1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * sun4 specific DDI implementation 31 */ 32 #include <sys/cpuvar.h> 33 #include <sys/ddi_subrdefs.h> 34 #include <sys/machsystm.h> 35 #include <sys/sunndi.h> 36 #include <sys/sysmacros.h> 37 #include <sys/ontrap.h> 38 #include <vm/seg_kmem.h> 39 #include <sys/membar.h> 40 #include <sys/dditypes.h> 41 #include <sys/ndifm.h> 42 #include <sys/fm/io/ddi.h> 43 #include <sys/ivintr.h> 44 #include <sys/bootconf.h> 45 #include <sys/conf.h> 46 #include <sys/ethernet.h> 47 #include <sys/idprom.h> 48 #include <sys/promif.h> 49 #include <sys/prom_plat.h> 50 #include <sys/systeminfo.h> 51 #include <sys/fpu/fpusystm.h> 52 #include <sys/vm.h> 53 #include <sys/fs/dv_node.h> 54 #include <sys/fs/snode.h> 55 #include <sys/ddi_isa.h> 56 57 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *, 58 ddi_intr_handle_impl_t *); 59 #pragma weak get_intr_parent 60 61 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t, 62 ddi_intr_handle_impl_t *, void *); 63 #pragma weak process_intr_ops 64 65 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t); 66 prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *, 67 int32_t len); 68 #pragma weak cells_1275_copy 69 70 /* 71 * Wrapper for ddi_prop_lookup_int_array(). 72 * This is handy because it returns the prop length in 73 * bytes which is what most of the callers require. 74 */ 75 76 static int 77 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 78 { 79 int ret; 80 81 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 82 DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) { 83 *plen = (*plen) * (uint_t)sizeof (int); 84 } 85 return (ret); 86 } 87 88 /* 89 * SECTION: DDI Node Configuration 90 */ 91 92 /* 93 * init_regspec_64: 94 * 95 * If the parent #size-cells is 2, convert the upa-style or 96 * safari-style reg property from 2-size cells to 1 size cell 97 * format, ignoring the size_hi, which must be zero for devices. 98 * (It won't be zero in the memory list properties in the memory 99 * nodes, but that doesn't matter here.) 100 */ 101 struct ddi_parent_private_data * 102 init_regspec_64(dev_info_t *dip) 103 { 104 struct ddi_parent_private_data *pd; 105 dev_info_t *parent; 106 int size_cells; 107 108 /* 109 * If there are no "reg"s in the child node, return. 110 */ 111 pd = ddi_get_parent_data(dip); 112 if ((pd == NULL) || (pd->par_nreg == 0)) { 113 return (pd); 114 } 115 parent = ddi_get_parent(dip); 116 117 size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 118 DDI_PROP_DONTPASS, "#size-cells", 1); 119 120 if (size_cells != 1) { 121 122 int n, j; 123 struct regspec *irp; 124 struct reg_64 { 125 uint_t addr_hi, addr_lo, size_hi, size_lo; 126 }; 127 struct reg_64 *r64_rp; 128 struct regspec *rp; 129 uint_t len = 0; 130 int *reg_prop; 131 132 ASSERT(size_cells == 2); 133 134 /* 135 * We already looked the property up once before if 136 * pd is non-NULL. 137 */ 138 (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 139 DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len); 140 ASSERT(len != 0); 141 142 n = sizeof (struct reg_64) / sizeof (int); 143 n = len / n; 144 145 /* 146 * We're allocating a buffer the size of the PROM's property, 147 * but we're only using a smaller portion when we assign it 148 * to a regspec. We do this so that in the 149 * impl_ddi_sunbus_removechild function, we will 150 * always free the right amount of memory. 151 */ 152 irp = rp = (struct regspec *)reg_prop; 153 r64_rp = (struct reg_64 *)pd->par_reg; 154 155 for (j = 0; j < n; ++j, ++rp, ++r64_rp) { 156 ASSERT(r64_rp->size_hi == 0); 157 rp->regspec_bustype = r64_rp->addr_hi; 158 rp->regspec_addr = r64_rp->addr_lo; 159 rp->regspec_size = r64_rp->size_lo; 160 } 161 162 ddi_prop_free((void *)pd->par_reg); 163 pd->par_nreg = n; 164 pd->par_reg = irp; 165 } 166 return (pd); 167 } 168 169 /* 170 * Create a ddi_parent_private_data structure from the ddi properties of 171 * the dev_info node. 172 * 173 * The "reg" is required if the driver wishes to create mappings on behalf 174 * of the device. The "reg" property is assumed to be a list of at least 175 * one triplet 176 * 177 * <bustype, address, size>*1 178 * 179 * The "interrupt" property is no longer part of parent private data on 180 * sun4u. The interrupt parent is may not be the device tree parent. 181 * 182 * The "ranges" property describes the mapping of child addresses to parent 183 * addresses. 184 * 185 * N.B. struct rangespec is defined for the following default values: 186 * parent child 187 * #address-cells 2 2 188 * #size-cells 1 1 189 * This function doesn't deal with non-default cells and will not create 190 * ranges in such cases. 191 */ 192 void 193 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 194 { 195 struct ddi_parent_private_data *pdptr; 196 int *reg_prop, *rng_prop; 197 uint_t reg_len = 0, rng_len = 0; 198 dev_info_t *parent; 199 int parent_addr_cells, parent_size_cells; 200 int child_addr_cells, child_size_cells; 201 202 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 203 204 /* 205 * root node has no parent private data, so *ppd should 206 * be initialized for naming to work properly. 207 */ 208 if ((parent = ddi_get_parent(child)) == NULL) 209 return; 210 211 /* 212 * Set reg field of parent data from "reg" property 213 */ 214 if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len) 215 == DDI_PROP_SUCCESS) && (reg_len != 0)) { 216 pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec)); 217 pdptr->par_reg = (struct regspec *)reg_prop; 218 } 219 220 /* 221 * "ranges" property ... 222 * 223 * This function does not handle cases where #address-cells != 2 224 * and * min(parent, child) #size-cells != 1 (see bugid 4211124). 225 * 226 * Nexus drivers with such exceptions (e.g. pci ranges) 227 * should either create a separate function for handling 228 * ranges or not use parent private data to store ranges. 