 159 lwp_stk_fini(klwp_t *lwp) 160 { 161 struct machpcb *mpcb = lwptompcb(lwp); 162 163 /* 164 * there might be windows still in the wbuf due to unmapped 165 * stack, misaligned stack pointer, etc. We just free it. 166 */ 167 mpcb->mpcb_wbcnt = 0; 168 if (mpcb->mpcb_wstate == WSTATE_USER32) 169 kmem_cache_free(wbuf32_cache, mpcb->mpcb_wbuf); 170 else 171 kmem_cache_free(wbuf64_cache, mpcb->mpcb_wbuf); 172 mpcb->mpcb_wbuf = NULL; 173 mpcb->mpcb_wbuf_pa = -1; 174 } 175 176 177 /* 178 * Copy regs from parent to child. 179 */ 180 void 181 lwp_forkregs(klwp_t *lwp, klwp_t *clwp) 182 { 183 kthread_t *t, *pt = lwptot(lwp); 184 struct machpcb *mpcb = lwptompcb(clwp); 185 struct machpcb *pmpcb = lwptompcb(lwp); 186 kfpu_t *fp, *pfp = lwptofpu(lwp); 187 caddr_t wbuf; 188 uint_t wstate; 189 190 t = mpcb->mpcb_thread; 191 /* 192 * remember child's fp and wbuf since they will get erased during 193 * the bcopy. 194 */ 195 fp = mpcb->mpcb_fpu; 196 wbuf = mpcb->mpcb_wbuf; 197 wstate = mpcb->mpcb_wstate; 198 /* 199 * Don't copy mpcb_frame since we hand-crafted it 200 * in thread_load(). 201 */ 202 bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct machpcb) - REGOFF); 203 mpcb->mpcb_thread = t; 204 mpcb->mpcb_fpu = fp; 205 fp->fpu_q = mpcb->mpcb_fpu_q; 206 207 /* 208 * It is theoretically possibly for the lwp's wstate to 209 * be different from its value assigned in lwp_stk_init, 210 * since lwp_stk_init assumed the data model of the process. 211 * Here, we took on the data model of the cloned lwp. 212 */ 213 if (mpcb->mpcb_wstate != wstate) { 214 if (wstate == WSTATE_USER32) { 215 kmem_cache_free(wbuf32_cache, wbuf); 216 wbuf = kmem_cache_alloc(wbuf64_cache, KM_SLEEP); 217 wstate = WSTATE_USER64; 218 } else { 219 kmem_cache_free(wbuf64_cache, wbuf); 220 wbuf = kmem_cache_alloc(wbuf32_cache, KM_SLEEP); 221 wstate = WSTATE_USER32; 222 } 223 } 224 225 mpcb->mpcb_pa = va_to_pa(mpcb); 226 mpcb->mpcb_wbuf = wbuf; 227 mpcb->mpcb_wbuf_pa = va_to_pa(wbuf); 228 229 ASSERT(mpcb->mpcb_wstate == wstate); 230 231 if (mpcb->mpcb_wbcnt != 0) { 232 bcopy(pmpcb->mpcb_wbuf, mpcb->mpcb_wbuf, 233 mpcb->mpcb_wbcnt * ((mpcb->mpcb_wstate == WSTATE_USER32) ? 234 sizeof (struct rwindow32) : sizeof (struct rwindow64))); 235 } 236 237 if (pt == curthread) 238 pfp->fpu_fprs = _fp_read_fprs(); 239 if ((pfp->fpu_en) || (pfp->fpu_fprs & FPRS_FEF)) { 240 if (pt == curthread && fpu_exists) { 241 save_gsr(clwp->lwp_fpu); 242 } else { 243 uint64_t gsr; 244 gsr = get_gsr(lwp->lwp_fpu); 245 set_gsr(gsr, clwp->lwp_fpu); 246 } 247 fp_fork(lwp, clwp); 248 } 249 } 250 251 /* 252 * Free lwp fpu regs. 253 */ 254 void 255 lwp_freeregs(klwp_t *lwp, int isexec) 256 { 257 kfpu_t *fp = lwptofpu(lwp); 258 259 if (lwptot(lwp) == curthread) 260 fp->fpu_fprs = _fp_read_fprs(); 261 if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) 262 fp_free(fp, isexec); 263 } 264 265 /* 266 * These function are currently unused on sparc. 267 */ 268 /*ARGSUSED*/ 269 void 270 lwp_attach_brand_hdlrs(klwp_t *lwp) 271 {} 272 273 /*ARGSUSED*/ 274 void 275 lwp_detach_brand_hdlrs(klwp_t *lwp) 276 {} 277 278 /* 279 * fill in the extra register state area specified with the 280 * specified lwp's platform-dependent non-floating-point extra 281 * register state information 282 */ 283 /* ARGSUSED */ 284 void 285 xregs_getgfiller(klwp_id_t lwp, caddr_t xrp) 286 { 287 /* for sun4u nothing to do here, added for symmetry */ 288 } 289 290 /* 291 * fill in the extra register state area specified with the specified lwp's 292 * platform-dependent floating-point extra register state information. 