1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * PX Interrupt Block implementation 30 */ 31 32 #include <sys/types.h> 33 #include <sys/kmem.h> 34 #include <sys/async.h> 35 #include <sys/systm.h> /* panicstr */ 36 #include <sys/spl.h> 37 #include <sys/sunddi.h> 38 #include <sys/machsystm.h> /* intr_dist_add */ 39 #include <sys/ddi_impldefs.h> 40 #include <sys/cpuvar.h> 41 #include <sys/time.h> 42 #include "px_obj.h" 43 44 /*LINTLIBRARY*/ 45 46 static void px_ib_intr_redist(void *arg, int32_t weight_max, int32_t weight); 47 static void px_ib_cpu_ticks_to_ih_nsec(px_ib_t *ib_p, px_ih_t *ih_p, 48 uint32_t cpu_id); 49 static uint_t px_ib_intr_reset(void *arg); 50 static void px_fill_in_intr_devs(pcitool_intr_dev_t *dev, char *driver_name, 51 char *path_name, int instance); 52 53 extern uint64_t xc_tick_jump_limit; 54 55 int 56 px_ib_attach(px_t *px_p) 57 { 58 dev_info_t *dip = px_p->px_dip; 59 px_ib_t *ib_p; 60 sysino_t sysino; 61 px_fault_t *fault_p = &px_p->px_fault; 62 63 DBG(DBG_IB, dip, "px_ib_attach\n"); 64 65 if (px_lib_intr_devino_to_sysino(px_p->px_dip, 66 px_p->px_inos[PX_INTR_PEC], &sysino) != DDI_SUCCESS) 67 return (DDI_FAILURE); 68 69 /* 70 * Allocate interrupt block state structure and link it to 71 * the px state structure. 72 */ 73 ib_p = kmem_zalloc(sizeof (px_ib_t), KM_SLEEP); 74 px_p->px_ib_p = ib_p; 75 ib_p->ib_px_p = px_p; 76 ib_p->ib_ino_lst = (px_ino_t *)NULL; 77 78 mutex_init(&ib_p->ib_intr_lock, NULL, MUTEX_DRIVER, NULL); 79 mutex_init(&ib_p->ib_ino_lst_mutex, NULL, MUTEX_DRIVER, NULL); 80 81 bus_func_register(BF_TYPE_RESINTR, px_ib_intr_reset, ib_p); 82 83 intr_dist_add_weighted(px_ib_intr_redist, ib_p); 84 85 /* 86 * Initialize PEC fault data structure 87 */ 88 fault_p->px_fh_dip = dip; 89 fault_p->px_fh_sysino = sysino; 90 fault_p->px_err_func = px_err_dmc_pec_intr; 91 fault_p->px_intr_ino = px_p->px_inos[PX_INTR_PEC]; 92 93 return (DDI_SUCCESS); 94 } 95 96 void 97 px_ib_detach(px_t *px_p) 98 { 99 px_ib_t *ib_p = px_p->px_ib_p; 100 dev_info_t *dip = px_p->px_dip; 101 102 DBG(DBG_IB, dip, "px_ib_detach\n"); 103 104 bus_func_unregister(BF_TYPE_RESINTR, px_ib_intr_reset, ib_p); 105 intr_dist_rem_weighted(px_ib_intr_redist, ib_p); 106 107 mutex_destroy(&ib_p->ib_ino_lst_mutex); 108 mutex_destroy(&ib_p->ib_intr_lock); 109 110 px_ib_free_ino_all(ib_p); 111 112 px_p->px_ib_p = NULL; 113 kmem_free(ib_p, sizeof (px_ib_t)); 114 } 115 116 void 117 px_ib_intr_enable(px_t *px_p, cpuid_t cpu_id, devino_t ino) 118 { 119 px_ib_t *ib_p = px_p->px_ib_p; 120 sysino_t sysino; 121 122 /* 123 * Determine the cpu for the interrupt 124 */ 125 mutex_enter(&ib_p->ib_intr_lock); 126 127 DBG(DBG_IB, px_p->px_dip, 128 "px_ib_intr_enable: ino=%x cpu_id=%x\n", ino, cpu_id); 129 130 if (px_lib_intr_devino_to_sysino(px_p->px_dip, ino, 131 &sysino) != DDI_SUCCESS) { 132 DBG(DBG_IB, px_p->px_dip, 133 "px_ib_intr_enable: px_intr_devino_to_sysino() failed\n"); 134 135 mutex_exit(&ib_p->ib_intr_lock); 136 return; 137 } 138 139 PX_INTR_ENABLE(px_p->px_dip, sysino, cpu_id); 140 px_lib_intr_setstate(px_p->px_dip, sysino, INTR_IDLE_STATE); 141 142 mutex_exit(&ib_p->ib_intr_lock); 143 } 144 145 /*ARGSUSED*/ 146 