1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * sun4 specific DDI implementation 31 */ 32 #include <sys/cpuvar.h> 33 #include <sys/ddi_subrdefs.h> 34 #include <sys/machsystm.h> 35 #include <sys/sunndi.h> 36 #include <sys/sysmacros.h> 37 #include <sys/ontrap.h> 38 #include <vm/seg_kmem.h> 39 #include <sys/membar.h> 40 #include <sys/dditypes.h> 41 #include <sys/ndifm.h> 42 #include <sys/fm/io/ddi.h> 43 #include <sys/ivintr.h> 44 #include <sys/bootconf.h> 45 #include <sys/conf.h> 46 #include <sys/ethernet.h> 47 #include <sys/idprom.h> 48 #include <sys/promif.h> 49 #include <sys/prom_plat.h> 50 #include <sys/systeminfo.h> 51 #include <sys/fpu/fpusystm.h> 52 #include <sys/vm.h> 53 #include <sys/fs/dv_node.h> 54 #include <sys/fs/snode.h> 55 #include <sys/ddi_isa.h> 56 #include <sys/modhash.h> 57 #include <sys/modctl.h> 58 #include <sys/sunldi_impl.h> 59 60 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *, 61 ddi_intr_handle_impl_t *); 62 #pragma weak get_intr_parent 63 64 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t, 65 ddi_intr_handle_impl_t *, void *); 66 #pragma weak process_intr_ops 67 68 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t); 69 prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *, 70 int32_t len); 71 #pragma weak cells_1275_copy 72 73 /* 74 * Wrapper for ddi_prop_lookup_int_array(). 75 * This is handy because it returns the prop length in 76 * bytes which is what most of the callers require. 77 */ 78 79 static int 80 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 81 { 82 int ret; 83 84 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 85 DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) { 86 *plen = (*plen) * (uint_t)sizeof (int); 87 } 88 return (ret); 89 } 90 91 /* 92 * SECTION: DDI Node Configuration 93 */ 94 95 /* 96 * init_regspec_64: 97 * 98 * If the parent #size-cells is 2, convert the upa-style or 99 * safari-style reg property from 2-size cells to 1 size cell 100 * format, ignoring the size_hi, which must be zero for devices. 101 * (It won't be zero in the memory list properties in the memory 102 * nodes, but that doesn't matter here.) 103 */ 104 struct ddi_parent_private_data * 105 init_regspec_64(dev_info_t *dip) 106 { 107 struct ddi_parent_private_data *pd; 108 dev_info_t *parent; 109 int size_cells; 110 111 /* 112 * If there are no "reg"s in the child node, return. 113 */ 114 pd = ddi_get_parent_data(dip); 115 if ((pd == NULL) || (pd->par_nreg == 0)) { 116 return (pd); 117 } 118 parent = ddi_get_parent(dip); 119 120 size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 121 DDI_PROP_DONTPASS, "#size-cells", 1); 122 123 if (size_cells != 1) { 124 125 int n, j; 126 struct regspec *irp; 127 struct reg_64 { 128 uint_t addr_hi, addr_lo, size_hi, size_lo; 129 }; 130 struct reg_64 *r64_rp; 131 struct regspec *rp; 132 uint_t len = 0; 133 int *reg_prop; 134 135 ASSERT(size_cells == 2); 136 137 /* 138 * We already looked the property up once before if 139 * pd is non-NULL. 140 */ 141 (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 142 DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len); 143 ASSERT(len != 0); 144 145 n = sizeof (struct reg_64) / sizeof (int); 146 n = len / n; 147 148 /* 149 * We're allocating a buffer the size of the PROM's property, 150 * but we're only using a smaller portion when we assign it 151 * to a regspec. We do this so that in the 152 * impl_ddi_sunbus_removechild function, we will 153 * always free the right amount of memory. 154 */ 155 irp = rp = (struct regspec *)reg_prop; 156 r64_rp = (struct reg_64 *)pd->par_reg; 157 158 for (j = 0; j < n; ++j, ++rp, ++r64_rp) { 159 ASSERT(r64_rp->size_hi == 0); 160 rp->regspec_bustype = r64_rp->addr_hi; 161 rp->regspec_addr = r64_rp->addr_lo; 162 rp->regspec_size = r64_rp->size_lo; 163 } 164 165 ddi_prop_free((void *)pd->par_reg); 166 pd->par_nreg = n; 167 pd->par_reg = irp; 168 } 169 return (pd); 170 } 171 172 /* 173 * Create a ddi_parent_private_data structure from the ddi properties of 174 * the dev_info node. 175 * 176 * The "reg" is required if the driver wishes to create mappings on behalf 177 * of the device. The "reg" property is assumed to be a list of at least 178 * one triplet 179 * 180 * <bustype, address, size>*1 181 * 182 * The "interrupt" property is no longer part of parent private data on 183 * sun4u. The interrupt parent is may not be the device tree parent. 184 * 185 * The "ranges" property describes the mapping of child addresses to parent 186 * addresses. 187 * 188 * N.B. struct rangespec is defined for the following default values: 189 * parent child 190 * #address-cells 2 2 191 * #size-cells 1 1 192 * This function doesn't deal with non-default cells and will not create 193 * ranges in such cases. 194 */ 195 void 196 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 197 { 198 struct ddi_parent_private_data *pdptr; 199 int *reg_prop, *rng_prop; 200 uint_t reg_len = 0, rng_len = 0; 201 dev_info_t *parent; 202 int parent_addr_cells, parent_size_cells; 203 int child_addr_cells, child_size_cells; 204 205 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 206 207 /* 208 * root node has no parent private data, so *ppd should 209 * be initialized for naming to work properly. 210 */ 211 if ((parent = ddi_get_parent(child)) == NULL) 212 return; 213 214 /* 215 * Set reg field of parent data from "reg" property 216 */ 217 if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len) 218 == DDI_PROP_SUCCESS) && (reg_len != 0)) { 219 pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec)); 220 pdptr->par_reg = (struct regspec *)reg_prop; 221 } 222 223 /* 224 * "ranges" property ... 225 * 226 * This function does not handle cases where #address-cells != 2 227 * and * min(parent, child) #size-cells != 1 (see bugid 4211124). 228 * 229 * Nexus drivers with such exceptions (e.g. pci ranges) 230 * should either create a separate function for handling 231 * ranges or not use parent private data to store ranges. 232 */ 233 234 /* root node has no ranges */ 235 if ((parent = ddi_get_parent(child)) == NULL) 236 return; 237 238 child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 239 DDI_PROP_DONTPASS, "#address-cells", 2); 240 child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 241 DDI_PROP_DONTPASS, "#size-cells", 1); 242 parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 243 DDI_PROP_DONTPASS, "#address-cells", 2); 244 parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 245 DDI_PROP_DONTPASS, "#size-cells", 1); 246 if (child_addr_cells != 2 || parent_addr_cells != 2 || 247 (child_size_cells != 1 && parent_size_cells != 1)) { 248 NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; " 249 "#address-cells or #size-cells have non-default value")); 250 return; 251 } 252 253 if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len) 254 == DDI_PROP_SUCCESS) { 255 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 256 pdptr->par_rng = (struct rangespec *)rng_prop; 257 } 258 } 259 260 /* 261 * Free ddi_parent_private_data structure 262 */ 263 void 264 impl_free_ddi_ppd(dev_info_t *dip) 265 { 266 struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip); 267 268 if (pdptr == NULL) 269 return; 270 271 if (pdptr->par_nrng != 0) 272 ddi_prop_free((void *)pdptr->par_rng); 273 274 if (pdptr->par_nreg != 0) 275 ddi_prop_free((void *)pdptr->par_reg); 276 277 kmem_free(pdptr, sizeof (*pdptr)); 278 ddi_set_parent_data(dip, NULL); 279 } 280 281 /* 282 * Name a child of sun busses based on the reg spec. 283 * Handles the following properties: 284 * 285 * Property value 286 * Name type 287 * 288 * reg register spec 289 * interrupts new (bus-oriented) interrupt spec 290 * ranges range spec 291 * 292 * This may be called multiple times, independent of 293 * initchild calls. 294 */ 295 static int 296 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 297 { 298 struct ddi_parent_private_data *pdptr; 299 struct regspec *rp; 300 301 /* 302 * Fill in parent-private data and this function returns to us 303 * an indication if it used "registers" to fill in the data. 304 */ 305 if (ddi_get_parent_data(child) == NULL) { 306 make_ddi_ppd(child, &pdptr); 307 ddi_set_parent_data(child, pdptr); 308 } 309 310 /* 311 * No reg property, return null string as address 312 * (e.g. root node) 313 */ 314 name[0] = '\0'; 315 if (sparc_pd_getnreg(child) == 0) { 316 return (DDI_SUCCESS); 317 } 318 319 rp = sparc_pd_getreg(child, 0); 320 (void) snprintf(name, namelen, "%x,%x", 321 rp->regspec_bustype, rp->regspec_addr); 322 return (DDI_SUCCESS); 323 } 324 325 326 /* 327 * Called from the bus_ctl op of some drivers. 328 * to implement the DDI_CTLOPS_INITCHILD operation. 329 * 330 * NEW drivers should NOT use this function, but should declare 331 * there own initchild/uninitchild handlers. (This function assumes 332 * the layout of the parent private data and the format of "reg", 333 * "ranges", "interrupts" properties and that #address-cells and 334 * #size-cells of the parent bus are defined to be default values.) 335 */ 336 int 337 impl_ddi_sunbus_initchild(dev_info_t *child) 338 { 339 char name[MAXNAMELEN]; 340 341 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 342 ddi_set_name_addr(child, name); 343 344 /* 345 * Try to merge .conf node. If successful, return failure to 346 * remove this child. 347 */ 348 if ((ndi_dev_is_persistent_node(child) == 0) && 349 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 350 impl_ddi_sunbus_removechild(child); 351 return (DDI_FAILURE); 352 } 353 return (DDI_SUCCESS); 354 } 355 356 /* 357 * A better name for this function would be impl_ddi_sunbus_uninitchild() 358 * It does not remove the child, it uninitializes it, reclaiming the 359 * resources taken by impl_ddi_sunbus_initchild. 