1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* 27 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved. 28 */ 29 30 /* 31 * sun4 specific DDI implementation 32 */ 33 #include <sys/cpuvar.h> 34 #include <sys/ddi_subrdefs.h> 35 #include <sys/machsystm.h> 36 #include <sys/sunndi.h> 37 #include <sys/sysmacros.h> 38 #include <sys/ontrap.h> 39 #include <vm/seg_kmem.h> 40 #include <sys/membar.h> 41 #include <sys/dditypes.h> 42 #include <sys/ndifm.h> 43 #include <sys/fm/io/ddi.h> 44 #include <sys/ivintr.h> 45 #include <sys/bootconf.h> 46 #include <sys/conf.h> 47 #include <sys/ethernet.h> 48 #include <sys/idprom.h> 49 #include <sys/promif.h> 50 #include <sys/prom_plat.h> 51 #include <sys/systeminfo.h> 52 #include <sys/fpu/fpusystm.h> 53 #include <sys/vm.h> 54 #include <sys/ddi_isa.h> 55 #include <sys/modctl.h> 56 57 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *, 58 ddi_intr_handle_impl_t *); 59 #pragma weak get_intr_parent 60 61 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t, 62 ddi_intr_handle_impl_t *, void *); 63 #pragma weak process_intr_ops 64 65 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t); 66 prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *, 67 int32_t len); 68 #pragma weak cells_1275_copy 69 70 /* 71 * Wrapper for ddi_prop_lookup_int_array(). 72 * This is handy because it returns the prop length in 73 * bytes which is what most of the callers require. 74 */ 75 76 static int 77 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 78 { 79 int ret; 80 81 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 82 DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) { 83 *plen = (*plen) * (uint_t)sizeof (int); 84 } 85 return (ret); 86 } 87 88 /* 89 * SECTION: DDI Node Configuration 90 */ 91 92 /* 93 * init_regspec_64: 94 * 95 * If the parent #size-cells is 2, convert the upa-style or 96 * safari-style reg property from 2-size cells to 1 size cell 97 * format, ignoring the size_hi, which must be zero for devices. 98 * (It won't be zero in the memory list properties in the memory 99 * nodes, but that doesn't matter here.) 100 */ 101 struct ddi_parent_private_data * 102 init_regspec_64(dev_info_t *dip) 103 { 104 struct ddi_parent_private_data *pd; 105 dev_info_t *parent; 106 int size_cells; 107 108 /* 109 * If there are no "reg"s in the child node, return. 110 */ 111 pd = ddi_get_parent_data(dip); 112 if ((pd == NULL) || (pd->par_nreg == 0)) { 113 return (pd); 114 } 115 parent = ddi_get_parent(dip); 116 117 size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 118 DDI_PROP_DONTPASS, "#size-cells", 1); 119 120 if (size_cells != 1) { 121 122 int n, j; 123 struct regspec *irp; 124 struct reg_64 { 125 uint_t addr_hi, addr_lo, size_hi, size_lo; 126 }; 127 struct reg_64 *r64_rp; 128 struct regspec *rp; 129 uint_t len = 0; 130 int *reg_prop; 131 132 ASSERT(size_cells == 2); 133 134 /* 135 * We already looked the property up once before if 136 * pd is non-NULL. 137 */ 138 (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 139 DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len); 140 ASSERT(len != 0); 141 142 n = sizeof (struct reg_64) / sizeof (int); 143 n = len / n; 144 145 /* 146 * We're allocating a buffer the size of the PROM's property, 147 * but we're only using a smaller portion when we assign it 148 * to a regspec. We do this so that in the 149 * impl_ddi_sunbus_removechild function, we will 150 * always free the right amount of memory. 151 */ 152 irp = rp = (struct regspec *)reg_prop; 153 r64_rp = (struct reg_64 *)pd->par_reg; 154 155 for (j = 0; j < n; ++j, ++rp, ++r64_rp) { 156 ASSERT(r64_rp->size_hi == 0); 157 rp->regspec_bustype = r64_rp->addr_hi; 158 rp->regspec_addr = r64_rp->addr_lo; 159 rp->regspec_size = r64_rp->size_lo; 160 } 161 162 ddi_prop_free((void *)pd->par_reg); 163 pd->par_nreg = n; 164 pd->par_reg = irp; 165 } 166 return (pd); 167 } 168 169 /* 170 * Create a ddi_parent_private_data structure from the ddi properties of 171 * the dev_info node. 172 * 173 * The "reg" is required if the driver wishes to create mappings on behalf 174 * of the device. The "reg" property is assumed to be a list of at least 175 * one triplet 176 * 177 * <bustype, address, size>*1 178 * 179 * The "interrupt" property is no longer part of parent private data on 180 * sun4u. The interrupt parent is may not be the device tree parent. 181 * 182 * The "ranges" property describes the mapping of child addresses to parent 183 * addresses. 184 * 185 * N.B. struct rangespec is defined for the following default values: 186 * parent child 187 * #address-cells 2 2 188 * #size-cells 1 1 189 * This function doesn't deal with non-default cells and will not create 190 * ranges in such cases. 191 */ 192 void 193 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 194 { 195 struct ddi_parent_private_data *pdptr; 196 int *reg_prop, *rng_prop; 197 uint_t reg_len = 0, rng_len = 0; 198 dev_info_t *parent; 199 int parent_addr_cells, parent_size_cells; 200 int child_addr_cells, child_size_cells; 201 202 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 203 204 /* 205 * root node has no parent private data, so *ppd should 206 * be initialized for naming to work properly. 207 */ 208 if ((parent = ddi_get_parent(child)) == NULL) 209 return; 210 211 /* 212 * Set reg field of parent data from "reg" property 213 */ 214 if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len) 215 == DDI_PROP_SUCCESS) && (reg_len != 0)) { 216 pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec)); 217 pdptr->par_reg = (struct regspec *)reg_prop; 218 } 219 220 /* 221 * "ranges" property ... 222 * 223 * This function does not handle cases where #address-cells != 2 224 * and * min(parent, child) #size-cells != 1 (see bugid 4211124). 225 * 226 * Nexus drivers with such exceptions (e.g. pci ranges) 227 * should either create a separate function for handling 228 * ranges or not use parent private data to store ranges. 