1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * sun4 specific DDI implementation 29 */ 30 #include <sys/cpuvar.h> 31 #include <sys/ddi_subrdefs.h> 32 #include <sys/machsystm.h> 33 #include <sys/sunndi.h> 34 #include <sys/sysmacros.h> 35 #include <sys/ontrap.h> 36 #include <vm/seg_kmem.h> 37 #include <sys/membar.h> 38 #include <sys/dditypes.h> 39 #include <sys/ndifm.h> 40 #include <sys/fm/io/ddi.h> 41 #include <sys/ivintr.h> 42 #include <sys/bootconf.h> 43 #include <sys/conf.h> 44 #include <sys/ethernet.h> 45 #include <sys/idprom.h> 46 #include <sys/promif.h> 47 #include <sys/prom_plat.h> 48 #include <sys/systeminfo.h> 49 #include <sys/fpu/fpusystm.h> 50 #include <sys/vm.h> 51 #include <sys/fs/dv_node.h> 52 #include <sys/fs/snode.h> 53 #include <sys/ddi_isa.h> 54 #include <sys/modhash.h> 55 #include <sys/modctl.h> 56 #include <sys/sunldi_impl.h> 57 58 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *, 59 ddi_intr_handle_impl_t *); 60 #pragma weak get_intr_parent 61 62 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t, 63 ddi_intr_handle_impl_t *, void *); 64 #pragma weak process_intr_ops 65 66 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t); 67 prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *, 68 int32_t len); 69 #pragma weak cells_1275_copy 70 71 /* 72 * Wrapper for ddi_prop_lookup_int_array(). 73 * This is handy because it returns the prop length in 74 * bytes which is what most of the callers require. 75 */ 76 77 static int 78 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 79 { 80 int ret; 81 82 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 83 DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) { 84 *plen = (*plen) * (uint_t)sizeof (int); 85 } 86 return (ret); 87 } 88 89 /* 90 * SECTION: DDI Node Configuration 91 */ 92 93 /* 94 * init_regspec_64: 95 * 96 * If the parent #size-cells is 2, convert the upa-style or 97 * safari-style reg property from 2-size cells to 1 size cell 98 * format, ignoring the size_hi, which must be zero for devices. 99 * (It won't be zero in the memory list properties in the memory 100 * nodes, but that doesn't matter here.) 101 */ 102 struct ddi_parent_private_data * 103 init_regspec_64(dev_info_t *dip) 104 { 105 struct ddi_parent_private_data *pd; 106 dev_info_t *parent; 107 int size_cells; 108 109 /* 110 * If there are no "reg"s in the child node, return. 111 */ 112 pd = ddi_get_parent_data(dip); 113 if ((pd == NULL) || (pd->par_nreg == 0)) { 114 return (pd); 115 } 116 parent = ddi_get_parent(dip); 117 118 size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 119 DDI_PROP_DONTPASS, "#size-cells", 1); 120 121 if (size_cells != 1) { 122 123 int n, j; 124 struct regspec *irp; 125 struct reg_64 { 126 uint_t addr_hi, addr_lo, size_hi, size_lo; 127 }; 128 struct reg_64 *r64_rp; 129 struct regspec *rp; 130 uint_t len = 0; 131 int *reg_prop; 132 133 ASSERT(size_cells == 2); 134 135 /* 136 * We already looked the property up once before if 137 * pd is non-NULL. 138 */ 139 (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 140 DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len); 141 ASSERT(len != 0); 142 143 n = sizeof (struct reg_64) / sizeof (int); 144 n = len / n; 145 146 /* 147 * We're allocating a buffer the size of the PROM's property, 148 * but we're only using a smaller portion when we assign it 149 * to a regspec. We do this so that in the 150 * impl_ddi_sunbus_removechild function, we will 151 * always free the right amount of memory. 152 */ 153 irp = rp = (struct regspec *)reg_prop; 154 r64_rp = (struct reg_64 *)pd->par_reg; 155 156 for (j = 0; j < n; ++j, ++rp, ++r64_rp) { 157 ASSERT(r64_rp->size_hi == 0); 158 rp->regspec_bustype = r64_rp->addr_hi; 159 rp->regspec_addr = r64_rp->addr_lo; 160 rp->regspec_size = r64_rp->size_lo; 161 } 162 163 ddi_prop_free((void *)pd->par_reg); 164 pd->par_nreg = n; 165 pd->par_reg = irp; 166 } 167 return (pd); 168 } 169 170 /* 171 * Create a ddi_parent_private_data structure from the ddi properties of 172 * the dev_info node. 173 * 174 * The "reg" is required if the driver wishes to create mappings on behalf 175 * of the device. The "reg" property is assumed to be a list of at least 176 * one triplet 177 * 178 * <bustype, address, size>*1 179 * 180 * The "interrupt" property is no longer part of parent private data on 181 * sun4u. The interrupt parent is may not be the device tree parent. 182 * 183 * The "ranges" property describes the mapping of child addresses to parent 184 * addresses. 185 * 186 * N.B. struct rangespec is defined for the following default values: 187 * parent child 188 * #address-cells 2 2 189 * #size-cells 1 1 190 * This function doesn't deal with non-default cells and will not create 191 * ranges in such cases. 192 */ 193 void 194 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 195 { 196 struct ddi_parent_private_data *pdptr; 197 int *reg_prop, *rng_prop; 198 uint_t reg_len = 0, rng_len = 0; 199 dev_info_t *parent; 200 int parent_addr_cells, parent_size_cells; 201 int child_addr_cells, child_size_cells; 202 203 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 204 205 /* 206 * root node has no parent private data, so *ppd should 207 * be initialized for naming to work properly. 208 */ 209 if ((parent = ddi_get_parent(child)) == NULL) 210 return; 211 212 /* 213 * Set reg field of parent data from "reg" property 214 */ 215 if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len) 216 == DDI_PROP_SUCCESS) && (reg_len != 0)) { 217 pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec)); 218 pdptr->par_reg = (struct regspec *)reg_prop; 219 } 220 221 /* 222 * "ranges" property ... 223 * 224 * This function does not handle cases where #address-cells != 2 225 * and * min(parent, child) #size-cells != 1 (see bugid 4211124). 226 * 227 * Nexus drivers with such exceptions (e.g. pci ranges) 228 * should either create a separate function for handling 229 * ranges or not use parent private data to store ranges. 230 */ 231 232 /* root node has no ranges */ 233 if ((parent = ddi_get_parent(child)) == NULL) 234 return; 235 236 child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 237 DDI_PROP_DONTPASS, "#address-cells", 2); 238 child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 239 DDI_PROP_DONTPASS, "#size-cells", 1); 240 parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 241 DDI_PROP_DONTPASS, "#address-cells", 2); 242 parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 243 DDI_PROP_DONTPASS, "#size-cells", 1); 244 if (child_addr_cells != 2 || parent_addr_cells != 2 || 245 (child_size_cells != 1 && parent_size_cells != 1)) { 246 NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; " 247 "#address-cells or #size-cells have non-default value")); 248 return; 249 } 250 251 if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len) 252 == DDI_PROP_SUCCESS) { 253 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 254 pdptr->par_rng = (struct rangespec *)rng_prop; 255 } 256 } 257 258 /* 259 * Free ddi_parent_private_data structure 260 */ 261 void 262 impl_free_ddi_ppd(dev_info_t *dip) 263 { 264 struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip); 265 266 if (pdptr == NULL) 267 return; 268 269 if (pdptr->par_nrng != 0) 270 ddi_prop_free((void *)pdptr->par_rng); 271 272 if (pdptr->par_nreg != 0) 273 ddi_prop_free((void *)pdptr->par_reg); 274 275 kmem_free(pdptr, sizeof (*pdptr)); 276 ddi_set_parent_data(dip, NULL); 277 } 278 279 /* 280 * Name a child of sun busses based on the reg spec. 281 * Handles the following properties: 282 * 283 * Property value 284 * Name type 285 * 286 * reg register spec 287 * interrupts new (bus-oriented) interrupt spec 288 * ranges range spec 289 * 290 * This may be called multiple times, independent of 291 * initchild calls. 292 */ 293 static int 294 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 295 { 296 struct ddi_parent_private_data *pdptr; 297 struct regspec *rp; 298 299 /* 300 * Fill in parent-private data and this function returns to us 301 * an indication if it used "registers" to fill in the data. 302 */ 303 if (ddi_get_parent_data(child) == NULL) { 304 make_ddi_ppd(child, &pdptr); 305 ddi_set_parent_data(child, pdptr); 306 } 307 308 /* 309 * No reg property, return null string as address 310 * (e.g. root node) 311 */ 312 name[0] = '\0'; 313 if (sparc_pd_getnreg(child) == 0) { 314 return (DDI_SUCCESS); 315 } 316 317 rp = sparc_pd_getreg(child, 0); 318 (void) snprintf(name, namelen, "%x,%x", 319 rp->regspec_bustype, rp->regspec_addr); 320 return (DDI_SUCCESS); 321 } 322 323 324 /* 325 * Called from the bus_ctl op of some drivers. 326 * to implement the DDI_CTLOPS_INITCHILD operation. 327 * 328 * NEW drivers should NOT use this function, but should declare 329 * there own initchild/uninitchild handlers. (This function assumes 330 * the layout of the parent private data and the format of "reg", 331 * "ranges", "interrupts" properties and that #address-cells and 332 * #size-cells of the parent bus are defined to be default values.) 333 */ 334 int 335 impl_ddi_sunbus_initchild(dev_info_t *child) 336 { 337 char name[MAXNAMELEN]; 338 339 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 340 ddi_set_name_addr(child, name); 341 342 /* 343 * Try to merge .conf node. If successful, return failure to 344 * remove this child. 345 */ 346 if ((ndi_dev_is_persistent_node(child) == 0) && 347 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 348 impl_ddi_sunbus_removechild(child); 349 return (DDI_FAILURE); 350 } 351 return (DDI_SUCCESS); 352 } 353 354 /* 355 * A better name for this function would be impl_ddi_sunbus_uninitchild() 356 * It does not remove the child, it uninitializes it, reclaiming the 357 * resources taken by impl_ddi_sunbus_initchild. 