1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * sun4 specific DDI implementation 29 */ 30 #include <sys/cpuvar.h> 31 #include <sys/ddi_subrdefs.h> 32 #include <sys/machsystm.h> 33 #include <sys/sunndi.h> 34 #include <sys/sysmacros.h> 35 #include <sys/ontrap.h> 36 #include <vm/seg_kmem.h> 37 #include <sys/membar.h> 38 #include <sys/dditypes.h> 39 #include <sys/ndifm.h> 40 #include <sys/fm/io/ddi.h> 41 #include <sys/ivintr.h> 42 #include <sys/bootconf.h> 43 #include <sys/conf.h> 44 #include <sys/ethernet.h> 45 #include <sys/idprom.h> 46 #include <sys/promif.h> 47 #include <sys/prom_plat.h> 48 #include <sys/systeminfo.h> 49 #include <sys/fpu/fpusystm.h> 50 #include <sys/vm.h> 51 #include <sys/fs/dv_node.h> 52 #include <sys/fs/snode.h> 53 #include <sys/ddi_isa.h> 54 #include <sys/modhash.h> 55 #include <sys/modctl.h> 56 #include <sys/sunldi_impl.h> 57 58 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *, 59 ddi_intr_handle_impl_t *); 60 #pragma weak get_intr_parent 61 62 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t, 63 ddi_intr_handle_impl_t *, void *); 64 #pragma weak process_intr_ops 65 66 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t); 67 prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *, 68 int32_t len); 69 #pragma weak cells_1275_copy 70 71 /* 72 * Wrapper for ddi_prop_lookup_int_array(). 73 * This is handy because it returns the prop length in 74 * bytes which is what most of the callers require. 75 */ 76 77 static int 78 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 79 { 80 int ret; 81 82 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 83 DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) { 84 *plen = (*plen) * (uint_t)sizeof (int); 85 } 86 return (ret); 87 } 88 89 /* 90 * SECTION: DDI Node Configuration 91 */ 92 93 /* 94 * init_regspec_64: 95 * 96 * If the parent #size-cells is 2, convert the upa-style or 97 * safari-style reg property from 2-size cells to 1 size cell 98 * format, ignoring the size_hi, which must be zero for devices. 99 * (It won't be zero in the memory list properties in the memory 100 * nodes, but that doesn't matter here.) 101 */ 102 struct ddi_parent_private_data * 103 init_regspec_64(dev_info_t *dip) 104 { 105 struct ddi_parent_private_data *pd; 106 dev_info_t *parent; 107 int size_cells; 108 109 /* 110 * If there are no "reg"s in the child node, return. 111 */ 112 pd = ddi_get_parent_data(dip); 113 if ((pd == NULL) || (pd->par_nreg == 0)) { 114 return (pd); 115 } 116 parent = ddi_get_parent(dip); 117 118 size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 119 DDI_PROP_DONTPASS, "#size-cells", 1); 120 121 if (size_cells != 1) { 122 123 int n, j; 124 struct regspec *irp; 125 struct reg_64 { 126 uint_t addr_hi, addr_lo, size_hi, size_lo; 127 }; 128 struct reg_64 *r64_rp; 129 struct regspec *rp; 130 uint_t len = 0; 131 int *reg_prop; 132 133 ASSERT(size_cells == 2); 134 135 /* 136 * We already looked the property up once before if 137 * pd is non-NULL. 138 */ 139 (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 140 DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len); 141 ASSERT(len != 0); 142 143 n = sizeof (struct reg_64) / sizeof (int); 144 n = len / n; 145 146 /* 147 * We're allocating a buffer the size of the PROM's property, 148 * but we're only using a smaller portion when we assign it 149 * to a regspec. We do this so that in the 150 * impl_ddi_sunbus_removechild function, we will 151 * always free the right amount of memory. 152 */ 153 irp = rp = (struct regspec *)reg_prop; 154 r64_rp = (struct reg_64 *)pd->par_reg; 155 156 for (j = 0; j < n; ++j, ++rp, ++r64_rp) { 157 ASSERT(r64_rp->size_hi == 0); 158 rp->regspec_bustype = r64_rp->addr_hi; 159 rp->regspec_addr = r64_rp->addr_lo; 160 rp->regspec_size = r64_rp->size_lo; 161 } 162 163 ddi_prop_free((void *)pd->par_reg); 164 pd->par_nreg = n; 165 pd->par_reg = irp; 166 } 167 return (pd); 168 } 169 170 /* 171 * Create a ddi_parent_private_data structure from the ddi properties of 172 * the dev_info node. 173 * 174 * The "reg" is required if the driver wishes to create mappings on behalf 175 * of the device. The "reg" property is assumed to be a list of at least 176 * one triplet 177 * 178 * <bustype, address, size>*1 179 * 180 * The "interrupt" property is no longer part of parent private data on 181 * sun4u. The interrupt parent is may not be the device tree parent. 182 * 183 * The "ranges" property describes the mapping of child addresses to parent 184 * addresses. 185 * 186 * N.B. struct rangespec is defined for the following default values: 187 * parent child 188 * #address-cells 2 2 189 * #size-cells 1 1 190 * This function doesn't deal with non-default cells and will not create 191 * ranges in such cases. 192 */ 193 void 194 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 195 { 196 struct ddi_parent_private_data *pdptr; 197 int *reg_prop, *rng_prop; 198 uint_t reg_len = 0, rng_len = 0; 199 dev_info_t *parent; 200 int parent_addr_cells, parent_size_cells; 201 int child_addr_cells, child_size_cells; 202 203 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 204 205 /* 206 * root node has no parent private data, so *ppd should 207 * be initialized for naming to work properly. 208 */ 209 if ((parent = ddi_get_parent(child)) == NULL) 210 return; 211 212 /* 213 * Set reg field of parent data from "reg" property 214 */ 215 if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len) 216 == DDI_PROP_SUCCESS) && (reg_len != 0)) { 217 pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec)); 218 pdptr->par_reg = (struct regspec *)reg_prop; 219 } 220 221 /* 222 * "ranges" property ... 223 * 224 * This function does not handle cases where #address-cells != 2 225 * and * min(parent, child) #size-cells != 1 (see bugid 4211124). 226 * 227 * Nexus drivers with such exceptions (e.g. pci ranges) 228 * should either create a separate function for handling 229 * ranges or not use parent private data to store ranges. 230 */ 231 232 /* root node has no ranges */ 233 if ((parent = ddi_get_parent(child)) == NULL) 234 return; 235 236 child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 237 DDI_PROP_DONTPASS, "#address-cells", 2); 238 child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 239 DDI_PROP_DONTPASS, "#size-cells", 1); 240 parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 241 DDI_PROP_DONTPASS, "#address-cells", 2); 242 parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 243 DDI_PROP_DONTPASS, "#size-cells", 1); 244 if (child_addr_cells != 2 || parent_addr_cells != 2 || 245 (child_size_cells != 1 && parent_size_cells != 1)) { 246 NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; " 247 "#address-cells or #size-cells have non-default value")); 248 return; 249 } 250 251 if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len) 252 == DDI_PROP_SUCCESS) { 253 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 254 pdptr->par_rng = (struct rangespec *)rng_prop; 255 } 256 } 257 258 /* 259 * Free ddi_parent_private_data structure 260 */ 261 void 262 impl_free_ddi_ppd(dev_info_t *dip) 263 { 264 struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip); 265 266 if (pdptr == NULL) 267 return; 268 269 if (pdptr->par_nrng != 0) 270 ddi_prop_free((void *)pdptr->par_rng); 271 272 if (pdptr->par_nreg != 0) 273 ddi_prop_free((void *)pdptr->par_reg); 274 275 kmem_free(pdptr, sizeof (*pdptr)); 276 ddi_set_parent_data(dip, NULL); 277 } 278 279 /* 280 * Name a child of sun busses based on the reg spec. 281 * Handles the following properties: 282 * 283 * Property value 284 * Name type 285 * 286 * reg register spec 287 * interrupts new (bus-oriented) interrupt spec 288 * ranges range spec 289 * 290 * This may be called multiple times, independent of 291 * initchild calls. 292 */ 293 static int 294 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 295 { 296 struct ddi_parent_private_data *pdptr; 297 struct regspec *rp; 298 299 /* 300 * Fill in parent-private data and this function returns to us 301 * an indication if it used "registers" to fill in the data. 302 */ 303 if (ddi_get_parent_data(child) == NULL) { 304 make_ddi_ppd(child, &pdptr); 305 ddi_set_parent_data(child, pdptr); 306 } 307 308 /* 309 * No reg property, return null string as address 310 * (e.g. root node) 311 */ 312 name[0] = '\0'; 313 if (sparc_pd_getnreg(child) == 0) { 314 return (DDI_SUCCESS); 315 } 316 317 rp = sparc_pd_getreg(child, 0); 318 (void) snprintf(name, namelen, "%x,%x", 319 rp->regspec_bustype, rp->regspec_addr); 320 return (DDI_SUCCESS); 321 } 322 323 324 /* 325 * Called from the bus_ctl op of some drivers. 326 * to implement the DDI_CTLOPS_INITCHILD operation. 327 * 328 * NEW drivers should NOT use this function, but should declare 329 * there own initchild/uninitchild handlers. (This function assumes 330 * the layout of the parent private data and the format of "reg", 331 * "ranges", "interrupts" properties and that #address-cells and 332 * #size-cells of the parent bus are defined to be default values.) 333 */ 334 int 335 impl_ddi_sunbus_initchild(dev_info_t *child) 336 { 337 char name[MAXNAMELEN]; 338 339 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 340 ddi_set_name_addr(child, name); 341 342 /* 343 * Try to merge .conf node. If successful, return failure to 344 * remove this child. 345 */ 346 if ((ndi_dev_is_persistent_node(child) == 0) && 347 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 348 impl_ddi_sunbus_removechild(child); 349 return (DDI_FAILURE); 350 } 351 return (DDI_SUCCESS); 352 } 353 354 /* 355 * A better name for this function would be impl_ddi_sunbus_uninitchild() 356 * It does not remove the child, it uninitializes it, reclaiming the 357 * resources taken by impl_ddi_sunbus_initchild. 