229 */ 230 231 /* root node has no ranges */ 232 if ((parent = ddi_get_parent(child)) == NULL) 233 return; 234 235 child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 236 DDI_PROP_DONTPASS, "#address-cells", 2); 237 child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 238 DDI_PROP_DONTPASS, "#size-cells", 1); 239 parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 240 DDI_PROP_DONTPASS, "#address-cells", 2); 241 parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 242 DDI_PROP_DONTPASS, "#size-cells", 1); 243 if (child_addr_cells != 2 || parent_addr_cells != 2 || 244 (child_size_cells != 1 && parent_size_cells != 1)) { 245 NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; " 246 "#address-cells or #size-cells have non-default value")); 247 return; 248 } 249 250 if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len) 251 == DDI_PROP_SUCCESS) { 252 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 253 pdptr->par_rng = (struct rangespec *)rng_prop; 254 } 255 } 256 257 /* 258 * Free ddi_parent_private_data structure 259 */ 260 void 261 impl_free_ddi_ppd(dev_info_t *dip) 262 { 263 struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip); 264 265 if (pdptr == NULL) 266 return; 267 268 if (pdptr->par_nrng != 0) 269 ddi_prop_free((void *)pdptr->par_rng); 270 271 if (pdptr->par_nreg != 0) 272 ddi_prop_free((void *)pdptr->par_reg); 273 274 kmem_free(pdptr, sizeof (*pdptr)); 275 ddi_set_parent_data(dip, NULL); 276 } 277 278 /* 279 * Name a child of sun busses based on the reg spec. 280 * Handles the following properties: 281 * 282 * Property value 283 * Name type 284 * 285 * reg register spec 286 * interrupts new (bus-oriented) interrupt spec 287 * ranges range spec 288 * 289 * This may be called multiple times, independent of 290 * initchild calls. 291 */ 292 static int 293 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 294 { 295 struct ddi_parent_private_data *pdptr; 296 struct regspec *rp; 297 298 /* 299 * Fill in parent-private data and this function returns to us 300 * an indication if it used "registers" to fill in the data. 301 */ 302 if (ddi_get_parent_data(child) == NULL) { 303 make_ddi_ppd(child, &pdptr); 304 ddi_set_parent_data(child, pdptr); 305 } 306 307 /* 308 * No reg property, return null string as address 309 * (e.g. root node) 310 */ 311 name[0] = '\0'; 312 if (sparc_pd_getnreg(child) == 0) { 313 return (DDI_SUCCESS); 314 } 315 316 rp = sparc_pd_getreg(child, 0); 317 (void) snprintf(name, namelen, "%x,%x", 318 rp->regspec_bustype, rp->regspec_addr); 319 return (DDI_SUCCESS); 320 } 321 322 323 /* 324 * Called from the bus_ctl op of some drivers. 325 * to implement the DDI_CTLOPS_INITCHILD operation. 326 * 327 * NEW drivers should NOT use this function, but should declare 328 * there own initchild/uninitchild handlers. (This function assumes 329 * the layout of the parent private data and the format of "reg", 330 * "ranges", "interrupts" properties and that #address-cells and 331 * #size-cells of the parent bus are defined to be default values.) 332 */ 333 int 334 impl_ddi_sunbus_initchild(dev_info_t *child) 335 { 336 char name[MAXNAMELEN]; 337 338 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 339 ddi_set_name_addr(child, name); 340 341 /* 342 * Try to merge .conf node. If successful, return failure to 343 * remove this child. 344 */ 345 if ((ndi_dev_is_persistent_node(child) == 0) && 346 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 347 impl_ddi_sunbus_removechild(child); 348 return (DDI_FAILURE); 349 } 350 return (DDI_SUCCESS); 351 } 352 353 /* 354 * A better name for this function would be impl_ddi_sunbus_uninitchild() 355 * It does not remove the child, it uninitializes it, reclaiming the 356 * resources taken by impl_ddi_sunbus_initchild. 357 */ 358 void 359 impl_ddi_sunbus_removechild(dev_info_t *dip) 360 { 361 impl_free_ddi_ppd(dip); 362 ddi_set_name_addr(dip, NULL); 363 /* 364 * Strip the node to properly convert it back to prototype form 365 */ 366 impl_rem_dev_props(dip); 367 } 368 369 /* 370 * SECTION: DDI Interrupt 371 */ 372 373 void 374 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len) 375 { 376 int i; 377 for (i = 0; i < len; i++) 378 *to = *from; 379 } 380 381 prop_1275_cell_t * 382 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len) 383 { 384 prop_1275_cell_t *match_cell = 0; 385 int32_t i; 386 387 for (i = 0; i < len; i++) 388 if (cell1[i] != cell2[i]) { 389 match_cell = &cell1[i]; 390 break; 391 } 392 393 return (match_cell); 394 } 395 396 /* 397 * get_intr_parent() is a generic routine that process a 1275 interrupt 398 * map (imap) property. This function returns a dev_info_t structure 399 * which claims ownership of the interrupt domain. 400 * It also returns the new interrupt translation within this new domain. 401 * If an interrupt-parent or interrupt-map property are not found, 402 * then we fallback to using the device tree's parent. 403 * 404 * imap entry format: 405 * <reg>,<interrupt>,<phandle>,<translated interrupt> 406 * reg - The register specification in the interrupts domain 407 * interrupt - The interrupt specification 408 * phandle - PROM handle of the device that owns the xlated interrupt domain 409 * translated interrupt - interrupt specifier in the parents domain 410 * note: <reg>,<interrupt> - The reg and interrupt can be combined to create 411 * a unique entry called a unit interrupt specifier. 412 * 413 * Here's the processing steps: 414 * step1 - If the interrupt-parent property exists, create the ispec and 415 * return the dip of the interrupt parent. 416 * step2 - Extract the interrupt-map property and the interrupt-map-mask 417 * If these don't exist, just return the device tree parent. 418 * step3 - build up the unit interrupt specifier to match against the 419 * interrupt map property 420 * step4 - Scan the interrupt-map property until a match is found 421 * step4a - Extract the interrupt parent 422 * step4b - Compare the unit interrupt specifier 423 */ 424 dev_info_t * 425 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp) 426 { 427 prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req; 428 int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz, 429 addr_cells, intr_cells, reg_len, i, j; 430 int32_t match_found = 0; 431 dev_info_t *intr_parent_dip = NULL; 432 uint32_t *intr = &hdlp->ih_vector; 433 uint32_t nodeid; 434 #ifdef DEBUG 435 static int debug = 0; 436 #endif 437 438 /* 439 * step1 440 * If we have an interrupt-parent property, this property represents 441 * the nodeid of our interrupt parent. 442 */ 443 if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 444 "interrupt-parent", -1)) != -1) { 445 intr_parent_dip = e_ddi_nodeid_to_dip(nodeid); 446 ASSERT(intr_parent_dip); 447 448 /* 449 * Attach the interrupt parent. 450 * 451 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR. 452 * Also, interrupt parent isn't held. This needs 453 * to be revisited if DR-capable platforms implement 454 * interrupt redirection. 