360 */ 361 void 362 impl_ddi_sunbus_removechild(dev_info_t *dip) 363 { 364 impl_free_ddi_ppd(dip); 365 ddi_set_name_addr(dip, NULL); 366 /* 367 * Strip the node to properly convert it back to prototype form 368 */ 369 impl_rem_dev_props(dip); 370 } 371 372 /* 373 * SECTION: DDI Interrupt 374 */ 375 376 void 377 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len) 378 { 379 int i; 380 for (i = 0; i < len; i++) 381 *to = *from; 382 } 383 384 prop_1275_cell_t * 385 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len) 386 { 387 prop_1275_cell_t *match_cell = 0; 388 int32_t i; 389 390 for (i = 0; i < len; i++) 391 if (cell1[i] != cell2[i]) { 392 match_cell = &cell1[i]; 393 break; 394 } 395 396 return (match_cell); 397 } 398 399 /* 400 * get_intr_parent() is a generic routine that process a 1275 interrupt 401 * map (imap) property. This function returns a dev_info_t structure 402 * which claims ownership of the interrupt domain. 403 * It also returns the new interrupt translation within this new domain. 404 * If an interrupt-parent or interrupt-map property are not found, 405 * then we fallback to using the device tree's parent. 406 * 407 * imap entry format: 408 * <reg>,<interrupt>,<phandle>,<translated interrupt> 409 * reg - The register specification in the interrupts domain 410 * interrupt - The interrupt specification 411 * phandle - PROM handle of the device that owns the xlated interrupt domain 412 * translated interrupt - interrupt specifier in the parents domain 413 * note: <reg>,<interrupt> - The reg and interrupt can be combined to create 414 * a unique entry called a unit interrupt specifier. 415 * 416 * Here's the processing steps: 417 * step1 - If the interrupt-parent property exists, create the ispec and 418 * return the dip of the interrupt parent. 419 * step2 - Extract the interrupt-map property and the interrupt-map-mask 420 * If these don't exist, just return the device tree parent. 421 * step3 - build up the unit interrupt specifier to match against the 422 * interrupt map property 423 * step4 - Scan the interrupt-map property until a match is found 424 * step4a - Extract the interrupt parent 425 * step4b - Compare the unit interrupt specifier 426 */ 427 dev_info_t * 428 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp) 429 { 430 prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req; 431 int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz, 432 addr_cells, intr_cells, reg_len, i, j; 433 int32_t match_found = 0; 434 dev_info_t *intr_parent_dip = NULL; 435 uint32_t *intr = &hdlp->ih_vector; 436 uint32_t nodeid; 437 #ifdef DEBUG 438 static int debug = 0; 439 #endif 440 441 /* 442 * step1 443 * If we have an interrupt-parent property, this property represents 444 * the nodeid of our interrupt parent. 445 */ 446 if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 447 "interrupt-parent", -1)) != -1) { 448 intr_parent_dip = e_ddi_nodeid_to_dip(nodeid); 449 ASSERT(intr_parent_dip); 450 451 /* 452 * Attach the interrupt parent. 453 * 454 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR. 455 * Also, interrupt parent isn't held. This needs 456 * to be revisited if DR-capable platforms implement 457 * interrupt redirection. 458 */ 459 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 460 != DDI_SUCCESS) { 461 ndi_rele_devi(intr_parent_dip); 462 return (NULL); 463 } 464 465 return (intr_parent_dip); 466 } 467 468 /* 469 * step2 470 * Get interrupt map structure from PROM property 471 */ 472 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 473 "interrupt-map", (caddr_t)&imap, &imap_sz) 474 != DDI_PROP_SUCCESS) { 475 /* 476 * If we don't have an imap property, default to using the 477 * device tree. 478 */ 479 480 ndi_hold_devi(pdip); 481 return (pdip); 482 } 483 484 /* Get the interrupt mask property */ 485 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 486 "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz) 487 != DDI_PROP_SUCCESS) { 488 /* 489 * If we don't find this property, we have to fail the request 490 * because the 1275 imap property wasn't defined correctly. 491 */ 492 ASSERT(intr_parent_dip == NULL); 493 goto exit2; 494 } 495 496 /* Get the address cell size */ 497 addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 498 "#address-cells", 2); 499 500 /* Get the interrupts cell size */ 501 intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 502 "#interrupt-cells", 1); 503 504 /* 505 * step3 506 * Now lets build up the unit interrupt specifier e.g. reg,intr 507 * and apply the imap mask. match_req will hold this when we're 508 * through. 509 */ 510 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", 511 (caddr_t)®_p, ®_len) != DDI_SUCCESS) { 512 ASSERT(intr_parent_dip == NULL); 513 goto exit3; 514 } 515 516 match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) + 517 CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP); 518 519 for (i = 0; i < addr_cells; i++) 520 match_req[i] = (reg_p[i] & imap_mask[i]); 521 522 for (j = 0; j < intr_cells; i++, j++) 523 match_req[i] = (intr[j] & imap_mask[i]); 524 525 /* Calculate the imap size in cells */ 526 imap_cells = BYTES_TO_1275_CELLS(imap_sz); 527 528 #ifdef DEBUG 529 if (debug) 530 prom_printf("reg cell size 0x%x, intr cell size 0x%x, " 531 "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells, 532 match_req, imap); 533 #endif 534 535 /* 536 * Scan the imap property looking for a match of the interrupt unit 537 * specifier. This loop is rather complex since the data within the 538 * imap property may vary in size. 539 */ 540 for (scan = imap, imap_scan_cells = i = 0; 541 imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) { 542 int new_intr_cells; 543 544 /* Set the index to the nodeid field */ 545 i = addr_cells + intr_cells; 546 547 /* 548 * step4a 549 * Translate the nodeid field to a dip 550 */ 551 ASSERT(intr_parent_dip == NULL); 552 intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]); 553 554 ASSERT(intr_parent_dip != 0); 555 #ifdef DEBUG 556 if (debug) 557 prom_printf("scan 0x%p\n", scan); 558 #endif 559 /* 560 * The tmp_dip describes the new domain, get it's interrupt 561 * cell size 562 */ 563 new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0, 564 "#interrupts-cells", 1); 565 566 /* 567 * step4b 568 * See if we have a match on the interrupt unit specifier 569 */ 570 if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells) 571 == 0) { 572 uint32_t *intr; 573 574 match_found = 1; 575 576 /* 577 * If we have an imap parent whose not in our device 578 * tree path, we need to hold and install that driver. 579 */ 580 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 581 != DDI_SUCCESS) { 582 ndi_rele_devi(intr_parent_dip); 583 intr_parent_dip = (dev_info_t *)NULL; 584 goto exit4; 585 } 586 587 /* 588 * We need to handcraft an ispec along with a bus 589 * interrupt value, so we can dup it into our 590 * standard ispec structure. 591 */ 592 /* Extract the translated interrupt information */ 593 intr = kmem_alloc( 594 CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP); 595 596 for (j = 0; j < new_intr_cells; j++, i++) 597 intr[j] = scan[i]; 598 599 cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells); 600 601 kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells)); 602 603 #ifdef DEBUG 604 if (debug) 605 prom_printf("dip 0x%p\n", intr_parent_dip); 606 #endif 607 break; 608 } else { 609 #ifdef DEBUG 610 if (debug) 611 prom_printf("dip 0x%p\n", intr_parent_dip); 612 #endif 613 ndi_rele_devi(intr_parent_dip); 614 intr_parent_dip = NULL; 615 i += new_intr_cells; 616 } 617 } 618 619 /* 620 * If we haven't found our interrupt parent at this point, fallback 621 * to using the device tree. 622 */ 623 if (!match_found) { 624 ndi_hold_devi(pdip); 625 ASSERT(intr_parent_dip == NULL); 626 intr_parent_dip = pdip; 627 } 628 629 ASSERT(intr_parent_dip != NULL); 630 631 exit4: 632 kmem_free(reg_p, reg_len); 633 kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) + 634 CELLS_1275_TO_BYTES(intr_cells)); 635 636 exit3: 637 kmem_free(imap_mask, imap_mask_sz); 638 639 exit2: 640 kmem_free(imap, imap_sz); 641 642 return (intr_parent_dip); 643 } 644 645 /* 646 * process_intr_ops: 647 * 648 * Process the interrupt op via the interrupt parent. 649 */ 650 int 651 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op, 652 ddi_intr_handle_impl_t *hdlp, void *result) 653 { 654 int ret = DDI_FAILURE; 655 656 if (NEXUS_HAS_INTR_OP(pdip)) { 657 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops-> 658 bus_intr_op)) (pdip, rdip, op, hdlp, result); 659 } else { 660 cmn_err(CE_WARN, "Failed to process interrupt " 661 "for %s%d due to down-rev nexus driver %s%d", 662 ddi_get_name(rdip), ddi_get_instance(rdip), 663 ddi_get_name(pdip), ddi_get_instance(pdip)); 664 } 665 666 return (ret); 667 } 668 669 /*ARGSUSED*/ 670 uint_t 671 softlevel1(caddr_t arg) 672 { 673 softint(); 674 return (1); 675 } 676 677 /* 678 * indirection table, to save us some large switch statements 679 * NOTE: This must agree with "INTLEVEL_foo" constants in 680 * <sys/avintr.h> 681 */ 682 struct autovec *const vectorlist[] = { 0 }; 683 684 /* 685 * This value is exported here for the functions in avintr.c 686 */ 687 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0])); 688 689 /* 690 * Check for machine specific interrupt levels which cannot be reassigned by 691 * settrap(), sun4u version. 692 * 693 * sun4u does not support V8 SPARC "fast trap" handlers. 694 */ 695 /*ARGSUSED*/ 696 int 697 exclude_settrap(int lvl) 698 { 699 return (1); 700 } 701 702 /* 703 * Check for machine specific interrupt levels which cannot have interrupt 704 * handlers added. We allow levels 1 through 15; level 0 is nonsense. 