xref: /titanic_41/usr/src/uts/sparc/v9/os/v9dep.c (revision d58fda4376e4bf67072ce2e69f6f47036f9dbb68)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved  	*/
24 
25 
26 /*
27  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/vmparam.h>
36 #include <sys/systm.h>
37 #include <sys/stack.h>
38 #include <sys/frame.h>
39 #include <sys/proc.h>
40 #include <sys/ucontext.h>
41 #include <sys/cpuvar.h>
42 #include <sys/asm_linkage.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/bootconf.h>
46 #include <sys/archsystm.h>
47 #include <sys/fpu/fpusystm.h>
48 #include <sys/debug.h>
49 #include <sys/privregs.h>
50 #include <sys/machpcb.h>
51 #include <sys/psr_compat.h>
52 #include <sys/cmn_err.h>
53 #include <sys/asi.h>
54 #include <sys/copyops.h>
55 #include <sys/model.h>
56 #include <sys/panic.h>
57 #include <sys/exec.h>
58 
59 /*
60  * modify the lower 32bits of a uint64_t
61  */
62 #define	SET_LOWER_32(all, lower)	\
63 	(((uint64_t)(all) & 0xffffffff00000000) | (uint32_t)(lower))
64 
65 #define	MEMCPY_FPU_EN		2	/* fprs on and fpu_en == 0 */
66 
67 static uint_t mkpsr(uint64_t tstate, uint32_t fprs);
68 
69 #ifdef _SYSCALL32_IMPL
70 static void fpuregset_32ton(const fpregset32_t *src, fpregset_t *dest,
71     const struct fq32 *sfq, struct fq *dfq);
72 #endif /* _SYSCALL32_IMPL */
73 
74 /*
75  * Set floating-point registers.
76  * NOTE:  'lwp' might not correspond to 'curthread' since this is
77  * called from code in /proc to set the registers of another lwp.
78  */
79 void
80 setfpregs(klwp_t *lwp, fpregset_t *fp)
81 {
82 	struct machpcb *mpcb;
83 	kfpu_t *pfp;
84 	uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL);
85 	model_t model = lwp_getdatamodel(lwp);
86 
87 	mpcb = lwptompcb(lwp);
88 	pfp = lwptofpu(lwp);
89 
90 	/*
91 	 * This is always true for both "real" fp programs and memcpy fp
92 	 * programs, because we force fpu_en to MEMCPY_FPU_EN in getfpregs,
93 	 * for the memcpy and threads cases where (fpu_en == 0) &&
94 	 * (fpu_fprs & FPRS_FEF), if setfpregs is called after getfpregs.
95 	 */
96 	if (fp->fpu_en) {
97 		kpreempt_disable();
98 
99 		if (!(pfp->fpu_en) && (!(pfp->fpu_fprs & FPRS_FEF)) &&
100 		    fpu_exists) {
101 			/*
102 			 * He's not currently using the FPU but wants to in his
103 			 * new context - arrange for this on return to userland.
104 			 */
105 			pfp->fpu_fprs = (uint32_t)fprs;
106 		}
107 		/*
108 		 * Get setfpregs to restore fpu_en to zero
109 		 * for the memcpy/threads case (where pfp->fpu_en == 0 &&
110 		 * (pfp->fp_fprs & FPRS_FEF) == FPRS_FEF).
111 		 */
112 		if (fp->fpu_en == MEMCPY_FPU_EN)
113 			fp->fpu_en = 0;
114 
115 		/*
116 		 * Load up a user's floating point context.
117 		 */
118 		if (fp->fpu_qcnt > MAXFPQ) 	/* plug security holes */
119 			fp->fpu_qcnt = MAXFPQ;
120 		fp->fpu_q_entrysize = sizeof (struct fq);
121 
122 		/*
123 		 * For v9 kernel, copy all of the fp regs.
124 		 * For v8 kernel, copy v8 fp regs (lower half of v9 fp regs).
125 		 * Restore entire fsr for v9, only lower half for v8.
126 		 */
127 		(void) kcopy(fp, pfp, sizeof (fp->fpu_fr));
128 		if (model == DATAMODEL_LP64)
129 			pfp->fpu_fsr = fp->fpu_fsr;
130 		else
131 			pfp->fpu_fsr = SET_LOWER_32(pfp->fpu_fsr, fp->fpu_fsr);
132 		pfp->fpu_qcnt = fp->fpu_qcnt;
133 		pfp->fpu_q_entrysize = fp->fpu_q_entrysize;
134 		pfp->fpu_en = fp->fpu_en;
135 		pfp->fpu_q = mpcb->mpcb_fpu_q;
136 		if (fp->fpu_qcnt)
137 			(void) kcopy(fp->fpu_q, pfp->fpu_q,
138 			    fp->fpu_qcnt * fp->fpu_q_entrysize);
139 		/* FSR ignores these bits on load, so they can not be set */
140 		pfp->fpu_fsr &= ~(FSR_QNE|FSR_FTT);
141 
142 		/*
143 		 * If not the current process then resume() will handle it.
144 		 */
145 		if (lwp != ttolwp(curthread)) {
146 			/* force resume to reload fp regs */
147 			pfp->fpu_fprs |= FPRS_FEF;
148 			kpreempt_enable();
149 			return;
150 		}
151 
152 		/*
153 		 * Load up FPU with new floating point context.
154 		 */
155 		if (fpu_exists) {
156 			pfp->fpu_fprs = _fp_read_fprs();
157 			if ((pfp->fpu_fprs & FPRS_FEF) != FPRS_FEF) {
158 				_fp_write_fprs(fprs);
159 				pfp->fpu_fprs = (uint32_t)fprs;
160 #ifdef DEBUG
161 				if (fpdispr)
162 					cmn_err(CE_NOTE,
163 					    "setfpregs with fp disabled!\n");
164 #endif
165 			}
166 			/*
167 			 * Load all fp regs for v9 user programs, but only
168 			 * load the lower half for v8[plus] programs.
169 			 */
170 			if (model == DATAMODEL_LP64)
171 				fp_restore(pfp);
172 			else
173 				fp_v8_load(pfp);
174 		}
175 
176 		kpreempt_enable();
177 	} else {
178 		if ((pfp->fpu_en) ||	/* normal fp case */
179 		    (pfp->fpu_fprs & FPRS_FEF)) { /* memcpy/threads case */
180 			/*
181 			 * Currently the lwp has floating point enabled.
182 			 * Turn off FPRS_FEF in user's fprs, saved and
183 			 * real copies thereof.
184 			 */
185 			pfp->fpu_en = 0;
186 			if (fpu_exists) {
187 				fprs = 0;
188 				if (lwp == ttolwp(curthread))
189 					_fp_write_fprs(fprs);
190 				pfp->fpu_fprs = (uint32_t)fprs;
191 			}
192 		}
193 	}
194 }
195 
196 #ifdef	_SYSCALL32_IMPL
197 void
198 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
199 {
200 	fpregset_t fpregs;
201 
202 	fpuregset_32ton(fp, &fpregs, NULL, NULL);
203 	setfpregs(lwp, &fpregs);
204 }
205 #endif	/* _SYSCALL32_IMPL */
206 
207 /*
208  * NOTE:  'lwp' might not correspond to 'curthread' since this is
209  * called from code in /proc to set the registers of another lwp.
210  */
211 void
212 run_fpq(klwp_t *lwp, fpregset_t *fp)
213 {
214 	/*
215 	 * If the context being loaded up includes a floating queue,
216 	 * we need to simulate those instructions (since we can't reload
217 	 * the fpu) and pass the process any appropriate signals
218 	 */
219 
220 	if (lwp == ttolwp(curthread)) {
221 		if (fpu_exists) {
222 			if (fp->fpu_qcnt)
223 				fp_runq(lwp->lwp_regs);
224 		}
225 	}
226 }
227 
228 /*
229  * Get floating-point registers.
230  * NOTE:  'lwp' might not correspond to 'curthread' since this is
231  * called from code in /proc to set the registers of another lwp.
232  */
233 void
234 getfpregs(klwp_t *lwp, fpregset_t *fp)
235 {
236 	kfpu_t *pfp;
237 	model_t model = lwp_getdatamodel(lwp);
238 
239 	pfp = lwptofpu(lwp);
240 	kpreempt_disable();
241 	if (fpu_exists && ttolwp(curthread) == lwp)
242 		pfp->fpu_fprs = _fp_read_fprs();
243 
244 	/*
245 	 * First check the fpu_en case, for normal fp programs.
246 	 * Next check the fprs case, for fp use by memcpy/threads.
247 	 */
248 	if (((fp->fpu_en = pfp->fpu_en) != 0) ||
249 	    (pfp->fpu_fprs & FPRS_FEF)) {
250 		/*
251 		 * Force setfpregs to restore the fp context in
252 		 * setfpregs for the memcpy and threads cases (where
253 		 * pfp->fpu_en == 0 && (pfp->fp_fprs & FPRS_FEF) == FPRS_FEF).
254 		 */
255 		if (pfp->fpu_en == 0)
256 			fp->fpu_en = MEMCPY_FPU_EN;
257 		/*
258 		 * If we have an fpu and the current thread owns the fp
259 		 * context, flush fp * registers into the pcb. Save all
260 		 * the fp regs for v9, xregs_getfpregs saves the upper half
261 		 * for v8plus. Save entire fsr for v9, only lower half for v8.