455 */ 456 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 457 != DDI_SUCCESS) { 458 ndi_rele_devi(intr_parent_dip); 459 return (NULL); 460 } 461 462 return (intr_parent_dip); 463 } 464 465 /* 466 * step2 467 * Get interrupt map structure from PROM property 468 */ 469 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 470 "interrupt-map", (caddr_t)&imap, &imap_sz) 471 != DDI_PROP_SUCCESS) { 472 /* 473 * If we don't have an imap property, default to using the 474 * device tree. 475 */ 476 477 ndi_hold_devi(pdip); 478 return (pdip); 479 } 480 481 /* Get the interrupt mask property */ 482 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 483 "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz) 484 != DDI_PROP_SUCCESS) { 485 /* 486 * If we don't find this property, we have to fail the request 487 * because the 1275 imap property wasn't defined correctly. 488 */ 489 ASSERT(intr_parent_dip == NULL); 490 goto exit2; 491 } 492 493 /* Get the address cell size */ 494 addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 495 "#address-cells", 2); 496 497 /* Get the interrupts cell size */ 498 intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 499 "#interrupt-cells", 1); 500 501 /* 502 * step3 503 * Now lets build up the unit interrupt specifier e.g. reg,intr 504 * and apply the imap mask. match_req will hold this when we're 505 * through. 506 */ 507 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", 508 (caddr_t)®_p, ®_len) != DDI_SUCCESS) { 509 ASSERT(intr_parent_dip == NULL); 510 goto exit3; 511 } 512 513 match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) + 514 CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP); 515 516 for (i = 0; i < addr_cells; i++) 517 match_req[i] = (reg_p[i] & imap_mask[i]); 518 519 for (j = 0; j < intr_cells; i++, j++) 520 match_req[i] = (intr[j] & imap_mask[i]); 521 522 /* Calculate the imap size in cells */ 523 imap_cells = BYTES_TO_1275_CELLS(imap_sz); 524 525 #ifdef DEBUG 526 if (debug) 527 prom_printf("reg cell size 0x%x, intr cell size 0x%x, " 528 "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells, 529 (void *)match_req, (void *)imap); 530 #endif 531 532 /* 533 * Scan the imap property looking for a match of the interrupt unit 534 * specifier. This loop is rather complex since the data within the 535 * imap property may vary in size. 536 */ 537 for (scan = imap, imap_scan_cells = i = 0; 538 imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) { 539 int new_intr_cells; 540 541 /* Set the index to the nodeid field */ 542 i = addr_cells + intr_cells; 543 544 /* 545 * step4a 546 * Translate the nodeid field to a dip 547 */ 548 ASSERT(intr_parent_dip == NULL); 549 intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]); 550 551 ASSERT(intr_parent_dip != 0); 552 #ifdef DEBUG 553 if (debug) 554 prom_printf("scan 0x%p\n", (void *)scan); 555 #endif 556 /* 557 * The tmp_dip describes the new domain, get it's interrupt 558 * cell size 559 */ 560 new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0, 561 "#interrupts-cells", 1); 562 563 /* 564 * step4b 565 * See if we have a match on the interrupt unit specifier 566 */ 567 if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells) 568 == 0) { 569 uint32_t *intr; 570 571 match_found = 1; 572 573 /* 574 * If we have an imap parent whose not in our device 575 * tree path, we need to hold and install that driver. 576 */ 577 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 578 != DDI_SUCCESS) { 579 ndi_rele_devi(intr_parent_dip); 580 intr_parent_dip = (dev_info_t *)NULL; 581 goto exit4; 582 } 583 584 /* 585 * We need to handcraft an ispec along with a bus 586 * interrupt value, so we can dup it into our 587 * standard ispec structure. 588 */ 589 /* Extract the translated interrupt information */ 590 intr = kmem_alloc( 591 CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP); 592 593 for (j = 0; j < new_intr_cells; j++, i++) 594 intr[j] = scan[i]; 595 596 cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells); 597 598 kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells)); 599 600 #ifdef DEBUG 601 if (debug) 602 prom_printf("dip 0x%p\n", 603 (void *)intr_parent_dip); 604 #endif 605 break; 606 } else { 607 #ifdef DEBUG 608 if (debug) 609 prom_printf("dip 0x%p\n", 610 (void *)intr_parent_dip); 611 #endif 612 ndi_rele_devi(intr_parent_dip); 613 intr_parent_dip = NULL; 614 i += new_intr_cells; 615 } 616 } 617 618 /* 619 * If we haven't found our interrupt parent at this point, fallback 620 * to using the device tree. 621 */ 622 if (!match_found) { 623 ndi_hold_devi(pdip); 624 ASSERT(intr_parent_dip == NULL); 625 intr_parent_dip = pdip; 626 } 627 628 ASSERT(intr_parent_dip != NULL); 629 630 exit4: 631 kmem_free(reg_p, reg_len); 632 kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) + 633 CELLS_1275_TO_BYTES(intr_cells)); 634 635 exit3: 636 kmem_free(imap_mask, imap_mask_sz); 637 638 exit2: 639 kmem_free(imap, imap_sz); 640 641 return (intr_parent_dip); 642 } 643 644 /* 645 * process_intr_ops: 646 * 647 * Process the interrupt op via the interrupt parent. 648 */ 649 int 650 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op, 651 ddi_intr_handle_impl_t *hdlp, void *result) 652 { 653 int ret = DDI_FAILURE; 654 655 if (NEXUS_HAS_INTR_OP(pdip)) { 656 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops-> 657 bus_intr_op)) (pdip, rdip, op, hdlp, result); 658 } else { 659 cmn_err(CE_WARN, "Failed to process interrupt " 660 "for %s%d due to down-rev nexus driver %s%d", 661 ddi_get_name(rdip), ddi_get_instance(rdip), 662 ddi_get_name(pdip), ddi_get_instance(pdip)); 663 } 664 665 return (ret); 666 } 667 668 /*ARGSUSED*/ 669 uint_t 670 softlevel1(caddr_t arg) 671 { 672 softint(); 673 return (1); 674 } 675 676 /* 677 * indirection table, to save us some large switch statements 678 * NOTE: This must agree with "INTLEVEL_foo" constants in 679 * <sys/avintr.h> 680 */ 681 struct autovec *const vectorlist[] = { 0 }; 682 683 /* 684 * This value is exported here for the functions in avintr.c 685 */ 686 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0])); 687 688 /* 689 * Check for machine specific interrupt levels which cannot be reassigned by 690 * settrap(), sun4u version. 691 * 692 * sun4u does not support V8 SPARC "fast trap" handlers. 693 */ 694 /*ARGSUSED*/ 695 int 696 exclude_settrap(int lvl) 697 { 698 return (1); 699 } 700 701 /* 702 * Check for machine specific interrupt levels which cannot have interrupt 703 * handlers added. We allow levels 1 through 15; level 0 is nonsense. 704 */ 705 /*ARGSUSED*/ 706 int 707 exclude_level(int lvl) 708 { 709 return ((lvl < 1) || (lvl > 15)); 710 } 711 712 /* 713 * Wrapper functions used by New DDI interrupt framework. 714 */ 715 716 /* 717 * i_ddi_intr_ops: 718 */ 719 int 720 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 721 ddi_intr_handle_impl_t *hdlp, void *result) 722 { 723 dev_info_t *pdip = ddi_get_parent(dip); 724 int ret = DDI_FAILURE; 725 726 /* 727 * The following check is required to address 728 * one of the test case of ADDI test suite. 