229 */ 230 231 /* root node has no ranges */ 232 if ((parent = ddi_get_parent(child)) == NULL) 233 return; 234 235 child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 236 DDI_PROP_DONTPASS, "#address-cells", 2); 237 child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child, 238 DDI_PROP_DONTPASS, "#size-cells", 1); 239 parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 240 DDI_PROP_DONTPASS, "#address-cells", 2); 241 parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 242 DDI_PROP_DONTPASS, "#size-cells", 1); 243 if (child_addr_cells != 2 || parent_addr_cells != 2 || 244 (child_size_cells != 1 && parent_size_cells != 1)) { 245 NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; " 246 "#address-cells or #size-cells have non-default value")); 247 return; 248 } 249 250 if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len) 251 == DDI_PROP_SUCCESS) { 252 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 253 pdptr->par_rng = (struct rangespec *)rng_prop; 254 } 255 } 256 257 /* 258 * Free ddi_parent_private_data structure 259 */ 260 void 261 impl_free_ddi_ppd(dev_info_t *dip) 262 { 263 struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip); 264 265 if (pdptr == NULL) 266 return; 267 268 if (pdptr->par_nrng != 0) 269 ddi_prop_free((void *)pdptr->par_rng); 270 271 if (pdptr->par_nreg != 0) 272 ddi_prop_free((void *)pdptr->par_reg); 273 274 kmem_free(pdptr, sizeof (*pdptr)); 275 ddi_set_parent_data(dip, NULL); 276 } 277 278 /* 279 * Name a child of sun busses based on the reg spec. 280 * Handles the following properties: 281 * 282 * Property value 283 * Name type 284 * 285 * reg register spec 286 * interrupts new (bus-oriented) interrupt spec 287 * ranges range spec 288 * 289 * This may be called multiple times, independent of 290 * initchild calls. 291 */ 292 static int 293 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 294 { 295 struct ddi_parent_private_data *pdptr; 296 struct regspec *rp; 297 298 /* 299 * Fill in parent-private data and this function returns to us 300 * an indication if it used "registers" to fill in the data. 301 */ 302 if (ddi_get_parent_data(child) == NULL) { 303 make_ddi_ppd(child, &pdptr); 304 ddi_set_parent_data(child, pdptr); 305 } 306 307 /* 308 * No reg property, return null string as address 309 * (e.g. root node) 310 */ 311 name[0] = '\0'; 312 if (sparc_pd_getnreg(child) == 0) { 313 return (DDI_SUCCESS); 314 } 315 316 rp = sparc_pd_getreg(child, 0); 317 (void) snprintf(name, namelen, "%x,%x", 318 rp->regspec_bustype, rp->regspec_addr); 319 return (DDI_SUCCESS); 320 } 321 322 323 /* 324 * Called from the bus_ctl op of some drivers. 325 * to implement the DDI_CTLOPS_INITCHILD operation. 326 * 327 * NEW drivers should NOT use this function, but should declare 328 * there own initchild/uninitchild handlers. (This function assumes 329 * the layout of the parent private data and the format of "reg", 330 * "ranges", "interrupts" properties and that #address-cells and 331 * #size-cells of the parent bus are defined to be default values.) 332 */ 333 int 334 impl_ddi_sunbus_initchild(dev_info_t *child) 335 { 336 char name[MAXNAMELEN]; 337 338 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 339 ddi_set_name_addr(child, name); 340 341 /* 342 * Try to merge .conf node. If successful, return failure to 343 * remove this child. 344 */ 345 if ((ndi_dev_is_persistent_node(child) == 0) && 346 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 347 impl_ddi_sunbus_removechild(child); 348 return (DDI_FAILURE); 349 } 350 return (DDI_SUCCESS); 351 } 352 353 /* 354 * A better name for this function would be impl_ddi_sunbus_uninitchild() 355 * It does not remove the child, it uninitializes it, reclaiming the 356 * resources taken by impl_ddi_sunbus_initchild. 357 */ 358 void 359 impl_ddi_sunbus_removechild(dev_info_t *dip) 360 { 361 impl_free_ddi_ppd(dip); 362 ddi_set_name_addr(dip, NULL); 363 /* 364 * Strip the node to properly convert it back to prototype form 365 */ 366 impl_rem_dev_props(dip); 367 } 368 369 /* 370 * SECTION: DDI Interrupt 371 */ 372 373 void 374 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len) 375 { 376 int i; 377 for (i = 0; i < len; i++) 378 *to = *from; 379 } 380 381 prop_1275_cell_t * 382 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len) 383 { 384 prop_1275_cell_t *match_cell = 0; 385 int32_t i; 386 387 for (i = 0; i < len; i++) 388 if (cell1[i] != cell2[i]) { 389 match_cell = &cell1[i]; 390 break; 391 } 392 393 return (match_cell); 394 } 395 396 /* 397 * get_intr_parent() is a generic routine that process a 1275 interrupt 398 * map (imap) property. This function returns a dev_info_t structure 399 * which claims ownership of the interrupt domain. 400 * It also returns the new interrupt translation within this new domain. 401 * If an interrupt-parent or interrupt-map property are not found, 402 * then we fallback to using the device tree's parent. 403 * 404 * imap entry format: 405 * <reg>,<interrupt>,<phandle>,<translated interrupt> 406 * reg - The register specification in the interrupts domain 407 * interrupt - The interrupt specification 408 * phandle - PROM handle of the device that owns the xlated interrupt domain 409 * translated interrupt - interrupt specifier in the parents domain 410 * note: <reg>,<interrupt> - The reg and interrupt can be combined to create 411 * a unique entry called a unit interrupt specifier. 412 * 413 * Here's the processing steps: 414 * step1 - If the interrupt-parent property exists, create the ispec and 415 * return the dip of the interrupt parent. 416 * step2 - Extract the interrupt-map property and the interrupt-map-mask 417 * If these don't exist, just return the device tree parent. 418 * step3 - build up the unit interrupt specifier to match against the 419 * interrupt map property 420 * step4 - Scan the interrupt-map property until a match is found 421 * step4a - Extract the interrupt parent 422 * step4b - Compare the unit interrupt specifier 423 */ 424 dev_info_t * 425 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp) 426 { 427 prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req; 428 int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz, 429 addr_cells, intr_cells, reg_len, i, j; 430 int32_t match_found = 0; 431 dev_info_t *intr_parent_dip = NULL; 432 uint32_t *intr = &hdlp->ih_vector; 433 uint32_t nodeid; 434 #ifdef DEBUG 435 static int debug = 0; 436 #endif 437 438 /* 439 * step1 440 * If we have an interrupt-parent property, this property represents 441 * the nodeid of our interrupt parent. 442 */ 443 if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 444 "interrupt-parent", -1)) != -1) { 445 intr_parent_dip = e_ddi_nodeid_to_dip(nodeid); 446 ASSERT(intr_parent_dip); 447 448 /* 449 * Attach the interrupt parent. 