1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/systm.h> 29 #include <sys/conf.h> 30 #include <sys/stat.h> 31 #include <sys/ddi.h> 32 #include <sys/sunddi.h> 33 #include <sys/modctl.h> 34 #include <sys/cpu_module.h> 35 #include <vm/hat_sfmmu.h> 36 #include <vm/seg_kmem.h> 37 #include <vm/seg_kpm.h> 38 #include <vm/vm_dep.h> 39 #include <sys/machsystm.h> 40 #include <sys/machasi.h> 41 #include <sys/sysmacros.h> 42 #include <sys/callb.h> 43 #include <sys/archsystm.h> 44 #include <sys/trapstat.h> 45 #ifdef sun4v 46 #include <sys/hypervisor_api.h> 47 #endif 48 #ifndef sun4v 49 #include <sys/pghw.h> 50 #endif 51 52 /* BEGIN CSTYLED */ 53 /* 54 * trapstat: Trap Statistics through Dynamic Trap Table Interposition 55 * ------------------------------------------------------------------- 56 * 57 * Motivation and Overview 58 * 59 * Despite being a fundamental indicator of system behavior, there has 60 * historically been very little insight provided into the frequency and cost 61 * of machine-specific traps. The lack of insight has been especially acute 62 * on UltraSPARC microprocessors: because these microprocessors handle TLB 63 * misses as software traps, the frequency and duration of traps play a 64 * decisive role in the performance of the memory system. As applications have 65 * increasingly outstripped TLB reach, this has become increasingly true. 66 * 67 * Part of the difficulty of observing trap behavior is that the trap handlers 68 * are so frequently called (e.g. millions of times per second) that any 69 * permanently enabled instrumentation would induce an unacceptable performance 70 * degradation. Thus, it is a constraint on any trap observability 71 * infrastructure that it have no probe effect when not explicitly enabled. 72 * 73 * The basic idea, then, is to create an interposing trap table in which each 74 * entry increments a per-trap, in-memory counter and then jumps to the actual, 75 * underlying trap table entry. To enable trapstat, we atomically write to the 76 * trap base address (%tba) register to point to our interposing trap table. 77 * (Note that per-CPU statistics fall out by creating a different trap table 78 * for each CPU.) 79 * 80 * Implementation Details 81 * 82 * While the idea is straight-forward, a nuance of SPARC V9 slightly 83 * complicates the implementation. Unlike its predecessors, SPARC V9 supports 84 * the notion of nested traps. The trap level is kept in the TL register: 85 * during normal operation it is 0; when a trap is taken, the TL register is 86 * incremented by 1. To aid system software, SPARC V9 breaks the trap table 87 * into two halves: the lower half contains the trap handlers for traps taken 88 * when TL is 0; the upper half contains the trap handlers for traps taken 89 * when TL is greater than 0. Each half is further subdivided into two 90 * subsequent halves: the lower half contains the trap handlers for traps 91 * other than those induced by the trap instruction (Tcc variants); the upper 92 * half contains the trap handlers for traps induced by the trap instruction. 93 * This gives a total of four ranges, with each range containing 256 traps: 94 * 95 * +--------------------------------+- 3ff 96 * | | . 97 * | Trap instruction, TL>0 | . 98 * | | . 99 * |- - - - - - - - - - - - - - - - +- 300 100 * |- - - - - - - - - - - - - - - - +- 2ff 101 * | | . 102 * | Non-trap instruction, TL>0 | . 103 * | | . 104 * |- - - - - - - - - - - - - - - - +- 200 105 * |- - - - - - - - - - - - - - - - +- 1ff 106 * | | . 107 * | Trap instruction, TL=0 | . 108 * | | . 109 * |- - - - - - - - - - - - - - - - +- 100 110 * |- - - - - - - - - - - - - - - - +- 0ff 111 * | | . 112 * | Non-trap instruction, TL=0 | . 113 * | | . 114 * +--------------------------------+- 000 115 * 116 * 117 * Solaris, however, doesn't have reason to support trap instructions when 118 * TL>0 (only privileged code may execute at TL>0; not supporting this only 119 * constrains our own implementation). The trap table actually looks like: 120 * 121 * +--------------------------------+- 2ff 122 * | | . 123 * | Non-trap instruction, TL>0 | . 124 * | | . 125 * |- - - - - - - - - - - - - - - - +- 200 126 * |- - - - - - - - - - - - - - - - +- 1ff 127 * | | . 128 * | Trap instruction, TL=0 | . 129 * | | . 130 * |- - - - - - - - - - - - - - - - +- 100 131 * |- - - - - - - - - - - - - - - - +- 0ff 132 * | | . 133 * | Non-trap instruction, TL=0 | . 134 * | | . 135 * +--------------------------------+- 000 136 * 137 * Putatively to aid system software, SPARC V9 has the notion of multiple 138 * sets of global registers. UltraSPARC defines four sets of global 139 * registers: 140 * 141 * Normal Globals 142 * Alternate Globals (AGs) 143 * MMU Globals (MGs) 144 * Interrupt Globals (IGs) 145 * 146 * The set of globals in use is controlled by bits in PSTATE; when TL is 0 147 * (and PSTATE has not been otherwise explicitly modified), the Normal Globals 148 * are in use. When a trap is issued, PSTATE is modified to point to a set of 149 * globals corresponding to the trap type. Most traps correspond to the 150 * Alternate Globals, with a minority corresponding to the MMU Globals, and 151 * only the interrupt-vector trap (vector 0x60) corresponding to the Interrupt 152 * Globals. (The complete mapping can be found in the UltraSPARC I&II User's 153 * Manual.) 154 * 155 * Note that the sets of globals are per trap _type_, not per trap _level_. 156 * Thus, when executing a TL>0 trap handler, one may not have registers 157 * available (for example, both trap-instruction traps and spill traps execute 158 * on the alternate globals; if a trap-instruction trap induces a window spill, 159 * the window spill handler has no available globals). For trapstat, this is 160 * problematic: a register is required to transfer control from one arbitrary 161 * location (in the interposing trap table) to another (in the actual trap 162 * table). 163 * 164 * We solve this problem by exploiting the trap table's location at the bottom 165 * of valid kernel memory (i.e. at KERNELBASE). We locate the interposing trap 166 * tables just below KERNELBASE -- thereby allowing us to use a branch-always 167 * instruction (ba) instead of a jump instruction (jmp) to transfer control 168 * from the TL>0 entries in the interposing trap table to the TL>0 entries in 169 * the actual trap table. (N.B. while this allows trap table interposition to 170 * work, it necessarily limits trapstat to only recording information about 171 * TL=0 traps -- there is no way to increment a counter without using a 172 * register.) Diagrammatically: 173 * 174 * Actual trap table: 175 * 176 * +--------------------------------+- 2ff 177 * | | . 178 * | Non-trap instruction, TL>0 | . <-----------------------+ 179 * | | . <-----------------------|-+ 180 * |- - - - - - - - - - - - - - - - +- 200 <-----------------------|-|-+ 181 * |- - - - - - - - - - - - - - - - +- 1ff | | | 182 * | | . | | | 183 * | Trap instruction, TL=0 | . <-----------------+ | | | 184 * | | . <-----------------|-+ | | | 185 * |- - - - - - - - - - - - - - - - +- 100 <-----------------|-|-+ | | | 186 * |- - - - - - - - - - - - - - - - +- 0ff | | | | | | 187 * | | . | | | | | | 188 * | Non-trap instruction, TL=0 | . <-----------+ | | | | | | 189 * | | . <-----------|-+ | | | | | | 190 * +--------------------------------+- 000 <-----------|-|-+ | | | | | | 191 * KERNELBASE | | | | | | | | | 192 * | | | | | | | | | 193 * | | | | | | | | | 194 * Interposing trap table: | | | | | | | | | 195 * | | | | | | | | | 196 * +--------------------------------+- 2ff | | | | | | | | | 197 * | ... | . | | | | | | | | | 198 * | ... | . | | | | | | | | | 199 * | ... | . | | | | | | | | | 200 * |- - - - - - - - - - - - - - - - +- 203 | | | | | | | | | 201 * | ba,a | -------------|-|-|-|-|-|-+ | | 202 * |- - - - - - - - - - - - - - - - +- 202 | | | | | | | | 203 * | ba,a | -------------|-|-|-|-|-|---+ | 204 * |- - - - - - - - - - - - - - - - +- 201 | | | | | | | 205 * | ba,a | -------------|-|-|-|-|-|-----+ 206 * |- - - - - - - - - - - - - - - - +- 200 | | | | | | 207 * | ... | . | | | | | | 208 * | ... | . | | | | | | 209 * | ... | . | | | | | | 210 * |- - - - - - - - - - - - - - - - +- 103 | | | | | | 211 * | (Increment counter) | | | | | | | 212 * | ba,a | -------------------+ | | 213 * |- - - - - - - - - - - - - - - - +- 102 | | | | | 214 * | (Increment counter) | | | | | | 215 * | ba,a | ---------------------+ | 216 * |- - - - - - - - - - - - - - - - +- 101 | | | | 217 * | (Increment counter) | | | | | 218 * | ba,a | -----------------------+ 219 * |- - - - - - - - - - - - - - - - +- 100 | | | 220 * | ... | . | | | 221 * | ... | . | | | 222 * | ... | . | | | 223 * |- - - - - - - - - - - - - - - - +- 003 | | | 224 * | (Increment counter) | | | | 225 * | ba,a | -------------+ | | 226 * |- - - - - - - - - - - - - - - - +- 002 | | 227 * | (Increment counter) | | | 228 * | ba,a | ---------------+ | 229 * |- - - - - - - - - - - - - - - - +- 001 | 230 * | (Increment counter) | | 231 * | ba,a | -----------------+ 232 * +--------------------------------+- 000 233 * KERNELBASE - tstat_total_size 234 * 235 * tstat_total_size is the number of pages required for each trap table. It 236 * must be true that KERNELBASE - tstat_total_size is less than the maximum 237 * branch displacement; if each CPU were to consume a disjoint virtual range 238 * below KERNELBASE for its trap table, we could support at most 239 * (maximum_branch_displacement / tstat_total_size) CPUs. The maximum branch 240 * displacement for Bicc variants is just under eight megabytes, and (because 241 * the %tba must be 32K aligned), tstat_total_size must be at least 32K; if 242 * each CPU were to consume a disjoint virtual range, we would have an 243 * unacceptably low upper bound of 256 CPUs. 244 * 245 * While there are tricks that one could use to address this constraint (e.g., 246 * creating trampolines every maximum_branch_displacement bytes), we instead 247 * solve this by not permitting each CPU to consume a disjoint virtual range. 248 * Rather, we have each CPU's interposing trap table use the _same_ virtual 249 * range, but we back the trap tables with disjoint physical memory. Normally, 250 * such one-to-many virtual-to-physical mappings are illegal; this is 251 * permissible here only because the pages for the interposing trap table are 252 * necessarily locked in the TLB. (The CPUs thus never have the opportunity to 253 * discover that they have conflicting translations.) 