xref: /titanic_41/usr/src/uts/sun4/os/ddi_impl.c (revision f841f6ad96ea6675d6c6b35c749eaac601799fdf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * sun4 specific DDI implementation
31  */
32 #include <sys/cpuvar.h>
33 #include <sys/ddi_subrdefs.h>
34 #include <sys/machsystm.h>
35 #include <sys/sunndi.h>
36 #include <sys/sysmacros.h>
37 #include <sys/ontrap.h>
38 #include <vm/seg_kmem.h>
39 #include <sys/membar.h>
40 #include <sys/dditypes.h>
41 #include <sys/ndifm.h>
42 #include <sys/fm/io/ddi.h>
43 #include <sys/ivintr.h>
44 #include <sys/bootconf.h>
45 #include <sys/conf.h>
46 #include <sys/ethernet.h>
47 #include <sys/idprom.h>
48 #include <sys/promif.h>
49 #include <sys/prom_plat.h>
50 #include <sys/systeminfo.h>
51 #include <sys/fpu/fpusystm.h>
52 #include <sys/vm.h>
53 #include <sys/fs/dv_node.h>
54 #include <sys/fs/snode.h>
55 #include <sys/ddi_isa.h>
56 #include <sys/modhash.h>
57 
58 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *,
59     ddi_intr_handle_impl_t *);
60 #pragma weak get_intr_parent
61 
62 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
63     ddi_intr_handle_impl_t *, void *);
64 #pragma weak process_intr_ops
65 
66 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t);
67     prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *,
68     int32_t len);
69 #pragma weak cells_1275_copy
70 
71 /*
72  * Wrapper for ddi_prop_lookup_int_array().
73  * This is handy because it returns the prop length in
74  * bytes which is what most of the callers require.
75  */
76 
77 static int
78 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
79 {
80 	int ret;
81 
82 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
83 	    DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) {
84 		*plen = (*plen) * (uint_t)sizeof (int);
85 	}
86 	return (ret);
87 }
88 
89 /*
90  * SECTION: DDI Node Configuration
91  */
92 
93 /*
94  * init_regspec_64:
95  *
96  * If the parent #size-cells is 2, convert the upa-style or
97  * safari-style reg property from 2-size cells to 1 size cell
98  * format, ignoring the size_hi, which must be zero for devices.
99  * (It won't be zero in the memory list properties in the memory
100  * nodes, but that doesn't matter here.)
101  */
102 struct ddi_parent_private_data *
103 init_regspec_64(dev_info_t *dip)
104 {
105 	struct ddi_parent_private_data *pd;
106 	dev_info_t *parent;
107 	int size_cells;
108 
109 	/*
110 	 * If there are no "reg"s in the child node, return.
111 	 */
112 	pd = ddi_get_parent_data(dip);
113 	if ((pd == NULL) || (pd->par_nreg == 0)) {
114 		return (pd);
115 	}
116 	parent = ddi_get_parent(dip);
117 
118 	size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
119 	    DDI_PROP_DONTPASS, "#size-cells", 1);
120 
121 	if (size_cells != 1)  {
122 
123 		int n, j;
124 		struct regspec *irp;
125 		struct reg_64 {
126 			uint_t addr_hi, addr_lo, size_hi, size_lo;
127 		};
128 		struct reg_64 *r64_rp;
129 		struct regspec *rp;
130 		uint_t len = 0;
131 		int *reg_prop;
132 
133 		ASSERT(size_cells == 2);
134 
135 		/*
136 		 * We already looked the property up once before if
137 		 * pd is non-NULL.
138 		 */
139 		(void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
140 		    DDI_PROP_DONTPASS, OBP_REG, &reg_prop, &len);
141 		ASSERT(len != 0);
142 
143 		n = sizeof (struct reg_64) / sizeof (int);
144 		n = len / n;
145 
146 		/*
147 		 * We're allocating a buffer the size of the PROM's property,
148 		 * but we're only using a smaller portion when we assign it
149 		 * to a regspec.  We do this so that in the
150 		 * impl_ddi_sunbus_removechild function, we will
151 		 * always free the right amount of memory.
152 		 */
153 		irp = rp = (struct regspec *)reg_prop;
154 		r64_rp = (struct reg_64 *)pd->par_reg;
155 
156 		for (j = 0; j < n; ++j, ++rp, ++r64_rp) {
157 			ASSERT(r64_rp->size_hi == 0);
158 			rp->regspec_bustype = r64_rp->addr_hi;
159 			rp->regspec_addr = r64_rp->addr_lo;
160 			rp->regspec_size = r64_rp->size_lo;
161 		}
162 
163 		ddi_prop_free((void *)pd->par_reg);
164 		pd->par_nreg = n;
165 		pd->par_reg = irp;
166 	}
167 	return (pd);
168 }
169 
170 /*
171  * Create a ddi_parent_private_data structure from the ddi properties of
172  * the dev_info node.
173  *
174  * The "reg" is required if the driver wishes to create mappings on behalf
175  * of the device. The "reg" property is assumed to be a list of at least
176  * one triplet
177  *
178  *	<bustype, address, size>*1
179  *
180  * The "interrupt" property is no longer part of parent private data on
181  * sun4u. The interrupt parent is may not be the device tree parent.
182  *
183  * The "ranges" property describes the mapping of child addresses to parent
184  * addresses.
185  *
186  * N.B. struct rangespec is defined for the following default values:
187  *			parent  child
188  *	#address-cells	2	2
189  *	#size-cells	1	1
190  * This function doesn't deal with non-default cells and will not create
191  * ranges in such cases.
192  */
193 void
194 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
195 {
196 	struct ddi_parent_private_data *pdptr;
197 	int *reg_prop, *rng_prop;
198 	uint_t reg_len = 0, rng_len = 0;
199 	dev_info_t *parent;
200 	int parent_addr_cells, parent_size_cells;
201 	int child_addr_cells, child_size_cells;
202 
203 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
204 
205 	/*
206 	 * root node has no parent private data, so *ppd should
207 	 * be initialized for naming to work properly.
208 	 */
209 	if ((parent = ddi_get_parent(child)) == NULL)
210 		return;
211 
212 	/*
213 	 * Set reg field of parent data from "reg" property
214 	 */
215 	if ((get_prop_int_array(child, OBP_REG, &reg_prop, &reg_len)
216 	    == DDI_PROP_SUCCESS) && (reg_len != 0)) {
217 		pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec));
218 		pdptr->par_reg = (struct regspec *)reg_prop;
219 	}
220 
221 	/*
222 	 * "ranges" property ...
223 	 *
224 	 * This function does not handle cases where #address-cells != 2
225 	 * and * min(parent, child) #size-cells != 1 (see bugid 4211124).
226 	 *
227 	 * Nexus drivers with such exceptions (e.g. pci ranges)
228 	 * should either create a separate function for handling
229 	 * ranges or not use parent private data to store ranges.
230 	 */
231 
232 	/* root node has no ranges */
233 	if ((parent = ddi_get_parent(child)) == NULL)
234 		return;
235 
236 	child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
237 	    DDI_PROP_DONTPASS, "#address-cells", 2);
238 	child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
239 	    DDI_PROP_DONTPASS, "#size-cells", 1);
240 	parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
241 	    DDI_PROP_DONTPASS, "#address-cells", 2);
242 	parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
243 	    DDI_PROP_DONTPASS, "#size-cells", 1);
244 	if (child_addr_cells != 2 || parent_addr_cells != 2 ||
245 	    (child_size_cells != 1 && parent_size_cells != 1)) {
246 		NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; "
247 		    "#address-cells or #size-cells have non-default value"));
248 		return;
249 	}
250 
251 	if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len)
252 	    == DDI_PROP_SUCCESS) {
253 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
254 		pdptr->par_rng = (struct rangespec *)rng_prop;
255 	}
256 }
257 
258 /*
259  * Free ddi_parent_private_data structure
260  */
261 void
262 impl_free_ddi_ppd(dev_info_t *dip)
263 {
264 	struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip);
265 
266 	if (pdptr == NULL)
267 		return;
268 
269 	if (pdptr->par_nrng != 0)
270 		ddi_prop_free((void *)pdptr->par_rng);
271 
272 	if (pdptr->par_nreg != 0)
273 		ddi_prop_free((void *)pdptr->par_reg);
274 
275 	kmem_free(pdptr, sizeof (*pdptr));
276 	ddi_set_parent_data(dip, NULL);
277 }
278 
279 /*
280  * Name a child of sun busses based on the reg spec.
281  * Handles the following properties:
282  *
283  *	Property	value
284  *	Name		type
285  *
286  *	reg		register spec
287  *	interrupts	new (bus-oriented) interrupt spec
288  *	ranges		range spec
289  *
290  * This may be called multiple times, independent of
291  * initchild calls.
292  */
293 static int
294 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
295 {
296 	struct ddi_parent_private_data *pdptr;
297 	struct regspec *rp;
298 
299 	/*
300 	 * Fill in parent-private data and this function returns to us
301 	 * an indication if it used "registers" to fill in the data.
302 	 */
303 	if (ddi_get_parent_data(child) == NULL) {
304 		make_ddi_ppd(child, &pdptr);
305 		ddi_set_parent_data(child, pdptr);
306 	}
307 
308 	/*
309 	 * No reg property, return null string as address
310 	 * (e.g. root node)
311 	 */
312 	name[0] = '\0';
313 	if (sparc_pd_getnreg(child) == 0) {
314 		return (DDI_SUCCESS);
315 	}
316 
317 	rp = sparc_pd_getreg(child, 0);
318 	(void) snprintf(name, namelen, "%x,%x",
319 	    rp->regspec_bustype, rp->regspec_addr);
320 	return (DDI_SUCCESS);
321 }
322 
323 
324 /*
325  * Called from the bus_ctl op of some drivers.
326  * to implement the DDI_CTLOPS_INITCHILD operation.
327  *
328  * NEW drivers should NOT use this function, but should declare
329  * there own initchild/uninitchild handlers. (This function assumes
330  * the layout of the parent private data and the format of "reg",
331  * "ranges", "interrupts" properties and that #address-cells and
332  * #size-cells of the parent bus are defined to be default values.)
333  */
334 int
335 impl_ddi_sunbus_initchild(dev_info_t *child)
336 {
337 	char name[MAXNAMELEN];
338 
339 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
340 	ddi_set_name_addr(child, name);
341 
342 	/*
343 	 * Try to merge .conf node. If successful, return failure to
344 	 * remove this child.
345 	 */
346 	if ((ndi_dev_is_persistent_node(child) == 0) &&
347 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
348 		impl_ddi_sunbus_removechild(child);
349 		return (DDI_FAILURE);
350 	}
351 	return (DDI_SUCCESS);
352 }
353 
354 /*
355  * A better name for this function would be impl_ddi_sunbus_uninitchild()
356  * It does not remove the child, it uninitializes it, reclaiming the
357  * resources taken by impl_ddi_sunbus_initchild.
