1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * PX Fault Management Architecture 28 */ 29 #include <sys/types.h> 30 #include <sys/sunndi.h> 31 #include <sys/sunddi.h> 32 #include <sys/fm/protocol.h> 33 #include <sys/fm/util.h> 34 #include <sys/fm/io/pci.h> 35 #include <sys/membar.h> 36 #include "px_obj.h" 37 38 extern uint_t px_ranges_phi_mask; 39 40 #define PX_PCIE_PANIC_BITS \ 41 (PCIE_AER_UCE_DLP | PCIE_AER_UCE_FCP | PCIE_AER_UCE_TO | \ 42 PCIE_AER_UCE_RO | PCIE_AER_UCE_MTLP | PCIE_AER_UCE_ECRC) 43 #define PX_PCIE_NO_PANIC_BITS \ 44 (PCIE_AER_UCE_TRAINING | PCIE_AER_UCE_SD | PCIE_AER_UCE_CA | \ 45 PCIE_AER_UCE_UC | PCIE_AER_UCE_UR) 46 47 /* 48 * Global panicing state variabled used to control if further error handling 49 * should occur. If the system is already panic'ing or if PX itself has 50 * recommended panic'ing the system, no further error handling should occur to 51 * prevent the system from hanging. 52 */ 53 boolean_t px_panicing = B_FALSE; 54 55 static int px_pcie_ptlp(dev_info_t *dip, ddi_fm_error_t *derr, 56 px_err_pcie_t *regs); 57 58 #if defined(DEBUG) 59 static void px_pcie_log(dev_info_t *dip, px_err_pcie_t *regs); 60 #else /* DEBUG */ 61 #define px_pcie_log 0 && 62 #endif /* DEBUG */ 63 64 /* 65 * Initialize px FMA support 66 */ 67 int 68 px_fm_attach(px_t *px_p) 69 { 70 int i; 71 dev_info_t *dip = px_p->px_dip; 72 pcie_bus_t *bus_p; 73 74 px_p->px_fm_cap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE | 75 DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE; 76 77 /* 78 * check parents' capability 79 */ 80 ddi_fm_init(dip, &px_p->px_fm_cap, &px_p->px_fm_ibc); 81 82 /* 83 * parents need to be ereport and error handling capable 84 */ 85 ASSERT(px_p->px_fm_cap && 86 (DDI_FM_ERRCB_CAPABLE | DDI_FM_EREPORT_CAPABLE)); 87 88 /* 89 * Initialize lock to synchronize fabric error handling 90 */ 91 mutex_init(&px_p->px_fm_mutex, NULL, MUTEX_DRIVER, 92 (void *)px_p->px_fm_ibc); 93 94 px_p->px_pfd_idx = 0; 95 for (i = 0; i < 5; i++) 96 pcie_rc_init_pfd(dip, &px_p->px_pfd_arr[i]); 97 PCIE_DIP2PFD(dip) = px_p->px_pfd_arr; 98 99 bus_p = PCIE_DIP2BUS(dip); 100 bus_p->bus_rp_bdf = px_p->px_bdf; 101 bus_p->bus_rp_dip = dip; 102 103 /* 104 * register error callback in parent 105 */ 106 ddi_fm_handler_register(dip, px_fm_callback, px_p); 107 108 return (DDI_SUCCESS); 109 } 110 111 /* 112 * Deregister FMA 113 */ 114 void 115 px_fm_detach(px_t *px_p) 116 { 117 int i; 118 119 ddi_fm_handler_unregister(px_p->px_dip); 120 mutex_destroy(&px_p->px_fm_mutex); 121 ddi_fm_fini(px_p->px_dip); 122 for (i = 0; i < 5; i++) 123 pcie_rc_fini_pfd(&px_p->px_pfd_arr[i]); 124 } 125 126 /* 127 * Function used to setup access functions depending on level of desired 128 * protection. 129 */ 130 void 131 px_fm_acc_setup(ddi_map_req_t *mp, dev_info_t *rdip, pci_regspec_t *rp) 132 { 133 uchar_t fflag; 134 ndi_err_t *errp; 135 ddi_acc_hdl_t *hp; 136 ddi_acc_impl_t *ap; 137 138 hp = mp->map_handlep; 139 ap = (ddi_acc_impl_t *)hp->ah_platform_private; 140 fflag = ap->ahi_common.ah_acc.devacc_attr_access; 141 142 if (mp->map_op == DDI_MO_MAP_LOCKED) { 143 ndi_fmc_insert(rdip, ACC_HANDLE, (void *)hp, NULL); 144 switch (fflag) { 145 case DDI_FLAGERR_ACC: 146 ap->ahi_get8 = i_ddi_prot_get8; 147 ap->ahi_get16 = i_ddi_prot_get16; 148 ap->ahi_get32 = i_ddi_prot_get32; 149 ap->ahi_get64 = i_ddi_prot_get64; 150 ap->ahi_put8 = i_ddi_prot_put8; 151 ap->ahi_put16 = i_ddi_prot_put16; 152 ap->ahi_put32 = i_ddi_prot_put32; 153 ap->ahi_put64 = i_ddi_prot_put64; 154 ap->ahi_rep_get8 = i_ddi_prot_rep_get8; 155 ap->ahi_rep_get16 = i_ddi_prot_rep_get16; 156 ap->ahi_rep_get32 = i_ddi_prot_rep_get32; 157 ap->ahi_rep_get64 = i_ddi_prot_rep_get64; 158 ap->ahi_rep_put8 = i_ddi_prot_rep_put8; 159 ap->ahi_rep_put16 = i_ddi_prot_rep_put16; 160 ap->ahi_rep_put32 = i_ddi_prot_rep_put32; 161 ap->ahi_rep_put64 = i_ddi_prot_rep_put64; 162 impl_acc_err_init(hp); 163 errp = ((ddi_acc_impl_t *)hp)->ahi_err; 164 if ((rp->pci_phys_hi & PCI_REG_ADDR_M) == 165 