254 * 255 * On CMT architectures in which CPUs can share MMUs, the above trick will not 256 * work: two CPUs that share an MMU cannot have the same virtual address map 257 * to disjoint physical pages. On these architectures, any CPUs sharing the 258 * same MMU must consume a disjoint 32K virtual address range -- limiting the 259 * number of CPUs sharing an MMU on these architectures to 256 due to the 260 * branch displacement limitation described above. On the sun4v architecture, 261 * there is a further limitation: a guest may not have more than eight locked 262 * TLB entries per MMU. To allow operation under this restriction, the 263 * interposing trap table and the trap statistics are each accessed through 264 * a single 4M TLB entry. This limits the footprint to two locked entries 265 * (one for the I-TLB and one for the D-TLB), but further restricts the number 266 * of CPUs to 128 per MMU. However, support for more than 128 CPUs can easily 267 * be added via a hybrid scheme, where the same 4M virtual address is used 268 * on different MMUs. 269 * 270 * On sun4v architecture, we currently don't use hybrid scheme as it imposes 271 * additional restriction on live migration and transparent CPU replacement. 272 * Instead, we increase the number of supported CPUs by reducing the virtual 273 * address space requirements per CPU via shared interposing trap table as 274 * follows: 275 * 276 * Offset (within 4MB page) 277 * +------------------------------------+- 0x400000 278 * | CPU 507 trap statistics (8KB) | . 279 * |- - - - - - - - - - - - - - - - - - +- 0x3fe000 280 * | | 281 * | ... | 282 * | | 283 * |- - - - - - - - - - - - - - - - - - +- 0x00c000 284 * | CPU 1 trap statistics (8KB) | . 285 * |- - - - - - - - - - - - - - - - - - +- 0x00a000 286 * | CPU 0 trap statistics (8KB) | . 287 * |- - - - - - - - - - - - - - - - - - +- 0x008000 288 * | Shared trap handler continuation | . 289 * |- - - - - - - - - - - - - - - - - - +- 0x006000 290 * | Non-trap instruction, TL>0 | . 291 * |- - - - - - - - - - - - - - - - - - +- 0x004000 292 * | Trap instruction, TL=0 | . 293 * |- - - - - - - - - - - - - - - - - - +- 0x002000 294 * | Non-trap instruction, TL=0 | . 295 * +------------------------------------+- 0x000000 296 * 297 * Note that each CPU has its own 8K space for its trap statistics but 298 * shares the same interposing trap handlers. Interposing trap handlers 299 * use the CPU ID to determine the location of per CPU trap statistics 300 * area dynamically. This increases the interposing trap handler overhead, 301 * but is acceptable as it allows us to support up to 508 CPUs with one 302 * 4MB page on sun4v architecture. Support for additional CPUs can be 303 * added via hybrid scheme as mentioned earlier. 304 * 305 * TLB Statistics 306 * 307 * Because TLB misses are an important component of system performance, we wish 308 * to know much more about these traps than simply the number received. 309 * Specifically, we wish to know: 310 * 311 * (a) The amount of time spent executing the TLB miss handler 312 * (b) TLB misses versus TSB misses 313 * (c) Kernel-level misses versus user-level misses 314 * (d) Misses per pagesize 315 * 316 * TLB Statistics: Time Spent Executing 317 * 318 * To accurately determine the amount of time spent executing the TLB miss 319 * handler, one must get a timestamp on trap entry and trap exit, subtract the 320 * latter from the former, and add the result to an accumulating count. 321 * Consider flow of control during normal TLB miss processing (where "ldx 322 * [%g2], %g2" is an arbitrary TLB-missing instruction): 323 * 324 * + - - - - - - - -+ 325 * : : 326 * : ldx [%g2], %g2 :<-------------------------------------------------------+ 327 * : : Return from trap: | 328 * + - - - - - - - -+ TL <- TL - 1 (0) | 329 * | %pc <- TSTATE[TL].TPC (address of load) | 330 * | TLB miss: | 331 * | TL <- TL + 1 (1) | 332 * | %pc <- TLB-miss-trap-handler | 333 * | | 334 * v | 335 * + - - - - - - - - - - - - - - - + | 336 * : : | 337 * : Lookup VA in TSB : | 338 * : If (hit) : | 339 * : Fill TLB : | 340 * : Else : | 341 * : Lookup VA (hme hash table : | 342 * : or segkpm) : | 343 * : Fill TLB : | 344 * : Endif : | 345 * : Issue "retry" ---------------------------------------------------------+ 346 * : : 347 * + - - - - - - - - - - - - - - - + 348 * TLB-miss-trap-handler 349 * 350 * 351 * As the above diagram indicates, interposing on the trap table allows one 352 * only to determine a timestamp on trap _entry_: when the TLB miss handler 353 * has completed filling the TLB, a "retry" will be issued, and control will 354 * transfer immediately back to the missing %pc. 355 * 356 * To obtain a timestamp on trap exit, we must then somehow interpose between 357 * the "retry" and the subsequent control transfer to the TLB-missing 358 * instruction. To do this, we _push_ a trap level. The basic idea is to 359 * spoof a TLB miss by raising TL, setting the %tpc to be within text 360 * controlled by trapstat (the "TLB return entry") and branching to the 361 * underlying TLB miss handler. When the TLB miss handler issues its "retry", 362 * control will transfer not to the TLB-missing instruction, but rather to the 363 * TLB return entry. This code can then obtain a timestamp, and issue its own 364 * "retry" -- thereby correctly returning to the TLB-missing instruction. 365 * Here is the above TLB miss flow control diagram modified to reflect 366 * trapstat's operation: 367 * 368 * + - - - - - - - -+ 369 * : : 370 * : ldx [%g2], %g2 :<-------------------------------------------------------+ 371 * : : Return from trap: | 372 * + - - - - - - - -+ TL <- TL - 1 (0) | 373 * | %pc <- TSTATE[TL].TPC (address of load) | 374 * | TLB miss: | 375 * | TL <- TL + 1 (1) | 376 * | %pc <- TLB-miss-trap-handler (trapstat) | 377 * | | 378 * v TLB-return-entry (trapstat) | 379 * + - - - - - - - - - - - - - - - - - - + + - - - - - - - - - - - - - + | 380 * : : : : | 381 * : Record timestamp : : Record timestamp : | 382 * : TL <- 2 : : Take timestamp difference : | 383 * : TSTATE[1].TPC <- TLB-return-entry : : Add to running total : | 384 * : ba,a TLB-miss-trap-handler -----------+ : Issue "retry" --------------+ 385 * : : | : : 386 * + - - - - - - - - - - - - - - - - - - + | + - - - - - - - - - - - - - + 387 * TLB-miss-trap-handler | ^ 388 * (trapstat) | | 389 * | | 390 * | | 391 * +-----------------------+ | 392 * | | 393 * | | 394 * v | 395 * + - - - - - - - - - - - - - - - + | 396 * : : | 397 * : Lookup VA in TSB : | 398 * : If (hit) : | 399 * : Fill TLB : | 400 * : Else : | 401 * : Lookup VA (hme hash table : | 402 * : or segkpm) : | 403 * : Fill TLB : | 404 * : Endif : | 405 * : Issue "retry" ------------------------------------------+ 406 * : : Return from trap: 407 * + - - - - - - - - - - - - - - - + TL <- TL - 1 (1) 408 * TLB-miss-trap-handler %pc <- TSTATE[TL].TPC (TLB-return-entry) 409 * 410 * 411 * A final subterfuge is required to complete our artifice: if we miss in 412 * the TLB, the TSB _and_ the subsequent hash or segkpm lookup (that is, if 413 * there is no valid translation for the TLB-missing address), common system 414 * software will need to accurately determine the %tpc as part of its page 415 * fault handling. We therefore modify the kernel to check the %tpc in this 416 * case: if the %tpc falls within the VA range controlled by trapstat and 417 * the TL is 2, TL is simply lowered back to 1 (this check is implemented 418 * by the TSTAT_CHECK_TL1 macro). Lowering TL to 1 has the effect of 419 * discarding the state pushed by trapstat. 420 * 421 * TLB Statistics: TLB Misses versus TSB Misses 422 * 423 * Distinguishing TLB misses from TSB misses requires further interposition 424 * on the TLB miss handler: we cannot know a priori or a posteriori if a 425 * given VA will or has hit in the TSB. 426 * 427 * We achieve this distinction by adding a second TLB return entry almost 428 * identical to the first -- differing only in the address to which it 429 * stores its results. We then modify the TLB miss handlers of the kernel 430 * such that they check the %tpc when they determine that a TLB miss has 431 * subsequently missed in the TSB: if the %tpc lies within trapstat's VA 432 * range and TL is 2 (that is, if trapstat is running), the TLB miss handler 433 * _increments_ the %tpc by the size of the TLB return entry. The ensuing 434 * "retry" will thus transfer control to the second TLB return entry, and 435 * the time spent in the handler will be accumulated in a memory location 436 * specific to TSB misses. 437 * 438 * N.B.: To minimize the amount of knowledge the kernel must have of trapstat, 439 * we do not allow the kernel to hard-code the size of the TLB return entry. 440 * Rather, the actual tsbmiss handler executes a known instruction at the 441 * corresponding tsbmiss patch points (see the tstat_tsbmiss_patch_table) with 442 * the %tpc in %g7: when trapstat is not running, these points contain the 443 * harmless TSTAT_TSBMISS_INSTR instruction ("add %g7, 0, %g7"). Before 444 * running, trapstat modifies the instructions at these patch points such 445 * that the simm13 equals the size of the TLB return entry. 446 * 447 * TLB Statistics: Kernel-level Misses versus User-level Misses 448 * 449 * Differentiating user-level misses from kernel-level misses employs a 450 * similar technique, but is simplified by the ability to distinguish a 451 * user-level miss from a kernel-level miss a priori by reading the context 452 * register: we implement kernel-/user-level differentiation by again doubling 453 * the number of TLB return entries, and setting the %tpc to the appropriate 454 * TLB return entry in trapstat's TLB miss handler. Together with the doubling 455 * of entries required for TLB-miss/TSB-miss differentiation, this yields a 456 * total of four TLB return entries: 457 * 458 * Level TSB hit? Structure member 459 * ------------------------------------------------------------ 460 * Kernel Yes tstat_tlbret_t.ttlbr_ktlb 461 * Kernel No tstat_tlbret_t.ttlbr_ktsb 462 * User Yes tstat_tlbret_t.ttlbr_utlb 463 * User No tstat_tlbret_t.ttlbr_utsb 464 * 465 * TLB Statistics: Misses per Pagesize 466 * 467 * As with the TLB-/TSB-miss differentiation, we have no way of determining 468 * pagesize a priori. This is therefore implemented by mandating a new rule: 469 * whenever the kernel fills the TLB in its TLB miss handler, the TTE 470 * corresponding to the TLB-missing VA must be in %g5 when the handler 471 * executes its "retry". This allows the TLB return entry to determine 472 * pagesize by simply looking at the pagesize field in the TTE stored in 473 * %g5. 474 * 475 * TLB Statistics: Probe Effect 476 * 477 * As one might imagine, gathering TLB statistics by pushing a trap level 478 * induces significant probe effect. To account for this probe effect, 479 * trapstat attempts to observe it by executing a code sequence with a known 480 * number of TLB misses both before and after interposing on the trap table. 481 * This allows trapstat to determine a per-trap probe effect which can then be 482 * factored into the "%tim" fields of the trapstat command. 