705 */ 706 /*ARGSUSED*/ 707 int 708 exclude_level(int lvl) 709 { 710 return ((lvl < 1) || (lvl > 15)); 711 } 712 713 /* 714 * Wrapper functions used by New DDI interrupt framework. 715 */ 716 717 /* 718 * i_ddi_intr_ops: 719 */ 720 int 721 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 722 ddi_intr_handle_impl_t *hdlp, void *result) 723 { 724 dev_info_t *pdip = ddi_get_parent(dip); 725 int ret = DDI_FAILURE; 726 727 /* 728 * The following check is required to address 729 * one of the test case of ADDI test suite. 730 */ 731 if (pdip == NULL) 732 return (DDI_FAILURE); 733 734 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 735 return (process_intr_ops(pdip, rdip, op, hdlp, result)); 736 737 if (hdlp->ih_vector == 0) 738 hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum); 739 740 if (hdlp->ih_pri == 0) 741 hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum); 742 743 switch (op) { 744 case DDI_INTROP_ADDISR: 745 case DDI_INTROP_REMISR: 746 case DDI_INTROP_ENABLE: 747 case DDI_INTROP_DISABLE: 748 case DDI_INTROP_BLOCKENABLE: 749 case DDI_INTROP_BLOCKDISABLE: 750 /* 751 * Try and determine our parent and possibly an interrupt 752 * translation. intr parent dip returned held 753 */ 754 if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL) 755 goto done; 756 } 757 758 ret = process_intr_ops(pdip, rdip, op, hdlp, result); 759 760 done: 761 switch (op) { 762 case DDI_INTROP_ADDISR: 763 case DDI_INTROP_REMISR: 764 case DDI_INTROP_ENABLE: 765 case DDI_INTROP_DISABLE: 766 case DDI_INTROP_BLOCKENABLE: 767 case DDI_INTROP_BLOCKDISABLE: 768 /* Release hold acquired in get_intr_parent() */ 769 if (pdip) 770 ndi_rele_devi(pdip); 771 } 772 773 hdlp->ih_vector = 0; 774 775 return (ret); 776 } 777 778 /* 779 * i_ddi_add_ivintr: 780 */ 781 /*ARGSUSED*/ 782 int 783 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp) 784 { 785 /* 786 * If the PIL was set and is valid use it, otherwise 787 * default it to 1 788 */ 789 if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX)) 790 hdlp->ih_pri = 1; 791 792 VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri, 793 (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, 794 hdlp->ih_cb_arg2, NULL) == 0); 795 796 return (DDI_SUCCESS); 797 } 798 799 /* 800 * i_ddi_rem_ivintr: 801 */ 802 /*ARGSUSED*/ 803 void 804 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp) 805 { 806 VERIFY(rem_ivintr(hdlp->ih_vector, hdlp->ih_pri) == 0); 807 } 808 809 /* 810 * i_ddi_get_inum - Get the interrupt number property from the 811 * specified device. Note that this function is called only for 812 * the FIXED interrupt type. 813 */ 814 uint32_t 815 i_ddi_get_inum(dev_info_t *dip, uint_t inumber) 816 { 817 int32_t intrlen, intr_cells, max_intrs; 818 prop_1275_cell_t *ip, intr_sz; 819 uint32_t intr = 0; 820 821 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 822 DDI_PROP_CANSLEEP, 823 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 824 825 intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 826 "#interrupt-cells", 1); 827 828 /* adjust for number of bytes */ 829 intr_sz = CELLS_1275_TO_BYTES(intr_cells); 830 831 /* Calculate the number of interrupts */ 832 max_intrs = intrlen / intr_sz; 833 834 if (inumber < max_intrs) { 835 prop_1275_cell_t *intrp = ip; 836 837 /* Index into interrupt property */ 838 intrp += (inumber * intr_cells); 839 840 cells_1275_copy(intrp, &intr, intr_cells); 841 } 842 843 kmem_free(ip, intrlen); 844 } 845 846 return (intr); 847 } 848 849 /* 850 * i_ddi_get_intr_pri - Get the interrupt-priorities property from 851 * the specified device. Note that this function is called only for 852 * the FIXED interrupt type. 853 */ 854 uint32_t 855 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber) 856 { 857 uint32_t *intr_prio_p; 858 uint32_t pri = 0; 859 int32_t i; 860 861 /* 862 * Use the "interrupt-priorities" property to determine the 863 * the pil/ipl for the interrupt handler. 864 */ 865 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 866 "interrupt-priorities", (caddr_t)&intr_prio_p, 867 &i) == DDI_SUCCESS) { 868 if (inumber < (i / sizeof (int32_t))) 869 pri = intr_prio_p[inumber]; 870 kmem_free(intr_prio_p, i); 871 } 872 873 return (pri); 874 } 875 876 int 877 i_ddi_get_intx_nintrs(dev_info_t *dip) 878 { 879 int32_t intrlen; 880 prop_1275_cell_t intr_sz; 881 prop_1275_cell_t *ip; 882 int32_t ret = 0; 883 884 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 885 DDI_PROP_CANSLEEP, 886 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 887 888 intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 889 "#interrupt-cells", 1); 890 /* adjust for number of bytes */ 891 intr_sz = CELLS_1275_TO_BYTES(intr_sz); 892 893 ret = intrlen / intr_sz; 894 895 kmem_free(ip, intrlen); 896 } 897 898 return (ret); 899 } 900 901 /* 902 * i_ddi_add_softint - allocate and add a software interrupt. 903 * 904 * NOTE: All software interrupts that are registered through DDI 905 * should be triggered only on a single target or CPU. 906 */ 907 int 908 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 909 { 910 if ((hdlp->ih_private = (void *)add_softintr(hdlp->ih_pri, 911 hdlp->ih_cb_func, hdlp->ih_cb_arg1, SOFTINT_ST)) == NULL) 912 return (DDI_FAILURE); 913 914 return (DDI_SUCCESS); 915 } 916 917 /* 918 * i_ddi_remove_softint - remove and free a software interrupt. 919 */ 920 void 921 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 922 { 923 ASSERT(hdlp->ih_private != NULL); 924 925 if (rem_softintr((uint64_t)hdlp->ih_private) == 0) 926 hdlp->ih_private = NULL; 927 } 928 929 /* 930 * i_ddi_trigger_softint - trigger a software interrupt. 931 */ 932 int 933 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 934 { 935 int ret; 936 937 ASSERT(hdlp->ih_private != NULL); 938 939 /* Update the second argument for the software interrupt */ 940 if ((ret = update_softint_arg2((uint64_t)hdlp->ih_private, arg2)) == 0) 941 setsoftint((uint64_t)hdlp->ih_private); 942 943 return (ret ? DDI_EPENDING : DDI_SUCCESS); 944 } 945 946 /* 947 * i_ddi_set_softint_pri - change software interrupt priority. 948 */ 949 /* ARGSUSED */ 950 int 951 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 952 { 953 int ret; 954 955 ASSERT(hdlp->ih_private != NULL); 956 957 /* Update the interrupt priority for the software interrupt */ 958 ret = update_softint_pri((uint64_t)hdlp->ih_private, hdlp->ih_pri); 959 960 return (ret ? DDI_FAILURE : DDI_SUCCESS); 961 } 962 963 /*ARGSUSED*/ 964 void 965 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 966 { 967 } 968 969 /*ARGSUSED*/ 970 void 971 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 972 { 973 } 974 975 /* 976 * SECTION: DDI Memory/DMA 977 */ 978 979 /* set HAT endianess attributes from ddi_device_acc_attr */ 980 void 981 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 982 { 983 if (devaccp != NULL) { 984 if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) { 985 *hataccp &= ~HAT_ENDIAN_MASK; 986 *hataccp |= HAT_STRUCTURE_LE; 987 } 988 } 989 } 990 991 /* 992 * Check if the specified cache attribute is supported on the platform. 993 * This function must be called before i_ddi_cacheattr_to_hatacc(). 994 */ 995 boolean_t 996 i_ddi_check_cache_attr(uint_t flags) 997 { 998 /* 999 * The cache attributes are mutually exclusive. Any combination of 1000 * the attributes leads to a failure. 1001 */ 1002 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1003 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1004 return (B_FALSE); 1005 1006 /* 1007 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful, 1008 * but others lead to a failure. 1009 */ 1010 if (cache_attr & IOMEM_DATA_CACHED) 1011 return (B_TRUE); 1012 else 1013 return (B_FALSE); 1014 } 1015 1016 /* set HAT cache attributes from the cache attributes */ 1017 void 1018 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1019 { 1020 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1021 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1022 #if defined(lint) 1023 *hataccp = *hataccp; 1024 #endif 1025 /* 1026 * set HAT attrs according to the cache attrs. 1027 */ 1028 switch (cache_attr) { 1029 /* 1030 * The cache coherency is always maintained on SPARC, and 1031 * nothing is required. 1032 */ 1033 case IOMEM_DATA_CACHED: 1034 break; 1035 /* 1036 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are 1037 * not supported on SPARC -- this case must not occur because the 1038 * cache attribute is scrutinized before this function is called. 1039 */ 1040 case IOMEM_DATA_UNCACHED: 1041 case IOMEM_DATA_UC_WR_COMBINE: 1042 default: 1043 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1044 fname, cache_attr); 1045 } 1046 } 1047 1048 static vmem_t *little_endian_arena; 1049 static vmem_t *big_endian_arena; 1050 1051 static void * 1052 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag) 1053 { 1054 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE, 1055 segkmem_page_create, NULL)); 1056 } 1057 1058 static void * 1059 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag) 1060 { 1061 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE, 1062 segkmem_page_create, NULL)); 1063 } 1064 1065 void 1066 ka_init(void) 1067 { 1068 little_endian_arena = vmem_create("little_endian", NULL, 0, 1, 1069 segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP); 1070 big_endian_arena = vmem_create("big_endian", NULL, 0, 1, 1071 segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP); 1072 } 1073 1074 /* 1075 * Allocate from the system, aligned on a specific boundary. 1076 * The alignment, if non-zero, must be a power of 2. 