void 147 px_ib_intr_disable(px_ib_t *ib_p, devino_t ino, int wait) 148 { 149 sysino_t sysino; 150 151 mutex_enter(&ib_p->ib_intr_lock); 152 153 DBG(DBG_IB, ib_p->ib_px_p->px_dip, "px_ib_intr_disable: ino=%x\n", ino); 154 155 /* Disable the interrupt */ 156 if (px_lib_intr_devino_to_sysino(ib_p->ib_px_p->px_dip, ino, 157 &sysino) != DDI_SUCCESS) { 158 DBG(DBG_IB, ib_p->ib_px_p->px_dip, 159 "px_ib_intr_disable: px_intr_devino_to_sysino() failed\n"); 160 161 mutex_exit(&ib_p->ib_intr_lock); 162 return; 163 } 164 165 PX_INTR_DISABLE(ib_p->ib_px_p->px_dip, sysino); 166 167 mutex_exit(&ib_p->ib_intr_lock); 168 } 169 170 171 void 172 px_ib_intr_dist_en(dev_info_t *dip, cpuid_t cpu_id, devino_t ino, 173 boolean_t wait_flag) 174 { 175 uint32_t old_cpu_id; 176 sysino_t sysino; 177 intr_valid_state_t enabled = 0; 178 hrtime_t start_time, prev, curr, interval, jump; 179 hrtime_t intr_timeout; 180 intr_state_t intr_state; 181 int e = DDI_SUCCESS; 182 183 DBG(DBG_IB, dip, "px_ib_intr_dist_en: ino=0x%x\n", ino); 184 185 if (px_lib_intr_devino_to_sysino(dip, ino, &sysino) != DDI_SUCCESS) { 186 DBG(DBG_IB, dip, "px_ib_intr_dist_en: " 187 "px_intr_devino_to_sysino() failed, ino 0x%x\n", ino); 188 return; 189 } 190 191 /* Skip enabling disabled interrupts */ 192 if (px_lib_intr_getvalid(dip, sysino, &enabled) != DDI_SUCCESS) { 193 DBG(DBG_IB, dip, "px_ib_intr_dist_en: px_intr_getvalid() " 194 "failed, sysino 0x%x\n", sysino); 195 return; 196 } 197 if (!enabled) 198 return; 199 200 /* Done if redistributed onto the same cpuid */ 201 if (px_lib_intr_gettarget(dip, sysino, &old_cpu_id) != DDI_SUCCESS) { 202 DBG(DBG_IB, dip, "px_ib_intr_dist_en: " 203 "px_intr_gettarget() failed\n"); 204 return; 205 } 206 if (cpu_id == old_cpu_id) 207 return; 208 209 if (!wait_flag) 210 goto done; 211 212 /* Busy wait on pending interrupts */ 213 PX_INTR_DISABLE(dip, sysino); 214 215 intr_timeout = px_intrpend_timeout; 216 jump = TICK_TO_NSEC(xc_tick_jump_limit); 217 218 for (curr = start_time = gethrtime(); !panicstr && 219 ((e = px_lib_intr_getstate(dip, sysino, &intr_state)) == 220 DDI_SUCCESS) && 221 (intr_state == INTR_DELIVERED_STATE); /* */) { 222 /* 223 * If we have a really large jump in hrtime, it is most 224 * probably because we entered the debugger (or OBP, 225 * in general). So, we adjust the timeout accordingly 226 * to prevent declaring an interrupt timeout. The 227 * master-interrupt mechanism in OBP should deliver 228 * the interrupts properly. 229 */ 230 prev = curr; 231 curr = gethrtime(); 232 interval = curr - prev; 233 if (interval > jump) 234 intr_timeout += interval; 235 if (curr - start_time > intr_timeout) { 236 cmn_err(CE_WARN, 237 "%s%d: px_ib_intr_dist_en: sysino 0x%lx(ino 0x%x) " 238 "from cpu id 0x%x to 0x%x timeout", 239 ddi_driver_name(dip), ddi_get_instance(dip), 240 sysino, ino, old_cpu_id, cpu_id); 241 242 e = DDI_FAILURE; 243 break; 244 } 245 } 246 247 if (e != DDI_SUCCESS) 248 DBG(DBG_IB, dip, "px_ib_intr_dist_en: failed, " 249 "ino 0x%x sysino 0x%x\n", ino, sysino); 250 251 done: 252 PX_INTR_ENABLE(dip, sysino, cpu_id); 253 } 254 255 static void 256 px_ib_cpu_ticks_to_ih_nsec(px_ib_t *ib_p, px_ih_t *ih_p, uint32_t cpu_id) 257 { 258 extern kmutex_t pxintr_ks_template_lock; 259 hrtime_t ticks; 260 261 /* 262 * Because we are updating two fields in ih_t we must lock 263 * pxintr_ks_template_lock to prevent someone from reading the 264 * kstats after we set ih_ticks to 0 and before we increment 265 * ih_nsec to compensate. 