483 * 484 * Note that on sun4v platforms, TLB misses are normally handled by the 485 * hypervisor or the hardware TSB walker. Thus no fast MMU miss information 486 * is reported for normal operation. However, when trapstat is invoked 487 * with -t or -T option to collect detailed TLB statistics, kernel takes 488 * over TLB miss handling. This results in significantly more overhead 489 * and TLB statistics may not be as accurate as on sun4u platforms. 490 * On some processors, hypervisor or hardware may provide a low overhead 491 * interface to collect TSB hit statistics. This support is exposed via 492 * a well defined CPU module interface (cpu_trapstat_conf to enable this 493 * interface and cpu_trapstat_data to get detailed TSB hit statistics). 494 * In this scenario, TSB miss statistics is collected by intercepting the 495 * IMMU_miss and DMMU_miss traps using above mentioned trap interposition 496 * approach. 497 * 498 * Locking 499 * 500 * The implementation uses two locks: tstat_lock (a local lock) and the global 501 * cpu_lock. tstat_lock is used to assure trapstat's consistency in the 502 * presence of multithreaded /dev/trapstat consumers (while as of this writing 503 * the only consumer of /dev/trapstat is single threaded, it is obviously 504 * necessary to correctly support multithreaded access). cpu_lock is held 505 * whenever CPUs are being manipulated directly, to prevent them from 506 * disappearing in the process. Because trapstat's DR callback 507 * (trapstat_cpu_setup()) must grab tstat_lock and is called with cpu_lock 508 * held, the lock ordering is necessarily cpu_lock before tstat_lock. 509 * 510 */ 511 /* END CSTYLED */ 512 513 static dev_info_t *tstat_devi; /* saved in xxattach() for xxinfo() */ 514 static int tstat_open; /* set if driver is open */ 515 static kmutex_t tstat_lock; /* serialize access */ 516 static vmem_t *tstat_arena; /* arena for TLB-locked pages */ 517 static tstat_percpu_t *tstat_percpu; /* per-CPU data */ 518 static int tstat_running; /* set if trapstat is running */ 519 static tstat_data_t *tstat_buffer; /* staging buffer for outgoing data */ 520 static int tstat_options; /* bit-wise indication of options */ 521 static int *tstat_enabled; /* map of enabled trap entries */ 522 static int tstat_tsbmiss_patched; /* tsbmiss patch flag */ 523 static callb_id_t tstat_cprcb; /* CPR callback */ 524 static char *tstat_probe_area; /* VA range used for probe effect */ 525 static caddr_t tstat_probe_phys; /* physical to back above VA */ 526 static hrtime_t tstat_probe_time; /* time spent on probe effect */ 527 static hrtime_t tstat_probe_before[TSTAT_PROBE_NLAPS]; 528 static hrtime_t tstat_probe_after[TSTAT_PROBE_NLAPS]; 529 static uint_t tstat_pgszs; /* # of kernel page sizes */ 530 static uint_t tstat_user_pgszs; /* # of user page sizes */ 531 532 /* 533 * sizeof tstat_data_t + pgsz data for the kernel. For simplicity's sake, when 534 * we collect data, we do it based upon szc, but when we report data back to 535 * userland, we have to do it based upon the userszc which may not match. 536 * So, these two variables are for internal use and exported use respectively. 537 */ 538 static size_t tstat_data_t_size; 539 static size_t tstat_data_t_exported_size; 540 541 #ifndef sun4v 542 543 static size_t tstat_data_pages; /* number of pages of tstat data */ 544 static size_t tstat_data_size; /* tstat data size in bytes */ 545 static size_t tstat_total_pages; /* #data pages + #instr pages */ 546 static size_t tstat_total_size; /* tstat data size + instr size */ 547 548 #else /* sun4v */ 549 550 static caddr_t tstat_va; /* VA of memory reserved for TBA */ 551 static pfn_t tstat_pfn; /* PFN of memory reserved for TBA */ 552 static boolean_t tstat_fast_tlbstat = B_FALSE; 553 static int tstat_traptab_initialized; 554 555 #endif /* sun4v */ 556 557 /* 558 * In the above block comment, see "TLB Statistics: TLB Misses versus 559 * TSB Misses" for an explanation of the tsbmiss patch points. 560 */ 561 extern uint32_t tsbmiss_trapstat_patch_point; 562 extern uint32_t tsbmiss_trapstat_patch_point_kpm; 563 extern uint32_t tsbmiss_trapstat_patch_point_kpm_small; 564 565 /* 566 * Trapstat tsbmiss patch table 567 */ 568 tstat_tsbmiss_patch_entry_t tstat_tsbmiss_patch_table[] = { 569 {(uint32_t *)&tsbmiss_trapstat_patch_point, 0}, 570 {(uint32_t *)&tsbmiss_trapstat_patch_point_kpm, 0}, 571 {(uint32_t *)&tsbmiss_trapstat_patch_point_kpm_small, 0}, 572 {(uint32_t *)NULL, 0} 573 }; 574 575 /* 576 * We define some general SPARC-specific constants to allow more readable 577 * relocations. 578 */ 579 #define NOP 0x01000000 580 #define HI22(v) ((uint32_t)(v) >> 10) 581 #define LO10(v) ((uint32_t)(v) & 0x3ff) 582 #define LO12(v) ((uint32_t)(v) & 0xfff) 583 #define DISP22(from, to) \ 584 ((((uintptr_t)(to) - (uintptr_t)(from)) >> 2) & 0x3fffff) 585 #define ASI(asi) ((asi) << 5) 586 587 /* 588 * The interposing trap table must be locked in the I-TLB, and any data 589 * referred to in the interposing trap handler must be locked in the D-TLB. 590 * This function locks these pages in the appropriate TLBs by creating TTEs 591 * from whole cloth, and manually loading them into the TLB. This function is 592 * called from cross call context. 593 * 594 * On sun4v platforms, we use 4M page size mappings to minimize the number 595 * of locked down entries (i.e. permanent mappings). Each CPU uses a 596 * reserved portion of that 4M page for its TBA and data. 597 */ 598 static void 599 trapstat_load_tlb(void) 600 { 601 #ifndef sun4v 602 int i; 603 #else 604 uint64_t ret; 605 #endif 606 tte_t tte; 607 tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id]; 608 caddr_t va = tcpu->tcpu_vabase; 609 610 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED); 611 ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED)); 612 613 #ifndef sun4v 614 for (i = 0; i < tstat_total_pages; i++, va += MMU_PAGESIZE) { 615 tte.tte_inthi = TTE_VALID_INT | TTE_SZ_INT(TTE8K) | 616 TTE_PFN_INTHI(tcpu->tcpu_pfn[i]); 617 if (i < TSTAT_INSTR_PAGES) { 618 tte.tte_intlo = TTE_PFN_INTLO(tcpu->tcpu_pfn[i]) | 619 TTE_LCK_INT | TTE_CP_INT | TTE_PRIV_INT; 620 sfmmu_itlb_ld_kva(va, &tte); 621 } else { 622 tte.tte_intlo = TTE_PFN_INTLO(tcpu->tcpu_pfn[i]) | 623 TTE_LCK_INT | TTE_CP_INT | TTE_CV_INT | 624 TTE_PRIV_INT | TTE_HWWR_INT; 625 sfmmu_dtlb_ld_kva(va, &tte); 626 } 627 } 628 #else /* sun4v */ 629 tte.tte_inthi = TTE_VALID_INT | TTE_PFN_INTHI(tstat_pfn); 630 tte.tte_intlo = TTE_PFN_INTLO(tstat_pfn) | TTE_CP_INT | 631 TTE_CV_INT | TTE_PRIV_INT | TTE_HWWR_INT | 632 TTE_SZ_INTLO(TTE4M); 633 ret = hv_mmu_map_perm_addr(va, KCONTEXT, *(uint64_t *)&tte, 634 MAP_ITLB | MAP_DTLB); 635 636 if (ret != H_EOK) 637 cmn_err(CE_PANIC, "trapstat: cannot map new TBA " 638 "for cpu %d (error: 0x%lx)", CPU->cpu_id, ret); 639 #endif /* sun4v */ 640 } 641 642 /* 643 * As mentioned in the "TLB Statistics: TLB Misses versus TSB Misses" section 644 * of the block comment, TLB misses are differentiated from TSB misses in 645 * part by hot-patching the instructions at the tsbmiss patch points (see 646 * tstat_tsbmiss_patch_table). This routine is used both to initially patch 647 * the instructions, and to patch them back to their original values upon 648 * restoring the original trap table. 649 */ 650 static void 651 trapstat_hotpatch() 652 { 653 uint32_t instr; 654 uint32_t simm13; 655 tstat_tsbmiss_patch_entry_t *ep; 656 657 ASSERT(MUTEX_HELD(&tstat_lock)); 658 659 if (!(tstat_options & TSTAT_OPT_TLBDATA)) 660 return; 661 662 if (!tstat_tsbmiss_patched) { 663 /* 664 * We haven't patched the TSB paths; do so now. 665 */ 666 /*CONSTCOND*/ 667 ASSERT(offsetof(tstat_tlbret_t, ttlbr_ktsb) - 668 offsetof(tstat_tlbret_t, ttlbr_ktlb) == 669 offsetof(tstat_tlbret_t, ttlbr_utsb) - 670 offsetof(tstat_tlbret_t, ttlbr_utlb)); 671 672 simm13 = offsetof(tstat_tlbret_t, ttlbr_ktsb) - 673 offsetof(tstat_tlbret_t, ttlbr_ktlb); 674 675 for (ep = tstat_tsbmiss_patch_table; ep->tpe_addr; ep++) { 676 ASSERT(ep->tpe_instr == 0); 677 instr = ep->tpe_instr = *ep->tpe_addr; 678 679 /* 680 * Assert that the instruction we're about to patch is 681 * "add %g7, 0, %g7" (0x8e01e000). 682 */ 683 ASSERT(instr == TSTAT_TSBMISS_INSTR); 684 685 instr |= simm13; 686 hot_patch_kernel_text((caddr_t)ep->tpe_addr, 687 instr, sizeof (instr)); 688 } 689 690 tstat_tsbmiss_patched = 1; 691 692 } else { 693 /* 694 * Remove patches from the TSB paths. 695 */ 696 for (ep = tstat_tsbmiss_patch_table; ep->tpe_addr; ep++) { 697 ASSERT(ep->tpe_instr == TSTAT_TSBMISS_INSTR); 698 hot_patch_kernel_text((caddr_t)ep->tpe_addr, 699 ep->tpe_instr, sizeof (instr)); 700 ep->tpe_instr = 0; 701 } 702 703 tstat_tsbmiss_patched = 0; 704 } 705 } 706 707 /* 708 * This is the routine executed to clock the performance of the trap table, 709 * executed both before and after interposing on the trap table to attempt to 710 * determine probe effect. The probe effect is used to adjust the "%tim" 711 * fields of trapstat's -t and -T output; we only use TLB misses to clock the 712 * trap table. We execute the inner loop (which is designed to exceed the 713 * TLB's reach) nlaps times, taking the best time as our time (thereby 714 * factoring out the effects of interrupts, cache misses or other perturbing 715 * events. 716 */ 717 static hrtime_t 718 trapstat_probe_laps(int nlaps, hrtime_t *buf) 719 { 720 int i, j = 0; 721 hrtime_t ts, best = INT64_MAX; 722 723 while (nlaps--) { 724 ts = rdtick(); 725 726 for (i = 0; i < TSTAT_PROBE_SIZE; i += MMU_PAGESIZE) 727 *((volatile char *)&tstat_probe_area[i]); 728 729 if ((ts = rdtick() - ts) < best) 730 best = ts; 731 buf[j++] = ts; 732 } 733 734 return (best); 735 } 736 737 /* 738 * This routine determines the probe effect by calling trapstat_probe_laps() 739 * both without and with the interposing trap table. Note that this is 740 * called from a cross call on the desired CPU, and that it is called on 741 * every CPU (this is necessary because the probe effect may differ from 742 * one CPU to another). 743 */ 744 static void 745 trapstat_probe() 746 { 747 tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id]; 748 hrtime_t before, after; 749 750 if (!(tcpu->tcpu_flags & TSTAT_CPU_SELECTED)) 751 return; 752 753 if (tstat_probe_area == NULL || (tstat_options & TSTAT_OPT_NOGO)) 754 return; 755 756 /* 757 * We very much expect the %tba to be KERNELBASE; this is a 758 * precautionary measure to assure that trapstat doesn't melt the 759 * machine should the %tba point unexpectedly elsewhere. 760 */ 761 if (get_tba() != (caddr_t)KERNELBASE) 762 return; 763 764 /* 765 * Preserve this CPU's data before destroying it by enabling the 766 * interposing trap table. We can safely use tstat_buffer because 767 * the caller of the trapstat_probe() cross call is holding tstat_lock. 768 */ 769 bcopy(tcpu->tcpu_data, tstat_buffer, tstat_data_t_size); 770 771 tstat_probe_time = gethrtime(); 772 773 before = trapstat_probe_laps(TSTAT_PROBE_NLAPS, tstat_probe_before); 774 (void) set_tba(tcpu->tcpu_ibase); 775 776 after = trapstat_probe_laps(TSTAT_PROBE_NLAPS, tstat_probe_after); 777 (void) set_tba((caddr_t)KERNELBASE); 778 779 tstat_probe_time = gethrtime() - tstat_probe_time; 780 781 bcopy(tstat_buffer, tcpu->tcpu_data, tstat_data_t_size); 782 tcpu->tcpu_data->tdata_peffect = (after - before) / TSTAT_PROBE_NPAGES; 783 } 784 785 static void 786 trapstat_probe_alloc() 787 { 788 pfn_t pfn; 789 caddr_t va; 790 int i; 791 792 ASSERT(MUTEX_HELD(&tstat_lock)); 793 ASSERT(tstat_probe_area == NULL); 794 ASSERT(tstat_probe_phys == NULL); 795 796 if (!