729 */ 730 if (pdip == NULL) 731 return (DDI_FAILURE); 732 733 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 734 return (process_intr_ops(pdip, rdip, op, hdlp, result)); 735 736 if (hdlp->ih_vector == 0) 737 hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum); 738 739 if (hdlp->ih_pri == 0) 740 hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum); 741 742 switch (op) { 743 case DDI_INTROP_ADDISR: 744 case DDI_INTROP_REMISR: 745 case DDI_INTROP_GETTARGET: 746 case DDI_INTROP_SETTARGET: 747 case DDI_INTROP_ENABLE: 748 case DDI_INTROP_DISABLE: 749 case DDI_INTROP_BLOCKENABLE: 750 case DDI_INTROP_BLOCKDISABLE: 751 /* 752 * Try and determine our parent and possibly an interrupt 753 * translation. intr parent dip returned held 754 */ 755 if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL) 756 goto done; 757 } 758 759 ret = process_intr_ops(pdip, rdip, op, hdlp, result); 760 761 done: 762 switch (op) { 763 case DDI_INTROP_ADDISR: 764 case DDI_INTROP_REMISR: 765 case DDI_INTROP_ENABLE: 766 case DDI_INTROP_DISABLE: 767 case DDI_INTROP_BLOCKENABLE: 768 case DDI_INTROP_BLOCKDISABLE: 769 /* Release hold acquired in get_intr_parent() */ 770 if (pdip) 771 ndi_rele_devi(pdip); 772 } 773 774 hdlp->ih_vector = 0; 775 776 return (ret); 777 } 778 779 /* 780 * i_ddi_add_ivintr: 781 */ 782 /*ARGSUSED*/ 783 int 784 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp) 785 { 786 /* 787 * If the PIL was set and is valid use it, otherwise 788 * default it to 1 789 */ 790 if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX)) 791 hdlp->ih_pri = 1; 792 793 VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri, 794 (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, 795 hdlp->ih_cb_arg2, NULL) == 0); 796 797 return (DDI_SUCCESS); 798 } 799 800 /* 801 * i_ddi_rem_ivintr: 802 */ 803 /*ARGSUSED*/ 804 void 805 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp) 806 { 807 VERIFY(rem_ivintr(hdlp->ih_vector, hdlp->ih_pri) == 0); 808 } 809 810 /* 811 * i_ddi_get_inum - Get the interrupt number property from the 812 * specified device. Note that this function is called only for 813 * the FIXED interrupt type. 814 */ 815 uint32_t 816 i_ddi_get_inum(dev_info_t *dip, uint_t inumber) 817 { 818 int32_t intrlen, intr_cells, max_intrs; 819 prop_1275_cell_t *ip, intr_sz; 820 uint32_t intr = 0; 821 822 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 823 DDI_PROP_CANSLEEP, 824 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 825 826 intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 827 "#interrupt-cells", 1); 828 829 /* adjust for number of bytes */ 830 intr_sz = CELLS_1275_TO_BYTES(intr_cells); 831 832 /* Calculate the number of interrupts */ 833 max_intrs = intrlen / intr_sz; 834 835 if (inumber < max_intrs) { 836 prop_1275_cell_t *intrp = ip; 837 838 /* Index into interrupt property */ 839 intrp += (inumber * intr_cells); 840 841 cells_1275_copy(intrp, &intr, intr_cells); 842 } 843 844 kmem_free(ip, intrlen); 845 } 846 847 return (intr); 848 } 849 850 /* 851 * i_ddi_get_intr_pri - Get the interrupt-priorities property from 852 * the specified device. Note that this function is called only for 853 * the FIXED interrupt type. 854 */ 855 uint32_t 856 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber) 857 { 858 uint32_t *intr_prio_p; 859 uint32_t pri = 0; 860 int32_t i; 861 862 /* 863 * Use the "interrupt-priorities" property to determine the 864 * the pil/ipl for the interrupt handler. 865 */ 866 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 867 "interrupt-priorities", (caddr_t)&intr_prio_p, 868 &i) == DDI_SUCCESS) { 869 if (inumber < (i / sizeof (int32_t))) 870 pri = intr_prio_p[inumber]; 871 kmem_free(intr_prio_p, i); 872 } 873 874 return (pri); 875 } 876 877 int 878 i_ddi_get_intx_nintrs(dev_info_t *dip) 879 { 880 int32_t intrlen; 881 prop_1275_cell_t intr_sz; 882 prop_1275_cell_t *ip; 883 int32_t ret = 0; 884 885 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 886 DDI_PROP_CANSLEEP, 887 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 888 889 intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 890 "#interrupt-cells", 1); 891 /* adjust for number of bytes */ 892 intr_sz = CELLS_1275_TO_BYTES(intr_sz); 893 894 ret = intrlen / intr_sz; 895 896 kmem_free(ip, intrlen); 897 } 898 899 return (ret); 900 } 901 902 /* 903 * i_ddi_add_softint - allocate and add a software interrupt. 904 * 905 * NOTE: All software interrupts that are registered through DDI 906 * should be triggered only on a single target or CPU. 907 */ 908 int 909 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 910 { 911 if ((hdlp->ih_private = (void *)add_softintr(hdlp->ih_pri, 912 hdlp->ih_cb_func, hdlp->ih_cb_arg1, SOFTINT_ST)) == NULL) 913 return (DDI_FAILURE); 914 915 return (DDI_SUCCESS); 916 } 917 918 /* 919 * i_ddi_remove_softint - remove and free a software interrupt. 920 */ 921 void 922 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 923 { 924 ASSERT(hdlp->ih_private != NULL); 925 926 if (rem_softintr((uint64_t)hdlp->ih_private) == 0) 927 hdlp->ih_private = NULL; 928 } 929 930 /* 931 * i_ddi_trigger_softint - trigger a software interrupt. 932 */ 933 int 934 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 935 { 936 int ret; 937 938 ASSERT(hdlp->ih_private != NULL); 939 940 /* Update the second argument for the software interrupt */ 941 if ((ret = update_softint_arg2((uint64_t)hdlp->ih_private, arg2)) == 0) 942 setsoftint((uint64_t)hdlp->ih_private); 943 944 return (ret ? DDI_EPENDING : DDI_SUCCESS); 945 } 946 947 /* 948 * i_ddi_set_softint_pri - change software interrupt priority. 949 */ 950 /* ARGSUSED */ 951 int 952 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 953 { 954 int ret; 955 956 ASSERT(hdlp->ih_private != NULL); 957 958 /* Update the interrupt priority for the software interrupt */ 959 ret = update_softint_pri((uint64_t)hdlp->ih_private, hdlp->ih_pri); 960 961 return (ret ? DDI_FAILURE : DDI_SUCCESS); 962 } 963 964 /*ARGSUSED*/ 965 void 966 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 967 { 968 } 969 970 /*ARGSUSED*/ 971 void 972 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 973 { 974 } 975 976 /* 977 * SECTION: DDI Memory/DMA 978 */ 979 980 /* set HAT endianess attributes from ddi_device_acc_attr */ 981 void 982 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 983 { 984 if (devaccp != NULL) { 985 if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) { 986 *hataccp &= ~HAT_ENDIAN_MASK; 987 *hataccp |= HAT_STRUCTURE_LE; 988 } 989 } 990 } 991 992 /* 993 * Check if the specified cache attribute is supported on the platform. 994 * This function must be called before i_ddi_cacheattr_to_hatacc(). 