450 * 451 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR. 452 * Also, interrupt parent isn't held. This needs 453 * to be revisited if DR-capable platforms implement 454 * interrupt redirection. 455 */ 456 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 457 != DDI_SUCCESS) { 458 ndi_rele_devi(intr_parent_dip); 459 return (NULL); 460 } 461 462 return (intr_parent_dip); 463 } 464 465 /* 466 * step2 467 * Get interrupt map structure from PROM property 468 */ 469 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 470 "interrupt-map", (caddr_t)&imap, &imap_sz) 471 != DDI_PROP_SUCCESS) { 472 /* 473 * If we don't have an imap property, default to using the 474 * device tree. 475 */ 476 477 ndi_hold_devi(pdip); 478 return (pdip); 479 } 480 481 /* Get the interrupt mask property */ 482 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, 483 "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz) 484 != DDI_PROP_SUCCESS) { 485 /* 486 * If we don't find this property, we have to fail the request 487 * because the 1275 imap property wasn't defined correctly. 488 */ 489 ASSERT(intr_parent_dip == NULL); 490 goto exit2; 491 } 492 493 /* Get the address cell size */ 494 addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 495 "#address-cells", 2); 496 497 /* Get the interrupts cell size */ 498 intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0, 499 "#interrupt-cells", 1); 500 501 /* 502 * step3 503 * Now lets build up the unit interrupt specifier e.g. reg,intr 504 * and apply the imap mask. match_req will hold this when we're 505 * through. 506 */ 507 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", 508 (caddr_t)®_p, ®_len) != DDI_SUCCESS) { 509 ASSERT(intr_parent_dip == NULL); 510 goto exit3; 511 } 512 513 match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) + 514 CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP); 515 516 for (i = 0; i < addr_cells; i++) 517 match_req[i] = (reg_p[i] & imap_mask[i]); 518 519 for (j = 0; j < intr_cells; i++, j++) 520 match_req[i] = (intr[j] & imap_mask[i]); 521 522 /* Calculate the imap size in cells */ 523 imap_cells = BYTES_TO_1275_CELLS(imap_sz); 524 525 #ifdef DEBUG 526 if (debug) 527 prom_printf("reg cell size 0x%x, intr cell size 0x%x, " 528 "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells, 529 match_req, imap); 530 #endif 531 532 /* 533 * Scan the imap property looking for a match of the interrupt unit 534 * specifier. This loop is rather complex since the data within the 535 * imap property may vary in size. 536 */ 537 for (scan = imap, imap_scan_cells = i = 0; 538 imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) { 539 int new_intr_cells; 540 541 /* Set the index to the nodeid field */ 542 i = addr_cells + intr_cells; 543 544 /* 545 * step4a 546 * Translate the nodeid field to a dip 547 */ 548 ASSERT(intr_parent_dip == NULL); 549 intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]); 550 551 ASSERT(intr_parent_dip != 0); 552 #ifdef DEBUG 553 if (debug) 554 prom_printf("scan 0x%p\n", scan); 555 #endif 556 /* 557 * The tmp_dip describes the new domain, get it's interrupt 558 * cell size 559 */ 560 new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0, 561 "#interrupts-cells", 1); 562 563 /* 564 * step4b 565 * See if we have a match on the interrupt unit specifier 566 */ 567 if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells) 568 == 0) { 569 uint32_t *intr; 570 571 match_found = 1; 572 573 /* 574 * If we have an imap parent whose not in our device 575 * tree path, we need to hold and install that driver. 576 */ 577 if (i_ddi_attach_node_hierarchy(intr_parent_dip) 578 != DDI_SUCCESS) { 579 ndi_rele_devi(intr_parent_dip); 580 intr_parent_dip = (dev_info_t *)NULL; 581 goto exit4; 582 } 583 584 /* 585 * We need to handcraft an ispec along with a bus 586 * interrupt value, so we can dup it into our 587 * standard ispec structure. 588 */ 589 /* Extract the translated interrupt information */ 590 intr = kmem_alloc( 591 CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP); 592 593 for (j = 0; j < new_intr_cells; j++, i++) 594 intr[j] = scan[i]; 595 596 cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells); 597 598 kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells)); 599 600 #ifdef DEBUG 601 if (debug) 602 prom_printf("dip 0x%p\n", intr_parent_dip); 603 #endif 604 break; 605 } else { 606 #ifdef DEBUG 607 if (debug) 608 prom_printf("dip 0x%p\n", intr_parent_dip); 609 #endif 610 ndi_rele_devi(intr_parent_dip); 611 intr_parent_dip = NULL; 612 i += new_intr_cells; 613 } 614 } 615 616 /* 617 * If we haven't found our interrupt parent at this point, fallback 618 * to using the device tree. 619 */ 620 if (!match_found) { 621 ndi_hold_devi(pdip); 622 ASSERT(intr_parent_dip == NULL); 623 intr_parent_dip = pdip; 624 } 625 626 ASSERT(intr_parent_dip != NULL); 627 628 exit4: 629 kmem_free(reg_p, reg_len); 630 kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) + 631 CELLS_1275_TO_BYTES(intr_cells)); 632 633 exit3: 634 kmem_free(imap_mask, imap_mask_sz); 635 636 exit2: 637 kmem_free(imap, imap_sz); 638 639 return (intr_parent_dip); 640 } 641 642 /* 643 * process_intr_ops: 644 * 645 * Process the interrupt op via the interrupt parent. 646 */ 647 int 648 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op, 649 ddi_intr_handle_impl_t *hdlp, void *result) 650 { 651 int ret = DDI_FAILURE; 652 653 if (NEXUS_HAS_INTR_OP(pdip)) { 654 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops-> 655 bus_intr_op)) (pdip, rdip, op, hdlp, result); 656 } else { 657 cmn_err(CE_WARN, "Failed to process interrupt " 658 "for %s%d due to down-rev nexus driver %s%d", 659 ddi_get_name(rdip), ddi_get_instance(rdip), 660 ddi_get_name(pdip), ddi_get_instance(pdip)); 661 } 662 663 return (ret); 664 } 665 666 /*ARGSUSED*/ 667 uint_t 668 softlevel1(caddr_t arg) 669 { 670 softint(); 671 return (1); 672 } 673 674 /* 675 * indirection table, to save us some large switch statements 676 * NOTE: This must agree with "INTLEVEL_foo" constants in 677 * <sys/avintr.h> 678 */ 679 struct autovec *const vectorlist[] = { 0 }; 680 681 /* 682 * This value is exported here for the functions in avintr.c 683 */ 684 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0])); 685 686 /* 687 * Check for machine specific interrupt levels which cannot be reassigned by 688 * settrap(), sun4u version. 