1077 */ 1078 static void * 1079 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags) 1080 { 1081 size_t *addr, *raddr, rsize; 1082 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1083 1084 align = MAX(align, hdrsize); 1085 ASSERT((align & (align - 1)) == 0); 1086 1087 /* 1088 * We need to allocate 1089 * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment) 1090 * bytes to be sure we have enough freedom to satisfy the request. 1091 * Since the buffer alignment depends on the request size, this is 1092 * not straightforward to use directly. 1093 * 1094 * kmem guarantees that any allocation of a 64-byte multiple will be 1095 * 64-byte aligned. Since rounding up the request could add more 1096 * than we save, we compute the size with and without alignment, and 1097 * use the smaller of the two. 1098 */ 1099 rsize = size + hdrsize + align; 1100 1101 if (endian_flags == DDI_STRUCTURE_LE_ACC) { 1102 raddr = vmem_alloc(little_endian_arena, rsize, 1103 cansleep ? VM_SLEEP : VM_NOSLEEP); 1104 } else { 1105 raddr = vmem_alloc(big_endian_arena, rsize, 1106 cansleep ? VM_SLEEP : VM_NOSLEEP); 1107 } 1108 1109 if (raddr == NULL) 1110 return (NULL); 1111 1112 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1113 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1114 1115 addr[-3] = (size_t)endian_flags; 1116 addr[-2] = (size_t)raddr; 1117 addr[-1] = rsize; 1118 1119 return (addr); 1120 } 1121 1122 static void 1123 kfreea(void *addr) 1124 { 1125 size_t *saddr = addr; 1126 1127 if (saddr[-3] == DDI_STRUCTURE_LE_ACC) 1128 vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]); 1129 else 1130 vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]); 1131 } 1132 1133 int 1134 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1135 size_t length, int cansleep, int flags, 1136 ddi_device_acc_attr_t *accattrp, 1137 caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep) 1138 { 1139 caddr_t a; 1140 int iomin, align, streaming; 1141 uint_t endian_flags = DDI_NEVERSWAP_ACC; 1142 1143 #if defined(lint) 1144 *handlep = *handlep; 1145 #endif 1146 1147 /* 1148 * Check legality of arguments 1149 */ 1150 if (length == 0 || kaddrp == NULL || attr == NULL) { 1151 return (DDI_FAILURE); 1152 } 1153 1154 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1155 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1156 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1157 return (DDI_FAILURE); 1158 } 1159 1160 /* 1161 * check if a streaming sequential xfer is requested. 1162 */ 1163 streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0; 1164 1165 /* 1166 * Drivers for 64-bit capable SBus devices will encode 1167 * the burtsizes for 64-bit xfers in the upper 16-bits. 1168 * For DMA alignment, we use the most restrictive 1169 * alignment of 32-bit and 64-bit xfers. 1170 */ 1171 iomin = (attr->dma_attr_burstsizes & 0xffff) | 1172 ((attr->dma_attr_burstsizes >> 16) & 0xffff); 1173 /* 1174 * If a driver set burtsizes to 0, we give him byte alignment. 1175 * Otherwise align at the burtsizes boundary. 1176 */ 1177 if (iomin == 0) 1178 iomin = 1; 1179 else 1180 iomin = 1 << (ddi_fls(iomin) - 1); 1181 iomin = maxbit(iomin, attr->dma_attr_minxfer); 1182 iomin = maxbit(iomin, attr->dma_attr_align); 1183 iomin = ddi_iomin(dip, iomin, streaming); 1184 if (iomin == 0) 1185 return (DDI_FAILURE); 1186 1187 ASSERT((iomin & (iomin - 1)) == 0); 1188 ASSERT(iomin >= attr->dma_attr_minxfer); 1189 ASSERT(iomin >= attr->dma_attr_align); 1190 1191 length = P2ROUNDUP(length, iomin); 1192 align = iomin; 1193 1194 if (accattrp != NULL) 1195 endian_flags = accattrp->devacc_attr_endian_flags; 1196 1197 a = kalloca(length, align, cansleep, endian_flags); 1198 if ((*kaddrp = a) == 0) { 1199 return (DDI_FAILURE); 1200 } else { 1201 if (real_length) { 1202 *real_length = length; 1203 } 1204 if (handlep) { 1205 /* 1206 * assign handle information 1207 */ 1208 impl_acc_hdl_init(handlep); 1209 } 1210 return (DDI_SUCCESS); 1211 } 1212 } 1213 1214 /* 1215 * covert old DMA limits structure to DMA attribute structure 1216 * and continue 1217 */ 1218 int 1219 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1220 size_t length, int cansleep, int streaming, 1221 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1222 uint_t *real_length, ddi_acc_hdl_t *ap) 1223 { 1224 ddi_dma_attr_t dma_attr, *attrp; 1225 size_t rlen; 1226 int ret; 1227 1228 ASSERT(limits); 1229 attrp = &dma_attr; 1230 attrp->dma_attr_version = DMA_ATTR_V0; 1231 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1232 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1233 attrp->dma_attr_count_max = (uint64_t)-1; 1234 attrp->dma_attr_align = 1; 1235 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1236 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1237 attrp->dma_attr_maxxfer = (uint64_t)-1; 1238 attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max; 1239 attrp->dma_attr_sgllen = 1; 1240 attrp->dma_attr_granular = 1; 1241 attrp->dma_attr_flags = 0; 1242 1243 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1244 accattrp, kaddrp, &rlen, ap); 1245 if (ret == DDI_SUCCESS) { 1246 if (real_length) 1247 *real_length = (uint_t)rlen; 1248 } 1249 return (ret); 1250 } 1251 1252 /* ARGSUSED */ 1253 void 1254 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1255 { 1256 kfreea(kaddr); 1257 } 1258 1259 /* 1260 * SECTION: DDI Data Access 1261 */ 1262 1263 static uintptr_t impl_acc_hdl_id = 0; 1264 1265 /* 1266 * access handle allocator 1267 */ 1268 ddi_acc_hdl_t * 1269 impl_acc_hdl_get(ddi_acc_handle_t hdl) 1270 { 1271 /* 1272 * Extract the access handle address from the DDI implemented 1273 * access handle 1274 */ 1275 return (&((ddi_acc_impl_t *)hdl)->ahi_common); 1276 } 1277 1278 ddi_acc_handle_t 1279 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg) 1280 { 1281 ddi_acc_impl_t *hp; 1282 on_trap_data_t *otp; 1283 int sleepflag; 1284 1285 sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); 1286 1287 /* 1288 * Allocate and initialize the data access handle and error status. 1289 */ 1290 if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL) 1291 goto fail; 1292 if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc( 1293 sizeof (ndi_err_t), sleepflag)) == NULL) { 1294 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1295 goto fail; 1296 } 1297 if ((otp = (on_trap_data_t *)kmem_zalloc( 1298 sizeof (on_trap_data_t), sleepflag)) == NULL) { 1299 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1300 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1301 goto fail; 1302 } 1303 hp->ahi_err->err_ontrap = otp; 1304 hp->ahi_common.ah_platform_private = (void *)hp; 1305 1306 return ((ddi_acc_handle_t)hp); 1307 fail: 1308 if ((waitfp != (int (*)())KM_SLEEP) && 1309 (waitfp != (int (*)())KM_NOSLEEP)) 1310 ddi_set_callback(waitfp, arg, &impl_acc_hdl_id); 1311 return (NULL); 1312 } 1313 1314 void 1315 impl_acc_hdl_free(ddi_acc_handle_t handle) 1316 { 1317 ddi_acc_impl_t *hp; 1318 1319 /* 1320 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *), 1321 * because that's what we allocated in impl_acc_hdl_alloc() above. 1322 */ 1323 hp = (ddi_acc_impl_t *)handle; 1324 if (hp) { 1325 kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t)); 1326 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1327 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1328 if (impl_acc_hdl_id) 1329 ddi_run_callback(&impl_acc_hdl_id); 1330 } 1331 } 1332 1333 #define PCI_GET_MP_PFN(mp, page_no) ((mp)->dmai_ndvmapages == 1 ? \ 1334 (pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no])) 1335 1336 /* 1337 * Function called after a dma fault occurred to find out whether the 1338 * fault address is associated with a driver that is able to handle faults 1339 * and recover from faults. 1340 */ 1341 /* ARGSUSED */ 1342 int 1343 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr, 1344 const void *not_used) 1345 { 1346 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle; 1347 pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr); 1348 pfn_t comp_pfn; 1349 1350 /* 1351 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults. 1352 */ 1353 int page; 1354 1355 ASSERT(mp); 1356 for (page = 0; page < mp->dmai_ndvmapages; page++) { 1357 comp_pfn = PCI_GET_MP_PFN(mp, page); 1358 if (fault_pfn == comp_pfn) 1359 return (DDI_FM_NONFATAL); 1360 } 1361 return (DDI_FM_UNKNOWN); 1362 } 1363 1364 /* 1365 * Function used to check if a given access handle owns the failing address. 1366 * Called by ndi_fmc_error, when we detect a PIO error. 