358 */ 359 void 360 impl_ddi_sunbus_removechild(dev_info_t *dip) 361 { 362 impl_free_ddi_ppd(dip); 363 ddi_set_name_addr(dip, NULL); 364 /* 365 * Strip the node to properly convert it back to prototype form 366 */ 367 impl_rem_dev_props(dip); 368 } 369 370 /* 371 * SECTION: DDI Interrupt 372 */ 373 374 void 375 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len) 376 { 377 int i; 378 for (i = 0; i < len; i++) 379 *to = *from; 380 } 381 382 prop_1275_cell_t * 383 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len) 384 { 385 prop_1275_cell_t *match_cell = 0; 386 int32_t i; 387 388 for (i = 0; i < len; i++) 389 if (cell1[i] != cell2[i]) { 390 match_cell = &cell1[i]; 391 break; 392 } 393 394 return (match_cell); 395 } 396 397 /* 398 * get_intr_parent() is a generic routine that process a 1275 interrupt 399 * map (imap) property. This function returns a dev_info_t structure 400 * which claims ownership of the interrupt domain. 401 * It also returns the new interrupt translation within this new domain. 402 * If an interrupt-parent or interrupt-map property are not found, 403 * then we fallback to using the device tree's parent. 404 * 405 * imap entry format: 406 * <reg>,<interrupt>,<phandle>,<translated interrupt> 407 * reg - The register specification in the interrupts domain 408 * interrupt - The interrupt specification 409 * phandle - PROM handle of the device that owns the xlated interrupt domain 410 * translated interrupt - interrupt specifier in the parents domain 411 * note: <reg>,<interrupt> - The reg and interrupt can be combined to create 412 * a unique entry called a unit interrupt specifier. 413 * 414 * Here's the processing steps: 415 * step1 - If the interrupt-parent property exists, create the ispec and 416 * return the dip of the interrupt parent. 417 * step2 - Extract the interrupt-map property and the interrupt-map-mask 418 * If these don't exist, just return the device tree parent. 419 * step3 - build up the unit interrupt specifier to match against the 420 * interrupt map property 421 * step4 - Scan the interrupt-map property until a match is found 422 * step4a - Extract the interrupt parent 423 * step4b - Compare the unit interrupt specifier 424 */ 425 dev_info_t * 426 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp) 427 { 428 prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req; 429 int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz, 430 addr_cells, intr_cells, reg_len, i, j; 431 int32_t match_found = 0; 432 dev_info_t *intr_parent_dip = NULL; 433 uint32_t *intr = &hdlp->ih_vector; 434 uint32_t nodeid; 435 #ifdef DEBUG 436 static int debug = 0; 437 #endif 438 439 /* 440 * step1 441 * If we have an interrupt-parent property, this property represents 442 * the nodeid of our interrupt parent. 443 */ 444 if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 445 "interrupt-parent", -1)) != -1) { 446 intr_parent_dip = e_ddi_nodeid_to_dip(nodeid); 447 ASSERT(intr_parent_dip); 448 449 /* 450 * Attach the interrupt parent. 451 * 452 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR. 453 * Also, interrupt parent isn't held. This needs 454 * to be revisited if DR-capable platforms implement 455 * interrupt redirection. 456 */ 457 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 458 != DDI_SUCCESS) { 459 ndi_rele_devi(intr_parent_dip); 460 return (NULL); 461 } 462 463 return (intr_parent_dip); 464 } 465 466 /* 467 * step2 468 * Get interrupt map structure from PROM property 469 */ 470 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 471 "interrupt-map", (caddr_t)&imap, &imap_sz) 472 != DDI_PROP_SUCCESS) { 473 /* 474 * If we don't have an imap property, default to using the 475 * device tree. 476 */ 477 478 ndi_hold_devi(pdip); 479 return (pdip); 480 } 481 482 /* Get the interrupt mask property */ 483 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 484 "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz) 485 != DDI_PROP_SUCCESS) { 486 /* 487 * If we don't find this property, we have to fail the request 488 * because the 1275 imap property wasn't defined correctly. 489 */ 490 ASSERT(intr_parent_dip == NULL); 491 goto exit2; 492 } 493 494 /* Get the address cell size */ 495 addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 496 "#address-cells", 2); 497 498 /* Get the interrupts cell size */ 499 intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 500 "#interrupt-cells", 1); 501 502 /* 503 * step3 504 * Now lets build up the unit interrupt specifier e.g. reg,intr 505 * and apply the imap mask. match_req will hold this when we're 506 * through. 507 */ 508 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", 509 (caddr_t)®_p, ®_len) != DDI_SUCCESS) { 510 ASSERT(intr_parent_dip == NULL); 511 goto exit3; 512 } 513 514 match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) + 515 CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP); 516 517 for (i = 0; i < addr_cells; i++) 518 match_req[i] = (reg_p[i] & imap_mask[i]); 519 520 for (j = 0; j < intr_cells; i++, j++) 521 match_req[i] = (intr[j] & imap_mask[i]); 522 523 /* Calculate the imap size in cells */ 524 imap_cells = BYTES_TO_1275_CELLS(imap_sz); 525 526 #ifdef DEBUG 527 if (debug) 528 prom_printf("reg cell size 0x%x, intr cell size 0x%x, " 529 "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells, 530 (void *)match_req, (void *)imap); 531 #endif 532 533 /* 534 * Scan the imap property looking for a match of the interrupt unit 535 * specifier. This loop is rather complex since the data within the 536 * imap property may vary in size. 537 */ 538 for (scan = imap, imap_scan_cells = i = 0; 539 imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) { 540 int new_intr_cells; 541 542 /* Set the index to the nodeid field */ 543 i = addr_cells + intr_cells; 544 545 /* 546 * step4a 547 * Translate the nodeid field to a dip 548 */ 549 ASSERT(intr_parent_dip == NULL); 550 intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]); 551 552 ASSERT(intr_parent_dip != 0); 553 #ifdef DEBUG 554 if (debug) 555 prom_printf("scan 0x%p\n", (void *)scan); 556 #endif 557 /* 558 * The tmp_dip describes the new domain, get it's interrupt 559 * cell size 560 */ 561 new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0, 562 "#interrupts-cells", 1); 563 564 /* 565 * step4b 566 * See if we have a match on the interrupt unit specifier 567 */ 568 if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells) 569 == 0) { 570 uint32_t *intr; 571 572 match_found = 1; 573 574 /* 575 * If we have an imap parent whose not in our device 576 * tree path, we need to hold and install that driver. 577 */ 578 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 579 != DDI_SUCCESS) { 580 ndi_rele_devi(intr_parent_dip); 581 intr_parent_dip = (dev_info_t *)NULL; 582 goto exit4; 583 } 584 585 /* 586 * We need to handcraft an ispec along with a bus 587 * interrupt value, so we can dup it into our 588 * standard ispec structure. 589 */ 590 /* Extract the translated interrupt information */ 591 intr = kmem_alloc( 592 CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP); 593 594 for (j = 0; j < new_intr_cells; j++, i++) 595 intr[j] = scan[i]; 596 597 cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells); 598 599 kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells)); 600 601 #ifdef DEBUG 602 if (debug) 603 prom_printf("dip 0x%p\n", 604 (void *)intr_parent_dip); 605 #endif 606 break; 607 } else { 608 #ifdef DEBUG 609 if (debug) 610 prom_printf("dip 0x%p\n", 611 (void *)intr_parent_dip); 612 #endif 613 ndi_rele_devi(intr_parent_dip); 614 intr_parent_dip = NULL; 615 i += new_intr_cells; 616 } 617 } 618 619 /* 620 * If we haven't found our interrupt parent at this point, fallback 621 * to using the device tree. 622 */ 623 if (!match_found) { 624 ndi_hold_devi(pdip); 625 ASSERT(intr_parent_dip == NULL); 626 intr_parent_dip = pdip; 627 } 628 629 ASSERT(intr_parent_dip != NULL); 630 631 exit4: 632 kmem_free(reg_p, reg_len); 633 kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) + 634 CELLS_1275_TO_BYTES(intr_cells)); 635 636 exit3: 637 kmem_free(imap_mask, imap_mask_sz); 638 639 exit2: 640 kmem_free(imap, imap_sz); 641 642 return (intr_parent_dip); 643 } 644 645 /* 646 * process_intr_ops: 647 * 648 * Process the interrupt op via the interrupt parent. 649 */ 650 int 651 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op, 652 ddi_intr_handle_impl_t *hdlp, void *result) 653 { 654 int ret = DDI_FAILURE; 655 656 if (NEXUS_HAS_INTR_OP(pdip)) { 657 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops-> 658 bus_intr_op)) (pdip, rdip, op, hdlp, result); 659 } else { 660 cmn_err(CE_WARN, "Failed to process interrupt " 661 "for %s%d due to down-rev nexus driver %s%d", 662 ddi_get_name(rdip), ddi_get_instance(rdip), 663 ddi_get_name(pdip), ddi_get_instance(pdip)); 664 } 665 666 return (ret); 667 } 668 669 /*ARGSUSED*/ 670 uint_t 671 softlevel1(caddr_t arg) 672 { 673 softint(); 674 return (1); 675 } 676 677 /* 678 * indirection table, to save us some large switch statements 679 * NOTE: This must agree with "INTLEVEL_foo" constants in 680 * <sys/avintr.h> 681 */ 682 struct autovec *const vectorlist[] = { 0 }; 683 684 /* 685 * This value is exported here for the functions in avintr.c 686 */ 687 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0])); 688 689 /* 690 * Check for machine specific interrupt levels which cannot be reassigned by 691 * settrap(), sun4u version. 692 * 693 * sun4u does not support V8 SPARC "fast trap" handlers. 694 */ 695 /*ARGSUSED*/ 696 int 697 exclude_settrap(int lvl) 698 { 699 return (1); 700 } 701 702 /* 703 * Check for machine specific interrupt levels which cannot have interrupt 704 * handlers added. We allow levels 1 through 15; level 0 is nonsense. 