689 * 690 * sun4u does not support V8 SPARC "fast trap" handlers. 691 */ 692 /*ARGSUSED*/ 693 int 694 exclude_settrap(int lvl) 695 { 696 return (1); 697 } 698 699 /* 700 * Check for machine specific interrupt levels which cannot have interrupt 701 * handlers added. We allow levels 1 through 15; level 0 is nonsense. 702 */ 703 /*ARGSUSED*/ 704 int 705 exclude_level(int lvl) 706 { 707 return ((lvl < 1) || (lvl > 15)); 708 } 709 710 /* 711 * Wrapper functions used by New DDI interrupt framework. 712 */ 713 714 /* 715 * i_ddi_intr_ops: 716 */ 717 int 718 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 719 ddi_intr_handle_impl_t *hdlp, void *result) 720 { 721 dev_info_t *pdip = ddi_get_parent(dip); 722 int ret = DDI_FAILURE; 723 724 /* 725 * The following check is required to address 726 * one of the test case of ADDI test suite. 727 */ 728 if (pdip == NULL) 729 return (DDI_FAILURE); 730 731 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) 732 return (process_intr_ops(pdip, rdip, op, hdlp, result)); 733 734 if (hdlp->ih_vector == 0) 735 hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum); 736 737 if (hdlp->ih_pri == 0) 738 hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum); 739 740 switch (op) { 741 case DDI_INTROP_ADDISR: 742 case DDI_INTROP_REMISR: 743 case DDI_INTROP_ENABLE: 744 case DDI_INTROP_DISABLE: 745 case DDI_INTROP_BLOCKENABLE: 746 case DDI_INTROP_BLOCKDISABLE: 747 /* 748 * Try and determine our parent and possibly an interrupt 749 * translation. intr parent dip returned held 750 */ 751 if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL) 752 goto done; 753 } 754 755 ret = process_intr_ops(pdip, rdip, op, hdlp, result); 756 757 done: 758 switch (op) { 759 case DDI_INTROP_ADDISR: 760 case DDI_INTROP_REMISR: 761 case DDI_INTROP_ENABLE: 762 case DDI_INTROP_DISABLE: 763 case DDI_INTROP_BLOCKENABLE: 764 case DDI_INTROP_BLOCKDISABLE: 765 /* Release hold acquired in get_intr_parent() */ 766 if (pdip) 767 ndi_rele_devi(pdip); 768 } 769 770 hdlp->ih_vector = 0; 771 772 return (ret); 773 } 774 775 /* 776 * i_ddi_add_ivintr: 777 */ 778 /*ARGSUSED*/ 779 int 780 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp) 781 { 782 /* Sanity check the entry we're about to add */ 783 if (GET_IVINTR(hdlp->ih_vector)) { 784 cmn_err(CE_WARN, "mondo 0x%x in use", hdlp->ih_vector); 785 return (DDI_FAILURE); 786 } 787 788 /* 789 * If the PIL was set and is valid use it, otherwise 790 * default it to 1 791 */ 792 if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX)) 793 hdlp->ih_pri = 1; 794 795 VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri, 796 (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1, NULL) == 0); 797 798 return (DDI_SUCCESS); 799 } 800 801 /* 802 * i_ddi_rem_ivintr: 803 */ 804 /*ARGSUSED*/ 805 void 806 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp) 807 { 808 rem_ivintr(hdlp->ih_vector, NULL); 809 } 810 811 /* 812 * i_ddi_get_inum - Get the interrupt number property from the 813 * specified device. Note that this function is called only for 814 * the FIXED interrupt type. 815 */ 816 uint32_t 817 i_ddi_get_inum(dev_info_t *dip, uint_t inumber) 818 { 819 int32_t intrlen, intr_cells, max_intrs; 820 prop_1275_cell_t *ip, intr_sz; 821 uint32_t intr = 0; 822 823 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 824 DDI_PROP_CANSLEEP, 825 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 826 827 intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 828 "#interrupt-cells", 1); 829 830 /* adjust for number of bytes */ 831 intr_sz = CELLS_1275_TO_BYTES(intr_cells); 832 833 /* Calculate the number of interrupts */ 834 max_intrs = intrlen / intr_sz; 835 836 if (inumber < max_intrs) { 837 prop_1275_cell_t *intrp = ip; 838 839 /* Index into interrupt property */ 840 intrp += (inumber * intr_cells); 841 842 cells_1275_copy(intrp, &intr, intr_cells); 843 } 844 845 kmem_free(ip, intrlen); 846 } 847 848 return (intr); 849 } 850 851 /* 852 * i_ddi_get_intr_pri - Get the interrupt-priorities property from 853 * the specified device. Note that this function is called only for 854 * the FIXED interrupt type. 855 */ 856 uint32_t 857 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber) 858 { 859 uint32_t *intr_prio_p; 860 uint32_t pri = 0; 861 int32_t i; 862 863 /* 864 * Use the "interrupt-priorities" property to determine the 865 * the pil/ipl for the interrupt handler. 866 */ 867 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 868 "interrupt-priorities", (caddr_t)&intr_prio_p, 869 &i) == DDI_SUCCESS) { 870 if (inumber < (i / sizeof (int32_t))) 871 pri = intr_prio_p[inumber]; 872 kmem_free(intr_prio_p, i); 873 } 874 875 return (pri); 876 } 877 878 int 879 i_ddi_get_nintrs(dev_info_t *dip) 880 { 881 int32_t intrlen; 882 prop_1275_cell_t intr_sz; 883 prop_1275_cell_t *ip; 884 int32_t ret = 0; 885 886 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | 887 DDI_PROP_CANSLEEP, 888 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) { 889 890 intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0, 891 "#interrupt-cells", 1); 892 /* adjust for number of bytes */ 893 intr_sz = CELLS_1275_TO_BYTES(intr_sz); 894 895 ret = intrlen / intr_sz; 896 897 kmem_free(ip, intrlen); 898 } 899 900 return (ret); 901 } 902 903 /* 904 * i_ddi_add_softint - allocate and add a soft interrupt to the system 905 */ 906 int 907 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 908 { 909 uint_t rval; 910 911 if ((rval = add_softintr(hdlp->ih_pri, hdlp->ih_cb_func, 912 hdlp->ih_cb_arg1)) == 0) { 913 914 return (DDI_FAILURE); 915 } 916 917 /* use uintptr_t to suppress the gcc warning */ 918 hdlp->ih_private = (void *)(uintptr_t)rval; 919 920 return (DDI_SUCCESS); 921 } 922 923 void 924 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 925 { 926 uint_t intr_id; 927 928 /* disable */ 929 ASSERT(hdlp->ih_private != NULL); 930 931 /* use uintptr_t to suppress the gcc warning */ 932 intr_id = (uint_t)(uintptr_t)hdlp->ih_private; 933 934 rem_softintr(intr_id); 935 hdlp->ih_private = NULL; 936 } 937 938 int 939 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 940 { 941 uint_t intr_id; 942 int ret; 943 944 ASSERT(hdlp != NULL); 945 ASSERT(hdlp->ih_private != NULL); 946 947 /* use uintptr_t to suppress the gcc warning */ 948 intr_id = (uint_t)(uintptr_t)hdlp->ih_private; 949 