1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * PX Interrupt Block implementation 30 */ 31 32 #include <sys/types.h> 33 #include <sys/kmem.h> 34 #include <sys/async.h> 35 #include <sys/systm.h> /* panicstr */ 36 #include <sys/spl.h> 37 #include <sys/sunddi.h> 38 #include <sys/machsystm.h> /* intr_dist_add */ 39 #include <sys/ddi_impldefs.h> 40 #include <sys/cpuvar.h> 41 #include <sys/time.h> 42 #include "px_obj.h" 43 44 /*LINTLIBRARY*/ 45 46 static void px_ib_intr_redist(void *arg, int32_t weight_max, int32_t weight); 47 static void px_ib_cpu_ticks_to_ih_nsec(px_ib_t *ib_p, px_ih_t *ih_p, 48 uint32_t cpu_id); 49 static uint_t px_ib_intr_reset(void *arg); 50 static void px_fill_in_intr_devs(pcitool_intr_dev_t *dev, char *driver_name, 51 char *path_name, int instance); 52 53 extern uint64_t xc_tick_jump_limit; 54 55 int 56 px_ib_attach(px_t *px_p) 57 { 58 dev_info_t *dip = px_p->px_dip; 59 px_ib_t *ib_p; 60 sysino_t sysino; 61 px_fault_t *fault_p = &px_p->px_fault; 62 63 DBG(DBG_IB, dip, "px_ib_attach\n"); 64 65 if (px_lib_intr_devino_to_sysino(px_p->px_dip, 66 px_p->px_inos[PX_INTR_PEC], &sysino) != DDI_SUCCESS) 67 return (DDI_FAILURE); 68 69 /* 70 * Allocate interrupt block state structure and link it to 71 * the px state structure. 72 */ 73 ib_p = kmem_zalloc(sizeof (px_ib_t), KM_SLEEP); 74 px_p->px_ib_p = ib_p; 75 ib_p->ib_px_p = px_p; 76 ib_p->ib_ino_lst = (px_ib_ino_info_t *)NULL; 77 78 mutex_init(&ib_p->ib_intr_lock, NULL, MUTEX_DRIVER, NULL); 79 mutex_init(&ib_p->ib_ino_lst_mutex, NULL, MUTEX_DRIVER, NULL); 80 81 bus_func_register(BF_TYPE_RESINTR, px_ib_intr_reset, ib_p); 82 83 intr_dist_add_weighted(px_ib_intr_redist, ib_p); 84 85 /* 86 * Initialize PEC fault data structure 87 */ 88 fault_p->px_fh_dip = dip; 89 fault_p->px_fh_sysino = sysino; 90 fault_p->px_err_func = px_err_dmc_pec_intr; 91 fault_p->px_intr_ino = px_p->px_inos[PX_INTR_PEC]; 92 93 return (DDI_SUCCESS); 94 } 95 96 void 97 px_ib_detach(px_t *px_p) 98 { 99 px_ib_t *ib_p = px_p->px_ib_p; 100 dev_info_t *dip = px_p->px_dip; 101 102 DBG(DBG_IB, dip, "px_ib_detach\n"); 103 104 bus_func_unregister(BF_TYPE_RESINTR, px_ib_intr_reset, ib_p); 105 intr_dist_rem_weighted(px_ib_intr_redist, ib_p); 106 107 mutex_destroy(&ib_p->ib_ino_lst_mutex); 108 mutex_destroy(&ib_p->ib_intr_lock); 109 110 px_ib_free_ino_all(ib_p); 111 112 px_p->px_ib_p = NULL; 113 kmem_free(ib_p, sizeof (px_ib_t)); 114 } 115 116 void 117 px_ib_intr_enable(px_t *px_p, cpuid_t cpu_id, devino_t ino) 118 { 119 px_ib_t *ib_p = px_p->px_ib_p; 120 sysino_t sysino; 121 122 /* 123 * Determine the cpu for the interrupt 124 */ 125 mutex_enter(&ib_p->ib_intr_lock); 126 127 DBG(DBG_IB, px_p->px_dip, 128 "px_ib_intr_enable: ino=%x cpu_id=%x\n", ino, cpu_id); 129 130 if (px_lib_intr_devino_to_sysino(px_p->px_dip, ino, 131 &sysino) != DDI_SUCCESS) { 132 DBG(DBG_IB, px_p->px_dip, 133 "px_ib_intr_enable: px_intr_devino_to_sysino() failed\n"); 134 135 