995 */ 996 boolean_t 997 i_ddi_check_cache_attr(uint_t flags) 998 { 999 /* 1000 * The cache attributes are mutually exclusive. Any combination of 1001 * the attributes leads to a failure. 1002 */ 1003 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1004 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1005 return (B_FALSE); 1006 1007 /* 1008 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful, 1009 * but others lead to a failure. 1010 */ 1011 if (cache_attr & IOMEM_DATA_CACHED) 1012 return (B_TRUE); 1013 else 1014 return (B_FALSE); 1015 } 1016 1017 /* set HAT cache attributes from the cache attributes */ 1018 void 1019 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1020 { 1021 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1022 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1023 #if defined(lint) 1024 *hataccp = *hataccp; 1025 #endif 1026 /* 1027 * set HAT attrs according to the cache attrs. 1028 */ 1029 switch (cache_attr) { 1030 /* 1031 * The cache coherency is always maintained on SPARC, and 1032 * nothing is required. 1033 */ 1034 case IOMEM_DATA_CACHED: 1035 break; 1036 /* 1037 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are 1038 * not supported on SPARC -- this case must not occur because the 1039 * cache attribute is scrutinized before this function is called. 1040 */ 1041 case IOMEM_DATA_UNCACHED: 1042 case IOMEM_DATA_UC_WR_COMBINE: 1043 default: 1044 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1045 fname, cache_attr); 1046 } 1047 } 1048 1049 static vmem_t *little_endian_arena; 1050 static vmem_t *big_endian_arena; 1051 1052 static void * 1053 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag) 1054 { 1055 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE, 1056 segkmem_page_create, NULL)); 1057 } 1058 1059 static void * 1060 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag) 1061 { 1062 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE, 1063 segkmem_page_create, NULL)); 1064 } 1065 1066 void 1067 ka_init(void) 1068 { 1069 little_endian_arena = vmem_create("little_endian", NULL, 0, 1, 1070 segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP); 1071 big_endian_arena = vmem_create("big_endian", NULL, 0, 1, 1072 segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP); 1073 } 1074 1075 /* 1076 * Allocate from the system, aligned on a specific boundary. 1077 * The alignment, if non-zero, must be a power of 2. 1078 */ 1079 static void * 1080 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags) 1081 { 1082 size_t *addr, *raddr, rsize; 1083 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1084 1085 align = MAX(align, hdrsize); 1086 ASSERT((align & (align - 1)) == 0); 1087 1088 /* 1089 * We need to allocate 1090 * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment) 1091 * bytes to be sure we have enough freedom to satisfy the request. 1092 * Since the buffer alignment depends on the request size, this is 1093 * not straightforward to use directly. 1094 * 1095 * kmem guarantees that any allocation of a 64-byte multiple will be 1096 * 64-byte aligned. Since rounding up the request could add more 1097 * than we save, we compute the size with and without alignment, and 1098 * use the smaller of the two. 1099 */ 1100 rsize = size + hdrsize + align; 1101 1102 if (endian_flags == DDI_STRUCTURE_LE_ACC) { 1103 raddr = vmem_alloc(little_endian_arena, rsize, 1104 cansleep ? VM_SLEEP : VM_NOSLEEP); 1105 } else { 1106 raddr = vmem_alloc(big_endian_arena, rsize, 1107 cansleep ? VM_SLEEP : VM_NOSLEEP); 1108 } 1109 1110 if (raddr == NULL) 1111 return (NULL); 1112 1113 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1114 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1115 1116 addr[-3] = (size_t)endian_flags; 1117 addr[-2] = (size_t)raddr; 1118 addr[-1] = rsize; 1119 1120 return (addr); 1121 } 1122 1123 static void 1124 kfreea(void *addr) 1125 { 1126 size_t *saddr = addr; 1127 1128 if (saddr[-3] == DDI_STRUCTURE_LE_ACC) 1129 vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]); 1130 else 1131 vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]); 1132 } 1133 1134 int 1135 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1136 size_t length, int cansleep, int flags, 1137 ddi_device_acc_attr_t *accattrp, 1138 caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep) 1139 { 1140 caddr_t a; 1141 int iomin, align, streaming; 1142 uint_t endian_flags = DDI_NEVERSWAP_ACC; 1143 1144 #if defined(lint) 1145 *handlep = *handlep; 1146 #endif 1147 1148 /* 1149 * Check legality of arguments 1150 */ 1151 if (length == 0 || kaddrp == NULL || attr == NULL) { 1152 return (DDI_FAILURE); 1153 } 1154 1155 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1156 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1157 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1158 return (DDI_FAILURE); 1159 } 1160 1161 /* 1162 * check if a streaming sequential xfer is requested. 1163 */ 1164 streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0; 1165 1166 /* 1167 * Drivers for 64-bit capable SBus devices will encode 1168 * the burtsizes for 64-bit xfers in the upper 16-bits. 1169 * For DMA alignment, we use the most restrictive 1170 * alignment of 32-bit and 64-bit xfers. 1171 */ 1172 iomin = (attr->dma_attr_burstsizes & 0xffff) | 1173 ((attr->dma_attr_burstsizes >> 16) & 0xffff); 1174 /* 1175 * If a driver set burtsizes to 0, we give him byte alignment. 1176 * Otherwise align at the burtsizes boundary. 1177 */ 1178 if (iomin == 0) 1179 iomin = 1; 1180 else 1181 iomin = 1 << (ddi_fls(iomin) - 1); 1182 iomin = maxbit(iomin, attr->dma_attr_minxfer); 1183 iomin = maxbit(iomin, attr->dma_attr_align); 1184 iomin = ddi_iomin(dip, iomin, streaming); 1185 if (iomin == 0) 1186 return (DDI_FAILURE); 1187 1188 ASSERT((iomin & (iomin - 1)) == 0); 1189 ASSERT(iomin >= attr->dma_attr_minxfer); 1190 ASSERT(iomin >= attr->dma_attr_align); 1191 1192 length = P2ROUNDUP(length, iomin); 1193 align = iomin; 1194 1195 if (accattrp != NULL) 1196 endian_flags = accattrp->devacc_attr_endian_flags; 1197 1198 a = kalloca(length, align, cansleep, endian_flags); 1199 if ((*kaddrp = a) == 0) { 1200 return (DDI_FAILURE); 1201 } else { 1202 if (real_length) { 1203 *real_length = length; 1204 } 1205 if (handlep) { 1206 /* 1207 * assign handle information 1208 */ 1209 impl_acc_hdl_init(handlep); 1210 } 1211 return (DDI_SUCCESS); 1212 } 1213 } 1214 1215 /* ARGSUSED */ 1216 void 1217 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1218 { 1219 kfreea(kaddr); 1220 } 1221 1222 /* 1223 * SECTION: DDI Data Access 1224 */ 1225 1226 static uintptr_t impl_acc_hdl_id = 0; 1227 1228 /* 1229 * access handle allocator 1230 */ 1231 ddi_acc_hdl_t * 1232 impl_acc_hdl_get(ddi_acc_handle_t hdl) 1233 { 1234 /* 1235 * Extract the access handle address from the DDI implemented 1236 * access handle 1237 */ 1238 return (&((ddi_acc_impl_t *)hdl)->ahi_common); 1239 } 1240 1241 ddi_acc_handle_t 1242 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg) 1243 { 1244 ddi_acc_impl_t *hp; 1245 on_trap_data_t *otp; 1246 int sleepflag; 1247 1248 sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); 1249 1250 /* 1251 * Allocate and initialize the data access handle and error status. 