358 */ 359 void 360 impl_ddi_sunbus_removechild(dev_info_t *dip) 361 { 362 impl_free_ddi_ppd(dip); 363 ddi_set_name_addr(dip, NULL); 364 /* 365 * Strip the node to properly convert it back to prototype form 366 */ 367 impl_rem_dev_props(dip); 368 } 369 370 /* 371 * SECTION: DDI Interrupt 372 */ 373 374 void 375 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len) 376 { 377 int i; 378 for (i = 0; i < len; i++) 379 *to = *from; 380 } 381 382 prop_1275_cell_t * 383 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len) 384 { 385 prop_1275_cell_t *match_cell = 0; 386 int32_t i; 387 388 for (i = 0; i < len; i++) 389 if (cell1[i] != cell2[i]) { 390 match_cell = &cell1[i]; 391 break; 392 } 393 394 return (match_cell); 395 } 396 397 /* 398 * get_intr_parent() is a generic routine that process a 1275 interrupt 399 * map (imap) property. This function returns a dev_info_t structure 400 * which claims ownership of the interrupt domain. 401 * It also returns the new interrupt translation within this new domain. 402 * If an interrupt-parent or interrupt-map property are not found, 403 * then we fallback to using the device tree's parent. 404 * 405 * imap entry format: 406 * <reg>,<interrupt>,<phandle>,<translated interrupt> 407 * reg - The register specification in the interrupts domain 408 * interrupt - The interrupt specification 409 * phandle - PROM handle of the device that owns the xlated interrupt domain 410 * translated interrupt - interrupt specifier in the parents domain 411 * note: <reg>,<interrupt> - The reg and interrupt can be combined to create 412 * a unique entry called a unit interrupt specifier. 413 * 414 * Here's the processing steps: 415 * step1 - If the interrupt-parent property exists, create the ispec and 416 * return the dip of the interrupt parent. 417 * step2 - Extract the interrupt-map property and the interrupt-map-mask 418 * If these don't exist, just return the device tree parent. 419 * step3 - build up the unit interrupt specifier to match against the 420 * interrupt map property 421 * step4 - Scan the interrupt-map property until a match is found 422 * step4a - Extract the interrupt parent 423 * step4b - Compare the unit interrupt specifier 424 */ 425 dev_info_t * 426 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp) 427 { 428 prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req; 429 int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz, 430 addr_cells, intr_cells, reg_len, i, j; 431 int32_t match_found = 0; 432 dev_info_t *intr_parent_dip = NULL; 433 uint32_t *intr = &hdlp->ih_vector; 434 uint32_t nodeid; 435 #ifdef DEBUG 436 static int debug = 0; 437 #endif 438 439 /* 440 * step1 441 * If we have an interrupt-parent property, this property represents 442 * the nodeid of our interrupt parent. 443 */ 444 if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 445 "interrupt-parent", -1)) != -1) { 446 intr_parent_dip = e_ddi_nodeid_to_dip(nodeid); 447 ASSERT(intr_parent_dip); 448 449 /* 450 * Attach the interrupt parent. 451 * 452 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR. 453 * Also, interrupt parent isn't held. This needs 454 * to be revisited if DR-capable platforms implement 455 * interrupt redirection. 456 */ 457 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 458 != DDI_SUCCESS) { 459 ndi_rele_devi(intr_parent_dip); 460 return (NULL); 461 } 462 463 return (intr_parent_dip); 464 } 465 466 /* 467 * step2 468 * Get interrupt map structure from PROM property 469 */ 470 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 471 "interrupt-map", (caddr_t)&imap, &imap_sz) 472 != DDI_PROP_SUCCESS) { 473 /* 474 * If we don't have an imap property, default to using the 475 * device tree. 476 */ 477 478 ndi_hold_devi(pdip); 479 return (pdip); 480 } 481 482 /* Get the interrupt mask property */ 483 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 484 "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz) 485 != DDI_PROP_SUCCESS) { 486 /* 487 * If we don't find this property, we have to fail the request 488 * because the 1275 imap property wasn't defined correctly. 489 */ 490 ASSERT(intr_parent_dip == NULL); 491 goto exit2; 492 } 493 494 /* Get the address cell size */ 495 addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 496 "#address-cells", 2); 497 498 /* Get the interrupts cell size */ 499 intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 500 "#interrupt-cells", 1); 501 502 /* 503 * step3 504 * Now lets build up the unit interrupt specifier e.g. reg,intr 505 * and apply the imap mask. match_req will hold this when we're 506 * through. 507 */ 508 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", 509 (caddr_t)®_p, ®_len) != DDI_SUCCESS) { 510 ASSERT(intr_parent_dip == NULL); 511 goto exit3; 512 } 513 514 match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) + 515 CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP); 516 517 for (i = 0; i < addr_cells; i++) 518 match_req[i] = (reg_p[i] & imap_mask[i]); 519 520 for (j = 0; j < intr_cells; i++, j++) 521 match_req[i] = (intr[j] & imap_mask[i]); 522 523 /* Calculate the imap size in cells */ 524 imap_cells = BYTES_TO_1275_CELLS(imap_sz); 525 526 #ifdef DEBUG 527 if (debug) 528 prom_printf("reg cell size 0x%x, intr cell size 0x%x, " 529 "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells, 530 (void *)match_req, (void *)imap); 531 #endif 532 533 /* 534 * Scan the imap property looking for a match of the interrupt unit 535 * specifier. This loop is rather complex since the data within the 536 * imap property may vary in size. 537 */ 538 for (scan = imap, imap_scan_cells = i = 0; 539 imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) { 540 int new_intr_cells; 541 542 /* Set the index to the nodeid field */ 543 i = addr_cells + intr_cells; 544 545 /* 546 * step4a 547 * Translate the nodeid field to a dip 548 */ 549 ASSERT(intr_parent_dip == NULL); 550 intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]); 551 552 ASSERT(intr_parent_dip != 0); 553 #ifdef DEBUG 554 if (debug) 555 prom_printf("scan 0x%p\n", (void *)scan); 556 #endif 557 /* 558 * The tmp_dip describes the new domain, get it's interrupt 559 * cell size 560 */ 561 new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0, 562 "#interrupts-cells", 1); 563 564 /* 565 * step4b 566 * See if we have a match on the interrupt unit specifier 567 */ 568 if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells) 569 == 0) { 570 uint32_t *intr; 571 572 match_found = 1; 573 574 /* 575 * If we have an imap parent whose not in our device 576 * tree path, we need to hold and install that driver. 577 */ 578 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 579 != DDI_SUCCESS) { 580 ndi_rele_devi(intr_parent_dip); 581 intr_parent_dip = (dev_info_t *)NULL; 582 goto exit4; 583 } 584 585 /* 586 * We need to handcraft an ispec along with a bus 587 * interrupt value, so we can dup it into our 588 * standard ispec structure. 589 */ 590 /* Extract the translated interrupt information */ 591 intr = kmem_alloc( 592 CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP); 593 594 for (j = 0; j < new_intr_cells; j++, i++) 595 intr[j] = scan[i]; 596 597 cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells); 598 599 kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells)); 600 601 #ifdef DEBUG 602 if (debug) 603 prom_printf("dip 0x%p\n", 604 (void *)intr_parent_dip); 605 #endif 606 break; 607 } else { 608 #ifdef DEBUG 609 if (debug) 610 prom_printf("dip 0x%p\n", 611 (void *)intr_parent_dip); 612 #endif 613 ndi_rele_devi(intr_parent_dip); 614 intr_parent_dip = NULL; 615 i += new_intr_cells; 616 } 617 } 618 619 /* 620 * If we haven't found our interrupt parent at this point, fallback 621 * to using the device tree. 622 */ 623 if (!match_found) { 624 ndi_hold_devi(pdip); 625 ASSERT(intr_parent_dip == NULL); 626 intr_parent_dip = pdip; 627 } 628 629 ASSERT(intr_parent_dip != NULL); 630 631 exit4: 632 kmem_free(reg_p, reg_len); 633 kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) + 634 CELLS_1275_TO_BYTES(intr_cells)); 635 636 exit3: 637 kmem_free(imap_mask, imap_mask_sz); 638 639 exit2: 640 kmem_free(imap, imap_sz); 641 642 return (intr_parent_dip); 643 } 644 645 /* 646 * process_intr_ops: 647 * 648 * Process the interrupt op via the interrupt parent. 649 */ 650 int 651 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op, 652 ddi_intr_handle_impl_t *hdlp, void *result) 653 { 654 int ret = DDI_FAILURE; 655 656 if (NEXUS_HAS_INTR_OP(pdip)) { 657 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops-> 658 bus_intr_op)) (pdip, rdip, op, hdlp, result); 659 } else { 660 cmn_err(CE_WARN, "Failed to process interrupt " 661 "for %s%d due to down-rev nexus driver %s%d", 662 ddi_get_name(rdip), ddi_get_instance(rdip), 663 ddi_get_name(pdip), ddi_get_instance(pdip)); 664 } 665 666 return (ret); 667 } 668 669 /*ARGSUSED*/ 670 uint_t 671 softlevel1(caddr_t arg) 672 { 673 softint(); 674 return (1); 675 } 676 677 /* 678 * indirection table, to save us some large switch statements 679 * NOTE: This must agree with "INTLEVEL_foo" constants in 680 * <sys/avintr.h> 681 */ 682 struct autovec *const vectorlist[] = { 0 }; 683 684 /* 685 * This value is exported here for the functions in avintr.c 686 */ 687 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0])); 688 689 /* 690 * Check for machine specific interrupt levels which cannot be reassigned by 691 * settrap(), sun4u version. 692 * 693 * sun4u does not support V8 SPARC "fast trap" handlers. 694 */ 695 /*ARGSUSED*/ 696 int 697 exclude_settrap(int lvl) 698 { 699 return (1); 700 } 701 702 /* 703 * Check for machine specific interrupt levels which cannot have interrupt 704 * handlers added. We allow levels 1 through 15; level 0 is nonsense. 