293 * NOTE: 'lwp' might not correspond to 'curthread' since this is 294 * called from code in /proc to get the registers of another lwp. 295 */ 296 void 297 xregs_getfpfiller(klwp_id_t lwp, caddr_t xrp) 298 { 299 prxregset_t *xregs = (prxregset_t *)xrp; 300 kfpu_t *fp = lwptofpu(lwp); 301 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 302 uint64_t gsr; 303 304 /* 305 * fp_fksave() does not flush the GSR register into 306 * the lwp area, so do it now 307 */ 308 kpreempt_disable(); 309 if (ttolwp(curthread) == lwp && fpu_exists) { 310 fp->fpu_fprs = _fp_read_fprs(); 311 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 312 _fp_write_fprs(fprs); 313 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 314 } 315 save_gsr(fp); 316 } 317 gsr = get_gsr(fp); 318 kpreempt_enable(); 319 PRXREG_GSR(xregs) = gsr; 320 } 321 322 /* 323 * set the specified lwp's platform-dependent non-floating-point 324 * extra register state based on the specified input 325 */ 326 /* ARGSUSED */ 327 void 328 xregs_setgfiller(klwp_id_t lwp, caddr_t xrp) 329 { 330 /* for sun4u nothing to do here, added for symmetry */ 331 } 332 333 /* 334 * set the specified lwp's platform-dependent floating-point 335 * extra register state based on the specified input 336 */ 337 void 338 xregs_setfpfiller(klwp_id_t lwp, caddr_t xrp) 339 { 340 prxregset_t *xregs = (prxregset_t *)xrp; 341 kfpu_t *fp = lwptofpu(lwp); 342 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 343 uint64_t gsr = PRXREG_GSR(xregs); 344 345 kpreempt_disable(); 346 set_gsr(gsr, lwptofpu(lwp)); 347 348 if ((lwp == ttolwp(curthread)) && fpu_exists) { 349 fp->fpu_fprs = _fp_read_fprs(); 350 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 351 _fp_write_fprs(fprs); 352 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 353 } 354 restore_gsr(lwptofpu(lwp)); 355 } 356 kpreempt_enable(); 357 } 358 359 /* 360 * fill in the sun4u asrs, ie, the lwp's platform-dependent 361 * non-floating-point extra register state information 362 */ 363 /* ARGSUSED */ 364 void 365 getasrs(klwp_t *lwp, asrset_t asr) 366 { 367 /* for sun4u nothing to do here, added for symmetry */ 368 } 369 370 /* 371 * fill in the sun4u asrs, ie, the lwp's platform-dependent 372 * floating-point extra register state information 373 */ 374 void 375 getfpasrs(klwp_t *lwp, asrset_t asr) 376 { 377 kfpu_t *fp = lwptofpu(lwp); 378 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 379 380 kpreempt_disable(); 381 if (ttolwp(curthread) == lwp) 382 fp->fpu_fprs = _fp_read_fprs(); 383 if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) { 384 if (fpu_exists && ttolwp(curthread) == lwp) { 385 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 386 _fp_write_fprs(fprs); 387 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 388 } 389 save_gsr(fp); 390 } 391 asr[ASR_GSR] = (int64_t)get_gsr(fp); 392 } 393 kpreempt_enable(); 394 } 395 396 /* 397 * set the sun4u asrs, ie, the lwp's platform-dependent 398 * non-floating-point extra register state information 399 */ 400 /* ARGSUSED */ 401 void 402 