(tstat_options & TSTAT_OPT_TLBDATA)) 797 return; 798 799 /* 800 * Grab some virtual from the heap arena. 801 */ 802 tstat_probe_area = vmem_alloc(heap_arena, TSTAT_PROBE_SIZE, VM_SLEEP); 803 va = tstat_probe_area; 804 805 /* 806 * Grab a single physical page. 807 */ 808 tstat_probe_phys = vmem_alloc(tstat_arena, MMU_PAGESIZE, VM_SLEEP); 809 pfn = hat_getpfnum(kas.a_hat, tstat_probe_phys); 810 811 /* 812 * Now set the translation for every page in our virtual range 813 * to be our allocated physical page. 814 */ 815 for (i = 0; i < TSTAT_PROBE_NPAGES; i++) { 816 hat_devload(kas.a_hat, va, MMU_PAGESIZE, pfn, PROT_READ, 817 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 818 va += MMU_PAGESIZE; 819 } 820 } 821 822 static void 823 trapstat_probe_free() 824 { 825 caddr_t va; 826 int i; 827 828 ASSERT(MUTEX_HELD(&tstat_lock)); 829 830 if ((va = tstat_probe_area) == NULL) 831 return; 832 833 for (i = 0; i < TSTAT_PROBE_NPAGES; i++) { 834 hat_unload(kas.a_hat, va, MMU_PAGESIZE, HAT_UNLOAD_UNLOCK); 835 va += MMU_PAGESIZE; 836 } 837 838 vmem_free(tstat_arena, tstat_probe_phys, MMU_PAGESIZE); 839 vmem_free(heap_arena, tstat_probe_area, TSTAT_PROBE_SIZE); 840 841 tstat_probe_phys = NULL; 842 tstat_probe_area = NULL; 843 } 844 845 /* 846 * This routine actually enables a CPU by setting its %tba to be the 847 * CPU's interposing trap table. It is called out of cross call context. 848 */ 849 static void 850 trapstat_enable() 851 { 852 tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id]; 853 854 if (!(tcpu->tcpu_flags & TSTAT_CPU_SELECTED)) 855 return; 856 857 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED); 858 ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED)); 859 860 if (get_tba() != (caddr_t)KERNELBASE) 861 return; 862 863 if (!(tstat_options & TSTAT_OPT_NOGO)) 864 (void) set_tba(tcpu->tcpu_ibase); 865 tcpu->tcpu_flags |= TSTAT_CPU_ENABLED; 866 #ifdef sun4v 867 if ((tstat_options & TSTAT_OPT_TLBDATA) && 868 !(tstat_options & TSTAT_OPT_NOGO)) { 869 if (tstat_fast_tlbstat) { 870 /* 871 * Invoke processor specific interface to enable 872 * collection of TSB hit statistics. 873 */ 874 cpu_trapstat_conf(CPU_TSTATCONF_ENABLE); 875 } else { 876 /* 877 * Collect TLB miss statistics by taking over 878 * TLB miss handling from the hypervisor. This 879 * is done by telling the hypervisor that there 880 * is no TSB configured. Also set TSTAT_TLB_STATS 881 * flag so that no user TSB is configured during 882 * context switch time. 883 */ 884 cpu_t *cp = CPU; 885 886 cp->cpu_m.cpu_tstat_flags |= TSTAT_TLB_STATS; 887 (void) hv_set_ctx0(NULL, NULL); 888 (void) hv_set_ctxnon0(NULL, NULL); 889 } 890 } 891 #endif 892 } 893 894 /* 895 * This routine disables a CPU (vis a vis trapstat) by setting its %tba to be 896 * the actual, underlying trap table. It is called out of cross call context. 897 */ 898 static void 899 trapstat_disable() 900 { 901 tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id]; 902 903 if (!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED)) 904 return; 905 906 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED); 907 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED); 908 909 if (!(tstat_options & TSTAT_OPT_NOGO)) 910 (void) set_tba((caddr_t)KERNELBASE); 911 912 tcpu->tcpu_flags &= ~TSTAT_CPU_ENABLED; 913 914 #ifdef sun4v 915 if ((tstat_options & TSTAT_OPT_TLBDATA) && 916 !(tstat_options & TSTAT_OPT_NOGO)) { 917 if (tstat_fast_tlbstat) { 918 /* 919 * Invoke processor specific interface to disable 920 * collection of TSB hit statistics on each processor. 921 */ 922 cpu_trapstat_conf(CPU_TSTATCONF_DISABLE); 923 } else { 924 /* 925 * As part of collecting TLB miss statistics, we took 926 * over TLB miss handling from the hypervisor by 927 * telling the hypervisor that NO TSB is configured. 928 * We need to restore that by communicating proper 929 * kernel/user TSB information so that TLB misses 930 * can be handled by the hypervisor or the hardware 931 * more efficiently. 932 * 933 * We restore kernel TSB information right away. 934 * However, to minimize any locking dependency, we 935 * don't restore user TSB information right away. 936 * Instead, we simply clear the TSTAT_TLB_STATS flag 937 * so that the user TSB information is automatically 938 * restored on next context switch. 939 * 940 * Note that the call to restore kernel TSB information 941 * will normally not fail, unless wrong information is 942 * passed here. In that scenario, system will still 943 * continue to function properly with the exception of 944 * kernel handling all the TLB misses. 945 */ 946 struct hv_tsb_block *hvbp = &ksfmmup->sfmmu_hvblock; 947 cpu_t *cp = CPU; 948 949 cp->cpu_m.cpu_tstat_flags &= ~TSTAT_TLB_STATS; 950 (void) hv_set_ctx0(hvbp->hv_tsb_info_cnt, 951 hvbp->hv_tsb_info_pa); 952 } 953 } 954 #endif 955 } 956 957 /* 958 * We use %tick as the time base when recording the time spent executing 959 * the trap handler. %tick, however, is not necessarily kept in sync 960 * across CPUs (indeed, different CPUs may have different %tick frequencies). 961 * We therefore cross call onto a CPU to get a snapshot of its data to 962 * copy out; this is the routine executed out of that cross call. 963 */ 964 static void 965 trapstat_snapshot() 966 { 967 tstat_percpu_t *tcpu = &tstat_percpu[CPU->cpu_id]; 968 tstat_data_t *data = tcpu->tcpu_data; 969 970 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED); 971 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED); 972 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ENABLED); 973 974 data->tdata_snapts = gethrtime(); 975 data->tdata_snaptick = rdtick(); 976 bcopy(data, tstat_buffer, tstat_data_t_size); 977 #ifdef sun4v 978 /* 979 * Invoke processor specific interface to collect TSB hit 980 * statistics on each processor. 981 */ 982 if ((tstat_options & TSTAT_OPT_TLBDATA) && tstat_fast_tlbstat) 983 cpu_trapstat_data((void *) tstat_buffer->tdata_pgsz, 984 tstat_pgszs); 985 #endif 986 } 987 988 /* 989 * The TSTAT_RETENT_* constants define offsets in the TLB return entry. 990 * They are used only in trapstat_tlbretent() (below) and #undef'd 991 * immediately afterwards. Any change to "retent" in trapstat_tlbretent() 992 * will likely require changes to these constants. 993 */ 994 995 #ifndef sun4v 996 #define TSTAT_RETENT_STATHI 1 997 #define TSTAT_RETENT_STATLO 2 998 #define TSTAT_RETENT_SHIFT 11 999 #define TSTAT_RETENT_COUNT_LD 13 1000 #define TSTAT_RETENT_COUNT_ST 15 1001 #define TSTAT_RETENT_TMPTSHI 16 1002 #define TSTAT_RETENT_TMPTSLO 17 1003 #define TSTAT_RETENT_TIME_LD 19 1004 #define TSTAT_RETENT_TIME_ST 21 1005 #else /* sun4v */ 1006 #define TSTAT_RETENT_TDATASHFT 2 1007 #define TSTAT_RETENT_STATHI 4 1008 #define TSTAT_RETENT_STATLO 6 1009 #define TSTAT_RETENT_SHIFT 9 1010 #define TSTAT_RETENT_COUNT_LD 11 1011 #define TSTAT_RETENT_COUNT_ST 13 1012 #define TSTAT_RETENT_TMPTSHI 14 1013 #define TSTAT_RETENT_TMPTSLO 16 1014 #define TSTAT_RETENT_TIME_LD 18 1015 #define TSTAT_RETENT_TIME_ST 20 1016 #endif /* sun4v */ 1017 1018 static void 1019 trapstat_tlbretent(tstat_percpu_t *tcpu, tstat_tlbretent_t *ret, 1020 tstat_missdata_t *data) 1021 { 1022 uint32_t *ent = ret->ttlbrent_instr, shift; 1023 uintptr_t base; 1024 #ifndef sun4v 1025 uintptr_t tmptick = TSTAT_DATA_OFFS(tcpu, tdata_tmptick); 1026 #else 1027 uintptr_t tmptick = TSTAT_CPU0_DATA_OFFS(tcpu, tdata_tmptick); 1028 #endif 1029 1030 /* 1031 * This is the entry executed upon return from the TLB/TSB miss 1032 * handler (i.e. the code interpositioned between the "retry" and 1033 * the actual return to the TLB-missing instruction). Detail on its 1034 * theory of operation can be found in the "TLB Statistics" section 1035 * of the block comment. Note that we expect the TTE just loaded 1036 * into the TLB to be in %g5; all other globals are available as 1037 * scratch. Finally, note that the page size information in sun4v is 1038 * located in the lower bits of the TTE -- requiring us to have a 1039 * different return entry on sun4v. 1040 */ 1041 static const uint32_t retent[TSTAT_TLBRET_NINSTR] = { 1042 #ifndef sun4v 1043 0x87410000, /* rd %tick, %g3 */ 1044 0x03000000, /* sethi %hi(stat), %g1 */ 1045 0x82106000, /* or %g1, %lo(stat), %g1 */ 1046 0x89297001, /* sllx %g5, 1, %g4 */ 1047 0x8931303e, /* srlx %g4, 62, %g4 */ 1048 0x8531702e, /* srlx %g5, 46, %g2 */ 1049 0x8408a004, /* and %g2, 4, %g2 */ 1050 0x88110002, /* or %g4, %g2, %g4 */ 1051 0x80a12005, /* cmp %g4, 5 */ 1052 0x34400002, /* bg,a,pn %icc, +8 */ 1053 0x88102004, /* mov 4, %g4 */ 1054 0x89292000, /* sll %g4, shift, %g4 */ 1055 0x82004004, /* add %g1, %g4, %g1 */ 1056 0xc4586000, /* ldx [%g1 + tmiss_count], %g2 */ 1057 0x8400a001, /* add %g2, 1, %g2 */ 1058 0xc4706000, /* stx %g2, [%g1 + tmiss_count] */ 1059 0x0d000000, /* sethi %hi(tdata_tmptick), %g6 */ 1060 0xc459a000, /* ldx [%g6 + %lo(tdata_tmptick)], %g2 */ 1061 0x8620c002, /* sub %g3, %g2, %g3 */ 1062 0xc4586000, /* ldx [%g1 + tmiss_time], %g2 */ 1063 0x84008003, /* add %g2, %g3, %g2 */ 1064 0xc4706000, /* stx %g2, [%g1 + tmiss_time] */ 1065 0x83f00000 /* retry */ 1066 #else /* sun4v */ 1067 0x82102008, /* mov SCRATCHPAD_CPUID, %g1 */ 1068 0xced84400, /* ldxa [%g1]ASI_SCRATCHPAD, %g7 */ 1069 0x8f29f000, /* sllx %g7, TSTAT_DATA_SHIFT, %g7 */ 1070 0x87410000, /* rd %tick, %g3 */ 1071 0x03000000, /* sethi %hi(stat), %g1 */ 1072 0x82004007, /* add %g1, %g7, %g1 */ 1073 0x82106000, /* or %g1, %lo(stat), %g1 */ 1074 0x8929703d, /* sllx %g5, 61, %g4 */ 1075 0x8931303d, /* srlx %g4, 61, %g4 */ 1076 0x89292000, /* sll %g4, shift, %g4 */ 1077 0x82004004, /* add %g1, %g4, %g1 */ 1078 0xc4586000, /* ldx [%g1 + tmiss_count], %g2 */ 1079 0x8400a001, /* add %g2, 1, %g2 */ 1080 0xc4706000, /* stx %g2, [%g1 + tmiss_count] */ 1081 0x0d000000, /* sethi %hi(tdata_tmptick), %g6 */ 1082 0x8c018007, /* add %g6, %g7, %g6 */ 1083 0xc459a000, /* ldx [%g6 + %lo(tdata_tmptick)], %g2 */ 1084 0x8620c002, /* sub %g3, %g2, %g3 */ 1085 0xc4586000, /* ldx [%g1 + tmiss_time], %g2 */ 1086 0x84008003, /* add %g2, %g3, %g2 */ 1087 0xc4706000, /* stx %g2, [%g1 + tmiss_time] */ 1088 0x83f00000 /* retry */ 1089 #endif /* sun4v */ 1090 }; 1091 1092 ASSERT(MUTEX_HELD(&tstat_lock)); 1093 /*CONSTCOND*/ 1094 ASSERT(offsetof(tstat_missdata_t, tmiss_count) <= LO10(-1)); 1095 /*CONSTCOND*/ 1096 ASSERT(offsetof(tstat_missdata_t, tmiss_time) <= LO10(-1)); 1097 /*CONSTCOND*/ 1098 ASSERT(!