266 * 267 * We must also protect against the interrupt arriving and incrementing 268 * ih_ticks between the time we read it and when we reset it to 0. 269 * To do this we use atomic_swap. 270 */ 271 272 ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex)); 273 274 mutex_enter(&pxintr_ks_template_lock); 275 ticks = atomic_swap_64(&ih_p->ih_ticks, 0); 276 ih_p->ih_nsec += (uint64_t)tick2ns(ticks, cpu_id); 277 mutex_exit(&pxintr_ks_template_lock); 278 } 279 280 281 /* 282 * Redistribute interrupts of the specified weight. The first call has a weight 283 * of weight_max, which can be used to trigger initialization for 284 * redistribution. The inos with weight [weight_max, inf.) should be processed 285 * on the "weight == weight_max" call. This first call is followed by calls 286 * of decreasing weights, inos of that weight should be processed. The final 287 * call specifies a weight of zero, this can be used to trigger processing of 288 * stragglers. 289 */ 290 static void 291 px_ib_intr_redist(void *arg, int32_t weight_max, int32_t weight) 292 { 293 px_ib_t *ib_p = (px_ib_t *)arg; 294 px_t *px_p = ib_p->ib_px_p; 295 dev_info_t *dip = px_p->px_dip; 296 px_ino_t *ino_p; 297 px_ino_pil_t *ipil_p; 298 px_ih_t *ih_lst; 299 int32_t dweight = 0; 300 int i; 301 302 /* Redistribute internal interrupts */ 303 if (weight == 0) { 304 mutex_enter(&ib_p->ib_intr_lock); 305 px_ib_intr_dist_en(dip, intr_dist_cpuid(), 306 px_p->px_inos[PX_INTR_PEC], B_FALSE); 307 mutex_exit(&ib_p->ib_intr_lock); 308 } 309 310 /* Redistribute device interrupts */ 311 mutex_enter(&ib_p->ib_ino_lst_mutex); 312 313 for (ino_p = ib_p->ib_ino_lst; ino_p; ino_p = ino_p->ino_next_p) { 314 uint32_t orig_cpuid; 315 316 /* 317 * Recomputes the sum of interrupt weights of devices that 318 * share the same ino upon first call marked by 319 * (weight == weight_max). 320 */ 321 if (weight == weight_max) { 322 ino_p->ino_intr_weight = 0; 323 324 for (ipil_p = ino_p->ino_ipil_p; ipil_p; 325 ipil_p = ipil_p->ipil_next_p) { 326 for (i = 0, ih_lst = ipil_p->ipil_ih_head; 327 i < ipil_p->ipil_ih_size; i++, 328 ih_lst = ih_lst->ih_next) { 329 dweight = i_ddi_get_intr_weight( 330 ih_lst->ih_dip); 331 if (dweight > 0) 332 ino_p->ino_intr_weight += 333 dweight; 334 } 335 } 336 } 337 338 /* 339 * As part of redistributing weighted interrupts over cpus, 340 * nexus redistributes device interrupts and updates 341 * cpu weight. The purpose is for the most light weighted 342 * cpu to take the next interrupt and gain weight, therefore 343 * attention demanding device gains more cpu attention by 344 * making itself heavy. 