1367 */ 1368 /* ARGSUSED */ 1369 static int 1370 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr, 1371 const void *not_used) 1372 { 1373 pfn_t pfn, fault_pfn; 1374 ddi_acc_hdl_t *hp; 1375 1376 hp = impl_acc_hdl_get((ddi_acc_handle_t)handle); 1377 1378 ASSERT(hp); 1379 1380 if (addr != NULL) { 1381 pfn = hp->ah_pfn; 1382 fault_pfn = mmu_btop(*(uint64_t *)addr); 1383 if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum)) 1384 return (DDI_FM_NONFATAL); 1385 } 1386 return (DDI_FM_UNKNOWN); 1387 } 1388 1389 void 1390 impl_acc_err_init(ddi_acc_hdl_t *handlep) 1391 { 1392 int fmcap; 1393 ndi_err_t *errp; 1394 on_trap_data_t *otp; 1395 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep; 1396 1397 fmcap = ddi_fm_capable(handlep->ah_dip); 1398 1399 if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 || 1400 !DDI_FM_ACC_ERR_CAP(fmcap)) { 1401 handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC; 1402 } else if (DDI_FM_ACC_ERR_CAP(fmcap)) { 1403 if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 1404 i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP, 1405 NULL, DDI_NOSLEEP); 1406 } else { 1407 errp = hp->ahi_err; 1408 otp = (on_trap_data_t *)errp->err_ontrap; 1409 otp->ot_handle = (void *)(hp); 1410 otp->ot_prot = OT_DATA_ACCESS; 1411 if (handlep->ah_acc.devacc_attr_access == 1412 DDI_CAUTIOUS_ACC) 1413 otp->ot_trampoline = 1414 (uintptr_t)&i_ddi_caut_trampoline; 1415 else 1416 otp->ot_trampoline = 1417 (uintptr_t)&i_ddi_prot_trampoline; 1418 errp->err_status = DDI_FM_OK; 1419 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 1420 errp->err_cf = impl_acc_check; 1421 } 1422 } 1423 } 1424 1425 void 1426 impl_acc_hdl_init(ddi_acc_hdl_t *handlep) 1427 { 1428 ddi_acc_impl_t *hp; 1429 1430 ASSERT(handlep); 1431 1432 hp = (ddi_acc_impl_t *)handlep; 1433 1434 /* 1435 * check for SW byte-swapping 1436 */ 1437 hp->ahi_get8 = i_ddi_get8; 1438 hp->ahi_put8 = i_ddi_put8; 1439 hp->ahi_rep_get8 = i_ddi_rep_get8; 1440 hp->ahi_rep_put8 = i_ddi_rep_put8; 1441 if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) { 1442 hp->ahi_get16 = i_ddi_swap_get16; 1443 hp->ahi_get32 = i_ddi_swap_get32; 1444 hp->ahi_get64 = i_ddi_swap_get64; 1445 hp->ahi_put16 = i_ddi_swap_put16; 1446 hp->ahi_put32 = i_ddi_swap_put32; 1447 hp->ahi_put64 = i_ddi_swap_put64; 1448 hp->ahi_rep_get16 = i_ddi_swap_rep_get16; 1449 hp->ahi_rep_get32 = i_ddi_swap_rep_get32; 1450 hp->ahi_rep_get64 = i_ddi_swap_rep_get64; 1451 hp->ahi_rep_put16 = i_ddi_swap_rep_put16; 1452 hp->ahi_rep_put32 = i_ddi_swap_rep_put32; 1453 hp->ahi_rep_put64 = i_ddi_swap_rep_put64; 1454 } else { 1455 hp->ahi_get16 = i_ddi_get16; 1456 hp->ahi_get32 = i_ddi_get32; 1457 hp->ahi_get64 = i_ddi_get64; 1458 hp->ahi_put16 = i_ddi_put16; 1459 hp->ahi_put32 = i_ddi_put32; 1460 hp->ahi_put64 = i_ddi_put64; 1461 hp->ahi_rep_get16 = i_ddi_rep_get16; 1462 hp->ahi_rep_get32 = i_ddi_rep_get32; 1463 hp->ahi_rep_get64 = i_ddi_rep_get64; 1464 hp->ahi_rep_put16 = i_ddi_rep_put16; 1465 hp->ahi_rep_put32 = i_ddi_rep_put32; 1466 hp->ahi_rep_put64 = i_ddi_rep_put64; 1467 } 1468 1469 /* Legacy fault flags and support */ 1470 hp->ahi_fault_check = i_ddi_acc_fault_check; 1471 hp->ahi_fault_notify = i_ddi_acc_fault_notify; 1472 hp->ahi_fault = 0; 1473 impl_acc_err_init(handlep); 1474 } 1475 1476 void 1477 i_ddi_acc_set_fault(ddi_acc_handle_t handle) 1478 { 1479 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1480 1481 if (!hp->ahi_fault) { 1482 hp->ahi_fault = 1; 1483 (*hp->ahi_fault_notify)(hp); 1484 } 1485 } 1486 1487 void 1488 i_ddi_acc_clr_fault(ddi_acc_handle_t handle) 1489 { 1490 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1491 1492 if (hp->ahi_fault) { 1493 hp->ahi_fault = 0; 1494 (*hp->ahi_fault_notify)(hp); 1495 } 1496 } 1497 1498 /* ARGSUSED */ 1499 void 1500 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp) 1501 { 1502 /* Default version, does nothing */ 1503 } 1504 1505 /* 1506 * SECTION: Misc functions 1507 */ 1508 1509 /* 1510 * instance wrappers 1511 */ 1512 /*ARGSUSED*/ 1513 uint_t 1514 impl_assign_instance(dev_info_t *dip) 1515 { 1516 return ((uint_t)-1); 1517 } 1518 1519 /*ARGSUSED*/ 1520 int 1521 impl_keep_instance(dev_info_t *dip) 1522 { 1523 return (DDI_FAILURE); 1524 } 1525 1526 /*ARGSUSED*/ 1527 int 1528 impl_free_instance(dev_info_t *dip) 1529 { 1530 return (DDI_FAILURE); 1531 } 1532 1533 /*ARGSUSED*/ 1534 int 1535 impl_check_cpu(dev_info_t *devi) 1536 { 1537 return (DDI_SUCCESS); 1538 } 1539 1540 1541 static const char *nocopydevs[] = { 1542 "SUNW,ffb", 1543 "SUNW,afb", 1544 NULL 1545 }; 1546 1547 /* 1548 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 1549 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 1550 */ 1551 /*ARGSUSED*/ 1552 int 1553 e_ddi_copyfromdev(dev_info_t *devi, 1554 off_t off, const void *devaddr, void *kaddr, size_t len) 1555 { 1556 const char **argv; 1557 1558 for (argv = nocopydevs; *argv; argv++) 1559 if (strcmp(ddi_binding_name(devi), *argv) == 0) { 1560 bzero(kaddr, len); 1561 return (0); 1562 } 1563 1564 bcopy(devaddr, kaddr, len); 1565 return (0); 1566 } 1567 1568 /* 1569 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 1570 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 1571 */ 1572 /*ARGSUSED*/ 1573 int 1574 e_ddi_copytodev(dev_info_t *devi, 1575 off_t off, const void *kaddr, void *devaddr, size_t len) 1576 { 1577 const char **argv; 1578 1579 for (argv = nocopydevs; *argv; argv++) 1580 if (strcmp(ddi_binding_name(devi), *argv) == 0) 1581 return (1); 1582 1583 bcopy(kaddr, devaddr, len); 1584 return (0); 1585 } 1586 1587 /* 1588 * Boot Configuration 1589 */ 1590 idprom_t idprom; 1591 1592 /* 1593 * Configure the hardware on the system. 1594 * Called before the rootfs is mounted 1595 */ 1596 void 1597 configure(void) 1598 { 1599 extern void i_ddi_init_root(); 1600 1601 /* We better have released boot by this time! */ 1602 ASSERT(!bootops); 1603 1604 /* 1605 * Determine whether or not to use the fpu, V9 SPARC cpus 1606 * always have one. Could check for existence of a fp queue, 1607 * Ultra I, II and IIa do not have a fp queue. 1608 */ 1609 if (fpu_exists) 1610 fpu_probe(); 1611 else 1612 cmn_err(CE_CONT, "FPU not in use\n"); 1613 1614 #if 0 /* XXXQ - not necessary for sun4u */ 1615 /* 1616 * This following line fixes bugid 1041296; we need to do a 1617 * prom_nextnode(0) because this call ALSO patches the DMA+ 1618 * bug in Campus-B and Phoenix. The prom uncaches the traptable 1619 * page as a side-effect of devr_next(0) (which prom_nextnode calls), 1620 * so this *must* be executed early on. (XXX This is untrue for sun4u) 1621 */ 1622 (void) prom_nextnode((pnode_t)0); 1623 #endif 1624 1625 /* 1626 * Initialize devices on the machine. 1627 * Uses configuration tree built by the PROMs to determine what 1628 * is present, and builds a tree of prototype dev_info nodes 1629 * corresponding to the hardware which identified itself. 1630 */ 1631 i_ddi_init_root(); 1632 1633 #ifdef DDI_PROP_DEBUG 1634 (void) ddi_prop_debug(1); /* Enable property debugging */ 1635 #endif /* DDI_PROP_DEBUG */ 1636 } 1637 1638 /* 1639 * The "status" property indicates the operational status of a device. 1640 * If this property is present, the value is a string indicating the 1641 * status of the device as follows: 1642 * 1643 * "okay" operational. 1644 * "disabled" not operational, but might become operational. 1645 * "fail" not operational because a fault has been detected, 1646 * and it is unlikely that the device will become 1647 * operational without repair. no additional details 1648 * are available. 1649 * "fail-xxx" not operational because a fault has been detected, 1650 * and it is unlikely that the device will become 1651 * operational without repair. "xxx" is additional 1652 * human-readable information about the particular 1653 * fault condition that was detected. 1654 * 1655 * The absence of this property means that the operational status is 1656 * unknown or okay. 1657 * 1658 * This routine checks the status property of the specified device node 1659 * and returns 0 if the operational status indicates failure, and 1 otherwise. 1660 * 1661 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 1662 * And, in that case, the property may not even be a string. So we carefully 1663 * check for the value "fail", in the beginning of the string, noting 1664 * the property length. 1665 */ 1666 int 1667 status_okay(int id, char *buf, int buflen) 1668 { 1669 char status_buf[OBP_MAXPROPNAME]; 1670 char *bufp = buf; 1671 int len = buflen; 1672 int proplen; 1673 static const char *status = "status"; 1674 static const char *fail = "fail"; 1675 size_t fail_len = strlen(fail); 1676 1677 /* 1678 * Get the proplen ... if it's smaller than "fail", 1679 * or doesn't exist ... then we don't care, since 1680 * the value can't begin with the char string "fail". 1681 * 1682 * NB: proplen, if it's a string, includes the NULL in the 1683 * the size of the property, and fail_len does not. 1684 */ 1685 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 1686 if (proplen <= fail_len) /* nonexistent or uninteresting len */ 1687 return (1); 1688 1689 /* 1690 * if a buffer was provided, use it 1691 */ 1692 if ((buf == (char *)NULL) || (buflen <= 0)) { 1693 bufp = status_buf; 1694 len = sizeof (status_buf); 1695 } 1696 *bufp = (char)0; 1697 1698 /* 1699 * Get the property into the buffer, to the extent of the buffer, 1700 * and in case the buffer is smaller than the property size, 1701 * NULL terminate the buffer. (This handles the case where 1702 * a buffer was passed in and the caller wants to print the 1703 * value, but the buffer was too small). 1704 */ 1705 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 1706 (caddr_t)bufp, len); 1707 *(bufp + len - 1) = (char)0; 1708 1709 /* 1710 * If the value begins with the char string "fail", 1711 * then it means the node is failed. We don't care 1712 * about any other values. We assume the node is ok 1713 * although it might be 'disabled'. 1714 */ 1715 if (strncmp(bufp, fail, fail_len) == 0) 1716 return (0); 1717 1718 return (1); 1719 } 1720 1721 1722 /* 1723 * We set the cpu type from the idprom, if we can. 1724 * Note that we just read out the contents of it, for the most part. 1725 */ 1726 void 1727 setcputype(void) 1728 { 1729 /* 1730 * We cache the idprom info early on so that we don't 1731 * rummage through the NVRAM unnecessarily later. 1732 */ 1733 (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom)); 1734 } 1735 1736 /* 1737 * Here is where we actually infer meanings to the members of idprom_t 1738 */ 1739 void 1740 parse_idprom(void) 1741 { 1742 if (idprom.id_format == IDFORM_1) { 1743 uint_t i; 1744 1745 (void) localetheraddr((struct ether_addr *)idprom.id_ether, 1746 (struct ether_addr *)NULL); 1747 1748 i = idprom.id_machine << 24; 1749 i = i + idprom.id_serial; 1750 numtos((ulong_t)i, hw_serial); 1751 } else 1752 prom_printf("Invalid format code in IDprom.\n"); 1753 } 1754 1755 /* 1756 * Allow for implementation specific correction of PROM property values. 1757 */ 1758 /*ARGSUSED*/ 1759 void 1760 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 1761 caddr_t buffer) 1762 { 1763 /* 1764 * There are no adjustments needed in this implementation. 