705 */ 706 /*ARGSUSED*/ 707 int 708 exclude_level(int lvl) 709 { 710 return ((lvl < 1) || (lvl > 15)); 711 } 712 713 /* 714 * Wrapper functions used by New DDI interrupt framework. 715 */ 716 717 /* 718 * i_ddi_intr_ops: 719 */ 720 int 721 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 722 ddi_intr_handle_impl_t *hdlp, void *result) 723 { 724 dev_info_t *pdip = ddi_get_parent(dip); 725 int ret = DDI_FAILURE; 726 727 /* 728 * The following check is required to address 729 * one of the test case of ADDI test suite. 730 */ 731 if (pdip == NULL) 732 return (DDI_FAILURE); 733 734 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 735 return (process_intr_ops(pdip, rdip, op, hdlp, result)); 736 737 if (hdlp->ih_vector == 0) 738 hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum); 739 740 if (hdlp->ih_pri == 0) 741 hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum); 742 743 switch (op) { 744 case DDI_INTROP_ADDISR: 745 case DDI_INTROP_REMISR: 746 case DDI_INTROP_ENABLE: 747 case DDI_INTROP_DISABLE: 748 case DDI_INTROP_BLOCKENABLE: 749 case DDI_INTROP_BLOCKDISABLE: 750 /* 751 * Try and determine our parent and possibly an interrupt 752 * translation. intr parent dip returned held 753 */ 754 if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL) 755 goto done; 756 } 757 758 ret = process_intr_ops(pdip, rdip, op, hdlp, result); 759 760 done: 761 switch (op) { 762 case DDI_INTROP_ADDISR: 763 case DDI_INTROP_REMISR: 764 case DDI_INTROP_ENABLE: 765 case DDI_INTROP_DISABLE: 766 case DDI_INTROP_BLOCKENABLE: 767 case DDI_INTROP_BLOCKDISABLE: 768 /* Release hold acquired in get_intr_parent() */ 769 if (pdip) 770 ndi_rele_devi(pdip); 771 } 772 773 hdlp->ih_vector = 0; 774 775 return (ret); 776 } 777 778 /* 779 * i_ddi_add_ivintr: 780 */ 781 /*ARGSUSED*/ 782 int 783 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp) 784 { 785 /* 786 * If the PIL was set and is valid use it, otherwise 787 * default it to 1 788 */ 789 if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX)) 790 hdlp->ih_pri = 1; 791 792 VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri, 793 (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, 794 hdlp->ih_cb_arg2, NULL) == 0); 795 796 return (DDI_SUCCESS); 797 } 798 799 /* 800 * i_ddi_rem_ivintr: 801 */ 802 /*ARGSUSED*/ 803 void 804 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp) 805 { 806 VERIFY(rem_ivintr(hdlp->ih_vector, hdlp->ih_pri) == 0); 807 } 808 809 /* 810 * i_ddi_get_inum - Get the interrupt number property from the 811 * specified device. Note that this function is called only for 812 * the FIXED interrupt type. 813 */ 814 uint32_t 815 i_ddi_get_inum(dev_info_t *dip, uint_t inumber) 816 { 817 int32_t intrlen, intr_cells, max_intrs; 818 prop_1275_cell_t *ip, intr_sz; 819 uint32_t intr = 0; 820 821 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 822 DDI_PROP_CANSLEEP, 823 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 824 825 intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 826 "#interrupt-cells", 1); 827 828 /* adjust for number of bytes */ 829 intr_sz = CELLS_1275_TO_BYTES(intr_cells); 830 831 /* Calculate the number of interrupts */ 832 max_intrs = intrlen / intr_sz; 833 834 if (inumber < max_intrs) { 835 prop_1275_cell_t *intrp = ip; 836 837 /* Index into interrupt property */ 838 intrp += (inumber * intr_cells); 839 840 cells_1275_copy(intrp, &intr, intr_cells); 841 } 842 843 kmem_free(ip, intrlen); 844 } 845 846 return (intr); 847 } 848 849 /* 850 * i_ddi_get_intr_pri - Get the interrupt-priorities property from 851 * the specified device. Note that this function is called only for 852 * the FIXED interrupt type. 853 */ 854 uint32_t 855 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber) 856 { 857 uint32_t *intr_prio_p; 858 uint32_t pri = 0; 859 int32_t i; 860 861 /* 862 * Use the "interrupt-priorities" property to determine the 863 * the pil/ipl for the interrupt handler. 864 */ 865 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 866 "interrupt-priorities", (caddr_t)&intr_prio_p, 867 &i) == DDI_SUCCESS) { 868 if (inumber < (i / sizeof (int32_t))) 869 pri = intr_prio_p[inumber]; 870 kmem_free(intr_prio_p, i); 871 } 872 873 return (pri); 874 } 875 876 int 877 i_ddi_get_intx_nintrs(dev_info_t *dip) 878 { 879 int32_t intrlen; 880 prop_1275_cell_t intr_sz; 881 prop_1275_cell_t *ip; 882 int32_t ret = 0; 883 884 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 885 DDI_PROP_CANSLEEP, 886 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 887 888 intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 889 "#interrupt-cells", 1); 890 /* adjust for number of bytes */ 891 intr_sz = CELLS_1275_TO_BYTES(intr_sz); 892 893 ret = intrlen / intr_sz; 894 895 kmem_free(ip, intrlen); 896 } 897 898 return (ret); 899 } 900 901 /* 902 * i_ddi_add_softint - allocate and add a software interrupt. 903 * 904 * NOTE: All software interrupts that are registered through DDI 905 * should be triggered only on a single target or CPU. 906 */ 907 int 908 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 909 { 910 if ((hdlp->ih_private = (void *)add_softintr(hdlp->ih_pri, 911 hdlp->ih_cb_func, hdlp->ih_cb_arg1, SOFTINT_ST)) == NULL) 912 return (DDI_FAILURE); 913 914 return (DDI_SUCCESS); 915 } 916 917 /* 918 * i_ddi_remove_softint - remove and free a software interrupt. 919 */ 920 void 921 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 922 { 923 ASSERT(hdlp->ih_private != NULL); 924 925 if (rem_softintr((uint64_t)hdlp->ih_private) == 0) 926 hdlp->ih_private = NULL; 927 } 928 929 /* 930 * i_ddi_trigger_softint - trigger a software interrupt. 931 */ 932 int 933 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 934 { 935 int ret; 936 937 ASSERT(hdlp->ih_private != NULL); 938 939 /* Update the second argument for the software interrupt */ 940 if ((ret = update_softint_arg2((uint64_t)hdlp->ih_private, arg2)) == 0) 941 setsoftint((uint64_t)hdlp->ih_private); 942 943 return (ret ? DDI_EPENDING : DDI_SUCCESS); 944 } 945 946 /* 947 * i_ddi_set_softint_pri - change software interrupt priority. 948 */ 949 /* ARGSUSED */ 950 int 951 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 952 { 953 int ret; 954 955 ASSERT(hdlp->ih_private != NULL); 956 957 /* Update the interrupt priority for the software interrupt */ 958 ret = update_softint_pri((uint64_t)hdlp->ih_private, hdlp->ih_pri); 959 960 return (ret ? DDI_FAILURE : DDI_SUCCESS); 961 } 962 963 /*ARGSUSED*/ 964 void 965 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 966 { 967 } 968 969 /*ARGSUSED*/ 970 void 971 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 972 { 973 } 974 975 /* 976 * SECTION: DDI Memory/DMA 977 */ 978 979 /* set HAT endianess attributes from ddi_device_acc_attr */ 980 void 981 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 982 { 983 if (devaccp != NULL) { 984 if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) { 985 *hataccp &= ~HAT_ENDIAN_MASK; 986 *hataccp |= HAT_STRUCTURE_LE; 987 } 988 } 989 } 990 991 /* 992 * Check if the specified cache attribute is supported on the platform. 993 * This function must be called before i_ddi_cacheattr_to_hatacc(). 994 */ 995 boolean_t 996 i_ddi_check_cache_attr(uint_t flags) 997 { 998 /* 999 * The cache attributes are mutually exclusive. Any combination of 1000 * the attributes leads to a failure. 1001 */ 1002 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1003 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1004 return (B_FALSE); 1005 1006 /* 1007 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful, 1008 * but others lead to a failure. 1009 */ 1010 if (cache_attr & IOMEM_DATA_CACHED) 1011 return (B_TRUE); 1012 else 1013 return (B_FALSE); 1014 } 1015 1016 /* set HAT cache attributes from the cache attributes */ 1017 void 1018 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1019 { 1020 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1021 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1022 #if defined(lint) 1023 *hataccp = *hataccp; 1024 #endif 1025 /* 1026 * set HAT attrs according to the cache attrs. 1027 */ 1028 switch (cache_attr) { 1029 /* 1030 * The cache coherency is always maintained on SPARC, and 1031 * nothing is required. 1032 */ 1033 case IOMEM_DATA_CACHED: 1034 break; 1035 /* 1036 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are 1037 * not supported on SPARC -- this case must not occur because the 1038 * cache attribute is scrutinized before this function is called. 1039 */ 1040 case IOMEM_DATA_UNCACHED: 1041 case IOMEM_DATA_UC_WR_COMBINE: 1042 default: 1043 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1044 fname, cache_attr); 1045 } 1046 } 1047 1048 static vmem_t *little_endian_arena; 1049 static vmem_t *big_endian_arena; 1050 1051 static void * 1052 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag) 1053 { 1054 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE, 1055 segkmem_page_create, NULL)); 1056 } 1057 1058 static void * 1059 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag) 1060 { 1061 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE, 1062 segkmem_page_create, NULL)); 1063 } 1064 1065 void 1066 ka_init(void) 1067 { 1068 little_endian_arena = vmem_create("little_endian", NULL, 0, 1, 1069 segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP); 1070 big_endian_arena = vmem_create("big_endian", NULL, 0, 1, 1071 segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP); 1072 } 1073 1074 /* 1075 * Allocate from the system, aligned on a specific boundary. 1076 * The alignment, if non-zero, must be a power of 2. 