1252 */ 1253 if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL) 1254 goto fail; 1255 if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc( 1256 sizeof (ndi_err_t), sleepflag)) == NULL) { 1257 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1258 goto fail; 1259 } 1260 if ((otp = (on_trap_data_t *)kmem_zalloc( 1261 sizeof (on_trap_data_t), sleepflag)) == NULL) { 1262 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1263 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1264 goto fail; 1265 } 1266 hp->ahi_err->err_ontrap = otp; 1267 hp->ahi_common.ah_platform_private = (void *)hp; 1268 1269 return ((ddi_acc_handle_t)hp); 1270 fail: 1271 if ((waitfp != (int (*)())KM_SLEEP) && 1272 (waitfp != (int (*)())KM_NOSLEEP)) 1273 ddi_set_callback(waitfp, arg, &impl_acc_hdl_id); 1274 return (NULL); 1275 } 1276 1277 void 1278 impl_acc_hdl_free(ddi_acc_handle_t handle) 1279 { 1280 ddi_acc_impl_t *hp; 1281 1282 /* 1283 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *), 1284 * because that's what we allocated in impl_acc_hdl_alloc() above. 1285 */ 1286 hp = (ddi_acc_impl_t *)handle; 1287 if (hp) { 1288 kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t)); 1289 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1290 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1291 if (impl_acc_hdl_id) 1292 ddi_run_callback(&impl_acc_hdl_id); 1293 } 1294 } 1295 1296 #define PCI_GET_MP_PFN(mp, page_no) ((mp)->dmai_ndvmapages == 1 ? \ 1297 (pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no])) 1298 1299 /* 1300 * Function called after a dma fault occurred to find out whether the 1301 * fault address is associated with a driver that is able to handle faults 1302 * and recover from faults. 1303 */ 1304 /* ARGSUSED */ 1305 int 1306 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr, 1307 const void *not_used) 1308 { 1309 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle; 1310 pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr); 1311 pfn_t comp_pfn; 1312 1313 /* 1314 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults. 1315 */ 1316 int page; 1317 1318 ASSERT(mp); 1319 for (page = 0; page < mp->dmai_ndvmapages; page++) { 1320 comp_pfn = PCI_GET_MP_PFN(mp, page); 1321 if (fault_pfn == comp_pfn) 1322 return (DDI_FM_NONFATAL); 1323 } 1324 return (DDI_FM_UNKNOWN); 1325 } 1326 1327 /* 1328 * Function used to check if a given access handle owns the failing address. 1329 * Called by ndi_fmc_error, when we detect a PIO error. 1330 */ 1331 /* ARGSUSED */ 1332 static int 1333 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr, 1334 const void *not_used) 1335 { 1336 pfn_t pfn, fault_pfn; 1337 ddi_acc_hdl_t *hp; 1338 1339 hp = impl_acc_hdl_get((ddi_acc_handle_t)handle); 1340 1341 ASSERT(hp); 1342 1343 if (addr != NULL) { 1344 pfn = hp->ah_pfn; 1345 fault_pfn = mmu_btop(*(uint64_t *)addr); 1346 if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum)) 1347 return (DDI_FM_NONFATAL); 1348 } 1349 return (DDI_FM_UNKNOWN); 1350 } 1351 1352 void 1353 impl_acc_err_init(ddi_acc_hdl_t *handlep) 1354 { 1355 int fmcap; 1356 ndi_err_t *errp; 1357 on_trap_data_t *otp; 1358 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep; 1359 1360 fmcap = ddi_fm_capable(handlep->ah_dip); 1361 1362 if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 || 1363 !DDI_FM_ACC_ERR_CAP(fmcap)) { 1364 handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC; 1365 } else if (DDI_FM_ACC_ERR_CAP(fmcap)) { 1366 if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 1367 if (handlep->ah_xfermodes) 1368 return; 1369 i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP, 1370 NULL, DDI_NOSLEEP); 1371 } else { 1372 errp = hp->ahi_err; 1373 otp = (on_trap_data_t *)errp->err_ontrap; 1374 otp->ot_handle = (void *)(hp); 1375 otp->ot_prot = OT_DATA_ACCESS; 1376 if (handlep->ah_acc.devacc_attr_access == 1377 DDI_CAUTIOUS_ACC) 1378 otp->ot_trampoline = 1379 (uintptr_t)&i_ddi_caut_trampoline; 1380 else 1381 otp->ot_trampoline = 1382 (uintptr_t)&i_ddi_prot_trampoline; 1383 errp->err_status = DDI_FM_OK; 1384 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 1385 errp->err_cf = impl_acc_check; 1386 } 1387 } 1388 } 1389 1390 void 1391 impl_acc_hdl_init(ddi_acc_hdl_t *handlep) 1392 { 1393 ddi_acc_impl_t *hp; 1394 1395 ASSERT(handlep); 1396 1397 hp = (ddi_acc_impl_t *)handlep; 1398 1399 /* 1400 * check for SW byte-swapping 1401 */ 1402 hp->ahi_get8 = i_ddi_get8; 1403 hp->ahi_put8 = i_ddi_put8; 1404 hp->ahi_rep_get8 = i_ddi_rep_get8; 1405 hp->ahi_rep_put8 = i_ddi_rep_put8; 1406 if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) { 1407 hp->ahi_get16 = i_ddi_swap_get16; 1408 hp->ahi_get32 = i_ddi_swap_get32; 1409 hp->ahi_get64 = i_ddi_swap_get64; 1410 hp->ahi_put16 = i_ddi_swap_put16; 1411 hp->ahi_put32 = i_ddi_swap_put32; 1412 hp->ahi_put64 = i_ddi_swap_put64; 1413 hp->ahi_rep_get16 = i_ddi_swap_rep_get16; 1414 hp->ahi_rep_get32 = i_ddi_swap_rep_get32; 1415 hp->ahi_rep_get64 = i_ddi_swap_rep_get64; 1416 hp->ahi_rep_put16 = i_ddi_swap_rep_put16; 1417 hp->ahi_rep_put32 = i_ddi_swap_rep_put32; 1418 hp->ahi_rep_put64 = i_ddi_swap_rep_put64; 1419 } else { 1420 hp->ahi_get16 = i_ddi_get16; 1421 hp->ahi_get32 = i_ddi_get32; 1422 hp->ahi_get64 = i_ddi_get64; 1423 hp->ahi_put16 = i_ddi_put16; 1424 hp->ahi_put32 = i_ddi_put32; 1425 hp->ahi_put64 = i_ddi_put64; 1426 hp->ahi_rep_get16 = i_ddi_rep_get16; 1427 hp->ahi_rep_get32 = i_ddi_rep_get32; 1428 hp->ahi_rep_get64 = i_ddi_rep_get64; 1429 hp->ahi_rep_put16 = i_ddi_rep_put16; 1430 hp->ahi_rep_put32 = i_ddi_rep_put32; 1431 hp->ahi_rep_put64 = i_ddi_rep_put64; 1432 } 1433 1434 /* Legacy fault flags and support */ 1435 hp->ahi_fault_check = i_ddi_acc_fault_check; 1436 hp->ahi_fault_notify = i_ddi_acc_fault_notify; 1437 hp->ahi_fault = 0; 1438 impl_acc_err_init(handlep); 1439 } 1440 1441 void 1442 i_ddi_acc_set_fault(ddi_acc_handle_t handle) 1443 { 1444 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1445 1446 if (!hp->ahi_fault) { 1447 hp->ahi_fault = 1; 1448 (*hp->ahi_fault_notify)(hp); 1449 } 1450 } 1451 1452 void 1453 i_ddi_acc_clr_fault(ddi_acc_handle_t