1765 */ 1766 } 1767 1768 /* 1769 * The following functions ready a cautious request to go up to the nexus 1770 * driver. It is up to the nexus driver to decide how to process the request. 1771 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 1772 * differently. 1773 */ 1774 1775 static void 1776 i_ddi_caut_getput_ctlops( 1777 ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size, 1778 size_t repcount, uint_t flags, ddi_ctl_enum_t cmd) 1779 { 1780 peekpoke_ctlops_t cautacc_ctlops_arg; 1781 1782 cautacc_ctlops_arg.size = size; 1783 cautacc_ctlops_arg.dev_addr = dev_addr; 1784 cautacc_ctlops_arg.host_addr = host_addr; 1785 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 1786 cautacc_ctlops_arg.repcount = repcount; 1787 cautacc_ctlops_arg.flags = flags; 1788 1789 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 1790 &cautacc_ctlops_arg, NULL); 1791 } 1792 1793 uint8_t 1794 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 1795 { 1796 uint8_t value; 1797 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1798 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 1799 1800 return (value); 1801 } 1802 1803 uint16_t 1804 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 1805 { 1806 uint16_t value; 1807 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1808 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 1809 1810 return (value); 1811 } 1812 1813 uint32_t 1814 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 1815 { 1816 uint32_t value; 1817 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1818 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 1819 1820 return (value); 1821 } 1822 1823 uint64_t 1824 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 1825 { 1826 uint64_t value; 1827 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1828 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 1829 1830 return (value); 1831 } 1832 1833 void 1834 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 1835 { 1836 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1837 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 1838 } 1839 1840 void 1841 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 1842 { 1843 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1844 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 1845 } 1846 1847 void 1848 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 1849 { 1850 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1851 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 1852 } 1853 1854 void 1855 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 1856 { 1857 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1858 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 1859 } 1860 1861 void 1862 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1863 size_t repcount, uint_t flags) 1864 { 1865 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1866 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 1867 } 1868 1869 void 1870 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1871 uint16_t *dev_addr, size_t repcount, uint_t flags) 1872 { 1873 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1874 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 1875 } 1876 1877 void 1878 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1879 uint32_t *dev_addr, size_t repcount, uint_t flags) 1880 { 1881 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1882 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 1883 } 1884 1885 void 1886 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1887 uint64_t *dev_addr, size_t repcount, uint_t flags) 1888 { 1889 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1890 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 1891 } 1892 1893 void 1894 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1895 size_t repcount, uint_t flags) 1896 { 1897 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1898 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 1899 } 1900 1901 void 1902 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1903 uint16_t *dev_addr, size_t repcount, uint_t flags) 1904 { 1905 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1906 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 1907 } 1908 1909 void 1910 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1911 uint32_t *dev_addr, size_t repcount, uint_t flags) 1912 { 1913 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1914 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 1915 } 1916 1917 void 1918 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1919 uint64_t *dev_addr, size_t repcount, uint_t flags) 1920 { 1921 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1922 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 1923 } 1924 1925 /* 1926 * This is called only to process peek/poke when the DIP is NULL. 1927 * Assume that this is for memory, as nexi take care of device safe accesses. 1928 */ 1929 int 1930 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 1931 { 1932 int err = DDI_SUCCESS; 1933 on_trap_data_t otd; 1934 1935 /* Set up protected environment. */ 1936 if (!on_trap(&otd, OT_DATA_ACCESS)) { 1937 uintptr_t tramp = otd.ot_trampoline; 1938 1939 if (cmd == DDI_CTLOPS_POKE) { 1940 otd.ot_trampoline = (uintptr_t)&poke_fault; 1941 err = do_poke(in_args->size, (void *)in_args->dev_addr, 1942 (void *)in_args->host_addr); 1943 } else { 1944 otd.ot_trampoline = (uintptr_t)&peek_fault; 1945 err = do_peek(in_args->size, (void *)in_args->dev_addr, 1946 (void *)in_args->host_addr); 1947 } 1948 otd.ot_trampoline = tramp; 1949 } else 1950 err = DDI_FAILURE; 1951 1952 /* Take down protected environment. */ 1953 no_trap(); 1954 1955 return (err); 1956 } 1957 1958 /* 1959 * Platform independent DR routines 1960 */ 1961 1962 static int 1963 ndi2errno(int n) 1964 { 1965 int err = 0; 1966 1967 switch (n) { 1968 case NDI_NOMEM: 1969 err = ENOMEM; 1970 break; 1971 case NDI_BUSY: 1972 err = EBUSY; 1973 break; 1974 case NDI_FAULT: 1975 err = EFAULT; 1976 break; 1977 case NDI_FAILURE: 1978 err = EIO; 1979 break; 1980 case NDI_SUCCESS: 1981 break; 1982 case NDI_BADHANDLE: 1983 default: 1984 err = EINVAL; 1985 break; 1986 } 1987 return (err); 1988 } 1989 1990 /* 1991 * Prom tree node list 1992 */ 1993 struct ptnode { 1994 pnode_t nodeid; 1995 struct ptnode *next; 1996 }; 1997 1998 /* 1999 * Prom tree walk arg 2000 */ 2001 struct pta { 2002 dev_info_t *pdip; 2003 devi_branch_t *bp; 2004 uint_t flags; 2005 dev_info_t *fdip; 2006 struct ptnode *head; 2007 }; 2008 2009 static void 2010 visit_node(pnode_t nodeid, struct pta *ap) 2011 { 2012 struct ptnode **nextp; 2013 int (*select)(pnode_t, void *, uint_t); 2014 2015 ASSERT(nodeid != OBP_NONODE && nodeid != OBP_BADNODE); 2016 2017 select = ap->bp->create.prom_branch_select; 2018 2019 ASSERT(select); 2020 2021 if (select(nodeid, ap->bp->arg, 0) == DDI_SUCCESS) { 2022 2023 for (nextp = &ap->head; *nextp; nextp = &(*nextp)->next) 2024 ; 2025 2026 *nextp = kmem_zalloc(sizeof (struct ptnode), KM_SLEEP); 2027 2028 (*nextp)->nodeid = nodeid; 2029 } 2030 2031 if ((ap->flags & DEVI_BRANCH_CHILD) == DEVI_BRANCH_CHILD) 2032 return; 2033 2034 nodeid = prom_childnode(nodeid); 2035 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { 2036 visit_node(nodeid, ap); 2037 nodeid = prom_nextnode(nodeid); 2038 } 2039 } 2040 2041 /* 2042 * NOTE: The caller of this function must check for device contracts 2043 * or LDI callbacks against this dip before setting the dip offline. 2044 */ 2045 static int 2046 set_infant_dip_offline(dev_info_t *dip, void *arg) 2047 { 2048 char *path = (char *)arg; 2049 2050 ASSERT(dip); 2051 ASSERT(arg); 2052 2053 if (i_ddi_node_state(dip) >= DS_ATTACHED) { 2054 (void) ddi_pathname(dip, path); 2055 cmn_err(CE_WARN, "Attempt to set offline flag on attached " 2056 "node: %s", path); 2057 return (DDI_FAILURE); 2058 } 2059 2060 mutex_enter(&(DEVI(dip)->devi_lock)); 2061 if (!DEVI_IS_DEVICE_OFFLINE(dip)) 2062 DEVI_SET_DEVICE_OFFLINE(dip); 2063 mutex_exit(&(DEVI(dip)->devi_lock)); 2064 2065 return (DDI_SUCCESS); 2066 } 2067 2068 typedef struct result { 2069 char *path; 2070 int result; 2071 } result_t; 2072 2073 static int 2074 dip_set_offline(dev_info_t *dip, void *arg) 2075 { 2076 int end; 2077 result_t *resp = (result_t *)arg; 2078 2079 ASSERT(dip); 2080 ASSERT(resp); 2081 2082 /* 2083 * We stop the walk if e_ddi_offline_notify() returns 2084 * failure, because this implies that one or more consumers 2085 * (either LDI or contract based) has blocked the offline. 2086 * So there is no point in conitnuing the walk 2087 */ 2088 if (e_ddi_offline_notify(dip) == DDI_FAILURE) { 2089 resp->result = DDI_FAILURE; 2090 return (DDI_WALK_TERMINATE); 2091 } 2092 2093 /* 2094 * If set_infant_dip_offline() returns failure, it implies 2095 * that we failed to set a particular dip offline. This 2096 * does not imply that the offline as a whole should fail. 2097 * We want to do the best we can, so we continue the walk. 2098 */ 2099 if (set_infant_dip_offline(dip, resp->path) == DDI_SUCCESS) 2100 end = DDI_SUCCESS; 2101 else 2102 end = DDI_FAILURE; 2103 2104 e_ddi_offline_finalize(dip, end); 2105 2106 return (DDI_WALK_CONTINUE); 2107 } 2108 2109 /* 2110 * The call to e_ddi_offline_notify() exists for the 2111 * unlikely error case that a branch we are trying to 2112 * create already exists and has device contracts or LDI 2113 * event callbacks against it. 2114 * 2115 * We allow create to succeed for such branches only if 2116 * no constraints block the offline. 