950 /* update the vector table for the 2nd arg */ 951 ret = update_softint_arg2(intr_id, arg2); 952 if (ret == DDI_SUCCESS) 953 setsoftint(intr_id); 954 955 return (ret); 956 } 957 958 /* ARGSUSED */ 959 int 960 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 961 { 962 uint_t intr_id; 963 int ret; 964 965 ASSERT(hdlp != NULL); 966 ASSERT(hdlp->ih_private != NULL); 967 968 /* use uintptr_t to suppress the gcc warning */ 969 intr_id = (uint_t)(uintptr_t)hdlp->ih_private; 970 971 /* update the vector table for the new priority */ 972 ret = update_softint_pri(intr_id, hdlp->ih_pri); 973 974 return (ret); 975 } 976 977 /*ARGSUSED*/ 978 void 979 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 980 { 981 } 982 983 /*ARGSUSED*/ 984 void 985 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 986 { 987 } 988 989 /* 990 * SECTION: DDI Memory/DMA 991 */ 992 993 static vmem_t *little_endian_arena; 994 static vmem_t *big_endian_arena; 995 996 static void * 997 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag) 998 { 999 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE, 1000 segkmem_page_create, NULL)); 1001 } 1002 1003 static void * 1004 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag) 1005 { 1006 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE, 1007 segkmem_page_create, NULL)); 1008 } 1009 1010 void 1011 ka_init(void) 1012 { 1013 little_endian_arena = vmem_create("little_endian", NULL, 0, 1, 1014 segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP); 1015 big_endian_arena = vmem_create("big_endian", NULL, 0, 1, 1016 segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP); 1017 } 1018 1019 /* 1020 * Allocate from the system, aligned on a specific boundary. 1021 * The alignment, if non-zero, must be a power of 2. 1022 */ 1023 static void * 1024 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags) 1025 { 1026 size_t *addr, *raddr, rsize; 1027 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1028 1029 align = MAX(align, hdrsize); 1030 ASSERT((align & (align - 1)) == 0); 1031 1032 /* 1033 * We need to allocate 1034 * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment) 1035 * bytes to be sure we have enough freedom to satisfy the request. 1036 * Since the buffer alignment depends on the request size, this is 1037 * not straightforward to use directly. 1038 * 1039 * kmem guarantees that any allocation of a 64-byte multiple will be 1040 * 64-byte aligned. Since rounding up the request could add more 1041 * than we save, we compute the size with and without alignment, and 1042 * use the smaller of the two. 1043 */ 1044 rsize = size + hdrsize + align; 1045 1046 if (endian_flags == DDI_STRUCTURE_LE_ACC) { 1047 raddr = vmem_alloc(little_endian_arena, rsize, 1048 cansleep ? VM_SLEEP : VM_NOSLEEP); 1049 } else { 1050 raddr = vmem_alloc(big_endian_arena, rsize, 1051 cansleep ? VM_SLEEP : VM_NOSLEEP); 1052 } 1053 1054 if (raddr == NULL) 1055 return (NULL); 1056 1057 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1058 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1059 1060 addr[-3] = (size_t)endian_flags; 1061 addr[-2] = (size_t)raddr; 1062 addr[-1] = rsize; 1063 1064 return (addr); 1065 } 1066 1067 static void 1068 kfreea(void *addr) 1069 { 1070 size_t *saddr = addr; 1071 1072 if (saddr[-3] == DDI_STRUCTURE_LE_ACC) 1073 vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]); 1074 else 1075 vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]); 1076 } 1077 1078 int 1079 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1080 size_t length, int cansleep, int streaming, 1081 ddi_device_acc_attr_t *accattrp, 1082 caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep) 1083 { 1084 caddr_t a; 1085 int iomin, align; 1086 uint_t endian_flags = DDI_NEVERSWAP_ACC; 1087 1088 #if defined(lint) 1089 *handlep = *handlep; 1090 #endif 1091 1092 /* 1093 * Check legality of arguments 1094 */ 1095 if (length == 0 || kaddrp == NULL || attr == NULL) { 1096 return (DDI_FAILURE); 1097 } 1098 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1099 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1100 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1101 return (DDI_FAILURE); 1102 } 1103 1104 /* 1105 * Drivers for 64-bit capable SBus devices will encode 1106 * the burtsizes for 64-bit xfers in the upper 16-bits. 1107 * For DMA alignment, we use the most restrictive 1108 * alignment of 32-bit and 64-bit xfers. 1109 */ 1110 iomin = (attr->dma_attr_burstsizes & 0xffff) | 1111 ((attr->dma_attr_burstsizes >> 16) & 0xffff); 1112 /* 1113 * If a driver set burtsizes to 0, we give him byte alignment. 1114 * Otherwise align at the burtsizes boundary. 1115 */ 1116 if (iomin == 0) 1117 iomin = 1; 1118 else 1119 iomin = 1 << (ddi_fls(iomin) - 1); 1120 iomin = maxbit(iomin, attr->dma_attr_minxfer); 1121 iomin = maxbit(iomin, attr->dma_attr_align); 1122 iomin = ddi_iomin(dip, iomin, streaming); 1123 if (iomin == 0) 1124 return (DDI_FAILURE); 1125 1126 ASSERT((iomin & (iomin - 1)) == 0); 1127 ASSERT(iomin >= attr->dma_attr_minxfer); 1128 ASSERT(iomin >= attr->dma_attr_align); 1129 1130 length = P2ROUNDUP(length, iomin); 1131 align = iomin; 1132 1133 if (accattrp != NULL) 1134 endian_flags = accattrp->devacc_attr_endian_flags; 1135 1136 a = kalloca(length, align, cansleep, endian_flags); 1137 if ((*kaddrp = a) == 0) { 1138 return (DDI_FAILURE); 1139 } else { 1140 if (real_length) { 1141 *real_length = length; 1142 } 1143 if (handlep) { 1144 /* 1145 * assign handle information 1146 */ 1147 impl_acc_hdl_init(handlep); 1148 } 1149 return (DDI_SUCCESS); 1150 } 1151 } 1152 1153 /* 1154 * covert old DMA limits structure to DMA attribute structure 1155 * and continue 1156 */ 1157 int 1158 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1159 size_t length, int cansleep, int streaming, 1160 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1161 uint_t *real_length, ddi_acc_hdl_t *ap) 1162 { 1163 ddi_dma_attr_t dma_attr, *attrp; 1164 size_t rlen; 1165 int ret; 1166 1167 ASSERT(limits); 1168 attrp = &dma_attr; 1169 attrp->dma_attr_version = DMA_ATTR_V0; 1170 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1171 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1172 attrp->dma_attr_count_max = (uint64_t)-1; 1173 attrp->dma_attr_align = 1; 1174 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1175 