1077 */ 1078 static void * 1079 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags) 1080 { 1081 size_t *addr, *raddr, rsize; 1082 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1083 1084 align = MAX(align, hdrsize); 1085 ASSERT((align & (align - 1)) == 0); 1086 1087 /* 1088 * We need to allocate 1089 * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment) 1090 * bytes to be sure we have enough freedom to satisfy the request. 1091 * Since the buffer alignment depends on the request size, this is 1092 * not straightforward to use directly. 1093 * 1094 * kmem guarantees that any allocation of a 64-byte multiple will be 1095 * 64-byte aligned. Since rounding up the request could add more 1096 * than we save, we compute the size with and without alignment, and 1097 * use the smaller of the two. 1098 */ 1099 rsize = size + hdrsize + align; 1100 1101 if (endian_flags == DDI_STRUCTURE_LE_ACC) { 1102 raddr = vmem_alloc(little_endian_arena, rsize, 1103 cansleep ? VM_SLEEP : VM_NOSLEEP); 1104 } else { 1105 raddr = vmem_alloc(big_endian_arena, rsize, 1106 cansleep ? VM_SLEEP : VM_NOSLEEP); 1107 } 1108 1109 if (raddr == NULL) 1110 return (NULL); 1111 1112 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1113 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1114 1115 addr[-3] = (size_t)endian_flags; 1116 addr[-2] = (size_t)raddr; 1117 addr[-1] = rsize; 1118 1119 return (addr); 1120 } 1121 1122 static void 1123 kfreea(void *addr) 1124 { 1125 size_t *saddr = addr; 1126 1127 if (saddr[-3] == DDI_STRUCTURE_LE_ACC) 1128 vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]); 1129 else 1130 vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]); 1131 } 1132 1133 int 1134 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1135 size_t length, int cansleep, int flags, 1136 ddi_device_acc_attr_t *accattrp, 1137 caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep) 1138 { 1139 caddr_t a; 1140 int iomin, align, streaming; 1141 uint_t endian_flags = DDI_NEVERSWAP_ACC; 1142 1143 #if defined(lint) 1144 *handlep = *handlep; 1145 #endif 1146 1147 /* 1148 * Check legality of arguments 1149 */ 1150 if (length == 0 || kaddrp == NULL || attr == NULL) { 1151 return (DDI_FAILURE); 1152 } 1153 1154 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1155 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1156 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1157 return (DDI_FAILURE); 1158 } 1159 1160 /* 1161 * check if a streaming sequential xfer is requested. 1162 */ 1163 streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0; 1164 1165 /* 1166 * Drivers for 64-bit capable SBus devices will encode 1167 * the burtsizes for 64-bit xfers in the upper 16-bits. 1168 * For DMA alignment, we use the most restrictive 1169 * alignment of 32-bit and 64-bit xfers. 1170 */ 1171 iomin = (attr->dma_attr_burstsizes & 0xffff) | 1172 ((attr->dma_attr_burstsizes >> 16) & 0xffff); 1173 /* 1174 * If a driver set burtsizes to 0, we give him byte alignment. 1175 * Otherwise align at the burtsizes boundary. 1176 */ 1177 if (iomin == 0) 1178 iomin = 1; 1179 else 1180 iomin = 1 << (ddi_fls(iomin) - 1); 1181 iomin = maxbit(iomin, attr->dma_attr_minxfer); 1182 iomin = maxbit(iomin, attr->dma_attr_align); 1183 iomin = ddi_iomin(dip, iomin, streaming); 1184 if (iomin == 0) 1185 return (DDI_FAILURE); 1186 1187 ASSERT((iomin & (iomin - 1)) == 0); 1188 ASSERT(iomin >= attr->dma_attr_minxfer); 1189 ASSERT(iomin >= attr->dma_attr_align); 1190 1191 length = P2ROUNDUP(length, iomin); 1192 align = iomin; 1193 1194 if (accattrp != NULL) 1195 endian_flags = accattrp->devacc_attr_endian_flags; 1196 1197 a = kalloca(length, align, cansleep, endian_flags); 1198 if ((*kaddrp = a) == 0) { 1199 return (DDI_FAILURE); 1200 } else { 1201 if (real_length) { 1202 *real_length = length; 1203 } 1204 if (handlep) { 1205 /* 1206 * assign handle information 1207 */ 1208 impl_acc_hdl_init(handlep); 1209 } 1210 return (DDI_SUCCESS); 1211 } 1212 } 1213 1214 /* 1215 * covert old DMA limits structure to DMA attribute structure 1216 * and continue 1217 */ 1218 int 1219 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1220 size_t length, int cansleep, int streaming, 1221 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1222 uint_t *real_length, ddi_acc_hdl_t *ap) 1223 { 1224 ddi_dma_attr_t dma_attr, *attrp; 1225 size_t rlen; 1226 int ret; 1227 1228 ASSERT(limits); 1229 attrp = &dma_attr; 1230 attrp->dma_attr_version = DMA_ATTR_V0; 1231 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1232 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1233 attrp->dma_attr_count_max = (uint64_t)-1; 1234 attrp->dma_attr_align = 1; 1235 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1236 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1237 attrp->dma_attr_maxxfer = (uint64_t)-1; 1238 attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max; 1239 attrp->dma_attr_sgllen = 1; 1240 attrp->dma_attr_granular = 1; 1241 attrp->dma_attr_flags = 0; 1242 1243 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1244 accattrp, kaddrp, &rlen, ap); 1245 if (ret == DDI_SUCCESS) { 1246 if (real_length) 1247 *real_length = (uint_t)rlen; 1248 } 1249 return (ret); 1250 } 1251 1252 /* ARGSUSED */ 1253 void 1254 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1255 { 1256 kfreea(kaddr); 1257 } 1258 1259 /* 1260 * SECTION: DDI Data Access 1261 */ 1262 1263 static uintptr_t impl_acc_hdl_id = 0; 1264 1265 /* 1266 * access handle allocator 1267 */ 1268 ddi_acc_hdl_t * 1269 impl_acc_hdl_get(ddi_acc_handle_t hdl) 1270 { 1271 /* 1272 * Extract the access handle address from the DDI implemented 1273 * access handle 1274 */ 1275 return (&((ddi_acc_impl_t *)hdl)->ahi_common); 1276 } 1277 1278 ddi_acc_handle_t 1279 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg) 1280 { 1281 ddi_acc_impl_t *hp; 1282 on_trap_data_t *otp; 1283 int sleepflag; 1284 1285 sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); 1286 1287 /* 1288 * Allocate and initialize the data access handle and error status. 1289 */ 1290 if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL) 1291 goto fail; 1292 if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc( 1293 sizeof (ndi_err_t), sleepflag)) == NULL) { 1294 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1295 goto fail; 1296 } 1297 if ((otp = (on_trap_data_t *)kmem_zalloc( 1298 sizeof (on_trap_data_t), sleepflag)) == NULL) { 1299 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1300 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1301 goto fail; 1302 } 1303 hp->ahi_err->err_ontrap = otp; 1304 hp->ahi_common.ah_platform_private = (void *)hp; 1305 1306 return ((ddi_acc_handle_t)hp); 1307 fail: 1308 if ((waitfp != (int (*)())KM_SLEEP) && 1309 (waitfp != (int (*)())KM_NOSLEEP)) 1310 ddi_set_callback(waitfp, arg, &impl_acc_hdl_id); 1311 return (NULL); 1312 } 1313 1314 void 1315 impl_acc_hdl_free(ddi_acc_handle_t handle) 1316 { 1317 ddi_acc_impl_t *hp; 1318 1319 /* 1320 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *), 1321 * because that's what we allocated in impl_acc_hdl_alloc() above. 1322 */ 1323 hp = (ddi_acc_impl_t *)handle; 1324 if (hp) { 1325 kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t)); 1326 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1327 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1328 if (impl_acc_hdl_id) 1329 ddi_run_callback(&impl_acc_hdl_id); 1330 } 1331 } 1332 1333 #define PCI_GET_MP_PFN(mp, page_no) ((mp)->dmai_ndvmapages == 1 ? \ 1334 (pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no])) 1335 1336 /* 1337 * Function called after a dma fault occurred to find out whether the 1338 * fault address is associated with a driver that is able to handle faults 1339 * and recover from faults. 1340 */ 1341 /* ARGSUSED */ 1342 int 1343 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr, 1344 const void *not_used) 1345 { 1346 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle; 1347 pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr); 1348 pfn_t comp_pfn; 1349 1350 /* 1351 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults. 1352 */ 1353 int page; 1354 1355 ASSERT(mp); 1356 for (page = 0; page < mp->dmai_ndvmapages; page++) { 1357 comp_pfn = PCI_GET_MP_PFN(mp, page); 1358 if (fault_pfn == comp_pfn) 1359 return (DDI_FM_NONFATAL); 1360 } 1361 return (DDI_FM_UNKNOWN); 1362 } 1363 1364 /* 1365 * Function used to check if a given access handle owns the failing address. 1366 * Called by ndi_fmc_error, when we detect a PIO error. 