358  */
359 void
360 impl_ddi_sunbus_removechild(dev_info_t *dip)
361 {
362 	impl_free_ddi_ppd(dip);
363 	ddi_set_name_addr(dip, NULL);
364 	/*
365 	 * Strip the node to properly convert it back to prototype form
366 	 */
367 	impl_rem_dev_props(dip);
368 }
369 
370 /*
371  * SECTION: DDI Interrupt
372  */
373 
374 void
375 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len)
376 {
377 	int i;
378 	for (i = 0; i < len; i++)
379 		*to = *from;
380 }
381 
382 prop_1275_cell_t *
383 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len)
384 {
385 	prop_1275_cell_t *match_cell = 0;
386 	int32_t i;
387 
388 	for (i = 0; i < len; i++)
389 		if (cell1[i] != cell2[i]) {
390 			match_cell = &cell1[i];
391 			break;
392 		}
393 
394 	return (match_cell);
395 }
396 
397 /*
398  * get_intr_parent() is a generic routine that process a 1275 interrupt
399  * map (imap) property.  This function returns a dev_info_t structure
400  * which claims ownership of the interrupt domain.
401  * It also returns the new interrupt translation within this new domain.
402  * If an interrupt-parent or interrupt-map property are not found,
403  * then we fallback to using the device tree's parent.
404  *
405  * imap entry format:
406  * <reg>,<interrupt>,<phandle>,<translated interrupt>
407  * reg - The register specification in the interrupts domain
408  * interrupt - The interrupt specification
409  * phandle - PROM handle of the device that owns the xlated interrupt domain
410  * translated interrupt - interrupt specifier in the parents domain
411  * note: <reg>,<interrupt> - The reg and interrupt can be combined to create
412  *	a unique entry called a unit interrupt specifier.
413  *
414  * Here's the processing steps:
415  * step1 - If the interrupt-parent property exists, create the ispec and
416  *	return the dip of the interrupt parent.
417  * step2 - Extract the interrupt-map property and the interrupt-map-mask
418  *	If these don't exist, just return the device tree parent.
419  * step3 - build up the unit interrupt specifier to match against the
420  *	interrupt map property
421  * step4 - Scan the interrupt-map property until a match is found
422  * step4a - Extract the interrupt parent
423  * step4b - Compare the unit interrupt specifier
424  */
425 dev_info_t *
426 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp)
427 {
428 	prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req;
429 	int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz,
430 	    addr_cells, intr_cells, reg_len, i, j;
431 	int32_t match_found = 0;
432 	dev_info_t *intr_parent_dip = NULL;
433 	uint32_t *intr = &hdlp->ih_vector;
434 	uint32_t nodeid;
435 #ifdef DEBUG
436 	static int debug = 0;
437 #endif
438 
439 	/*
440 	 * step1
441 	 * If we have an interrupt-parent property, this property represents
442 	 * the nodeid of our interrupt parent.
443 	 */
444 	if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
445 	    "interrupt-parent", -1)) != -1) {
446 		intr_parent_dip = e_ddi_nodeid_to_dip(nodeid);
447 		ASSERT(intr_parent_dip);
448 
449 		/*
450 		 * Attach the interrupt parent.
451 		 *
452 		 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR.
453 		 *	Also, interrupt parent isn't held. This needs
454 		 *	to be revisited if DR-capable platforms implement
455 		 *	interrupt redirection.
456 		 */
457 		if (i_ddi_attach_node_hierarchy(intr_parent_dip)
458 		    != DDI_SUCCESS) {
459 			ndi_rele_devi(intr_parent_dip);
460 			return (NULL);
461 		}
462 
463 		return (intr_parent_dip);
464 	}
465 
466 	/*
467 	 * step2
468 	 * Get interrupt map structure from PROM property
469 	 */
470 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
471 	    "interrupt-map", (caddr_t)&imap, &imap_sz)
472 	    != DDI_PROP_SUCCESS) {
473 		/*
474 		 * If we don't have an imap property, default to using the
475 		 * device tree.
476 		 */
477 
478 		ndi_hold_devi(pdip);
479 		return (pdip);
480 	}
481 
482 	/* Get the interrupt mask property */
483 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
484 	    "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz)
485 	    != DDI_PROP_SUCCESS) {
486 		/*
487 		 * If we don't find this property, we have to fail the request
488 		 * because the 1275 imap property wasn't defined correctly.
489 		 */
490 		ASSERT(intr_parent_dip == NULL);
491 		goto exit2;
492 	}
493 
494 	/* Get the address cell size */
495 	addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
496 	    "#address-cells", 2);
497 
498 	/* Get the interrupts cell size */
499 	intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
500 	    "#interrupt-cells", 1);
501 
502 	/*
503 	 * step3
504 	 * Now lets build up the unit interrupt specifier e.g. reg,intr
505 	 * and apply the imap mask.  match_req will hold this when we're
506 	 * through.
507 	 */
508 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg",
509 	    (caddr_t)&reg_p, &reg_len) != DDI_SUCCESS) {
510 		ASSERT(intr_parent_dip == NULL);
511 		goto exit3;
512 	}
513 
514 	match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) +
515 	    CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP);
516 
517 	for (i = 0; i < addr_cells; i++)
518 		match_req[i] = (reg_p[i] & imap_mask[i]);
519 
520 	for (j = 0; j < intr_cells; i++, j++)
521 		match_req[i] = (intr[j] & imap_mask[i]);
522 
523 	/* Calculate the imap size in cells */
524 	imap_cells = BYTES_TO_1275_CELLS(imap_sz);
525 
526 #ifdef DEBUG
527 	if (debug)
528 		prom_printf("reg cell size 0x%x, intr cell size 0x%x, "
529 		    "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells,
530 		    match_req, imap);
531 #endif
532 
533 	/*
534 	 * Scan the imap property looking for a match of the interrupt unit
535 	 * specifier.  This loop is rather complex since the data within the
536 	 * imap property may vary in size.
537 	 */
538 	for (scan = imap, imap_scan_cells = i = 0;
539 	    imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) {
540 		int new_intr_cells;
541 
542 		/* Set the index to the nodeid field */
543 		i = addr_cells + intr_cells;
544 
545 		/*
546 		 * step4a
547 		 * Translate the nodeid field to a dip
548 		 */
549 		ASSERT(intr_parent_dip == NULL);
550 		intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]);
551 
552 		ASSERT(intr_parent_dip != 0);
553 #ifdef DEBUG
554 		if (debug)
555 			prom_printf("scan 0x%p\n", scan);
556 #endif
557 		/*
558 		 * The tmp_dip describes the new domain, get it's interrupt
559 		 * cell size
560 		 */
561 		new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0,
562 		    "#interrupts-cells", 1);
563 
564 		/*
565 		 * step4b
566 		 * See if we have a match on the interrupt unit specifier
567 		 */
568 		if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells)
569 		    == 0) {
570 			uint32_t *intr;
571 
572 			match_found = 1;
573 
574 			/*
575 			 * If we have an imap parent whose not in our device
576 			 * tree path, we need to hold and install that driver.
577 			 */
578 			if (i_ddi_attach_node_hierarchy(intr_parent_dip)
579 			    != DDI_SUCCESS) {
580 				ndi_rele_devi(intr_parent_dip);
581 				intr_parent_dip = (dev_info_t *)NULL;
582 				goto exit4;
583 			}
584 
585 			/*
586 			 * We need to handcraft an ispec along with a bus
587 			 * interrupt value, so we can dup it into our
588 			 * standard ispec structure.
589 			 */
590 			/* Extract the translated interrupt information */
591 			intr = kmem_alloc(
592 			    CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP);
593 
594 			for (j = 0; j < new_intr_cells; j++, i++)
595 				intr[j] = scan[i];
596 
597 			cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells);
598 
599 			kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells));
600 
601 #ifdef DEBUG
602 			if (debug)
603 				prom_printf("dip 0x%p\n", intr_parent_dip);
604 #endif
605 			break;
606 		} else {
607 #ifdef DEBUG
608 			if (debug)
609 				prom_printf("dip 0x%p\n", intr_parent_dip);
610 #endif
611 			ndi_rele_devi(intr_parent_dip);
612 			intr_parent_dip = NULL;
613 			i += new_intr_cells;
614 		}
615 	}
616 
617 	/*
618 	 * If we haven't found our interrupt parent at this point, fallback
619 	 * to using the device tree.
620 	 */
621 	if (!match_found) {
622 		ndi_hold_devi(pdip);
623 		ASSERT(intr_parent_dip == NULL);
624 		intr_parent_dip = pdip;
625 	}
626 
627 	ASSERT(intr_parent_dip != NULL);
628 
629 exit4:
630 	kmem_free(reg_p, reg_len);
631 	kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) +
632 	    CELLS_1275_TO_BYTES(intr_cells));
633 
634 exit3:
635 	kmem_free(imap_mask, imap_mask_sz);
636 
637 exit2:
638 	kmem_free(imap, imap_sz);
639 
640 	return (intr_parent_dip);
641 }
642 
643 /*
644  * process_intr_ops:
645  *
646  * Process the interrupt op via the interrupt parent.
647  */
648 int
649 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op,
650     ddi_intr_handle_impl_t *hdlp, void *result)
651 {
652 	int		ret = DDI_FAILURE;
653 
654 	if (NEXUS_HAS_INTR_OP(pdip)) {
655 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->
656 		    bus_intr_op)) (pdip, rdip, op, hdlp, result);
657 	} else {
658 		cmn_err(CE_WARN, "Failed to process interrupt "
659 		    "for %s%d due to down-rev nexus driver %s%d",
660 		    ddi_get_name(rdip), ddi_get_instance(rdip),
661 		    ddi_get_name(pdip), ddi_get_instance(pdip));
662 	}
663 
664 	return (ret);
665 }
666 
667 /*ARGSUSED*/
668 uint_t
669 softlevel1(caddr_t arg)
670 {
671 	softint();
672 	return (1);
673 }
674 
675 /*
676  * indirection table, to save us some large switch statements
677  * NOTE: This must agree with "INTLEVEL_foo" constants in
678  *	<sys/avintr.h>
679  */
680 struct autovec *const vectorlist[] = { 0 };
681 
682 /*
683  * This value is exported here for the functions in avintr.c
684  */
685 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0]));
686 
687 /*
688  * Check for machine specific interrupt levels which cannot be reassigned by
689  * settrap(), sun4u version.
690  *
691  * sun4u does not support V8 SPARC "fast trap" handlers.
692  */
693 /*ARGSUSED*/
694 int
695 exclude_settrap(int lvl)
696 {
697 	return (1);
698 }
699 
700 /*
701  * Check for machine specific interrupt levels which cannot have interrupt
702  * handlers added. We allow levels 1 through 15; level 0 is nonsense.
703  */
704 /*ARGSUSED*/
705 int
706 exclude_level(int lvl)
707 {
708 	return ((lvl < 1) || (lvl > 15));
709 }
710 
711 /*
712  * Wrapper functions used by New DDI interrupt framework.
713  */
714 
715 /*
716  * i_ddi_intr_ops:
717  */
718 int
719 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
720     ddi_intr_handle_impl_t *hdlp, void *result)
721 {
722 	dev_info_t	*pdip = ddi_get_parent(dip);
723 	int		ret = DDI_FAILURE;
724 
725 	/*
726 	 * The following check is required to address
727 	 * one of the test case of ADDI test suite.