setasrs(klwp_t *lwp, asrset_t asr) 403 { 404 /* for sun4u nothing to do here, added for symmetry */ 405 } 406 407 void 408 setfpasrs(klwp_t *lwp, asrset_t asr) 409 { 410 kfpu_t *fp = lwptofpu(lwp); 411 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 412 413 kpreempt_disable(); 414 if (ttolwp(curthread) == lwp) 415 fp->fpu_fprs = _fp_read_fprs(); 416 if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) { 417 set_gsr(asr[ASR_GSR], fp); 418 if (fpu_exists && ttolwp(curthread) == lwp) { 419 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 420 _fp_write_fprs(fprs); 421 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 422 } 423 restore_gsr(fp); 424 } 425 } 426 kpreempt_enable(); 427 } 428 429 /* 430 * Create interrupt kstats for this CPU. 431 */ 432 void 433 cpu_create_intrstat(cpu_t *cp) 434 { 435 int i; 436 kstat_t *intr_ksp; 437 kstat_named_t *knp; 438 char name[KSTAT_STRLEN]; 439 zoneid_t zoneid; 440 441 ASSERT(MUTEX_HELD(&cpu_lock)); 442 443 if (pool_pset_enabled()) 444 zoneid = GLOBAL_ZONEID; 445 else 446 zoneid = ALL_ZONES; 447 448 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 449 KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 450 451 /* 452 * Initialize each PIL's named kstat 453 */ 454 if (intr_ksp != NULL) { 455 intr_ksp->ks_update = cpu_kstat_intrstat_update; 456 knp = (kstat_named_t *)intr_ksp->ks_data; 457 intr_ksp->ks_private = cp; 458 for (i = 0; i < PIL_MAX; i++) { 459 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 460 i + 1); 461 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 462 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 463 i + 1); 464 kstat_named_init(&knp[(i * 2) + 1], name, 465 KSTAT_DATA_UINT64); 466 } 467 kstat_install(intr_ksp); 468 } 469 } 470 471 /* 472 * Delete interrupt kstats for this CPU. 473 */ 474 void 475 cpu_delete_intrstat(cpu_t *cp) 476 { 477 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 478 } 479 480 /* 481 * Convert interrupt statistics from CPU ticks to nanoseconds and 482 * update kstat. 483 */ 484 int 485 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 486 { 487 kstat_named_t *knp = ksp->ks_data; 488 cpu_t *cpup = (cpu_t *)ksp->ks_private; 489 int i; 490 491 if (rw == KSTAT_WRITE) 492 return (EACCES); 493 494 /* 495 * We use separate passes to copy and convert the statistics to 496 * nanoseconds. This assures that the snapshot of the data is as 497 * self-consistent as possible. 498 */ 499 500 for (i = 0; i < PIL_MAX; i++) { 501 knp[i * 2].value.ui64 = cpup->cpu_m.intrstat[i + 1][0]; 502 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 503 } 504 505 for (i = 0; i < PIL_MAX; i++) { 506 knp[i * 2].value.ui64 = 507 (uint64_t)tick2ns((hrtime_t)knp[i * 2].value.ui64, 508 cpup->cpu_id); 509 } 510 511 return (0); 512 } 513 514 /* 515 * Called by common/os/cpu.c for psrinfo(1m) kstats 516 */ 517 char * 518 cpu_fru_fmri(cpu_t *cp) 519 { 520 return (cpunodes[cp->cpu_id].fru_fmri); 521 } 522 523 /* 524 * An interrupt thread is ending a time slice, so compute the interval it 525 * ran for and update the statistic for its PIL. 526 */ 527 void 528 cpu_intr_swtch_enter(kthread_id_t t) 529 { 530 uint64_t interval; 531 uint64_t start; 532 cpu_t *cpu; 533 534 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 535 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 