345 */ 346 if ((weight == ino_p->ino_intr_weight) || 347 ((weight >= weight_max) && 348 (ino_p->ino_intr_weight >= weight_max))) { 349 orig_cpuid = ino_p->ino_cpuid; 350 if (cpu[orig_cpuid] == NULL) 351 orig_cpuid = CPU->cpu_id; 352 353 /* select cpuid to target and mark ino established */ 354 ino_p->ino_cpuid = intr_dist_cpuid(); 355 356 /* Add device weight to targeted cpu. */ 357 for (ipil_p = ino_p->ino_ipil_p; ipil_p; 358 ipil_p = ipil_p->ipil_next_p) { 359 for (i = 0, ih_lst = ipil_p->ipil_ih_head; 360 i < ipil_p->ipil_ih_size; i++, 361 ih_lst = ih_lst->ih_next) { 362 363 dweight = i_ddi_get_intr_weight( 364 ih_lst->ih_dip); 365 intr_dist_cpuid_add_device_weight( 366 ino_p->ino_cpuid, ih_lst->ih_dip, 367 dweight); 368 369 /* 370 * Different cpus may have different 371 * clock speeds. to account for this, 372 * whenever an interrupt is moved to a 373 * new CPU, we convert the accumulated 374 * ticks into nsec, based upon the clock 375 * rate of the prior CPU. 376 * 377 * It is possible that the prior CPU no 378 * longer exists. In this case, fall 379 * back to using this CPU's clock rate. 380 * 381 * Note that the value in ih_ticks has 382 * already been corrected for any power 383 * savings mode which might have been 384 * in effect. 385 */ 386 px_ib_cpu_ticks_to_ih_nsec(ib_p, ih_lst, 387 orig_cpuid); 388 } 389 } 390 391 /* enable interrupt on new targeted cpu */ 392 px_ib_intr_dist_en(dip, ino_p->ino_cpuid, 393 ino_p->ino_ino, B_TRUE); 394 } 395 } 396 mutex_exit(&ib_p->ib_ino_lst_mutex); 397 } 398 399 /* 400 * Reset interrupts to IDLE. This function is called during 401 * panic handling after redistributing interrupts; it's needed to 402 * support dumping to network devices after 'sync' from OBP. 403 * 404 * N.B. This routine runs in a context where all other threads 405 * are permanently suspended. 406 */ 407 static uint_t 408 px_ib_intr_reset(void *arg) 409 { 410 px_ib_t *ib_p = (px_ib_t *)arg; 411 412 DBG(DBG_IB, ib_p->ib_px_p->px_dip, "px_ib_intr_reset\n"); 413 414 if (px_lib_intr_reset(ib_p->ib_px_p->px_dip) != DDI_SUCCESS) 415 return (BF_FATAL); 416 417 return (BF_NONE); 418 } 419 420 /* 421 * Locate px_ino_t structure on ib_p->ib_ino_lst according to ino# 422 * returns NULL if not found. 423 */ 424 px_ino_t * 425 px_ib_locate_ino(px_ib_t *ib_p, devino_t ino_num) 426 { 427 px_ino_t *ino_p = ib_p->ib_ino_lst; 428 429 ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex)); 430 431 for (; ino_p && ino_p->ino_ino != ino_num; ino_p = ino_p->ino_next_p); 432 433 return (ino_p); 434 } 435 436 px_ino_pil_t * 437 px_ib_new_ino_pil(px_ib_t *ib_p, devino_t ino_num, uint_t pil, px_ih_t *ih_p) 438 { 439 px_ino_pil_t *ipil_p = kmem_zalloc(sizeof (px_ino_pil_t), KM_SLEEP); 440 px_ino_t *ino_p; 441 442 if ((ino_p = px_ib_locate_ino(ib_p, ino_num)) == NULL) { 443 sysino_t sysino; 444 445 if (px_lib_intr_devino_to_sysino(ib_p->ib_px_p->px_dip, 446 ino_num, &sysino) != DDI_SUCCESS) 447 return (NULL); 448 449 ino_p = kmem_zalloc(sizeof (px_ino_t), KM_SLEEP); 450 451 ino_p->ino_next_p = ib_p->ib_ino_lst; 452 ib_p->ib_ino_lst = ino_p; 453 454 ino_p->ino_ino = ino_num; 455 ino_p->ino_sysino = sysino; 456 ino_p->ino_ib_p = ib_p; 457 ino_p->ino_unclaimed_intrs = 0; 458 ino_p->ino_lopil = pil; 459 } 460 461 ih_p->ih_next = ih_p; 462 ipil_p->ipil_pil = pil; 463 ipil_p->ipil_ih_head = ih_p; 464 ipil_p->ipil_ih_tail = ih_p; 