728 	 */
729 	if (pdip == NULL)
730 		return (DDI_FAILURE);
731 
732 	if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
733 		return (process_intr_ops(pdip, rdip, op, hdlp, result));
734 
735 	if (hdlp->ih_vector == 0)
736 		hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum);
737 
738 	if (hdlp->ih_pri == 0)
739 		hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum);
740 
741 	switch (op) {
742 	case DDI_INTROP_ADDISR:
743 	case DDI_INTROP_REMISR:
744 	case DDI_INTROP_ENABLE:
745 	case DDI_INTROP_DISABLE:
746 	case DDI_INTROP_BLOCKENABLE:
747 	case DDI_INTROP_BLOCKDISABLE:
748 		/*
749 		 * Try and determine our parent and possibly an interrupt
750 		 * translation. intr parent dip returned held
751 		 */
752 		if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL)
753 			goto done;
754 	}
755 
756 	ret = process_intr_ops(pdip, rdip, op, hdlp, result);
757 
758 done:
759 	switch (op) {
760 	case DDI_INTROP_ADDISR:
761 	case DDI_INTROP_REMISR:
762 	case DDI_INTROP_ENABLE:
763 	case DDI_INTROP_DISABLE:
764 	case DDI_INTROP_BLOCKENABLE:
765 	case DDI_INTROP_BLOCKDISABLE:
766 		/* Release hold acquired in get_intr_parent() */
767 		if (pdip)
768 			ndi_rele_devi(pdip);
769 	}
770 
771 	hdlp->ih_vector = 0;
772 
773 	return (ret);
774 }
775 
776 /*
777  * i_ddi_add_ivintr:
778  */
779 /*ARGSUSED*/
780 int
781 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp)
782 {
783 	/* Sanity check the entry we're about to add */
784 	if (GET_IVINTR(hdlp->ih_vector)) {
785 		cmn_err(CE_WARN, "mondo 0x%x in use", hdlp->ih_vector);
786 		return (DDI_FAILURE);
787 	}
788 
789 	/*
790 	 * If the PIL was set and is valid use it, otherwise
791 	 * default it to 1
792 	 */
793 	if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX))
794 		hdlp->ih_pri = 1;
795 
796 	VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri,
797 	    (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, NULL) == 0);
798 
799 	return (DDI_SUCCESS);
800 }
801 
802 /*
803  * i_ddi_rem_ivintr:
804  */
805 /*ARGSUSED*/
806 void
807 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp)
808 {
809 	rem_ivintr(hdlp->ih_vector, NULL);
810 }
811 
812 /*
813  * i_ddi_get_inum - Get the interrupt number property from the
814  * specified device. Note that this function is called only for
815  * the FIXED interrupt type.
816  */
817 uint32_t
818 i_ddi_get_inum(dev_info_t *dip, uint_t inumber)
819 {
820 	int32_t			intrlen, intr_cells, max_intrs;
821 	prop_1275_cell_t	*ip, intr_sz;
822 	uint32_t		intr = 0;
823 
824 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
825 	    DDI_PROP_CANSLEEP,
826 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
827 
828 		intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
829 		    "#interrupt-cells", 1);
830 
831 		/* adjust for number of bytes */
832 		intr_sz = CELLS_1275_TO_BYTES(intr_cells);
833 
834 		/* Calculate the number of interrupts */
835 		max_intrs = intrlen / intr_sz;
836 
837 		if (inumber < max_intrs) {
838 			prop_1275_cell_t *intrp = ip;
839 
840 			/* Index into interrupt property */
841 			intrp += (inumber * intr_cells);
842 
843 			cells_1275_copy(intrp, &intr, intr_cells);
844 		}
845 
846 		kmem_free(ip, intrlen);
847 	}
848 
849 	return (intr);
850 }
851 
852 /*
853  * i_ddi_get_intr_pri - Get the interrupt-priorities property from
854  * the specified device. Note that this function is called only for
855  * the FIXED interrupt type.
856  */
857 uint32_t
858 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber)
859 {
860 	uint32_t	*intr_prio_p;
861 	uint32_t	pri = 0;
862 	int32_t		i;
863 
864 	/*
865 	 * Use the "interrupt-priorities" property to determine the
866 	 * the pil/ipl for the interrupt handler.
867 	 */
868 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
869 	    "interrupt-priorities", (caddr_t)&intr_prio_p,
870 	    &i) == DDI_SUCCESS) {
871 		if (inumber < (i / sizeof (int32_t)))
872 			pri = intr_prio_p[inumber];
873 		kmem_free(intr_prio_p, i);
874 	}
875 
876 	return (pri);
877 }
878 
879 int
880 i_ddi_get_nintrs(dev_info_t *dip)
881 {
882 	int32_t intrlen;
883 	prop_1275_cell_t intr_sz;
884 	prop_1275_cell_t *ip;
885 	int32_t ret = 0;
886 
887 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
888 	    DDI_PROP_CANSLEEP,
889 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
890 
891 		intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
892 		    "#interrupt-cells", 1);
893 		/* adjust for number of bytes */
894 		intr_sz = CELLS_1275_TO_BYTES(intr_sz);
895 
896 		ret = intrlen / intr_sz;
897 
898 		kmem_free(ip, intrlen);
899 	}
900 
901 	return (ret);
902 }
903 
904 /*
905  * i_ddi_add_softint - allocate and add a soft interrupt to the system
906  */
907 int
908 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
909 {
910 	uint_t		rval;
911 
912 	if ((rval = add_softintr(hdlp->ih_pri, hdlp->ih_cb_func,
913 	    hdlp->ih_cb_arg1)) == 0) {
914 
915 		return (DDI_FAILURE);
916 	}
917 
918 	/* use uintptr_t to suppress the gcc warning */
919 	hdlp->ih_private = (void *)(uintptr_t)rval;
920 
921 	return (DDI_SUCCESS);
922 }
923 
924 void
925 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
926 {
927 	uint_t		intr_id;
928 
929 	/* disable */
930 	ASSERT(hdlp->ih_private != NULL);
931 
932 	/* use uintptr_t to suppress the gcc warning */
933 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
934 
935 	rem_softintr(intr_id);
936 	hdlp->ih_private = NULL;
937 }
938 
939 int
940 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
941 {
942 	uint_t		intr_id;
943 	int		ret;
944 
945 	ASSERT(hdlp != NULL);
946 	ASSERT(hdlp->ih_private != NULL);
947 
948 	/* use uintptr_t to suppress the gcc warning */
949 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
950 
951 	/* update the vector table for the 2nd arg */
952 	ret = update_softint_arg2(intr_id, arg2);
953 	if (ret == DDI_SUCCESS)
954 		setsoftint(intr_id);
955 
956 	return (ret);
957 }
958 
959 /* ARGSUSED */
960 int
961 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
962 {
963 	uint_t		intr_id;
964 	int		ret;
965 
966 	ASSERT(hdlp != NULL);
967 	ASSERT(hdlp->ih_private != NULL);
968 
969 	/* use uintptr_t to suppress the gcc warning */
970 	intr_id = (uint_t)(uintptr_t)hdlp->ih_private;
971 
972 	/* update the vector table for the new priority */
973 	ret = update_softint_pri(intr_id, hdlp->ih_pri);
974 
975 	return (ret);
976 }
977 
978 /*ARGSUSED*/
979 void
980 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
981 {
982 }
983 
984 /*ARGSUSED*/
985 void
986 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
987 {
988 }
989 
990 /*
991  * SECTION: DDI Memory/DMA
992  */
993 
994 /* set HAT endianess attributes from ddi_device_acc_attr */
995 void
996 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
997 {
998 	if (devaccp != NULL) {
999 		if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) {
1000 			*hataccp &= ~HAT_ENDIAN_MASK;
1001 			*hataccp |= HAT_STRUCTURE_LE;
1002 		}
1003 	}
1004 }
1005 
1006 /*
1007  * Check if the specified cache attribute is supported on the platform.
1008  * This function must be called before i_ddi_cacheattr_to_hatacc().
1009  */
1010 boolean_t
1011 i_ddi_check_cache_attr(uint_t flags)
1012 {
1013 	/*
1014 	 * The cache attributes are mutually exclusive. Any combination of
1015 	 * the attributes leads to a failure.
1016 	 */
1017 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1018 	if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1019 		return (B_FALSE);
1020 
1021 	/*
1022 	 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful,
1023 	 * but others lead to a failure.
1024 	 */
1025 	if (cache_attr & IOMEM_DATA_CACHED)
1026 		return (B_TRUE);
1027 	else
1028 		return (B_FALSE);
1029 }
1030 
1031 /* set HAT cache attributes from the cache attributes */
1032 void
1033 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1034 {
1035 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1036 	static char *fname = "i_ddi_cacheattr_to_hatacc";
1037 #if defined(lint)
1038 	*hataccp = *hataccp;
1039 #endif
1040 	/*
1041 	 * set HAT attrs according to the cache attrs.
1042 	 */
1043 	switch (cache_attr) {
1044 	/*
1045 	 * The cache coherency is always maintained on SPARC, and
1046 	 * nothing is required.
1047 	 */
1048 	case IOMEM_DATA_CACHED:
1049 		break;
1050 	/*
1051 	 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are
1052 	 * not supported on SPARC -- this case must not occur because the
1053 	 * cache attribute is scrutinized before this function is called.
1054 	 */
1055 	case IOMEM_DATA_UNCACHED:
1056 	case IOMEM_DATA_UC_WR_COMBINE:
1057 	default:
1058 		cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1059 		    fname, cache_attr);
1060 	}
1061 }
1062 
1063 static vmem_t *little_endian_arena;
1064 static vmem_t *big_endian_arena;
1065 
1066 static void *
1067 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag)
1068 {
1069 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE,
1070 	    segkmem_page_create, NULL));
1071 }
1072 
1073 static void *
1074 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag)
1075 {
1076 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE,
1077 	    segkmem_page_create, NULL));
1078 }
1079 
1080 void
1081 ka_init(void)
1082 {
1083 	little_endian_arena = vmem_create("little_endian", NULL, 0, 1,
1084 	    segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP);
1085 	big_endian_arena = vmem_create("big_endian", NULL, 0, 1,
1086 	    segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP);
1087 }
1088 
1089 /*
1090  * Allocate from the system, aligned on a specific boundary.
1091  * The alignment, if non-zero, must be a power of 2.
1092  */
1093 static void *
1094 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags)
1095 {
1096 	size_t *addr, *raddr, rsize;
1097 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1098 
1099 	align = MAX(align, hdrsize);
1100 	ASSERT((align & (align - 1)) == 0);
1101 
1102 	/*
1103 	 * We need to allocate
1104 	 *    rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment)
1105 	 * bytes to be sure we have enough freedom to satisfy the request.
1106 	 * Since the buffer alignment depends on the request size, this is
1107 	 * not straightforward to use directly.
1108 	 *
1109 	 * kmem guarantees that any allocation of a 64-byte multiple will be
1110 	 * 64-byte aligned.  Since rounding up the request could add more
1111 	 * than we save, we compute the size with and without alignment, and
1112 	 * use the smaller of the two.