536 537 /* 538 * We could be here with a zero timestamp. This could happen if: 539 * an interrupt thread which no longer has a pinned thread underneath 540 * it (i.e. it blocked at some point in its past) has finished running 541 * its handler. intr_thread() updated the interrupt statistic for its 542 * PIL and zeroed its timestamp. Since there was no pinned thread to 543 * return to, swtch() gets called and we end up here. 544 * 545 * It can also happen if an interrupt thread in intr_thread() calls 546 * preempt. It will have already taken care of updating stats. In 547 * this event, the interrupt thread will be runnable. 548 */ 549 if (t->t_intr_start) { 550 do { 551 start = t->t_intr_start; 552 interval = CLOCK_TICK_COUNTER() - start; 553 } while (cas64(&t->t_intr_start, start, 0) != start); 554 cpu = CPU; 555 if (cpu->cpu_m.divisor > 1) 556 interval *= cpu->cpu_m.divisor; 557 cpu->cpu_m.intrstat[t->t_pil][0] += interval; 558 559 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 560 interval); 561 } else 562 ASSERT(t->t_intr == NULL || t->t_state == TS_RUN); 563 } 564 565 566 /* 567 * An interrupt thread is returning from swtch(). Place a starting timestamp 568 * in its thread structure. 569 */ 570 void 571 cpu_intr_swtch_exit(kthread_id_t t) 572 { 573 uint64_t ts; 574 575 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 576 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 577 578 do { 579 ts = t->t_intr_start; 580 } while (cas64(&t->t_intr_start, ts, CLOCK_TICK_COUNTER()) != ts); 581 } 582 583 584 int 585 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 586 { 587 if (&plat_blacklist) 588 return (plat_blacklist(cmd, scheme, fmri, class)); 589 590 return (ENOTSUP); 591 } 592 593 int 594 kdi_pread(caddr_t buf, size_t nbytes, uint64_t addr, size_t *ncopiedp) 595 { 596 extern void kdi_flush_caches(void); 597 size_t nread = 0; 598 uint32_t word; 599 int slop, i; 600 601 kdi_flush_caches(); 602 membar_enter(); 603 604 /* We might not begin on a word boundary. */ 605 if ((slop = addr & 3) != 0) { 606 word = ldphys(addr & ~3); 607 for (i = slop; i < 4 && nbytes > 0; i++, nbytes--, nread++) 608 *buf++ = ((uchar_t *)&word)[i]; 609 addr = roundup(addr, 4); 610 } 611 612 while (nbytes > 0) { 613 word = ldphys(addr); 614 for (i = 0; i < 4 && nbytes > 0; i++, nbytes--, nread++, addr++) 615 *buf++ = ((uchar_t *)&word)[i]; 616 } 617 618 kdi_flush_caches(); 619 620 *ncopiedp = nread; 621 return (0); 622 } 623 624 int 625 kdi_pwrite(caddr_t buf, size_t nbytes, uint64_t addr, size_t *ncopiedp) 626 { 627 extern void kdi_flush_caches(void); 628 size_t nwritten = 0; 629 uint32_t word; 630 int slop, i; 631 632 kdi_flush_caches(); 633 634 /* We might not begin on a word boundary. */ 635 if ((slop = addr & 3) != 0) { 636 word = ldphys(addr & ~3); 637 for (i = slop; i < 4 && nbytes > 0; i++, nbytes--, nwritten++) 638 ((uchar_t *)&word)[i] = *buf++; 639 stphys(addr & ~3, word); 640 addr = roundup(addr, 4); 641 } 642 643 while (nbytes > 3) { 644 for (word = 0, i = 0; i < 4; i++, nbytes--, nwritten++) 645 ((uchar_t *)&word)[i] = *buf++; 646 stphys(addr, word); 647 addr += 4; 648 } 649 650 /* We might not end with a whole word. */ 651 if (nbytes > 0) { 652 word = ldphys(addr); 653 for (i = 0; nbytes > 0; i++, nbytes--, nwritten++) 654 ((uchar_t *)&word)[i] = *buf++; 655 stphys(addr, word); 656 } 657 658 membar_enter(); 659 kdi_flush_caches(); 660 661 *ncopiedp = nwritten; 662 return (0); 663 } 664 665 static void 666 kdi_kernpanic(struct regs *regs, uint_t tt) 667 { 668 sync_reg_buf = *regs; 669 sync_tt = tt; 670 671 sync_handler(); 672 } 673 674 static void 675 kdi_plat_call(void (*platfn)(void)) 676 { 677 if (platfn != NULL) { 678 prom_suspend_prepost(); 679 platfn(); 680 prom_resume_prepost(); 681 } 682 } 683 684 /* 685 * kdi_system_claim and release are defined here for all sun4 platforms and 686 * pointed to by mach_kdi_init() to provide default callbacks for such systems. 687 * Specific sun4u or sun4v platforms may implement their own claim and release 688 * routines, at which point their respective callbacks will be updated. 689 */ 690 static void 691 kdi_system_claim(void) 692 { 693 lbolt_debug_entry(); 694 } 695 696 static void 697 kdi_system_release(void) 698 { 699 lbolt_debug_return(); 700 } 701 702 void 703 mach_kdi_init(kdi_t *kdi) 704 { 705 kdi->kdi_plat_call = kdi_plat_call; 706 kdi->kdi_kmdb_enter = kmdb_enter; 707 kdi->pkdi_system_claim = kdi_system_claim; 708 kdi->pkdi_system_release = kdi_system_release; 709 kdi->mkdi_cpu_index = kdi_cpu_index; 710 kdi->mkdi_trap_vatotte = kdi_trap_vatotte; 711 kdi->mkdi_kernpanic = kdi_kernpanic; 712 } 713 714 715 /* 716 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 717 * long, and it fills in the array with the time spent on cpu in 718 * each of the mstates, where time is returned in nsec. 719 * 720 * No guarantee is made that the returned values in times[] will 721 * monotonically increase on sequential calls, although this will 722 * be true in the long run. Any such guarantee must be handled by 723 * the caller, if needed. This can happen if we fail to account 724 * for elapsed time due to a generation counter conflict, yet we 725 * did account for it on a prior call (see below). 726 * 727 * The complication is that the cpu in question may be updating 728 * its microstate at the same time that we are reading it. 729 * Because the microstate is only updated when the CPU's state 730 * changes, the values in cpu_intracct[] can be indefinitely out 731 * of date. To determine true current values, it is necessary to 732 * compare the current time with cpu_mstate_start, and add the 733 * difference to times[cpu_mstate]. 734 * 735 * This can be a problem if those values are changing out from 736 * under us. Because the code path in new_cpu_mstate() is 737 * performance critical, we have not added a lock to it. Instead, 738 * we have added a generation counter. Before beginning 739 * modifications, the counter is set to 0. After modifications, 740 * it is set to the old value plus one. 741 * 742 * get_cpu_mstate() will not consider the values of cpu_mstate 743 * and cpu_mstate_start to be usable unless the value of 744 * cpu_mstate_gen is both non-zero and unchanged, both before and 745 * after reading the mstate information. Note that we must 746 * protect against out-of-order loads around accesses to the 747 * generation counter. Also, this is a best effort approach in 748 * that we do not retry should the counter be found to have 749 * changed. 