465 ipil_p->ipil_ih_start = ih_p; 466 ipil_p->ipil_ih_size = 1; 467 ipil_p->ipil_ino_p = ino_p; 468 469 ipil_p->ipil_next_p = ino_p->ino_ipil_p; 470 ino_p->ino_ipil_p = ipil_p; 471 ino_p->ino_ipil_size++; 472 473 if (ino_p->ino_lopil > pil) 474 ino_p->ino_lopil = pil; 475 476 return (ipil_p); 477 } 478 479 void 480 px_ib_delete_ino_pil(px_ib_t *ib_p, px_ino_pil_t *ipil_p) 481 { 482 px_ino_t *ino_p = ipil_p->ipil_ino_p; 483 ushort_t pil = ipil_p->ipil_pil; 484 px_ino_pil_t *prev, *next; 485 486 ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex)); 487 488 if (ino_p->ino_ipil_p == ipil_p) 489 ino_p->ino_ipil_p = ipil_p->ipil_next_p; 490 else { 491 for (prev = next = ino_p->ino_ipil_p; next != ipil_p; 492 prev = next, next = next->ipil_next_p); 493 494 if (prev) 495 prev->ipil_next_p = ipil_p->ipil_next_p; 496 } 497 498 kmem_free(ipil_p, sizeof (px_ino_pil_t)); 499 500 if (ino_p->ino_lopil == pil) { 501 for (pil = 0, next = ino_p->ino_ipil_p; next; 502 next = next->ipil_next_p) { 503 if (pil > next->ipil_pil) 504 pil = next->ipil_pil; 505 } 506 507 ino_p->ino_lopil = pil; 508 } 509 510 if (--ino_p->ino_ipil_size) 511 return; 512 513 if (ib_p->ib_ino_lst == ino_p) 514 ib_p->ib_ino_lst = ino_p->ino_next_p; 515 else { 516 px_ino_t *list = ib_p->ib_ino_lst; 517 518 for (; list->ino_next_p != ino_p; list = list->ino_next_p); 519 list->ino_next_p = ino_p->ino_next_p; 520 } 521 } 522 523 /* 524 * Free all ino when we are detaching. 525 */ 526 void 527 px_ib_free_ino_all(px_ib_t *ib_p) 528 { 529 px_ino_t *ino_p = ib_p->ib_ino_lst; 530 px_ino_t *next = NULL; 531 532 while (ino_p) { 533 next = ino_p->ino_next_p; 534 kmem_free(ino_p, sizeof (px_ino_t)); 535 ino_p = next; 536 } 537 } 538 539 /* 540 * Locate px_ino_pil_t structure on ino_p->ino_ipil_p according to ino# 541 * returns NULL if not found. 542 */ 543 px_ino_pil_t * 544 px_ib_ino_locate_ipil(px_ino_t *ino_p, uint_t pil) 545 { 546 px_ino_pil_t *ipil_p = ino_p->ino_ipil_p; 547 548 for (; ipil_p && ipil_p->ipil_pil != pil; ipil_p = ipil_p->ipil_next_p); 549 550 return (ipil_p); 551 } 552 553 int 554 px_ib_ino_add_intr(px_t *px_p, px_ino_pil_t *ipil_p, px_ih_t *ih_p) 555 { 556 px_ino_t *ino_p = ipil_p->ipil_ino_p; 557 px_ib_t *ib_p = ino_p->ino_ib_p; 558 devino_t ino = ino_p->ino_ino; 559 sysino_t sysino = ino_p->ino_sysino; 560 dev_info_t *dip = px_p->px_dip; 561 cpuid_t curr_cpu; 562 hrtime_t start_time; 563 intr_state_t intr_state; 564 int ret = DDI_SUCCESS; 565 566 ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex)); 567 ASSERT(ib_p == px_p->px_ib_p); 568 569 DBG(DBG_IB, dip, "px_ib_ino_add_intr ino=%x\n", ino_p->ino_ino); 570 571 /* Disable the interrupt */ 572 if ((ret = px_lib_intr_gettarget(dip, sysino, 573 &curr_cpu)) != DDI_SUCCESS) { 574 DBG(DBG_IB, dip, 575 "px_ib_ino_add_intr px_intr_gettarget() failed\n"); 576 577 return (ret); 578 } 579 580 PX_INTR_DISABLE(dip, sysino); 581 582 /* Busy wait on pending interrupt */ 583 for (start_time = gethrtime(); !panicstr && 584 ((ret = px_lib_intr_getstate(dip, sysino, &intr_state)) 585 == DDI_SUCCESS) && (intr_state == INTR_DELIVERED_STATE); /* */) { 586 if (gethrtime() - start_time > px_intrpend_timeout) { 587 cmn_err(CE_WARN, "%s%d: px_ib_ino_add_intr: pending " 588 "sysino 0x%lx(ino 0x%x) timeout", 589 ddi_driver_name(dip), ddi_get_instance(dip), 590 sysino, ino); 591 592 ret = DDI_FAILURE; 593 break; 594 } 595 } 596 597 /* 598 * If the interrupt was previously blocked (left in pending state) 599 * because of jabber we need to clear the pending state in case the 600 * jabber has gone away. 601 */ 602 if (ino_p->ino_unclaimed_intrs > px_unclaimed_intr_max) { 603 cmn_err(CE_WARN, 604 "%s%d: px_ib_ino_add_intr: ino 0x%x has been unblocked", 605 ddi_driver_name(dip), ddi_get_instance(dip), ino); 606 607 ino_p->ino_unclaimed_intrs = 0; 608 ret = px_lib_intr_setstate(dip, sysino, INTR_IDLE_STATE); 609 } 610 611 if (ret != DDI_SUCCESS) { 612 DBG(DBG_IB, dip, "px_ib_ino_add_intr: failed, " 613 "ino 0x%x sysino 0x%x\n", ino, sysino); 614 615 return (ret); 616 } 617 618 /* Link up px_ih_t */ 619 ih_p->ih_next = ipil_p->ipil_ih_head; 620 ipil_p->ipil_ih_tail->ih_next = ih_p; 621 ipil_p->ipil_ih_tail = ih_p; 622 623 ipil_p->ipil_ih_start = ipil_p->ipil_ih_head; 624 ipil_p->ipil_ih_size++; 625 626 /* Re-enable interrupt */ 627 PX_INTR_ENABLE(dip, sysino, curr_cpu); 628 629 return (ret); 630 } 631 632 /* 633 * Removes px_ih_t from the ino's link list. 634 * uses hardware mutex to lock out interrupt threads. 635 * Side effects: interrupt belongs to that ino is turned off on return. 636 * if we are sharing PX slot with other inos, the caller needs 637 * to turn it back on. 638 */ 639 int 640 px_ib_ino_rem_intr(px_t *px_p, px_ino_pil_t *ipil_p, px_ih_t *ih_p) 641 { 642 px_ino_t *ino_p = ipil_p->ipil_ino_p; 643 devino_t ino = ino_p->ino_ino; 644 sysino_t sysino = ino_p->ino_sysino; 645 dev_info_t *dip = px_p->px_dip; 646 px_ih_t *ih_lst = ipil_p->ipil_ih_head; 647 hrtime_t start_time; 648 intr_state_t intr_state; 649 int i, ret = DDI_SUCCESS; 650 651 ASSERT(MUTEX_HELD(&ino_p->ino_ib_p->ib_ino_lst_mutex)); 652 653 DBG(DBG_IB, px_p->px_dip, "px_ib_ino_rem_intr ino=%x\n", 654 ino_p->ino_ino); 655 656 /* Disable the interrupt */ 657 PX_INTR_DISABLE(px_p->px_dip, sysino); 658 659 if (ipil_p->ipil_ih_size == 1) { 660 if (ih_lst != ih_p) 661 goto not_found; 662 663 /* No need to set head/tail as ino_p will be freed */ 664 goto reset; 665 } 666 667 /* Busy wait on pending interrupt */ 668 for (start_time = gethrtime(); !panicstr && 669 ((ret = px_lib_intr_getstate(dip, sysino, &intr_state)) 670 == DDI_SUCCESS) && (intr_state == INTR_DELIVERED_STATE); /* */) { 671 if (gethrtime() - start_time > px_intrpend_timeout) { 672 cmn_err(CE_WARN, "%s%d: px_ib_ino_rem_intr: pending " 673 "sysino 0x%lx(ino 0x%x) timeout", 674 ddi_driver_name(dip), ddi_get_instance(dip), 675 sysino, ino); 676 677 ret = DDI_FAILURE; 678 break; 679 } 680 } 681 682 /* 683 * If the interrupt was previously blocked (left in pending state) 684 * because of jabber we need to clear the pending state in case the 685 * jabber has gone away. 686 */ 687 if (ino_p->ino_unclaimed_intrs > px_unclaimed_intr_max) { 688 cmn_err(CE_WARN, "%s%d: px_ib_ino_rem_intr: " 689 "ino 0x%x has been unblocked", 690 ddi_driver_name(dip), ddi_get_instance(dip), ino); 