705 */ 706 /*ARGSUSED*/ 707 int 708 exclude_level(int lvl) 709 { 710 return ((lvl < 1) || (lvl > 15)); 711 } 712 713 /* 714 * Wrapper functions used by New DDI interrupt framework. 715 */ 716 717 /* 718 * i_ddi_intr_ops: 719 */ 720 int 721 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 722 ddi_intr_handle_impl_t *hdlp, void *result) 723 { 724 dev_info_t *pdip = ddi_get_parent(dip); 725 int ret = DDI_FAILURE; 726 727 /* 728 * The following check is required to address 729 * one of the test case of ADDI test suite. 730 */ 731 if (pdip == NULL) 732 return (DDI_FAILURE); 733 734 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 735 return (process_intr_ops(pdip, rdip, op, hdlp, result)); 736 737 if (hdlp->ih_vector == 0) 738 hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum); 739 740 if (hdlp->ih_pri == 0) 741 hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum); 742 743 switch (op) { 744 case DDI_INTROP_ADDISR: 745 case DDI_INTROP_REMISR: 746 case DDI_INTROP_GETTARGET: 747 case DDI_INTROP_SETTARGET: 748 case DDI_INTROP_ENABLE: 749 case DDI_INTROP_DISABLE: 750 case DDI_INTROP_BLOCKENABLE: 751 case DDI_INTROP_BLOCKDISABLE: 752 /* 753 * Try and determine our parent and possibly an interrupt 754 * translation. intr parent dip returned held 755 */ 756 if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL) 757 goto done; 758 } 759 760 ret = process_intr_ops(pdip, rdip, op, hdlp, result); 761 762 done: 763 switch (op) { 764 case DDI_INTROP_ADDISR: 765 case DDI_INTROP_REMISR: 766 case DDI_INTROP_ENABLE: 767 case DDI_INTROP_DISABLE: 768 case DDI_INTROP_BLOCKENABLE: 769 case DDI_INTROP_BLOCKDISABLE: 770 /* Release hold acquired in get_intr_parent() */ 771 if (pdip) 772 ndi_rele_devi(pdip); 773 } 774 775 hdlp->ih_vector = 0; 776 777 return (ret); 778 } 779 780 /* 781 * i_ddi_add_ivintr: 782 */ 783 /*ARGSUSED*/ 784 int 785 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp) 786 { 787 /* 788 * If the PIL was set and is valid use it, otherwise 789 * default it to 1 790 */ 791 if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX)) 792 hdlp->ih_pri = 1; 793 794 VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri, 795 (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, 796 hdlp->ih_cb_arg2, NULL) == 0); 797 798 return (DDI_SUCCESS); 799 } 800 801 /* 802 * i_ddi_rem_ivintr: 803 */ 804 /*ARGSUSED*/ 805 void 806 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp) 807 { 808 VERIFY(rem_ivintr(hdlp->ih_vector, hdlp->ih_pri) == 0); 809 } 810 811 /* 812 * i_ddi_get_inum - Get the interrupt number property from the 813 * specified device. Note that this function is called only for 814 * the FIXED interrupt type. 815 */ 816 uint32_t 817 i_ddi_get_inum(dev_info_t *dip, uint_t inumber) 818 { 819 int32_t intrlen, intr_cells, max_intrs; 820 prop_1275_cell_t *ip, intr_sz; 821 uint32_t intr = 0; 822 823 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 824 DDI_PROP_CANSLEEP, 825 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 826 827 intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 828 "#interrupt-cells", 1); 829 830 /* adjust for number of bytes */ 831 intr_sz = CELLS_1275_TO_BYTES(intr_cells); 832 833 /* Calculate the number of interrupts */ 834 max_intrs = intrlen / intr_sz; 835 836 if (inumber < max_intrs) { 837 prop_1275_cell_t *intrp = ip; 838 839 /* Index into interrupt property */ 840 intrp += (inumber * intr_cells); 841 842 cells_1275_copy(intrp, &intr, intr_cells); 843 } 844 845 kmem_free(ip, intrlen); 846 } 847 848 return (intr); 849 } 850 851 /* 852 * i_ddi_get_intr_pri - Get the interrupt-priorities property from 853 * the specified device. Note that this function is called only for 854 * the FIXED interrupt type. 855 */ 856 uint32_t 857 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber) 858 { 859 uint32_t *intr_prio_p; 860 uint32_t pri = 0; 861 int32_t i; 862 863 /* 864 * Use the "interrupt-priorities" property to determine the 865 * the pil/ipl for the interrupt handler. 866 */ 867 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 868 "interrupt-priorities", (caddr_t)&intr_prio_p, 869 &i) == DDI_SUCCESS) { 870 if (inumber < (i / sizeof (int32_t))) 871 pri = intr_prio_p[inumber]; 872 kmem_free(intr_prio_p, i); 873 } 874 875 return (pri); 876 } 877 878 int 879 i_ddi_get_intx_nintrs(dev_info_t *dip) 880 { 881 int32_t intrlen; 882 prop_1275_cell_t intr_sz; 883 prop_1275_cell_t *ip; 884 int32_t ret = 0; 885 886 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 887 DDI_PROP_CANSLEEP, 888 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 889 890 intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 891 "#interrupt-cells", 1); 892 /* adjust for number of bytes */ 893 intr_sz = CELLS_1275_TO_BYTES(intr_sz); 894 895 ret = intrlen / intr_sz; 896 897 kmem_free(ip, intrlen); 898 } 899 900 return (ret); 901 } 902 903 /* 904 * i_ddi_add_softint - allocate and add a software interrupt. 905 * 906 * NOTE: All software interrupts that are registered through DDI 907 * should be triggered only on a single target or CPU. 908 */ 909 int 910 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 911 { 912 if ((hdlp->ih_private = (void *)add_softintr(hdlp->ih_pri, 913 hdlp->ih_cb_func, hdlp->ih_cb_arg1, SOFTINT_ST)) == NULL) 914 return (DDI_FAILURE); 915 916 return (DDI_SUCCESS); 917 } 918 919 /* 920 * i_ddi_remove_softint - remove and free a software interrupt. 921 */ 922 void 923 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 924 { 925 ASSERT(hdlp->ih_private != NULL); 926 927 if (rem_softintr((uint64_t)hdlp->ih_private) == 0) 928 hdlp->ih_private = NULL; 929 } 930 931 /* 932 * i_ddi_trigger_softint - trigger a software interrupt. 933 */ 934 int 935 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 936 { 937 int ret; 938 939 ASSERT(hdlp->ih_private != NULL); 940 941 /* Update the second argument for the software interrupt */ 942 if ((ret = update_softint_arg2((uint64_t)hdlp->ih_private, arg2)) == 0) 943 setsoftint((uint64_t)hdlp->ih_private); 944 945 return (ret ? DDI_EPENDING : DDI_SUCCESS); 946 } 947 948 /* 949 * i_ddi_set_softint_pri - change software interrupt priority. 950 */ 951 /* ARGSUSED */ 952 int 953 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 954 { 955 int ret; 956 957 ASSERT(hdlp->ih_private != NULL); 958 959 /* Update the interrupt priority for the software interrupt */ 960 ret = update_softint_pri((uint64_t)hdlp->ih_private, hdlp->ih_pri); 961 962 return (ret ? DDI_FAILURE : DDI_SUCCESS); 963 } 964 965 /*ARGSUSED*/ 966 void 967 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 968 { 969 } 970 971 /*ARGSUSED*/ 972 void 973 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 974 { 975 } 976 977 /* 978 * SECTION: DDI Memory/DMA 979 */ 980 981 /* set HAT endianess attributes from ddi_device_acc_attr */ 982 void 983 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 984 { 985 if (devaccp != NULL) { 986 if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) { 987 *hataccp &= ~HAT_ENDIAN_MASK; 988 *hataccp |= HAT_STRUCTURE_LE; 989 } 990 } 991 } 992 993 /* 994 * Check if the specified cache attribute is supported on the platform. 995 * This function must be called before i_ddi_cacheattr_to_hatacc(). 996 */ 997 boolean_t 998 i_ddi_check_cache_attr(uint_t flags) 999 { 1000 /* 1001 * The cache attributes are mutually exclusive. Any combination of 1002 * the attributes leads to a failure. 1003 */ 1004 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1005 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1006 return (B_FALSE); 1007 1008 /* 1009 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful, 1010 * but others lead to a failure. 1011 */ 1012 if (cache_attr & IOMEM_DATA_CACHED) 1013 return (B_TRUE); 1014 else 1015 return (B_FALSE); 1016 } 1017 1018 /* set HAT cache attributes from the cache attributes */ 1019 void 1020 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1021 { 1022 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1023 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1024 #if defined(lint) 1025 *hataccp = *hataccp; 1026 #endif 1027 /* 1028 * set HAT attrs according to the cache attrs. 1029 */ 1030 switch (cache_attr) { 1031 /* 1032 * The cache coherency is always maintained on SPARC, and 1033 * nothing is required. 1034 */ 1035 case IOMEM_DATA_CACHED: 1036 break; 1037 /* 1038 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are 1039 * not supported on SPARC -- this case must not occur because the 1040 * cache attribute is scrutinized before this function is called. 1041 */ 1042 case IOMEM_DATA_UNCACHED: 1043 case IOMEM_DATA_UC_WR_COMBINE: 1044 default: 1045 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1046 fname, cache_attr); 1047 } 1048 } 1049 1050 static vmem_t *little_endian_arena; 1051 static vmem_t *big_endian_arena; 1052 1053 static void * 1054 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag) 1055 { 1056 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE, 1057 segkmem_page_create, NULL)); 1058 } 1059 1060 static void * 1061 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag) 1062 { 1063 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE, 1064 segkmem_page_create, NULL)); 1065 } 1066 1067 void 1068 ka_init(void) 1069 { 1070 little_endian_arena = vmem_create("little_endian", NULL, 0, 1, 1071 segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP); 1072 big_endian_arena = vmem_create("big_endian", NULL, 0, 1, 1073 segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP); 1074 } 1075 1076 /* 1077 * Allocate from the system, aligned on a specific boundary. 1078 * The alignment, if non-zero, must be a power of 2. 