mutex_exit(&ib_p->ib_intr_lock); 136 return; 137 } 138 139 PX_INTR_ENABLE(px_p->px_dip, sysino, cpu_id); 140 px_lib_intr_setstate(px_p->px_dip, sysino, INTR_IDLE_STATE); 141 142 mutex_exit(&ib_p->ib_intr_lock); 143 } 144 145 /*ARGSUSED*/ 146 void 147 px_ib_intr_disable(px_ib_t *ib_p, devino_t ino, int wait) 148 { 149 sysino_t sysino; 150 151 mutex_enter(&ib_p->ib_intr_lock); 152 153 DBG(DBG_IB, ib_p->ib_px_p->px_dip, "px_ib_intr_disable: ino=%x\n", ino); 154 155 /* Disable the interrupt */ 156 if (px_lib_intr_devino_to_sysino(ib_p->ib_px_p->px_dip, ino, 157 &sysino) != DDI_SUCCESS) { 158 DBG(DBG_IB, ib_p->ib_px_p->px_dip, 159 "px_ib_intr_disable: px_intr_devino_to_sysino() failed\n"); 160 161 mutex_exit(&ib_p->ib_intr_lock); 162 return; 163 } 164 165 PX_INTR_DISABLE(ib_p->ib_px_p->px_dip, sysino); 166 167 mutex_exit(&ib_p->ib_intr_lock); 168 } 169 170 171 void 172 px_ib_intr_dist_en(dev_info_t *dip, cpuid_t cpu_id, devino_t ino, 173 boolean_t wait_flag) 174 { 175 uint32_t old_cpu_id; 176 sysino_t sysino; 177 intr_valid_state_t enabled = 0; 178 hrtime_t start_time, prev, curr, interval, jump; 179 hrtime_t intr_timeout; 180 intr_state_t intr_state; 181 int e = DDI_SUCCESS; 182 183 DBG(DBG_IB, dip, "px_ib_intr_dist_en: ino=0x%x\n", ino); 184 185 if (px_lib_intr_devino_to_sysino(dip, ino, &sysino) != DDI_SUCCESS) { 186 DBG(DBG_IB, dip, "px_ib_intr_dist_en: " 187 "px_intr_devino_to_sysino() failed, ino 0x%x\n", ino); 188 return; 189 } 190 191 /* Skip enabling disabled interrupts */ 192 if (px_lib_intr_getvalid(dip, sysino, &enabled) != DDI_SUCCESS) { 193 DBG(DBG_IB, dip, "px_ib_intr_dist_en: px_intr_getvalid() " 194 "failed, sysino 0x%x\n", sysino); 195 return; 196 } 197 if (!enabled) 198 return; 199 200 /* Done if redistributed onto the same cpuid */ 201 if (px_lib_intr_gettarget(dip, sysino, &old_cpu_id) != DDI_SUCCESS) { 202 DBG(DBG_IB, dip, "px_ib_intr_dist_en: " 203 "px_intr_gettarget() failed\n"); 204 return; 205 } 206 if (cpu_id == old_cpu_id) 207 return; 208 209 if (!wait_flag) 210 goto done; 211 212 /* Busy wait on pending interrupts */ 213 PX_INTR_DISABLE(dip, sysino); 214 215 intr_timeout = px_intrpend_timeout; 216 jump = TICK_TO_NSEC(xc_tick_jump_limit); 217 218 for (curr = start_time = gethrtime(); !panicstr && 219 ((e = px_lib_intr_getstate(dip, sysino, &intr_state)) == 220 DDI_SUCCESS) && 221 (intr_state == INTR_DELIVERED_STATE); /* */) { 222 /* 223 * If we have a really large jump in hrtime, it is most 224 * probably because we entered the debugger (or OBP, 225 * in general). So, we adjust the timeout accordingly 226 * to prevent declaring an interrupt timeout. The 227 * master-interrupt mechanism in OBP should deliver 228 * the interrupts properly. 