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1176 attrp->dma_attr_maxxfer = (uint64_t)-1; 1177 attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max; 1178 attrp->dma_attr_sgllen = 1; 1179 attrp->dma_attr_granular = 1; 1180 attrp->dma_attr_flags = 0; 1181 1182 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1183 accattrp, kaddrp, &rlen, ap); 1184 if (ret == DDI_SUCCESS) { 1185 if (real_length) 1186 *real_length = (uint_t)rlen; 1187 } 1188 return (ret); 1189 } 1190 1191 /* ARGSUSED */ 1192 void 1193 i_ddi_mem_free(caddr_t kaddr, int stream) 1194 { 1195 kfreea(kaddr); 1196 } 1197 1198 /* 1199 * SECTION: DDI Data Access 1200 */ 1201 1202 static uintptr_t impl_acc_hdl_id = 0; 1203 1204 /* 1205 * access handle allocator 1206 */ 1207 ddi_acc_hdl_t * 1208 impl_acc_hdl_get(ddi_acc_handle_t hdl) 1209 { 1210 /* 1211 * Extract the access handle address from the DDI implemented 1212 * access handle 1213 */ 1214 return (&((ddi_acc_impl_t *)hdl)->ahi_common); 1215 } 1216 1217 ddi_acc_handle_t 1218 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg) 1219 { 1220 ddi_acc_impl_t *hp; 1221 on_trap_data_t *otp; 1222 int sleepflag; 1223 1224 sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); 1225 1226 /* 1227 * Allocate and initialize the data access handle and error status. 1228 */ 1229 if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL) 1230 goto fail; 1231 if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc( 1232 sizeof (ndi_err_t), sleepflag)) == NULL) { 1233 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1234 goto fail; 1235 } 1236 if ((otp = (on_trap_data_t *)kmem_zalloc( 1237 sizeof (on_trap_data_t), sleepflag)) == NULL) { 1238 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1239 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1240 goto fail; 1241 } 1242 hp->ahi_err->err_ontrap = otp; 1243 hp->ahi_common.ah_platform_private = (void *)hp; 1244 1245 return ((ddi_acc_handle_t)hp); 1246 fail: 1247 if ((waitfp != (int (*)())KM_SLEEP) && 1248 (waitfp != (int (*)())KM_NOSLEEP)) 1249 ddi_set_callback(waitfp, arg, &impl_acc_hdl_id); 1250 return (NULL); 1251 } 1252 1253 void 1254 impl_acc_hdl_free(ddi_acc_handle_t handle) 1255 { 1256 ddi_acc_impl_t *hp; 1257 1258 /* 1259 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *), 1260 * because that's what we allocated in impl_acc_hdl_alloc() above. 1261 */ 1262 hp = (ddi_acc_impl_t *)handle; 1263 if (hp) { 1264 kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t)); 1265 kmem_free(hp->ahi_err, sizeof (ndi_err_t)); 1266 kmem_free(hp, sizeof (ddi_acc_impl_t)); 1267 if (impl_acc_hdl_id) 1268 ddi_run_callback(&impl_acc_hdl_id); 1269 } 1270 } 1271 1272 void 1273 impl_acc_err_init(ddi_acc_hdl_t *handlep) 1274 { 1275 int fmcap; 1276 ndi_err_t *errp; 1277 on_trap_data_t *otp; 1278 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep; 1279 1280 fmcap = ddi_fm_capable(handlep->ah_dip); 1281 1282 if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 || 1283 !DDI_FM_ACC_ERR_CAP(fmcap)) { 1284 handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC; 1285 } else if (DDI_FM_ACC_ERR_CAP(fmcap)) { 1286 if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 1287 i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP, 1288 NULL, DDI_NOSLEEP); 1289 } else { 1290 errp = hp->ahi_err; 1291 otp = (on_trap_data_t *)errp->err_ontrap; 1292 otp->ot_handle = (void *)(hp); 1293 otp->ot_prot = OT_DATA_ACCESS; 1294 if (handlep->ah_acc.devacc_attr_access == 1295 DDI_CAUTIOUS_ACC) 1296 otp->ot_trampoline = 1297 (uintptr_t)&i_ddi_caut_trampoline; 1298 else 1299 otp->ot_trampoline = 1300 (uintptr_t)&i_ddi_prot_trampoline; 1301 errp->err_status = DDI_FM_OK; 1302 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 1303 } 1304 } 1305 } 1306 1307 void 1308 impl_acc_hdl_init(ddi_acc_hdl_t *handlep) 1309 { 1310 ddi_acc_impl_t *hp; 1311 1312 ASSERT(handlep); 1313 1314 hp = (ddi_acc_impl_t *)handlep; 1315 1316 /* 1317 * check for SW byte-swapping 1318 */ 1319 hp->ahi_get8 = i_ddi_get8; 1320 hp->ahi_put8 = i_ddi_put8; 1321 hp->ahi_rep_get8 = i_ddi_rep_get8; 1322 hp->ahi_rep_put8 = i_ddi_rep_put8; 1323 if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) { 1324 hp->ahi_get16 = i_ddi_swap_get16; 1325 hp->ahi_get32 = i_ddi_swap_get32; 1326 hp->ahi_get64 = i_ddi_swap_get64; 1327 hp->ahi_put16 = i_ddi_swap_put16; 1328 hp->ahi_put32 = i_ddi_swap_put32; 1329 hp->ahi_put64 = i_ddi_swap_put64; 1330 hp->ahi_rep_get16 = i_ddi_swap_rep_get16; 1331 hp->ahi_rep_get32 = i_ddi_swap_rep_get32; 1332 hp->ahi_rep_get64 = i_ddi_swap_rep_get64; 1333 hp->ahi_rep_put16 = i_ddi_swap_rep_put16; 1334 hp->ahi_rep_put32 = i_ddi_swap_rep_put32; 1335 hp->ahi_rep_put64 = i_ddi_swap_rep_put64; 1336 } else { 1337 hp->ahi_get16 = i_ddi_get16; 1338 hp->ahi_get32 = i_ddi_get32; 1339 hp->ahi_get64 = i_ddi_get64; 1340 hp->ahi_put16 = i_ddi_put16; 1341 hp->ahi_put32 = i_ddi_put32; 1342 hp->ahi_put64 = i_ddi_put64; 1343 hp->ahi_rep_get16 = i_ddi_rep_get16; 1344 hp->ahi_rep_get32 = i_ddi_rep_get32; 1345 hp->ahi_rep_get64 = i_ddi_rep_get64; 1346 hp->ahi_rep_put16 = i_ddi_rep_put16; 1347 hp->ahi_rep_put32 = i_ddi_rep_put32; 1348 hp->ahi_rep_put64 = i_ddi_rep_put64; 1349 } 1350 1351 /* Legacy fault flags and support */ 1352 hp->ahi_fault_check = i_ddi_acc_fault_check; 1353 hp->ahi_fault_notify = i_ddi_acc_fault_notify; 1354 hp->ahi_fault = 0; 1355 impl_acc_err_init(handlep); 1356 } 1357 1358 void 1359 i_ddi_acc_set_fault(ddi_acc_handle_t handle) 1360 { 1361 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1362 1363 if (!hp->ahi_fault) { 1364 hp->ahi_fault = 1; 1365 (*hp->ahi_fault_notify)(hp); 1366 } 1367 } 1368 1369 void 1370 i_ddi_acc_clr_fault(ddi_acc_handle_t handle) 1371 { 1372 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle; 1373 1374 if (hp->ahi_fault) { 1375 hp->ahi_fault = 0; 1376 (*hp->ahi_fault_notify)(hp); 1377 } 1378 } 1379 1380 /* ARGSUSED */ 1381 void 1382 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp) 1383 { 1384 /* Default version, does nothing */ 1385 } 1386 1387 /* 1388 * SECTION: Misc functions 1389 */ 1390 1391 /* 1392 * instance wrappers 1393 */ 1394 /*ARGSUSED*/ 1395 uint_t 1396 impl_assign_instance(dev_info_t *dip) 1397 { 1398 return ((uint_t)-1); 1399 } 1400 1401 /*ARGSUSED*/ 1402 int 1403 impl_keep_instance(dev_info_t *dip) 1404 { 1405 return (DDI_FAILURE); 1406 } 1407 1408 /*ARGSUSED*/ 1409 int 1410 impl_free_instance(dev_info_t *dip) 1411 { 1412 return (DDI_FAILURE); 1413 } 1414 1415 /*ARGSUSED*/ 1416 int 1417 impl_check_cpu(dev_info_t *devi) 1418 { 1419 return (DDI_SUCCESS); 1420 } 1421 1422 1423 static const char *nocopydevs[] = { 1424 "SUNW,ffb", 1425 "SUNW,afb", 1426 NULL 1427 }; 1428 1429 /* 1430 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 1431 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 1432 */ 1433 /*ARGSUSED*/ 1434 int 1435 e_ddi_copyfromdev(dev_info_t *devi, 1436 off_t off, const void *devaddr, void *kaddr, size_t len) 1437 { 1438 const char **argv; 1439 1440 for (argv = nocopydevs; *argv; argv++) 1441 if (strcmp(ddi_binding_name(devi), *argv) == 0) { 1442 bzero(kaddr, len); 1443 return (0); 1444 } 1445 1446 bcopy(devaddr, kaddr, len); 1447 return (0); 1448 } 1449 1450 /* 1451 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 1452 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 1453 */ 1454 /*ARGSUSED*/ 1455 int 1456 e_ddi_copytodev(dev_info_t *devi, 1457 off_t off, const void *kaddr, void *devaddr, size_t len) 1458 { 1459 const char **argv; 1460 1461 for (argv = nocopydevs; *argv; argv++) 1462 if (strcmp(ddi_binding_name(devi), *argv) == 0) 1463 return (1); 1464 1465 bcopy(kaddr, devaddr, len); 1466 return (0); 1467 } 1468 1469 /* 1470 * Boot Configuration 1471 */ 1472 idprom_t idprom; 1473 1474 /* 1475 * Configure the hardware on the system. 1476 * Called before the rootfs is mounted 1477 */ 1478 void 1479 configure(void) 1480 { 1481 extern void i_ddi_init_root(); 1482 1483 /* We better have released boot by this time! */ 1484 ASSERT(!bootops); 1485 1486 /* 1487 * Determine whether or not to use the fpu, V9 SPARC cpus 1488 * always have one. Could check for existence of a fp queue, 1489 * Ultra I, II and IIa do not have a fp queue. 1490 */ 1491 if (fpu_exists) 1492 fpu_probe(); 1493 else 1494 cmn_err(CE_CONT, "FPU not in use\n"); 1495 1496 #if 0 /* XXXQ - not necessary for sun4u */ 1497 /* 1498 * This following line fixes bugid 1041296; we need to do a 1499 * prom_nextnode(0) because this call ALSO patches the DMA+ 1500 * bug in Campus-B and Phoenix. The prom uncaches the traptable 1501 * page as a side-effect of devr_next(0) (which prom_nextnode calls), 1502 * so this *must* be executed early on. (XXX This is untrue for sun4u) 1503 */ 1504 (void) prom_nextnode((pnode_t)0); 1505 #endif 1506 1507 /* 1508 * Initialize devices on the machine. 1509 * Uses configuration tree built by the PROMs to determine what 1510 * is present, and builds a tree of prototype dev_info nodes 1511 * corresponding to the hardware which identified itself. 1512 */ 1513 i_ddi_init_root(); 1514 1515 #ifdef DDI_PROP_DEBUG 1516 (void) ddi_prop_debug(1); /* Enable property debugging */ 1517 #endif /* DDI_PROP_DEBUG */ 1518 } 1519 1520 /* 1521 * The "status" property indicates the operational status of a device. 1522 * If this property is present, the value is a string indicating the 1523 * status of the device as follows: 1524 * 1525 * "okay" operational. 1526 * "disabled" not operational, but might become operational. 1527 * "fail" not operational because a fault has been detected, 1528 * and it is unlikely that the device will become 1529 * operational without repair. no additional details 1530 * are available. 1531 * "fail-xxx" not operational because a fault has been detected, 1532 * and it is unlikely that the device will become 1533 * operational without repair. "xxx" is additional 1534 * human-readable information about the particular 1535 * fault condition that was detected. 1536 * 1537 * The absence of this property means that the operational status is 1538 * unknown or okay. 1539 * 1540 * This routine checks the status property of the specified device node 1541 * and returns 0 if the operational status indicates failure, and 1 otherwise. 1542 * 1543 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 1544 * And, in that case, the property may not even be a string. So we carefully 1545 * check for the value "fail", in the beginning of the string, noting 1546 * the property length. 1547 */ 1548 int 1549 status_okay(int id, char *buf, int buflen) 1550 { 1551 char status_buf[OBP_MAXPROPNAME]; 1552 char *bufp = buf; 1553 int len = buflen; 1554 int proplen; 1555 static const char *status = "status"; 1556 static const char *fail = "fail"; 1557 size_t fail_len = strlen(fail); 1558 1559 /* 1560 * Get the proplen ... if it's smaller than "fail", 1561 * or doesn't exist ... then we don't care, since 1562 * the value can't begin with the char string "fail". 1563 * 1564 * NB: proplen, if it's a string, includes the NULL in the 1565 * the size of the property, and fail_len does not. 1566 */ 1567 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 1568 if (proplen <= fail_len) /* nonexistent or uninteresting len */ 1569 return (1); 1570 1571 /* 1572 * if a buffer was provided, use it 1573 */ 1574 if ((buf == (char *)NULL) || (buflen <= 0)) { 1575 bufp = status_buf; 1576 len = sizeof (status_buf); 1577 } 1578 *bufp = (char)0; 1579 1580 /* 1581 * Get the property into the buffer, to the extent of the buffer, 1582 * and in case the buffer is smaller than the property size, 1583 * NULL terminate the buffer. (This handles the case where 1584 * a buffer was passed in and the caller wants to print the 1585 * value, but the buffer was too small). 1586 */ 1587 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 1588 (caddr_t)bufp, len); 1589 *(bufp + len - 1) = (char)0; 1590 1591 /* 1592 * If the value begins with the char string "fail", 1593 * then it means the node is failed. We don't care 1594 * about any other values. We assume the node is ok 1595 * although it might be 'disabled'. 1596 */ 1597 if (strncmp(bufp, fail, fail_len) == 0) 1598 return (0); 1599 1600 return (1); 1601 } 1602 1603 1604 /* 1605 * We set the cpu type from the idprom, if we can. 1606 * Note that we just read out the contents of it, for the most part. 1607 */ 1608 void 1609 setcputype(void) 1610 { 1611 /* 1612 * We cache the idprom info early on so that we don't 1613 * rummage through the NVRAM unnecessarily later. 