262 		 */
263 		if (fpu_exists && ttolwp(curthread) == lwp) {
264 			if ((pfp->fpu_fprs & FPRS_FEF) != FPRS_FEF) {
265 				uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL);
266 
267 				_fp_write_fprs(fprs);
268 				pfp->fpu_fprs = fprs;
269 #ifdef DEBUG
270 				if (fpdispr)
271 					cmn_err(CE_NOTE,
272 					    "getfpregs with fp disabled!\n");
273 #endif
274 			}
275 			if (model == DATAMODEL_LP64)
276 				fp_fksave(pfp);
277 			else
278 				fp_v8_fksave(pfp);
279 		}
280 		(void) kcopy(pfp, fp, sizeof (fp->fpu_fr));
281 		fp->fpu_q = pfp->fpu_q;
282 		if (model == DATAMODEL_LP64)
283 			fp->fpu_fsr = pfp->fpu_fsr;
284 		else
285 			fp->fpu_fsr = (uint32_t)pfp->fpu_fsr;
286 		fp->fpu_qcnt = pfp->fpu_qcnt;
287 		fp->fpu_q_entrysize = pfp->fpu_q_entrysize;
288 	} else {
289 		int i;
290 		for (i = 0; i < 32; i++)		/* NaN */
291 			((uint32_t *)fp->fpu_fr.fpu_regs)[i] = (uint32_t)-1;
292 		if (model == DATAMODEL_LP64) {
293 			for (i = 16; i < 32; i++)	/* NaN */
294 				((uint64_t *)fp->fpu_fr.fpu_dregs)[i] =
295 				    (uint64_t)-1;
296 		}
297 		fp->fpu_fsr = 0;
298 		fp->fpu_qcnt = 0;
299 	}
300 	kpreempt_enable();
301 }
302 
303 #ifdef	_SYSCALL32_IMPL
304 void
305 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
306 {
307 	fpregset_t fpregs;
308 
309 	getfpregs(lwp, &fpregs);
310 	fpuregset_nto32(&fpregs, fp, NULL);
311 }
312 #endif	/* _SYSCALL32_IMPL */
313 
314 /*
315  * Set general registers.
316  * NOTE:  'lwp' might not correspond to 'curthread' since this is
317  * called from code in /proc to set the registers of another lwp.
318  */
319 
320 /* 64-bit gregset_t */
321 void
322 setgregs(klwp_t *lwp, gregset_t grp)
323 {
324 	struct regs *rp = lwptoregs(lwp);
325 	kfpu_t *fp = lwptofpu(lwp);
326 	uint64_t tbits;
327 
328 	int current = (lwp == curthread->t_lwp);
329 
330 	if (current)
331 		(void) save_syscall_args();	/* copy the args first */
332 
333 	tbits = (((grp[REG_CCR] & TSTATE_CCR_MASK) << TSTATE_CCR_SHIFT) |
334 		((grp[REG_ASI] & TSTATE_ASI_MASK) << TSTATE_ASI_SHIFT));
335 	rp->r_tstate &= ~(((uint64_t)TSTATE_CCR_MASK << TSTATE_CCR_SHIFT) |
336 		((uint64_t)TSTATE_ASI_MASK << TSTATE_ASI_SHIFT));
337 	rp->r_tstate |= tbits;
338 	kpreempt_disable();
339 	fp->fpu_fprs = (uint32_t)grp[REG_FPRS];
340 	if (fpu_exists && (current) && (fp->fpu_fprs & FPRS_FEF))
341 		_fp_write_fprs(fp->fpu_fprs);
342 	kpreempt_enable();
343 
344 	/*
345 	 * pc and npc must be 4-byte aligned on sparc.
346 	 * We silently make it so to avoid a watchdog reset.
347 	 */
348 	rp->r_pc = grp[REG_PC] & ~03L;
349 	rp->r_npc = grp[REG_nPC] & ~03L;
350 	rp->r_y = grp[REG_Y];
351 
352 	rp->r_g1 = grp[REG_G1];
353 	rp->r_g2 = grp[REG_G2];
354 	rp->r_g3 = grp[REG_G3];
355 	rp->r_g4 = grp[REG_G4];
356 	rp->r_g5 = grp[REG_G5];
357 	rp->r_g6 = grp[REG_G6];
358 	rp->r_g7 = grp[REG_G7];
359 
360 	rp->r_o0 = grp[REG_O0];
361 	rp->r_o1 = grp[REG_O1];
362 	rp->r_o2 = grp[REG_O2];
363 	rp->r_o3 = grp[REG_O3];
364 	rp->r_o4 = grp[REG_O4];
365 	rp->r_o5 = grp[REG_O5];
366 	rp->r_o6 = grp[REG_O6];
367 	rp->r_o7 = grp[REG_O7];
368 
369 	if (current) {
370 		/*
371 		 * This was called from a system call, but we
372 		 * do not want to return via the shared window;
373 		 * restoring the CPU context changes everything.
374 		 */
375 		lwp->lwp_eosys = JUSTRETURN;
376 		curthread->t_post_sys = 1;
377 	}
378 }
379 
380 /*
381  * Return the general registers.
382  * NOTE:  'lwp' might not correspond to 'curthread' since this is
383  * called from code in /proc to get the registers of another lwp.
384  */
385 void
386 getgregs(klwp_t *lwp, gregset_t grp)
387 {
388 	struct regs *rp = lwptoregs(lwp);
389 	uint32_t fprs;
390 
391 	kpreempt_disable();
392 	if (fpu_exists && ttolwp(curthread) == lwp) {
393 		fprs = _fp_read_fprs();
394 	} else {
395 		kfpu_t *fp = lwptofpu(lwp);
396 		fprs = fp->fpu_fprs;
397 	}
398 	kpreempt_enable();
399 	grp[REG_CCR] = (rp->r_tstate >> TSTATE_CCR_SHIFT) & TSTATE_CCR_MASK;
400 	grp[REG_PC] = rp->r_pc;
401 	grp[REG_nPC] = rp->r_npc;
402 	grp[REG_Y] = (uint32_t)rp->r_y;
403 	grp[REG_G1] = rp->r_g1;
404 	grp[REG_G2] = rp->r_g2;
405 	grp[REG_G3] = rp->r_g3;
406 	grp[REG_G4] = rp->r_g4;
407 	grp[REG_G5] = rp->r_g5;
408 	grp[REG_G6] = rp->r_g6;
409 	grp[REG_G7] = rp->r_g7;
410 	grp[REG_O0] = rp->r_o0;
411 	grp[REG_O1] = rp->r_o1;
412 	grp[REG_O2] = rp->r_o2;
413 	grp[REG_O3] = rp->r_o3;
414 	grp[REG_O4] = rp->r_o4;
415 	grp[REG_O5] = rp->r_o5;
416 	grp[REG_O6] = rp->r_o6;
417 	grp[REG_O7] = rp->r_o7;
418 	grp[REG_ASI] = (rp->r_tstate >> TSTATE_ASI_SHIFT) & TSTATE_ASI_MASK;
419 	grp[REG_FPRS] = fprs;
420 }
421 
422 void
423 getgregs32(klwp_t *lwp, gregset32_t grp)
424 {
425 	struct regs *rp = lwptoregs(lwp);
426 	uint32_t fprs;
427 
428 	kpreempt_disable();
429 	if (fpu_exists && ttolwp(curthread) == lwp) {
430 		fprs = _fp_read_fprs();
431 	} else {
432 		kfpu_t *fp = lwptofpu(lwp);
433 		fprs = fp->fpu_fprs;
434 	}
435 	kpreempt_enable();
436 	grp[REG_PSR] = mkpsr(rp->r_tstate, fprs);
437 	grp[REG_PC] = rp->r_pc;
438 	grp[REG_nPC] = rp->r_npc;
439 	grp[REG_Y] = rp->r_y;
440 	grp[REG_G1] = rp->r_g1;
441 	grp[REG_G2] = rp->r_g2;
442 	grp[REG_G3] = rp->r_g3;
443 	grp[REG_G4] = rp->r_g4;
444 	grp[REG_G5] = rp->r_g5;
445 	grp[REG_G6] = rp->r_g6;
446 	grp[REG_G7] = rp->r_g7;
447 	grp[REG_O0] = rp->r_o0;
448 	grp[REG_O1] = rp->r_o1;
449 	grp[REG_O2] = rp->r_o2;
450 	grp[REG_O3] = rp->r_o3;
451 	grp[REG_O4] = rp->r_o4;
452 	grp[REG_O5] = rp->r_o5;
453 	grp[REG_O6] = rp->r_o6;
454 	grp[REG_O7] = rp->r_o7;
455 }
456 
457 /*
458  * Return the user-level PC.
459  * If in a system call, return the address of the syscall trap.
460  */
461 greg_t
462 getuserpc()
463 {
464 	return (lwptoregs(ttolwp(curthread))->r_pc);
465 }
466 
467 /*
468  * Set register windows.