229 */ 230 prev = curr; 231 curr = gethrtime(); 232 interval = curr - prev; 233 if (interval > jump) 234 intr_timeout += interval; 235 if (curr - start_time > intr_timeout) { 236 cmn_err(CE_WARN, 237 "%s%d: px_ib_intr_dist_en: sysino 0x%lx(ino 0x%x) " 238 "from cpu id 0x%x to 0x%x timeout", 239 ddi_driver_name(dip), ddi_get_instance(dip), 240 sysino, ino, old_cpu_id, cpu_id); 241 242 e = DDI_FAILURE; 243 break; 244 } 245 } 246 247 if (e != DDI_SUCCESS) 248 DBG(DBG_IB, dip, "px_ib_intr_dist_en: failed, " 249 "ino 0x%x sysino 0x%x\n", ino, sysino); 250 251 done: 252 PX_INTR_ENABLE(dip, sysino, cpu_id); 253 } 254 255 static void 256 px_ib_cpu_ticks_to_ih_nsec(px_ib_t *ib_p, px_ih_t *ih_p, uint32_t cpu_id) 257 { 258 extern kmutex_t pxintr_ks_template_lock; 259 hrtime_t ticks; 260 261 /* 262 * Because we are updating two fields in ih_t we must lock 263 * pxintr_ks_template_lock to prevent someone from reading the 264 * kstats after we set ih_ticks to 0 and before we increment 265 * ih_nsec to compensate. 266 * 267 * We must also protect against the interrupt arriving and incrementing 268 * ih_ticks between the time we read it and when we reset it to 0. 269 * To do this we use atomic_swap. 270 */ 271 272 ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex)); 273 274 mutex_enter(&pxintr_ks_template_lock); 275 ticks = atomic_swap_64(&ih_p->ih_ticks, 0); 276 ih_p->ih_nsec += (uint64_t)tick2ns(ticks, cpu_id); 277 mutex_exit(&pxintr_ks_template_lock); 278 } 279 280 281 /* 282 * Redistribute interrupts of the specified weight. The first call has a weight 283 * of weight_max, which can be used to trigger initialization for 284 * redistribution. The inos with weight [weight_max, inf.) should be processed 285 * on the "weight == weight_max" call. This first call is followed by calls 286 * of decreasing weights, inos of that weight should be processed. The final 287 * call specifies a weight of zero, this can be used to trigger processing of 288 * stragglers. 289 */ 290 static void 291 px_ib_intr_redist(void *arg, int32_t weight_max, int32_t weight) 292 { 293 px_ib_t *ib_p = (px_ib_t *)arg; 294 px_t *px_p = ib_p->ib_px_p; 295 dev_info_t *dip = px_p->px_dip; 296 px_ib_ino_info_t *ino_p; 297 px_ih_t *ih_lst; 298 int32_t dweight = 0; 299 int i; 300 301 /* Redistribute internal interrupts */ 302 if (weight == 0) { 303 mutex_enter(&ib_p->ib_intr_lock); 304 px_ib_intr_dist_en(dip, intr_dist_cpuid(), 305 px_p->px_inos[PX_INTR_PEC], B_FALSE); 306 mutex_exit(&ib_p->ib_intr_lock); 307 308 px_cb_intr_redist(px_p); 309 } 310 311 /* Redistribute device interrupts */ 312 mutex_enter(&ib_p->ib_ino_lst_mutex); 313 314 for (ino_p = ib_p->ib_ino_lst; ino_p; ino_p = ino_p->ino_next) { 315 uint32_t orig_cpuid; 316 317 /* 318 * Recomputes the sum of interrupt weights of devices that 319 * share the same ino upon first call marked by 320 * (weight == weight_max). 