1367 */ 1368 /* ARGSUSED */ 1369 static int 1370 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr, 1371 const void *not_used) 1372 { 1373 pfn_t pfn, fault_pfn; 1374 ddi_acc_hdl_t *hp; 1375 1376 hp = impl_acc_hdl_get((ddi_acc_handle_t)handle); 1377 1378 ASSERT(hp); 1379 1380 if (addr != NULL) { 1381 pfn = hp->ah_pfn; 1382 fault_pfn = mmu_btop(*(uint64_t *)addr); 1383 if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum)) 1384 return (DDI_FM_NONFATAL); 1385 } 1386 return (DDI_FM_UNKNOWN); 1387 } 1388 1389 void 1390 impl_acc_err_init(ddi_acc_hdl_t *handlep) 1391 { 1392 int fmcap; 1393 ndi_err_t *errp; 1394 on_trap_data_t *otp; 1395 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep; 1396 1397 fmcap = ddi_fm_capable(handlep->ah_dip); 1398 1399 if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 || 1400 !DDI_FM_ACC_ERR_CAP(fmcap)) { 1401 handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC; 1402 } else if (DDI_FM_ACC_ERR_CAP(fmcap)) { 1403 if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 1404 i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP, 1405 NULL, DDI_NOSLEEP); 1406 } else { 1407 errp = hp->ahi_err; 1408 otp = (on_trap_data_t *)errp->err_ontrap; 1409 otp->ot_handle = (void *)(hp); 1410 otp->ot_prot = OT_DATA_ACCESS; 1411 if (handlep->ah_acc.devacc_attr_access == 1412 DDI_CAUTIOUS_ACC) 1413 otp->ot_trampoline = 1414 (uintptr_t)&i_ddi_caut_trampoline; 1415 else 1416 otp->ot_trampoline = 1417 (uintptr_t)&i_ddi_prot_trampoline; 1418 errp->err_status = DDI_FM_OK; 1419 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 1420 errp->err_cf = impl_acc_check; 1421 } 1422 } 1423 } 1424 1425 void 1426 impl_acc_hdl_init(ddi_acc_hdl_t *handlep) 1427 { 1428 ddi_acc_impl_t *hp; 1429 1430 ASSERT(handlep); 1431 1432 hp = (ddi_acc_impl_t *)handlep; 1433 1434 /* 1435 * check for SW byte-swapping 1436 */ 1437 hp->ahi_get8 = i_ddi_get8; 1438 hp->ahi_put8 = i_ddi_put8; 1439 hp->ahi_rep_get8 = i_ddi_rep_get8; 1440 hp->ahi_rep_put8 = i_ddi_rep_put8; 1441 if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) { 1442 hp->ahi_get16 = i_ddi_swap_get16; 1443 hp->ahi_get32 = i_ddi_swap_get32; 1444 hp->ahi_get64 = i_ddi_swap_get64; 1445 hp->ahi_put16 = i_ddi_swap_put16; 1446 hp->ahi_put32 = i_ddi_swap_put32; 1447 hp->ahi_put64 = i_ddi_swap_put64; 1448 hp->ahi_rep_get16 = i_ddi_swap_rep_get16; 1449 hp->ahi_rep_get32 = i_ddi_swap_rep_get32; 1450 hp->ahi_rep_get64 = i_ddi_swap_rep_get64; 1451 hp->ahi_rep_put16 = i_ddi_swap_rep_put16; 1452 hp->ahi_rep_put32 = i_ddi_swap_rep_put32; 1453 hp->ahi_rep_put64 = i_ddi_swap_rep_put64; 1454 } else { 1455 hp->ahi_get16 = i_ddi_get16; 1456 hp->ahi_get32 = i_ddi_get32; 1457 hp->ahi_get64 = i_ddi_get64; 1458 hp->ahi_put16 = i_ddi_put16; 1459 hp->ahi_put32 = i_ddi_put32; 1460 hp->ahi_put64 = i_ddi_put64; 1461 hp->ahi_rep_get16 = i_ddi_rep_get16; 1462 hp->ahi_rep_get32 = i_ddi_rep_get32; 1463 hp->ahi_rep_get64 = i_ddi_rep_get64; 1464 hp->ahi_rep_put16 = i_ddi_rep_put16; 1465 hp->ahi_rep_put32 = i_ddi_rep_put32; 1466 hp->ahi_rep_put64 = i_ddi_rep_put64; 1467 } 1468 1469 /* Legacy fault flags and support */ 1470 hp->ahi_fault_check = i_ddi_acc_fault_check; 1471 hp->ahi_fault_notify = i_ddi_acc_fault_notify; 1472 hp->ahi_fault = 0; 1473 impl_acc_err_init(handlep); 1474 } 1475 1476 void 1477 i_ddi_acc_set_fault(ddi_acc_handle_t handle) 1478 { 1479 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1480 1481 if (!hp->ahi_fault) { 1482 hp->ahi_fault = 1; 1483 (*hp->ahi_fault_notify)(hp); 1484 } 1485 } 1486 1487 void 1488 i_ddi_acc_clr_fault(ddi_acc_handle_t handle) 1489 { 1490 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1491 1492 if (hp->ahi_fault) { 1493 hp->ahi_fault = 0; 1494 (*hp->ahi_fault_notify)(hp); 1495 } 1496 } 1497 1498 /* ARGSUSED */ 1499 void 1500 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp) 1501 { 1502 /* Default version, does nothing */ 1503 } 1504 1505 /* 1506 * SECTION: Misc functions 1507 */ 1508 1509 /* 1510 * instance wrappers 1511 */ 1512 /*ARGSUSED*/ 1513 uint_t 1514 impl_assign_instance(dev_info_t *dip) 1515 { 1516 return ((uint_t)-1); 1517 } 1518 1519 /*ARGSUSED*/ 1520 int 1521 impl_keep_instance(dev_info_t *dip) 1522 { 1523 return (DDI_FAILURE); 1524 } 1525 1526 /*ARGSUSED*/ 1527 int 1528 impl_free_instance(dev_info_t *dip) 1529 { 1530 return (DDI_FAILURE); 1531 } 1532 1533 /*ARGSUSED*/ 1534 int 1535 impl_check_cpu(dev_info_t *devi) 1536 { 1537 return (DDI_SUCCESS); 1538 } 1539 1540 1541 static const char *nocopydevs[] = { 1542 "SUNW,ffb", 1543 "SUNW,afb", 1544 NULL 1545 }; 1546 1547 /* 1548 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 1549 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 1550 */ 1551 /*ARGSUSED*/ 1552 int 1553 e_ddi_copyfromdev(dev_info_t *devi, 1554 off_t off, const void *devaddr, void *kaddr, size_t len) 1555 { 1556 const char **argv; 1557 1558 for (argv = nocopydevs; *argv; argv++) 1559 if (strcmp(ddi_binding_name(devi), *argv) == 0) { 1560 bzero(kaddr, len); 1561 return (0); 1562 } 1563 1564 bcopy(devaddr, kaddr, len); 1565 return (0); 1566 } 1567 1568 /* 1569 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 1570 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 1571 */ 1572 /*ARGSUSED*/ 1573 int 1574 e_ddi_copytodev(dev_info_t *devi, 1575 off_t off, const void *kaddr, void *devaddr, size_t len) 1576 { 1577 const char **argv; 1578 1579 for (argv = nocopydevs; *argv; argv++) 1580 if (strcmp(ddi_binding_name(devi), *argv) == 0) 1581 return (1); 1582 1583 bcopy(kaddr, devaddr, len); 1584 return (0); 1585 } 1586 1587 /* 1588 * Boot Configuration 1589 */ 1590 idprom_t idprom; 1591 1592 /* 1593 * Configure the hardware on the system. 1594 * Called before the rootfs is mounted 1595 */ 1596 void 1597 configure(void) 1598 { 1599 extern void i_ddi_init_root(); 1600 1601 /* We better have released boot by this time! */ 1602 ASSERT(!bootops); 1603 1604 /* 1605 * Determine whether or not to use the fpu, V9 SPARC cpus 1606 * always have one. Could check for existence of a fp queue, 1607 * Ultra I, II and IIa do not have a fp queue. 1608 */ 1609 if (fpu_exists) 1610 fpu_probe(); 1611 else 1612 cmn_err(CE_CONT, "FPU not in use\n"); 1613 1614 #if 0 /* XXXQ - not necessary for sun4u */ 1615 /* 1616 * This following line fixes bugid 1041296; we need to do a 1617 * prom_nextnode(0) because this call ALSO patches the DMA+ 1618 * bug in Campus-B and Phoenix. The prom uncaches the traptable 1619 * page as a side-effect of devr_next(0) (which prom_nextnode calls), 1620 * so this *must* be executed early on. (XXX This is untrue for sun4u) 1621 */ 1622 (void) prom_nextnode((pnode_t)0); 1623 #endif 1624 1625 /* 1626 * Initialize devices on the machine. 1627 * Uses configuration tree built by the PROMs to determine what 1628 * is present, and builds a tree of prototype dev_info nodes 1629 * corresponding to the hardware which identified itself. 1630 */ 1631 i_ddi_init_root(); 1632 1633 #ifdef DDI_PROP_DEBUG 1634 (void) ddi_prop_debug(1); /* Enable property debugging */ 1635 #endif /* DDI_PROP_DEBUG */ 1636 } 1637 1638 /* 1639 * The "status" property indicates the operational status of a device. 1640 * If this property is present, the value is a string indicating the 1641 * status of the device as follows: 1642 * 1643 * "okay" operational. 1644 * "disabled" not operational, but might become operational. 1645 * "fail" not operational because a fault has been detected, 1646 * and it is unlikely that the device will become 1647 * operational without repair. no additional details 1648 * are available. 1649 * "fail-xxx" not operational because a fault has been detected, 1650 * and it is unlikely that the device will become 1651 * operational without repair. "xxx" is additional 1652 * human-readable information about the particular 1653 * fault condition that was detected. 1654 * 1655 * The absence of this property means that the operational status is 1656 * unknown or okay. 1657 * 1658 * This routine checks the status property of the specified device node 1659 * and returns 0 if the operational status indicates failure, and 1 otherwise. 1660 * 1661 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 1662 * And, in that case, the property may not even be a string. So we carefully 1663 * check for the value "fail", in the beginning of the string, noting 1664 * the property length. 1665 */ 1666 int 1667 status_okay(int id, char *buf, int buflen) 1668 { 1669 char status_buf[OBP_MAXPROPNAME]; 1670 char *bufp = buf; 1671 int len = buflen; 1672 int proplen; 1673 static const char *status = "status"; 1674 static const char *fail = "fail"; 1675 size_t fail_len = strlen(fail); 1676 1677 /* 1678 * Get the proplen ... if it's smaller than "fail", 1679 * or doesn't exist ... then we don't care, since 1680 * the value can't begin with the char string "fail". 1681 * 1682 * NB: proplen, if it's a string, includes the NULL in the 1683 * the size of the property, and fail_len does not. 1684 */ 1685 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 1686 if (proplen <= fail_len) /* nonexistent or uninteresting len */ 1687 return (1); 1688 1689 /* 1690 * if a buffer was provided, use it 1691 */ 1692 if ((buf == (char *)NULL) || (buflen <= 0)) { 1693 bufp = status_buf; 1694 len = sizeof (status_buf); 1695 } 1696 *bufp = (char)0; 1697 1698 /* 1699 * Get the property into the buffer, to the extent of the buffer, 1700 * and in case the buffer is smaller than the property size, 1701 * NULL terminate the buffer. (This handles the case where 1702 * a buffer was passed in and the caller wants to print the 1703 * value, but the buffer was too small). 1704 */ 1705 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 1706 (caddr_t)bufp, len); 1707 *(bufp + len - 1) = (char)0; 1708 1709 /* 1710 * If the value begins with the char string "fail", 1711 * then it means the node is failed. We don't care 1712 * about any other values. We assume the node is ok 1713 * although it might be 'disabled'. 1714 */ 1715 if (strncmp(bufp, fail, fail_len) == 0) 1716 return (0); 1717 1718 return (1); 1719 } 1720 1721 1722 /* 1723 * We set the cpu type from the idprom, if we can. 1724 * Note that we just read out the contents of it, for the most part. 1725 */ 1726 void 1727 setcputype(void) 1728 { 1729 /* 1730 * We cache the idprom info early on so that we don't 1731 * rummage through the NVRAM unnecessarily later. 1732 */ 1733 (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom)); 1734 } 1735 1736 /* 1737 * Here is where we actually infer meanings to the members of idprom_t 1738 */ 1739 void 1740 parse_idprom(void) 1741 { 1742 if (idprom.id_format == IDFORM_1) { 1743 (void) localetheraddr((struct ether_addr *)idprom.id_ether, 1744 (struct ether_addr *)NULL); 1745 (void) snprintf(hw_serial, HW_HOSTID_LEN, "%u", 1746 (idprom.id_machine << 24) + idprom.id_serial); 1747 } else 1748 prom_printf("Invalid format code in IDprom.\n"); 1749 } 1750 1751 /* 1752 * Allow for implementation specific correction of PROM property values. 1753 */ 1754 /*ARGSUSED*/ 1755 void 1756 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 1757 caddr_t buffer) 1758 { 1759 /* 1760 * There are no adjustments needed in this implementation. 