PCI_ADDR_CONFIG) 166 errp->err_cf = px_err_cfg_hdl_check; 167 else 168 errp->err_cf = px_err_pio_hdl_check; 169 break; 170 case DDI_CAUTIOUS_ACC : 171 ap->ahi_get8 = i_ddi_caut_get8; 172 ap->ahi_get16 = i_ddi_caut_get16; 173 ap->ahi_get32 = i_ddi_caut_get32; 174 ap->ahi_get64 = i_ddi_caut_get64; 175 ap->ahi_put8 = i_ddi_caut_put8; 176 ap->ahi_put16 = i_ddi_caut_put16; 177 ap->ahi_put32 = i_ddi_caut_put32; 178 ap->ahi_put64 = i_ddi_caut_put64; 179 ap->ahi_rep_get8 = i_ddi_caut_rep_get8; 180 ap->ahi_rep_get16 = i_ddi_caut_rep_get16; 181 ap->ahi_rep_get32 = i_ddi_caut_rep_get32; 182 ap->ahi_rep_get64 = i_ddi_caut_rep_get64; 183 ap->ahi_rep_put8 = i_ddi_caut_rep_put8; 184 ap->ahi_rep_put16 = i_ddi_caut_rep_put16; 185 ap->ahi_rep_put32 = i_ddi_caut_rep_put32; 186 ap->ahi_rep_put64 = i_ddi_caut_rep_put64; 187 impl_acc_err_init(hp); 188 errp = ((ddi_acc_impl_t *)hp)->ahi_err; 189 if ((rp->pci_phys_hi & PCI_REG_ADDR_M) == 190 PCI_ADDR_CONFIG) 191 errp->err_cf = px_err_cfg_hdl_check; 192 else 193 errp->err_cf = px_err_pio_hdl_check; 194 break; 195 default: 196 /* Illegal state, remove the handle from cache */ 197 ndi_fmc_remove(rdip, ACC_HANDLE, (void *)hp); 198 break; 199 } 200 } else if (mp->map_op == DDI_MO_UNMAP) { 201 ndi_fmc_remove(rdip, ACC_HANDLE, (void *)hp); 202 } 203 } 204 205 /* 206 * Function used to initialize FMA for our children nodes. Called 207 * through pci busops when child node calls ddi_fm_init. 208 */ 209 /*ARGSUSED*/ 210 int 211 px_fm_init_child(dev_info_t *dip, dev_info_t *cdip, int cap, 212 ddi_iblock_cookie_t *ibc_p) 213 { 214 px_t *px_p = DIP_TO_STATE(dip); 215 216 ASSERT(ibc_p != NULL); 217 *ibc_p = px_p->px_fm_ibc; 218 219 return (px_p->px_fm_cap); 220 } 221 222 /* 223 * lock access for exclusive PCIe access 224 */ 225 void 226 px_bus_enter(dev_info_t *dip, ddi_acc_handle_t handle) 227 { 228 px_pec_t *pec_p = ((px_t *)DIP_TO_STATE(dip))->px_pec_p; 229 230 /* 231 * Exclusive access has been used for cautious put/get, 232 * Both utilize i_ddi_ontrap which, on sparcv9, implements 233 * similar protection as what on_trap() does, and which calls 234 * membar #Sync to flush out all cpu deferred errors 235 * prior to get/put operation, so here we're not calling 236 * membar #Sync - a difference from what's in pci_bus_enter(). 237 */ 238 mutex_enter(&pec_p->pec_pokefault_mutex); 239 pec_p->pec_acc_hdl = handle; 240 } 241 242 /* 243 * unlock access for exclusive PCIe access 244 */ 245 /* ARGSUSED */ 246 void 247 px_bus_exit(dev_info_t *dip, ddi_acc_handle_t handle) 248 { 249 px_t *px_p = DIP_TO_STATE(dip); 250 px_pec_t *pec_p = px_p->px_pec_p; 251 252 pec_p->pec_acc_hdl = NULL; 253 mutex_exit(&pec_p->pec_pokefault_mutex); 254 } 255 256 static uint64_t 257 px_in_addr_range(dev_info_t *dip, pci_ranges_t *ranges_p, uint64_t addr) 258 { 259 uint64_t addr_low, addr_high; 260 261 addr_low = (uint64_t)(ranges_p->parent_high & px_ranges_phi_mask) << 32; 262 addr_low |= (uint64_t)ranges_p->parent_low; 263 addr_high = addr_low + ((uint64_t)ranges_p->size_high << 32) + 264 (uint64_t)ranges_p->size_low; 265 266 DBG(DBG_ERR_INTR, dip, "Addr: 0x%llx high: 0x%llx low: 0x%llx\n", 267 addr, addr_high, addr_low); 268 269 if ((addr < addr_high) && (addr >= addr_low)) 270 return (addr_low); 271 272 return (0); 273 } 274 275 /* 276 * PCI error callback which is registered with our parent to call 277 * for PCIe logging when the CPU traps due to PCIe Uncorrectable Errors 278 * and PCI BERR/TO/UE on IO Loads. 279 */ 280 /*ARGSUSED*/ 281 int 282 px_fm_callback(dev_info_t *dip, ddi_fm_error_t *derr, const void *impl_data) 283 { 284 dev_info_t *pdip = ddi_get_parent(dip); 285 px_t *px_p = (px_t *)impl_data; 286 int i, acc_type = 0; 287 int lookup, rc_err, fab_err; 288 uint64_t addr, base_addr; 289 uint64_t fault_addr = (uint64_t)derr->fme_bus_specific; 290 pcie_req_id_t bdf = PCIE_INVALID_BDF; 291 pci_ranges_t *ranges_p; 292 int range_len; 293 pf_data_t *pfd_p; 294 295 /* 296 * If the current thread already owns the px_fm_mutex, then we 297 * have encountered an error while processing a previous 298 * error. Attempting to take the mutex again will cause the 299 * system to deadlock. 