((sizeof (tstat_pgszdata_t) - 1) & sizeof (tstat_pgszdata_t))); 1099 1100 for (shift = 1; (1 << shift) != sizeof (tstat_pgszdata_t); shift++) 1101 continue; 1102 1103 base = (uintptr_t)tcpu->tcpu_ibase + TSTAT_INSTR_SIZE + 1104 ((uintptr_t)data - (uintptr_t)tcpu->tcpu_data); 1105 1106 bcopy(retent, ent, sizeof (retent)); 1107 1108 #if defined(sun4v) 1109 ent[TSTAT_RETENT_TDATASHFT] |= LO10((uintptr_t)TSTAT_DATA_SHIFT); 1110 #endif 1111 ent[TSTAT_RETENT_STATHI] |= HI22(base); 1112 ent[TSTAT_RETENT_STATLO] |= LO10(base); 1113 ent[TSTAT_RETENT_SHIFT] |= shift; 1114 /* LINTED E_EXPR_NULL_EFFECT */ 1115 ent[TSTAT_RETENT_COUNT_LD] |= offsetof(tstat_missdata_t, tmiss_count); 1116 /* LINTED E_EXPR_NULL_EFFECT */ 1117 ent[TSTAT_RETENT_COUNT_ST] |= offsetof(tstat_missdata_t, tmiss_count); 1118 ent[TSTAT_RETENT_TMPTSHI] |= HI22(tmptick); 1119 ent[TSTAT_RETENT_TMPTSLO] |= LO10(tmptick); 1120 ent[TSTAT_RETENT_TIME_LD] |= offsetof(tstat_missdata_t, tmiss_time); 1121 ent[TSTAT_RETENT_TIME_ST] |= offsetof(tstat_missdata_t, tmiss_time); 1122 } 1123 1124 #if defined(sun4v) 1125 #undef TSTAT_RETENT_TDATASHFT 1126 #endif 1127 #undef TSTAT_RETENT_STATHI 1128 #undef TSTAT_RETENT_STATLO 1129 #undef TSTAT_RETENT_SHIFT 1130 #undef TSTAT_RETENT_COUNT_LD 1131 #undef TSTAT_RETENT_COUNT_ST 1132 #undef TSTAT_RETENT_TMPTSHI 1133 #undef TSTAT_RETENT_TMPTSLO 1134 #undef TSTAT_RETENT_TIME_LD 1135 #undef TSTAT_RETENT_TIME_ST 1136 1137 /* 1138 * The TSTAT_TLBENT_* constants define offsets in the TLB entry. They are 1139 * used only in trapstat_tlbent() (below) and #undef'd immediately afterwards. 1140 * Any change to "tlbent" in trapstat_tlbent() will likely require changes 1141 * to these constants. 1142 */ 1143 1144 #ifndef sun4v 1145 #define TSTAT_TLBENT_STATHI 0 1146 #define TSTAT_TLBENT_STATLO_LD 1 1147 #define TSTAT_TLBENT_STATLO_ST 3 1148 #define TSTAT_TLBENT_MMUASI 15 1149 #define TSTAT_TLBENT_TPCHI 18 1150 #define TSTAT_TLBENT_TPCLO_USER 19 1151 #define TSTAT_TLBENT_TPCLO_KERN 21 1152 #define TSTAT_TLBENT_TSHI 25 1153 #define TSTAT_TLBENT_TSLO 27 1154 #define TSTAT_TLBENT_BA 28 1155 #else /* sun4v */ 1156 #define TSTAT_TLBENT_TDATASHFT 2 1157 #define TSTAT_TLBENT_STATHI 3 1158 #define TSTAT_TLBENT_STATLO_LD 5 1159 #define TSTAT_TLBENT_STATLO_ST 7 1160 #define TSTAT_TLBENT_TAGTARGET 23 1161 #define TSTAT_TLBENT_TPCHI 25 1162 #define TSTAT_TLBENT_TPCLO_USER 26 1163 #define TSTAT_TLBENT_TPCLO_KERN 28 1164 #define TSTAT_TLBENT_TSHI 32 1165 #define TSTAT_TLBENT_TSLO 35 1166 #define TSTAT_TLBENT_BA 36 1167 #endif /* sun4v */ 1168 1169 static void 1170 trapstat_tlbent(tstat_percpu_t *tcpu, int entno) 1171 { 1172 uint32_t *ent; 1173 uintptr_t orig, va, baoffs; 1174 #ifndef sun4v 1175 int itlb = entno == TSTAT_ENT_ITLBMISS; 1176 uint32_t asi = itlb ? ASI(ASI_IMMU) : ASI(ASI_DMMU); 1177 #else 1178 int itlb = (entno == TSTAT_ENT_IMMUMISS || entno == TSTAT_ENT_ITLBMISS); 1179 uint32_t tagtarget_off = itlb ? MMFSA_I_CTX : MMFSA_D_CTX; 1180 uint32_t *tent; /* MMU trap vector entry */ 1181 uintptr_t tentva; /* MMU trap vector entry va */ 1182 static const uint32_t mmumiss[TSTAT_ENT_NINSTR] = { 1183 0x30800000, /* ba,a addr */ 1184 NOP, NOP, NOP, NOP, NOP, NOP, NOP 1185 }; 1186 #endif 1187 int entoffs = entno << TSTAT_ENT_SHIFT; 1188 uintptr_t tmptick, stat, tpc, utpc; 1189 tstat_pgszdata_t *data = &tcpu->tcpu_data->tdata_pgsz[0]; 1190 tstat_tlbdata_t *udata, *kdata; 1191 tstat_tlbret_t *ret; 1192 1193 /* 1194 * When trapstat is run with TLB statistics, this is the entry for 1195 * both I- and D-TLB misses; this code performs trap level pushing, 1196 * as described in the "TLB Statistics" section of the block comment. 1197 * This code is executing at TL 1; %tstate[0] contains the saved 1198 * state at the time of the TLB miss. Pushing trap level 1 (and thus 1199 * raising TL to 2) requires us to fill in %tstate[1] with our %pstate, 1200 * %cwp and %asi. We leave %tt unchanged, and we set %tpc and %tnpc to 1201 * the appropriate TLB return entry (based on the context of the miss). 1202 * Finally, we sample %tick, and stash it in the tdata_tmptick member 1203 * the per-CPU tstat_data structure. tdata_tmptick will be used in 1204 * the TLB return entry to determine the amount of time spent in the 1205 * TLB miss handler. 1206 * 1207 * Note that on sun4v platforms, we must obtain the context information 1208 * from the MMU fault status area. (The base address of this MMU fault 1209 * status area is kept in the scratchpad register 0.) 1210 */ 1211 static const uint32_t tlbent[] = { 1212 #ifndef sun4v 1213 0x03000000, /* sethi %hi(stat), %g1 */ 1214 0xc4586000, /* ldx [%g1 + %lo(stat)], %g2 */ 1215 0x8400a001, /* add %g2, 1, %g2 */ 1216 0xc4706000, /* stx %g2, [%g1 + %lo(stat)] */ 1217 0x85524000, /* rdpr %cwp, %g2 */ 1218 0x87518000, /* rdpr %pstate, %g3 */ 1219 0x8728f008, /* sllx %g3, 8, %g3 */ 1220 0x84108003, /* or %g2, %g3, %g2 */ 1221 0x8740c000, /* rd %asi, %g3 */ 1222 0x8728f018, /* sllx %g3, 24, %g3 */ 1223 0x84108003, /* or %g2, %g3, %g2 */ 1224 0x8350c000, /* rdpr %tt, %g1 */ 1225 0x8f902002, /* wrpr %g0, 2, %tl */ 1226 0x85908000, /* wrpr %g2, %g0, %tstate */ 1227 0x87904000, /* wrpr %g1, %g0, %tt */ 1228 0xc2d80000, /* ldxa [%g0]ASI_MMU, %g1 */ 1229 0x83307030, /* srlx %g1, CTXSHIFT, %g1 */ 1230 0x02c04004, /* brz,pn %g1, .+0x10 */ 1231 0x03000000, /* sethi %hi(new_tpc), %g1 */ 1232 0x82106000, /* or %g1, %lo(new_tpc), %g1 */ 1233 0x30800002, /* ba,a .+0x8 */ 1234 0x82106000, /* or %g1, %lo(new_tpc), %g1 */ 1235 0x81904000, /* wrpr %g1, %g0, %tpc */ 1236 0x82006004, /* add %g1, 4, %g1 */ 1237 0x83904000, /* wrpr %g1, %g0, %tnpc */ 1238 0x03000000, /* sethi %hi(tmptick), %g1 */ 1239 0x85410000, /* rd %tick, %g2 */ 1240 0xc4706000, /* stx %g2, [%g1 + %lo(tmptick)] */ 1241 0x30800000, /* ba,a addr */ 1242 NOP, NOP, NOP 1243 #else /* sun4v */ 1244 0x82102008, /* mov SCRATCHPAD_CPUID, %g1 */ 1245 0xc8d84400, /* ldxa [%g1]ASI_SCRATCHPAD, %g4 */ 1246 0x89293000, /* sllx %g4, TSTAT_DATA_SHIFT, %g4 */ 1247 0x03000000, /* sethi %hi(stat), %g1 */ 1248 0x82004004, /* add %g1, %g4, %g1 */ 1249 0xc4586000, /* ldx [%g1 + %lo(stat)], %g2 */ 1250 0x8400a001, /* add %g2, 1, %g2 */ 1251 0xc4706000, /* stx %g2, [%g1 + %lo(stat)] */ 1252 0x85524000, /* rdpr %cwp, %g2 */ 1253 0x87518000, /* rdpr %pstate, %g3 */ 1254 0x8728f008, /* sllx %g3, 8, %g3 */ 1255 0x84108003, /* or %g2, %g3, %g2 */ 1256 0x8740c000, /* rd %asi, %g3 */ 1257 0x8728f018, /* sllx %g3, 24, %g3 */ 1258 0x83540000, /* rdpr %gl, %g1 */ 1259 0x83287028, /* sllx %g1, 40, %g1 */ 1260 0x86104003, /* or %g1, %g3, %g3 */ 1261 0x84108003, /* or %g2, %g3, %g2 */ 1262 0x8350c000, /* rdpr %tt, %g1 */ 1263 0x8f902002, /* wrpr %g0, 2, %tl */ 1264 0x85908000, /* wrpr %g2, %g0, %tstate */ 1265 0x87904000, /* wrpr %g1, %g0, %tt */ 1266 0xc2d80400, /* ldxa [%g0]ASI_SCRATCHPAD, %g1 */ 1267 0xc2586000, /* ldx [%g1 + MMFSA_?_CTX], %g1 */ 1268 0x02c04004, /* brz,pn %g1, .+0x10 */ 1269 0x03000000, /* sethi %hi(new_tpc), %g1 */ 1270 0x82106000, /* or %g1, %lo(new_tpc), %g1 */ 1271 0x30800002, /* ba,a .+0x8 */ 1272 0x82106000, /* or %g1, %lo(new_tpc), %g1 */ 1273 0x81904000, /* wrpr %g1, %g0, %tpc */ 1274 0x82006004, /* add %g1, 4, %g1 */ 1275 0x83904000, /* wrpr %g1, %g0, %tnpc */ 1276 0x03000000, /* sethi %hi(tmptick), %g1 */ 1277 0x82004004, /* add %g1, %g4, %g1 */ 1278 0x85410000, /* rd %tick, %g2 */ 1279 0xc4706000, /* stx %g2, [%g1 + %lo(tmptick)] */ 1280 0x30800000 /* ba,a addr */ 1281 #endif /* sun4v */ 1282 }; 1283 1284 ASSERT(MUTEX_HELD(&tstat_lock)); 1285 #ifndef sun4v 1286 ASSERT(entno == TSTAT_ENT_ITLBMISS || entno == TSTAT_ENT_DTLBMISS); 1287 1288 stat = TSTAT_DATA_OFFS(tcpu, tdata_traps) + entoffs; 1289 tmptick = TSTAT_DATA_OFFS(tcpu, tdata_tmptick); 1290 #else /* sun4v */ 1291 ASSERT(entno == TSTAT_ENT_ITLBMISS || entno == TSTAT_ENT_DTLBMISS || 1292 entno == TSTAT_ENT_IMMUMISS || entno == TSTAT_ENT_DMMUMISS); 1293 1294 stat = TSTAT_CPU0_DATA_OFFS(tcpu, tdata_traps) + entoffs; 1295 tmptick = TSTAT_CPU0_DATA_OFFS(tcpu, tdata_tmptick); 1296 #endif /* sun4v */ 1297 1298 if (itlb) { 1299 ret = &tcpu->tcpu_instr->tinst_itlbret; 1300 udata = &data->tpgsz_user.tmode_itlb; 1301 kdata = &data->tpgsz_kernel.tmode_itlb; 1302 tpc = TSTAT_INSTR_OFFS(tcpu, tinst_itlbret.ttlbr_ktlb); 1303 } else { 1304 ret = &tcpu->tcpu_instr->tinst_dtlbret; 1305 udata = &data->tpgsz_user.tmode_dtlb; 1306 kdata = &data->tpgsz_kernel.tmode_dtlb; 1307 tpc = TSTAT_INSTR_OFFS(tcpu, tinst_dtlbret.ttlbr_ktlb); 1308 } 1309 1310 utpc = tpc + offsetof(tstat_tlbret_t, ttlbr_utlb) - 1311 offsetof(tstat_tlbret_t, ttlbr_ktlb); 1312 1313 ASSERT(HI22(tpc) == HI22(utpc)); 1314 1315 ent = (uint32_t *)((uintptr_t)tcpu->tcpu_instr + entoffs); 1316 orig = KERNELBASE + entoffs; 1317 va = (uintptr_t)tcpu->tcpu_ibase + entoffs; 1318 baoffs = TSTAT_TLBENT_BA * sizeof (uint32_t); 1319 1320 #ifdef sun4v 1321 /* 1322 * Because of lack of space, interposing tlbent trap handler 1323 * for TLB and MMU miss traps cannot be placed in-line. Instead, 1324 * we copy it to the space set aside for shared trap handlers 1325 * continuation in the interposing trap table and invoke it by 1326 * placing a branch in the trap table itself. 1327 */ 1328 tent = ent; /* trap vector entry */ 1329 tentva = va; /* trap vector entry va */ 1330 1331 if (itlb) { 1332 ent = (uint32_t *)((uintptr_t) 1333 &tcpu->tcpu_instr->tinst_immumiss); 1334 va = TSTAT_INSTR_OFFS(tcpu, tinst_immumiss); 1335 } else { 1336 ent = (uint32_t *)((uintptr_t) 1337 &tcpu->tcpu_instr->tinst_dmmumiss); 1338 va = TSTAT_INSTR_OFFS(tcpu, tinst_dmmumiss); 1339 } 1340 bcopy(mmumiss, tent, sizeof (mmumiss)); 1341 tent[0] |= DISP22(tentva, va); 1342 #endif /* sun4v */ 1343 1344 bcopy(tlbent, ent, sizeof (tlbent)); 1345 1346 #if defined(sun4v) 1347 ent[TSTAT_TLBENT_TDATASHFT] |= LO10((uintptr_t)TSTAT_DATA_SHIFT); 1348 #endif 1349 ent[TSTAT_TLBENT_STATHI] |= HI22(stat); 1350 ent[TSTAT_TLBENT_STATLO_LD] |= LO10(stat); 1351 ent[TSTAT_TLBENT_STATLO_ST] |= LO10(stat); 1352 #ifndef sun4v 1353 ent[TSTAT_TLBENT_MMUASI] |= asi; 1354 #else 1355 ent[TSTAT_TLBENT_TAGTARGET] |= tagtarget_off; 1356 #endif 1357 ent[TSTAT_TLBENT_TPCHI] |= HI22(tpc); 1358 ent[TSTAT_TLBENT_TPCLO_USER] |= LO10(utpc); 1359 ent[TSTAT_TLBENT_TPCLO_KERN] |= LO10(tpc); 1360 ent[TSTAT_TLBENT_TSHI] |= HI22(tmptick); 1361 ent[TSTAT_TLBENT_TSLO] |= LO10(tmptick); 1362 ent[TSTAT_TLBENT_BA] |= DISP22(va + baoffs, orig); 1363 1364 /* 1365 * And now set up the TLB return entries. 1366 */ 1367 trapstat_tlbretent(tcpu, &ret->ttlbr_ktlb, &kdata->ttlb_tlb); 1368 trapstat_tlbretent(tcpu, &ret->ttlbr_ktsb, &kdata->ttlb_tsb); 1369 trapstat_tlbretent(tcpu, &ret->ttlbr_utlb, &udata->ttlb_tlb); 1370 trapstat_tlbretent(tcpu, &ret->ttlbr_utsb, &udata->ttlb_tsb); 1371 } 1372 1373 #if defined(sun4v) 1374 #undef TSTAT_TLBENT_TDATASHFT 1375 #endif 1376 #undef TSTAT_TLBENT_STATHI 1377 #undef TSTAT_TLBENT_STATLO_LD 1378 #undef TSTAT_TLBENT_STATLO_ST 1379 #ifndef sun4v 1380 #undef TSTAT_TLBENT_MMUASI 1381 #else 1382 #undef TSTAT_TLBENT_TAGTARGET 1383 #endif 1384 #undef TSTAT_TLBENT_TPCHI 1385 #undef TSTAT_TLBENT_TPCLO_USER 1386 #undef TSTAT_TLBENT_TPCLO_KERN 1387 #undef TSTAT_TLBENT_TSHI 1388 #undef TSTAT_TLBENT_TSLO 1389 #undef TSTAT_TLBENT_BA 1390 1391 /* 1392 * The TSTAT_ENABLED_* constants define offsets in the enabled entry; the 1393 * TSTAT_DISABLED_BA constant defines an offset in the disabled entry. Both 1394 * sets of constants are used only in trapstat_make_traptab() (below) and 1395 * #undef'd immediately afterwards. Any change to "enabled" or "disabled" 1396 * in trapstat_make_traptab() will likely require changes to these constants. 