1113 	 */
1114 	rsize = size + hdrsize + align;
1115 
1116 	if (endian_flags == DDI_STRUCTURE_LE_ACC) {
1117 		raddr = vmem_alloc(little_endian_arena, rsize,
1118 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1119 	} else {
1120 		raddr = vmem_alloc(big_endian_arena, rsize,
1121 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1122 	}
1123 
1124 	if (raddr == NULL)
1125 		return (NULL);
1126 
1127 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1128 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1129 
1130 	addr[-3] = (size_t)endian_flags;
1131 	addr[-2] = (size_t)raddr;
1132 	addr[-1] = rsize;
1133 
1134 	return (addr);
1135 }
1136 
1137 static void
1138 kfreea(void *addr)
1139 {
1140 	size_t *saddr = addr;
1141 
1142 	if (saddr[-3] == DDI_STRUCTURE_LE_ACC)
1143 		vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]);
1144 	else
1145 		vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]);
1146 }
1147 
1148 int
1149 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1150     size_t length, int cansleep, int flags,
1151     ddi_device_acc_attr_t *accattrp,
1152     caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep)
1153 {
1154 	caddr_t a;
1155 	int iomin, align, streaming;
1156 	uint_t endian_flags = DDI_NEVERSWAP_ACC;
1157 
1158 #if defined(lint)
1159 	*handlep = *handlep;
1160 #endif
1161 
1162 	/*
1163 	 * Check legality of arguments
1164 	 */
1165 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1166 		return (DDI_FAILURE);
1167 	}
1168 
1169 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1170 	    (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1171 	    (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1172 		return (DDI_FAILURE);
1173 	}
1174 
1175 	/*
1176 	 * check if a streaming sequential xfer is requested.
1177 	 */
1178 	streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0;
1179 
1180 	/*
1181 	 * Drivers for 64-bit capable SBus devices will encode
1182 	 * the burtsizes for 64-bit xfers in the upper 16-bits.
1183 	 * For DMA alignment, we use the most restrictive
1184 	 * alignment of 32-bit and 64-bit xfers.
1185 	 */
1186 	iomin = (attr->dma_attr_burstsizes & 0xffff) |
1187 	    ((attr->dma_attr_burstsizes >> 16) & 0xffff);
1188 	/*
1189 	 * If a driver set burtsizes to 0, we give him byte alignment.
1190 	 * Otherwise align at the burtsizes boundary.
1191 	 */
1192 	if (iomin == 0)
1193 		iomin = 1;
1194 	else
1195 		iomin = 1 << (ddi_fls(iomin) - 1);
1196 	iomin = maxbit(iomin, attr->dma_attr_minxfer);
1197 	iomin = maxbit(iomin, attr->dma_attr_align);
1198 	iomin = ddi_iomin(dip, iomin, streaming);
1199 	if (iomin == 0)
1200 		return (DDI_FAILURE);
1201 
1202 	ASSERT((iomin & (iomin - 1)) == 0);
1203 	ASSERT(iomin >= attr->dma_attr_minxfer);
1204 	ASSERT(iomin >= attr->dma_attr_align);
1205 
1206 	length = P2ROUNDUP(length, iomin);
1207 	align = iomin;
1208 
1209 	if (accattrp != NULL)
1210 		endian_flags = accattrp->devacc_attr_endian_flags;
1211 
1212 	a = kalloca(length, align, cansleep, endian_flags);
1213 	if ((*kaddrp = a) == 0) {
1214 		return (DDI_FAILURE);
1215 	} else {
1216 		if (real_length) {
1217 			*real_length = length;
1218 		}
1219 		if (handlep) {
1220 			/*
1221 			 * assign handle information
1222 			 */
1223 			impl_acc_hdl_init(handlep);
1224 		}
1225 		return (DDI_SUCCESS);
1226 	}
1227 }
1228 
1229 /*
1230  * covert old DMA limits structure to DMA attribute structure
1231  * and continue
1232  */
1233 int
1234 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1235     size_t length, int cansleep, int streaming,
1236     ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1237     uint_t *real_length, ddi_acc_hdl_t *ap)
1238 {
1239 	ddi_dma_attr_t dma_attr, *attrp;
1240 	size_t rlen;
1241 	int ret;
1242 
1243 	ASSERT(limits);
1244 	attrp = &dma_attr;
1245 	attrp->dma_attr_version = DMA_ATTR_V0;
1246 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1247 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1248 	attrp->dma_attr_count_max = (uint64_t)-1;
1249 	attrp->dma_attr_align = 1;
1250 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1251 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1252 	attrp->dma_attr_maxxfer = (uint64_t)-1;
1253 	attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max;
1254 	attrp->dma_attr_sgllen = 1;
1255 	attrp->dma_attr_granular = 1;
1256 	attrp->dma_attr_flags = 0;
1257 
1258 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1259 	    accattrp, kaddrp, &rlen, ap);
1260 	if (ret == DDI_SUCCESS) {
1261 		if (real_length)
1262 			*real_length = (uint_t)rlen;
1263 	}
1264 	return (ret);
1265 }
1266 
1267 /* ARGSUSED */
1268 void
1269 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1270 {
1271 	kfreea(kaddr);
1272 }
1273 
1274 /*
1275  * SECTION: DDI Data Access
1276  */
1277 
1278 static uintptr_t impl_acc_hdl_id = 0;
1279 
1280 /*
1281  * access handle allocator
1282  */
1283 ddi_acc_hdl_t *
1284 impl_acc_hdl_get(ddi_acc_handle_t hdl)
1285 {
1286 	/*
1287 	 * Extract the access handle address from the DDI implemented
1288 	 * access handle
1289 	 */
1290 	return (&((ddi_acc_impl_t *)hdl)->ahi_common);
1291 }
1292 
1293 ddi_acc_handle_t
1294 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg)
1295 {
1296 	ddi_acc_impl_t *hp;
1297 	on_trap_data_t *otp;
1298 	int sleepflag;
1299 
1300 	sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
1301 
1302 	/*
1303 	 * Allocate and initialize the data access handle and error status.
1304 	 */
1305 	if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL)
1306 		goto fail;
1307 	if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc(
1308 	    sizeof (ndi_err_t), sleepflag)) == NULL) {
1309 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1310 		goto fail;
1311 	}
1312 	if ((otp = (on_trap_data_t *)kmem_zalloc(
1313 	    sizeof (on_trap_data_t), sleepflag)) == NULL) {
1314 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1315 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1316 		goto fail;
1317 	}
1318 	hp->ahi_err->err_ontrap = otp;
1319 	hp->ahi_common.ah_platform_private = (void *)hp;
1320 
1321 	return ((ddi_acc_handle_t)hp);
1322 fail:
1323 	if ((waitfp != (int (*)())KM_SLEEP) &&
1324 	    (waitfp != (int (*)())KM_NOSLEEP))
1325 		ddi_set_callback(waitfp, arg, &impl_acc_hdl_id);
1326 	return (NULL);
1327 }
1328 
1329 void
1330 impl_acc_hdl_free(ddi_acc_handle_t handle)
1331 {
1332 	ddi_acc_impl_t *hp;
1333 
1334 	/*
1335 	 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *),
1336 	 * because that's what we allocated in impl_acc_hdl_alloc() above.
1337 	 */
1338 	hp = (ddi_acc_impl_t *)handle;
1339 	if (hp) {
1340 		kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t));
1341 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1342 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1343 		if (impl_acc_hdl_id)
1344 			ddi_run_callback(&impl_acc_hdl_id);
1345 	}
1346 }
1347 
1348 #define	PCI_GET_MP_PFN(mp, page_no)	((mp)->dmai_ndvmapages == 1 ? \
1349 	(pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no]))
1350 
1351 /*
1352  * Function called after a dma fault occurred to find out whether the
1353  * fault address is associated with a driver that is able to handle faults
1354  * and recover from faults.
1355  */
1356 /* ARGSUSED */
1357 int
1358 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr,
1359     const void *not_used)
1360 {
1361 	ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle;
1362 	pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr);
1363 	pfn_t comp_pfn;
1364 
1365 	/*
1366 	 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults.
1367 	 */
1368 	int page;
1369 
1370 	ASSERT(mp);
1371 	for (page = 0; page < mp->dmai_ndvmapages; page++) {
1372 		comp_pfn = PCI_GET_MP_PFN(mp, page);
1373 		if (fault_pfn == comp_pfn)
1374 			return (DDI_FM_NONFATAL);
1375 	}
1376 	return (DDI_FM_UNKNOWN);
1377 }
1378 
1379 /*
1380  * Function used to check if a given access handle owns the failing address.
1381  * Called by ndi_fmc_error, when we detect a PIO error.