1614 */ 1615 (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom)); 1616 } 1617 1618 /* 1619 * Here is where we actually infer meanings to the members of idprom_t 1620 */ 1621 void 1622 parse_idprom(void) 1623 { 1624 if (idprom.id_format == IDFORM_1) { 1625 uint_t i; 1626 1627 (void) localetheraddr((struct ether_addr *)idprom.id_ether, 1628 (struct ether_addr *)NULL); 1629 1630 i = idprom.id_machine << 24; 1631 i = i + idprom.id_serial; 1632 numtos((ulong_t)i, hw_serial); 1633 } else 1634 prom_printf("Invalid format code in IDprom.\n"); 1635 } 1636 1637 /* 1638 * Allow for implementation specific correction of PROM property values. 1639 */ 1640 /*ARGSUSED*/ 1641 void 1642 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 1643 caddr_t buffer) 1644 { 1645 /* 1646 * There are no adjustments needed in this implementation. 1647 */ 1648 } 1649 1650 /* 1651 * The following functions ready a cautious request to go up to the nexus 1652 * driver. It is up to the nexus driver to decide how to process the request. 1653 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 1654 * differently. 1655 */ 1656 1657 static void 1658 i_ddi_caut_getput_ctlops( 1659 ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size, 1660 size_t repcount, uint_t flags, ddi_ctl_enum_t cmd) 1661 { 1662 peekpoke_ctlops_t cautacc_ctlops_arg; 1663 1664 cautacc_ctlops_arg.size = size; 1665 cautacc_ctlops_arg.dev_addr = dev_addr; 1666 cautacc_ctlops_arg.host_addr = host_addr; 1667 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 1668 cautacc_ctlops_arg.repcount = repcount; 1669 cautacc_ctlops_arg.flags = flags; 1670 1671 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 1672 &cautacc_ctlops_arg, NULL); 1673 } 1674 1675 uint8_t 1676 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 1677 { 1678 uint8_t value; 1679 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1680 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 1681 1682 return (value); 1683 } 1684 1685 uint16_t 1686 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 1687 { 1688 uint16_t value; 1689 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1690 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 1691 1692 return (value); 1693 } 1694 1695 uint32_t 1696 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 1697 { 1698 uint32_t value; 1699 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1700 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 1701 1702 return (value); 1703 } 1704 1705 uint64_t 1706 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 1707 { 1708 uint64_t value; 1709 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1710 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 1711 1712 return (value); 1713 } 1714 1715 void 1716 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 1717 { 1718 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1719 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 1720 } 1721 1722 void 1723 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 1724 { 1725 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1726 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 1727 } 1728 1729 void 1730 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 1731 { 1732 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1733 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 1734 } 1735 1736 void 1737 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 1738 { 1739 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr, 1740 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 1741 } 1742 1743 void 1744 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1745 size_t repcount, uint_t flags) 1746 { 1747 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1748 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 1749 } 1750 1751 void 1752 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1753 uint16_t *dev_addr, size_t repcount, uint_t flags) 1754 { 1755 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1756 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 1757 } 1758 1759 void 1760 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1761 uint32_t *dev_addr, size_t repcount, uint_t flags) 1762 { 1763 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1764 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 1765 } 1766 1767 void 1768 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1769 uint64_t *dev_addr, size_t repcount, uint_t flags) 1770 { 1771 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1772 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 1773 } 1774 1775 void 1776 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 1777 size_t repcount, uint_t flags) 1778 { 1779 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1780 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 1781 } 1782 1783 void 1784 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 1785 uint16_t *dev_addr, size_t repcount, uint_t flags) 1786 { 1787 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1788 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 1789 } 1790 1791 void 1792 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 1793 uint32_t *dev_addr, size_t repcount, uint_t flags) 1794 { 1795 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1796 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 1797 } 1798 1799 void 1800 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 1801 uint64_t *dev_addr, size_t repcount, uint_t flags) 1802 { 1803 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr, 1804 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 1805 } 1806 1807 /* 1808 * This is called only to process peek/poke when the DIP is NULL. 1809 * Assume that this is for memory, as nexi take care of device safe accesses. 1810 */ 1811 int 1812 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 1813 { 1814 int err = DDI_SUCCESS; 1815 on_trap_data_t otd; 1816 1817 /* Set up protected environment. */ 1818 if (!on_trap(&otd, OT_DATA_ACCESS)) { 1819 uintptr_t tramp = otd.ot_trampoline; 1820 1821 if (cmd == DDI_CTLOPS_POKE) { 1822 otd.ot_trampoline = (uintptr_t)&poke_fault; 1823 err = do_poke(in_args->size, (void *)in_args->dev_addr, 1824 (void *)in_args->host_addr); 1825 } else { 1826 otd.ot_trampoline = (uintptr_t)&peek_fault; 1827 err = do_peek(in_args->size, (void *)in_args->dev_addr, 1828 (void *)in_args->host_addr); 1829 } 1830 otd.ot_trampoline = tramp; 1831 } else 1832 err = DDI_FAILURE; 1833 1834 /* Take down protected environment. */ 1835 no_trap(); 1836 1837 return (err); 1838 } 1839