469  */
470 void
471 setgwins(klwp_t *lwp, gwindows_t *gwins)
472 {
473 	struct machpcb *mpcb = lwptompcb(lwp);
474 	int wbcnt = gwins->wbcnt;
475 	caddr_t sp;
476 	int i;
477 	struct rwindow32 *rwp;
478 	int wbuf_rwindow_size;
479 	int is64;
480 
481 	if (mpcb->mpcb_wstate == WSTATE_USER32) {
482 		wbuf_rwindow_size = WINDOWSIZE32;
483 		is64 = 0;
484 	} else {
485 		wbuf_rwindow_size = WINDOWSIZE64;
486 		is64 = 1;
487 	}
488 	ASSERT(wbcnt >= 0 && wbcnt <= SPARC_MAXREGWINDOW);
489 	mpcb->mpcb_wbcnt = 0;
490 	for (i = 0; i < wbcnt; i++) {
491 		sp = (caddr_t)gwins->spbuf[i];
492 		mpcb->mpcb_spbuf[i] = sp;
493 		rwp = (struct rwindow32 *)
494 			(mpcb->mpcb_wbuf + (i * wbuf_rwindow_size));
495 		if (is64 && IS_V9STACK(sp))
496 			bcopy(&gwins->wbuf[i], rwp, sizeof (struct rwindow));
497 		else
498 			rwindow_nto32(&gwins->wbuf[i], rwp);
499 		mpcb->mpcb_wbcnt++;
500 	}
501 }
502 
503 void
504 setgwins32(klwp_t *lwp, gwindows32_t *gwins)
505 {
506 	struct machpcb *mpcb = lwptompcb(lwp);
507 	int wbcnt = gwins->wbcnt;
508 	caddr_t sp;
509 	int i;
510 
511 	struct rwindow *rwp;
512 	int wbuf_rwindow_size;
513 	int is64;
514 
515 	if (mpcb->mpcb_wstate == WSTATE_USER32) {
516 		wbuf_rwindow_size = WINDOWSIZE32;
517 		is64 = 0;
518 	} else {
519 		wbuf_rwindow_size = WINDOWSIZE64;
520 		is64 = 1;
521 	}
522 
523 	ASSERT(wbcnt >= 0 && wbcnt <= SPARC_MAXREGWINDOW);
524 	mpcb->mpcb_wbcnt = 0;
525 	for (i = 0; i < wbcnt; i++) {
526 		sp = (caddr_t)gwins->spbuf[i];
527 		mpcb->mpcb_spbuf[i] = sp;
528 		rwp = (struct rwindow *)
529 			(mpcb->mpcb_wbuf + (i * wbuf_rwindow_size));
530 		if (is64 && IS_V9STACK(sp))
531 			rwindow_32ton(&gwins->wbuf[i], rwp);
532 		else
533 			bcopy(&gwins->wbuf[i], rwp, sizeof (struct rwindow32));
534 		mpcb->mpcb_wbcnt++;
535 	}
536 }
537 
538 /*
539  * Get register windows.
540  * NOTE:  'lwp' might not correspond to 'curthread' since this is
541  * called from code in /proc to set the registers of another lwp.
542  */
543 void
544 getgwins(klwp_t *lwp, gwindows_t *gwp)
545 {
546 	struct machpcb *mpcb = lwptompcb(lwp);
547 	int wbcnt = mpcb->mpcb_wbcnt;
548 	caddr_t sp;
549 	int i;
550 	struct rwindow32 *rwp;
551 	int wbuf_rwindow_size;
552 	int is64;
553 
554 	if (mpcb->mpcb_wstate == WSTATE_USER32) {
555 		wbuf_rwindow_size = WINDOWSIZE32;
556 		is64 = 0;
557 	} else {
558 		wbuf_rwindow_size = WINDOWSIZE64;
559 		is64 = 1;
560 	}
561 	ASSERT(wbcnt >= 0 && wbcnt <= SPARC_MAXREGWINDOW);
562 	gwp->wbcnt = wbcnt;
563 	for (i = 0; i < wbcnt; i++) {
564 		sp = mpcb->mpcb_spbuf[i];
565 		gwp->spbuf[i] = (greg_t *)sp;
566 		rwp = (struct rwindow32 *)
567 			(mpcb->mpcb_wbuf + (i * wbuf_rwindow_size));
568 		if (is64 && IS_V9STACK(sp))
569 			bcopy(rwp, &gwp->wbuf[i], sizeof (struct rwindow));
570 		else
571 			rwindow_32ton(rwp, &gwp->wbuf[i]);
572 	}
573 }
574 
575 void
576 getgwins32(klwp_t *lwp, gwindows32_t *gwp)
577 {
578 	struct machpcb *mpcb = lwptompcb(lwp);
579 	int wbcnt = mpcb->mpcb_wbcnt;
580 	int i;
581 	struct rwindow *rwp;
582 	int wbuf_rwindow_size;
583 	caddr_t sp;
584 	int is64;
585 
586 	if (mpcb->mpcb_wstate == WSTATE_USER32) {
587 		wbuf_rwindow_size = WINDOWSIZE32;
588 		is64 = 0;
589 	} else {
590 		wbuf_rwindow_size = WINDOWSIZE64;
591 		is64 = 1;
592 	}
593 
594 	ASSERT(wbcnt >= 0 && wbcnt <= SPARC_MAXREGWINDOW);
595 	gwp->wbcnt = wbcnt;
596 	for (i = 0; i < wbcnt; i++) {
597 		sp = mpcb->mpcb_spbuf[i];
598 		rwp = (struct rwindow *)
599 			(mpcb->mpcb_wbuf + (i * wbuf_rwindow_size));
600 		gwp->spbuf[i] = (caddr32_t)sp;
601 		if (is64 && IS_V9STACK(sp))
602 			rwindow_nto32(rwp, &gwp->wbuf[i]);
603 		else
604 			bcopy(rwp, &gwp->wbuf[i], sizeof (struct rwindow32));
605 	}
606 }
607 
608 /*
609  * For things that depend on register state being on the stack,
610  * copy any register windows that get saved into the window buffer
611  * (in the pcb) onto the stack.  This normally gets fixed up
612  * before returning to a user program.  Callers of this routine
613  * require this to happen immediately because a later kernel
614  * operation depends on window state (like instruction simulation).
615  */
616 int
617 flush_user_windows_to_stack(caddr_t *psp)
618 {
619 	int j, k;
620 	caddr_t sp;
621 	struct machpcb *mpcb = lwptompcb(ttolwp(curthread));
622 	int err;
623 	int error = 0;
624 	int wbuf_rwindow_size;
625 	int rwindow_size;
626 	int stack_align;
627 	int watched;
628 
629 	flush_user_windows();
630 
631 	if (mpcb->mpcb_wstate != WSTATE_USER32)
632 		wbuf_rwindow_size = WINDOWSIZE64;
633 	else
634 		wbuf_rwindow_size = WINDOWSIZE32;
635 
636 	j = mpcb->mpcb_wbcnt;
637 	while (j > 0) {
638 		sp = mpcb->mpcb_spbuf[--j];
639 
640 		if ((mpcb->mpcb_wstate != WSTATE_USER32) &&
641 		    IS_V9STACK(sp)) {
642 			sp += V9BIAS64;
643 			stack_align = STACK_ALIGN64;
644 			rwindow_size = WINDOWSIZE64;
645 		} else {
646 			sp = (caddr_t)(uint32_t)sp;
647 			stack_align = STACK_ALIGN32;
648 			rwindow_size = WINDOWSIZE32;
649 		}
650 		if (((uintptr_t)sp & (stack_align - 1)) != 0)
651 			continue;
652 
653 		watched = watch_disable_addr(sp, rwindow_size, S_WRITE);
654 		err = xcopyout(mpcb->mpcb_wbuf +
655 		    (j * wbuf_rwindow_size), sp, rwindow_size);
656 		if (err != 0) {
657 			if (psp != NULL) {
658 				/*
659 				 * Determine the offending address.
660 				 * It may not be the stack pointer itself.
661 				 */
662 				uint_t *kaddr = (uint_t *)(mpcb->mpcb_wbuf +
663 				    (j * wbuf_rwindow_size));
664 				uint_t *uaddr = (uint_t *)sp;
665 
666 				for (k = 0;
667 				    k < rwindow_size / sizeof (int);
668 				    k++, kaddr++, uaddr++) {
669 					if (suword32(uaddr, *kaddr))
670 						break;
671 				}
672 
673 				/* can't happen? */
674 				if (k == rwindow_size / sizeof (int))
675 					uaddr = (uint_t *)sp;
676 
677 				*psp = (caddr_t)uaddr;
678 			}
679 			error = err;
680 		} else {
681 			/*
682 			 * stack was aligned and copyout succeeded;
683 			 * move other windows down.