300 */ 301 if (px_p->px_fm_mutex_owner == curthread) 302 return (DDI_FM_FATAL); 303 304 i_ddi_fm_handler_exit(pdip); 305 306 if (px_fm_enter(px_p) != DDI_SUCCESS) { 307 i_ddi_fm_handler_enter(pdip); 308 return (DDI_FM_FATAL); 309 } 310 311 /* 312 * Make sure this failed load came from this PCIe port. Check by 313 * matching the upper 32 bits of the address with the ranges property. 314 */ 315 range_len = px_p->px_ranges_length / sizeof (pci_ranges_t); 316 i = 0; 317 for (ranges_p = px_p->px_ranges_p; i < range_len; i++, ranges_p++) { 318 base_addr = px_in_addr_range(dip, ranges_p, fault_addr); 319 if (base_addr) { 320 switch (ranges_p->child_high & PCI_ADDR_MASK) { 321 case PCI_ADDR_CONFIG: 322 acc_type = PF_ADDR_CFG; 323 addr = NULL; 324 bdf = (pcie_req_id_t)((fault_addr >> 12) & 325 0xFFFF); 326 break; 327 case PCI_ADDR_IO: 328 case PCI_ADDR_MEM64: 329 case PCI_ADDR_MEM32: 330 acc_type = PF_ADDR_PIO; 331 addr = fault_addr - base_addr; 332 bdf = PCIE_INVALID_BDF; 333 break; 334 } 335 break; 336 } 337 } 338 339 /* This address doesn't belong to this leaf, just return with OK */ 340 if (!acc_type) { 341 px_fm_exit(px_p); 342 i_ddi_fm_handler_enter(pdip); 343 return (DDI_FM_OK); 344 } 345 346 rc_err = px_err_cmn_intr(px_p, derr, PX_TRAP_CALL, PX_FM_BLOCK_ALL); 347 lookup = pf_hdl_lookup(dip, derr->fme_ena, acc_type, (uint64_t)addr, 348 bdf); 349 350 pfd_p = px_rp_en_q(px_p, bdf, addr, 351 (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)); 352 PCIE_ROOT_EH_SRC(pfd_p)->intr_type = PF_INTR_TYPE_DATA; 353 354 /* Update affected info, either addr or bdf is not NULL */ 355 if (addr) { 356 PFD_AFFECTED_DEV(pfd_p)->pe_affected_flags = PF_AFFECTED_ADDR; 357 } else if (PCIE_CHECK_VALID_BDF(bdf)) { 358 PFD_AFFECTED_DEV(pfd_p)->pe_affected_flags = PF_AFFECTED_BDF; 359 PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = bdf; 360 } 361 362 fab_err = px_scan_fabric(px_p, dip, derr); 363 364 px_fm_exit(px_p); 365 i_ddi_fm_handler_enter(pdip); 366 367 if (!px_die) 368 return (DDI_FM_OK); 369 370 if ((rc_err & (PX_PANIC | PX_PROTECTED)) || 371 (fab_err & PF_ERR_FATAL_FLAGS) || 372 (lookup == PF_HDL_NOTFOUND)) 373 return (DDI_FM_FATAL); 374 else if ((rc_err == PX_NO_ERROR) && (fab_err == PF_ERR_NO_ERROR)) 375 return (DDI_FM_OK); 376 377 return (DDI_FM_NONFATAL); 378 } 379 380 /* 381 * px_err_fabric_intr: 382 * Interrupt handler for PCIE fabric block. 383 * o lock 384 * o create derr 385 * o px_err_cmn_intr(leaf, with jbc) 386 * o send ereport(fire fmri, derr, payload = BDF) 387 * o dispatch (leaf) 388 * o unlock 389 * o handle error: fatal? fm_panic() : return INTR_CLAIMED) 390 */ 391 /* ARGSUSED */ 392 uint_t 393 px_err_fabric_intr(px_t *px_p, msgcode_t msg_code, pcie_req_id_t rid) 394 { 395 dev_info_t *rpdip = px_p->px_dip; 396 int rc_err, fab_err; 397 ddi_fm_error_t derr; 398 uint32_t rp_status; 399 uint16_t ce_source, ue_source; 400 pf_data_t *pfd_p; 401 402 if (px_fm_enter(px_p) != DDI_SUCCESS) 403 goto done; 404 405 /* Create the derr */ 406 bzero(&derr, sizeof (ddi_fm_error_t)); 407 derr.fme_version = DDI_FME_VERSION; 408 derr.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 409 derr.fme_flag = DDI_FM_ERR_UNEXPECTED; 410 411 px_err_safeacc_check(px_p, &derr); 412 413 if (msg_code == PCIE_MSG_CODE_ERR_COR) { 414 rp_status = PCIE_AER_RE_STS_CE_RCVD; 415 ce_source = rid; 416 ue_source = 0; 417 } else { 418 rp_status = PCIE_AER_RE_STS_FE_NFE_RCVD; 419 ce_source = 0; 420 ue_source = rid; 421 if (msg_code == PCIE_MSG_CODE_ERR_NONFATAL) 422 rp_status |= PCIE_AER_RE_STS_NFE_MSGS_RCVD; 423 else { 424 rp_status |= PCIE_AER_RE_STS_FE_MSGS_RCVD; 425 rp_status |= PCIE_AER_RE_STS_FIRST_UC_FATAL; 426 } 427 } 428 429 if (derr.fme_flag == DDI_FM_ERR_UNEXPECTED) { 430 ddi_fm_ereport_post(rpdip, PCI_ERROR_SUBCLASS "." PCIEX_FABRIC, 431 derr.fme_ena, 432 DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, 