1397 */ 1398 #ifndef sun4v 1399 #define TSTAT_ENABLED_STATHI 0 1400 #define TSTAT_ENABLED_STATLO_LD 1 1401 #define TSTAT_ENABLED_STATLO_ST 3 1402 #define TSTAT_ENABLED_BA 4 1403 #define TSTAT_DISABLED_BA 0 1404 1405 static void 1406 trapstat_make_traptab(tstat_percpu_t *tcpu) 1407 { 1408 uint32_t *ent; 1409 uint64_t *stat; 1410 uintptr_t orig, va, en_baoffs, dis_baoffs; 1411 int nent; 1412 1413 /* 1414 * This is the entry in the interposing trap table for enabled trap 1415 * table entries. It loads a counter, increments it and stores it 1416 * back before branching to the actual trap table entry. 1417 */ 1418 static const uint32_t enabled[TSTAT_ENT_NINSTR] = { 1419 0x03000000, /* sethi %hi(stat), %g1 */ 1420 0xc4586000, /* ldx [%g1 + %lo(stat)], %g2 */ 1421 0x8400a001, /* add %g2, 1, %g2 */ 1422 0xc4706000, /* stx %g2, [%g1 + %lo(stat)] */ 1423 0x30800000, /* ba,a addr */ 1424 NOP, NOP, NOP 1425 }; 1426 1427 /* 1428 * This is the entry in the interposing trap table for disabled trap 1429 * table entries. It simply branches to the actual, underlying trap 1430 * table entry. As explained in the "Implementation Details" section 1431 * of the block comment, all TL>0 traps _must_ use the disabled entry; 1432 * additional entries may be explicitly disabled through the use 1433 * of TSTATIOC_ENTRY/TSTATIOC_NOENTRY. 1434 */ 1435 static const uint32_t disabled[TSTAT_ENT_NINSTR] = { 1436 0x30800000, /* ba,a addr */ 1437 NOP, NOP, NOP, NOP, NOP, NOP, NOP, 1438 }; 1439 1440 ASSERT(MUTEX_HELD(&tstat_lock)); 1441 1442 ent = tcpu->tcpu_instr->tinst_traptab; 1443 stat = (uint64_t *)TSTAT_DATA_OFFS(tcpu, tdata_traps); 1444 orig = KERNELBASE; 1445 va = (uintptr_t)tcpu->tcpu_ibase; 1446 en_baoffs = TSTAT_ENABLED_BA * sizeof (uint32_t); 1447 dis_baoffs = TSTAT_DISABLED_BA * sizeof (uint32_t); 1448 1449 for (nent = 0; nent < TSTAT_TOTAL_NENT; nent++) { 1450 if (tstat_enabled[nent]) { 1451 bcopy(enabled, ent, sizeof (enabled)); 1452 ent[TSTAT_ENABLED_STATHI] |= HI22((uintptr_t)stat); 1453 ent[TSTAT_ENABLED_STATLO_LD] |= LO10((uintptr_t)stat); 1454 ent[TSTAT_ENABLED_STATLO_ST] |= LO10((uintptr_t)stat); 1455 ent[TSTAT_ENABLED_BA] |= DISP22(va + en_baoffs, orig); 1456 } else { 1457 bcopy(disabled, ent, sizeof (disabled)); 1458 ent[TSTAT_DISABLED_BA] |= DISP22(va + dis_baoffs, orig); 1459 } 1460 1461 stat++; 1462 orig += sizeof (enabled); 1463 ent += sizeof (enabled) / sizeof (*ent); 1464 va += sizeof (enabled); 1465 } 1466 } 1467 1468 #undef TSTAT_ENABLED_STATHI 1469 #undef TSTAT_ENABLED_STATLO_LD 1470 #undef TSTAT_ENABLED_STATLO_ST 1471 #undef TSTAT_ENABLED_BA 1472 #undef TSTAT_DISABLED_BA 1473 1474 #else /* sun4v */ 1475 1476 #define TSTAT_ENABLED_STATHI 0 1477 #define TSTAT_ENABLED_STATLO 1 1478 #define TSTAT_ENABLED_ADDRHI 2 1479 #define TSTAT_ENABLED_ADDRLO 3 1480 #define TSTAT_ENABLED_CONTBA 6 1481 #define TSTAT_ENABLED_TDATASHFT 7 1482 #define TSTAT_DISABLED_BA 0 1483 1484 static void 1485 trapstat_make_traptab(tstat_percpu_t *tcpu) 1486 { 1487 uint32_t *ent; 1488 uint64_t *stat; 1489 uintptr_t orig, va, en_baoffs, dis_baoffs; 1490 uintptr_t tstat_cont_va; 1491 int nent; 1492 1493 /* 1494 * This is the entry in the interposing trap table for enabled trap 1495 * table entries. It loads a counter, increments it and stores it 1496 * back before branching to the actual trap table entry. 1497 * 1498 * All CPUs share the same interposing trap entry to count the 1499 * number of traps. Note that the trap counter is kept in per CPU 1500 * trap statistics area. Its address is obtained dynamically by 1501 * adding the offset of that CPU's trap statistics area from CPU 0 1502 * (i.e. cpu_id * TSTAT_DATA_SIZE) to the address of the CPU 0 1503 * trap counter already coded in the interposing trap entry itself. 1504 * 1505 * Since this interposing code sequence to count traps takes more 1506 * than 8 instructions, it's split in two parts as follows: 1507 * 1508 * tstat_trapcnt: 1509 * sethi %hi(stat), %g1 1510 * or %g1, %lo[stat), %g1 ! %g1 = CPU0 trap counter addr 1511 * sethi %hi(addr), %g2 1512 * or %g2, %lo(addr), %g2 ! %g2 = real trap handler addr 1513 * mov ASI_SCRATCHPAD_CPUID, %g3 1514 * ldxa [%g3]ASI_SCRATCHPAD, %g3 ! %g3 = CPU ID 1515 * ba tstat_trapcnt_cont ! branch to tstat_trapcnt_cont 1516 * sllx %g3, TSTAT_DATA_SHIFT, %g3 ! %g3 = CPU trapstat data offset 1517 * 1518 * tstat_trapcnt_cont: 1519 * ldx [%g1 + %g3], %g4 ! get counter value 1520 * add %g4, 1, %g4 ! increment value 1521 * jmp %g2 ! jump to original trap handler 1522 * stx %g4, [%g1 + %g3] ! store counter value 1523 * 1524 * First part, i.e. tstat_trapcnt, is per trap and is kept in-line in 1525 * the interposing trap table. However, the tstat_trapcnt_cont code 1526 * sequence is shared by all traps and is kept right after the 1527 * the interposing trap table. 1528 */ 1529 static const uint32_t enabled[TSTAT_ENT_NINSTR] = { 1530 0x03000000, /* sethi %hi(stat), %g1 */ 1531 0x82106000, /* or %g1, %lo[stat), %g1 */ 1532 0x05000000, /* sethi %hi(addr), %g2 */ 1533 0x8410a000, /* or %g2, %lo(addr), %g2 */ 1534 0x86102008, /* mov ASI_SCRATCHPAD_CPUID, %g3 */ 1535 0xc6d8c400, /* ldxa [%g3]ASI_SCRATCHPAD, %g3 */ 1536 0x10800000, /* ba enabled_cont */ 1537 0x8728f000 /* sllx %g3, TSTAT_DATA_SHIFT, %g3 */ 1538 }; 1539 1540 static const uint32_t enabled_cont[TSTAT_ENT_NINSTR] = { 1541 0xc8584003, /* ldx [%g1 + %g3], %g4 */ 1542 0x88012001, /* add %g4, 1, %g4 */ 1543 0x81c08000, /* jmp %g2 */ 1544 0xc8704003, /* stx %g4, [%g1 + %g3] */ 1545 NOP, NOP, NOP, NOP 1546 }; 1547 1548 /* 1549 * This is the entry in the interposing trap table for disabled trap 1550 * table entries. It simply branches to the actual, underlying trap 1551 * table entry. As explained in the "Implementation Details" section 1552 * of the block comment, all TL>0 traps _must_ use the disabled entry; 1553 * additional entries may be explicitly disabled through the use 1554 * of TSTATIOC_ENTRY/TSTATIOC_NOENTRY. 1555 */ 1556 static const uint32_t disabled[TSTAT_ENT_NINSTR] = { 1557 0x30800000, /* ba,a addr */ 1558 NOP, NOP, NOP, NOP, NOP, NOP, NOP, 1559 }; 1560 1561 ASSERT(MUTEX_HELD(&tstat_lock)); 1562 ent = tcpu->tcpu_instr->tinst_traptab; 1563 stat = (uint64_t *)TSTAT_CPU0_DATA_OFFS(tcpu, tdata_traps); 1564 orig = KERNELBASE; 1565 va = (uintptr_t)tcpu->tcpu_ibase; 1566 en_baoffs = TSTAT_ENABLED_CONTBA * sizeof (uint32_t); 1567 dis_baoffs = TSTAT_DISABLED_BA * sizeof (uint32_t); 1568 tstat_cont_va = TSTAT_INSTR_OFFS(tcpu, tinst_trapcnt); 1569 1570 for (nent = 0; nent < TSTAT_TOTAL_NENT; nent++) { 1571 if (tstat_enabled[nent]) { 1572 bcopy(enabled, ent, sizeof (enabled)); 1573 ent[TSTAT_ENABLED_STATHI] |= HI22((uintptr_t)stat); 1574 ent[TSTAT_ENABLED_STATLO] |= LO10((uintptr_t)stat); 1575 ent[TSTAT_ENABLED_ADDRHI] |= HI22((uintptr_t)orig); 1576 ent[TSTAT_ENABLED_ADDRLO] |= LO10((uintptr_t)orig); 1577 ent[TSTAT_ENABLED_CONTBA] |= 1578 DISP22(va + en_baoffs, tstat_cont_va); 1579 ent[TSTAT_ENABLED_TDATASHFT] |= 1580 LO10((uintptr_t)TSTAT_DATA_SHIFT); 1581 } else { 1582 bcopy(disabled, ent, sizeof (disabled)); 1583 ent[TSTAT_DISABLED_BA] |= DISP22(va + dis_baoffs, orig); 1584 } 1585 1586 stat++; 1587 orig += sizeof (enabled); 1588 ent += sizeof (enabled) / sizeof (*ent); 1589 va += sizeof (enabled); 1590 } 1591 bcopy(enabled_cont, (uint32_t *)tcpu->tcpu_instr->tinst_trapcnt, 1592 sizeof (enabled_cont)); 1593 } 1594 1595 #undef TSTAT_ENABLED_TDATASHFT 1596 #undef TSTAT_ENABLED_STATHI 1597 #undef TSTAT_ENABLED_STATLO 1598 #undef TSTAT_ENABLED_ADDRHI 1599 #undef TSTAT_ENABLED_ADDRLO 1600 #undef TSTAT_ENABLED_CONTBA 1601 #undef TSTAT_DISABLED_BA 1602 1603 #endif /* sun4v */ 1604 1605 #ifndef sun4v 1606 /* 1607 * See Section A.6 in SPARC v9 Manual. 1608 * max branch = 4*((2^21)-1) = 8388604 1609 */ 1610 #define MAX_BICC_BRANCH_DISPLACEMENT (4 * ((1 << 21) - 1)) 1611 #endif 1612 1613 static void 1614 trapstat_setup(processorid_t cpu) 1615 { 1616 tstat_percpu_t *tcpu = &tstat_percpu[cpu]; 1617 #ifndef sun4v 1618 int i; 1619 caddr_t va; 1620 pfn_t *pfn; 1621 cpu_t *cp; 1622 uint_t strand_idx; 1623 size_t tstat_offset; 1624 #endif 1625 1626 ASSERT(tcpu->tcpu_pfn == NULL); 1627 ASSERT(tcpu->tcpu_instr == NULL); 1628 ASSERT(tcpu->tcpu_data == NULL); 1629 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED); 1630 ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED)); 1631 ASSERT(MUTEX_HELD(&cpu_lock)); 1632 ASSERT(MUTEX_HELD(&tstat_lock)); 1633 1634 #ifndef sun4v 1635 /* 1636 * The lower fifteen bits of the %tba are always read as zero; we must 1637 * align our instruction base address appropriately. 1638 */ 1639 tstat_offset = tstat_total_size; 1640 1641 cp = cpu_get(cpu); 1642 ASSERT(cp != NULL); 1643 if ((strand_idx = cpu ^ pg_plat_hw_instance_id(cp, PGHW_IPIPE)) != 0) { 1644 /* 1645 * On sun4u platforms with multiple CPUs sharing the MMU 1646 * (Olympus-C has 2 strands per core), each CPU uses a 1647 * disjoint trap table. The indexing is based on the 1648 * strand id, which is obtained by XOR'ing the cpuid with 1649 * the coreid. 1650 */ 1651 tstat_offset += tstat_total_size * strand_idx; 1652 1653 /* 1654 * Offset must be less than the maximum PC-relative branch 1655 * displacement for Bicc variants. See the Implementation 1656 * Details comment. 1657 */ 1658 ASSERT(tstat_offset <= MAX_BICC_BRANCH_DISPLACEMENT); 1659 } 1660 1661 tcpu->tcpu_ibase = (caddr_t)((KERNELBASE - tstat_offset) 1662 & TSTAT_TBA_MASK); 1663 tcpu->tcpu_dbase = tcpu->tcpu_ibase + TSTAT_INSTR_SIZE; 1664 tcpu->tcpu_vabase = tcpu->tcpu_ibase; 1665 1666 tcpu->tcpu_pfn = vmem_alloc(tstat_arena, tstat_total_pages, VM_SLEEP); 1667 bzero(tcpu->tcpu_pfn, tstat_total_pages); 1668 pfn = tcpu->tcpu_pfn; 1669 1670 tcpu->tcpu_instr = vmem_alloc(tstat_arena, TSTAT_INSTR_SIZE, VM_SLEEP); 1671 1672 va = (caddr_t)tcpu->tcpu_instr; 1673 for (i = 0; i < TSTAT_INSTR_PAGES; i++, va += MMU_PAGESIZE) 1674 *pfn++ = hat_getpfnum(kas.a_hat, va); 1675 1676 /* 1677 * We must be sure that the pages that we will use to examine the data 1678 * have the same virtual color as the pages to which the data is being 1679 * recorded, hence the alignment and phase constraints on the 1680 * allocation. 1681 */ 1682 tcpu->tcpu_data = vmem_xalloc(tstat_arena, tstat_data_size, 1683 shm_alignment, (uintptr_t)tcpu->tcpu_dbase & (shm_alignment - 1), 1684 0, 0, NULL, VM_SLEEP); 1685 bzero(tcpu->tcpu_data, tstat_data_size); 1686 tcpu->tcpu_data->tdata_cpuid = cpu; 1687 1688 va = (caddr_t)tcpu->tcpu_data; 1689 for (i = 0; i < tstat_data_pages; i++, va += MMU_PAGESIZE) 1690 *pfn++ = hat_getpfnum(kas.a_hat, va); 1691 1692 /* 1693 * Now that we have all of the instruction and data pages allocated, 1694 * make the trap table from scratch. 