750 * 751 * cpu_intracct[] is used to identify time spent in each CPU 752 * mstate while handling interrupts. Such time should be reported 753 * against system time, and so is subtracted out from its 754 * corresponding cpu_acct[] time and added to 755 * cpu_acct[CMS_SYSTEM]. Additionally, intracct time is stored in 756 * %ticks, but acct time may be stored as %sticks, thus requiring 757 * different conversions before they can be compared. 758 */ 759 760 void 761 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 762 { 763 int i; 764 hrtime_t now, start; 765 uint16_t gen; 766 uint16_t state; 767 hrtime_t intracct[NCMSTATES]; 768 769 /* 770 * Load all volatile state under the protection of membar. 771 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 772 * of (now - cpu_mstate_start) by a change in CPU mstate that 773 * arrives after we make our last check of cpu_mstate_gen. 774 */ 775 776 now = gethrtime_unscaled(); 777 gen = cpu->cpu_mstate_gen; 778 779 membar_consumer(); /* guarantee load ordering */ 780 start = cpu->cpu_mstate_start; 781 state = cpu->cpu_mstate; 782 for (i = 0; i < NCMSTATES; i++) { 783 intracct[i] = cpu->cpu_intracct[i]; 784 times[i] = cpu->cpu_acct[i]; 785 } 786 membar_consumer(); /* guarantee load ordering */ 787 788 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 789 times[state] += now - start; 790 791 for (i = 0; i < NCMSTATES; i++) { 792 scalehrtime(×[i]); 793 intracct[i] = tick2ns((hrtime_t)intracct[i], cpu->cpu_id); 794 } 795 796 for (i = 0; i < NCMSTATES; i++) { 797 if (i == CMS_SYSTEM) 798 continue; 799 times[i] -= intracct[i]; 800 if (times[i] < 0) { 801 intracct[i] += times[i]; 802 times[i] = 0; 803 } 804 times[CMS_SYSTEM] += intracct[i]; 805 } 806 } 807 808 void 809 mach_cpu_pause(volatile char *safe) 810 { 811 /* 812 * This cpu is now safe. 813 */ 814 *safe = PAUSE_WAIT; 815 membar_enter(); /* make sure stores are flushed */ 816 817 /* 818 * Now we wait. When we are allowed to continue, safe 819 * will be set to PAUSE_IDLE. 820 */ 821 while (*safe != PAUSE_IDLE) 822 SMT_PAUSE(); 823 } 824 825 /*ARGSUSED*/ 826 int 827 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 828 { 829 return (ENOTSUP); 830 } 831 832 /* cpu threshold for compressed dumps */ 833 #ifdef sun4v 834 uint_t dump_plat_mincpu = DUMP_PLAT_SUN4V_MINCPU; 835 #else 836 uint_t dump_plat_mincpu = DUMP_PLAT_SUN4U_MINCPU; 837 #endif 838 839 int 840 dump_plat_addr() 841 { 842 return (0); 843 } 844 845 void 846 dump_plat_pfn() 847 { 848 } 849 850 /* ARGSUSED */ 851 int 852 dump_plat_data(void *dump_cdata) 853 { 854 return (0); 855 } 856 857 /* ARGSUSED */ 858 int 859 plat_hold_page(pfn_t pfn, int lock, page_t **pp_ret) 860 { 861 return (PLAT_HOLD_OK); 862 } 863 864 /* ARGSUSED */ 865 void 866 plat_release_page(page_t *pp) 867 { 868 } 869 870 /* ARGSUSED */ 871 void 872 progressbar_key_abort(ldi_ident_t li) 873 { 874 } 875 876 /* 877 * We need to post a soft interrupt to reprogram the lbolt cyclic when 878 * switching from event to cyclic driven lbolt. The following code adds 879 * and posts the softint for sun4 platforms. 880 */ 881 static uint64_t lbolt_softint_inum; 882 883 void 884 lbolt_softint_add(void) 885 { 886 lbolt_softint_inum = add_softintr(LOCK_LEVEL, 887 (softintrfunc)lbolt_ev_to_cyclic, NULL, SOFTINT_MT); 888 } 889 890 void 891 lbolt_softint_post(void) 892 { 893 setsoftint(lbolt_softint_inum); 894 } 895