433 FIRE_PRIMARY, DATA_TYPE_BOOLEAN_VALUE, B_TRUE, 434 "pcie_adv_rp_status", DATA_TYPE_UINT32, rp_status, 435 "pcie_adv_rp_command", DATA_TYPE_UINT32, 0, 436 "pcie_adv_rp_ce_src_id", DATA_TYPE_UINT16, ce_source, 437 "pcie_adv_rp_ue_src_id", DATA_TYPE_UINT16, ue_source, 438 NULL); 439 } 440 441 /* Ensure that the rid of the fabric message will get scanned. */ 442 pfd_p = px_rp_en_q(px_p, rid, NULL, NULL); 443 PCIE_ROOT_EH_SRC(pfd_p)->intr_type = PF_INTR_TYPE_FABRIC; 444 445 rc_err = px_err_cmn_intr(px_p, &derr, PX_INTR_CALL, PX_FM_BLOCK_PCIE); 446 447 /* call rootport dispatch */ 448 fab_err = px_scan_fabric(px_p, rpdip, &derr); 449 450 px_err_panic(rc_err, PX_RC, fab_err, B_TRUE); 451 px_fm_exit(px_p); 452 px_err_panic(rc_err, PX_RC, fab_err, B_FALSE); 453 454 done: 455 return (DDI_INTR_CLAIMED); 456 } 457 458 /* 459 * px_scan_fabric: 460 * 461 * Check for drain state and if there is anything to scan. 462 * 463 * Note on pfd: Different interrupts will populate the pfd's differently. The 464 * px driver can have a total of 5 different error sources, so it has a queue of 465 * 5 pfds. Each valid PDF is linked together and passed to pf_scan_fabric. 466 * 467 * Each error handling will populate the following info in the pfd 468 * 469 * Root Fault Intr Src Affected BDF 470 * ----------------+---------------+------------ 471 * Callback/CPU Trap Address/BDF |DATA |Lookup Addr 472 * Mondo 62/63 (sun4u) decode error |N/A |N/A 473 * EPKT (sun4v) decode epkt |INTERNAL |decode epkt 474 * Fabric Message fabric payload |FABRIC |NULL 475 * Peek/Poke Address/BDF |NULL |NULL 476 * ----------------+---------------+------------ 477 */ 478 int 479 px_scan_fabric(px_t *px_p, dev_info_t *rpdip, ddi_fm_error_t *derr) { 480 int fab_err = 0; 481 482 ASSERT(MUTEX_HELD(&px_p->px_fm_mutex)); 483 484 if (!px_lib_is_in_drain_state(px_p) && px_p->px_pfd_idx) { 485 fab_err = pf_scan_fabric(rpdip, derr, px_p->px_pfd_arr); 486 } 487 488 return (fab_err); 489 } 490 491 /* 492 * px_err_safeacc_check: 493 * Check to see if a peek/poke and cautious access is currently being 494 * done on a particular leaf. 495 * 496 * Safe access reads induced fire errors will be handled by cpu trap handler 497 * which will call px_fm_callback() which calls this function. In that 498 * case, the derr fields will be set by trap handler with the correct values. 499 * 500 * Safe access writes induced errors will be handled by px interrupt 501 * handlers, this function will fill in the derr fields. 502 * 503 * If a cpu trap does occur, it will quiesce all other interrupts allowing 504 * the cpu trap error handling to finish before Fire receives an interrupt. 505 * 506 * If fire does indeed have an error when a cpu trap occurs as a result of 507 * a safe access, a trap followed by a Mondo/Fabric interrupt will occur. 508 * In which case derr will be initialized as "UNEXPECTED" by the interrupt 509 * handler and this function will need to find if this error occured in the 510 * middle of a safe access operation. 511 * 512 * @param px_p leaf in which to check access 513 * @param derr fm err data structure to be updated 514 */ 515 void 516 px_err_safeacc_check(px_t *px_p, ddi_fm_error_t *derr) 517 { 518 px_pec_t *pec_p = px_p->px_pec_p; 519 int acctype = pec_p->pec_safeacc_type; 520 521 ASSERT(MUTEX_HELD(&px_p->px_fm_mutex)); 522 523 if (derr->fme_flag != DDI_FM_ERR_UNEXPECTED) { 524 return; 525 } 526 527 /* safe access checking */ 528 switch (acctype) { 529 case DDI_FM_ERR_EXPECTED: 530 /* 531 * cautious access protection, protected from all err. 532 */ 533 ddi_fm_acc_err_get(pec_p->pec_acc_hdl, derr, 534 DDI_FME_VERSION); 535 derr->fme_flag = acctype; 536 derr->fme_acc_handle = pec_p->pec_acc_hdl; 537 break; 538 case DDI_FM_ERR_POKE: 539 /* 540 * ddi_poke protection, check nexus and children for 541 * expected errors. 542 */ 543 membar_sync(); 544 derr->fme_flag = acctype; 545 break; 546 case DDI_FM_ERR_PEEK: 547 derr->fme_flag = acctype; 548 break; 549 } 550 } 551 552 /* 553 * Suggest panic if any EQ (except CE q) has overflown. 