1695 */ 1696 trapstat_make_traptab(tcpu); 1697 1698 if (tstat_options & TSTAT_OPT_TLBDATA) { 1699 /* 1700 * TLB Statistics have been specified; set up the I- and D-TLB 1701 * entries and corresponding TLB return entries. 1702 */ 1703 trapstat_tlbent(tcpu, TSTAT_ENT_ITLBMISS); 1704 trapstat_tlbent(tcpu, TSTAT_ENT_DTLBMISS); 1705 } 1706 1707 #else /* sun4v */ 1708 1709 /* 1710 * The lower fifteen bits of the %tba are always read as zero; hence 1711 * it must be aligned at least on 512K boundary. 1712 */ 1713 tcpu->tcpu_vabase = (caddr_t)(KERNELBASE - MMU_PAGESIZE4M); 1714 tcpu->tcpu_ibase = tcpu->tcpu_vabase; 1715 tcpu->tcpu_dbase = tcpu->tcpu_ibase + TSTAT_INSTR_SIZE + 1716 cpu * TSTAT_DATA_SIZE; 1717 1718 tcpu->tcpu_pfn = &tstat_pfn; 1719 tcpu->tcpu_instr = (tstat_instr_t *)tstat_va; 1720 tcpu->tcpu_data = (tstat_data_t *)(tstat_va + TSTAT_INSTR_SIZE + 1721 cpu * TSTAT_DATA_SIZE); 1722 bzero(tcpu->tcpu_data, TSTAT_DATA_SIZE); 1723 tcpu->tcpu_data->tdata_cpuid = cpu; 1724 1725 /* 1726 * Now that we have all of the instruction and data pages allocated, 1727 * make the trap table from scratch. It should be done only once 1728 * as it is shared by all CPUs. 1729 */ 1730 if (!tstat_traptab_initialized) 1731 trapstat_make_traptab(tcpu); 1732 1733 if (tstat_options & TSTAT_OPT_TLBDATA) { 1734 /* 1735 * TLB Statistics have been specified; set up the I- and D-TLB 1736 * entries and corresponding TLB return entries. 1737 */ 1738 if (!tstat_traptab_initialized) { 1739 if (tstat_fast_tlbstat) { 1740 trapstat_tlbent(tcpu, TSTAT_ENT_IMMUMISS); 1741 trapstat_tlbent(tcpu, TSTAT_ENT_DMMUMISS); 1742 } else { 1743 trapstat_tlbent(tcpu, TSTAT_ENT_ITLBMISS); 1744 trapstat_tlbent(tcpu, TSTAT_ENT_DTLBMISS); 1745 } 1746 } 1747 } 1748 tstat_traptab_initialized = 1; 1749 #endif /* sun4v */ 1750 1751 tcpu->tcpu_flags |= TSTAT_CPU_ALLOCATED; 1752 1753 /* 1754 * Finally, get the target CPU to load the locked pages into its TLBs. 1755 */ 1756 xc_one(cpu, (xcfunc_t *)trapstat_load_tlb, 0, 0); 1757 } 1758 1759 static void 1760 trapstat_teardown(processorid_t cpu) 1761 { 1762 tstat_percpu_t *tcpu = &tstat_percpu[cpu]; 1763 #ifndef sun4v 1764 int i; 1765 #endif 1766 caddr_t va = tcpu->tcpu_vabase; 1767 1768 ASSERT(tcpu->tcpu_pfn != NULL); 1769 ASSERT(tcpu->tcpu_instr != NULL); 1770 ASSERT(tcpu->tcpu_data != NULL); 1771 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED); 1772 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED); 1773 ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED)); 1774 ASSERT(MUTEX_HELD(&cpu_lock)); 1775 ASSERT(MUTEX_HELD(&tstat_lock)); 1776 1777 #ifndef sun4v 1778 vmem_free(tstat_arena, tcpu->tcpu_pfn, tstat_total_pages); 1779 vmem_free(tstat_arena, tcpu->tcpu_instr, TSTAT_INSTR_SIZE); 1780 vmem_free(tstat_arena, tcpu->tcpu_data, tstat_data_size); 1781 1782 for (i = 0; i < tstat_total_pages; i++, va += MMU_PAGESIZE) { 1783 xt_one(cpu, vtag_flushpage_tl1, (uint64_t)va, 1784 (uint64_t)ksfmmup); 1785 } 1786 #else 1787 xt_one(cpu, vtag_unmap_perm_tl1, (uint64_t)va, KCONTEXT); 1788 #endif 1789 1790 tcpu->tcpu_pfn = NULL; 1791 tcpu->tcpu_instr = NULL; 1792 tcpu->tcpu_data = NULL; 1793 tcpu->tcpu_flags &= ~TSTAT_CPU_ALLOCATED; 1794 } 1795 1796 static int 1797 trapstat_go() 1798 { 1799 cpu_t *cp; 1800 1801 mutex_enter(&cpu_lock); 1802 mutex_enter(&tstat_lock); 1803 1804 if (tstat_running) { 1805 mutex_exit(&tstat_lock); 1806 mutex_exit(&cpu_lock); 1807 return (EBUSY); 1808 } 1809 1810 #ifdef sun4v 1811 /* 1812 * Allocate large page to hold interposing tables. 1813 */ 1814 tstat_va = contig_mem_alloc(MMU_PAGESIZE4M); 1815 tstat_pfn = va_to_pfn(tstat_va); 1816 if (tstat_pfn == PFN_INVALID) { 1817 mutex_exit(&tstat_lock); 1818 mutex_exit(&cpu_lock); 1819 return (EAGAIN); 1820 } 1821 1822 /* 1823 * For detailed TLB statistics, invoke CPU specific interface 1824 * to see if it supports a low overhead interface to collect 1825 * TSB hit statistics. If so, make set tstat_fast_tlbstat flag 1826 * to reflect that. 1827 */ 1828 if (tstat_options & TSTAT_OPT_TLBDATA) { 1829 int error; 1830 1831 tstat_fast_tlbstat = B_FALSE; 1832 error = cpu_trapstat_conf(CPU_TSTATCONF_INIT); 1833 if (error == 0) 1834 tstat_fast_tlbstat = B_TRUE; 1835 else if (error != ENOTSUP) { 1836 contig_mem_free(tstat_va, MMU_PAGESIZE4M); 1837 mutex_exit(&tstat_lock); 1838 mutex_exit(&cpu_lock); 1839 return (error); 1840 } 1841 } 1842 #endif /* sun4v */ 1843 1844 /* 1845 * First, perform any necessary hot patching. 1846 */ 1847 trapstat_hotpatch(); 1848 1849 /* 1850 * Allocate the resources we'll need to measure probe effect. 1851 */ 1852 trapstat_probe_alloc(); 1853 1854 1855 cp = cpu_list; 1856 do { 1857 if (!(tstat_percpu[cp->cpu_id].tcpu_flags & TSTAT_CPU_SELECTED)) 1858 continue; 1859 1860 trapstat_setup(cp->cpu_id); 1861 1862 /* 1863 * Note that due to trapstat_probe()'s use of global data, 1864 * we determine the probe effect on each CPU serially instead 1865 * of in parallel with an xc_all(). 1866 */ 1867 xc_one(cp->cpu_id, (xcfunc_t *)trapstat_probe, 0, 0); 1868 } while ((cp = cp->cpu_next) != cpu_list); 1869 1870 xc_all((xcfunc_t *)trapstat_enable, 0, 0); 1871 1872 trapstat_probe_free(); 1873 tstat_running = 1; 1874 mutex_exit(&tstat_lock); 1875 mutex_exit(&cpu_lock); 1876 1877 return (0); 1878 } 1879 1880 static int 1881 trapstat_stop() 1882 { 1883 int i; 1884 1885 mutex_enter(&cpu_lock); 1886 mutex_enter(&tstat_lock); 1887 if (!tstat_running) { 1888 mutex_exit(&tstat_lock); 1889 mutex_exit(&cpu_lock); 1890 return (ENXIO); 1891 } 1892 1893 xc_all((xcfunc_t *)trapstat_disable, 0, 0); 1894 1895 for (i = 0; i <= max_cpuid; i++) { 1896 if (tstat_percpu[i].tcpu_flags & TSTAT_CPU_ALLOCATED) 1897 trapstat_teardown(i); 1898 } 1899 1900 #ifdef sun4v 1901 tstat_traptab_initialized = 0; 1902 if (tstat_options & TSTAT_OPT_TLBDATA) 1903 cpu_trapstat_conf(CPU_TSTATCONF_FINI); 1904 contig_mem_free(tstat_va, MMU_PAGESIZE4M); 1905 #endif 1906 trapstat_hotpatch(); 1907 tstat_running = 0; 1908 mutex_exit(&tstat_lock); 1909 mutex_exit(&cpu_lock); 1910 1911 return (0); 1912 } 1913 1914 /* 1915 * This is trapstat's DR CPU configuration callback. It's called (with 1916 * cpu_lock held) to unconfigure a newly powered-off CPU, or to configure a 1917 * powered-off CPU that is to be brought into the system. We need only take 1918 * action in the unconfigure case: because a powered-off CPU will have its 1919 * trap table restored to KERNELBASE if it is ever powered back on, we must 1920 * update the flags to reflect that trapstat is no longer enabled on the 1921 * powered-off CPU. Note that this means that a TSTAT_CPU_ENABLED CPU that 1922 * is unconfigured/powered off and later powered back on/reconfigured will 1923 * _not_ be re-TSTAT_CPU_ENABLED. 1924 */ 1925 static int 1926 trapstat_cpu_setup(cpu_setup_t what, processorid_t cpu) 1927 { 1928 tstat_percpu_t *tcpu = &tstat_percpu[cpu]; 1929 1930 ASSERT(MUTEX_HELD(&cpu_lock)); 1931 mutex_enter(&tstat_lock); 1932 1933 if (!tstat_running) { 1934 mutex_exit(&tstat_lock); 1935 return (0); 1936 } 1937 1938 switch (what) { 1939 case CPU_CONFIG: 1940 ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED)); 1941 break; 1942 1943 case CPU_UNCONFIG: 1944 if (tcpu->tcpu_flags & TSTAT_CPU_ENABLED) { 1945 tcpu->tcpu_flags &= ~TSTAT_CPU_ENABLED; 1946 #ifdef sun4v 1947 /* 1948 * A power-off, causes the cpu mondo queues to be 1949 * unconfigured on sun4v. Since we can't teardown 1950 * trapstat's mappings on the cpu that is going away, 1951 * we simply mark it as not allocated. This will 1952 * prevent a teardown on a cpu with the same cpu id 1953 * that might have been added while trapstat is running. 1954 */ 1955 if (tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED) { 1956 tcpu->tcpu_pfn = NULL; 1957 tcpu->tcpu_instr = NULL; 1958 tcpu->tcpu_data = NULL; 1959 tcpu->tcpu_flags &= ~TSTAT_CPU_ALLOCATED; 1960 } 1961 #endif 1962 } 1963 break; 1964 1965 default: 1966 break; 1967 } 1968 1969 mutex_exit(&tstat_lock); 1970 return (0); 1971 } 1972 1973 /* 1974 * This is called before a CPR suspend and after a CPR resume. We don't have 1975 * anything to do before a suspend, but after a restart we must restore the 1976 * trap table to be our interposing trap table. However, we don't actually 1977 * know whether or not the CPUs have been powered off -- this routine may be 1978 * called while restoring from a failed CPR suspend. We thus run through each 1979 * TSTAT_CPU_ENABLED CPU, and explicitly destroy and reestablish its 1980 * interposing trap table. This assures that our state is correct regardless 1981 * of whether or not the CPU has been newly powered on. 1982 */ 1983 /*ARGSUSED*/ 1984 static boolean_t 1985 trapstat_cpr(void *arg, int code) 1986 { 1987 cpu_t *cp; 1988 1989 if (code == CB_CODE_CPR_CHKPT) 1990 return (B_TRUE); 1991 1992 ASSERT(code == CB_CODE_CPR_RESUME); 1993 1994 mutex_enter(&cpu_lock); 1995 mutex_enter(&tstat_lock); 1996 1997 if (!tstat_running) { 1998 mutex_exit(&tstat_lock); 1999 mutex_exit(&cpu_lock); 2000 return (B_TRUE); 2001 } 2002 2003 cp = cpu_list; 2004 do { 2005 tstat_percpu_t *tcpu = &tstat_percpu[cp->cpu_id]; 2006 2007 if (!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED)) 2008 continue; 2009 2010 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED); 2011 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED); 2012 2013 xc_one(cp->cpu_id, (xcfunc_t *)trapstat_disable, 0, 0); 2014 ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED)); 2015 2016 /* 2017 * Preserve this CPU's data in tstat_buffer and rip down its 2018 * interposing trap table. 2019 */ 2020 bcopy(tcpu->tcpu_data, tstat_buffer, tstat_data_t_size); 2021 trapstat_teardown(cp->cpu_id); 2022 ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED)); 2023 2024 /* 2025 * Reestablish the interposing trap table and restore the old 2026 * data. 2027 */ 2028 trapstat_setup(cp->cpu_id); 2029 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED); 2030 bcopy(tstat_buffer, tcpu->tcpu_data, tstat_data_t_size); 2031 2032 xc_one(cp->cpu_id, (xcfunc_t *)trapstat_enable, 0, 0); 2033 } while ((cp = cp->cpu_next) != cpu_list); 2034 2035 mutex_exit(&tstat_lock); 2036 mutex_exit(&cpu_lock); 2037 2038 return (B_TRUE); 2039 } 2040 2041 /*ARGSUSED*/ 2042 static int 2043 trapstat_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 2044 { 2045 int i; 2046 2047 mutex_enter(&cpu_lock); 2048 mutex_enter(&tstat_lock); 2049 if (tstat_open != 0) { 2050 mutex_exit(&tstat_lock); 2051 mutex_exit(&cpu_lock); 2052 return (EBUSY); 2053 } 2054 2055 /* 2056 * Register this in open() rather than in attach() to prevent deadlock 2057 * with DR code. During attach, I/O device tree locks are grabbed 2058 * before trapstat_attach() is invoked - registering in attach 2059 * will result in the lock order: device tree lock, cpu_lock. 2060 * DR code however requires that cpu_lock be acquired before 2061 * device tree locks. 