684 			 */
685 			mpcb->mpcb_wbcnt--;
686 			for (k = j; k < mpcb->mpcb_wbcnt; k++) {
687 				mpcb->mpcb_spbuf[k] = mpcb->mpcb_spbuf[k+1];
688 				bcopy(
689 				    mpcb->mpcb_wbuf +
690 					((k+1) * wbuf_rwindow_size),
691 				    mpcb->mpcb_wbuf +
692 					(k * wbuf_rwindow_size),
693 				    wbuf_rwindow_size);
694 			}
695 		}
696 		if (watched)
697 			watch_enable_addr(sp, rwindow_size, S_WRITE);
698 	} /* while there are windows in the wbuf */
699 	return (error);
700 }
701 
702 static int
703 copy_return_window32(int dotwo)
704 {
705 	klwp_t *lwp = ttolwp(curthread);
706 	struct machpcb *mpcb = lwptompcb(lwp);
707 	struct rwindow32 rwindow32;
708 	caddr_t sp1;
709 	caddr_t sp2;
710 
711 	(void) flush_user_windows_to_stack(NULL);
712 	if (mpcb->mpcb_rsp[0] == NULL) {
713 		sp1 = (caddr_t)(uint32_t)lwptoregs(lwp)->r_sp;
714 		if ((copyin_nowatch(sp1, &rwindow32,
715 		    sizeof (struct rwindow32))) == 0)
716 			mpcb->mpcb_rsp[0] = sp1;
717 		rwindow_32ton(&rwindow32, &mpcb->mpcb_rwin[0]);
718 	}
719 	mpcb->mpcb_rsp[1] = NULL;
720 	if (dotwo && mpcb->mpcb_rsp[0] != NULL &&
721 	    (sp2 = (caddr_t)mpcb->mpcb_rwin[0].rw_fp) != NULL) {
722 		if ((copyin_nowatch(sp2, &rwindow32,
723 		    sizeof (struct rwindow32)) == 0))
724 			mpcb->mpcb_rsp[1] = sp2;
725 		rwindow_32ton(&rwindow32, &mpcb->mpcb_rwin[1]);
726 	}
727 	return (mpcb->mpcb_rsp[0] != NULL);
728 }
729 
730 int
731 copy_return_window(int dotwo)
732 {
733 	proc_t *p = ttoproc(curthread);
734 	klwp_t *lwp;
735 	struct machpcb *mpcb;
736 	caddr_t sp1;
737 	caddr_t sp2;
738 
739 	if (p->p_model == DATAMODEL_ILP32)
740 		return (copy_return_window32(dotwo));
741 
742 	lwp = ttolwp(curthread);
743 	mpcb = lwptompcb(lwp);
744 	(void) flush_user_windows_to_stack(NULL);
745 	if (mpcb->mpcb_rsp[0] == NULL) {
746 		sp1 = (caddr_t)lwptoregs(lwp)->r_sp + STACK_BIAS;
747 		if ((copyin_nowatch(sp1, &mpcb->mpcb_rwin[0],
748 		    sizeof (struct rwindow)) == 0))
749 			mpcb->mpcb_rsp[0] = sp1 - STACK_BIAS;
750 	}
751 	mpcb->mpcb_rsp[1] = NULL;
752 	if (dotwo && mpcb->mpcb_rsp[0] != NULL &&
753 	    (sp2 = (caddr_t)mpcb->mpcb_rwin[0].rw_fp) != NULL) {
754 		sp2 += STACK_BIAS;
755 		if ((copyin_nowatch(sp2, &mpcb->mpcb_rwin[1],
756 		    sizeof (struct rwindow)) == 0))
757 			mpcb->mpcb_rsp[1] = sp2 - STACK_BIAS;
758 	}
759 	return (mpcb->mpcb_rsp[0] != NULL);
760 }
761 
762 /*
763  * Clear registers on exec(2).
764  */
765 void
766 setregs(uarg_t *args)
767 {
768 	struct regs *rp;
769 	klwp_t *lwp = ttolwp(curthread);
770 	kfpu_t *fpp = lwptofpu(lwp);
771 	struct machpcb *mpcb = lwptompcb(lwp);
772 	proc_t *p = ttoproc(curthread);
773 
774 	/*
775 	 * Initialize user registers.
776 	 */
777 	(void) save_syscall_args();	/* copy args from registers first */
778 	rp = lwptoregs(lwp);
779 	rp->r_g1 = rp->r_g2 = rp->r_g3 = rp->r_g4 = rp->r_g5 =
780 	    rp->r_g6 = rp->r_o0 = rp->r_o1 = rp->r_o2 =
781 	    rp->r_o3 = rp->r_o4 = rp->r_o5 = rp->r_o7 = 0;
782 	if (p->p_model == DATAMODEL_ILP32)
783 		rp->r_tstate = TSTATE_USER32;
784 	else
785 		rp->r_tstate = TSTATE_USER64;
786 	if (!fpu_exists)
787 		rp->r_tstate &= ~TSTATE_PEF;
788 	rp->r_g7 = args->thrptr;
789 	rp->r_pc = args->entry;
790 	rp->r_npc = args->entry + 4;
791 	rp->r_y = 0;
792 	curthread->t_post_sys = 1;
793 	lwp->lwp_eosys = JUSTRETURN;
794 	lwp->lwp_pcb.pcb_trap0addr = NULL;	/* no trap 0 handler */
795 	/*
796 	 * Clear the fixalignment flag
797 	 */
798 	p->p_fixalignment = 0;
799 
800 	/*
801 	 * Throw out old user windows, init window buf.
802 	 */
803 	trash_user_windows();
804 
805 	if (p->p_model == DATAMODEL_LP64 &&
806 	    mpcb->mpcb_wstate != WSTATE_USER64) {
807 		ASSERT(mpcb->mpcb_wbcnt == 0);
808 		kmem_free(mpcb->mpcb_wbuf, MAXWIN * sizeof (struct rwindow32));
809 		mpcb->mpcb_wbuf = kmem_alloc(MAXWIN *
810 		    sizeof (struct rwindow64), KM_SLEEP);
811 		ASSERT(((uintptr_t)mpcb->mpcb_wbuf & 7) == 0);
812 		mpcb->mpcb_wstate = WSTATE_USER64;
813 	} else if (p->p_model == DATAMODEL_ILP32 &&
814 	    mpcb->mpcb_wstate != WSTATE_USER32) {
815 		ASSERT(mpcb->mpcb_wbcnt == 0);
816 		kmem_free(mpcb->mpcb_wbuf, MAXWIN * sizeof (struct rwindow64));
817 		mpcb->mpcb_wbuf = kmem_alloc(MAXWIN *
818 		    sizeof (struct rwindow32), KM_SLEEP);
819 		mpcb->mpcb_wstate = WSTATE_USER32;
820 	}
821 	mpcb->mpcb_pa = va_to_pa(mpcb);
822 	mpcb->mpcb_wbuf_pa = va_to_pa(mpcb->mpcb_wbuf);
823 
824 	/*
825 	 * Here we initialize minimal fpu state.
826 	 * The rest is done at the first floating
827 	 * point instruction that a process executes
828 	 * or by the lib_psr memcpy routines.
829 	 */
830 	if (fpu_exists) {
831 		extern void _fp_write_fprs(unsigned);
832 		_fp_write_fprs(0);
833 	}
834 	fpp->fpu_en = 0;
835 	fpp->fpu_fprs = 0;
836 }
837 
838 void
839 lwp_swapin(kthread_t *tp)
840 {
841 	struct machpcb *mpcb = lwptompcb(ttolwp(tp));
842 
843 	mpcb->mpcb_pa = va_to_pa(mpcb);
844 	mpcb->mpcb_wbuf_pa = va_to_pa(mpcb->mpcb_wbuf);
845 }
846 
847 /*
848  * Construct the execution environment for the user's signal
849  * handler and arrange for control to be given to it on return
850  * to userland.  The library code now calls setcontext() to
851  * clean up after the signal handler, so sigret() is no longer
852  * needed.
853  */
854 int
855 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())
856 {
857 	/*
858 	 * 'volatile' is needed to ensure that values are
859 	 * correct on the error return from on_fault().
860 	 */
861 	volatile int minstacksz; /* min stack required to catch signal */
862 	int newstack = 0;	/* if true, switching to altstack */
863 	label_t ljb;
864 	caddr_t sp;
865 	struct regs *volatile rp;
866 	klwp_t *lwp = ttolwp(curthread);
867 	proc_t *volatile p = ttoproc(curthread);
868 	int fpq_size = 0;
869 	struct sigframe {
870 		struct frame frwin;
871 		ucontext_t uc;
872 	};
873 	siginfo_t *sip_addr;
874 	struct sigframe *volatile fp;
875 	ucontext_t *volatile tuc = NULL;
876 	char *volatile xregs = NULL;
877 	volatile size_t xregs_size = 0;
878 	gwindows_t *volatile gwp = NULL;
879 	volatile int gwin_size = 0;
880 	kfpu_t *fpp;
881 	struct machpcb *mpcb;
882 	volatile int watched = 0;
883 	volatile int watched2 = 0;
884 	caddr_t tos;
885 
886 	/*
887 	 * Make sure the current last user window has been flushed to
888 	 * the stack save area before we change the sp.
889 	 * Restore register window if a debugger modified it.
890 	 */
891 	(void) flush_user_windows_to_stack(NULL);
892 	if (lwp->lwp_pcb.pcb_xregstat != XREGNONE)
893 		xregrestore(lwp, 0);
894 
895 	mpcb = lwptompcb(lwp);
896 	rp = lwptoregs(lwp);
897 
898 	/*
899 	 * Clear the watchpoint return stack pointers.
900 	 */
901 	mpcb->mpcb_rsp[0] = NULL;
902 	mpcb->mpcb_rsp[1] = NULL;
903 
904 	minstacksz = sizeof (struct sigframe);
905 
906 	/*
907 	 * We know that sizeof (siginfo_t) is stack-aligned:
908 	 * 128 bytes for ILP32, 256 bytes for LP64.
909 	 */
910 	if (sip != NULL)
911 		minstacksz += sizeof (siginfo_t);
912 
913 	/*
914 	 * These two fields are pointed to by ABI structures and may
915 	 * be of arbitrary length. Size them now so we know how big
916 	 * the signal frame has to be.