554 */ 555 int 556 px_err_check_eq(dev_info_t *dip) 557 { 558 px_t *px_p = DIP_TO_STATE(dip); 559 px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state; 560 px_pec_t *pec_p = px_p->px_pec_p; 561 msiqid_t eq_no = msiq_state_p->msiq_1st_msiq_id; 562 pci_msiq_state_t msiq_state; 563 int i; 564 565 for (i = 0; i < msiq_state_p->msiq_cnt; i++) { 566 if (i + eq_no == pec_p->pec_corr_msg_msiq_id) /* skip CE q */ 567 continue; 568 if ((px_lib_msiq_getstate(dip, i + eq_no, &msiq_state) != 569 DDI_SUCCESS) || msiq_state == PCI_MSIQ_STATE_ERROR) 570 return (PX_PANIC); 571 } 572 return (PX_NO_PANIC); 573 } 574 575 /* ARGSUSED */ 576 int 577 px_err_check_pcie(dev_info_t *dip, ddi_fm_error_t *derr, px_err_pcie_t *regs) 578 { 579 px_t *px_p = DIP_TO_STATE(dip); 580 pf_data_t *pfd_p = px_get_pfd(px_p); 581 int i; 582 pf_pcie_adv_err_regs_t *adv_reg = PCIE_ADV_REG(pfd_p); 583 584 /* 585 * set RC s_status in PCI term to coordinate with downstream fabric 586 * errors ananlysis. 587 */ 588 if (regs->primary_ue & PCIE_AER_UCE_UR) 589 PCI_BDG_ERR_REG(pfd_p)->pci_bdg_sec_stat = PCI_STAT_R_MAST_AB; 590 if (regs->primary_ue & PCIE_AER_UCE_CA) 591 PCI_BDG_ERR_REG(pfd_p)->pci_bdg_sec_stat = PCI_STAT_R_TARG_AB; 592 if (regs->primary_ue & (PCIE_AER_UCE_PTLP | PCIE_AER_UCE_ECRC)) 593 PCI_BDG_ERR_REG(pfd_p)->pci_bdg_sec_stat = PCI_STAT_PERROR; 594 595 if (!regs->primary_ue) 596 goto done; 597 598 adv_reg->pcie_ce_status = regs->ce_reg; 599 adv_reg->pcie_ue_status = regs->ue_reg | regs->primary_ue; 600 PCIE_ADV_HDR(pfd_p, 0) = regs->rx_hdr1; 601 PCIE_ADV_HDR(pfd_p, 1) = regs->rx_hdr2; 602 PCIE_ADV_HDR(pfd_p, 2) = regs->rx_hdr3; 603 PCIE_ADV_HDR(pfd_p, 3) = regs->rx_hdr4; 604 for (i = regs->primary_ue; i != 1; i = i >> 1) 605 adv_reg->pcie_adv_ctl++; 606 607 if (regs->primary_ue & (PCIE_AER_UCE_UR | PCIE_AER_UCE_CA)) { 608 if (pf_tlp_decode(PCIE_DIP2BUS(dip), adv_reg) == DDI_SUCCESS) 609 PCIE_ROOT_FAULT(pfd_p)->scan_bdf = 610 adv_reg->pcie_ue_tgt_bdf; 611 } else if (regs->primary_ue & PCIE_AER_UCE_PTLP) { 612 if (pf_tlp_decode(PCIE_DIP2BUS(dip), adv_reg) == DDI_SUCCESS) { 613 PCIE_ROOT_FAULT(pfd_p)->scan_bdf = 614 adv_reg->pcie_ue_tgt_bdf; 615 if (adv_reg->pcie_ue_tgt_trans == 616 PF_ADDR_PIO) 617 PCIE_ROOT_FAULT(pfd_p)->scan_addr = 618 adv_reg->pcie_ue_tgt_addr; 619 } 620 621 /* 622 * Normally for Poisoned Completion TLPs we can look at the 623 * transmit log header for the original request and the original 624 * address, however this doesn't seem to be working. HW BUG. 625 */ 626 } 627 628 done: 629 px_pcie_log(dip, regs); 630 631 /* Return No Error here and let the pcie misc module analyse it */ 632 return (PX_NO_ERROR); 633 } 634 635 #if defined(DEBUG) 636 static void 637 px_pcie_log(dev_info_t *dip, px_err_pcie_t *regs) 638 { 639 DBG(DBG_ERR_INTR, dip, 640 "A PCIe RC error has occured\n" 641 "\tCE: 0x%x UE: 0x%x Primary UE: 0x%x\n" 642 "\tTX Hdr: 0x%x 0x%x 0x%x 0x%x\n\tRX Hdr: 0x%x 0x%x 0x%x 0x%x\n", 643 regs->ce_reg, regs->ue_reg, regs->primary_ue, 644 regs->tx_hdr1, regs->tx_hdr2, regs->tx_hdr3, regs->tx_hdr4, 645 regs->rx_hdr1, regs->rx_hdr2, regs->rx_hdr3, regs->rx_hdr4); 646 } 647 #endif 648 649 /* 650 * look through poisoned TLP cases and suggest panic/no panic depend on 651 * handle lookup. 652 */ 653 static int 654 px_pcie_ptlp(dev_info_t *dip, ddi_fm_error_t *derr, px_err_pcie_t *regs) 655 { 656 pf_pcie_adv_err_regs_t adv_reg; 657 pcie_req_id_t bdf; 658 uint64_t addr; 659 uint32_t trans_type; 660 int tlp_sts, tlp_cmd; 661 int lookup = PF_HDL_NOTFOUND; 662 663 if (regs->primary_ue != PCIE_AER_UCE_PTLP) 664 return (PX_PANIC); 665 666 if (!regs->rx_hdr1) 667 goto done; 668 669 adv_reg.pcie_ue_hdr[0] = regs->rx_hdr1; 670 adv_reg.pcie_ue_hdr[1] = regs->rx_hdr2; 671 adv_reg.pcie_ue_hdr[2] = regs->rx_hdr3; 672 adv_reg.pcie_ue_hdr[3] = regs->rx_hdr4; 673 674 tlp_sts = pf_tlp_decode(PCIE_DIP2BUS(dip), &adv_reg); 675 tlp_cmd = ((pcie_tlp_hdr_t *)(adv_reg.pcie_ue_hdr))->type; 