1761 */ 1762 } 1763 1764 /* 1765 * The following functions ready a cautious request to go up to the nexus 1766 * driver. It is up to the nexus driver to decide how to process the request. 1767 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 1768 * differently. 1769 */ 1770 1771 static void 1772 i_ddi_caut_getput_ctlops( 1773 ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size, 1774 size_t repcount, uint_t flags, ddi_ctl_enum_t cmd) 1775 { 1776 peekpoke_ctlops_t cautacc_ctlops_arg; 1777 1778 cautacc_ctlops_arg.size = size; 1779 cautacc_ctlops_arg.dev_addr = dev_addr; 1780 cautacc_ctlops_arg.host_addr = host_addr; 1781 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 1782 cautacc_ctlops_arg.repcount = repcount; 1783 cautacc_ctlops_arg.flags = flags; 1784 1785 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 1786 &cautacc_ctlops_arg, NULL); 1787 } 1788 1789 uint8_t 1790 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 1791 { 1792 uint8_t value; 1793 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1794 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 1795 1796 return (value); 1797 } 1798 1799 uint16_t 1800 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 1801 { 1802 uint16_t value; 1803 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1804 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 1805 1806 return (value); 1807 } 1808 1809 uint32_t 1810 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 1811 { 1812 uint32_t value; 1813 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1814 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 1815 1816 return (value); 1817 } 1818 1819 uint64_t 1820 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 1821 { 1822 uint64_t value; 1823 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1824 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 1825 1826 return (value); 1827 } 1828 1829 void 1830 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 1831 { 1832 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1833 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 1834 } 1835 1836 void 1837 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 1838 { 1839 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1840 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 1841 } 1842 1843 void 1844 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 1845 { 1846 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1847 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 1848 } 1849 1850 void 1851 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 1852 { 1853 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1854 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 1855 } 1856 1857 void 1858 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1859 size_t repcount, uint_t flags) 1860 { 1861 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1862 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 1863 } 1864 1865 void 1866 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1867 uint16_t *dev_addr, size_t repcount, uint_t flags) 1868 { 1869 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1870 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 1871 } 1872 1873 void 1874 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1875 uint32_t *dev_addr, size_t repcount, uint_t flags) 1876 { 1877 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1878 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 1879 } 1880 1881 void 1882 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1883 uint64_t *dev_addr, size_t repcount, uint_t flags) 1884 { 1885 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1886 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 1887 } 1888 1889 void 1890 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1891 size_t repcount, uint_t flags) 1892 { 1893 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1894 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 1895 } 1896 1897 void 1898 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1899 uint16_t *dev_addr, size_t repcount, uint_t flags) 1900 { 1901 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1902 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 1903 } 1904 1905 void 1906 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1907 uint32_t *dev_addr, size_t repcount, uint_t flags) 1908 { 1909 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1910 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 1911 } 1912 1913 void 1914 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1915 uint64_t *dev_addr, size_t repcount, uint_t flags) 1916 { 1917 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1918 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 1919 } 1920 1921 /* 1922 * This is called only to process peek/poke when the DIP is NULL. 1923 * Assume that this is for memory, as nexi take care of device safe accesses. 1924 */ 1925 int 1926 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 1927 { 1928 int err = DDI_SUCCESS; 1929 on_trap_data_t otd; 1930 1931 /* Set up protected environment. */ 1932 if (!on_trap(&otd, OT_DATA_ACCESS)) { 1933 uintptr_t tramp = otd.ot_trampoline; 1934 1935 if (cmd == DDI_CTLOPS_POKE) { 1936 otd.ot_trampoline = (uintptr_t)&poke_fault; 1937 err = do_poke(in_args->size, (void *)in_args->dev_addr, 1938 (void *)in_args->host_addr); 1939 } else { 1940 otd.ot_trampoline = (uintptr_t)&peek_fault; 1941 err = do_peek(in_args->size, (void *)in_args->dev_addr, 1942 (void *)in_args->host_addr); 1943 } 1944 otd.ot_trampoline = tramp; 1945 } else 1946 err = DDI_FAILURE; 1947 1948 /* Take down protected environment. */ 1949 no_trap(); 1950 1951 return (err); 1952 } 1953 1954 /* 1955 * Platform independent DR routines 1956 */ 1957 1958 static int 1959 ndi2errno(int n) 1960 { 1961 int err = 0; 1962 1963 switch (n) { 1964 case NDI_NOMEM: 1965 err = ENOMEM; 1966 break; 1967 case NDI_BUSY: 1968 err = EBUSY; 1969 break; 1970 case NDI_FAULT: 1971 err = EFAULT; 1972 break; 1973 case NDI_FAILURE: 1974 err = EIO; 1975 break; 1976 case NDI_SUCCESS: 1977 break; 1978 case NDI_BADHANDLE: 1979 default: 1980 err = EINVAL; 1981 break; 1982 } 1983 return (err); 1984 } 1985 1986 /* 1987 * Prom tree node list 1988 */ 1989 struct ptnode { 1990 pnode_t nodeid; 1991 struct ptnode *next; 1992 }; 1993 1994 /* 1995 * Prom tree walk arg 1996 */ 1997 struct pta { 1998 dev_info_t *pdip; 1999 devi_branch_t *bp; 2000 uint_t flags; 2001 dev_info_t *fdip; 2002 struct ptnode *head; 2003 }; 2004 2005 static void 2006 visit_node(pnode_t nodeid, struct pta *ap) 2007 { 2008 struct ptnode **nextp; 2009 int (*select)(pnode_t, void *, uint_t); 2010 2011 ASSERT(nodeid != OBP_NONODE && nodeid != OBP_BADNODE); 2012 2013 select = ap->bp->create.prom_branch_select; 2014 2015 ASSERT(select); 2016 2017 if (select(nodeid, ap->bp->arg, 0) == DDI_SUCCESS) { 2018 2019 for (nextp = &ap->head; *nextp; nextp = &(*nextp)->next) 2020 ; 2021 2022 *nextp = kmem_zalloc(sizeof (struct ptnode), KM_SLEEP); 2023 2024 (*nextp)->nodeid = nodeid; 2025 } 2026 2027 if ((ap->flags & DEVI_BRANCH_CHILD) == DEVI_BRANCH_CHILD) 2028 return; 2029 2030 nodeid = prom_childnode(nodeid); 2031 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { 2032 visit_node(nodeid, ap); 2033 nodeid = prom_nextnode(nodeid); 2034 } 2035 } 2036 2037 /* 2038 * NOTE: The caller of this function must check for device contracts 2039 * or LDI callbacks against this dip before setting the dip offline. 2040 */ 2041 static int 2042 set_infant_dip_offline(dev_info_t *dip, void *arg) 2043 { 2044 char *path = (char *)arg; 2045 2046 ASSERT(dip); 2047 ASSERT(arg); 2048 2049 if (i_ddi_node_state(dip) >= DS_ATTACHED) { 2050 (void) ddi_pathname(dip, path); 2051 cmn_err(CE_WARN, "Attempt to set offline flag on attached " 2052 "node: %s", path); 2053 return (DDI_FAILURE); 2054 } 2055 2056 mutex_enter(&(DEVI(dip)->devi_lock)); 2057 if (!DEVI_IS_DEVICE_OFFLINE(dip)) 2058 DEVI_SET_DEVICE_OFFLINE(dip); 2059 mutex_exit(&(DEVI(dip)->devi_lock)); 2060 2061 return (DDI_SUCCESS); 2062 } 2063 2064 typedef struct result { 2065 char *path; 2066 int result; 2067 } result_t; 2068 2069 static int 2070 dip_set_offline(dev_info_t *dip, void *arg) 2071 { 2072 int end; 2073 result_t *resp = (result_t *)arg; 2074 2075 ASSERT(dip); 2076 ASSERT(resp); 2077 2078 /* 2079 * We stop the walk if e_ddi_offline_notify() returns 2080 * failure, because this implies that one or more consumers 2081 * (either LDI or contract based) has blocked the offline. 2082 * So there is no point in conitnuing the walk 2083 */ 2084 if (e_ddi_offline_notify(dip) == DDI_FAILURE) { 2085 resp->result = DDI_FAILURE; 2086 return (DDI_WALK_TERMINATE); 2087 } 2088 2089 /* 2090 * If set_infant_dip_offline() returns failure, it implies 2091 * that we failed to set a particular dip offline. This 2092 * does not imply that the offline as a whole should fail. 2093 * We want to do the best we can, so we continue the walk. 2094 */ 2095 if (set_infant_dip_offline(dip, resp->path) == DDI_SUCCESS) 2096 end = DDI_SUCCESS; 2097 else 2098 end = DDI_FAILURE; 2099 2100 e_ddi_offline_finalize(dip, end); 2101 2102 return (DDI_WALK_CONTINUE); 2103 } 2104 2105 /* 2106 * The call to e_ddi_offline_notify() exists for the 2107 * unlikely error case that a branch we are trying to 2108 * create already exists and has device contracts or LDI 2109 * event callbacks against it. 2110 * 2111 * We allow create to succeed for such branches only if 2112 * no constraints block the offline. 