917 	 */
918 	fpp = lwptofpu(lwp);
919 	fpp->fpu_fprs = _fp_read_fprs();
920 	if ((fpp->fpu_en) || (fpp->fpu_fprs & FPRS_FEF)) {
921 		fpq_size = fpp->fpu_q_entrysize * fpp->fpu_qcnt;
922 		minstacksz += SA(fpq_size);
923 	}
924 
925 	mpcb = lwptompcb(lwp);
926 	if (mpcb->mpcb_wbcnt != 0) {
927 		gwin_size = (mpcb->mpcb_wbcnt * sizeof (struct rwindow)) +
928 		    (SPARC_MAXREGWINDOW * sizeof (caddr_t)) + sizeof (long);
929 		minstacksz += SA(gwin_size);
930 	}
931 
932 	/*
933 	 * Extra registers, if support by this platform, may be of arbitrary
934 	 * length. Size them now so we know how big the signal frame has to be.
935 	 * For sparcv9 _LP64 user programs, use asrs instead of the xregs.
936 	 */
937 	minstacksz += SA(xregs_size);
938 
939 	/*
940 	 * Figure out whether we will be handling this signal on
941 	 * an alternate stack specified by the user. Then allocate
942 	 * and validate the stack requirements for the signal handler
943 	 * context. on_fault will catch any faults.
944 	 */
945 	newstack = (sigismember(&u.u_sigonstack, sig) &&
946 	    !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE)));
947 
948 	tos = (caddr_t)rp->r_sp + STACK_BIAS;
949 	if (newstack != 0) {
950 		fp = (struct sigframe *)
951 		    (SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
952 			SA((int)lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN -
953 			SA(minstacksz));
954 	} else {
955 		/*
956 		 * If we were unable to flush all register windows to
957 		 * the stack and we are not now on an alternate stack,
958 		 * just dump core with a SIGSEGV back in psig().
959 		 */
960 		if (sig == SIGSEGV &&
961 		    mpcb->mpcb_wbcnt != 0 &&
962 		    !(lwp->lwp_sigaltstack.ss_flags & SS_ONSTACK))
963 			return (0);
964 		fp = (struct sigframe *)(tos - SA(minstacksz));
965 		/*
966 		 * Could call grow here, but stack growth now handled below
967 		 * in code protected by on_fault().
968 		 */
969 	}
970 	sp = (caddr_t)fp + sizeof (struct sigframe);
971 
972 	/*
973 	 * Make sure process hasn't trashed its stack.
974 	 */
975 	if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0 ||
976 	    (caddr_t)fp >= p->p_usrstack ||
977 	    (caddr_t)fp + SA(minstacksz) >= p->p_usrstack) {
978 #ifdef DEBUG
979 		printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
980 		    PTOU(p)->u_comm, p->p_pid, sig);
981 		printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
982 		    (void *)fp, (void *)hdlr, rp->r_pc);
983 
984 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0)
985 			printf("bad stack alignment\n");
986 		else
987 			printf("fp above USRSTACK\n");
988 #endif
989 		return (0);
990 	}
991 
992 	watched = watch_disable_addr((caddr_t)fp, SA(minstacksz), S_WRITE);
993 	if (on_fault(&ljb))
994 		goto badstack;
995 
996 	tuc = kmem_alloc(sizeof (ucontext_t), KM_SLEEP);
997 	savecontext(tuc, lwp->lwp_sigoldmask);
998 
999 	/*
1000 	 * save extra register state if it exists
1001 	 */
1002 	if (xregs_size != 0) {
1003 		xregs_setptr(lwp, tuc, sp);
1004 		xregs = kmem_alloc(xregs_size, KM_SLEEP);
1005 		xregs_get(lwp, xregs);
1006 		copyout_noerr(xregs, sp, xregs_size);
1007 		kmem_free(xregs, xregs_size);
1008 		xregs = NULL;
1009 		sp += SA(xregs_size);
1010 	}
1011 
1012 	copyout_noerr(tuc, &fp->uc, sizeof (*tuc));
1013 	kmem_free(tuc, sizeof (*tuc));
1014 	tuc = NULL;
1015 
1016 	if (sip != NULL) {
1017 		zoneid_t zoneid;
1018 
1019 		uzero(sp, sizeof (siginfo_t));
1020 		if (SI_FROMUSER(sip) &&
1021 		    (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
1022 		    zoneid != sip->si_zoneid) {
1023 			k_siginfo_t sani_sip = *sip;
1024 			sani_sip.si_pid = p->p_zone->zone_zsched->p_pid;
1025 			sani_sip.si_uid = 0;
1026 			sani_sip.si_ctid = -1;
1027 			sani_sip.si_zoneid = zoneid;
1028 			copyout_noerr(&sani_sip, sp, sizeof (sani_sip));
1029 		} else {
1030 			copyout_noerr(sip, sp, sizeof (*sip));
1031 		}
1032 		sip_addr = (siginfo_t *)sp;
1033 		sp += sizeof (siginfo_t);
1034 
1035 		if (sig == SIGPROF &&
1036 		    curthread->t_rprof != NULL &&
1037 		    curthread->t_rprof->rp_anystate) {
1038 			/*
1039 			 * We stand on our head to deal with
1040 			 * the real time profiling signal.
1041 			 * Fill in the stuff that doesn't fit
1042 			 * in a normal k_siginfo structure.
1043 			 */
1044 			int i = sip->si_nsysarg;
1045 			while (--i >= 0) {
1046 				sulword_noerr(
1047 				    (ulong_t *)&sip_addr->si_sysarg[i],
1048 				    (ulong_t)lwp->lwp_arg[i]);
1049 			}
1050 			copyout_noerr(curthread->t_rprof->rp_state,
1051 			    sip_addr->si_mstate,
1052 			    sizeof (curthread->t_rprof->rp_state));
1053 		}
1054 	} else {
1055 		sip_addr = (siginfo_t *)NULL;
1056 	}
1057 
1058 	/*
1059 	 * When flush_user_windows_to_stack() can't save all the
1060 	 * windows to the stack, it puts them in the lwp's pcb.
1061 	 */
1062 	if (gwin_size != 0) {
1063 		gwp = kmem_alloc(gwin_size, KM_SLEEP);
1064 		getgwins(lwp, gwp);
1065 		sulword_noerr(&fp->uc.uc_mcontext.gwins, (ulong_t)sp);
1066 		copyout_noerr(gwp, sp, gwin_size);
1067 		kmem_free(gwp, gwin_size);
1068 		gwp = NULL;
1069 		sp += SA(gwin_size);
1070 	} else
1071 		sulword_noerr(&fp->uc.uc_mcontext.gwins, (ulong_t)NULL);
1072 
1073 	if (fpq_size != 0) {
1074 		struct fq *fqp = (struct fq *)sp;
1075 		sulword_noerr(&fp->uc.uc_mcontext.fpregs.fpu_q, (ulong_t)fqp);
1076 		copyout_noerr(mpcb->mpcb_fpu_q, fqp, fpq_size);
1077 
1078 		/*
1079 		 * forget the fp queue so that the signal handler can run
1080 		 * without being harrassed--it will do a setcontext that will
1081 		 * re-establish the queue if there still is one
1082 		 *
1083 		 * NOTE: fp_runq() relies on the qcnt field being zeroed here
1084 		 *	to terminate its processing of the queue after signal
1085 		 *	delivery.
1086 		 */
1087 		mpcb->mpcb_fpu->fpu_qcnt = 0;
1088 		sp += SA(fpq_size);
1089 
1090 		/* Also, syscall needs to know about this */
1091 		mpcb->mpcb_flags |= FP_TRAPPED;
1092 
1093 	} else {
1094 		sulword_noerr(&fp->uc.uc_mcontext.fpregs.fpu_q, (ulong_t)NULL);
1095 		suword8_noerr(&fp->uc.uc_mcontext.fpregs.fpu_qcnt, 0);
1096 	}
1097 
1098 
1099 	/*
1100 	 * Since we flushed the user's windows and we are changing his
1101 	 * stack pointer, the window that the user will return to will
1102 	 * be restored from the save area in the frame we are setting up.
1103 	 * We copy in save area for old stack pointer so that debuggers
1104 	 * can do a proper stack backtrace from the signal handler.
1105 	 */
1106 	if (mpcb->mpcb_wbcnt == 0) {
1107 		watched2 = watch_disable_addr(tos, sizeof (struct rwindow),
1108 		    S_READ);
1109 		ucopy(tos, &fp->frwin, sizeof (struct rwindow));
1110 	}
1111 
1112 	lwp->lwp_oldcontext = (uintptr_t)&fp->uc;
1113 
1114 	if (newstack != 0) {
1115 		lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
1116 
1117 		if (lwp->lwp_ustack) {
1118 			copyout_noerr(&lwp->lwp_sigaltstack,
1119 			    (stack_t *)lwp->lwp_ustack, sizeof (stack_t));
1120 		}
1121 	}
1122 
1123 	no_fault();
1124 	mpcb->mpcb_wbcnt = 0;		/* let user go on */
1125 
1126 	if (watched2)
1127 		watch_enable_addr(tos, sizeof (struct rwindow), S_READ);
1128 	if (watched)
1129 		watch_enable_addr((caddr_t)fp, SA(minstacksz), S_WRITE);
1130 
1131 	/*
1132 	 * Set up user registers for execution of signal handler.