1079 */ 1080 static void * 1081 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags) 1082 { 1083 size_t *addr, *raddr, rsize; 1084 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1085 1086 align = MAX(align, hdrsize); 1087 ASSERT((align & (align - 1)) == 0); 1088 1089 /* 1090 * We need to allocate 1091 * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment) 1092 * bytes to be sure we have enough freedom to satisfy the request. 1093 * Since the buffer alignment depends on the request size, this is 1094 * not straightforward to use directly. 1095 * 1096 * kmem guarantees that any allocation of a 64-byte multiple will be 1097 * 64-byte aligned. Since rounding up the request could add more 1098 * than we save, we compute the size with and without alignment, and 1099 * use the smaller of the two. 1100 */ 1101 rsize = size + hdrsize + align; 1102 1103 if (endian_flags == DDI_STRUCTURE_LE_ACC) { 1104 raddr = vmem_alloc(little_endian_arena, rsize, 1105 cansleep ? VM_SLEEP : VM_NOSLEEP); 1106 } else { 1107 raddr = vmem_alloc(big_endian_arena, rsize, 1108 cansleep ? VM_SLEEP : VM_NOSLEEP); 1109 } 1110 1111 if (raddr == NULL) 1112 return (NULL); 1113 1114 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1115 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1116 1117 addr[-3] = (size_t)endian_flags; 1118 addr[-2] = (size_t)raddr; 1119 addr[-1] = rsize; 1120 1121 return (addr); 1122 } 1123 1124 static void 1125 kfreea(void *addr) 1126 { 1127 size_t *saddr = addr; 1128 1129 if (saddr[-3] == DDI_STRUCTURE_LE_ACC) 1130 vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]); 1131 else 1132 vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]); 1133 } 1134 1135 int 1136 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1137 size_t length, int cansleep, int flags, 1138 ddi_device_acc_attr_t *accattrp, 1139 caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep) 1140 { 1141 caddr_t a; 1142 int iomin, align, streaming; 1143 uint_t endian_flags = DDI_NEVERSWAP_ACC; 1144 1145 #if defined(lint) 1146 *handlep = *handlep; 1147 #endif 1148 1149 /* 1150 * Check legality of arguments 1151 */ 1152 if (length == 0 || kaddrp == NULL || attr == NULL) { 1153 return (DDI_FAILURE); 1154 } 1155 1156 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1157 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1158 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1159 return (DDI_FAILURE); 1160 } 1161 1162 /* 1163 * check if a streaming sequential xfer is requested. 1164 */ 1165 streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0; 1166 1167 /* 1168 * Drivers for 64-bit capable SBus devices will encode 1169 * the burtsizes for 64-bit xfers in the upper 16-bits. 1170 * For DMA alignment, we use the most restrictive 1171 * alignment of 32-bit and 64-bit xfers. 1172 */ 1173 iomin = (attr->dma_attr_burstsizes & 0xffff) | 1174 ((attr->dma_attr_burstsizes >> 16) & 0xffff); 1175 /* 1176 * If a driver set burtsizes to 0, we give him byte alignment. 1177 * Otherwise align at the burtsizes boundary. 1178 */ 1179 if (iomin == 0) 1180 iomin = 1; 1181 else 1182 iomin = 1 << (ddi_fls(iomin) - 1); 1183 iomin = maxbit(iomin, attr->dma_attr_minxfer); 1184 iomin = maxbit(iomin, attr->dma_attr_align); 1185 iomin = ddi_iomin(dip, iomin, streaming); 1186 if (iomin == 0) 1187 return (DDI_FAILURE); 1188 1189 ASSERT((iomin & (iomin - 1)) == 0); 1190 ASSERT(iomin >= attr->dma_attr_minxfer); 1191 ASSERT(iomin >= attr->dma_attr_align); 1192 1193 length = P2ROUNDUP(length, iomin); 1194 align = iomin; 1195 1196 if (accattrp != NULL) 1197 endian_flags = accattrp->devacc_attr_endian_flags; 1198 1199 a = kalloca(length, align, cansleep, endian_flags); 1200 if ((*kaddrp = a) == 0) { 1201 return (DDI_FAILURE); 1202 } else { 1203 if (real_length) { 1204 *real_length = length; 1205 } 1206 if (handlep) { 1207 /* 1208 * assign handle information 1209 */ 1210 impl_acc_hdl_init(handlep); 1211 } 1212 return (DDI_SUCCESS); 1213 } 1214 } 1215 1216 /* 1217 * covert old DMA limits structure to DMA attribute structure 1218 * and continue 1219 */ 1220 int 1221 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1222 size_t length, int cansleep, int streaming, 1223 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1224 uint_t *real_length, ddi_acc_hdl_t *ap) 1225 { 1226 ddi_dma_attr_t dma_attr, *attrp; 1227 size_t rlen; 1228 int ret; 1229 1230 ASSERT(limits); 1231 attrp = &dma_attr; 1232 attrp->dma_attr_version = DMA_ATTR_V0; 1233 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1234 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1235 attrp->dma_attr_count_max = (uint64_t)-1; 1236 attrp->dma_attr_align = 1; 1237 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1238 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1239 attrp->dma_attr_maxxfer = (uint64_t)-1; 1240 attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max; 1241 attrp->dma_attr_sgllen = 1; 1242 attrp->dma_attr_granular = 1; 1243 attrp->dma_attr_flags = 0; 1244 1245 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1246 accattrp, kaddrp, &rlen, ap); 1247 if (ret == DDI_SUCCESS) { 1248 if (real_length) 1249 *real_length = (uint_t)rlen; 1250 } 1251 return (ret); 1252 } 1253 1254 /* ARGSUSED */ 1255 void 1256 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1257 { 1258 kfreea(kaddr); 1259 } 1260 1261 /* 1262 * SECTION: DDI Data Access 1263 */ 1264 1265 static uintptr_t impl_acc_hdl_id = 0; 1266 1267 /* 1268 * access handle allocator 1269 */ 1270 ddi_acc_hdl_t * 1271 impl_acc_hdl_get(ddi_acc_handle_t hdl) 1272 { 1273 /* 1274 * Extract the access handle address from the DDI implemented 1275 * access handle 1276 */ 1277 return (&((ddi_acc_impl_t *)hdl)->ahi_common); 1278 } 1279 1280 ddi_acc_handle_t 1281 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg) 1282 { 1283 ddi_acc_impl_t *hp; 1284 on_trap_data_t *otp; 1285 int sleepflag; 1286 1287 sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); 1288 1289 /* 1290 * Allocate and initialize the data access handle and error status. 1291 */ 1292 if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL) 1293 goto fail; 1294 if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc( 1295 sizeof (ndi_err_t), sleepflag)) == NULL) { 1296 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1297 goto fail; 1298 } 1299 if ((otp = (on_trap_data_t *)kmem_zalloc( 1300 sizeof (on_trap_data_t), sleepflag)) == NULL) { 1301 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1302 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1303 goto fail; 1304 } 1305 hp->ahi_err->err_ontrap = otp; 1306 hp->ahi_common.ah_platform_private = (void *)hp; 1307 1308 return ((ddi_acc_handle_t)hp); 1309 fail: 1310 if ((waitfp != (int (*)())KM_SLEEP) && 1311 (waitfp != (int (*)())KM_NOSLEEP)) 1312 ddi_set_callback(waitfp, arg, &impl_acc_hdl_id); 1313 return (NULL); 1314 } 1315 1316 void 1317 impl_acc_hdl_free(ddi_acc_handle_t handle) 1318 { 1319 ddi_acc_impl_t *hp; 1320 1321 /* 1322 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *), 1323 * because that's what we allocated in impl_acc_hdl_alloc() above. 1324 */ 1325 hp = (ddi_acc_impl_t *)handle; 1326 if (hp) { 1327 kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t)); 1328 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1329 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1330 if (impl_acc_hdl_id) 1331 ddi_run_callback(&impl_acc_hdl_id); 1332 } 1333 } 1334 1335 #define PCI_GET_MP_PFN(mp, page_no) ((mp)->dmai_ndvmapages == 1 ? \ 1336 (pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no])) 1337 1338 /* 1339 * Function called after a dma fault occurred to find out whether the 1340 * fault address is associated with a driver that is able to handle faults 1341 * and recover from faults. 1342 */ 1343 /* ARGSUSED */ 1344 int 1345 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr, 1346 const void *not_used) 1347 { 1348 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle; 1349 pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr); 1350 pfn_t comp_pfn; 1351 1352 /* 1353 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults. 1354 */ 1355 int page; 1356 1357 ASSERT(mp); 1358 for (page = 0; page < mp->dmai_ndvmapages; page++) { 1359 comp_pfn = PCI_GET_MP_PFN(mp, page); 1360 if (fault_pfn == comp_pfn) 1361 return (DDI_FM_NONFATAL); 1362 } 1363 return (DDI_FM_UNKNOWN); 1364 } 1365 1366 /* 1367 * Function used to check if a given access handle owns the failing address. 1368 * Called by ndi_fmc_error, when we detect a PIO error. 