676 677 if (tlp_sts == DDI_FAILURE) 678 goto done; 679 680 bdf = adv_reg.pcie_ue_tgt_bdf; 681 addr = adv_reg.pcie_ue_tgt_addr; 682 trans_type = adv_reg.pcie_ue_tgt_trans; 683 684 switch (tlp_cmd) { 685 case PCIE_TLP_TYPE_CPL: 686 case PCIE_TLP_TYPE_CPLLK: 687 /* 688 * Usually a PTLP is a CPL with data. Grab the completer BDF 689 * from the RX TLP, and the original address from the TX TLP. 690 */ 691 if (regs->tx_hdr1) { 692 adv_reg.pcie_ue_hdr[0] = regs->tx_hdr1; 693 adv_reg.pcie_ue_hdr[1] = regs->tx_hdr2; 694 adv_reg.pcie_ue_hdr[2] = regs->tx_hdr3; 695 adv_reg.pcie_ue_hdr[3] = regs->tx_hdr4; 696 697 lookup = pf_tlp_decode(PCIE_DIP2BUS(dip), &adv_reg); 698 if (lookup != DDI_SUCCESS) 699 break; 700 addr = adv_reg.pcie_ue_tgt_addr; 701 trans_type = adv_reg.pcie_ue_tgt_trans; 702 } /* FALLTHRU */ 703 case PCIE_TLP_TYPE_IO: 704 case PCIE_TLP_TYPE_MEM: 705 case PCIE_TLP_TYPE_MEMLK: 706 lookup = pf_hdl_lookup(dip, derr->fme_ena, trans_type, addr, 707 bdf); 708 break; 709 default: 710 lookup = PF_HDL_NOTFOUND; 711 } 712 done: 713 return (lookup == PF_HDL_FOUND ? PX_NO_PANIC : PX_PANIC); 714 } 715 716 /* 717 * px_get_pdf automatically allocates a RC pf_data_t and returns a pointer to 718 * it. This function should be used when an error requires a fabric scan. 719 */ 720 pf_data_t * 721 px_get_pfd(px_t *px_p) { 722 int idx = px_p->px_pfd_idx++; 723 pf_data_t *pfd_p = &px_p->px_pfd_arr[idx]; 724 725 /* Clear Old Data */ 726 PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF; 727 PCIE_ROOT_FAULT(pfd_p)->scan_addr = 0; 728 PCIE_ROOT_EH_SRC(pfd_p)->intr_type = PF_INTR_TYPE_NONE; 729 PCIE_ROOT_EH_SRC(pfd_p)->intr_data = NULL; 730 PFD_AFFECTED_DEV(pfd_p)->pe_affected_flags = NULL; 731 PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF; 732 PCI_BDG_ERR_REG(pfd_p)->pci_bdg_sec_stat = 0; 733 PCIE_ADV_REG(pfd_p)->pcie_ce_status = 0; 734 PCIE_ADV_REG(pfd_p)->pcie_ue_status = 0; 735 736 pfd_p->pe_next = NULL; 737 738 if (idx > 0) { 739 px_p->px_pfd_arr[idx - 1].pe_next = pfd_p; 740 pfd_p->pe_prev = &px_p->px_pfd_arr[idx - 1]; 741 } else { 742 pfd_p->pe_prev = NULL; 743 } 744 745 pfd_p->pe_severity_flags = 0; 746 pfd_p->pe_orig_severity_flags = 0; 747 pfd_p->pe_valid = B_TRUE; 748 749 return (pfd_p); 750 } 751 752 /* 753 * This function appends a pf_data structure to the error q which is used later 754 * during PCIe fabric scan. It signifies: 755 * o errs rcvd in RC, that may have been propagated to/from the fabric 756 * o the fabric scan code should scan the device path of fault bdf/addr 757 * 758 * scan_bdf: The bdf that caused the fault, which may have error bits set. 759 * scan_addr: The PIO addr that caused the fault, such as failed PIO, but not 760 * failed DMAs. 761 * s_status: Secondary Status equivalent to why the fault occured. 762 * (ie S-TA/MA, R-TA) 763 * Either the scan bdf or addr may be NULL, but not both. 764 */ 765 pf_data_t * 766 px_rp_en_q(px_t *px_p, pcie_req_id_t scan_bdf, uint32_t scan_addr, 767 uint16_t s_status) 768 { 769 pf_data_t *pfd_p; 770 771 if (!PCIE_CHECK_VALID_BDF(scan_bdf) && !scan_addr) 772 return (NULL); 773 774 pfd_p = px_get_pfd(px_p); 775 776 PCIE_ROOT_FAULT(pfd_p)->scan_bdf = scan_bdf; 777 PCIE_ROOT_FAULT(pfd_p)->scan_addr = (uint64_t)scan_addr; 778 PCI_BDG_ERR_REG(pfd_p)->pci_bdg_sec_stat = s_status; 779 780 return (pfd_p); 781 } 782 783 784 /* 785 * Find and Mark CFG Handles as failed associated with the given BDF. We should 786 * always know the BDF for CFG accesses, since it is encoded in the address of 787 * the TLP. Since there can be multiple cfg handles, mark them all as failed. 