handle) 1454 { 1455 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1456 1457 if (hp->ahi_fault) { 1458 hp->ahi_fault = 0; 1459 (*hp->ahi_fault_notify)(hp); 1460 } 1461 } 1462 1463 /* ARGSUSED */ 1464 void 1465 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp) 1466 { 1467 /* Default version, does nothing */ 1468 } 1469 1470 /* 1471 * SECTION: Misc functions 1472 */ 1473 1474 /* 1475 * instance wrappers 1476 */ 1477 /*ARGSUSED*/ 1478 uint_t 1479 impl_assign_instance(dev_info_t *dip) 1480 { 1481 return ((uint_t)-1); 1482 } 1483 1484 /*ARGSUSED*/ 1485 int 1486 impl_keep_instance(dev_info_t *dip) 1487 { 1488 return (DDI_FAILURE); 1489 } 1490 1491 /*ARGSUSED*/ 1492 int 1493 impl_free_instance(dev_info_t *dip) 1494 { 1495 return (DDI_FAILURE); 1496 } 1497 1498 /*ARGSUSED*/ 1499 int 1500 impl_check_cpu(dev_info_t *devi) 1501 { 1502 return (DDI_SUCCESS); 1503 } 1504 1505 1506 static const char *nocopydevs[] = { 1507 "SUNW,ffb", 1508 "SUNW,afb", 1509 NULL 1510 }; 1511 1512 /* 1513 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 1514 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 1515 */ 1516 /*ARGSUSED*/ 1517 int 1518 e_ddi_copyfromdev(dev_info_t *devi, 1519 off_t off, const void *devaddr, void *kaddr, size_t len) 1520 { 1521 const char **argv; 1522 1523 for (argv = nocopydevs; *argv; argv++) 1524 if (strcmp(ddi_binding_name(devi), *argv) == 0) { 1525 bzero(kaddr, len); 1526 return (0); 1527 } 1528 1529 bcopy(devaddr, kaddr, len); 1530 return (0); 1531 } 1532 1533 /* 1534 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 1535 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 1536 */ 1537 /*ARGSUSED*/ 1538 int 1539 e_ddi_copytodev(dev_info_t *devi, 1540 off_t off, const void *kaddr, void *devaddr, size_t len) 1541 { 1542 const char **argv; 1543 1544 for (argv = nocopydevs; *argv; argv++) 1545 if (strcmp(ddi_binding_name(devi), *argv) == 0) 1546 return (1); 1547 1548 bcopy(kaddr, devaddr, len); 1549 return (0); 1550 } 1551 1552 /* 1553 * Boot Configuration 1554 */ 1555 idprom_t idprom; 1556 1557 /* 1558 * Configure the hardware on the system. 1559 * Called before the rootfs is mounted 1560 */ 1561 void 1562 configure(void) 1563 { 1564 extern void i_ddi_init_root(); 1565 1566 /* We better have released boot by this time! */ 1567 ASSERT(!bootops); 1568 1569 /* 1570 * Determine whether or not to use the fpu, V9 SPARC cpus 1571 * always have one. Could check for existence of a fp queue, 1572 * Ultra I, II and IIa do not have a fp queue. 1573 */ 1574 if (fpu_exists) 1575 fpu_probe(); 1576 else 1577 cmn_err(CE_CONT, "FPU not in use\n"); 1578 1579 #if 0 /* XXXQ - not necessary for sun4u */ 1580 /* 1581 * This following line fixes bugid 1041296; we need to do a 1582 * prom_nextnode(0) because this call ALSO patches the DMA+ 1583 * bug in Campus-B and Phoenix. The prom uncaches the traptable 1584 * page as a side-effect of devr_next(0) (which prom_nextnode calls), 1585 * so this *must* be executed early on. (XXX This is untrue for sun4u) 1586 */ 1587 (void) prom_nextnode((pnode_t)0); 1588 #endif 1589 1590 /* 1591 * Initialize devices on the machine. 1592 * Uses configuration tree built by the PROMs to determine what 1593 * is present, and builds a tree of prototype dev_info nodes 1594 * corresponding to the hardware which identified itself. 1595 */ 1596 i_ddi_init_root(); 1597 1598 #ifdef DDI_PROP_DEBUG 1599 (void) ddi_prop_debug(1); /* Enable property debugging */ 1600 #endif /* DDI_PROP_DEBUG */ 1601 } 1602 1603 /* 1604 * The "status" property indicates the operational status of a device. 1605 * If this property is present, the value is a string indicating the 1606 * status of the device as follows: 1607 * 1608 * "okay" operational. 1609 * "disabled" not operational, but might become operational. 1610 * "fail" not operational because a fault has been detected, 1611 * and it is unlikely that the device will become 1612 * operational without repair. no additional details 1613 * are available. 1614 * "fail-xxx" not operational because a fault has been detected, 1615 * and it is unlikely that the device will become 1616 * operational without repair. "xxx" is additional 1617 * human-readable information about the particular 1618 * fault condition that was detected. 1619 * 1620 * The absence of this property means that the operational status is 1621 * unknown or okay. 1622 * 1623 * This routine checks the status property of the specified device node 1624 * and returns 0 if the operational status indicates failure, and 1 otherwise. 1625 * 1626 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 1627 * And, in that case, the property may not even be a string. So we carefully 1628 * check for the value "fail", in the beginning of the string, noting 1629 * the property length. 1630 */ 1631 int 1632 status_okay(int id, char *buf, int buflen) 1633 { 1634 char status_buf[OBP_MAXPROPNAME]; 1635 char *bufp = buf; 1636 int len = buflen; 1637 int proplen; 1638 static const char *status = "status"; 1639 static const char *fail = "fail"; 1640 size_t fail_len = strlen(fail); 1641 1642 /* 1643 * Get the proplen ... if it's smaller than "fail", 1644 * or doesn't exist ... then we don't care, since 1645 * the value can't begin with the char string "fail". 1646 * 1647 * NB: proplen, if it's a string, includes the NULL in the 1648 * the size of the property, and fail_len does not. 1649 */ 1650 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 1651 if (proplen <= fail_len) /* nonexistent or uninteresting len */ 1652 return (1); 1653 1654 /* 1655 * if a buffer was provided, use it 1656 */ 1657 if ((buf == (char *)NULL) || (buflen <= 0)) { 1658 bufp = status_buf; 1659 len = sizeof (status_buf); 1660 } 1661 *bufp = (char)0; 1662 1663 /* 1664 * Get the property into the buffer, to the extent of the buffer, 1665 * and in case the buffer is smaller than the property size, 1666 * NULL terminate the buffer. (This handles the case where 1667 * a buffer was passed in and the caller wants to print the 1668 * value, but the buffer was too small). 1669 */ 1670 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 1671 (caddr_t)bufp, len); 1672 *(bufp + len - 1) = (char)0; 1673 1674 /* 1675 * If the value begins with the char string "fail", 1676 * then it means the node is failed. We don't care 1677 * about any other values. We assume the node is ok 1678 * although it might be 'disabled'. 1679 */ 1680 if (strncmp(bufp, fail, fail_len) == 0) 1681 return (0); 1682 1683 return (1); 1684 } 1685 1686 1687 /* 1688 * We set the cpu type from the idprom, if we can. 1689 * Note that we just read out the contents of it, for the most part. 1690 */ 1691 void 1692 setcputype(void) 1693 { 1694 /* 1695 * We cache the idprom info early on so that we don't 1696 * rummage through the NVRAM unnecessarily later. 