1382  */
1383 /* ARGSUSED */
1384 static int
1385 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr,
1386     const void *not_used)
1387 {
1388 	pfn_t pfn, fault_pfn;
1389 	ddi_acc_hdl_t *hp;
1390 
1391 	hp = impl_acc_hdl_get((ddi_acc_handle_t)handle);
1392 
1393 	ASSERT(hp);
1394 
1395 	if (addr != NULL) {
1396 		pfn = hp->ah_pfn;
1397 		fault_pfn = mmu_btop(*(uint64_t *)addr);
1398 		if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum))
1399 			return (DDI_FM_NONFATAL);
1400 	}
1401 	return (DDI_FM_UNKNOWN);
1402 }
1403 
1404 void
1405 impl_acc_err_init(ddi_acc_hdl_t *handlep)
1406 {
1407 	int fmcap;
1408 	ndi_err_t *errp;
1409 	on_trap_data_t *otp;
1410 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep;
1411 
1412 	fmcap = ddi_fm_capable(handlep->ah_dip);
1413 
1414 	if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
1415 	    !DDI_FM_ACC_ERR_CAP(fmcap)) {
1416 		handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
1417 	} else if (DDI_FM_ACC_ERR_CAP(fmcap)) {
1418 		if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
1419 			i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP,
1420 			    NULL, DDI_NOSLEEP);
1421 		} else {
1422 			errp = hp->ahi_err;
1423 			otp = (on_trap_data_t *)errp->err_ontrap;
1424 			otp->ot_handle = (void *)(hp);
1425 			otp->ot_prot = OT_DATA_ACCESS;
1426 			if (handlep->ah_acc.devacc_attr_access ==
1427 			    DDI_CAUTIOUS_ACC)
1428 				otp->ot_trampoline =
1429 				    (uintptr_t)&i_ddi_caut_trampoline;
1430 			else
1431 				otp->ot_trampoline =
1432 				    (uintptr_t)&i_ddi_prot_trampoline;
1433 			errp->err_status = DDI_FM_OK;
1434 			errp->err_expected = DDI_FM_ERR_UNEXPECTED;
1435 			errp->err_cf = impl_acc_check;
1436 		}
1437 	}
1438 }
1439 
1440 void
1441 impl_acc_hdl_init(ddi_acc_hdl_t *handlep)
1442 {
1443 	ddi_acc_impl_t *hp;
1444 
1445 	ASSERT(handlep);
1446 
1447 	hp = (ddi_acc_impl_t *)handlep;
1448 
1449 	/*
1450 	 * check for SW byte-swapping
1451 	 */
1452 	hp->ahi_get8 = i_ddi_get8;
1453 	hp->ahi_put8 = i_ddi_put8;
1454 	hp->ahi_rep_get8 = i_ddi_rep_get8;
1455 	hp->ahi_rep_put8 = i_ddi_rep_put8;
1456 	if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) {
1457 		hp->ahi_get16 = i_ddi_swap_get16;
1458 		hp->ahi_get32 = i_ddi_swap_get32;
1459 		hp->ahi_get64 = i_ddi_swap_get64;
1460 		hp->ahi_put16 = i_ddi_swap_put16;
1461 		hp->ahi_put32 = i_ddi_swap_put32;
1462 		hp->ahi_put64 = i_ddi_swap_put64;
1463 		hp->ahi_rep_get16 = i_ddi_swap_rep_get16;
1464 		hp->ahi_rep_get32 = i_ddi_swap_rep_get32;
1465 		hp->ahi_rep_get64 = i_ddi_swap_rep_get64;
1466 		hp->ahi_rep_put16 = i_ddi_swap_rep_put16;
1467 		hp->ahi_rep_put32 = i_ddi_swap_rep_put32;
1468 		hp->ahi_rep_put64 = i_ddi_swap_rep_put64;
1469 	} else {
1470 		hp->ahi_get16 = i_ddi_get16;
1471 		hp->ahi_get32 = i_ddi_get32;
1472 		hp->ahi_get64 = i_ddi_get64;
1473 		hp->ahi_put16 = i_ddi_put16;
1474 		hp->ahi_put32 = i_ddi_put32;
1475 		hp->ahi_put64 = i_ddi_put64;
1476 		hp->ahi_rep_get16 = i_ddi_rep_get16;
1477 		hp->ahi_rep_get32 = i_ddi_rep_get32;
1478 		hp->ahi_rep_get64 = i_ddi_rep_get64;
1479 		hp->ahi_rep_put16 = i_ddi_rep_put16;
1480 		hp->ahi_rep_put32 = i_ddi_rep_put32;
1481 		hp->ahi_rep_put64 = i_ddi_rep_put64;
1482 	}
1483 
1484 	/* Legacy fault flags and support */
1485 	hp->ahi_fault_check = i_ddi_acc_fault_check;
1486 	hp->ahi_fault_notify = i_ddi_acc_fault_notify;
1487 	hp->ahi_fault = 0;
1488 	impl_acc_err_init(handlep);
1489 }
1490 
1491 void
1492 i_ddi_acc_set_fault(ddi_acc_handle_t handle)
1493 {
1494 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1495 
1496 	if (!hp->ahi_fault) {
1497 		hp->ahi_fault = 1;
1498 			(*hp->ahi_fault_notify)(hp);
1499 	}
1500 }
1501 
1502 void
1503 i_ddi_acc_clr_fault(ddi_acc_handle_t handle)
1504 {
1505 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1506 
1507 	if (hp->ahi_fault) {
1508 		hp->ahi_fault = 0;
1509 			(*hp->ahi_fault_notify)(hp);
1510 	}
1511 }
1512 
1513 /* ARGSUSED */
1514 void
1515 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp)
1516 {
1517 	/* Default version, does nothing */
1518 }
1519 
1520 /*
1521  * SECTION: Misc functions
1522  */
1523 
1524 /*
1525  * instance wrappers
1526  */
1527 /*ARGSUSED*/
1528 uint_t
1529 impl_assign_instance(dev_info_t *dip)
1530 {
1531 	return ((uint_t)-1);
1532 }
1533 
1534 /*ARGSUSED*/
1535 int
1536 impl_keep_instance(dev_info_t *dip)
1537 {
1538 	return (DDI_FAILURE);
1539 }
1540 
1541 /*ARGSUSED*/
1542 int
1543 impl_free_instance(dev_info_t *dip)
1544 {
1545 	return (DDI_FAILURE);
1546 }
1547 
1548 /*ARGSUSED*/
1549 int
1550 impl_check_cpu(dev_info_t *devi)
1551 {
1552 	return (DDI_SUCCESS);
1553 }
1554 
1555 
1556 static const char *nocopydevs[] = {
1557 	"SUNW,ffb",
1558 	"SUNW,afb",
1559 	NULL
1560 };
1561 
1562 /*
1563  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1564  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1565  */
1566 /*ARGSUSED*/
1567 int
1568 e_ddi_copyfromdev(dev_info_t *devi,
1569     off_t off, const void *devaddr, void *kaddr, size_t len)
1570 {
1571 	const char **argv;
1572 
1573 	for (argv = nocopydevs; *argv; argv++)
1574 		if (strcmp(ddi_binding_name(devi), *argv) == 0) {
1575 			bzero(kaddr, len);
1576 			return (0);
1577 		}
1578 
1579 	bcopy(devaddr, kaddr, len);
1580 	return (0);
1581 }
1582 
1583 /*
1584  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1585  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1586  */
1587 /*ARGSUSED*/
1588 int
1589 e_ddi_copytodev(dev_info_t *devi,
1590     off_t off, const void *kaddr, void *devaddr, size_t len)
1591 {
1592 	const char **argv;
1593 
1594 	for (argv = nocopydevs; *argv; argv++)
1595 		if (strcmp(ddi_binding_name(devi), *argv) == 0)
1596 			return (1);
1597 
1598 	bcopy(kaddr, devaddr, len);
1599 	return (0);
1600 }
1601 
1602 /*
1603  * Boot Configuration
1604  */
1605 idprom_t idprom;
1606 
1607 /*
1608  * Configure the hardware on the system.
1609  * Called before the rootfs is mounted
1610  */
1611 void
1612 configure(void)
1613 {
1614 	extern void i_ddi_init_root();
1615 
1616 	/* We better have released boot by this time! */
1617 	ASSERT(!bootops);
1618 
1619 	/*
1620 	 * Determine whether or not to use the fpu, V9 SPARC cpus
1621 	 * always have one. Could check for existence of a fp queue,
1622 	 * Ultra I, II and IIa do not have a fp queue.
1623 	 */
1624 	if (fpu_exists)
1625 		fpu_probe();
1626 	else
1627 		cmn_err(CE_CONT, "FPU not in use\n");
1628 
1629 #if 0 /* XXXQ - not necessary for sun4u */
1630 	/*
1631 	 * This following line fixes bugid 1041296; we need to do a
1632 	 * prom_nextnode(0) because this call ALSO patches the DMA+
1633 	 * bug in Campus-B and Phoenix. The prom uncaches the traptable
1634 	 * page as a side-effect of devr_next(0) (which prom_nextnode calls),
1635 	 * so this *must* be executed early on. (XXX This is untrue for sun4u)
1636 	 */
1637 	(void) prom_nextnode((pnode_t)0);
1638 #endif
1639 
1640 	/*
1641 	 * Initialize devices on the machine.
1642 	 * Uses configuration tree built by the PROMs to determine what
1643 	 * is present, and builds a tree of prototype dev_info nodes
1644 	 * corresponding to the hardware which identified itself.
1645 	 */
1646 	i_ddi_init_root();
1647 
1648 #ifdef	DDI_PROP_DEBUG
1649 	(void) ddi_prop_debug(1);	/* Enable property debugging */
1650 #endif	/* DDI_PROP_DEBUG */
1651 }
1652 
1653 /*
1654  * The "status" property indicates the operational status of a device.
1655  * If this property is present, the value is a string indicating the
1656  * status of the device as follows:
1657  *
1658  *	"okay"		operational.
1659  *	"disabled"	not operational, but might become operational.
1660  *	"fail"		not operational because a fault has been detected,
1661  *			and it is unlikely that the device will become
1662  *			operational without repair. no additional details
1663  *			are available.
1664  *	"fail-xxx"	not operational because a fault has been detected,
1665  *			and it is unlikely that the device will become
1666  *			operational without repair. "xxx" is additional
1667  *			human-readable information about the particular
1668  *			fault condition that was detected.
1669  *
1670  * The absence of this property means that the operational status is
1671  * unknown or okay.
1672  *
1673  * This routine checks the status property of the specified device node
1674  * and returns 0 if the operational status indicates failure, and 1 otherwise.
1675  *
1676  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
1677  * And, in that case, the property may not even be a string. So we carefully
1678  * check for the value "fail", in the beginning of the string, noting
1679  * the property length.
1680  */
1681 int
1682 status_okay(int id, char *buf, int buflen)
1683 {
1684 	char status_buf[OBP_MAXPROPNAME];
1685 	char *bufp = buf;
1686 	int len = buflen;
1687 	int proplen;
1688 	static const char *status = "status";
1689 	static const char *fail = "fail";
1690 	size_t fail_len = strlen(fail);
1691 
1692 	/*
1693 	 * Get the proplen ... if it's smaller than "fail",
1694 	 * or doesn't exist ... then we don't care, since
1695 	 * the value can't begin with the char string "fail".
1696 	 *
1697 	 * NB: proplen, if it's a string, includes the NULL in the
1698 	 * the size of the property, and fail_len does not.
1699 	 */
1700 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
1701 	if (proplen <= fail_len)	/* nonexistent or uninteresting len */
1702 		return (1);
1703 
1704 	/*
1705 	 * if a buffer was provided, use it
1706 	 */
1707 	if ((buf == (char *)NULL) || (buflen <= 0)) {
1708 		bufp = status_buf;
1709 		len = sizeof (status_buf);
1710 	}
1711 	*bufp = (char)0;
1712 
1713 	/*
1714 	 * Get the property into the buffer, to the extent of the buffer,
1715 	 * and in case the buffer is smaller than the property size,
1716 	 * NULL terminate the buffer. (This handles the case where
1717 	 * a buffer was passed in and the caller wants to print the
1718 	 * value, but the buffer was too small).
1719 	 */
1720 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
1721 	    (caddr_t)bufp, len);
1722 	*(bufp + len - 1) = (char)0;
1723 
1724 	/*
1725 	 * If the value begins with the char string "fail",
1726 	 * then it means the node is failed. We don't care
1727 	 * about any other values. We assume the node is ok
1728 	 * although it might be 'disabled'.
1729 	 */
1730 	if (strncmp(bufp, fail, fail_len) == 0)
1731 		return (0);
1732 
1733 	return (1);
1734 }
1735 
1736 
1737 /*
1738  * We set the cpu type from the idprom, if we can.
1739  * Note that we just read out the contents of it, for the most part.
1740  */
1741 void
1742 setcputype(void)
1743 {
1744 	/*
1745 	 * We cache the idprom info early on so that we don't
1746 	 * rummage through the NVRAM unnecessarily later.
1747 	 */
1748 	(void) prom_getidprom((caddr_t)&idprom, sizeof (idprom));
1749 }
1750 
1751 /*
1752  *  Here is where we actually infer meanings to the members of idprom_t
1753  */
1754 void
1755 parse_idprom(void)
1756 {
1757 	if (idprom.id_format == IDFORM_1) {
1758 		uint_t i;
1759 
1760 		(void) localetheraddr((struct ether_addr *)idprom.id_ether,
1761 		    (struct ether_addr *)NULL);
1762 
1763 		i = idprom.id_machine << 24;
1764 		i = i + idprom.id_serial;
1765 		numtos((ulong_t)i, hw_serial);
1766 	} else
1767 		prom_printf("Invalid format code in IDprom.\n");
1768 }
1769 
1770 /*
1771  * Allow for implementation specific correction of PROM property values.
1772  */
1773 /*ARGSUSED*/
1774 void
1775 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
1776     caddr_t buffer)
1777 {
1778 	/*
1779 	 * There are no adjustments needed in this implementation.
1780 	 */
1781 }
1782 
1783 /*
1784  * The following functions ready a cautious request to go up to the nexus
1785  * driver.  It is up to the nexus driver to decide how to process the request.
1786  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
1787  * differently.