788 */ 789 /* ARGSUSED */ 790 int 791 px_err_cfg_hdl_check(dev_info_t *dip, const void *handle, const void *arg1, 792 const void *arg2) 793 { 794 int status = DDI_FM_FATAL; 795 uint32_t addr = *(uint32_t *)arg1; 796 uint16_t bdf = *(uint16_t *)arg2; 797 pcie_bus_t *bus_p; 798 799 DBG(DBG_ERR_INTR, dip, "Check CFG Hdl: dip 0x%p addr 0x%x bdf=0x%x\n", 800 dip, addr, bdf); 801 802 bus_p = PCIE_DIP2BUS(dip); 803 804 /* 805 * Because CFG and IO Acc Handlers are on the same cache list and both 806 * types of hdls gets called for both types of errors. For this checker 807 * only mark the device as "Non-Fatal" if the addr == NULL and bdf != 808 * NULL. 809 */ 810 status = (!addr && (PCIE_CHECK_VALID_BDF(bdf) && 811 (bus_p->bus_bdf == bdf))) ? DDI_FM_NONFATAL : DDI_FM_FATAL; 812 813 return (status); 814 } 815 816 /* 817 * Find and Mark all ACC Handles associated with a give address and BDF as 818 * failed. If the BDF != NULL, then check to see if the device has a ACC Handle 819 * associated with ADDR. If the handle is not found, mark all the handles as 820 * failed. If the BDF == NULL, mark the handle as failed if it is associated 821 * with ADDR. 822 */ 823 int 824 px_err_pio_hdl_check(dev_info_t *dip, const void *handle, const void *arg1, 825 const void *arg2) 826 { 827 dev_info_t *px_dip; 828 px_t *px_p; 829 pci_ranges_t *ranges_p; 830 int range_len; 831 ddi_acc_handle_t ap = (ddi_acc_handle_t)handle; 832 ddi_acc_hdl_t *hp = impl_acc_hdl_get(ap); 833 int i, status = DDI_FM_FATAL; 834 uint64_t fault_addr = *(uint64_t *)arg1; 835 uint16_t bdf = *(uint16_t *)arg2; 836 uint64_t base_addr, range_addr; 837 uint_t size; 838 839 /* 840 * Find the correct px dip. On system with a real Root Port, it's the 841 * node above the root port. On systems without a real Root Port the px 842 * dip is the bus_rp_dip. 843 */ 844 px_dip = PCIE_DIP2BUS(dip)->bus_rp_dip; 845 846 if (!PCIE_IS_RC(PCIE_DIP2BUS(px_dip))) 847 px_dip = ddi_get_parent(px_dip); 848 849 ASSERT(PCIE_IS_RC(PCIE_DIP2BUS(px_dip))); 850 px_p = INST_TO_STATE(ddi_get_instance(px_dip)); 851 852 DBG(DBG_ERR_INTR, dip, "Check PIO Hdl: dip 0x%x addr 0x%x bdf=0x%x\n", 853 dip, fault_addr, bdf); 854 855 /* Normalize the base addr to the addr and strip off the HB info. */ 856 base_addr = (hp->ah_pfn << MMU_PAGESHIFT) + hp->ah_offset; 857 range_len = px_p->px_ranges_length / sizeof (pci_ranges_t); 858 i = 0; 859 for (ranges_p = px_p->px_ranges_p; i < range_len; i++, ranges_p++) { 860 range_addr = px_in_addr_range(dip, ranges_p, base_addr); 861 if (range_addr) { 862 switch (ranges_p->child_high & PCI_ADDR_MASK) { 863 case PCI_ADDR_IO: 864 case PCI_ADDR_MEM64: 865 case PCI_ADDR_MEM32: 866 base_addr = base_addr - range_addr; 867 break; 868 } 869 break; 870 } 871 } 872 873 /* 874 * Mark the handle as failed if the ADDR is mapped, or if we 875 * know the BDF and ADDR == 0. 876 */ 877 size = hp->ah_len; 878 if (((fault_addr >= base_addr) && (fault_addr < (base_addr + size))) || 879 ((fault_addr == NULL) && (PCIE_CHECK_VALID_BDF(bdf) && 880 (bdf == PCIE_DIP2BUS(dip)->bus_bdf)))) 881 status = DDI_FM_NONFATAL; 882 883 return (status); 884 } 885 886 /* 887 * Find and Mark all DNA Handles associated with a give address and BDF as 888 * failed. If the BDF != NULL, then check to see if the device has a DMA Handle 889 * associated with ADDR. If the handle is not found, mark all the handles as 890 * failed. If the BDF == NULL, mark the handle as failed if it is associated 891 * with ADDR. 892 */ 893 int 894 px_err_dma_hdl_check(dev_info_t *dip, const void *handle, const void *arg1, 895 const void *arg2) 896 { 897 ddi_dma_impl_t *pcie_dp; 898 int status = DDI_FM_FATAL; 899 uint32_t addr = *(uint32_t *)arg1; 900 uint16_t bdf = *(uint16_t *)arg2; 901 uint32_t base_addr; 902 uint_t size; 903 904 DBG(DBG_ERR_INTR, dip, "Check PIO Hdl: dip 0x%x addr 0x%x bdf=0x%x\n", 905 dip, addr, bdf); 906 907 pcie_dp = (ddi_dma_impl_t *)handle; 908 base_addr = (uint32_t)pcie_dp->dmai_mapping; 909 size = pcie_dp->dmai_size; 910 911 /* 912 * Mark the handle as failed if the ADDR is mapped, or if we 913 * know the BDF and ADDR == 0. 