1697 */ 1698 (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom)); 1699 } 1700 1701 /* 1702 * Here is where we actually infer meanings to the members of idprom_t 1703 */ 1704 void 1705 parse_idprom(void) 1706 { 1707 if (idprom.id_format == IDFORM_1) { 1708 (void) localetheraddr((struct ether_addr *)idprom.id_ether, 1709 (struct ether_addr *)NULL); 1710 (void) snprintf(hw_serial, HW_HOSTID_LEN, "%u", 1711 (idprom.id_machine << 24) + idprom.id_serial); 1712 } else 1713 prom_printf("Invalid format code in IDprom.\n"); 1714 } 1715 1716 /* 1717 * Allow for implementation specific correction of PROM property values. 1718 */ 1719 /*ARGSUSED*/ 1720 void 1721 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 1722 caddr_t buffer) 1723 { 1724 /* 1725 * There are no adjustments needed in this implementation. 1726 */ 1727 } 1728 1729 /* 1730 * The following functions ready a cautious request to go up to the nexus 1731 * driver. It is up to the nexus driver to decide how to process the request. 1732 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 1733 * differently. 1734 */ 1735 1736 static void 1737 i_ddi_caut_getput_ctlops( 1738 ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size, 1739 size_t repcount, uint_t flags, ddi_ctl_enum_t cmd) 1740 { 1741 peekpoke_ctlops_t cautacc_ctlops_arg; 1742 1743 cautacc_ctlops_arg.size = size; 1744 cautacc_ctlops_arg.dev_addr = dev_addr; 1745 cautacc_ctlops_arg.host_addr = host_addr; 1746 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 1747 cautacc_ctlops_arg.repcount = repcount; 1748 cautacc_ctlops_arg.flags = flags; 1749 1750 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 1751 &cautacc_ctlops_arg, NULL); 1752 } 1753 1754 uint8_t 1755 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 1756 { 1757 uint8_t value; 1758 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1759 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 1760 1761 return (value); 1762 } 1763 1764 uint16_t 1765 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 1766 { 1767 uint16_t value; 1768 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1769 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 1770 1771 return (value); 1772 } 1773 1774 uint32_t 1775 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 1776 { 1777 uint32_t value; 1778 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1779 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 1780 1781 return (value); 1782 } 1783 1784 uint64_t 1785 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 1786 { 1787 uint64_t value; 1788 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1789 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 1790 1791 return (value); 1792 } 1793 1794 void 1795 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 1796 { 1797 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1798 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 1799 } 1800 1801 void 1802 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 1803 { 1804 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1805 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 1806 } 1807 1808 void 1809 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 1810 { 1811 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1812 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 1813 } 1814 1815 void 1816 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 1817 { 1818 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1819 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 1820 } 1821 1822 void 1823 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1824 size_t repcount, uint_t flags) 1825 { 1826 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1827 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 1828 } 1829 1830 void 1831 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1832 uint16_t *dev_addr, size_t repcount, uint_t flags) 1833 { 1834 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1835 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 1836 } 1837 1838 void 1839 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1840 uint32_t *dev_addr, size_t repcount, uint_t flags) 1841 { 1842 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1843 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 1844 } 1845 1846 void 1847 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1848 uint64_t *dev_addr, size_t repcount, uint_t flags) 1849 { 1850 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1851 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 1852 } 1853 1854 void 1855 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1856 size_t repcount, uint_t flags) 1857 { 1858 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1859 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 1860 } 1861 1862 void 1863 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1864 uint16_t *dev_addr, size_t repcount, uint_t flags) 1865 { 1866 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1867 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 1868 } 1869 1870 void 1871 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1872 uint32_t *dev_addr, size_t repcount, uint_t flags) 1873 { 1874 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1875 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 1876 } 1877 1878 void 1879 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1880 uint64_t *dev_addr, size_t repcount, uint_t flags) 1881 { 1882 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1883 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 1884 } 1885 1886 /* 1887 * This is called only to process peek/poke when the DIP is NULL. 1888 * Assume that this is for memory, as nexi take care of device safe accesses. 1889 */ 1890 int 1891 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 1892 { 1893 int err = DDI_SUCCESS; 1894 on_trap_data_t otd; 1895 1896 /* Set up protected environment. */ 1897 if (!on_trap(&otd, OT_DATA_ACCESS)) { 1898 uintptr_t tramp = otd.ot_trampoline; 1899 1900 if (cmd == DDI_CTLOPS_POKE) { 1901 otd.ot_trampoline = (uintptr_t)&poke_fault; 1902 err = do_poke(in_args->size, (void *)in_args->dev_addr, 1903 (void *)in_args->host_addr); 1904 } else { 1905 otd.ot_trampoline = (uintptr_t)&peek_fault; 1906 err = do_peek(in_args->size, (void *)in_args->dev_addr, 1907 (void *)in_args->host_addr); 1908 } 1909 otd.ot_trampoline = tramp; 1910 } else 1911 err = DDI_FAILURE; 1912 1913 /* Take down protected environment. */ 1914 no_trap(); 1915 1916 return (err); 1917 } 1918