1133 	 */
1134 	rp->r_sp = (uintptr_t)fp - STACK_BIAS;
1135 	rp->r_pc = (uintptr_t)hdlr;
1136 	rp->r_npc = (uintptr_t)hdlr + 4;
1137 	/* make sure %asi is ASI_PNF */
1138 	rp->r_tstate &= ~((uint64_t)TSTATE_ASI_MASK << TSTATE_ASI_SHIFT);
1139 	rp->r_tstate |= ((uint64_t)ASI_PNF << TSTATE_ASI_SHIFT);
1140 	rp->r_o0 = sig;
1141 	rp->r_o1 = (uintptr_t)sip_addr;
1142 	rp->r_o2 = (uintptr_t)&fp->uc;
1143 	/*
1144 	 * Don't set lwp_eosys here.  sendsig() is called via psig() after
1145 	 * lwp_eosys is handled, so setting it here would affect the next
1146 	 * system call.
1147 	 */
1148 	return (1);
1149 
1150 badstack:
1151 	no_fault();
1152 	if (watched2)
1153 		watch_enable_addr(tos, sizeof (struct rwindow), S_READ);
1154 	if (watched)
1155 		watch_enable_addr((caddr_t)fp, SA(minstacksz), S_WRITE);
1156 	if (tuc)
1157 		kmem_free(tuc, sizeof (ucontext_t));
1158 	if (xregs)
1159 		kmem_free(xregs, xregs_size);
1160 	if (gwp)
1161 		kmem_free(gwp, gwin_size);
1162 #ifdef DEBUG
1163 	printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
1164 	    PTOU(p)->u_comm, p->p_pid, sig);
1165 	printf("on fault, sigsp = %p, action = %p, upc = 0x%lx\n",
1166 	    (void *)fp, (void *)hdlr, rp->r_pc);
1167 #endif
1168 	return (0);
1169 }
1170 
1171 
1172 #ifdef _SYSCALL32_IMPL
1173 
1174 /*
1175  * Construct the execution environment for the user's signal
1176  * handler and arrange for control to be given to it on return
1177  * to userland.  The library code now calls setcontext() to
1178  * clean up after the signal handler, so sigret() is no longer
1179  * needed.
1180  */
1181 int
1182 sendsig32(int sig, k_siginfo_t *sip, void (*hdlr)())
1183 {
1184 	/*
1185 	 * 'volatile' is needed to ensure that values are
1186 	 * correct on the error return from on_fault().
1187 	 */
1188 	volatile int minstacksz; /* min stack required to catch signal */
1189 	int newstack = 0;	/* if true, switching to altstack */
1190 	label_t ljb;
1191 	caddr_t sp;
1192 	struct regs *volatile rp;
1193 	klwp_t *lwp = ttolwp(curthread);
1194 	proc_t *volatile p = ttoproc(curthread);
1195 	struct fq32 fpu_q[MAXFPQ]; /* to hold floating queue */
1196 	struct fq32 *dfq = NULL;
1197 	size_t fpq_size = 0;
1198 	struct sigframe32 {
1199 		struct frame32 frwin;
1200 		ucontext32_t uc;
1201 	};
1202 	struct sigframe32 *volatile fp;
1203 	siginfo32_t *sip_addr;
1204 	ucontext32_t *volatile tuc = NULL;
1205 	char *volatile xregs = NULL;
1206 	volatile int xregs_size = 0;
1207 	gwindows32_t *volatile gwp = NULL;
1208 	volatile size_t gwin_size = 0;
1209 	kfpu_t *fpp;
1210 	struct machpcb *mpcb;
1211 	volatile int watched = 0;
1212 	volatile int watched2 = 0;
1213 	caddr_t tos;
1214 
1215 	/*
1216 	 * Make sure the current last user window has been flushed to
1217 	 * the stack save area before we change the sp.
1218 	 * Restore register window if a debugger modified it.
1219 	 */
1220 	(void) flush_user_windows_to_stack(NULL);
1221 	if (lwp->lwp_pcb.pcb_xregstat != XREGNONE)
1222 		xregrestore(lwp, 0);
1223 
1224 	mpcb = lwptompcb(lwp);
1225 	rp = lwptoregs(lwp);
1226 
1227 	/*
1228 	 * Clear the watchpoint return stack pointers.
1229 	 */
1230 	mpcb->mpcb_rsp[0] = NULL;
1231 	mpcb->mpcb_rsp[1] = NULL;
1232 
1233 	minstacksz = sizeof (struct sigframe32);
1234 
1235 	if (sip != NULL)
1236 		minstacksz += sizeof (siginfo32_t);
1237 
1238 	/*
1239 	 * These two fields are pointed to by ABI structures and may
1240 	 * be of arbitrary length. Size them now so we know how big
1241 	 * the signal frame has to be.
1242 	 */
1243 	fpp = lwptofpu(lwp);
1244 	fpp->fpu_fprs = _fp_read_fprs();
1245 	if ((fpp->fpu_en) || (fpp->fpu_fprs & FPRS_FEF)) {
1246 		fpq_size = sizeof (struct fpq32) * fpp->fpu_qcnt;
1247 		minstacksz += fpq_size;
1248 		dfq = fpu_q;
1249 	}
1250 
1251 	mpcb = lwptompcb(lwp);
1252 	if (mpcb->mpcb_wbcnt != 0) {
1253 		gwin_size = (mpcb->mpcb_wbcnt * sizeof (struct rwindow32)) +
1254 		    (SPARC_MAXREGWINDOW * sizeof (caddr32_t)) +
1255 		    sizeof (int32_t);
1256 		minstacksz += gwin_size;
1257 	}
1258 
1259 	/*
1260 	 * Extra registers, if supported by this platform, may be of arbitrary
1261 	 * length. Size them now so we know how big the signal frame has to be.
1262 	 */
1263 	xregs_size = xregs_getsize(p);
1264 	minstacksz += SA32(xregs_size);
1265 
1266 	/*
1267 	 * Figure out whether we will be handling this signal on
1268 	 * an alternate stack specified by the user. Then allocate
1269 	 * and validate the stack requirements for the signal handler
1270 	 * context. on_fault will catch any faults.
1271 	 */
1272 	newstack = (sigismember(&u.u_sigonstack, sig) &&
1273 	    !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE)));
1274 
1275 	tos = (void *)(uint32_t)rp->r_sp;
1276 	if (newstack != 0) {
1277 		fp = (struct sigframe32 *)
1278 		    (SA32((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
1279 			SA32((int)lwp->lwp_sigaltstack.ss_size) -
1280 			STACK_ALIGN32 -
1281 			SA32(minstacksz));
1282 	} else {
1283 		/*
1284 		 * If we were unable to flush all register windows to
1285 		 * the stack and we are not now on an alternate stack,
1286 		 * just dump core with a SIGSEGV back in psig().
1287 		 */
1288 		if (sig == SIGSEGV &&
1289 		    mpcb->mpcb_wbcnt != 0 &&
1290 		    !(lwp->lwp_sigaltstack.ss_flags & SS_ONSTACK))
1291 			return (0);
1292 		fp = (struct sigframe32 *)(tos - SA32(minstacksz));
1293 		/*
1294 		 * Could call grow here, but stack growth now handled below
1295 		 * in code protected by on_fault().
1296 		 */
1297 	}
1298 	sp = (caddr_t)fp + sizeof (struct sigframe32);
1299 
1300 	/*
1301 	 * Make sure process hasn't trashed its stack.
1302 	 */
1303 	if (((uintptr_t)fp & (STACK_ALIGN32 - 1)) != 0 ||
1304 	    (caddr_t)fp >= p->p_usrstack ||
1305 	    (caddr_t)fp + SA32(minstacksz) >= p->p_usrstack) {
1306 #ifdef DEBUG
1307 		printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n",
1308 		    PTOU(p)->u_comm, p->p_pid, sig);
1309 		printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
1310 		    (void *)fp, (void *)hdlr, rp->r_pc);
1311 
1312 		if (((uintptr_t)fp & (STACK_ALIGN32 - 1)) != 0)
1313 			printf("bad stack alignment\n");
1314 		else
1315 			printf("fp above USRSTACK32\n");
1316 #endif
1317 		return (0);
1318 	}
1319 
1320 	watched = watch_disable_addr((caddr_t)fp, SA32(minstacksz), S_WRITE);
1321 	if (on_fault(&ljb))
1322 		goto badstack;
1323 
1324 	tuc = kmem_alloc(sizeof (ucontext32_t), KM_SLEEP);
1325 	savecontext32(tuc, lwp->lwp_sigoldmask, dfq);
1326 
1327 	/*
1328 	 * save extra register state if it exists
1329 	 */
1330 	if (xregs_size != 0) {
1331 		xregs_setptr32(lwp, tuc, (caddr32_t)sp);
1332 		xregs = kmem_alloc(xregs_size, KM_SLEEP);
1333 		xregs_get(lwp, xregs);
1334 		copyout_noerr(xregs, sp, xregs_size);
1335 		kmem_free(xregs, xregs_size);
1336 		xregs = NULL;
1337 		sp += SA32(xregs_size);
1338 	}
1339 
1340 	copyout_noerr(tuc, &fp->uc, sizeof (*tuc));
1341 	kmem_free(tuc, sizeof (*tuc));
1342 	tuc = NULL;
1343 
1344 	if (sip != NULL) {
1345 		siginfo32_t si32;
1346 		zoneid_t zoneid;
1347 
1348 		siginfo_kto32(sip, &si32);
1349 		if (SI_FROMUSER(sip) &&
1350 		    (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
1351 		    zoneid != sip->si_zoneid) {
1352 			si32.si_pid = p->p_zone->zone_zsched->p_pid;
1353 			si32.si_uid = 0;
1354 			si32.si_ctid = -1;
1355 			si32.si_zoneid = zoneid;
1356 		}
1357 		uzero(sp, sizeof (siginfo32_t));
1358 		copyout_noerr(&si32, sp, sizeof (siginfo32_t));
1359 		sip_addr = (siginfo32_t *)sp;
1360 		sp += sizeof (siginfo32_t);
1361 
1362 		if (sig == SIGPROF &&
1363 		    curthread->t_rprof != NULL &&
1364 		    curthread->t_rprof->rp_anystate) {
1365 			/*
1366 			 * We stand on our head to deal with
1367 			 * the real time profiling signal.