1369 */ 1370 /* ARGSUSED */ 1371 static int 1372 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr, 1373 const void *not_used) 1374 { 1375 pfn_t pfn, fault_pfn; 1376 ddi_acc_hdl_t *hp; 1377 1378 hp = impl_acc_hdl_get((ddi_acc_handle_t)handle); 1379 1380 ASSERT(hp); 1381 1382 if (addr != NULL) { 1383 pfn = hp->ah_pfn; 1384 fault_pfn = mmu_btop(*(uint64_t *)addr); 1385 if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum)) 1386 return (DDI_FM_NONFATAL); 1387 } 1388 return (DDI_FM_UNKNOWN); 1389 } 1390 1391 void 1392 impl_acc_err_init(ddi_acc_hdl_t *handlep) 1393 { 1394 int fmcap; 1395 ndi_err_t *errp; 1396 on_trap_data_t *otp; 1397 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep; 1398 1399 fmcap = ddi_fm_capable(handlep->ah_dip); 1400 1401 if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 || 1402 !DDI_FM_ACC_ERR_CAP(fmcap)) { 1403 handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC; 1404 } else if (DDI_FM_ACC_ERR_CAP(fmcap)) { 1405 if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 1406 i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP, 1407 NULL, DDI_NOSLEEP); 1408 } else { 1409 errp = hp->ahi_err; 1410 otp = (on_trap_data_t *)errp->err_ontrap; 1411 otp->ot_handle = (void *)(hp); 1412 otp->ot_prot = OT_DATA_ACCESS; 1413 if (handlep->ah_acc.devacc_attr_access == 1414 DDI_CAUTIOUS_ACC) 1415 otp->ot_trampoline = 1416 (uintptr_t)&i_ddi_caut_trampoline; 1417 else 1418 otp->ot_trampoline = 1419 (uintptr_t)&i_ddi_prot_trampoline; 1420 errp->err_status = DDI_FM_OK; 1421 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 1422 errp->err_cf = impl_acc_check; 1423 } 1424 } 1425 } 1426 1427 void 1428 impl_acc_hdl_init(ddi_acc_hdl_t *handlep) 1429 { 1430 ddi_acc_impl_t *hp; 1431 1432 ASSERT(handlep); 1433 1434 hp = (ddi_acc_impl_t *)handlep; 1435 1436 /* 1437 * check for SW byte-swapping 1438 */ 1439 hp->ahi_get8 = i_ddi_get8; 1440 hp->ahi_put8 = i_ddi_put8; 1441 hp->ahi_rep_get8 = i_ddi_rep_get8; 1442 hp->ahi_rep_put8 = i_ddi_rep_put8; 1443 if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) { 1444 hp->ahi_get16 = i_ddi_swap_get16; 1445 hp->ahi_get32 = i_ddi_swap_get32; 1446 hp->ahi_get64 = i_ddi_swap_get64; 1447 hp->ahi_put16 = i_ddi_swap_put16; 1448 hp->ahi_put32 = i_ddi_swap_put32; 1449 hp->ahi_put64 = i_ddi_swap_put64; 1450 hp->ahi_rep_get16 = i_ddi_swap_rep_get16; 1451 hp->ahi_rep_get32 = i_ddi_swap_rep_get32; 1452 hp->ahi_rep_get64 = i_ddi_swap_rep_get64; 1453 hp->ahi_rep_put16 = i_ddi_swap_rep_put16; 1454 hp->ahi_rep_put32 = i_ddi_swap_rep_put32; 1455 hp->ahi_rep_put64 = i_ddi_swap_rep_put64; 1456 } else { 1457 hp->ahi_get16 = i_ddi_get16; 1458 hp->ahi_get32 = i_ddi_get32; 1459 hp->ahi_get64 = i_ddi_get64; 1460 hp->ahi_put16 = i_ddi_put16; 1461 hp->ahi_put32 = i_ddi_put32; 1462 hp->ahi_put64 = i_ddi_put64; 1463 hp->ahi_rep_get16 = i_ddi_rep_get16; 1464 hp->ahi_rep_get32 = i_ddi_rep_get32; 1465 hp->ahi_rep_get64 = i_ddi_rep_get64; 1466 hp->ahi_rep_put16 = i_ddi_rep_put16; 1467 hp->ahi_rep_put32 = i_ddi_rep_put32; 1468 hp->ahi_rep_put64 = i_ddi_rep_put64; 1469 } 1470 1471 /* Legacy fault flags and support */ 1472 hp->ahi_fault_check = i_ddi_acc_fault_check; 1473 hp->ahi_fault_notify = i_ddi_acc_fault_notify; 1474 hp->ahi_fault = 0; 1475 impl_acc_err_init(handlep); 1476 } 1477 1478 void 1479 i_ddi_acc_set_fault(ddi_acc_handle_t handle) 1480 { 1481 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1482 1483 if (!hp->ahi_fault) { 1484 hp->ahi_fault = 1; 1485 (*hp->ahi_fault_notify)(hp); 1486 } 1487 } 1488 1489 void 1490 i_ddi_acc_clr_fault(ddi_acc_handle_t handle) 1491 { 1492 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1493 1494 if (hp->ahi_fault) { 1495 hp->ahi_fault = 0; 1496 (*hp->ahi_fault_notify)(hp); 1497 } 1498 } 1499 1500 /* ARGSUSED */ 1501 void 1502 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp) 1503 { 1504 /* Default version, does nothing */ 1505 } 1506 1507 /* 1508 * SECTION: Misc functions 1509 */ 1510 1511 /* 1512 * instance wrappers 1513 */ 1514 /*ARGSUSED*/ 1515 uint_t 1516 impl_assign_instance(dev_info_t *dip) 1517 { 1518 return ((uint_t)-1); 1519 } 1520 1521 /*ARGSUSED*/ 1522 int 1523 impl_keep_instance(dev_info_t *dip) 1524 { 1525 return (DDI_FAILURE); 1526 } 1527 1528 /*ARGSUSED*/ 1529 int 1530 impl_free_instance(dev_info_t *dip) 1531 { 1532 return (DDI_FAILURE); 1533 } 1534 1535 /*ARGSUSED*/ 1536 int 1537 impl_check_cpu(dev_info_t *devi) 1538 { 1539 return (DDI_SUCCESS); 1540 } 1541 1542 1543 static const char *nocopydevs[] = { 1544 "SUNW,ffb", 1545 "SUNW,afb", 1546 NULL 1547 }; 1548 1549 /* 1550 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 1551 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 1552 */ 1553 /*ARGSUSED*/ 1554 int 1555 e_ddi_copyfromdev(dev_info_t *devi, 1556 off_t off, const void *devaddr, void *kaddr, size_t len) 1557 { 1558 const char **argv; 1559 1560 for (argv = nocopydevs; *argv; argv++) 1561 if (strcmp(ddi_binding_name(devi), *argv) == 0) { 1562 bzero(kaddr, len); 1563 return (0); 1564 } 1565 1566 bcopy(devaddr, kaddr, len); 1567 return (0); 1568 } 1569 1570 /* 1571 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 1572 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 1573 */ 1574 /*ARGSUSED*/ 1575 int 1576 e_ddi_copytodev(dev_info_t *devi, 1577 off_t off, const void *kaddr, void *devaddr, size_t len) 1578 { 1579 const char **argv; 1580 1581 for (argv = nocopydevs; *argv; argv++) 1582 if (strcmp(ddi_binding_name(devi), *argv) == 0) 1583 return (1); 1584 1585 bcopy(kaddr, devaddr, len); 1586 return (0); 1587 } 1588 1589 /* 1590 * Boot Configuration 1591 */ 1592 idprom_t idprom; 1593 1594 /* 1595 * Configure the hardware on the system. 1596 * Called before the rootfs is mounted 1597 */ 1598 void 1599 configure(void) 1600 { 1601 extern void i_ddi_init_root(); 1602 1603 /* We better have released boot by this time! */ 1604 ASSERT(!bootops); 1605 1606 /* 1607 * Determine whether or not to use the fpu, V9 SPARC cpus 1608 * always have one. Could check for existence of a fp queue, 1609 * Ultra I, II and IIa do not have a fp queue. 1610 */ 1611 if (fpu_exists) 1612 fpu_probe(); 1613 else 1614 cmn_err(CE_CONT, "FPU not in use\n"); 1615 1616 #if 0 /* XXXQ - not necessary for sun4u */ 1617 /* 1618 * This following line fixes bugid 1041296; we need to do a 1619 * prom_nextnode(0) because this call ALSO patches the DMA+ 1620 * bug in Campus-B and Phoenix. The prom uncaches the traptable 1621 * page as a side-effect of devr_next(0) (which prom_nextnode calls), 1622 * so this *must* be executed early on. (XXX This is untrue for sun4u) 1623 */ 1624 (void) prom_nextnode((pnode_t)0); 1625 #endif 1626 1627 /* 1628 * Initialize devices on the machine. 1629 * Uses configuration tree built by the PROMs to determine what 1630 * is present, and builds a tree of prototype dev_info nodes 1631 * corresponding to the hardware which identified itself. 1632 */ 1633 i_ddi_init_root(); 1634 1635 #ifdef DDI_PROP_DEBUG 1636 (void) ddi_prop_debug(1); /* Enable property debugging */ 1637 #endif /* DDI_PROP_DEBUG */ 1638 } 1639 1640 /* 1641 * The "status" property indicates the operational status of a device. 1642 * If this property is present, the value is a string indicating the 1643 * status of the device as follows: 1644 * 1645 * "okay" operational. 1646 * "disabled" not operational, but might become operational. 1647 * "fail" not operational because a fault has been detected, 1648 * and it is unlikely that the device will become 1649 * operational without repair. no additional details 1650 * are available. 1651 * "fail-xxx" not operational because a fault has been detected, 1652 * and it is unlikely that the device will become 1653 * operational without repair. "xxx" is additional 1654 * human-readable information about the particular 1655 * fault condition that was detected. 1656 * 1657 * The absence of this property means that the operational status is 1658 * unknown or okay. 1659 * 1660 * This routine checks the status property of the specified device node 1661 * and returns 0 if the operational status indicates failure, and 1 otherwise. 1662 * 1663 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 1664 * And, in that case, the property may not even be a string. So we carefully 1665 * check for the value "fail", in the beginning of the string, noting 1666 * the property length. 1667 */ 1668 int 1669 status_okay(int id, char *buf, int buflen) 1670 { 1671 char status_buf[OBP_MAXPROPNAME]; 1672 char *bufp = buf; 1673 int len = buflen; 1674 int proplen; 1675 static const char *status = "status"; 1676 static const char *fail = "fail"; 1677 size_t fail_len = strlen(fail); 1678 1679 /* 1680 * Get the proplen ... if it's smaller than "fail", 1681 * or doesn't exist ... then we don't care, since 1682 * the value can't begin with the char string "fail". 1683 * 1684 * NB: proplen, if it's a string, includes the NULL in the 1685 * the size of the property, and fail_len does not. 1686 */ 1687 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 1688 if (proplen <= fail_len) /* nonexistent or uninteresting len */ 1689 return (1); 1690 1691 /* 1692 * if a buffer was provided, use it 1693 */ 1694 if ((buf == (char *)NULL) || (buflen <= 0)) { 1695 bufp = status_buf; 1696 len = sizeof (status_buf); 1697 } 1698 *bufp = (char)0; 1699 1700 /* 1701 * Get the property into the buffer, to the extent of the buffer, 1702 * and in case the buffer is smaller than the property size, 1703 * NULL terminate the buffer. (This handles the case where 1704 * a buffer was passed in and the caller wants to print the 1705 * value, but the buffer was too small). 1706 */ 1707 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 1708 (caddr_t)bufp, len); 1709 *(bufp + len - 1) = (char)0; 1710 1711 /* 1712 * If the value begins with the char string "fail", 1713 * then it means the node is failed. We don't care 1714 * about any other values. We assume the node is ok 1715 * although it might be 'disabled'. 1716 */ 1717 if (strncmp(bufp, fail, fail_len) == 0) 1718 return (0); 1719 1720 return (1); 1721 } 1722 1723 1724 /* 1725 * We set the cpu type from the idprom, if we can. 1726 * Note that we just read out the contents of it, for the most part. 1727 */ 1728 void 1729 setcputype(void) 1730 { 1731 /* 1732 * We cache the idprom info early on so that we don't 1733 * rummage through the NVRAM unnecessarily later. 1734 */ 1735 (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom)); 1736 } 1737 1738 /* 1739 * Here is where we actually infer meanings to the members of idprom_t 1740 */ 1741 void 1742 parse_idprom(void) 1743 { 1744 if (idprom.id_format == IDFORM_1) { 1745 (void) localetheraddr((struct ether_addr *)idprom.id_ether, 1746 (struct ether_addr *)NULL); 1747 (void) snprintf(hw_serial, HW_HOSTID_LEN, "%u", 1748 (idprom.id_machine << 24) + idprom.id_serial); 1749 } else 1750 prom_printf("Invalid format code in IDprom.\n"); 1751 } 1752 1753 /* 1754 * Allow for implementation specific correction of PROM property values. 1755 */ 1756 /*ARGSUSED*/ 1757 void 1758 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 1759 caddr_t buffer) 1760 { 1761 /* 1762 * There are no adjustments needed in this implementation. 