321 */ 322 if (weight == weight_max) { 323 ino_p->ino_intr_weight = 0; 324 for (i = 0, ih_lst = ino_p->ino_ih_head; 325 i < ino_p->ino_ih_size; 326 i++, ih_lst = ih_lst->ih_next) { 327 dweight = i_ddi_get_intr_weight(ih_lst->ih_dip); 328 if (dweight > 0) 329 ino_p->ino_intr_weight += dweight; 330 } 331 } 332 333 /* 334 * As part of redistributing weighted interrupts over cpus, 335 * nexus redistributes device interrupts and updates 336 * cpu weight. The purpose is for the most light weighted 337 * cpu to take the next interrupt and gain weight, therefore 338 * attention demanding device gains more cpu attention by 339 * making itself heavy. 340 */ 341 if ((weight == ino_p->ino_intr_weight) || 342 ((weight >= weight_max) && 343 (ino_p->ino_intr_weight >= weight_max))) { 344 orig_cpuid = ino_p->ino_cpuid; 345 if (cpu[orig_cpuid] == NULL) 346 orig_cpuid = CPU->cpu_id; 347 348 /* select cpuid to target and mark ino established */ 349 ino_p->ino_cpuid = intr_dist_cpuid(); 350 351 /* Add device weight to targeted cpu. */ 352 for (i = 0, ih_lst = ino_p->ino_ih_head; 353 i < ino_p->ino_ih_size; 354 i++, ih_lst = ih_lst->ih_next) { 355 356 dweight = i_ddi_get_intr_weight(ih_lst->ih_dip); 357 intr_dist_cpuid_add_device_weight( 358 ino_p->ino_cpuid, ih_lst->ih_dip, dweight); 359 360 /* 361 * Different cpus may have different clock 362 * speeds. to account for this, whenever an 363 * interrupt is moved to a new CPU, we 364 * convert the accumulated ticks into nsec, 365 * based upon the clock rate of the prior 366 * CPU. 367 * 368 * It is possible that the prior CPU no longer 369 * exists. In this case, fall back to using 370 * this CPU's clock rate. 371 * 372 * Note that the value in ih_ticks has already 373 * been corrected for any power savings mode 374 * which might have been in effect. 375 */ 376 px_ib_cpu_ticks_to_ih_nsec(ib_p, ih_lst, 377 orig_cpuid); 378 } 379 380 /* enable interrupt on new targeted cpu */ 381 px_ib_intr_dist_en(dip, ino_p->ino_cpuid, 382 ino_p->ino_ino, B_TRUE); 383 } 384 } 385 mutex_exit(&ib_p->ib_ino_lst_mutex); 386 } 387 388 /* 389 * Reset interrupts to IDLE. This function is called during 390 * panic handling after redistributing interrupts; it's needed to 391 * support dumping to network devices after 'sync' from OBP. 392 * 393 * N.B. This routine runs in a context where all other threads 394 * are permanently suspended. 395 */ 396 static uint_t 397 px_ib_intr_reset(void *arg) 398 { 399 px_ib_t *ib_p = (px_ib_t *)arg; 400 401 DBG(DBG_IB, ib_p->ib_px_p->px_dip, "px_ib_intr_reset\n"); 402 403 if (px_lib_intr_reset(ib_p->ib_px_p->px_dip) != DDI_SUCCESS) 404 return (BF_FATAL); 405 406 return (BF_NONE); 407 } 408 409 /* 410 * Locate ino_info structure on ib_p->ib_ino_lst according to ino# 411 * returns NULL if not found. 