2113 */ 2114 static int 2115 branch_set_offline(dev_info_t *dip, char *path) 2116 { 2117 int circ; 2118 int end; 2119 result_t res; 2120 2121 2122 if (e_ddi_offline_notify(dip) == DDI_FAILURE) { 2123 return (DDI_FAILURE); 2124 } 2125 2126 if (set_infant_dip_offline(dip, path) == DDI_SUCCESS) 2127 end = DDI_SUCCESS; 2128 else 2129 end = DDI_FAILURE; 2130 2131 e_ddi_offline_finalize(dip, end); 2132 2133 if (end == DDI_FAILURE) 2134 return (DDI_FAILURE); 2135 2136 res.result = DDI_SUCCESS; 2137 res.path = path; 2138 2139 ndi_devi_enter(dip, &circ); 2140 ddi_walk_devs(ddi_get_child(dip), dip_set_offline, &res); 2141 ndi_devi_exit(dip, circ); 2142 2143 return (res.result); 2144 } 2145 2146 /*ARGSUSED*/ 2147 static int 2148 create_prom_branch(void *arg, int has_changed) 2149 { 2150 int circ; 2151 int exists, rv; 2152 pnode_t nodeid; 2153 struct ptnode *tnp; 2154 dev_info_t *dip; 2155 struct pta *ap = arg; 2156 devi_branch_t *bp; 2157 char *path; 2158 2159 ASSERT(ap); 2160 ASSERT(ap->fdip == NULL); 2161 ASSERT(ap->pdip && ndi_dev_is_prom_node(ap->pdip)); 2162 2163 bp = ap->bp; 2164 2165 nodeid = ddi_get_nodeid(ap->pdip); 2166 if (nodeid == OBP_NONODE || nodeid == OBP_BADNODE) { 2167 cmn_err(CE_WARN, "create_prom_branch: invalid " 2168 "nodeid: 0x%x", nodeid); 2169 return (EINVAL); 2170 } 2171 2172 ap->head = NULL; 2173 2174 nodeid = prom_childnode(nodeid); 2175 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { 2176 visit_node(nodeid, ap); 2177 nodeid = prom_nextnode(nodeid); 2178 } 2179 2180 if (ap->head == NULL) 2181 return (ENODEV); 2182 2183 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2184 rv = 0; 2185 while ((tnp = ap->head) != NULL) { 2186 ap->head = tnp->next; 2187 2188 ndi_devi_enter(ap->pdip, &circ); 2189 2190 /* 2191 * Check if the branch already exists. 2192 */ 2193 exists = 0; 2194 dip = e_ddi_nodeid_to_dip(tnp->nodeid); 2195 if (dip != NULL) { 2196 exists = 1; 2197 2198 /* Parent is held busy, so release hold */ 2199 ndi_rele_devi(dip); 2200 #ifdef DEBUG 2201 cmn_err(CE_WARN, "create_prom_branch: dip(%p) exists" 2202 " for nodeid 0x%x", (void *)dip, tnp->nodeid); 2203 #endif 2204 } else { 2205 dip = i_ddi_create_branch(ap->pdip, tnp->nodeid); 2206 } 2207 2208 kmem_free(tnp, sizeof (struct ptnode)); 2209 2210 /* 2211 * Hold the branch if it is not already held 2212 */ 2213 if (dip && !exists) { 2214 e_ddi_branch_hold(dip); 2215 } 2216 2217 ASSERT(dip == NULL || e_ddi_branch_held(dip)); 2218 2219 /* 2220 * Set all dips in the newly created branch offline so that 2221 * only a "configure" operation can attach 2222 * the branch 2223 */ 2224 if (dip == NULL || branch_set_offline(dip, path) 2225 == DDI_FAILURE) { 2226 ndi_devi_exit(ap->pdip, circ); 2227 rv = EIO; 2228 continue; 2229 } 2230 2231 ASSERT(ddi_get_parent(dip) == ap->pdip); 2232 2233 ndi_devi_exit(ap->pdip, circ); 2234 2235 if (ap->flags & DEVI_BRANCH_CONFIGURE) { 2236 int error = e_ddi_branch_configure(dip, &ap->fdip, 0); 2237 if (error && rv == 0) 2238 rv = error; 2239 } 2240 2241 /* 2242 * Invoke devi_branch_callback() (if it exists) only for 2243 * newly created branches 2244 */ 2245 if (bp->devi_branch_callback && !exists) 2246 bp->devi_branch_callback(dip, bp->arg, 0); 2247 } 2248 2249 kmem_free(path, MAXPATHLEN); 2250 2251 return (rv); 2252 } 2253 2254 static int 2255 sid_node_create(dev_info_t *pdip, devi_branch_t *bp, dev_info_t **rdipp) 2256 { 2257 int rv, circ, len; 2258 int i, flags, ret; 2259 dev_info_t *dip; 2260 char *nbuf; 2261 char *path; 2262 static const char *noname = "<none>"; 2263 2264 ASSERT(pdip); 2265 ASSERT(DEVI_BUSY_OWNED(pdip)); 2266 2267 flags = 0; 2268 2269 /* 2270 * Creating the root of a branch ? 2271 */ 2272 if (rdipp) { 2273 *rdipp = NULL; 2274 flags = DEVI_BRANCH_ROOT; 2275 } 2276 2277 ndi_devi_alloc_sleep(pdip, (char *)noname, DEVI_SID_NODEID, &dip); 2278 rv = bp->create.sid_branch_create(dip, bp->arg, flags); 2279 2280 nbuf = kmem_alloc(OBP_MAXDRVNAME, KM_SLEEP); 2281 2282 if (rv == DDI_WALK_ERROR) { 2283 cmn_err(CE_WARN, "e_ddi_branch_create: Error setting" 2284 " properties on devinfo node %p", (void *)dip); 2285 goto fail; 2286 } 2287 2288 len = OBP_MAXDRVNAME; 2289 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 2290 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "name", nbuf, &len) 2291 != DDI_PROP_SUCCESS) { 2292 cmn_err(CE_WARN, "e_ddi_branch_create: devinfo node %p has" 2293 "no name property", (void *)dip); 2294 goto fail; 2295 } 2296 2297 ASSERT(i_ddi_node_state(dip) == DS_PROTO); 2298 if (ndi_devi_set_nodename(dip, nbuf, 0) != NDI_SUCCESS) { 2299 cmn_err(CE_WARN, "e_ddi_branch_create: cannot set name (%s)" 2300 " for devinfo node %p", nbuf, (void *)dip); 2301 goto fail; 2302 } 2303 2304 kmem_free(nbuf, OBP_MAXDRVNAME); 2305 2306 /* 2307 * Ignore bind failures just like boot does 2308 */ 2309 (void) ndi_devi_bind_driver(dip, 0); 2310 2311 switch (rv) { 2312 case DDI_WALK_CONTINUE: 2313 case DDI_WALK_PRUNESIB: 2314 ndi_devi_enter(dip, &circ); 2315 2316 i = DDI_WALK_CONTINUE; 2317 for (; i == DDI_WALK_CONTINUE; ) { 2318 i = sid_node_create(dip, bp, NULL); 2319 } 2320 2321 ASSERT(i == DDI_WALK_ERROR || i == DDI_WALK_PRUNESIB); 2322 if (i == DDI_WALK_ERROR) 2323 rv = i; 2324 /* 2325 * If PRUNESIB stop creating siblings 2326 * of dip's child. Subsequent walk behavior 2327 * is determined by rv returned by dip. 2328 */ 2329 2330 ndi_devi_exit(dip, circ); 2331 break; 2332 case DDI_WALK_TERMINATE: 2333 /* 2334 * Don't create children and ask our parent 2335 * to not create siblings either. 2336 */ 2337 rv = DDI_WALK_PRUNESIB; 2338 break; 2339 case DDI_WALK_PRUNECHILD: 2340 /* 2341 * Don't create children, but ask parent to continue 2342 * with siblings. 2343 */ 2344 rv = DDI_WALK_CONTINUE; 2345 break; 2346 default: 2347 ASSERT(0); 2348 break; 2349 } 2350 2351 if (rdipp) 2352 *rdipp = dip; 2353 2354 /* 2355 * Set device offline - only the "configure" op should cause an attach. 2356 * Note that it is safe to set the dip offline without checking 2357 * for either device contract or layered driver (LDI) based constraints 2358 * since there cannot be any contracts or LDI opens of this device. 2359 * This is because this node is a newly created dip with the parent busy 2360 * held, so no other thread can come in and attach this dip. A dip that 2361 * has never been attached cannot have contracts since by definition 2362 * a device contract (an agreement between a process and a device minor 2363 * node) can only be created against a device that has minor nodes 2364 * i.e is attached. Similarly an LDI open will only succeed if the 2365 * dip is attached. We assert below that the dip is not attached. 2366 */ 2367 ASSERT(i_ddi_node_state(dip) < DS_ATTACHED); 2368 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2369 ret = set_infant_dip_offline(dip, path); 2370 ASSERT(ret == DDI_SUCCESS); 2371 kmem_free(path, MAXPATHLEN); 2372 2373 return (rv); 2374 fail: 2375 (void) ndi_devi_free(dip); 2376 kmem_free(nbuf, OBP_MAXDRVNAME); 2377 return (DDI_WALK_ERROR); 2378 } 2379 2380 static int 2381 create_sid_branch( 2382 dev_info_t *pdip, 2383 devi_branch_t *bp, 2384 dev_info_t **dipp, 2385 uint_t flags) 2386 { 2387 int rv = 0, state = DDI_WALK_CONTINUE; 2388 dev_info_t *rdip; 2389 2390 while (state == DDI_WALK_CONTINUE) { 2391 int circ; 2392 2393 ndi_devi_enter(pdip, &circ); 2394 2395 state = sid_node_create(pdip, bp, &rdip); 2396 if (rdip == NULL) { 2397 ndi_devi_exit(pdip, circ); 2398 ASSERT(state == DDI_WALK_ERROR); 2399 break; 2400 } 2401 2402 e_ddi_branch_hold(rdip); 2403 2404 ndi_devi_exit(pdip, circ); 2405 2406 if (flags & DEVI_BRANCH_CONFIGURE) { 2407 int error = e_ddi_branch_configure(rdip, dipp, 0); 2408 if (error && rv == 0) 2409 rv = error; 2410 } 2411 2412 /* 2413 * devi_branch_callback() is optional 2414 */ 2415 if (bp->devi_branch_callback) 2416 bp->devi_branch_callback(rdip, bp->arg, 0); 2417 } 2418 2419 ASSERT(state == DDI_WALK_ERROR || state == DDI_WALK_PRUNESIB); 2420 2421 return (state == DDI_WALK_ERROR ? EIO : rv); 2422 } 2423 2424 int 2425 e_ddi_branch_create( 2426 dev_info_t *pdip, 2427 devi_branch_t *bp, 2428 dev_info_t **dipp, 2429 uint_t flags) 2430 { 2431 int prom_devi, sid_devi, error; 2432 2433 if (pdip == NULL || bp == NULL || bp->type == 0) 2434 return (EINVAL); 2435 2436 prom_devi = (bp->type == DEVI_BRANCH_PROM) ? 1 : 0; 2437 sid_devi = (bp->type == DEVI_BRANCH_SID) ? 1 : 0; 2438 2439 if (prom_devi && bp->create.prom_branch_select == NULL) 2440 return (EINVAL); 2441 else if (sid_devi && bp->create.sid_branch_create == NULL) 2442 return (EINVAL); 2443 else if (!prom_devi && !sid_devi) 2444 return (EINVAL); 2445 2446 if (flags & DEVI_BRANCH_EVENT) 2447 return (EINVAL); 2448 2449 if (prom_devi) { 2450 struct pta pta = {0}; 2451 2452 pta.pdip = pdip; 2453 pta.bp = bp; 2454 pta.flags = flags; 2455 2456 error = prom_tree_access(create_prom_branch, &pta, NULL); 2457 2458 if (dipp) 2459 *dipp = pta.fdip; 2460 else if (pta.fdip) 2461 ndi_rele_devi(pta.fdip); 2462 } else { 2463 error = create_sid_branch(pdip, bp, dipp, flags); 2464 } 2465 2466 return (error); 2467 } 2468 2469 int 2470 e_ddi_branch_configure(dev_info_t *rdip, dev_info_t **dipp, uint_t flags) 2471 { 2472 int rv; 2473 char *devnm; 2474 dev_info_t *pdip; 2475 2476 if (dipp) 2477 *dipp = NULL; 2478 2479 if (rdip == NULL || flags != 0 || (flags & DEVI_BRANCH_EVENT)) 2480 return (EINVAL); 2481 2482 pdip = ddi_get_parent(rdip); 2483 2484 ndi_hold_devi(pdip); 2485 2486 if (!e_ddi_branch_held(rdip)) { 2487 ndi_rele_devi(pdip); 2488 cmn_err(CE_WARN, "e_ddi_branch_configure: " 2489 "dip(%p) not held", (void *)rdip); 2490 return (EINVAL); 2491 } 2492 2493 if (i_ddi_node_state(rdip) < DS_INITIALIZED) { 2494 /* 2495 * First attempt to bind a driver. If we fail, return 2496 * success (On some platforms, dips for some device 2497 * types (CPUs) may not have a driver) 2498 */ 2499 if (ndi_devi_bind_driver(rdip, 0) != NDI_SUCCESS) { 2500 ndi_rele_devi(pdip); 