1368 			 * Fill in the stuff that doesn't fit
1369 			 * in a normal k_siginfo structure.
1370 			 */
1371 			int i = sip->si_nsysarg;
1372 			while (--i >= 0) {
1373 				suword32_noerr(&sip_addr->si_sysarg[i],
1374 				    (uint32_t)lwp->lwp_arg[i]);
1375 			}
1376 			copyout_noerr(curthread->t_rprof->rp_state,
1377 			    sip_addr->si_mstate,
1378 			    sizeof (curthread->t_rprof->rp_state));
1379 		}
1380 	} else {
1381 		sip_addr = NULL;
1382 	}
1383 
1384 	/*
1385 	 * When flush_user_windows_to_stack() can't save all the
1386 	 * windows to the stack, it puts them in the lwp's pcb.
1387 	 */
1388 	if (gwin_size != 0) {
1389 		gwp = kmem_alloc(gwin_size, KM_SLEEP);
1390 		getgwins32(lwp, gwp);
1391 		suword32_noerr(&fp->uc.uc_mcontext.gwins, (uint32_t)sp);
1392 		copyout_noerr(gwp, sp, gwin_size);
1393 		kmem_free(gwp, gwin_size);
1394 		gwp = NULL;
1395 		sp += gwin_size;
1396 	} else {
1397 		suword32_noerr(&fp->uc.uc_mcontext.gwins, (uint32_t)NULL);
1398 	}
1399 
1400 	if (fpq_size != 0) {
1401 		/*
1402 		 * Update the (already copied out) fpu32.fpu_q pointer
1403 		 * from NULL to the 32-bit address on the user's stack
1404 		 * where we then copyout the fq32 to.
1405 		 */
1406 		struct fq32 *fqp = (struct fq32 *)sp;
1407 		suword32_noerr(&fp->uc.uc_mcontext.fpregs.fpu_q, (uint32_t)fqp);
1408 		copyout_noerr(dfq, fqp, fpq_size);
1409 
1410 		/*
1411 		 * forget the fp queue so that the signal handler can run
1412 		 * without being harrassed--it will do a setcontext that will
1413 		 * re-establish the queue if there still is one
1414 		 *
1415 		 * NOTE: fp_runq() relies on the qcnt field being zeroed here
1416 		 *	to terminate its processing of the queue after signal
1417 		 *	delivery.
1418 		 */
1419 		mpcb->mpcb_fpu->fpu_qcnt = 0;
1420 		sp += fpq_size;
1421 
1422 		/* Also, syscall needs to know about this */
1423 		mpcb->mpcb_flags |= FP_TRAPPED;
1424 
1425 	} else {
1426 		suword32_noerr(&fp->uc.uc_mcontext.fpregs.fpu_q,
1427 		    (uint32_t)NULL);
1428 		suword8_noerr(&fp->uc.uc_mcontext.fpregs.fpu_qcnt, 0);
1429 	}
1430 
1431 
1432 	/*
1433 	 * Since we flushed the user's windows and we are changing his
1434 	 * stack pointer, the window that the user will return to will
1435 	 * be restored from the save area in the frame we are setting up.
1436 	 * We copy in save area for old stack pointer so that debuggers
1437 	 * can do a proper stack backtrace from the signal handler.
1438 	 */
1439 	if (mpcb->mpcb_wbcnt == 0) {
1440 		watched2 = watch_disable_addr(tos, sizeof (struct rwindow32),
1441 		    S_READ);
1442 		ucopy(tos, &fp->frwin, sizeof (struct rwindow32));
1443 	}
1444 
1445 	lwp->lwp_oldcontext = (uintptr_t)&fp->uc;
1446 
1447 	if (newstack != 0) {
1448 		lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
1449 		if (lwp->lwp_ustack) {
1450 			stack32_t stk32;
1451 
1452 			stk32.ss_sp = (caddr32_t)lwp->lwp_sigaltstack.ss_sp;
1453 			stk32.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size;
1454 			stk32.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags;
1455 
1456 			copyout_noerr(&stk32, (stack32_t *)lwp->lwp_ustack,
1457 			    sizeof (stack32_t));
1458 		}
1459 	}
1460 
1461 	no_fault();
1462 	mpcb->mpcb_wbcnt = 0;		/* let user go on */
1463 
1464 	if (watched2)
1465 		watch_enable_addr(tos, sizeof (struct rwindow32), S_READ);
1466 	if (watched)
1467 		watch_enable_addr((caddr_t)fp, SA32(minstacksz), S_WRITE);
1468 
1469 	/*
1470 	 * Set up user registers for execution of signal handler.
1471 	 */
1472 	rp->r_sp = (uintptr_t)fp;
1473 	rp->r_pc = (uintptr_t)hdlr;
1474 	rp->r_npc = (uintptr_t)hdlr + 4;
1475 	/* make sure %asi is ASI_PNF */
1476 	rp->r_tstate &= ~((uint64_t)TSTATE_ASI_MASK << TSTATE_ASI_SHIFT);
1477 	rp->r_tstate |= ((uint64_t)ASI_PNF << TSTATE_ASI_SHIFT);
1478 	rp->r_o0 = sig;
1479 	rp->r_o1 = (uintptr_t)sip_addr;
1480 	rp->r_o2 = (uintptr_t)&fp->uc;
1481 	/*
1482 	 * Don't set lwp_eosys here.  sendsig() is called via psig() after
1483 	 * lwp_eosys is handled, so setting it here would affect the next
1484 	 * system call.
1485 	 */
1486 	return (1);
1487 
1488 badstack:
1489 	no_fault();
1490 	if (watched2)
1491 		watch_enable_addr(tos, sizeof (struct rwindow32), S_READ);
1492 	if (watched)
1493 		watch_enable_addr((caddr_t)fp, SA32(minstacksz), S_WRITE);
1494 	if (tuc)
1495 		kmem_free(tuc, sizeof (*tuc));
1496 	if (xregs)
1497 		kmem_free(xregs, xregs_size);
1498 	if (gwp)
1499 		kmem_free(gwp, gwin_size);
1500 #ifdef DEBUG
1501 	printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n",
1502 	    PTOU(p)->u_comm, p->p_pid, sig);
1503 	printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
1504 	    (void *)fp, (void *)hdlr, rp->r_pc);
1505 #endif
1506 	return (0);
1507 }
1508 
1509 #endif /* _SYSCALL32_IMPL */
1510 
1511 
1512 /*
1513  * load user registers into lwp.
1514  * thrptr ignored for sparc.
1515  */
1516 /* ARGSUSED2 */
1517 void
1518 lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr)
1519 {
1520 	setgregs(lwp, grp);
1521 	if (lwptoproc(lwp)->p_model == DATAMODEL_ILP32)
1522 		lwptoregs(lwp)->r_tstate = TSTATE_USER32;
1523 	else
1524 		lwptoregs(lwp)->r_tstate = TSTATE_USER64;
1525 
1526 	if (!fpu_exists)
1527 		lwptoregs(lwp)->r_tstate &= ~TSTATE_PEF;
1528 	lwp->lwp_eosys = JUSTRETURN;
1529 	lwptot(lwp)->t_post_sys = 1;
1530 }
1531 
1532 /*
1533  * set syscall()'s return values for a lwp.
1534  */
1535 void
1536 lwp_setrval(klwp_t *lwp, int v1, int v2)
1537 {
1538 	struct regs *rp = lwptoregs(lwp);
1539 
1540 	rp->r_tstate &= ~TSTATE_IC;
1541 	rp->r_o0 = v1;
1542 	rp->r_o1 = v2;
1543 }
1544 
1545 /*
1546  * set stack pointer for a lwp
1547  */
1548 void
1549 lwp_setsp(klwp_t *lwp, caddr_t sp)
1550 {
1551 	struct regs *rp = lwptoregs(lwp);
1552 	rp->r_sp = (uintptr_t)sp;
1553 }
1554 
1555 /*
1556  * Take any PCB specific actions that are required or flagged in the PCB.
1557  */
1558 extern void trap_async_hwerr(void);
1559 #pragma	weak trap_async_hwerr
1560 
1561 void
1562 lwp_pcb_exit(void)
1563 {
1564 	klwp_t *lwp = ttolwp(curthread);
1565 
1566 	if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1567 		trap_async_hwerr();
1568 	}
1569 }
1570 
1571 /*
1572  * Invalidate the saved user register windows in the pcb struct
1573  * for the current thread. They will no longer be preserved.
1574  */
1575 void
1576 lwp_clear_uwin(void)
1577 {
1578 	struct machpcb *m = lwptompcb(ttolwp(curthread));
1579 
1580 	/*
1581 	 * This has the effect of invalidating all (any) of the
1582 	 * user level windows that are currently sitting in the
1583 	 * kernel buffer.