412 */ 413 px_ib_ino_info_t * 414 px_ib_locate_ino(px_ib_t *ib_p, devino_t ino_num) 415 { 416 px_ib_ino_info_t *ino_p = ib_p->ib_ino_lst; 417 418 ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex)); 419 420 for (; ino_p && ino_p->ino_ino != ino_num; ino_p = ino_p->ino_next); 421 422 return (ino_p); 423 } 424 425 px_ib_ino_info_t * 426 px_ib_new_ino(px_ib_t *ib_p, devino_t ino_num, px_ih_t *ih_p) 427 { 428 px_ib_ino_info_t *ino_p = kmem_alloc(sizeof (px_ib_ino_info_t), 429 KM_SLEEP); 430 sysino_t sysino; 431 432 ino_p->ino_ino = ino_num; 433 ino_p->ino_ib_p = ib_p; 434 ino_p->ino_unclaimed = 0; 435 436 if (px_lib_intr_devino_to_sysino(ib_p->ib_px_p->px_dip, ino_p->ino_ino, 437 &sysino) != DDI_SUCCESS) 438 return (NULL); 439 440 ino_p->ino_sysino = sysino; 441 442 /* 443 * Cannot disable interrupt since we might share slot 444 */ 445 ih_p->ih_next = ih_p; 446 ino_p->ino_ih_head = ih_p; 447 ino_p->ino_ih_tail = ih_p; 448 ino_p->ino_ih_start = ih_p; 449 ino_p->ino_ih_size = 1; 450 451 ino_p->ino_next = ib_p->ib_ino_lst; 452 ib_p->ib_ino_lst = ino_p; 453 454 return (ino_p); 455 } 456 457 /* 458 * The ino_p is retrieved by previous call to px_ib_locate_ino(). 459 */ 460 void 461 px_ib_delete_ino(px_ib_t *ib_p, px_ib_ino_info_t *ino_p) 462 { 463 px_ib_ino_info_t *list = ib_p->ib_ino_lst; 464 465 ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex)); 466 467 if (list == ino_p) 468 ib_p->ib_ino_lst = list->ino_next; 469 else { 470 for (; list->ino_next != ino_p; list = list->ino_next); 471 list->ino_next = ino_p->ino_next; 472 } 473 } 474 475 /* 476 * Free all ino when we are detaching. 477 */ 478 void 479 px_ib_free_ino_all(px_ib_t *ib_p) 480 { 481 px_ib_ino_info_t *tmp = ib_p->ib_ino_lst; 482 px_ib_ino_info_t *next = NULL; 483 484 while (tmp) { 485 next = tmp->ino_next; 486 kmem_free(tmp, sizeof (px_ib_ino_info_t)); 487 tmp = next; 488 } 489 } 490 491 int 492 px_ib_ino_add_intr(px_t *px_p, px_ib_ino_info_t *ino_p, px_ih_t *ih_p) 493 { 494 px_ib_t *ib_p = ino_p->ino_ib_p; 495 devino_t ino = ino_p->ino_ino; 496 sysino_t sysino = ino_p->ino_sysino; 497 dev_info_t *dip = px_p->px_dip; 498 cpuid_t curr_cpu; 499 hrtime_t start_time; 500 intr_state_t intr_state; 501 int ret = DDI_SUCCESS; 502 503 ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex)); 504 ASSERT(ib_p == px_p->px_ib_p); 505 506 DBG(DBG_IB, dip, "px_ib_ino_add_intr ino=%x\n", ino_p->ino_ino); 507 508 /* Disable the interrupt */ 509 if ((ret = px_lib_intr_gettarget(dip, sysino, 510 &curr_cpu)) != DDI_SUCCESS) { 511 DBG(DBG_IB, dip, 512 "px_ib_ino_add_intr px_intr_gettarget() failed\n"); 513 514 return (ret); 515 } 516 517 PX_INTR_DISABLE(dip, sysino); 518 519 /* Busy wait on pending interrupt */ 520 for (start_time = gethrtime(); !panicstr && 521 ((ret = px_lib_intr_getstate(dip, sysino, &intr_state)) 522 == DDI_SUCCESS) && (intr_state == INTR_DELIVERED_STATE); /* */) { 523 if (gethrtime() - start_time > px_intrpend_timeout) { 524 cmn_err(CE_WARN, "%s%d: px_ib_ino_add_intr: pending " 525 "sysino 0x%lx(ino 0x%x) timeout", 526 ddi_driver_name(dip), ddi_get_instance(dip), 527 sysino, ino); 528 529 ret = DDI_FAILURE; 530 break; 531 } 532 } 533 534 if (ret != DDI_SUCCESS) { 535 DBG(DBG_IB, dip, "px_ib_ino_add_intr: failed, " 536 "ino 0x%x sysino 0x%x\n", ino, sysino); 537 538 return (ret); 539 } 540 541 /* Link up px_ispec_t portion