1763 */ 1764 } 1765 1766 /* 1767 * The following functions ready a cautious request to go up to the nexus 1768 * driver. It is up to the nexus driver to decide how to process the request. 1769 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 1770 * differently. 1771 */ 1772 1773 static void 1774 i_ddi_caut_getput_ctlops( 1775 ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size, 1776 size_t repcount, uint_t flags, ddi_ctl_enum_t cmd) 1777 { 1778 peekpoke_ctlops_t cautacc_ctlops_arg; 1779 1780 cautacc_ctlops_arg.size = size; 1781 cautacc_ctlops_arg.dev_addr = dev_addr; 1782 cautacc_ctlops_arg.host_addr = host_addr; 1783 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 1784 cautacc_ctlops_arg.repcount = repcount; 1785 cautacc_ctlops_arg.flags = flags; 1786 1787 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 1788 &cautacc_ctlops_arg, NULL); 1789 } 1790 1791 uint8_t 1792 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 1793 { 1794 uint8_t value; 1795 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1796 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 1797 1798 return (value); 1799 } 1800 1801 uint16_t 1802 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 1803 { 1804 uint16_t value; 1805 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1806 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 1807 1808 return (value); 1809 } 1810 1811 uint32_t 1812 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 1813 { 1814 uint32_t value; 1815 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1816 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 1817 1818 return (value); 1819 } 1820 1821 uint64_t 1822 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 1823 { 1824 uint64_t value; 1825 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1826 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 1827 1828 return (value); 1829 } 1830 1831 void 1832 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 1833 { 1834 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1835 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 1836 } 1837 1838 void 1839 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 1840 { 1841 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1842 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 1843 } 1844 1845 void 1846 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 1847 { 1848 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1849 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 1850 } 1851 1852 void 1853 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 1854 { 1855 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1856 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 1857 } 1858 1859 void 1860 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1861 size_t repcount, uint_t flags) 1862 { 1863 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1864 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 1865 } 1866 1867 void 1868 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1869 uint16_t *dev_addr, size_t repcount, uint_t flags) 1870 { 1871 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1872 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 1873 } 1874 1875 void 1876 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1877 uint32_t *dev_addr, size_t repcount, uint_t flags) 1878 { 1879 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1880 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 1881 } 1882 1883 void 1884 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1885 uint64_t *dev_addr, size_t repcount, uint_t flags) 1886 { 1887 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1888 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 1889 } 1890 1891 void 1892 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1893 size_t repcount, uint_t flags) 1894 { 1895 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1896 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 1897 } 1898 1899 void 1900 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1901 uint16_t *dev_addr, size_t repcount, uint_t flags) 1902 { 1903 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1904 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 1905 } 1906 1907 void 1908 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1909 uint32_t *dev_addr, size_t repcount, uint_t flags) 1910 { 1911 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1912 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 1913 } 1914 1915 void 1916 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1917 uint64_t *dev_addr, size_t repcount, uint_t flags) 1918 { 1919 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1920 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 1921 } 1922 1923 /* 1924 * This is called only to process peek/poke when the DIP is NULL. 1925 * Assume that this is for memory, as nexi take care of device safe accesses. 1926 */ 1927 int 1928 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 1929 { 1930 int err = DDI_SUCCESS; 1931 on_trap_data_t otd; 1932 1933 /* Set up protected environment. */ 1934 if (!on_trap(&otd, OT_DATA_ACCESS)) { 1935 uintptr_t tramp = otd.ot_trampoline; 1936 1937 if (cmd == DDI_CTLOPS_POKE) { 1938 otd.ot_trampoline = (uintptr_t)&poke_fault; 1939 err = do_poke(in_args->size, (void *)in_args->dev_addr, 1940 (void *)in_args->host_addr); 1941 } else { 1942 otd.ot_trampoline = (uintptr_t)&peek_fault; 1943 err = do_peek(in_args->size, (void *)in_args->dev_addr, 1944 (void *)in_args->host_addr); 1945 } 1946 otd.ot_trampoline = tramp; 1947 } else 1948 err = DDI_FAILURE; 1949 1950 /* Take down protected environment. */ 1951 no_trap(); 1952 1953 return (err); 1954 } 1955 1956 /* 1957 * Platform independent DR routines 1958 */ 1959 1960 static int 1961 ndi2errno(int n) 1962 { 1963 int err = 0; 1964 1965 switch (n) { 1966 case NDI_NOMEM: 1967 err = ENOMEM; 1968 break; 1969 case NDI_BUSY: 1970 err = EBUSY; 1971 break; 1972 case NDI_FAULT: 1973 err = EFAULT; 1974 break; 1975 case NDI_FAILURE: 1976 err = EIO; 1977 break; 1978 case NDI_SUCCESS: 1979 break; 1980 case NDI_BADHANDLE: 1981 default: 1982 err = EINVAL; 1983 break; 1984 } 1985 return (err); 1986 } 1987 1988 /* 1989 * Prom tree node list 1990 */ 1991 struct ptnode { 1992 pnode_t nodeid; 1993 struct ptnode *next; 1994 }; 1995 1996 /* 1997 * Prom tree walk arg 1998 */ 1999 struct pta { 2000 dev_info_t *pdip; 2001 devi_branch_t *bp; 2002 uint_t flags; 2003 dev_info_t *fdip; 2004 struct ptnode *head; 2005 }; 2006 2007 static void 2008 visit_node(pnode_t nodeid, struct pta *ap) 2009 { 2010 struct ptnode **nextp; 2011 int (*select)(pnode_t, void *, uint_t); 2012 2013 ASSERT(nodeid != OBP_NONODE && nodeid != OBP_BADNODE); 2014 2015 select = ap->bp->create.prom_branch_select; 2016 2017 ASSERT(select); 2018 2019 if (select(nodeid, ap->bp->arg, 0) == DDI_SUCCESS) { 2020 2021 for (nextp = &ap->head; *nextp; nextp = &(*nextp)->next) 2022 ; 2023 2024 *nextp = kmem_zalloc(sizeof (struct ptnode), KM_SLEEP); 2025 2026 (*nextp)->nodeid = nodeid; 2027 } 2028 2029 if ((ap->flags & DEVI_BRANCH_CHILD) == DEVI_BRANCH_CHILD) 2030 return; 2031 2032 nodeid = prom_childnode(nodeid); 2033 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { 2034 visit_node(nodeid, ap); 2035 nodeid = prom_nextnode(nodeid); 2036 } 2037 } 2038 2039 /* 2040 * NOTE: The caller of this function must check for device contracts 2041 * or LDI callbacks against this dip before setting the dip offline. 2042 */ 2043 static int 2044 set_infant_dip_offline(dev_info_t *dip, void *arg) 2045 { 2046 char *path = (char *)arg; 2047 2048 ASSERT(dip); 2049 ASSERT(arg); 2050 2051 if (i_ddi_node_state(dip) >= DS_ATTACHED) { 2052 (void) ddi_pathname(dip, path); 2053 cmn_err(CE_WARN, "Attempt to set offline flag on attached " 2054 "node: %s", path); 2055 return (DDI_FAILURE); 2056 } 2057 2058 mutex_enter(&(DEVI(dip)->devi_lock)); 2059 if (!DEVI_IS_DEVICE_OFFLINE(dip)) 2060 DEVI_SET_DEVICE_OFFLINE(dip); 2061 mutex_exit(&(DEVI(dip)->devi_lock)); 2062 2063 return (DDI_SUCCESS); 2064 } 2065 2066 typedef struct result { 2067 char *path; 2068 int result; 2069 } result_t; 2070 2071 static int 2072 dip_set_offline(dev_info_t *dip, void *arg) 2073 { 2074 int end; 2075 result_t *resp = (result_t *)arg; 2076 2077 ASSERT(dip); 2078 ASSERT(resp); 2079 2080 /* 2081 * We stop the walk if e_ddi_offline_notify() returns 2082 * failure, because this implies that one or more consumers 2083 * (either LDI or contract based) has blocked the offline. 2084 * So there is no point in conitnuing the walk 2085 */ 2086 if (e_ddi_offline_notify(dip) == DDI_FAILURE) { 2087 resp->result = DDI_FAILURE; 2088 return (DDI_WALK_TERMINATE); 2089 } 2090 2091 /* 2092 * If set_infant_dip_offline() returns failure, it implies 2093 * that we failed to set a particular dip offline. This 2094 * does not imply that the offline as a whole should fail. 2095 * We want to do the best we can, so we continue the walk. 2096 */ 2097 if (set_infant_dip_offline(dip, resp->path) == DDI_SUCCESS) 2098 end = DDI_SUCCESS; 2099 else 2100 end = DDI_FAILURE; 2101 2102 e_ddi_offline_finalize(dip, end); 2103 2104 return (DDI_WALK_CONTINUE); 2105 } 2106 2107 /* 2108 * The call to e_ddi_offline_notify() exists for the 2109 * unlikely error case that a branch we are trying to 2110 * create already exists and has device contracts or LDI 2111 * event callbacks against it. 2112 * 2113 * We allow create to succeed for such branches only if 2114 * no constraints block the offline. 