914 */ 915 if (((addr >= base_addr) && (addr < (base_addr + size))) || 916 ((addr == NULL) && PCIE_CHECK_VALID_BDF(bdf))) 917 status = DDI_FM_NONFATAL; 918 919 return (status); 920 } 921 922 int 923 px_fm_enter(px_t *px_p) { 924 if (px_panicing || (px_p->px_fm_mutex_owner == curthread)) 925 return (DDI_FAILURE); 926 927 mutex_enter(&px_p->px_fm_mutex); 928 /* 929 * In rare cases when trap occurs and in the middle of scanning the 930 * fabric, a PIO will fail in the scan fabric. The CPU error handling 931 * code will correctly panic the system, while a mondo for the failed 932 * PIO may also show up. Normally the mondo will try to grab the mutex 933 * and wait until the callback finishes. But in this rare case, 934 * mutex_enter actually suceeds also continues to scan the fabric. 935 * 936 * This code below is designed specifically to check for this case. If 937 * we successfully grab the px_fm_mutex, the px_fm_mutex_owner better be 938 * NULL. If it isn't that means we are in the rare corner case. Return 939 * DDI_FAILURE, this should prevent PX from doing anymore error 940 * handling. 941 */ 942 if (px_p->px_fm_mutex_owner) { 943 return (DDI_FAILURE); 944 } 945 946 px_p->px_fm_mutex_owner = curthread; 947 948 if (px_panicing) { 949 px_fm_exit(px_p); 950 return (DDI_FAILURE); 951 } 952 953 /* Signal the PCIe error handling module error handling is starting */ 954 pf_eh_enter(PCIE_DIP2BUS(px_p->px_dip)); 955 956 return (DDI_SUCCESS); 957 } 958 959 static void 960 px_guest_panic(px_t *px_p) 961 { 962 pf_data_t *root_pfd_p = PCIE_DIP2PFD(px_p->px_dip); 963 pf_data_t *pfd_p; 964 pcie_bus_t *bus_p, *root_bus_p; 965 pcie_req_id_list_t *rl; 966 967 /* 968 * check if all devices under the root device are unassigned. 969 * this function should quickly return in non-IOV environment. 970 */ 971 root_bus_p = PCIE_PFD2BUS(root_pfd_p); 972 if (PCIE_BDG_IS_UNASSIGNED(root_bus_p)) 973 return; 974 975 for (pfd_p = root_pfd_p; pfd_p; pfd_p = pfd_p->pe_next) { 976 bus_p = PCIE_PFD2BUS(pfd_p); 977 978 /* assume all affected devs were in the error Q */ 979 if (!PCIE_BUS2DOM(bus_p)->nfma_panic) 980 continue; 981 982 if (PCIE_IS_BDG(bus_p)) { 983 rl = PCIE_BDF_LIST_GET(bus_p); 984 while (rl) { 985 px_panic_domain(px_p, rl->bdf); 986 rl = rl->next; 987 } 988 } else { 989 px_panic_domain(px_p, bus_p->bus_bdf); 990 } 991 /* clear panic flag */ 992 PCIE_BUS2DOM(bus_p)->nfma_panic = B_FALSE; 993 } 994 } 995 996 void 997 px_fm_exit(px_t *px_p) { 998 px_p->px_fm_mutex_owner = NULL; 999 if (px_p->px_pfd_idx == 0) { 1000 mutex_exit(&px_p->px_fm_mutex); 1001 return; 1002 } 1003 /* panic the affected domains that are non-fma-capable */ 1004 px_guest_panic(px_p); 1005 /* Signal the PCIe error handling module error handling is ending */ 1006 pf_eh_exit(PCIE_DIP2BUS(px_p->px_dip)); 1007 px_p->px_pfd_idx = 0; 1008 mutex_exit(&px_p->px_fm_mutex); 1009 } 1010 1011 /* 1012 * Panic if the err tunable is set and that we are not already in the middle 1013 * of panic'ing. 1014 * 1015 * rc_err = Error severity of PX specific errors 1016 * msg = Where the error was detected 1017 * fabric_err = Error severity of PCIe Fabric errors 1018 * isTest = Test if error severity causes panic 1019 */ 1020 #define MSZ (sizeof (fm_msg) -strlen(fm_msg) - 1) 1021 void 1022 px_err_panic(int rc_err, int msg, int fabric_err, boolean_t isTest) 1023 { 1024 char fm_msg[96] = ""; 1025 int ferr = PX_NO_ERROR; 1026 1027 if (panicstr) { 1028 px_panicing = B_TRUE; 1029 return; 1030 } 1031 1032 if (!(rc_err & px_die)) 1033 goto fabric; 1034 if (msg & PX_RC) 1035 (void) strncat(fm_msg, px_panic_rc_msg, MSZ); 1036 if (msg & PX_RP) 1037 (void) strncat(fm_msg, px_panic_rp_msg, MSZ); 1038 if (msg & PX_HB) 1039 (void) strncat(fm_msg, px_panic_hb_msg, MSZ); 1040 1041 fabric: 1042 if (fabric_err & PF_ERR_FATAL_FLAGS) 1043 ferr = PX_PANIC; 1044 else if (fabric_err & ~(PF_ERR_FATAL_FLAGS | PF_ERR_NO_ERROR)) 1045 ferr = PX_NO_PANIC; 1046 1047 if (ferr & px_die) { 1048 if (strlen(fm_msg)) { 1049 (void) strncat(fm_msg, " and", MSZ); 1050 } 1051 (void) strncat(fm_msg, px_panic_fab_msg, MSZ); 1052 } 1053 1054 if (strlen(fm_msg)) { 1055 px_panicing = B_TRUE; 1056 if (!isTest) 1057 fm_panic("Fatal error has occured in:%s.(0x%x)(0x%x)", 1058 fm_msg, rc_err, fabric_err); 1059 } 1060 } 1061