of the ppd */ 542 ih_p->ih_next = ino_p->ino_ih_head; 543 ino_p->ino_ih_tail->ih_next = ih_p; 544 ino_p->ino_ih_tail = ih_p; 545 546 ino_p->ino_ih_start = ino_p->ino_ih_head; 547 ino_p->ino_ih_size++; 548 549 /* 550 * If the interrupt was previously blocked (left in pending state) 551 * because of jabber we need to clear the pending state in case the 552 * jabber has gone away. 553 */ 554 if (ino_p->ino_unclaimed > px_unclaimed_intr_max) { 555 cmn_err(CE_WARN, 556 "%s%d: px_ib_ino_add_intr: ino 0x%x has been unblocked", 557 ddi_driver_name(dip), ddi_get_instance(dip), ino); 558 559 ino_p->ino_unclaimed = 0; 560 if ((ret = px_lib_intr_setstate(dip, sysino, 561 INTR_IDLE_STATE)) != DDI_SUCCESS) { 562 DBG(DBG_IB, px_p->px_dip, 563 "px_ib_ino_add_intr px_intr_setstate failed\n"); 564 565 return (ret); 566 } 567 } 568 569 /* Re-enable interrupt */ 570 PX_INTR_ENABLE(dip, sysino, curr_cpu); 571 572 return (ret); 573 } 574 575 /* 576 * Removes px_ispec_t from the ino's link list. 577 * uses hardware mutex to lock out interrupt threads. 578 * Side effects: interrupt belongs to that ino is turned off on return. 579 * if we are sharing PX slot with other inos, the caller needs 580 * to turn it back on. 581 */ 582 int 583 px_ib_ino_rem_intr(px_t *px_p, px_ib_ino_info_t *ino_p, px_ih_t *ih_p) 584 { 585 devino_t ino = ino_p->ino_ino; 586 sysino_t sysino = ino_p->ino_sysino; 587 dev_info_t *dip = px_p->px_dip; 588 px_ih_t *ih_lst = ino_p->ino_ih_head; 589 hrtime_t start_time; 590 intr_state_t intr_state; 591 int i, ret = DDI_SUCCESS; 592 593 ASSERT(MUTEX_HELD(&ino_p->ino_ib_p->ib_ino_lst_mutex)); 594 595 DBG(DBG_IB, px_p->px_dip, "px_ib_ino_rem_intr ino=%x\n", 596 ino_p->ino_ino); 597 598 /* Disable the interrupt */ 599 PX_INTR_DISABLE(px_p->px_dip, sysino); 600 601 if (ino_p->ino_ih_size == 1) { 602 if (ih_lst != ih_p) 603 goto not_found; 604 605 /* No need to set head/tail as ino_p will be freed */ 606 goto reset; 607 } 608 609 /* Busy wait on pending interrupt */ 610 for (start_time = gethrtime(); !panicstr && 611 ((ret = px_lib_intr_getstate(dip, sysino, &intr_state)) 612 == DDI_SUCCESS) && (intr_state == INTR_DELIVERED_STATE); /* */) { 613 if (gethrtime() - start_time > px_intrpend_timeout) { 614 cmn_err(CE_WARN, "%s%d: px_ib_ino_rem_intr: pending " 615 "sysino 0x%lx(ino 0x%x) timeout", 616 ddi_driver_name(dip), ddi_get_instance(dip), 617 sysino, ino); 618 619 ret = DDI_FAILURE; 620 break; 621 } 622 } 623 624 if (ret != DDI_SUCCESS) { 625 DBG(DBG_IB, dip, "px_ib_ino_rem_intr: failed, " 626 "ino 0x%x sysino 0x%x\n", ino, sysino); 627 628 return (ret); 629 } 630 631 /* 632 * If the interrupt was previously blocked (left in pending state) 633 * because of jabber we need to clear the pending state in case the 634 * jabber has gone away. 635 */ 636 if (ino_p->ino_unclaimed > px_unclaimed_intr_max) { 637 cmn_err(CE_WARN, "%s%d: px_ib_ino_rem_intr: " 638 "ino 0x%x has been unblocked", 639 