1788  */
1789 
1790 static void
1791 i_ddi_caut_getput_ctlops(
1792     ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size,
1793     size_t repcount, uint_t flags, ddi_ctl_enum_t cmd)
1794 {
1795 	peekpoke_ctlops_t	cautacc_ctlops_arg;
1796 
1797 	cautacc_ctlops_arg.size = size;
1798 	cautacc_ctlops_arg.dev_addr = dev_addr;
1799 	cautacc_ctlops_arg.host_addr = host_addr;
1800 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
1801 	cautacc_ctlops_arg.repcount = repcount;
1802 	cautacc_ctlops_arg.flags = flags;
1803 
1804 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
1805 	    &cautacc_ctlops_arg, NULL);
1806 }
1807 
1808 uint8_t
1809 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
1810 {
1811 	uint8_t value;
1812 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1813 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
1814 
1815 	return (value);
1816 }
1817 
1818 uint16_t
1819 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
1820 {
1821 	uint16_t value;
1822 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1823 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
1824 
1825 	return (value);
1826 }
1827 
1828 uint32_t
1829 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
1830 {
1831 	uint32_t value;
1832 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1833 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
1834 
1835 	return (value);
1836 }
1837 
1838 uint64_t
1839 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
1840 {
1841 	uint64_t value;
1842 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1843 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
1844 
1845 	return (value);
1846 }
1847 
1848 void
1849 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
1850 {
1851 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1852 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
1853 }
1854 
1855 void
1856 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
1857 {
1858 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1859 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
1860 }
1861 
1862 void
1863 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
1864 {
1865 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1866 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
1867 }
1868 
1869 void
1870 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
1871 {
1872 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1873 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
1874 }
1875 
1876 void
1877 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1878 	size_t repcount, uint_t flags)
1879 {
1880 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1881 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
1882 }
1883 
1884 void
1885 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1886     uint16_t *dev_addr, size_t repcount, uint_t flags)
1887 {
1888 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1889 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
1890 }
1891 
1892 void
1893 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1894     uint32_t *dev_addr, size_t repcount, uint_t flags)
1895 {
1896 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1897 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
1898 }
1899 
1900 void
1901 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1902     uint64_t *dev_addr, size_t repcount, uint_t flags)
1903 {
1904 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1905 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
1906 }
1907 
1908 void
1909 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1910 	size_t repcount, uint_t flags)
1911 {
1912 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1913 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
1914 }
1915 
1916 void
1917 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1918     uint16_t *dev_addr, size_t repcount, uint_t flags)
1919 {
1920 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1921 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
1922 }
1923 
1924 void
1925 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1926     uint32_t *dev_addr, size_t repcount, uint_t flags)
1927 {
1928 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1929 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
1930 }
1931 
1932 void
1933 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1934     uint64_t *dev_addr, size_t repcount, uint_t flags)
1935 {
1936 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1937 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
1938 }
1939 
1940 /*
1941  * This is called only to process peek/poke when the DIP is NULL.
1942  * Assume that this is for memory, as nexi take care of device safe accesses.
1943  */
1944 int
1945 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
1946 {
1947 	int err = DDI_SUCCESS;
1948 	on_trap_data_t otd;
1949 
1950 	/* Set up protected environment. */
1951 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1952 		uintptr_t tramp = otd.ot_trampoline;
1953 
1954 		if (cmd == DDI_CTLOPS_POKE) {
1955 			otd.ot_trampoline = (uintptr_t)&poke_fault;
1956 			err = do_poke(in_args->size, (void *)in_args->dev_addr,
1957 			    (void *)in_args->host_addr);
1958 		} else {
1959 			otd.ot_trampoline = (uintptr_t)&peek_fault;
1960 			err = do_peek(in_args->size, (void *)in_args->dev_addr,
1961 			    (void *)in_args->host_addr);
1962 		}
1963 		otd.ot_trampoline = tramp;
1964 	} else
1965 		err = DDI_FAILURE;
1966 
1967 	/* Take down protected environment. */
1968 	no_trap();
1969 
1970 	return (err);
1971 }
1972 
1973 /*
1974  * Platform independent DR routines
1975  */
1976 
1977 static int
1978 ndi2errno(int n)
1979 {
1980 	int err = 0;
1981 
1982 	switch (n) {
1983 		case NDI_NOMEM:
1984 			err = ENOMEM;
1985 			break;
1986 		case NDI_BUSY:
1987 			err = EBUSY;
1988 			break;
1989 		case NDI_FAULT:
1990 			err = EFAULT;
1991 			break;
1992 		case NDI_FAILURE:
1993 			err = EIO;
1994 			break;
1995 		case NDI_SUCCESS:
1996 			break;
1997 		case NDI_BADHANDLE:
1998 		default:
1999 			err = EINVAL;
2000 			break;
2001 	}
2002 	return (err);
2003 }
2004 
2005 /*
2006  * Prom tree node list
2007  */
2008 struct ptnode {
2009 	pnode_t		nodeid;
2010 	struct ptnode	*next;
2011 };
2012 
2013 /*
2014  * Prom tree walk arg
2015  */
2016 struct pta {
2017 	dev_info_t	*pdip;
2018 	devi_branch_t	*bp;
2019 	uint_t		flags;
2020 	dev_info_t	*fdip;
2021 	struct ptnode	*head;
2022 };
2023 
2024 static void
2025 visit_node(pnode_t nodeid, struct pta *ap)
2026 {
2027 	struct ptnode	**nextp;
2028 	int		(*select)(pnode_t, void *, uint_t);
2029 
2030 	ASSERT(nodeid != OBP_NONODE && nodeid != OBP_BADNODE);
2031 
2032 	select = ap->bp->create.prom_branch_select;
2033 
2034 	ASSERT(select);
2035 
2036 	if (select(nodeid, ap->bp->arg, 0) == DDI_SUCCESS) {
2037 
2038 		for (nextp = &ap->head; *nextp; nextp = &(*nextp)->next)
2039 			;
2040 
2041 		*nextp = kmem_zalloc(sizeof (struct ptnode), KM_SLEEP);
2042 
2043 		(*nextp)->nodeid = nodeid;
2044 	}
2045 
2046 	if ((ap->flags & DEVI_BRANCH_CHILD) == DEVI_BRANCH_CHILD)
2047 		return;
2048 
2049 	nodeid = prom_childnode(nodeid);
2050 	while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) {
2051 		visit_node(nodeid, ap);
2052 		nodeid = prom_nextnode(nodeid);
2053 	}
2054 }
2055 
2056 /*ARGSUSED*/
2057 static int
2058 set_dip_offline(dev_info_t *dip, void *arg)
2059 {
2060 	ASSERT(dip);
2061 
2062 	mutex_enter(&(DEVI(dip)->devi_lock));
2063 	if (!DEVI_IS_DEVICE_OFFLINE(dip))
2064 		DEVI_SET_DEVICE_OFFLINE(dip);
2065 	mutex_exit(&(DEVI(dip)->devi_lock));
2066 
2067 	return (DDI_WALK_CONTINUE);
2068 }
2069 
2070 /*ARGSUSED*/
2071 static int
2072 create_prom_branch(void *arg, int has_changed)
2073 {
2074 	int		circ, c;
2075 	int		exists, rv;
2076 	pnode_t		nodeid;
2077 	struct ptnode	*tnp;
2078 	dev_info_t	*dip;
2079 	struct pta	*ap = arg;
2080 	devi_branch_t	*bp;
2081 
2082 	ASSERT(ap);
2083 	ASSERT(ap->fdip == NULL);
2084 	ASSERT(ap->pdip && ndi_dev_is_prom_node(ap->pdip));
2085 
2086 	bp = ap->bp;
2087 
2088 	nodeid = ddi_get_nodeid(ap->pdip);
2089 	if (nodeid == OBP_NONODE || nodeid == OBP_BADNODE) {
2090 		cmn_err(CE_WARN, "create_prom_branch: invalid "
2091 		    "nodeid: 0x%x", nodeid);
2092 		return (EINVAL);
2093 	}
2094 
2095 	ap->head = NULL;
2096 
2097 	nodeid = prom_childnode(nodeid);
2098 	while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) {
2099 		visit_node(nodeid, ap);
2100 		nodeid = prom_nextnode(nodeid);
2101 	}
2102 
2103 	if (ap->head == NULL)
2104 		return (ENODEV);
2105 
2106 	rv = 0;
2107 	while ((tnp = ap->head) != NULL) {
2108 		ap->head = tnp->next;
2109 
2110 		ndi_devi_enter(ap->pdip, &circ);
2111 
2112 		/*
2113 		 * Check if the branch already exists.
2114 		 */
2115 		exists = 0;
2116 		dip = e_ddi_nodeid_to_dip(tnp->nodeid);
2117 		if (dip != NULL) {
2118 			exists = 1;
2119 
2120 			/* Parent is held busy, so release hold */
2121 			ndi_rele_devi(dip);
2122 #ifdef	DEBUG
2123 			cmn_err(CE_WARN, "create_prom_branch: dip(%p) exists"
2124 			    " for nodeid 0x%x", (void *)dip, tnp->nodeid);
2125 #endif
2126 		} else {
2127 			dip = i_ddi_create_branch(ap->pdip, tnp->nodeid);
2128 		}
2129 
2130 		kmem_free(tnp, sizeof (struct ptnode));
2131 
2132 		if (dip == NULL) {
2133 			ndi_devi_exit(ap->pdip, circ);
2134 			rv = EIO;
2135 			continue;
2136 		}
2137 
2138 		ASSERT(ddi_get_parent(dip) == ap->pdip);
2139 
2140 		/*
2141 		 * Hold the branch if it is not already held
2142 		 */
2143 		if (!exists)
2144 			e_ddi_branch_hold(dip);
2145 
2146 		ASSERT(e_ddi_branch_held(dip));
2147 
2148 		/*
2149 		 * Set all dips in the branch offline so that
2150 		 * only a "configure" operation can attach
2151 		 * the branch
2152 		 */
2153 		(void) set_dip_offline(dip, NULL);
2154 
2155 		ndi_devi_enter(dip, &c);
2156 		ddi_walk_devs(ddi_get_child(dip), set_dip_offline, NULL);
2157 		ndi_devi_exit(dip, c);
2158 
2159 		ndi_devi_exit(ap->pdip, circ);
2160 
2161 		if (ap->flags & DEVI_BRANCH_CONFIGURE) {
2162 			int error = e_ddi_branch_configure(dip, &ap->fdip, 0);
2163 			if (error && rv == 0)
2164 				rv = error;
2165 		}
2166 
2167 		/*
2168 		 * Invoke devi_branch_callback() (if it exists) only for
2169 		 * newly created branches
2170 		 */
2171 		if (bp->devi_branch_callback && !exists)
2172 			bp->devi_branch_callback(dip, bp->arg, 0);
2173 	}
2174 
2175 	return (rv);
2176 }
2177 
2178 static int
2179 sid_node_create(dev_info_t *pdip, devi_branch_t *bp, dev_info_t **rdipp)
2180 {
2181 	int			rv, circ, len;
2182 	int			i, flags;
2183 	dev_info_t		*dip;
2184 	char			*nbuf;
2185 	static const char	*noname = "<none>";
2186 
2187 	ASSERT(pdip);
2188 	ASSERT(DEVI_BUSY_OWNED(pdip));
2189 
2190 	flags = 0;
2191 
2192 	/*
2193 	 * Creating the root of a branch ?