1584 	 */
1585 	m->mpcb_wbcnt = 0;
1586 }
1587 
1588 static uint_t
1589 mkpsr(uint64_t tstate, uint_t fprs)
1590 {
1591 	uint_t psr, icc;
1592 
1593 	psr = tstate & TSTATE_CWP_MASK;
1594 	if (tstate & TSTATE_PRIV)
1595 		psr |= PSR_PS;
1596 	if (fprs & FPRS_FEF)
1597 		psr |= PSR_EF;
1598 	icc = (uint_t)(tstate >> PSR_TSTATE_CC_SHIFT) & PSR_ICC;
1599 	psr |= icc;
1600 	psr |= V9_PSR_IMPLVER;
1601 	return (psr);
1602 }
1603 
1604 void
1605 sync_icache(caddr_t va, uint_t len)
1606 {
1607 	caddr_t end;
1608 
1609 	end = va + len;
1610 	va = (caddr_t)((uintptr_t)va & -8l);	/* sparc needs 8-byte align */
1611 	while (va < end) {
1612 		doflush(va);
1613 		va += 8;
1614 	}
1615 }
1616 
1617 #ifdef _SYSCALL32_IMPL
1618 
1619 /*
1620  * Copy the floating point queue if and only if there is a queue and a place
1621  * to copy it to. Let xregs take care of the other fp regs, for v8plus.
1622  * The issue is that while we are handling the fq32 in sendsig, we
1623  * still need a 64-bit pointer to it, and the caddr32_t in fpregset32_t
1624  * will not suffice, so we have the third parameter to this function.
1625  */
1626 void
1627 fpuregset_nto32(const fpregset_t *src, fpregset32_t *dest, struct fq32 *dfq)
1628 {
1629 	int i;
1630 
1631 	bzero(dest, sizeof (*dest));
1632 	for (i = 0; i < 32; i++)
1633 		dest->fpu_fr.fpu_regs[i] = src->fpu_fr.fpu_regs[i];
1634 	dest->fpu_q = NULL;
1635 	dest->fpu_fsr = (uint32_t)src->fpu_fsr;
1636 	dest->fpu_qcnt = src->fpu_qcnt;
1637 	dest->fpu_q_entrysize = sizeof (struct fpq32);
1638 	dest->fpu_en = src->fpu_en;
1639 
1640 	if ((src->fpu_qcnt) && (dfq != NULL)) {
1641 		struct fq *sfq = src->fpu_q;
1642 		for (i = 0; i < src->fpu_qcnt; i++, dfq++, sfq++) {
1643 			dfq->FQu.fpq.fpq_addr =
1644 			    (caddr32_t)sfq->FQu.fpq.fpq_addr;
1645 			dfq->FQu.fpq.fpq_instr = sfq->FQu.fpq.fpq_instr;
1646 		}
1647 	}
1648 }
1649 
1650 /*
1651  * Copy the floating point queue if and only if there is a queue and a place
1652  * to copy it to. Let xregs take care of the other fp regs, for v8plus.
1653  * The *dfq is required to escape the bzero in both this function and in
1654  * ucontext_32ton. The *sfq is required because once the fq32 is copied
1655  * into the kernel, in setcontext, then we need a 64-bit pointer to it.
1656  */
1657 static void
1658 fpuregset_32ton(const fpregset32_t *src, fpregset_t *dest,
1659     const struct fq32 *sfq, struct fq *dfq)
1660 {
1661 	int i;
1662 
1663 	bzero(dest, sizeof (*dest));
1664 	for (i = 0; i < 32; i++)
1665 		dest->fpu_fr.fpu_regs[i] = src->fpu_fr.fpu_regs[i];
1666 	dest->fpu_q = dfq;
1667 	dest->fpu_fsr = (uint64_t)src->fpu_fsr;
1668 	if ((dest->fpu_qcnt = src->fpu_qcnt) > 0)
1669 		dest->fpu_q_entrysize = sizeof (struct fpq);
1670 	else
1671 		dest->fpu_q_entrysize = 0;
1672 	dest->fpu_en = src->fpu_en;
1673 
1674 	if ((src->fpu_qcnt) && (sfq) && (dfq)) {
1675 		for (i = 0; i < src->fpu_qcnt; i++, dfq++, sfq++) {
1676 			dfq->FQu.fpq.fpq_addr =
1677 			    (unsigned int *)sfq->FQu.fpq.fpq_addr;
1678 			dfq->FQu.fpq.fpq_instr = sfq->FQu.fpq.fpq_instr;
1679 		}
1680 	}
1681 }
1682 
1683 void
1684 ucontext_32ton(const ucontext32_t *src, ucontext_t *dest,
1685     const struct fq32 *sfq, struct fq *dfq)
1686 {
1687 	int i;
1688 
1689 	bzero(dest, sizeof (*dest));
1690 
1691 	dest->uc_flags = src->uc_flags;
1692 	dest->uc_link = (ucontext_t *)src->uc_link;
1693 
1694 	for (i = 0; i < 4; i++) {
1695 		dest->uc_sigmask.__sigbits[i] = src->uc_sigmask.__sigbits[i];
1696 	}
1697 
1698 	dest->uc_stack.ss_sp = (void *)src->uc_stack.ss_sp;
1699 	dest->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
1700 	dest->uc_stack.ss_flags = src->uc_stack.ss_flags;
1701 
1702 	/* REG_CCR is 0, skip over it and handle it after this loop */
1703 	for (i = 1; i < _NGREG32; i++)
1704 		dest->uc_mcontext.gregs[i] =
1705 		    (greg_t)(uint32_t)src->uc_mcontext.gregs[i];
1706 	dest->uc_mcontext.gregs[REG_CCR] =
1707 	    (src->uc_mcontext.gregs[REG_PSR] & PSR_ICC) >> PSR_ICC_SHIFT;
1708 	dest->uc_mcontext.gregs[REG_ASI] = ASI_PNF;
1709 	/*
1710 	 * A valid fpregs is only copied in if (uc.uc_flags & UC_FPU),
1711 	 * otherwise there is no guarantee that anything in fpregs is valid.
1712 	 */
1713 	if (src->uc_flags & UC_FPU) {
1714 		dest->uc_mcontext.gregs[REG_FPRS] =
1715 		    ((src->uc_mcontext.fpregs.fpu_en) ?
1716 		    (FPRS_DU|FPRS_DL|FPRS_FEF) : 0);
1717 	} else {
1718 		dest->uc_mcontext.gregs[REG_FPRS] = 0;
1719 	}
1720 	dest->uc_mcontext.gwins = (gwindows_t *)src->uc_mcontext.gwins;
1721 	if (src->uc_flags & UC_FPU) {
1722 		fpuregset_32ton(&src->uc_mcontext.fpregs,
1723 		    &dest->uc_mcontext.fpregs, sfq, dfq);
1724 	}
1725 }
1726 
1727 void
1728 rwindow_nto32(struct rwindow *src, struct rwindow32 *dest)
1729 {
1730 	greg_t *s = (greg_t *)src;
1731 	greg32_t *d = (greg32_t *)dest;
1732 	int i;
1733 
1734 	for (i = 0; i < 16; i++)
1735 		*d++ = (greg32_t)*s++;
1736 }
1737 
1738 void
1739 rwindow_32ton(struct rwindow32 *src, struct rwindow *dest)
1740 {
1741 	greg32_t *s = (greg32_t *)src;
1742 	greg_t *d = (greg_t *)dest;
1743 	int i;
1744 
1745 	for (i = 0; i < 16; i++)
1746 		*d++ = (uint32_t)*s++;
1747 }
1748 
1749 #endif /* _SYSCALL32_IMPL */
1750 
1751 /*
1752  * The panic code invokes panic_saveregs() to record the contents of a
1753  * regs structure into the specified panic_data structure for debuggers.
1754  */
1755 void
1756 panic_saveregs(panic_data_t *pdp, struct regs *rp)
1757 {
1758 	panic_nv_t *pnv = PANICNVGET(pdp);
1759 
1760 	PANICNVADD(pnv, "tstate", rp->r_tstate);
1761 	PANICNVADD(pnv, "g1", rp->r_g1);
1762 	PANICNVADD(pnv, "g2", rp->r_g2);
1763 	PANICNVADD(pnv, "g3", rp->r_g3);
1764 	PANICNVADD(pnv, "g4", rp->r_g4);
1765 	PANICNVADD(pnv, "g5", rp->r_g5);
1766 	PANICNVADD(pnv, "g6", rp->r_g6);
1767 	PANICNVADD(pnv, "g7", rp->r_g7);
1768 	PANICNVADD(pnv, "o0", rp->r_o0);
1769 	PANICNVADD(pnv, "o1", rp->r_o1);
1770 	PANICNVADD(pnv, "o2", rp->r_o2);
1771 	PANICNVADD(pnv, "o3", rp->r_o3);
1772 	PANICNVADD(pnv, "o4", rp->r_o4);
1773 	PANICNVADD(pnv, "o5", rp->r_o5);
1774 	PANICNVADD(pnv, "o6", rp->r_o6);
1775 	PANICNVADD(pnv, "o7", rp->r_o7);
1776 	PANICNVADD(pnv, "pc", (ulong_t)rp->r_pc);
1777 	PANICNVADD(pnv, "npc", (ulong_t)rp->r_npc);
1778 	PANICNVADD(pnv, "y", (uint32_t)rp->r_y);
1779 
1780 	PANICNVSET(pdp, pnv);
1781 }
1782