2115 */ 2116 static int 2117 branch_set_offline(dev_info_t *dip, char *path) 2118 { 2119 int circ; 2120 int end; 2121 result_t res; 2122 2123 2124 if (e_ddi_offline_notify(dip) == DDI_FAILURE) { 2125 return (DDI_FAILURE); 2126 } 2127 2128 if (set_infant_dip_offline(dip, path) == DDI_SUCCESS) 2129 end = DDI_SUCCESS; 2130 else 2131 end = DDI_FAILURE; 2132 2133 e_ddi_offline_finalize(dip, end); 2134 2135 if (end == DDI_FAILURE) 2136 return (DDI_FAILURE); 2137 2138 res.result = DDI_SUCCESS; 2139 res.path = path; 2140 2141 ndi_devi_enter(dip, &circ); 2142 ddi_walk_devs(ddi_get_child(dip), dip_set_offline, &res); 2143 ndi_devi_exit(dip, circ); 2144 2145 return (res.result); 2146 } 2147 2148 /*ARGSUSED*/ 2149 static int 2150 create_prom_branch(void *arg, int has_changed) 2151 { 2152 int circ; 2153 int exists, rv; 2154 pnode_t nodeid; 2155 struct ptnode *tnp; 2156 dev_info_t *dip; 2157 struct pta *ap = arg; 2158 devi_branch_t *bp; 2159 char *path; 2160 2161 ASSERT(ap); 2162 ASSERT(ap->fdip == NULL); 2163 ASSERT(ap->pdip && ndi_dev_is_prom_node(ap->pdip)); 2164 2165 bp = ap->bp; 2166 2167 nodeid = ddi_get_nodeid(ap->pdip); 2168 if (nodeid == OBP_NONODE || nodeid == OBP_BADNODE) { 2169 cmn_err(CE_WARN, "create_prom_branch: invalid " 2170 "nodeid: 0x%x", nodeid); 2171 return (EINVAL); 2172 } 2173 2174 ap->head = NULL; 2175 2176 nodeid = prom_childnode(nodeid); 2177 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { 2178 visit_node(nodeid, ap); 2179 nodeid = prom_nextnode(nodeid); 2180 } 2181 2182 if (ap->head == NULL) 2183 return (ENODEV); 2184 2185 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2186 rv = 0; 2187 while ((tnp = ap->head) != NULL) { 2188 ap->head = tnp->next; 2189 2190 ndi_devi_enter(ap->pdip, &circ); 2191 2192 /* 2193 * Check if the branch already exists. 2194 */ 2195 exists = 0; 2196 dip = e_ddi_nodeid_to_dip(tnp->nodeid); 2197 if (dip != NULL) { 2198 exists = 1; 2199 2200 /* Parent is held busy, so release hold */ 2201 ndi_rele_devi(dip); 2202 #ifdef DEBUG 2203 cmn_err(CE_WARN, "create_prom_branch: dip(%p) exists" 2204 " for nodeid 0x%x", (void *)dip, tnp->nodeid); 2205 #endif 2206 } else { 2207 dip = i_ddi_create_branch(ap->pdip, tnp->nodeid); 2208 } 2209 2210 kmem_free(tnp, sizeof (struct ptnode)); 2211 2212 /* 2213 * Hold the branch if it is not already held 2214 */ 2215 if (dip && !exists) { 2216 e_ddi_branch_hold(dip); 2217 } 2218 2219 ASSERT(dip == NULL || e_ddi_branch_held(dip)); 2220 2221 /* 2222 * Set all dips in the newly created branch offline so that 2223 * only a "configure" operation can attach 2224 * the branch 2225 */ 2226 if (dip == NULL || branch_set_offline(dip, path) 2227 == DDI_FAILURE) { 2228 ndi_devi_exit(ap->pdip, circ); 2229 rv = EIO; 2230 continue; 2231 } 2232 2233 ASSERT(ddi_get_parent(dip) == ap->pdip); 2234 2235 ndi_devi_exit(ap->pdip, circ); 2236 2237 if (ap->flags & DEVI_BRANCH_CONFIGURE) { 2238 int error = e_ddi_branch_configure(dip, &ap->fdip, 0); 2239 if (error && rv == 0) 2240 rv = error; 2241 } 2242 2243 /* 2244 * Invoke devi_branch_callback() (if it exists) only for 2245 * newly created branches 2246 */ 2247 if (bp->devi_branch_callback && !exists) 2248 bp->devi_branch_callback(dip, bp->arg, 0); 2249 } 2250 2251 kmem_free(path, MAXPATHLEN); 2252 2253 return (rv); 2254 } 2255 2256 static int 2257 sid_node_create(dev_info_t *pdip, devi_branch_t *bp, dev_info_t **rdipp) 2258 { 2259 int rv, circ, len; 2260 int i, flags, ret; 2261 dev_info_t *dip; 2262 char *nbuf; 2263 char *path; 2264 static const char *noname = "<none>"; 2265 2266 ASSERT(pdip); 2267 ASSERT(DEVI_BUSY_OWNED(pdip)); 2268 2269 flags = 0; 2270 2271 /* 2272 * Creating the root of a branch ? 2273 */ 2274 if (rdipp) { 2275 *rdipp = NULL; 2276 flags = DEVI_BRANCH_ROOT; 2277 } 2278 2279 ndi_devi_alloc_sleep(pdip, (char *)noname, DEVI_SID_NODEID, &dip); 2280 rv = bp->create.sid_branch_create(dip, bp->arg, flags); 2281 2282 nbuf = kmem_alloc(OBP_MAXDRVNAME, KM_SLEEP); 2283 2284 if (rv == DDI_WALK_ERROR) { 2285 cmn_err(CE_WARN, "e_ddi_branch_create: Error setting" 2286 " properties on devinfo node %p", (void *)dip); 2287 goto fail; 2288 } 2289 2290 len = OBP_MAXDRVNAME; 2291 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 2292 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "name", nbuf, &len) 2293 != DDI_PROP_SUCCESS) { 2294 cmn_err(CE_WARN, "e_ddi_branch_create: devinfo node %p has" 2295 "no name property", (void *)dip); 2296 goto fail; 2297 } 2298 2299 ASSERT(i_ddi_node_state(dip) == DS_PROTO); 2300 if (ndi_devi_set_nodename(dip, nbuf, 0) != NDI_SUCCESS) { 2301 cmn_err(CE_WARN, "e_ddi_branch_create: cannot set name (%s)" 2302 " for devinfo node %p", nbuf, (void *)dip); 2303 goto fail; 2304 } 2305 2306 kmem_free(nbuf, OBP_MAXDRVNAME); 2307 2308 /* 2309 * Ignore bind failures just like boot does 2310 */ 2311 (void) ndi_devi_bind_driver(dip, 0); 2312 2313 switch (rv) { 2314 case DDI_WALK_CONTINUE: 2315 case DDI_WALK_PRUNESIB: 2316 ndi_devi_enter(dip, &circ); 2317 2318 i = DDI_WALK_CONTINUE; 2319 for (; i == DDI_WALK_CONTINUE; ) { 2320 i = sid_node_create(dip, bp, NULL); 2321 } 2322 2323 ASSERT(i == DDI_WALK_ERROR || i == DDI_WALK_PRUNESIB); 2324 if (i == DDI_WALK_ERROR) 2325 rv = i; 2326 /* 2327 * If PRUNESIB stop creating siblings 2328 * of dip's child. Subsequent walk behavior 2329 * is determined by rv returned by dip. 2330 */ 2331 2332 ndi_devi_exit(dip, circ); 2333 break; 2334 case DDI_WALK_TERMINATE: 2335 /* 2336 * Don't create children and ask our parent 2337 * to not create siblings either. 2338 */ 2339 rv = DDI_WALK_PRUNESIB; 2340 break; 2341 case DDI_WALK_PRUNECHILD: 2342 /* 2343 * Don't create children, but ask parent to continue 2344 * with siblings. 2345 */ 2346 rv = DDI_WALK_CONTINUE; 2347 break; 2348 default: 2349 ASSERT(0); 2350 break; 2351 } 2352 2353 if (rdipp) 2354 *rdipp = dip; 2355 2356 /* 2357 * Set device offline - only the "configure" op should cause an attach. 2358 * Note that it is safe to set the dip offline without checking 2359 * for either device contract or layered driver (LDI) based constraints 2360 * since there cannot be any contracts or LDI opens of this device. 2361 * This is because this node is a newly created dip with the parent busy 2362 * held, so no other thread can come in and attach this dip. A dip that 2363 * has never been attached cannot have contracts since by definition 2364 * a device contract (an agreement between a process and a device minor 2365 * node) can only be created against a device that has minor nodes 2366 * i.e is attached. Similarly an LDI open will only succeed if the 2367 * dip is attached. We assert below that the dip is not attached. 2368 */ 2369 ASSERT(i_ddi_node_state(dip) < DS_ATTACHED); 2370 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2371 ret = set_infant_dip_offline(dip, path); 2372 ASSERT(ret == DDI_SUCCESS); 2373 kmem_free(path, MAXPATHLEN); 2374 2375 return (rv); 2376 fail: 2377 (void) ndi_devi_free(dip); 2378 kmem_free(nbuf, OBP_MAXDRVNAME); 2379 return (DDI_WALK_ERROR); 2380 } 2381 2382 static int 2383 create_sid_branch( 2384 dev_info_t *pdip, 2385 devi_branch_t *bp, 2386 dev_info_t **dipp, 2387 uint_t flags) 2388 { 2389 int rv = 0, state = DDI_WALK_CONTINUE; 2390 dev_info_t *rdip; 2391 2392 while (state == DDI_WALK_CONTINUE) { 2393 int circ; 2394 2395 ndi_devi_enter(pdip, &circ); 2396 2397 state = sid_node_create(pdip, bp, &rdip); 2398 if (rdip == NULL) { 2399 ndi_devi_exit(pdip, circ); 2400 ASSERT(state == DDI_WALK_ERROR); 2401 break; 2402 } 2403 2404 e_ddi_branch_hold(rdip); 2405 2406 ndi_devi_exit(pdip, circ); 2407 2408 if (flags & DEVI_BRANCH_CONFIGURE) { 2409 int error = e_ddi_branch_configure(rdip, dipp, 0); 2410 if (error && rv == 0) 2411 rv = error; 2412 } 2413 2414 /* 2415 * devi_branch_callback() is optional 2416 */ 2417 if (bp->devi_branch_callback) 2418 bp->devi_branch_callback(rdip, bp->arg, 0); 2419 } 2420 2421 ASSERT(state == DDI_WALK_ERROR || state == DDI_WALK_PRUNESIB); 2422 2423 return (state == DDI_WALK_ERROR ? EIO : rv); 2424 } 2425 2426 int 2427 e_ddi_branch_create( 2428 dev_info_t *pdip, 2429 devi_branch_t *bp, 2430 dev_info_t **dipp, 2431 uint_t flags) 2432 { 2433 int prom_devi, sid_devi, error; 2434 2435 if (pdip == NULL || bp == NULL || bp->type == 0) 2436 return (EINVAL); 2437 2438 prom_devi = (bp->type == DEVI_BRANCH_PROM) ? 1 : 0; 2439 sid_devi = (bp->type == DEVI_BRANCH_SID) ? 1 : 0; 2440 2441 if (prom_devi && bp->create.prom_branch_select == NULL) 2442 return (EINVAL); 2443 else if (sid_devi && bp->create.sid_branch_create == NULL) 2444 return (EINVAL); 2445 else if (!prom_devi && !sid_devi) 2446 return (EINVAL); 2447 2448 if (flags & DEVI_BRANCH_EVENT) 2449 return (EINVAL); 2450 2451 if (prom_devi) { 2452 struct pta pta = {0}; 2453 2454 pta.pdip = pdip; 2455 pta.bp = bp; 2456 pta.flags = flags; 2457 2458 error = prom_tree_access(create_prom_branch, &pta, NULL); 2459 2460 if (dipp) 2461 *dipp = pta.fdip; 2462 else if (pta.fdip) 2463 ndi_rele_devi(pta.fdip); 2464 } else { 2465 error = create_sid_branch(pdip, bp, dipp, flags); 2466 } 2467 2468 return (error); 2469 } 2470 2471 int 2472 e_ddi_branch_configure(dev_info_t *rdip, dev_info_t **dipp, uint_t flags) 2473 { 2474 int rv; 2475 char *devnm; 2476 dev_info_t *pdip; 2477 2478 if (dipp) 2479 *dipp = NULL; 2480 2481 if (rdip == NULL || flags != 0 || (flags & DEVI_BRANCH_EVENT)) 2482 return (EINVAL); 2483 2484 pdip = ddi_get_parent(rdip); 2485 2486 ndi_hold_devi(pdip); 2487 2488 if (!e_ddi_branch_held(rdip)) { 2489 ndi_rele_devi(pdip); 2490 cmn_err(CE_WARN, "e_ddi_branch_configure: " 2491 "dip(%p) not held", (void *)rdip); 2492 return (EINVAL); 2493 } 2494 2495 if (i_ddi_node_state(rdip) < DS_INITIALIZED) { 2496 /* 2497 * First attempt to bind a driver. If we fail, return 2498 * success (On some platforms, dips for some device 2499 * types (CPUs) may not have a driver) 2500 */ 2501 if (ndi_devi_bind_driver(rdip, 0) != NDI_SUCCESS) { 2502 