2062 */ 2063 ASSERT(!tstat_running); 2064 register_cpu_setup_func((cpu_setup_func_t *)trapstat_cpu_setup, NULL); 2065 2066 /* 2067 * Clear all options. And until specific CPUs are specified, we'll 2068 * mark all CPUs as selected. 2069 */ 2070 tstat_options = 0; 2071 2072 for (i = 0; i <= max_cpuid; i++) 2073 tstat_percpu[i].tcpu_flags |= TSTAT_CPU_SELECTED; 2074 2075 /* 2076 * By default, all traps at TL=0 are enabled. Traps at TL>0 must 2077 * be disabled. 2078 */ 2079 for (i = 0; i < TSTAT_TOTAL_NENT; i++) 2080 tstat_enabled[i] = i < TSTAT_NENT ? 1 : 0; 2081 2082 tstat_open = 1; 2083 mutex_exit(&tstat_lock); 2084 mutex_exit(&cpu_lock); 2085 2086 return (0); 2087 } 2088 2089 /*ARGSUSED*/ 2090 static int 2091 trapstat_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 2092 { 2093 (void) trapstat_stop(); 2094 2095 ASSERT(!tstat_running); 2096 2097 mutex_enter(&cpu_lock); 2098 unregister_cpu_setup_func((cpu_setup_func_t *)trapstat_cpu_setup, NULL); 2099 mutex_exit(&cpu_lock); 2100 2101 tstat_open = 0; 2102 return (DDI_SUCCESS); 2103 } 2104 2105 static int 2106 trapstat_option(int option) 2107 { 2108 mutex_enter(&tstat_lock); 2109 2110 if (tstat_running) { 2111 mutex_exit(&tstat_lock); 2112 return (EBUSY); 2113 } 2114 2115 tstat_options |= option; 2116 mutex_exit(&tstat_lock); 2117 2118 return (0); 2119 } 2120 2121 /*ARGSUSED*/ 2122 static int 2123 trapstat_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *crd, int *rval) 2124 { 2125 int i, j, out; 2126 size_t dsize; 2127 2128 switch (cmd) { 2129 case TSTATIOC_GO: 2130 return (trapstat_go()); 2131 2132 case TSTATIOC_NOGO: 2133 return (trapstat_option(TSTAT_OPT_NOGO)); 2134 2135 case TSTATIOC_STOP: 2136 return (trapstat_stop()); 2137 2138 case TSTATIOC_CPU: 2139 if (arg < 0 || arg > max_cpuid) 2140 return (EINVAL); 2141 /*FALLTHROUGH*/ 2142 2143 case TSTATIOC_NOCPU: 2144 mutex_enter(&tstat_lock); 2145 2146 if (tstat_running) { 2147 mutex_exit(&tstat_lock); 2148 return (EBUSY); 2149 } 2150 2151 /* 2152 * If this is the first CPU to be specified (or if we are 2153 * being asked to explicitly de-select CPUs), disable all CPUs. 2154 */ 2155 if (!(tstat_options & TSTAT_OPT_CPU) || cmd == TSTATIOC_NOCPU) { 2156 tstat_options |= TSTAT_OPT_CPU; 2157 2158 for (i = 0; i <= max_cpuid; i++) { 2159 tstat_percpu_t *tcpu = &tstat_percpu[i]; 2160 2161 ASSERT(cmd == TSTATIOC_NOCPU || 2162 (tcpu->tcpu_flags & TSTAT_CPU_SELECTED)); 2163 tcpu->tcpu_flags &= ~TSTAT_CPU_SELECTED; 2164 } 2165 } 2166 2167 if (cmd == TSTATIOC_CPU) 2168 tstat_percpu[arg].tcpu_flags |= TSTAT_CPU_SELECTED; 2169 2170 mutex_exit(&tstat_lock); 2171 2172 return (0); 2173 2174 case TSTATIOC_ENTRY: 2175 mutex_enter(&tstat_lock); 2176 2177 if (tstat_running) { 2178 mutex_exit(&tstat_lock); 2179 return (EBUSY); 2180 } 2181 2182 if (arg >= TSTAT_NENT || arg < 0) { 2183 mutex_exit(&tstat_lock); 2184 return (EINVAL); 2185 } 2186 2187 if (!(tstat_options & TSTAT_OPT_ENTRY)) { 2188 /* 2189 * If this is the first entry that we are explicitly 2190 * enabling, explicitly disable every TL=0 entry. 2191 */ 2192 for (i = 0; i < TSTAT_NENT; i++) 2193 tstat_enabled[i] = 0; 2194 2195 tstat_options |= TSTAT_OPT_ENTRY; 2196 } 2197 2198 tstat_enabled[arg] = 1; 2199 mutex_exit(&tstat_lock); 2200 return (0); 2201 2202 case TSTATIOC_NOENTRY: 2203 mutex_enter(&tstat_lock); 2204 2205 if (tstat_running) { 2206 mutex_exit(&tstat_lock); 2207 return (EBUSY); 2208 } 2209 2210 for (i = 0; i < TSTAT_NENT; i++) 2211 tstat_enabled[i] = 0; 2212 2213 mutex_exit(&tstat_lock); 2214 return (0); 2215 2216 case TSTATIOC_READ: 2217 mutex_enter(&tstat_lock); 2218 2219 if (tstat_options & TSTAT_OPT_TLBDATA) { 2220 dsize = tstat_data_t_exported_size; 2221 } else { 2222 dsize = sizeof (tstat_data_t); 2223 } 2224 2225 for (i = 0, out = 0; i <= max_cpuid; i++) { 2226 tstat_percpu_t *tcpu = &tstat_percpu[i]; 2227 2228 if (!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED)) 2229 continue; 2230 2231 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_SELECTED); 2232 ASSERT(tcpu->tcpu_flags & TSTAT_CPU_ALLOCATED); 2233 2234 tstat_buffer->tdata_cpuid = -1; 2235 xc_one(i, (xcfunc_t *)trapstat_snapshot, 0, 0); 2236 2237 if (tstat_buffer->tdata_cpuid == -1) { 2238 /* 2239 * This CPU is not currently responding to 2240 * cross calls; we have caught it while it is 2241 * being unconfigured. We'll drop tstat_lock 2242 * and pick up and drop cpu_lock. By the 2243 * time we acquire cpu_lock, the DR operation 2244 * will appear consistent and we can assert 2245 * that trapstat_cpu_setup() has cleared 2246 * TSTAT_CPU_ENABLED. 2247 */ 2248 mutex_exit(&tstat_lock); 2249 mutex_enter(&cpu_lock); 2250 mutex_exit(&cpu_lock); 2251 mutex_enter(&tstat_lock); 2252 ASSERT(!(tcpu->tcpu_flags & TSTAT_CPU_ENABLED)); 2253 continue; 2254 } 2255 2256 /* 2257 * Need to compensate for the difference between page 2258 * sizes exported to users and page sizes available 2259 * within the kernel. 2260 */ 2261 if ((tstat_options & TSTAT_OPT_TLBDATA) && 2262 (tstat_pgszs != tstat_user_pgszs)) { 2263 tstat_pgszdata_t *tp; 2264 uint_t szc; 2265 2266 tp = &tstat_buffer->tdata_pgsz[0]; 2267 for (j = 0; j < tstat_user_pgszs; j++) { 2268 if ((szc = USERSZC_2_SZC(j)) != j) { 2269 bcopy(&tp[szc], &tp[j], 2270 sizeof (tstat_pgszdata_t)); 2271 } 2272 } 2273 } 2274 2275 if (copyout(tstat_buffer, (void *)arg, dsize) != 0) { 2276 mutex_exit(&tstat_lock); 2277 return (EFAULT); 2278 } 2279 2280 out++; 2281 arg += dsize; 2282 } 2283 2284 if (out != max_cpuid + 1) { 2285 processorid_t cpuid = -1; 2286 arg += offsetof(tstat_data_t, tdata_cpuid); 2287 2288 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) { 2289 mutex_exit(&tstat_lock); 2290 return (EFAULT); 2291 } 2292 } 2293 2294 mutex_exit(&tstat_lock); 2295 2296 return (0); 2297 2298 case TSTATIOC_TLBDATA: 2299 return (trapstat_option(TSTAT_OPT_TLBDATA)); 2300 2301 default: 2302 break; 2303 } 2304 2305 return (ENOTTY); 2306 } 2307 2308 /*ARGSUSED*/ 2309 static int 2310 trapstat_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2311 { 2312 int error; 2313 2314 switch (infocmd) { 2315 case DDI_INFO_DEVT2DEVINFO: 2316 *result = (void *)tstat_devi; 2317 error = DDI_SUCCESS; 2318 break; 2319 case DDI_INFO_DEVT2INSTANCE: 2320 *result = (void *)0; 2321 error = DDI_SUCCESS; 2322 break; 2323 default: 2324 error = DDI_FAILURE; 2325 } 2326 return (error); 2327 } 2328 2329 static int 2330 trapstat_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 2331 { 2332 switch (cmd) { 2333 case DDI_ATTACH: 2334 break; 2335 2336 case DDI_RESUME: 2337 return (DDI_SUCCESS); 2338 2339 default: 2340 return (DDI_FAILURE); 2341 } 2342 2343 if (ddi_create_minor_node(devi, "trapstat", S_IFCHR, 2344 0, DDI_PSEUDO, 0) == DDI_FAILURE) { 2345 ddi_remove_minor_node(devi, NULL); 2346 return (DDI_FAILURE); 2347 } 2348 2349 ddi_report_dev(devi); 2350 tstat_devi = devi; 2351 2352 tstat_pgszs = page_num_pagesizes(); 2353 tstat_user_pgszs = page_num_user_pagesizes(0); 2354 tstat_data_t_size = sizeof (tstat_data_t) + 2355 (tstat_pgszs - 1) * sizeof (tstat_pgszdata_t); 2356 tstat_data_t_exported_size = sizeof (tstat_data_t) + 2357 (tstat_user_pgszs - 1) * sizeof (tstat_pgszdata_t); 2358 #ifndef sun4v 2359 tstat_data_pages = (tstat_data_t_size >> MMU_PAGESHIFT) + 1; 2360 tstat_total_pages = TSTAT_INSTR_PAGES + tstat_data_pages; 2361 tstat_data_size = tstat_data_pages * MMU_PAGESIZE; 2362 tstat_total_size = TSTAT_INSTR_SIZE + tstat_data_size; 2363 #else 2364 ASSERT(tstat_data_t_size <= TSTAT_DATA_SIZE); 2365 #endif 2366 2367 tstat_percpu = kmem_zalloc((max_cpuid + 1) * 2368 sizeof (tstat_percpu_t), KM_SLEEP); 2369 2370 /* 2371 * Create our own arena backed by segkmem to assure a source of 2372 * MMU_PAGESIZE-aligned allocations. We allocate out of the 2373 * heap32_arena to assure that we can address the allocated memory with 2374 * a single sethi/simm13 pair in the interposing trap table entries. 2375 */ 2376 tstat_arena = vmem_create("trapstat", NULL, 0, MMU_PAGESIZE, 2377 segkmem_alloc_permanent, segkmem_free, heap32_arena, 0, VM_SLEEP); 2378 2379 tstat_enabled = kmem_alloc(TSTAT_TOTAL_NENT * sizeof (int), KM_SLEEP); 2380 tstat_buffer = kmem_alloc(tstat_data_t_size, KM_SLEEP); 2381 2382 /* 2383 * CB_CL_CPR_POST_USER is the class that executes from cpr_resume() 2384 * after user threads can be restarted. By executing in this class, 2385 * we are assured of the availability of system services needed to 2386 * resume trapstat (specifically, we are assured that all CPUs are 2387 * restarted and responding to cross calls). 2388 */ 2389 tstat_cprcb = 2390 callb_add(trapstat_cpr, NULL, CB_CL_CPR_POST_USER, "trapstat"); 2391 2392 return (DDI_SUCCESS); 2393 } 2394 2395 static int 2396 trapstat_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 2397 { 2398 int rval; 2399 2400 ASSERT(devi == tstat_devi); 2401 2402 switch (cmd) { 2403 case DDI_DETACH: 2404 break; 2405 2406 case DDI_SUSPEND: 2407 return (DDI_SUCCESS); 2408 2409 default: 2410 return (DDI_FAILURE); 2411 } 2412 2413 ASSERT(!tstat_running); 2414 2415 rval = callb_delete(tstat_cprcb); 2416 ASSERT(rval == 0); 2417 2418 kmem_free(tstat_buffer, tstat_data_t_size); 2419 kmem_free(tstat_enabled, TSTAT_TOTAL_NENT * sizeof (int)); 2420 vmem_destroy(tstat_arena); 2421 kmem_free(tstat_percpu, (max_cpuid + 1) * sizeof (tstat_percpu_t)); 2422 ddi_remove_minor_node(devi, NULL); 2423 2424 return (DDI_SUCCESS); 2425 } 2426 2427 /* 2428 * Configuration data structures 2429 */ 2430 static struct cb_ops trapstat_cb_ops = { 2431 trapstat_open, /* open */ 2432 trapstat_close, /* close */ 2433 nulldev, /* strategy */ 2434 nulldev, /* print */ 2435 nodev, /* dump */ 2436 nodev, /* read */ 2437 nodev, /* write */ 2438 trapstat_ioctl, /* ioctl */ 2439 nodev, /* devmap */ 2440 nodev, /* mmap */ 2441 nodev, /* segmap */ 2442 nochpoll, /* poll */ 2443 ddi_prop_op, /* cb_prop_op */ 2444 0, /* streamtab */ 2445 D_MP | D_NEW /* Driver compatibility flag */ 2446 }; 2447 2448 static struct dev_ops trapstat_ops = { 2449 DEVO_REV, /* devo_rev, */ 2450 0, /* refcnt */ 2451 trapstat_info, /* getinfo */ 2452 nulldev, /* identify */ 2453 nulldev, /* probe */ 2454 trapstat_attach, /* attach */ 2455 trapstat_detach, /* detach */ 2456 nulldev, /* reset */ 2457 &trapstat_cb_ops, /* cb_ops */ 2458 (struct bus_ops *)0, /* bus_ops */ 2459 }; 2460 2461 static struct modldrv modldrv = { 2462 &mod_driverops, /* Type of module. This one is a driver */ 2463 "Trap Statistics", /* name of module */ 2464 &trapstat_ops, /* driver ops */ 2465 }; 2466 2467 static struct modlinkage modlinkage = { 2468 MODREV_1, (void *)&modldrv, NULL 2469 }; 2470 2471 int 2472 _init(void) 2473 { 2474 return (mod_install(&modlinkage)); 2475 } 2476 2477 int 2478 _fini(void) 2479 { 2480 return (mod_remove(&modlinkage)); 2481 } 2482 2483 int 2484 _info(struct modinfo *modinfop) 2485 { 2486 return (mod_info(&modlinkage, modinfop)); 2487 } 2488