ddi_driver_name(dip), ddi_get_instance(dip), ino); 640 641 ino_p->ino_unclaimed = 0; 642 if ((ret = px_lib_intr_setstate(dip, sysino, 643 INTR_IDLE_STATE)) != DDI_SUCCESS) { 644 DBG(DBG_IB, px_p->px_dip, 645 "px_ib_ino_rem_intr px_intr_setstate failed\n"); 646 647 return (ret); 648 } 649 } 650 651 /* Search the link list for ih_p */ 652 for (i = 0; (i < ino_p->ino_ih_size) && 653 (ih_lst->ih_next != ih_p); i++, ih_lst = ih_lst->ih_next); 654 655 if (ih_lst->ih_next != ih_p) 656 goto not_found; 657 658 /* Remove ih_p from the link list and maintain the head/tail */ 659 ih_lst->ih_next = ih_p->ih_next; 660 661 if (ino_p->ino_ih_head == ih_p) 662 ino_p->ino_ih_head = ih_p->ih_next; 663 if (ino_p->ino_ih_tail == ih_p) 664 ino_p->ino_ih_tail = ih_lst; 665 666 ino_p->ino_ih_start = ino_p->ino_ih_head; 667 668 reset: 669 if (ih_p->ih_config_handle) 670 pci_config_teardown(&ih_p->ih_config_handle); 671 if (ih_p->ih_ksp != NULL) 672 kstat_delete(ih_p->ih_ksp); 673 674 kmem_free(ih_p, sizeof (px_ih_t)); 675 ino_p->ino_ih_size--; 676 677 return (ret); 678 679 not_found: 680 DBG(DBG_R_INTX, ino_p->ino_ib_p->ib_px_p->px_dip, 681 "ino_p=%x does not have ih_p=%x\n", ino_p, ih_p); 682 683 return (DDI_FAILURE); 684 } 685 686 px_ih_t * 687 px_ib_ino_locate_intr(px_ib_ino_info_t *ino_p, dev_info_t *rdip, 688 uint32_t inum, msiq_rec_type_t rec_type, msgcode_t msg_code) 689 { 690 px_ih_t *ih_lst = ino_p->ino_ih_head; 691 int i; 692 693 for (i = 0; i < ino_p->ino_ih_size; i++, ih_lst = ih_lst->ih_next) { 694 if ((ih_lst->ih_dip == rdip) && (ih_lst->ih_inum == inum) && 695 (ih_lst->ih_rec_type == rec_type) && 696 (ih_lst->ih_msg_code == msg_code)) 697 return (ih_lst); 698 } 699 700 return ((px_ih_t *)NULL); 701 } 702 703 px_ih_t * 704 px_ib_alloc_ih(dev_info_t *rdip, uint32_t inum, 705 uint_t (*int_handler)(caddr_t int_handler_arg1, caddr_t int_handler_arg2), 706 caddr_t int_handler_arg1, caddr_t int_handler_arg2, 707 msiq_rec_type_t rec_type, msgcode_t msg_code) 708 { 709 px_ih_t *ih_p; 710 711 ih_p = kmem_alloc(sizeof (px_ih_t), KM_SLEEP); 712 ih_p->ih_dip = rdip; 713 ih_p->ih_inum = inum; 714 ih_p->ih_intr_state = PX_INTR_STATE_DISABLE; 715 ih_p->ih_handler = int_handler; 716 ih_p->ih_handler_arg1 = int_handler_arg1; 717 ih_p->ih_handler_arg2 = int_handler_arg2; 718 ih_p->ih_config_handle = NULL; 719 ih_p->ih_rec_type = rec_type; 720 ih_p->ih_msg_code = msg_code; 721 ih_p->ih_nsec = 0; 722 ih_p->ih_ticks = 0; 723 ih_p->ih_ksp = NULL; 724 725 return (ih_p); 726 } 727 728 int 729 px_ib_update_intr_state(px_t *px_p, dev_info_t *rdip, 730 uint_t inum, devino_t ino, uint_t new_intr_state, 731 msiq_rec_type_t rec_type, msgcode_t msg_code) 732 { 733 px_ib_t *ib_p = px_p->px_ib_p; 734 px_ib_ino_info_t *ino_p; 735 px_ih_t *ih_p; 736 int ret = DDI_FAILURE; 737 738 DBG(DBG_IB, px_p->px_dip, "ib_update_intr_state: %s%d " 739 "inum %x devino %x state %x\n", ddi_driver_name(rdip), 740 ddi_get_instance(rdip), inum, ino, new_intr_state); 