ndi_rele_devi(pdip); 2503 return (0); 2504 } 2505 2506 if (ddi_initchild(pdip, rdip) != DDI_SUCCESS) { 2507 rv = NDI_FAILURE; 2508 goto out; 2509 } 2510 } 2511 2512 ASSERT(i_ddi_node_state(rdip) >= DS_INITIALIZED); 2513 2514 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 2515 2516 (void) ddi_deviname(rdip, devnm); 2517 2518 if ((rv = ndi_devi_config_one(pdip, devnm+1, &rdip, 2519 NDI_DEVI_ONLINE | NDI_CONFIG)) == NDI_SUCCESS) { 2520 /* release hold from ndi_devi_config_one() */ 2521 ndi_rele_devi(rdip); 2522 } 2523 2524 kmem_free(devnm, MAXNAMELEN + 1); 2525 out: 2526 if (rv != NDI_SUCCESS && dipp && rdip) { 2527 ndi_hold_devi(rdip); 2528 *dipp = rdip; 2529 } 2530 ndi_rele_devi(pdip); 2531 return (ndi2errno(rv)); 2532 } 2533 2534 void 2535 e_ddi_branch_hold(dev_info_t *rdip) 2536 { 2537 if (e_ddi_branch_held(rdip)) { 2538 cmn_err(CE_WARN, "e_ddi_branch_hold: branch already held"); 2539 return; 2540 } 2541 2542 mutex_enter(&DEVI(rdip)->devi_lock); 2543 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) == 0) { 2544 DEVI(rdip)->devi_flags |= DEVI_BRANCH_HELD; 2545 DEVI(rdip)->devi_ref++; 2546 } 2547 ASSERT(DEVI(rdip)->devi_ref > 0); 2548 mutex_exit(&DEVI(rdip)->devi_lock); 2549 } 2550 2551 int 2552 e_ddi_branch_held(dev_info_t *rdip) 2553 { 2554 int rv = 0; 2555 2556 mutex_enter(&DEVI(rdip)->devi_lock); 2557 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) && 2558 DEVI(rdip)->devi_ref > 0) { 2559 rv = 1; 2560 } 2561 mutex_exit(&DEVI(rdip)->devi_lock); 2562 2563 return (rv); 2564 } 2565 void 2566 e_ddi_branch_rele(dev_info_t *rdip) 2567 { 2568 mutex_enter(&DEVI(rdip)->devi_lock); 2569 DEVI(rdip)->devi_flags &= ~DEVI_BRANCH_HELD; 2570 DEVI(rdip)->devi_ref--; 2571 mutex_exit(&DEVI(rdip)->devi_lock); 2572 } 2573 2574 int 2575 e_ddi_branch_unconfigure( 2576 dev_info_t *rdip, 2577 dev_info_t **dipp, 2578 uint_t flags) 2579 { 2580 int circ, rv; 2581 int destroy; 2582 char *devnm; 2583 uint_t nflags; 2584 dev_info_t *pdip; 2585 2586 if (dipp) 2587 *dipp = NULL; 2588 2589 if (rdip == NULL) 2590 return (EINVAL); 2591 2592 pdip = ddi_get_parent(rdip); 2593 2594 ASSERT(pdip); 2595 2596 /* 2597 * Check if caller holds pdip busy - can cause deadlocks during 2598 * devfs_clean() 2599 */ 2600 if (DEVI_BUSY_OWNED(pdip)) { 2601 cmn_err(CE_WARN, "e_ddi_branch_unconfigure: failed: parent" 2602 " devinfo node(%p) is busy held", (void *)pdip); 2603 return (EINVAL); 2604 } 2605 2606 destroy = (flags & DEVI_BRANCH_DESTROY) ? 1 : 0; 2607 2608 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 2609 2610 ndi_devi_enter(pdip, &circ); 2611 (void) ddi_deviname(rdip, devnm); 2612 ndi_devi_exit(pdip, circ); 2613 2614 /* 2615 * ddi_deviname() returns a component name with / prepended. 2616 */ 2617 (void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE); 2618 2619 ndi_devi_enter(pdip, &circ); 2620 2621 /* 2622 * Recreate device name as it may have changed state (init/uninit) 2623 * when parent busy lock was dropped for devfs_clean() 2624 */ 2625 (void) ddi_deviname(rdip, devnm); 2626 2627 if (!e_ddi_branch_held(rdip)) { 2628 kmem_free(devnm, MAXNAMELEN + 1); 2629 ndi_devi_exit(pdip, circ); 2630 cmn_err(CE_WARN, "e_ddi_%s_branch: dip(%p) not held", 2631 destroy ? "destroy" : "unconfigure", (void *)rdip); 2632 return (EINVAL); 2633 } 2634 2635 /* 2636 * Release hold on the branch. This is ok since we are holding the 2637 * parent busy. If rdip is not removed, we must do a hold on the 2638 * branch before returning. 2639 */ 2640 e_ddi_branch_rele(rdip); 2641 2642 nflags = NDI_DEVI_OFFLINE; 2643 if (destroy || (flags & DEVI_BRANCH_DESTROY)) { 2644 nflags |= NDI_DEVI_REMOVE; 2645 destroy = 1; 2646 } else { 2647 nflags |= NDI_UNCONFIG; /* uninit but don't remove */ 2648 } 2649 2650 if (flags & DEVI_BRANCH_EVENT) 2651 nflags |= NDI_POST_EVENT; 2652 2653 if (i_ddi_devi_attached(pdip) && 2654 (i_ddi_node_state(rdip) >= DS_INITIALIZED)) { 2655 rv = ndi_devi_unconfig_one(pdip, devnm+1, dipp, nflags); 2656 } else { 2657 rv = e_ddi_devi_unconfig(rdip, dipp, nflags); 2658 if (rv == NDI_SUCCESS) { 2659 ASSERT(!destroy || ddi_get_child(rdip) == NULL); 2660 rv = ndi_devi_offline(rdip, nflags); 2661 } 2662 } 2663 2664 if (!destroy || rv != NDI_SUCCESS) { 2665 /* The dip still exists, so do a hold */ 2666 e_ddi_branch_hold(rdip); 2667 } 2668 out: 2669 kmem_free(devnm, MAXNAMELEN + 1); 2670 ndi_devi_exit(pdip, circ); 2671 return (ndi2errno(rv)); 2672 } 2673 2674 int 2675 e_ddi_branch_destroy(dev_info_t *rdip, dev_info_t **dipp, uint_t flag) 2676 { 2677 return (e_ddi_branch_unconfigure(rdip, dipp, 2678 flag|DEVI_BRANCH_DESTROY)); 2679 } 2680 2681 /* 2682 * Number of chains for hash table 2683 */ 2684 #define NUMCHAINS 17 2685 2686 /* 2687 * Devinfo busy arg 2688 */ 2689 struct devi_busy { 2690 int dv_total; 2691 int s_total; 2692 mod_hash_t *dv_hash; 2693 mod_hash_t *s_hash; 2694 int (*callback)(dev_info_t *, void *, uint_t); 2695 void *arg; 2696 }; 2697 2698 static int 2699 visit_dip(dev_info_t *dip, void *arg) 2700 { 2701 uintptr_t sbusy, dvbusy, ref; 2702 struct devi_busy *bsp = arg; 2703 2704 ASSERT(bsp->callback); 2705 2706 /* 2707 * A dip cannot be busy if its reference count is 0 2708 */ 2709 if ((ref = e_ddi_devi_holdcnt(dip)) == 0) { 2710 return (bsp->callback(dip, bsp->arg, 0)); 2711 } 2712 2713 if (mod_hash_find(bsp->dv_hash, dip, (mod_hash_val_t *)&dvbusy)) 2714 dvbusy = 0; 2715 2716 /* 2717 * To catch device opens currently maintained on specfs common snodes. 2718 */ 2719 if (mod_hash_find(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) 2720 sbusy = 0; 2721 2722 #ifdef DEBUG 2723 if (ref < sbusy || ref < dvbusy) { 2724 cmn_err(CE_WARN, "dip(%p): sopen = %lu, dvopen = %lu " 2725 "dip ref = %lu\n", (void *)dip, sbusy, dvbusy, ref); 2726 } 2727 #endif 2728 2729 dvbusy = (sbusy > dvbusy) ? sbusy : dvbusy; 2730 2731 return (bsp->callback(dip, bsp->arg, dvbusy)); 2732 } 2733 2734 static int 2735 visit_snode(struct snode *sp, void *arg) 2736 { 2737 uintptr_t sbusy; 2738 dev_info_t *dip; 2739 int count; 2740 struct devi_busy *bsp = arg; 2741 2742 ASSERT(sp); 2743 2744 /* 2745 * The stable lock is held. This prevents 2746 * the snode and its associated dip from 2747 * going away. 2748 */ 2749 dip = NULL; 2750 count = spec_devi_open_count(sp, &dip); 2751 2752 if (count <= 0) 2753 return (DDI_WALK_CONTINUE); 2754 2755 ASSERT(dip); 2756 2757 if (mod_hash_remove(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) 2758 sbusy = count; 2759 else 2760 sbusy += count; 2761 2762 if (mod_hash_insert(bsp->s_hash, dip, (mod_hash_val_t)sbusy)) { 2763 cmn_err(CE_WARN, "%s: s_hash insert failed: dip=0x%p, " 2764 "sbusy = %lu", "e_ddi_branch_referenced", 2765 (void *)dip, sbusy); 2766 } 2767 2768 bsp->s_total += count; 2769 2770 return (DDI_WALK_CONTINUE); 2771 } 2772 2773 static void 2774 visit_dvnode(struct dv_node *dv, void *arg) 2775 { 2776 uintptr_t dvbusy; 2777 uint_t count; 2778 struct vnode *vp; 2779 struct devi_busy *bsp = arg; 2780 2781 ASSERT(dv && dv->dv_devi); 2782 2783 vp = DVTOV(dv); 2784 2785 mutex_enter(&vp->v_lock); 2786 count = vp->v_count; 2787 mutex_exit(&vp->v_lock); 2788 2789 if (!count) 2790 return; 2791 2792 if (mod_hash_remove(bsp->dv_hash, dv->dv_devi, 2793 (mod_hash_val_t *)&dvbusy)) 2794 dvbusy = count; 2795 else 2796 dvbusy += count; 2797 2798 if (mod_hash_insert(bsp->dv_hash, dv->dv_devi, 2799 (mod_hash_val_t)dvbusy)) { 2800 cmn_err(CE_WARN, "%s: dv_hash insert failed: dip=0x%p, " 2801 "dvbusy=%lu", "e_ddi_branch_referenced", 2802 (void *)dv->dv_devi, dvbusy); 2803 } 2804 2805 bsp->dv_total += count; 2806 } 2807 2808 /* 2809 * Returns reference count on success or -1 on failure. 2810 */ 2811 int 2812 e_ddi_branch_referenced( 2813 dev_info_t *rdip, 2814 int (*callback)(dev_info_t *dip, void *arg, uint_t ref), 2815 void *arg) 2816 { 2817 int circ; 2818 char *path; 2819 dev_info_t *pdip; 2820 struct devi_busy bsa = {0}; 2821 2822 ASSERT(rdip); 2823 2824 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2825 2826 ndi_hold_devi(rdip); 2827 2828 pdip = ddi_get_parent(rdip); 2829 2830 ASSERT(pdip); 2831 2832 /* 2833 * Check if caller holds pdip busy - can cause deadlocks during 2834 * devfs_walk() 2835 */ 2836 if (!e_ddi_branch_held(rdip) || DEVI_BUSY_OWNED(pdip)) { 2837 cmn_err(CE_WARN, "e_ddi_branch_referenced: failed: " 2838 "devinfo branch(%p) not held or parent busy held", 2839 (void *)rdip); 2840 ndi_rele_devi(rdip); 2841 kmem_free(path, MAXPATHLEN); 2842 return (-1); 2843 } 2844 2845 ndi_devi_enter(pdip, &circ); 2846 (void) ddi_pathname(rdip, path); 2847 ndi_devi_exit(pdip, circ); 2848 2849 bsa.dv_hash = mod_hash_create_ptrhash("dv_node busy hash", NUMCHAINS, 2850 mod_hash_null_valdtor, sizeof (struct dev_info)); 2851 2852 bsa.s_hash = mod_hash_create_ptrhash("snode busy hash", NUMCHAINS, 2853 mod_hash_null_valdtor, sizeof (struct snode)); 2854 2855 if (devfs_walk(path, visit_dvnode, &bsa)) { 2856 cmn_err(CE_WARN, "e_ddi_branch_referenced: " 2857 "devfs walk failed for: %s", path); 2858 kmem_free(path, MAXPATHLEN); 2859 bsa.s_total = bsa.dv_total = -1; 2860 goto out; 2861 } 2862 2863 kmem_free(path, MAXPATHLEN); 2864 2865 /* 2866 * Walk the snode table to detect device opens, which are currently 2867 * maintained on specfs common snodes. 2868 */ 2869 spec_snode_walk(visit_snode, &bsa); 2870 2871 if (callback == NULL) 2872 goto out; 2873 2874 bsa.callback = callback; 2875 bsa.arg = arg; 2876 2877 if (visit_dip(rdip, &bsa) == DDI_WALK_CONTINUE) { 2878 ndi_devi_enter(rdip, &circ); 2879 ddi_walk_devs(ddi_get_child(rdip), visit_dip, &bsa); 2880 ndi_devi_exit(rdip, circ); 2881 } 2882 2883 out: 2884 ndi_rele_devi(rdip); 2885 mod_hash_destroy_ptrhash(bsa.s_hash); 2886 mod_hash_destroy_ptrhash(bsa.dv_hash); 2887 return (bsa.s_total > bsa.dv_total ? bsa.s_total : bsa.dv_total); 2888 } 2889