2194 	 */
2195 	if (rdipp) {
2196 		*rdipp = NULL;
2197 		flags = DEVI_BRANCH_ROOT;
2198 	}
2199 
2200 	ndi_devi_alloc_sleep(pdip, (char *)noname, DEVI_SID_NODEID, &dip);
2201 	rv = bp->create.sid_branch_create(dip, bp->arg, flags);
2202 
2203 	nbuf = kmem_alloc(OBP_MAXDRVNAME, KM_SLEEP);
2204 
2205 	if (rv == DDI_WALK_ERROR) {
2206 		cmn_err(CE_WARN, "e_ddi_branch_create: Error setting"
2207 		    " properties on devinfo node %p",  (void *)dip);
2208 		goto fail;
2209 	}
2210 
2211 	len = OBP_MAXDRVNAME;
2212 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
2213 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "name", nbuf, &len)
2214 	    != DDI_PROP_SUCCESS) {
2215 		cmn_err(CE_WARN, "e_ddi_branch_create: devinfo node %p has"
2216 		    "no name property", (void *)dip);
2217 		goto fail;
2218 	}
2219 
2220 	ASSERT(i_ddi_node_state(dip) == DS_PROTO);
2221 	if (ndi_devi_set_nodename(dip, nbuf, 0) != NDI_SUCCESS) {
2222 		cmn_err(CE_WARN, "e_ddi_branch_create: cannot set name (%s)"
2223 		    " for devinfo node %p", nbuf, (void *)dip);
2224 		goto fail;
2225 	}
2226 
2227 	kmem_free(nbuf, OBP_MAXDRVNAME);
2228 
2229 	/*
2230 	 * Ignore bind failures just like boot does
2231 	 */
2232 	(void) ndi_devi_bind_driver(dip, 0);
2233 
2234 	switch (rv) {
2235 	case DDI_WALK_CONTINUE:
2236 	case DDI_WALK_PRUNESIB:
2237 		ndi_devi_enter(dip, &circ);
2238 
2239 		i = DDI_WALK_CONTINUE;
2240 		for (; i == DDI_WALK_CONTINUE; ) {
2241 			i = sid_node_create(dip, bp, NULL);
2242 		}
2243 
2244 		ASSERT(i == DDI_WALK_ERROR || i == DDI_WALK_PRUNESIB);
2245 		if (i == DDI_WALK_ERROR)
2246 			rv = i;
2247 		/*
2248 		 * If PRUNESIB stop creating siblings
2249 		 * of dip's child. Subsequent walk behavior
2250 		 * is determined by rv returned by dip.
2251 		 */
2252 
2253 		ndi_devi_exit(dip, circ);
2254 		break;
2255 	case DDI_WALK_TERMINATE:
2256 		/*
2257 		 * Don't create children and ask our parent
2258 		 * to not create siblings either.
2259 		 */
2260 		rv = DDI_WALK_PRUNESIB;
2261 		break;
2262 	case DDI_WALK_PRUNECHILD:
2263 		/*
2264 		 * Don't create children, but ask parent to continue
2265 		 * with siblings.
2266 		 */
2267 		rv = DDI_WALK_CONTINUE;
2268 		break;
2269 	default:
2270 		ASSERT(0);
2271 		break;
2272 	}
2273 
2274 	if (rdipp)
2275 		*rdipp = dip;
2276 
2277 	/*
2278 	 * Set device offline - only the "configure" op should cause an attach
2279 	 */
2280 	(void) set_dip_offline(dip, NULL);
2281 
2282 	return (rv);
2283 fail:
2284 	(void) ndi_devi_free(dip);
2285 	kmem_free(nbuf, OBP_MAXDRVNAME);
2286 	return (DDI_WALK_ERROR);
2287 }
2288 
2289 static int
2290 create_sid_branch(
2291 	dev_info_t	*pdip,
2292 	devi_branch_t	*bp,
2293 	dev_info_t	**dipp,
2294 	uint_t		flags)
2295 {
2296 	int		rv = 0, state = DDI_WALK_CONTINUE;
2297 	dev_info_t	*rdip;
2298 
2299 	while (state == DDI_WALK_CONTINUE) {
2300 		int	circ;
2301 
2302 		ndi_devi_enter(pdip, &circ);
2303 
2304 		state = sid_node_create(pdip, bp, &rdip);
2305 		if (rdip == NULL) {
2306 			ndi_devi_exit(pdip, circ);
2307 			ASSERT(state == DDI_WALK_ERROR);
2308 			break;
2309 		}
2310 
2311 		e_ddi_branch_hold(rdip);
2312 
2313 		ndi_devi_exit(pdip, circ);
2314 
2315 		if (flags & DEVI_BRANCH_CONFIGURE) {
2316 			int error = e_ddi_branch_configure(rdip, dipp, 0);
2317 			if (error && rv == 0)
2318 				rv = error;
2319 		}
2320 
2321 		/*
2322 		 * devi_branch_callback() is optional
2323 		 */
2324 		if (bp->devi_branch_callback)
2325 			bp->devi_branch_callback(rdip, bp->arg, 0);
2326 	}
2327 
2328 	ASSERT(state == DDI_WALK_ERROR || state == DDI_WALK_PRUNESIB);
2329 
2330 	return (state == DDI_WALK_ERROR ? EIO : rv);
2331 }
2332 
2333 int
2334 e_ddi_branch_create(
2335 	dev_info_t	*pdip,
2336 	devi_branch_t	*bp,
2337 	dev_info_t	**dipp,
2338 	uint_t		flags)
2339 {
2340 	int prom_devi, sid_devi, error;
2341 
2342 	if (pdip == NULL || bp == NULL || bp->type == 0)
2343 		return (EINVAL);
2344 
2345 	prom_devi = (bp->type == DEVI_BRANCH_PROM) ? 1 : 0;
2346 	sid_devi = (bp->type == DEVI_BRANCH_SID) ? 1 : 0;
2347 
2348 	if (prom_devi && bp->create.prom_branch_select == NULL)
2349 		return (EINVAL);
2350 	else if (sid_devi && bp->create.sid_branch_create == NULL)
2351 		return (EINVAL);
2352 	else if (!prom_devi && !sid_devi)
2353 		return (EINVAL);
2354 
2355 	if (flags & DEVI_BRANCH_EVENT)
2356 		return (EINVAL);
2357 
2358 	if (prom_devi) {
2359 		struct pta pta = {0};
2360 
2361 		pta.pdip = pdip;
2362 		pta.bp = bp;
2363 		pta.flags = flags;
2364 
2365 		error = prom_tree_access(create_prom_branch, &pta, NULL);
2366 
2367 		if (dipp)
2368 			*dipp = pta.fdip;
2369 		else if (pta.fdip)
2370 			ndi_rele_devi(pta.fdip);
2371 	} else {
2372 		error = create_sid_branch(pdip, bp, dipp, flags);
2373 	}
2374 
2375 	return (error);
2376 }
2377 
2378 int
2379 e_ddi_branch_configure(dev_info_t *rdip, dev_info_t **dipp, uint_t flags)
2380 {
2381 	int		circ, rv;
2382 	char		*devnm;
2383 	dev_info_t	*pdip;
2384 
2385 	if (dipp)
2386 		*dipp = NULL;
2387 
2388 	if (rdip == NULL || flags != 0 || (flags & DEVI_BRANCH_EVENT))
2389 		return (EINVAL);
2390 
2391 	pdip = ddi_get_parent(rdip);
2392 
2393 	ndi_devi_enter(pdip, &circ);
2394 
2395 	if (!e_ddi_branch_held(rdip)) {
2396 		ndi_devi_exit(pdip, circ);
2397 		cmn_err(CE_WARN, "e_ddi_branch_configure: "
2398 		    "dip(%p) not held", (void *)rdip);
2399 		return (EINVAL);
2400 	}
2401 
2402 	if (i_ddi_node_state(rdip) < DS_INITIALIZED) {
2403 		/*
2404 		 * First attempt to bind a driver. If we fail, return
2405 		 * success (On some platforms, dips for some device
2406 		 * types (CPUs) may not have a driver)
2407 		 */
2408 		if (ndi_devi_bind_driver(rdip, 0) != NDI_SUCCESS) {
2409 			ndi_devi_exit(pdip, circ);
2410 			return (0);
2411 		}
2412 
2413 		if (ddi_initchild(pdip, rdip) != DDI_SUCCESS) {
2414 			rv = NDI_FAILURE;
2415 			goto out;
2416 		}
2417 	}
2418 
2419 	ASSERT(i_ddi_node_state(rdip) >= DS_INITIALIZED);
2420 
2421 	devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
2422 
2423 	(void) ddi_deviname(rdip, devnm);
2424 
2425 	if ((rv = ndi_devi_config_one(pdip, devnm+1, &rdip,
2426 	    NDI_DEVI_ONLINE | NDI_CONFIG)) == NDI_SUCCESS) {
2427 		/* release hold from ndi_devi_config_one() */
2428 		ndi_rele_devi(rdip);
2429 	}
2430 
2431 	kmem_free(devnm, MAXNAMELEN + 1);
2432 out:
2433 	if (rv != NDI_SUCCESS && dipp) {
2434 		ndi_hold_devi(rdip);
2435 		*dipp = rdip;
2436 	}
2437 	ndi_devi_exit(pdip, circ);
2438 	return (ndi2errno(rv));
2439 }
2440 
2441 void
2442 e_ddi_branch_hold(dev_info_t *rdip)
2443 {
2444 	if (e_ddi_branch_held(rdip)) {
2445 		cmn_err(CE_WARN, "e_ddi_branch_hold: branch already held");
2446 		return;
2447 	}
2448 
2449 	mutex_enter(&DEVI(rdip)->devi_lock);
2450 	if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) == 0) {
2451 		DEVI(rdip)->devi_flags |= DEVI_BRANCH_HELD;
2452 		DEVI(rdip)->devi_ref++;
2453 	}
2454 	ASSERT(DEVI(rdip)->devi_ref > 0);
2455 	mutex_exit(&DEVI(rdip)->devi_lock);
2456 }
2457 
2458 int
2459 e_ddi_branch_held(dev_info_t *rdip)
2460 {
2461 	int rv = 0;
2462 
2463 	mutex_enter(&DEVI(rdip)->devi_lock);
2464 	if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) &&
2465 	    DEVI(rdip)->devi_ref > 0) {
2466 		rv = 1;
2467 	}
2468 	mutex_exit(&DEVI(rdip)->devi_lock);
2469 
2470 	return (rv);
2471 }
2472 void
2473 e_ddi_branch_rele(dev_info_t *rdip)
2474 {
2475 	mutex_enter(&DEVI(rdip)->devi_lock);
2476 	DEVI(rdip)->devi_flags &= ~DEVI_BRANCH_HELD;
2477 	DEVI(rdip)->devi_ref--;
2478 	mutex_exit(&DEVI(rdip)->devi_lock);
2479 }
2480 
2481 int
2482 e_ddi_branch_unconfigure(
2483 	dev_info_t *rdip,
2484 	dev_info_t **dipp,
2485 	uint_t flags)
2486 {
2487 	int	circ, rv;
2488 	int	destroy;
2489 	char	*devnm;
2490 	uint_t	nflags;
2491 	dev_info_t *pdip;
2492 
2493 	if (dipp)
2494 		*dipp = NULL;
2495 
2496 	if (rdip == NULL)
2497 		return (EINVAL);
2498 
2499 	pdip = ddi_get_parent(rdip);
2500 
2501 	ASSERT(pdip);
2502 
2503 	/*
2504 	 * Check if caller holds pdip busy - can cause deadlocks during
2505 	 * devfs_clean()
2506 	 */
2507 	if (DEVI_BUSY_OWNED(pdip)) {
2508 		cmn_err(CE_WARN, "e_ddi_branch_unconfigure: failed: parent"
2509 		    " devinfo node(%p) is busy held", (void *)pdip);
2510 		return (EINVAL);
2511 	}
2512 
2513 	destroy = (flags & DEVI_BRANCH_DESTROY) ? 1 : 0;
2514 
2515 	devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
2516 
2517 	ndi_devi_enter(pdip, &circ);
2518 	(void) ddi_deviname(rdip, devnm);
2519 	ndi_devi_exit(pdip, circ);
2520 
2521 	/*
2522 	 * ddi_deviname() returns a component name with / prepended.