2117 */ 2118 static int 2119 branch_set_offline(dev_info_t *dip, char *path) 2120 { 2121 int circ; 2122 int end; 2123 result_t res; 2124 2125 2126 if (e_ddi_offline_notify(dip) == DDI_FAILURE) { 2127 return (DDI_FAILURE); 2128 } 2129 2130 if (set_infant_dip_offline(dip, path) == DDI_SUCCESS) 2131 end = DDI_SUCCESS; 2132 else 2133 end = DDI_FAILURE; 2134 2135 e_ddi_offline_finalize(dip, end); 2136 2137 if (end == DDI_FAILURE) 2138 return (DDI_FAILURE); 2139 2140 res.result = DDI_SUCCESS; 2141 res.path = path; 2142 2143 ndi_devi_enter(dip, &circ); 2144 ddi_walk_devs(ddi_get_child(dip), dip_set_offline, &res); 2145 ndi_devi_exit(dip, circ); 2146 2147 return (res.result); 2148 } 2149 2150 /*ARGSUSED*/ 2151 static int 2152 create_prom_branch(void *arg, int has_changed) 2153 { 2154 int circ; 2155 int exists, rv; 2156 pnode_t nodeid; 2157 struct ptnode *tnp; 2158 dev_info_t *dip; 2159 struct pta *ap = arg; 2160 devi_branch_t *bp; 2161 char *path; 2162 2163 ASSERT(ap); 2164 ASSERT(ap->fdip == NULL); 2165 ASSERT(ap->pdip && ndi_dev_is_prom_node(ap->pdip)); 2166 2167 bp = ap->bp; 2168 2169 nodeid = ddi_get_nodeid(ap->pdip); 2170 if (nodeid == OBP_NONODE || nodeid == OBP_BADNODE) { 2171 cmn_err(CE_WARN, "create_prom_branch: invalid " 2172 "nodeid: 0x%x", nodeid); 2173 return (EINVAL); 2174 } 2175 2176 ap->head = NULL; 2177 2178 nodeid = prom_childnode(nodeid); 2179 while (nodeid != OBP_NONODE && nodeid != OBP_BADNODE) { 2180 visit_node(nodeid, ap); 2181 nodeid = prom_nextnode(nodeid); 2182 } 2183 2184 if (ap->head == NULL) 2185 return (ENODEV); 2186 2187 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2188 rv = 0; 2189 while ((tnp = ap->head) != NULL) { 2190 ap->head = tnp->next; 2191 2192 ndi_devi_enter(ap->pdip, &circ); 2193 2194 /* 2195 * Check if the branch already exists. 2196 */ 2197 exists = 0; 2198 dip = e_ddi_nodeid_to_dip(tnp->nodeid); 2199 if (dip != NULL) { 2200 exists = 1; 2201 2202 /* Parent is held busy, so release hold */ 2203 ndi_rele_devi(dip); 2204 #ifdef DEBUG 2205 cmn_err(CE_WARN, "create_prom_branch: dip(%p) exists" 2206 " for nodeid 0x%x", (void *)dip, tnp->nodeid); 2207 #endif 2208 } else { 2209 dip = i_ddi_create_branch(ap->pdip, tnp->nodeid); 2210 } 2211 2212 kmem_free(tnp, sizeof (struct ptnode)); 2213 2214 /* 2215 * Hold the branch if it is not already held 2216 */ 2217 if (dip && !exists) { 2218 e_ddi_branch_hold(dip); 2219 } 2220 2221 ASSERT(dip == NULL || e_ddi_branch_held(dip)); 2222 2223 /* 2224 * Set all dips in the newly created branch offline so that 2225 * only a "configure" operation can attach 2226 * the branch 2227 */ 2228 if (dip == NULL || branch_set_offline(dip, path) 2229 == DDI_FAILURE) { 2230 ndi_devi_exit(ap->pdip, circ); 2231 rv = EIO; 2232 continue; 2233 } 2234 2235 ASSERT(ddi_get_parent(dip) == ap->pdip); 2236 2237 ndi_devi_exit(ap->pdip, circ); 2238 2239 if (ap->flags & DEVI_BRANCH_CONFIGURE) { 2240 int error = e_ddi_branch_configure(dip, &ap->fdip, 0); 2241 if (error && rv == 0) 2242 rv = error; 2243 } 2244 2245 /* 2246 * Invoke devi_branch_callback() (if it exists) only for 2247 * newly created branches 2248 */ 2249 if (bp->devi_branch_callback && !exists) 2250 bp->devi_branch_callback(dip, bp->arg, 0); 2251 } 2252 2253 kmem_free(path, MAXPATHLEN); 2254 2255 return (rv); 2256 } 2257 2258 static int 2259 sid_node_create(dev_info_t *pdip, devi_branch_t *bp, dev_info_t **rdipp) 2260 { 2261 int rv, circ, len; 2262 int i, flags, ret; 2263 dev_info_t *dip; 2264 char *nbuf; 2265 char *path; 2266 static const char *noname = "<none>"; 2267 2268 ASSERT(pdip); 2269 ASSERT(DEVI_BUSY_OWNED(pdip)); 2270 2271 flags = 0; 2272 2273 /* 2274 * Creating the root of a branch ? 2275 */ 2276 if (rdipp) { 2277 *rdipp = NULL; 2278 flags = DEVI_BRANCH_ROOT; 2279 } 2280 2281 ndi_devi_alloc_sleep(pdip, (char *)noname, DEVI_SID_NODEID, &dip); 2282 rv = bp->create.sid_branch_create(dip, bp->arg, flags); 2283 2284 nbuf = kmem_alloc(OBP_MAXDRVNAME, KM_SLEEP); 2285 2286 if (rv == DDI_WALK_ERROR) { 2287 cmn_err(CE_WARN, "e_ddi_branch_create: Error setting" 2288 " properties on devinfo node %p", (void *)dip); 2289 goto fail; 2290 } 2291 2292 len = OBP_MAXDRVNAME; 2293 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 2294 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "name", nbuf, &len) 2295 != DDI_PROP_SUCCESS) { 2296 cmn_err(CE_WARN, "e_ddi_branch_create: devinfo node %p has" 2297 "no name property", (void *)dip); 2298 goto fail; 2299 } 2300 2301 ASSERT(i_ddi_node_state(dip) == DS_PROTO); 2302 if (ndi_devi_set_nodename(dip, nbuf, 0) != NDI_SUCCESS) { 2303 cmn_err(CE_WARN, "e_ddi_branch_create: cannot set name (%s)" 2304 " for devinfo node %p", nbuf, (void *)dip); 2305 goto fail; 2306 } 2307 2308 kmem_free(nbuf, OBP_MAXDRVNAME); 2309 2310 /* 2311 * Ignore bind failures just like boot does 2312 */ 2313 (void) ndi_devi_bind_driver(dip, 0); 2314 2315 switch (rv) { 2316 case DDI_WALK_CONTINUE: 2317 case DDI_WALK_PRUNESIB: 2318 ndi_devi_enter(dip, &circ); 2319 2320 i = DDI_WALK_CONTINUE; 2321 for (; i == DDI_WALK_CONTINUE; ) { 2322 i = sid_node_create(dip, bp, NULL); 2323 } 2324 2325 ASSERT(i == DDI_WALK_ERROR || i == DDI_WALK_PRUNESIB); 2326 if (i == DDI_WALK_ERROR) 2327 rv = i; 2328 /* 2329 * If PRUNESIB stop creating siblings 2330 * of dip's child. Subsequent walk behavior 2331 * is determined by rv returned by dip. 2332 */ 2333 2334 ndi_devi_exit(dip, circ); 2335 break; 2336 case DDI_WALK_TERMINATE: 2337 /* 2338 * Don't create children and ask our parent 2339 * to not create siblings either. 2340 */ 2341 rv = DDI_WALK_PRUNESIB; 2342 break; 2343 case DDI_WALK_PRUNECHILD: 2344 /* 2345 * Don't create children, but ask parent to continue 2346 * with siblings. 2347 */ 2348 rv = DDI_WALK_CONTINUE; 2349 break; 2350 default: 2351 ASSERT(0); 2352 break; 2353 } 2354 2355 if (rdipp) 2356 *rdipp = dip; 2357 2358 /* 2359 * Set device offline - only the "configure" op should cause an attach. 2360 * Note that it is safe to set the dip offline without checking 2361 * for either device contract or layered driver (LDI) based constraints 2362 * since there cannot be any contracts or LDI opens of this device. 2363 * This is because this node is a newly created dip with the parent busy 2364 * held, so no other thread can come in and attach this dip. A dip that 2365 * has never been attached cannot have contracts since by definition 2366 * a device contract (an agreement between a process and a device minor 2367 * node) can only be created against a device that has minor nodes 2368 * i.e is attached. Similarly an LDI open will only succeed if the 2369 * dip is attached. We assert below that the dip is not attached. 2370 */ 2371 ASSERT(i_ddi_node_state(dip) < DS_ATTACHED); 2372 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2373 ret = set_infant_dip_offline(dip, path); 2374 ASSERT(ret == DDI_SUCCESS); 2375 kmem_free(path, MAXPATHLEN); 2376 2377 return (rv); 2378 fail: 2379 (void) ndi_devi_free(dip); 2380 kmem_free(nbuf, OBP_MAXDRVNAME); 2381 return (DDI_WALK_ERROR); 2382 } 2383 2384 static int 2385 create_sid_branch( 2386 dev_info_t *pdip, 2387 devi_branch_t *bp, 2388 dev_info_t **dipp, 2389 uint_t flags) 2390 { 2391 int rv = 0, state = DDI_WALK_CONTINUE; 2392 dev_info_t *rdip; 2393 2394 while (state == DDI_WALK_CONTINUE) { 2395 int circ; 2396 2397 ndi_devi_enter(pdip, &circ); 2398 2399 state = sid_node_create(pdip, bp, &rdip); 2400 if (rdip == NULL) { 2401 ndi_devi_exit(pdip, circ); 2402 ASSERT(state == DDI_WALK_ERROR); 2403 break; 2404 } 2405 2406 e_ddi_branch_hold(rdip); 2407 2408 ndi_devi_exit(pdip, circ); 2409 2410 if (flags & DEVI_BRANCH_CONFIGURE) { 2411 int error = e_ddi_branch_configure(rdip, dipp, 0); 2412 if (error && rv == 0) 2413 rv = error; 2414 } 2415 2416 /* 2417 * devi_branch_callback() is optional 2418 */ 2419 if (bp->devi_branch_callback) 2420 bp->devi_branch_callback(rdip, bp->arg, 0); 2421 } 2422 2423 ASSERT(state == DDI_WALK_ERROR || state == DDI_WALK_PRUNESIB); 2424 2425 return (state == DDI_WALK_ERROR ? EIO : rv); 2426 } 2427 2428 int 2429 e_ddi_branch_create( 2430 dev_info_t *pdip, 2431 devi_branch_t *bp, 2432 dev_info_t **dipp, 2433 uint_t flags) 2434 { 2435 int prom_devi, sid_devi, error; 2436 2437 if (pdip == NULL || bp == NULL || bp->type == 0) 2438 return (EINVAL); 2439 2440 prom_devi = (bp->type == DEVI_BRANCH_PROM) ? 1 : 0; 2441 sid_devi = (bp->type == DEVI_BRANCH_SID) ? 1 : 0; 2442 2443 if (prom_devi && bp->create.prom_branch_select == NULL) 2444 return (EINVAL); 2445 else if (sid_devi && bp->create.sid_branch_create == NULL) 2446 return (EINVAL); 2447 else if (!prom_devi && !sid_devi) 2448 return (EINVAL); 2449 2450 if (flags & DEVI_BRANCH_EVENT) 2451 return (EINVAL); 2452 2453 if (prom_devi) { 2454 struct pta pta = {0}; 2455 2456 pta.pdip = pdip; 2457 pta.bp = bp; 2458 pta.flags = flags; 2459 2460 error = prom_tree_access(create_prom_branch, &pta, NULL); 2461 2462 if (dipp) 2463 *dipp = pta.fdip; 2464 else if (pta.fdip) 2465 ndi_rele_devi(pta.fdip); 2466 } else { 2467 error = create_sid_branch(pdip, bp, dipp, flags); 2468 } 2469 2470 return (error); 2471 } 2472 2473 int 2474 e_ddi_branch_configure(dev_info_t *rdip, dev_info_t **dipp, uint_t flags) 2475 { 2476 int circ, rv; 2477 char *devnm; 2478 dev_info_t *pdip; 2479 2480 if (dipp) 2481 *dipp = NULL; 2482 2483 if (rdip == NULL || flags != 0 || (flags & DEVI_BRANCH_EVENT)) 2484 return (EINVAL); 2485 2486 pdip = ddi_get_parent(rdip); 2487 2488 ndi_devi_enter(pdip, &circ); 2489 2490 if (!e_ddi_branch_held(rdip)) { 2491 ndi_devi_exit(pdip, circ); 2492 cmn_err(CE_WARN, "e_ddi_branch_configure: " 2493 "dip(%p) not held", (void *)rdip); 2494 return (EINVAL); 2495 } 2496 2497 if (i_ddi_node_state(rdip) < DS_INITIALIZED) { 2498 /* 2499 * First attempt to bind a driver. If we fail, return 2500 * success (On some platforms, dips for some device 2501 * types (CPUs) may not have a driver) 2502 */ 2503 if (ndi_devi_bind_driver(rdip, 0) != NDI_SUCCESS) { 2504 