691 692 ino_p->ino_unclaimed_intrs = 0; 693 ret = px_lib_intr_setstate(dip, sysino, INTR_IDLE_STATE); 694 } 695 696 if (ret != DDI_SUCCESS) { 697 DBG(DBG_IB, dip, "px_ib_ino_rem_intr: failed, " 698 "ino 0x%x sysino 0x%x\n", ino, sysino); 699 700 return (ret); 701 } 702 703 /* Search the link list for ih_p */ 704 for (i = 0; (i < ipil_p->ipil_ih_size) && 705 (ih_lst->ih_next != ih_p); i++, ih_lst = ih_lst->ih_next); 706 707 if (ih_lst->ih_next != ih_p) 708 goto not_found; 709 710 /* Remove ih_p from the link list and maintain the head/tail */ 711 ih_lst->ih_next = ih_p->ih_next; 712 713 if (ipil_p->ipil_ih_head == ih_p) 714 ipil_p->ipil_ih_head = ih_p->ih_next; 715 if (ipil_p->ipil_ih_tail == ih_p) 716 ipil_p->ipil_ih_tail = ih_lst; 717 718 ipil_p->ipil_ih_start = ipil_p->ipil_ih_head; 719 720 reset: 721 if (ih_p->ih_config_handle) 722 pci_config_teardown(&ih_p->ih_config_handle); 723 if (ih_p->ih_ksp != NULL) 724 kstat_delete(ih_p->ih_ksp); 725 726 kmem_free(ih_p, sizeof (px_ih_t)); 727 ipil_p->ipil_ih_size--; 728 729 return (ret); 730 731 not_found: 732 DBG(DBG_R_INTX, ino_p->ino_ib_p->ib_px_p->px_dip, 733 "ino_p=%x does not have ih_p=%x\n", ino_p, ih_p); 734 735 return (DDI_FAILURE); 736 } 737 738 px_ih_t * 739 px_ib_intr_locate_ih(px_ino_pil_t *ipil_p, dev_info_t *rdip, 740 uint32_t inum, msiq_rec_type_t rec_type, msgcode_t msg_code) 741 { 742 px_ih_t *ih_p = ipil_p->ipil_ih_head; 743 int i; 744 745 for (i = 0; i < ipil_p->ipil_ih_size; i++, ih_p = ih_p->ih_next) { 746 if ((ih_p->ih_dip == rdip) && (ih_p->ih_inum == inum) && 747 (ih_p->ih_rec_type == rec_type) && 748 (ih_p->ih_msg_code == msg_code)) 749 return (ih_p); 750 } 751 752 return ((px_ih_t *)NULL); 753 } 754 755 px_ih_t * 756 px_ib_alloc_ih(dev_info_t *rdip, uint32_t inum, 757 uint_t (*int_handler)(caddr_t int_handler_arg1, caddr_t int_handler_arg2), 758 caddr_t int_handler_arg1, caddr_t int_handler_arg2, 759 msiq_rec_type_t rec_type, msgcode_t msg_code) 760 { 761 px_ih_t *ih_p; 762 763 ih_p = kmem_alloc(sizeof (px_ih_t), KM_SLEEP); 764 ih_p->ih_dip = rdip; 765 ih_p->ih_inum = inum; 766 ih_p->ih_intr_state = PX_INTR_STATE_DISABLE; 767 ih_p->ih_handler = int_handler; 768 ih_p->ih_handler_arg1 = int_handler_arg1; 769 ih_p->ih_handler_arg2 = int_handler_arg2; 770 ih_p->ih_config_handle = NULL; 771 ih_p->ih_rec_type = rec_type; 772 ih_p->ih_msg_code = msg_code; 773 ih_p->ih_nsec = 0; 774 ih_p->ih_ticks = 0; 775 ih_p->ih_ksp = NULL; 776 777 return (ih_p); 778 } 779 780 int 781 px_ib_update_intr_state(px_t *px_p, dev_info_t *rdip, 782 uint_t inum, devino_t ino, uint_t pil, 783 uint_t new_intr_state, msiq_rec_type_t rec_type, 784 msgcode_t msg_code) 785 { 786 px_ib_t *ib_p = px_p->px_ib_p; 787 px_ino_t *ino_p; 788 px_ino_pil_t *ipil_p; 789 px_ih_t *ih_p; 790 int ret = DDI_FAILURE; 791 792 DBG(DBG_IB, px_p->px_dip, "px_ib_update_intr_state: %s%d " 793 "inum %x devino %x pil %x state %x\n", ddi_driver_name(rdip), 794 ddi_get_instance(rdip), inum, ino, pil, new_intr_state); 795 796 mutex_enter(&ib_p->ib_ino_lst_mutex); 797 798 ino_p = px_ib_locate_ino(ib_p, ino); 799 if (ino_p && (ipil_p = px_ib_ino_locate_ipil(ino_p, pil))) { 800 if (ih_p = px_ib_intr_locate_ih(ipil_p, rdip, inum, rec_type, 801 msg_code)) { 802 ih_p->ih_intr_state = new_intr_state; 803 ret = DDI_SUCCESS; 804 } 805 } 806 807 mutex_exit(&ib_p->ib_ino_lst_mutex); 808 return (ret); 809 } 810 811 812 static void 813 px_fill_in_intr_devs(pcitool_intr_dev_t *dev, char *driver_name, 814 char *path_name, int instance) 815 { 816 (void) strncpy(dev->driver_name, driver_name, MAXMODCONFNAME-1); 817 dev->driver_name[MAXMODCONFNAME] = '\0'; 818 (void) strncpy(dev->path, path_name, MAXPATHLEN-1); 819 dev->dev_inst = instance; 820 } 821 822 823 /* 824 * Return the dips or number of dips associated with a given interrupt block. 825 * Size of dips array arg is passed in as dips_ret arg. 826 * Number of dips returned is returned in dips_ret arg. 827 * Array of dips gets returned in the dips argument. 828 * Function returns number of dips existing for the given interrupt block. 829 * 830 * Note: this function assumes an enabled/valid INO, which is why it returns 831 * the px node and (Internal) when it finds no other devices (and *devs_ret > 0) 832 */ 833 uint8_t 834 pxtool_ib_get_ino_devs( 835 px_t *px_p, uint32_t ino, uint8_t *devs_ret, pcitool_intr_dev_t *devs) 836 { 837 px_ib_t *ib_p = px_p->px_ib_p; 838 px_ino_t *ino_p; 839 px_ino_pil_t *ipil_p; 840 px_ih_t *ih_p; 841 uint32_t num_devs = 0; 842 char pathname[MAXPATHLEN]; 843 int i, j; 844 845 mutex_enter(&ib_p->ib_ino_lst_mutex); 846 ino_p = px_ib_locate_ino(ib_p, ino); 847 if (ino_p != NULL) { 848 for (j = 0, ipil_p = ino_p->ino_ipil_p; ipil_p; 849 ipil_p = ipil_p->ipil_next_p) { 850 num_devs += ipil_p->ipil_ih_size; 851 852 for (i = 0, ih_p = ipil_p->ipil_ih_head; 853 ((i < ipil_p->ipil_ih_size) && (i < *devs_ret)); 854 i++, j++, ih_p = ih_p->ih_next) { 855 (void) ddi_pathname(ih_p->ih_dip, pathname); 856 px_fill_in_intr_devs(&devs[i], 857 (char *)ddi_driver_name(ih_p->ih_dip), 858 pathname, ddi_get_instance(ih_p->ih_dip)); 859 } 860 } 861 862 *devs_ret = j; 863 } else if (*devs_ret > 0) { 864 (void) ddi_pathname(px_p->px_dip, pathname); 865 strcat(pathname, " (Internal)"); 866 px_fill_in_intr_devs(&devs[0], 867 (char *)ddi_driver_name(px_p->px_dip), pathname, 868 ddi_get_instance(px_p->px_dip)); 869 num_devs = *devs_ret = 1; 870 } 871 872 mutex_exit(&ib_p->ib_ino_lst_mutex); 873 874 return (num_devs); 875 } 876 877 878 void 879 px_ib_log_new_cpu(px_ib_t *ib_p, uint32_t old_cpu_id, uint32_t new_cpu_id, 880 uint32_t ino) 881 { 882 px_ino_t *ino_p; 883 px_ino_pil_t *ipil_p; 884 px_ih_t *ih_p; 885 int i; 886 887 mutex_enter(&ib_p->ib_ino_lst_mutex); 888 889 /* Log in OS data structures the new CPU. */ 890 if (ino_p = px_ib_locate_ino(ib_p, ino)) { 891 892 /* Log in OS data structures the new CPU. */ 893 ino_p->ino_cpuid = new_cpu_id; 894 895 for (ipil_p = ino_p->ino_ipil_p; ipil_p; 896 ipil_p = ipil_p->ipil_next_p) { 897 for (i = 0, ih_p = ipil_p->ipil_ih_head; 898 (i < ipil_p->ipil_ih_size); 899 i++, ih_p = ih_p->ih_next) { 900 /* 901 * Account for any residual time 902 * to be logged for old cpu. 903 */ 904 px_ib_cpu_ticks_to_ih_nsec(ib_p, 905 ih_p, old_cpu_id); 906 } 907 } 908 } 909 910 mutex_exit(&ib_p->ib_ino_lst_mutex); 911 } 912