741 742 mutex_enter(&ib_p->ib_ino_lst_mutex); 743 744 if (ino_p = px_ib_locate_ino(ib_p, ino)) { 745 if (ih_p = px_ib_ino_locate_intr(ino_p, rdip, inum, rec_type, 746 msg_code)) { 747 ih_p->ih_intr_state = new_intr_state; 748 ret = DDI_SUCCESS; 749 } 750 } 751 752 mutex_exit(&ib_p->ib_ino_lst_mutex); 753 return (ret); 754 } 755 756 757 static void 758 px_fill_in_intr_devs(pcitool_intr_dev_t *dev, char *driver_name, 759 char *path_name, int instance) 760 { 761 (void) strncpy(dev->driver_name, driver_name, MAXMODCONFNAME-1); 762 dev->driver_name[MAXMODCONFNAME] = '\0'; 763 (void) strncpy(dev->path, path_name, MAXPATHLEN-1); 764 dev->dev_inst = instance; 765 } 766 767 768 /* 769 * Return the dips or number of dips associated with a given interrupt block. 770 * Size of dips array arg is passed in as dips_ret arg. 771 * Number of dips returned is returned in dips_ret arg. 772 * Array of dips gets returned in the dips argument. 773 * Function returns number of dips existing for the given interrupt block. 774 * 775 * Note: this function assumes an enabled/valid INO, which is why it returns 776 * the px node and (Internal) when it finds no other devices (and *devs_ret > 0) 777 */ 778 uint8_t 779 pxtool_ib_get_ino_devs( 780 px_t *px_p, uint32_t ino, uint8_t *devs_ret, pcitool_intr_dev_t *devs) 781 { 782 px_ib_t *ib_p = px_p->px_ib_p; 783 px_ib_ino_info_t *ino_p; 784 px_ih_t *ih_p; 785 uint32_t num_devs = 0; 786 char pathname[MAXPATHLEN]; 787 int i; 788 789 mutex_enter(&ib_p->ib_ino_lst_mutex); 790 ino_p = px_ib_locate_ino(ib_p, ino); 791 if (ino_p != NULL) { 792 num_devs = ino_p->ino_ih_size; 793 for (i = 0, ih_p = ino_p->ino_ih_head; 794 ((i < ino_p->ino_ih_size) && (i < *devs_ret)); 795 i++, ih_p = ih_p->ih_next) { 796 (void) ddi_pathname(ih_p->ih_dip, pathname); 797 px_fill_in_intr_devs(&devs[i], 798 (char *)ddi_driver_name(ih_p->ih_dip), pathname, 799 ddi_get_instance(ih_p->ih_dip)); 800 } 801 *devs_ret = i; 802 803 } else if (*devs_ret > 0) { 804 (void) ddi_pathname(px_p->px_dip, pathname); 805 strcat(pathname, " (Internal)"); 806 px_fill_in_intr_devs(&devs[0], 807 (char *)ddi_driver_name(px_p->px_dip), pathname, 808 ddi_get_instance(px_p->px_dip)); 809 num_devs = *devs_ret = 1; 810 } 811 812 mutex_exit(&ib_p->ib_ino_lst_mutex); 813 814 return (num_devs); 815 } 816 817 818 void 819 px_ib_log_new_cpu(px_ib_t *ib_p, uint32_t old_cpu_id, uint32_t new_cpu_id, 820 uint32_t ino) 821 { 822 px_ib_ino_info_t *ino_p; 823 824 mutex_enter(&ib_p->ib_ino_lst_mutex); 825 826 /* Log in OS data structures the new CPU. */ 827 ino_p = px_ib_locate_ino(ib_p, ino); 828 if (ino_p != NULL) { 829 830 /* Log in OS data structures the new CPU. */ 831 ino_p->ino_cpuid = new_cpu_id; 832 833 /* Account for any residual time to be logged for old cpu. */ 834 px_ib_cpu_ticks_to_ih_nsec(ib_p, ino_p->ino_ih_head, 835 old_cpu_id); 836 } 837 838 mutex_exit(&ib_p->ib_ino_lst_mutex); 839 } 840