ndi_devi_exit(pdip, circ); 2505 return (0); 2506 } 2507 2508 if (ddi_initchild(pdip, rdip) != DDI_SUCCESS) { 2509 rv = NDI_FAILURE; 2510 goto out; 2511 } 2512 } 2513 2514 ASSERT(i_ddi_node_state(rdip) >= DS_INITIALIZED); 2515 2516 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 2517 2518 (void) ddi_deviname(rdip, devnm); 2519 2520 if ((rv = ndi_devi_config_one(pdip, devnm+1, &rdip, 2521 NDI_DEVI_ONLINE | NDI_CONFIG)) == NDI_SUCCESS) { 2522 /* release hold from ndi_devi_config_one() */ 2523 ndi_rele_devi(rdip); 2524 } 2525 2526 kmem_free(devnm, MAXNAMELEN + 1); 2527 out: 2528 if (rv != NDI_SUCCESS && dipp) { 2529 ndi_hold_devi(rdip); 2530 *dipp = rdip; 2531 } 2532 ndi_devi_exit(pdip, circ); 2533 return (ndi2errno(rv)); 2534 } 2535 2536 void 2537 e_ddi_branch_hold(dev_info_t *rdip) 2538 { 2539 if (e_ddi_branch_held(rdip)) { 2540 cmn_err(CE_WARN, "e_ddi_branch_hold: branch already held"); 2541 return; 2542 } 2543 2544 mutex_enter(&DEVI(rdip)->devi_lock); 2545 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) == 0) { 2546 DEVI(rdip)->devi_flags |= DEVI_BRANCH_HELD; 2547 DEVI(rdip)->devi_ref++; 2548 } 2549 ASSERT(DEVI(rdip)->devi_ref > 0); 2550 mutex_exit(&DEVI(rdip)->devi_lock); 2551 } 2552 2553 int 2554 e_ddi_branch_held(dev_info_t *rdip) 2555 { 2556 int rv = 0; 2557 2558 mutex_enter(&DEVI(rdip)->devi_lock); 2559 if ((DEVI(rdip)->devi_flags & DEVI_BRANCH_HELD) && 2560 DEVI(rdip)->devi_ref > 0) { 2561 rv = 1; 2562 } 2563 mutex_exit(&DEVI(rdip)->devi_lock); 2564 2565 return (rv); 2566 } 2567 void 2568 e_ddi_branch_rele(dev_info_t *rdip) 2569 { 2570 mutex_enter(&DEVI(rdip)->devi_lock); 2571 DEVI(rdip)->devi_flags &= ~DEVI_BRANCH_HELD; 2572 DEVI(rdip)->devi_ref--; 2573 mutex_exit(&DEVI(rdip)->devi_lock); 2574 } 2575 2576 int 2577 e_ddi_branch_unconfigure( 2578 dev_info_t *rdip, 2579 dev_info_t **dipp, 2580 uint_t flags) 2581 { 2582 int circ, rv; 2583 int destroy; 2584 char *devnm; 2585 uint_t nflags; 2586 dev_info_t *pdip; 2587 2588 if (dipp) 2589 *dipp = NULL; 2590 2591 if (rdip == NULL) 2592 return (EINVAL); 2593 2594 pdip = ddi_get_parent(rdip); 2595 2596 ASSERT(pdip); 2597 2598 /* 2599 * Check if caller holds pdip busy - can cause deadlocks during 2600 * devfs_clean() 2601 */ 2602 if (DEVI_BUSY_OWNED(pdip)) { 2603 cmn_err(CE_WARN, "e_ddi_branch_unconfigure: failed: parent" 2604 " devinfo node(%p) is busy held", (void *)pdip); 2605 return (EINVAL); 2606 } 2607 2608 destroy = (flags & DEVI_BRANCH_DESTROY) ? 1 : 0; 2609 2610 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 2611 2612 ndi_devi_enter(pdip, &circ); 2613 (void) ddi_deviname(rdip, devnm); 2614 ndi_devi_exit(pdip, circ); 2615 2616 /* 2617 * ddi_deviname() returns a component name with / prepended. 2618 */ 2619 (void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE); 2620 2621 ndi_devi_enter(pdip, &circ); 2622 2623 /* 2624 * Recreate device name as it may have changed state (init/uninit) 2625 * when parent busy lock was dropped for devfs_clean() 2626 */ 2627 (void) ddi_deviname(rdip, devnm); 2628 2629 if (!e_ddi_branch_held(rdip)) { 2630 kmem_free(devnm, MAXNAMELEN + 1); 2631 ndi_devi_exit(pdip, circ); 2632 cmn_err(CE_WARN, "e_ddi_%s_branch: dip(%p) not held", 2633 destroy ? "destroy" : "unconfigure", (void *)rdip); 2634 return (EINVAL); 2635 } 2636 2637 /* 2638 * Release hold on the branch. This is ok since we are holding the 2639 * parent busy. If rdip is not removed, we must do a hold on the 2640 * branch before returning. 2641 */ 2642 e_ddi_branch_rele(rdip); 2643 2644 nflags = NDI_DEVI_OFFLINE; 2645 if (destroy || (flags & DEVI_BRANCH_DESTROY)) { 2646 nflags |= NDI_DEVI_REMOVE; 2647 destroy = 1; 2648 } else { 2649 nflags |= NDI_UNCONFIG; /* uninit but don't remove */ 2650 } 2651 2652 if (flags & DEVI_BRANCH_EVENT) 2653 nflags |= NDI_POST_EVENT; 2654 2655 if (i_ddi_devi_attached(pdip) && 2656 (i_ddi_node_state(rdip) >= DS_INITIALIZED)) { 2657 rv = ndi_devi_unconfig_one(pdip, devnm+1, dipp, nflags); 2658 } else { 2659 rv = e_ddi_devi_unconfig(rdip, dipp, nflags); 2660 if (rv == NDI_SUCCESS) { 2661 ASSERT(!destroy || ddi_get_child(rdip) == NULL); 2662 rv = ndi_devi_offline(rdip, nflags); 2663 } 2664 } 2665 2666 if (!destroy || rv != NDI_SUCCESS) { 2667 /* The dip still exists, so do a hold */ 2668 e_ddi_branch_hold(rdip); 2669 } 2670 out: 2671 kmem_free(devnm, MAXNAMELEN + 1); 2672 ndi_devi_exit(pdip, circ); 2673 return (ndi2errno(rv)); 2674 } 2675 2676 int 2677 e_ddi_branch_destroy(dev_info_t *rdip, dev_info_t **dipp, uint_t flag) 2678 { 2679 return (e_ddi_branch_unconfigure(rdip, dipp, 2680 flag|DEVI_BRANCH_DESTROY)); 2681 } 2682 2683 /* 2684 * Number of chains for hash table 2685 */ 2686 #define NUMCHAINS 17 2687 2688 /* 2689 * Devinfo busy arg 2690 */ 2691 struct devi_busy { 2692 int dv_total; 2693 int s_total; 2694 mod_hash_t *dv_hash; 2695 mod_hash_t *s_hash; 2696 int (*callback)(dev_info_t *, void *, uint_t); 2697 void *arg; 2698 }; 2699 2700 static int 2701 visit_dip(dev_info_t *dip, void *arg) 2702 { 2703 uintptr_t sbusy, dvbusy, ref; 2704 struct devi_busy *bsp = arg; 2705 2706 ASSERT(bsp->callback); 2707 2708 /* 2709 * A dip cannot be busy if its reference count is 0 2710 */ 2711 if ((ref = e_ddi_devi_holdcnt(dip)) == 0) { 2712 return (bsp->callback(dip, bsp->arg, 0)); 2713 } 2714 2715 if (mod_hash_find(bsp->dv_hash, dip, (mod_hash_val_t *)&dvbusy)) 2716 dvbusy = 0; 2717 2718 /* 2719 * To catch device opens currently maintained on specfs common snodes. 2720 */ 2721 if (mod_hash_find(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) 2722 sbusy = 0; 2723 2724 #ifdef DEBUG 2725 if (ref < sbusy || ref < dvbusy) { 2726 cmn_err(CE_WARN, "dip(%p): sopen = %lu, dvopen = %lu " 2727 "dip ref = %lu\n", (void *)dip, sbusy, dvbusy, ref); 2728 } 2729 #endif 2730 2731 dvbusy = (sbusy > dvbusy) ? sbusy : dvbusy; 2732 2733 return (bsp->callback(dip, bsp->arg, dvbusy)); 2734 } 2735 2736 static int 2737 visit_snode(struct snode *sp, void *arg) 2738 { 2739 uintptr_t sbusy; 2740 dev_info_t *dip; 2741 int count; 2742 struct devi_busy *bsp = arg; 2743 2744 ASSERT(sp); 2745 2746 /* 2747 * The stable lock is held. This prevents 2748 * the snode and its associated dip from 2749 * going away. 2750 */ 2751 dip = NULL; 2752 count = spec_devi_open_count(sp, &dip); 2753 2754 if (count <= 0) 2755 return (DDI_WALK_CONTINUE); 2756 2757 ASSERT(dip); 2758 2759 if (mod_hash_remove(bsp->s_hash, dip, (mod_hash_val_t *)&sbusy)) 2760 sbusy = count; 2761 else 2762 sbusy += count; 2763 2764 if (mod_hash_insert(bsp->s_hash, dip, (mod_hash_val_t)sbusy)) { 2765 cmn_err(CE_WARN, "%s: s_hash insert failed: dip=0x%p, " 2766 "sbusy = %lu", "e_ddi_branch_referenced", 2767 (void *)dip, sbusy); 2768 } 2769 2770 bsp->s_total += count; 2771 2772 return (DDI_WALK_CONTINUE); 2773 } 2774 2775 static void 2776 visit_dvnode(struct dv_node *dv, void *arg) 2777 { 2778 uintptr_t dvbusy; 2779 uint_t count; 2780 struct vnode *vp; 2781 struct devi_busy *bsp = arg; 2782 2783 ASSERT(dv && dv->dv_devi); 2784 2785 vp = DVTOV(dv); 2786 2787 mutex_enter(&vp->v_lock); 2788 count = vp->v_count; 2789 mutex_exit(&vp->v_lock); 2790 2791 if (!count) 2792 return; 2793 2794 if (mod_hash_remove(bsp->dv_hash, dv->dv_devi, 2795 (mod_hash_val_t *)&dvbusy)) 2796 dvbusy = count; 2797 else 2798 dvbusy += count; 2799 2800 if (mod_hash_insert(bsp->dv_hash, dv->dv_devi, 2801 (mod_hash_val_t)dvbusy)) { 2802 cmn_err(CE_WARN, "%s: dv_hash insert failed: dip=0x%p, " 2803 "dvbusy=%lu", "e_ddi_branch_referenced", 2804 (void *)dv->dv_devi, dvbusy); 2805 } 2806 2807 bsp->dv_total += count; 2808 } 2809 2810 /* 2811 * Returns reference count on success or -1 on failure. 2812 */ 2813 int 2814 e_ddi_branch_referenced( 2815 dev_info_t *rdip, 2816 int (*callback)(dev_info_t *dip, void *arg, uint_t ref), 2817 void *arg) 2818 { 2819 int circ; 2820 char *path; 2821 dev_info_t *pdip; 2822 struct devi_busy bsa = {0}; 2823 2824 ASSERT(rdip); 2825 2826 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2827 2828 ndi_hold_devi(rdip); 2829 2830 pdip = ddi_get_parent(rdip); 2831 2832 ASSERT(pdip); 2833 2834 /* 2835 * Check if caller holds pdip busy - can cause deadlocks during 2836 * devfs_walk() 2837 */ 2838 if (!e_ddi_branch_held(rdip) || DEVI_BUSY_OWNED(pdip)) { 2839 cmn_err(CE_WARN, "e_ddi_branch_referenced: failed: " 2840 "devinfo branch(%p) not held or parent busy held", 2841 (void *)rdip); 2842 ndi_rele_devi(rdip); 2843 kmem_free(path, MAXPATHLEN); 2844 return (-1); 2845 } 2846 2847 ndi_devi_enter(pdip, &circ); 2848 (void) ddi_pathname(rdip, path); 2849 ndi_devi_exit(pdip, circ); 2850 2851 bsa.dv_hash = mod_hash_create_ptrhash("dv_node busy hash", NUMCHAINS, 2852 mod_hash_null_valdtor, sizeof (struct dev_info)); 2853 2854 bsa.s_hash = mod_hash_create_ptrhash("snode busy hash", NUMCHAINS, 2855 mod_hash_null_valdtor, sizeof (struct snode)); 2856 2857 if (devfs_walk(path, visit_dvnode, &bsa)) { 2858 cmn_err(CE_WARN, "e_ddi_branch_referenced: " 2859 "devfs walk failed for: %s", path); 2860 kmem_free(path, MAXPATHLEN); 2861 bsa.s_total = bsa.dv_total = -1; 2862 goto out; 2863 } 2864 2865 kmem_free(path, MAXPATHLEN); 2866 2867 /* 2868 * Walk the snode table to detect device opens, which are currently 2869 * maintained on specfs common snodes. 2870 */ 2871 spec_snode_walk(visit_snode, &bsa); 2872 2873 if (callback == NULL) 2874 goto out; 2875 2876 bsa.callback = callback; 2877 bsa.arg = arg; 2878 2879 if (visit_dip(rdip, &bsa) == DDI_WALK_CONTINUE) { 2880 ndi_devi_enter(rdip, &circ); 2881 ddi_walk_devs(ddi_get_child(rdip), visit_dip, &bsa); 2882 ndi_devi_exit(rdip, circ); 2883 } 2884 2885 out: 2886 ndi_rele_devi(rdip); 2887 mod_hash_destroy_ptrhash(bsa.s_hash); 2888 mod_hash_destroy_ptrhash(bsa.dv_hash); 2889 return (bsa.s_total > bsa.dv_total ? bsa.s_total : bsa.dv_total); 2890 } 2891