2501 return (0); 2502 } 2503 2504 if (ddi_initchild(pdip, rdip) != DDI_SUCCESS) { 2505 rv = NDI_FAILURE; 2506 goto out; 2507 } 2508 } 2509 2510 ASSERT(i_ddi_node_state(rdip) >= DS_INITIALIZED); 2511 2512 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 2513 2514 (void) ddi_deviname(rdip, devnm); 2515 2516 if ((rv = ndi_devi_config_one(pdip, devnm+1, &rdip, 2517 NDI_DEVI_ONLINE | NDI_CONFIG)) == NDI_SUCCESS) { 2518 /* release hold from ndi_devi_config_one() */ 2519 ndi_rele_devi(rdip); 2520 } 2521 2522 kmem_free(devnm, MAXNAMELEN + 1); 2523 out: 2524 if (rv != NDI_SUCCESS && dipp && rdip) { 2525 ndi_hold_devi(rdip); 2526 *dipp = rdip; 2527 } 2528 ndi_rele_devi(pdip); 2529 return (ndi2errno(rv)); 2530 } 2531 2532 void 2533 e_ddi_branch_hold(dev_info_t *rdip) 2534 { 2535 if (e_ddi_branch_held(rdip)) { 2536 cmn_err(CE_WARN, "e_ddi_branch_hold: branch already held"); 2537 return; 2538 } 2539 2540 mutex_enter(&DEVI(rdip)->devi_lock); 2541 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) == 0) { 2542 DEVI(rdip)->devi_flags |= DEVI_BRANCH_HELD; 2543 DEVI(rdip)->devi_ref++; 2544 } 2545 ASSERT(DEVI(rdip)->devi_ref > 0); 2546 mutex_exit(&DEVI(rdip)->devi_lock); 2547 } 2548 2549 int 2550 e_ddi_branch_held(dev_info_t *rdip) 2551 { 2552 int rv = 0; 2553 2554 mutex_enter(&DEVI(rdip)->devi_lock); 2555 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) && 2556 DEVI(rdip)->devi_ref > 0) { 2557 rv = 1; 2558 } 2559 mutex_exit(&DEVI(rdip)->devi_lock); 2560 2561 return (rv); 2562 } 2563 void 2564 e_ddi_branch_rele(dev_info_t *rdip) 2565 { 2566 mutex_enter(&DEVI(rdip)->devi_lock); 2567 DEVI(rdip)->devi_flags &= ~DEVI_BRANCH_HELD; 2568 DEVI(rdip)->devi_ref--; 2569 mutex_exit(&DEVI(rdip)->devi_lock); 2570 } 2571 2572 int 2573 e_ddi_branch_unconfigure( 2574 dev_info_t *rdip, 2575 dev_info_t **dipp, 2576 uint_t flags) 2577 { 2578 int circ, rv; 2579 int destroy; 2580 char *devnm; 2581 uint_t nflags; 2582 dev_info_t *pdip; 2583 2584 if (dipp) 2585 *dipp = NULL; 2586 2587 if (rdip == NULL) 2588 return (EINVAL); 2589 2590 pdip = ddi_get_parent(rdip); 2591 2592 ASSERT(pdip); 2593 2594 /* 2595 * Check if caller holds pdip busy - can cause deadlocks during 2596 * devfs_clean() 2597 */ 2598 if (DEVI_BUSY_OWNED(pdip)) { 2599 cmn_err(CE_WARN, "e_ddi_branch_unconfigure: failed: parent" 2600 " devinfo node(%p) is busy held", (void *)pdip); 2601 return (EINVAL); 2602 } 2603 2604 destroy = (flags & DEVI_BRANCH_DESTROY) ? 1 : 0; 2605 2606 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 2607 2608 ndi_devi_enter(pdip, &circ); 2609 (void) ddi_deviname(rdip, devnm); 2610 ndi_devi_exit(pdip, circ); 2611 2612 /* 2613 * ddi_deviname() returns a component name with / prepended. 2614 */ 2615 (void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE); 2616 2617 ndi_devi_enter(pdip, &circ); 2618 2619 /* 2620 * Recreate device name as it may have changed state (init/uninit) 2621 * when parent busy lock was dropped for devfs_clean() 2622 */ 2623 (void) ddi_deviname(rdip, devnm); 2624 2625 if (!e_ddi_branch_held(rdip)) { 2626 kmem_free(devnm, MAXNAMELEN + 1); 2627 ndi_devi_exit(pdip, circ); 2628 cmn_err(CE_WARN, "e_ddi_%s_branch: dip(%p) not held", 2629 destroy ? "destroy" : "unconfigure", (void *)rdip); 2630 return (EINVAL); 2631 } 2632 2633 /* 2634 * Release hold on the branch. This is ok since we are holding the 2635 * parent busy. If rdip is not removed, we must do a hold on the 2636 * branch before returning. 2637 */ 2638 e_ddi_branch_rele(rdip); 2639 2640 nflags = NDI_DEVI_OFFLINE; 2641 if (destroy || (flags & DEVI_BRANCH_DESTROY)) { 2642 nflags |= NDI_DEVI_REMOVE; 2643 destroy = 1; 2644 } else { 2645 nflags |= NDI_UNCONFIG; /* uninit but don't remove */ 2646 } 2647 2648 if (flags & DEVI_BRANCH_EVENT) 2649 nflags |= NDI_POST_EVENT; 2650 2651 if (i_ddi_devi_attached(pdip) && 2652 (i_ddi_node_state(rdip) >= DS_INITIALIZED)) { 2653 rv = ndi_devi_unconfig_one(pdip, devnm+1, dipp, nflags); 2654 } else { 2655 rv = e_ddi_devi_unconfig(rdip, dipp, nflags); 2656 if (rv == NDI_SUCCESS) { 2657 ASSERT(!destroy || ddi_get_child(rdip) == NULL); 2658 rv = ndi_devi_offline(rdip, nflags); 2659 } 2660 } 2661 2662 if (!destroy || rv != NDI_SUCCESS) { 2663 /* The dip still exists, so do a hold */ 2664 e_ddi_branch_hold(rdip); 2665 } 2666 out: 2667 kmem_free(devnm, MAXNAMELEN + 1); 2668 ndi_devi_exit(pdip, circ); 2669 return (ndi2errno(rv)); 2670 } 2671 2672 int 2673 e_ddi_branch_destroy(dev_info_t *rdip, dev_info_t **dipp, uint_t flag) 2674 { 2675 return (e_ddi_branch_unconfigure(rdip, dipp, 2676 flag|DEVI_BRANCH_DESTROY)); 2677 } 2678 2679 /* 2680 * Number of chains for hash table 2681 */ 2682 #define NUMCHAINS 17 2683 2684 /* 2685 * Devinfo busy arg 2686 */ 2687 struct devi_busy { 2688 int dv_total; 2689 int s_total; 2690 mod_hash_t *dv_hash; 2691 mod_hash_t *s_hash; 2692 int (*callback)(dev_info_t *, void *, uint_t); 2693 void *arg; 2694 }; 2695 2696 static int 2697 visit_dip(dev_info_t *dip, void *arg) 2698 { 2699 uintptr_t sbusy, dvbusy, ref; 2700 struct devi_busy *bsp = arg; 2701 2702 ASSERT(bsp->callback); 2703 2704 /* 2705 * A dip cannot be busy if its reference count is 0 2706 */ 2707 if ((ref = e_ddi_devi_holdcnt(dip)) == 0) { 2708 return (bsp->callback(dip, bsp->arg, 0)); 2709 } 2710 2711 if (mod_hash_find(bsp->dv_hash, dip, (mod_hash_val_t *)&dvbusy)) 2712 dvbusy = 0; 2713 2714 /* 2715 * To catch device opens currently maintained on specfs common snodes. 2716 */ 2717 if (mod_hash_find(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) 2718 sbusy = 0; 2719 2720 #ifdef DEBUG 2721 if (ref < sbusy || ref < dvbusy) { 2722 cmn_err(CE_WARN, "dip(%p): sopen = %lu, dvopen = %lu " 2723 "dip ref = %lu\n", (void *)dip, sbusy, dvbusy, ref); 2724 } 2725 #endif 2726 2727 dvbusy = (sbusy > dvbusy) ? sbusy : dvbusy; 2728 2729 return (bsp->callback(dip, bsp->arg, dvbusy)); 2730 } 2731 2732 static int 2733 visit_snode(struct snode *sp, void *arg) 2734 { 2735 uintptr_t sbusy; 2736 dev_info_t *dip; 2737 int count; 2738 struct devi_busy *bsp = arg; 2739 2740 ASSERT(sp); 2741 2742 /* 2743 * The stable lock is held. This prevents 2744 * the snode and its associated dip from 2745 * going away. 2746 */ 2747 dip = NULL; 2748 count = spec_devi_open_count(sp, &dip); 2749 2750 if (count <= 0) 2751 return (DDI_WALK_CONTINUE); 2752 2753 ASSERT(dip); 2754 2755 if (mod_hash_remove(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) 2756 sbusy = count; 2757 else 2758 sbusy += count; 2759 2760 if (mod_hash_insert(bsp->s_hash, dip, (mod_hash_val_t)sbusy)) { 2761 cmn_err(CE_WARN, "%s: s_hash insert failed: dip=0x%p, " 2762 "sbusy = %lu", "e_ddi_branch_referenced", 2763 (void *)dip, sbusy); 2764 } 2765 2766 bsp->s_total += count; 2767 2768 return (DDI_WALK_CONTINUE); 2769 } 2770 2771 static void 2772 visit_dvnode(struct dv_node *dv, void *arg) 2773 { 2774 uintptr_t dvbusy; 2775 uint_t count; 2776 struct vnode *vp; 2777 struct devi_busy *bsp = arg; 2778 2779 ASSERT(dv && dv->dv_devi); 2780 2781 vp = DVTOV(dv); 2782 2783 mutex_enter(&vp->v_lock); 2784 count = vp->v_count; 2785 mutex_exit(&vp->v_lock); 2786 2787 if (!count) 2788 return; 2789 2790 if (mod_hash_remove(bsp->dv_hash, dv->dv_devi, 2791 (mod_hash_val_t *)&dvbusy)) 2792 dvbusy = count; 2793 else 2794 dvbusy += count; 2795 2796 if (mod_hash_insert(bsp->dv_hash, dv->dv_devi, 2797 (mod_hash_val_t)dvbusy)) { 2798 cmn_err(CE_WARN, "%s: dv_hash insert failed: dip=0x%p, " 2799 "dvbusy=%lu", "e_ddi_branch_referenced", 2800 (void *)dv->dv_devi, dvbusy); 2801 } 2802 2803 bsp->dv_total += count; 2804 } 2805 2806 /* 2807 * Returns reference count on success or -1 on failure. 2808 */ 2809 int 2810 e_ddi_branch_referenced( 2811 dev_info_t *rdip, 2812 int (*callback)(dev_info_t *dip, void *arg, uint_t ref), 2813 void *arg) 2814 { 2815 int circ; 2816 char *path; 2817 dev_info_t *pdip; 2818 struct devi_busy bsa = {0}; 2819 2820 ASSERT(rdip); 2821 2822 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2823 2824 ndi_hold_devi(rdip); 2825 2826 pdip = ddi_get_parent(rdip); 2827 2828 ASSERT(pdip); 2829 2830 /* 2831 * Check if caller holds pdip busy - can cause deadlocks during 2832 * devfs_walk() 2833 */ 2834 if (!e_ddi_branch_held(rdip) || DEVI_BUSY_OWNED(pdip)) { 2835 cmn_err(CE_WARN, "e_ddi_branch_referenced: failed: " 2836 "devinfo branch(%p) not held or parent busy held", 2837 (void *)rdip); 2838 ndi_rele_devi(rdip); 2839 kmem_free(path, MAXPATHLEN); 2840 return (-1); 2841 } 2842 2843 ndi_devi_enter(pdip, &circ); 2844 (void) ddi_pathname(rdip, path); 2845 ndi_devi_exit(pdip, circ); 2846 2847 bsa.dv_hash = mod_hash_create_ptrhash("dv_node busy hash", NUMCHAINS, 2848 mod_hash_null_valdtor, sizeof (struct dev_info)); 2849 2850 bsa.s_hash = mod_hash_create_ptrhash("snode busy hash", NUMCHAINS, 2851 mod_hash_null_valdtor, sizeof (struct snode)); 2852 2853 if (devfs_walk(path, visit_dvnode, &bsa)) { 2854 cmn_err(CE_WARN, "e_ddi_branch_referenced: " 2855 "devfs walk failed for: %s", path); 2856 kmem_free(path, MAXPATHLEN); 2857 bsa.s_total = bsa.dv_total = -1; 2858 goto out; 2859 } 2860 2861 kmem_free(path, MAXPATHLEN); 2862 2863 /* 2864 * Walk the snode table to detect device opens, which are currently 2865 * maintained on specfs common snodes. 2866 */ 2867 spec_snode_walk(visit_snode, &bsa); 2868 2869 if (callback == NULL) 2870 goto out; 2871 2872 bsa.callback = callback; 2873 bsa.arg = arg; 2874 2875 if (visit_dip(rdip, &bsa) == DDI_WALK_CONTINUE) { 2876 ndi_devi_enter(rdip, &circ); 2877 ddi_walk_devs(ddi_get_child(rdip), visit_dip, &bsa); 2878 ndi_devi_exit(rdip, circ); 2879 } 2880 2881 out: 2882 ndi_rele_devi(rdip); 2883 mod_hash_destroy_ptrhash(bsa.s_hash); 2884 mod_hash_destroy_ptrhash(bsa.dv_hash); 2885 return (bsa.s_total > bsa.dv_total ? bsa.s_total : bsa.dv_total); 2886 } 2887