2523 	 */
2524 	rv = devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
2525 	if (rv) {
2526 		kmem_free(devnm, MAXNAMELEN + 1);
2527 		return (rv);
2528 	}
2529 
2530 	ndi_devi_enter(pdip, &circ);
2531 
2532 	/*
2533 	 * Recreate device name as it may have changed state (init/uninit)
2534 	 * when parent busy lock was dropped for devfs_clean()
2535 	 */
2536 	(void) ddi_deviname(rdip, devnm);
2537 
2538 	if (!e_ddi_branch_held(rdip)) {
2539 		kmem_free(devnm, MAXNAMELEN + 1);
2540 		ndi_devi_exit(pdip, circ);
2541 		cmn_err(CE_WARN, "e_ddi_%s_branch: dip(%p) not held",
2542 		    destroy ? "destroy" : "unconfigure", (void *)rdip);
2543 		return (EINVAL);
2544 	}
2545 
2546 	/*
2547 	 * Release hold on the branch. This is ok since we are holding the
2548 	 * parent busy. If rdip is not removed, we must do a hold on the
2549 	 * branch before returning.
2550 	 */
2551 	e_ddi_branch_rele(rdip);
2552 
2553 	nflags = NDI_DEVI_OFFLINE;
2554 	if (destroy || (flags & DEVI_BRANCH_DESTROY)) {
2555 		nflags |= NDI_DEVI_REMOVE;
2556 		destroy = 1;
2557 	} else {
2558 		nflags |= NDI_UNCONFIG;		/* uninit but don't remove */
2559 	}
2560 
2561 	if (flags & DEVI_BRANCH_EVENT)
2562 		nflags |= NDI_POST_EVENT;
2563 
2564 	if (i_ddi_devi_attached(pdip) &&
2565 	    (i_ddi_node_state(rdip) >= DS_INITIALIZED)) {
2566 		rv = ndi_devi_unconfig_one(pdip, devnm+1, dipp, nflags);
2567 	} else {
2568 		rv = e_ddi_devi_unconfig(rdip, dipp, nflags);
2569 		if (rv == NDI_SUCCESS) {
2570 			ASSERT(!destroy || ddi_get_child(rdip) == NULL);
2571 			rv = ndi_devi_offline(rdip, nflags);
2572 		}
2573 	}
2574 
2575 	if (!destroy || rv != NDI_SUCCESS) {
2576 		/* The dip still exists, so do a hold */
2577 		e_ddi_branch_hold(rdip);
2578 	}
2579 out:
2580 	kmem_free(devnm, MAXNAMELEN + 1);
2581 	ndi_devi_exit(pdip, circ);
2582 	return (ndi2errno(rv));
2583 }
2584 
2585 int
2586 e_ddi_branch_destroy(dev_info_t *rdip, dev_info_t **dipp, uint_t flag)
2587 {
2588 	return (e_ddi_branch_unconfigure(rdip, dipp,
2589 	    flag|DEVI_BRANCH_DESTROY));
2590 }
2591 
2592 /*
2593  * Number of chains for hash table
2594  */
2595 #define	NUMCHAINS	17
2596 
2597 /*
2598  * Devinfo busy arg
2599  */
2600 struct devi_busy {
2601 	int dv_total;
2602 	int s_total;
2603 	mod_hash_t *dv_hash;
2604 	mod_hash_t *s_hash;
2605 	int (*callback)(dev_info_t *, void *, uint_t);
2606 	void *arg;
2607 };
2608 
2609 static int
2610 visit_dip(dev_info_t *dip, void *arg)
2611 {
2612 	uintptr_t sbusy, dvbusy, ref;
2613 	struct devi_busy *bsp = arg;
2614 
2615 	ASSERT(bsp->callback);
2616 
2617 	/*
2618 	 * A dip cannot be busy if its reference count is 0
2619 	 */
2620 	if ((ref = e_ddi_devi_holdcnt(dip)) == 0) {
2621 		return (bsp->callback(dip, bsp->arg, 0));
2622 	}
2623 
2624 	if (mod_hash_find(bsp->dv_hash, dip, (mod_hash_val_t *)&dvbusy))
2625 		dvbusy = 0;
2626 
2627 	/*
2628 	 * To catch device opens currently maintained on specfs common snodes.
2629 	 */
2630 	if (mod_hash_find(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy))
2631 		sbusy = 0;
2632 
2633 #ifdef	DEBUG
2634 	if (ref < sbusy || ref < dvbusy) {
2635 		cmn_err(CE_WARN, "dip(%p): sopen = %lu, dvopen = %lu "
2636 		    "dip ref = %lu\n", (void *)dip, sbusy, dvbusy, ref);
2637 	}
2638 #endif
2639 
2640 	dvbusy = (sbusy > dvbusy) ? sbusy : dvbusy;
2641 
2642 	return (bsp->callback(dip, bsp->arg, dvbusy));
2643 }
2644 
2645 static int
2646 visit_snode(struct snode *sp, void *arg)
2647 {
2648 	uintptr_t sbusy;
2649 	dev_info_t *dip;
2650 	int count;
2651 	struct devi_busy *bsp = arg;
2652 
2653 	ASSERT(sp);
2654 
2655 	/*
2656 	 * The stable lock is held. This prevents
2657 	 * the snode and its associated dip from
2658 	 * going away.
2659 	 */
2660 	dip = NULL;
2661 	count = spec_devi_open_count(sp, &dip);
2662 
2663 	if (count <= 0)
2664 		return (DDI_WALK_CONTINUE);
2665 
2666 	ASSERT(dip);
2667 
2668 	if (mod_hash_remove(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy))
2669 		sbusy = count;
2670 	else
2671 		sbusy += count;
2672 
2673 	if (mod_hash_insert(bsp->s_hash, dip, (mod_hash_val_t)sbusy)) {
2674 		cmn_err(CE_WARN, "%s: s_hash insert failed: dip=0x%p, "
2675 		    "sbusy = %lu", "e_ddi_branch_referenced",
2676 		    (void *)dip, sbusy);
2677 	}
2678 
2679 	bsp->s_total += count;
2680 
2681 	return (DDI_WALK_CONTINUE);
2682 }
2683 
2684 static void
2685 visit_dvnode(struct dv_node *dv, void *arg)
2686 {
2687 	uintptr_t dvbusy;
2688 	uint_t count;
2689 	struct vnode *vp;
2690 	struct devi_busy *bsp = arg;
2691 
2692 	ASSERT(dv && dv->dv_devi);
2693 
2694 	vp = DVTOV(dv);
2695 
2696 	mutex_enter(&vp->v_lock);
2697 	count = vp->v_count;
2698 	mutex_exit(&vp->v_lock);
2699 
2700 	if (!count)
2701 		return;
2702 
2703 	if (mod_hash_remove(bsp->dv_hash, dv->dv_devi,
2704 	    (mod_hash_val_t *)&dvbusy))
2705 		dvbusy = count;
2706 	else
2707 		dvbusy += count;
2708 
2709 	if (mod_hash_insert(bsp->dv_hash, dv->dv_devi,
2710 	    (mod_hash_val_t)dvbusy)) {
2711 		cmn_err(CE_WARN, "%s: dv_hash insert failed: dip=0x%p, "
2712 		    "dvbusy=%lu", "e_ddi_branch_referenced",
2713 		    (void *)dv->dv_devi, dvbusy);
2714 	}
2715 
2716 	bsp->dv_total += count;
2717 }
2718 
2719 /*
2720  * Returns reference count on success or -1 on failure.
2721  */
2722 int
2723 e_ddi_branch_referenced(
2724 	dev_info_t *rdip,
2725 	int (*callback)(dev_info_t *dip, void *arg, uint_t ref),
2726 	void *arg)
2727 {
2728 	int circ;
2729 	char *path;
2730 	dev_info_t *pdip;
2731 	struct devi_busy bsa = {0};
2732 
2733 	ASSERT(rdip);
2734 
2735 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2736 
2737 	ndi_hold_devi(rdip);
2738 
2739 	pdip = ddi_get_parent(rdip);
2740 
2741 	ASSERT(pdip);
2742 
2743 	/*
2744 	 * Check if caller holds pdip busy - can cause deadlocks during
2745 	 * devfs_walk()
2746 	 */
2747 	if (!e_ddi_branch_held(rdip) || DEVI_BUSY_OWNED(pdip)) {
2748 		cmn_err(CE_WARN, "e_ddi_branch_referenced: failed: "
2749 		    "devinfo branch(%p) not held or parent busy held",
2750 		    (void *)rdip);
2751 		ndi_rele_devi(rdip);
2752 		kmem_free(path, MAXPATHLEN);
2753 		return (-1);
2754 	}
2755 
2756 	ndi_devi_enter(pdip, &circ);
2757 	(void) ddi_pathname(rdip, path);
2758 	ndi_devi_exit(pdip, circ);
2759 
2760 	bsa.dv_hash = mod_hash_create_ptrhash("dv_node busy hash", NUMCHAINS,
2761 	    mod_hash_null_valdtor, sizeof (struct dev_info));
2762 
2763 	bsa.s_hash = mod_hash_create_ptrhash("snode busy hash", NUMCHAINS,
2764 	    mod_hash_null_valdtor, sizeof (struct snode));
2765 
2766 	if (devfs_walk(path, visit_dvnode, &bsa)) {
2767 		cmn_err(CE_WARN, "e_ddi_branch_referenced: "
2768 		    "devfs walk failed for: %s", path);
2769 		kmem_free(path, MAXPATHLEN);
2770 		bsa.s_total = bsa.dv_total = -1;
2771 		goto out;
2772 	}
2773 
2774 	kmem_free(path, MAXPATHLEN);
2775 
2776 	/*
2777 	 * Walk the snode table to detect device opens, which are currently
2778 	 * maintained on specfs common snodes.
2779 	 */
2780 	spec_snode_walk(visit_snode, &bsa);
2781 
2782 	if (callback == NULL)
2783 		goto out;
2784 
2785 	bsa.callback = callback;
2786 	bsa.arg = arg;
2787 
2788 	if (visit_dip(rdip, &bsa) == DDI_WALK_CONTINUE) {
2789 		ndi_devi_enter(rdip, &circ);
2790 		ddi_walk_devs(ddi_get_child(rdip), visit_dip, &bsa);
2791 		ndi_devi_exit(rdip, circ);
2792 	}
2793 
2794 out:
2795 	ndi_rele_devi(rdip);
2796 	mod_hash_destroy_ptrhash(bsa.s_hash);
2797 	mod_hash_destroy_ptrhash(bsa.dv_hash);
2798 	return (bsa.s_total > bsa.dv_total ? bsa.s_total : bsa.dv_total);
2799 }
2800