1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 23 /* All Rights Reserved */ 24 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/vmparam.h> 35 #include <sys/systm.h> 36 #include <sys/stack.h> 37 #include <sys/frame.h> 38 #include <sys/proc.h> 39 #include <sys/ucontext.h> 40 #include <sys/cpuvar.h> 41 #include <sys/asm_linkage.h> 42 #include <sys/kmem.h> 43 #include <sys/errno.h> 44 #include <sys/bootconf.h> 45 #include <sys/archsystm.h> 46 #include <sys/fpu/fpusystm.h> 47 #include <sys/debug.h> 48 #include <sys/privregs.h> 49 #include <sys/machpcb.h> 50 #include <sys/psr_compat.h> 51 #include <sys/cmn_err.h> 52 #include <sys/asi.h> 53 #include <sys/copyops.h> 54 #include <sys/model.h> 55 #include <sys/panic.h> 56 #include <sys/exec.h> 57 58 /* 59 * modify the lower 32bits of a uint64_t 60 */ 61 #define SET_LOWER_32(all, lower) \ 62 (((uint64_t)(all) & 0xffffffff00000000) | (uint32_t)(lower)) 63 64 #define MEMCPY_FPU_EN 2 /* fprs on and fpu_en == 0 */ 65 66 static uint_t mkpsr(uint64_t tstate, uint32_t fprs); 67 68 #ifdef _SYSCALL32_IMPL 69 static void fpuregset_32ton(const fpregset32_t *src, fpregset_t *dest, 70 const struct fq32 *sfq, struct fq *dfq); 71 #endif /* _SYSCALL32_IMPL */ 72 73 /* 74 * Set floating-point registers. 75 * NOTE: 'lwp' might not correspond to 'curthread' since this is 76 * called from code in /proc to set the registers of another lwp. 77 */ 78 void 79 setfpregs(klwp_t *lwp, fpregset_t *fp) 80 { 81 struct machpcb *mpcb; 82 kfpu_t *pfp; 83 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 84 model_t model = lwp_getdatamodel(lwp); 85 86 mpcb = lwptompcb(lwp); 87 pfp = lwptofpu(lwp); 88 89 /* 90 * This is always true for both "real" fp programs and memcpy fp 91 * programs, because we force fpu_en to MEMCPY_FPU_EN in getfpregs, 92 * for the memcpy and threads cases where (fpu_en == 0) && 93 * (fpu_fprs & FPRS_FEF), if setfpregs is called after getfpregs. 94 */ 95 if (fp->fpu_en) { 96 kpreempt_disable(); 97 98 if (!(pfp->fpu_en) && (!(pfp->fpu_fprs & FPRS_FEF)) && 99 fpu_exists) { 100 /* 101 * He's not currently using the FPU but wants to in his 102 * new context - arrange for this on return to userland. 103 */ 104 pfp->fpu_fprs = (uint32_t)fprs; 105 } 106 /* 107 * Get setfpregs to restore fpu_en to zero 108 * for the memcpy/threads case (where pfp->fpu_en == 0 && 109 * (pfp->fp_fprs & FPRS_FEF) == FPRS_FEF). 110 */ 111 if (fp->fpu_en == MEMCPY_FPU_EN) 112 fp->fpu_en = 0; 113 114 /* 115 * Load up a user's floating point context. 116 */ 117 if (fp->fpu_qcnt > MAXFPQ) /* plug security holes */ 118 fp->fpu_qcnt = MAXFPQ; 119 fp->fpu_q_entrysize = sizeof (struct fq); 120 121 /* 122 * For v9 kernel, copy all of the fp regs. 123 * For v8 kernel, copy v8 fp regs (lower half of v9 fp regs). 124 * Restore entire fsr for v9, only lower half for v8. 125 */ 126 (void) kcopy(fp, pfp, sizeof (fp->fpu_fr)); 127 if (model == DATAMODEL_LP64) 128 pfp->fpu_fsr = fp->fpu_fsr; 129 else 130 pfp->fpu_fsr = SET_LOWER_32(pfp->fpu_fsr, fp->fpu_fsr); 131 pfp->fpu_qcnt = fp->fpu_qcnt; 132 pfp->fpu_q_entrysize = fp->fpu_q_entrysize; 133 pfp->fpu_en = fp->fpu_en; 134 pfp->fpu_q = mpcb->mpcb_fpu_q; 135 if (fp->fpu_qcnt) 136 (void) kcopy(fp->fpu_q, pfp->fpu_q, 137 fp->fpu_qcnt * fp->fpu_q_entrysize); 138 /* FSR ignores these bits on load, so they can not be set */ 139 pfp->fpu_fsr &= ~(FSR_QNE|FSR_FTT); 140 141 /* 142 * If not the current process then resume() will handle it. 143 */ 144 if (lwp != ttolwp(curthread)) { 145 /* force resume to reload fp regs */ 146 pfp->fpu_fprs |= FPRS_FEF; 147 kpreempt_enable(); 148 return; 149 } 150 151 /* 152 * Load up FPU with new floating point context. 153 */ 154 if (fpu_exists) { 155 pfp->fpu_fprs = _fp_read_fprs(); 156 if ((pfp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 157 _fp_write_fprs(fprs); 158 pfp->fpu_fprs = (uint32_t)fprs; 159 #ifdef DEBUG 160 if (fpdispr) 161 cmn_err(CE_NOTE, 162 "setfpregs with fp disabled!\n"); 163 #endif 164 } 165 /* 166 * Load all fp regs for v9 user programs, but only 167 * load the lower half for v8[plus] programs. 168 */ 169 if (model == DATAMODEL_LP64) 170 fp_restore(pfp); 171 else 172 fp_v8_load(pfp); 173 } 174 175 kpreempt_enable(); 176 } else { 177 if ((pfp->fpu_en) || /* normal fp case */ 178 (pfp->fpu_fprs & FPRS_FEF)) { /* memcpy/threads case */ 179 /* 180 * Currently the lwp has floating point enabled. 181 * Turn off FPRS_FEF in user's fprs, saved and 182 * real copies thereof. 183 */ 184 pfp->fpu_en = 0; 185 if (fpu_exists) { 186 fprs = 0; 187 if (lwp == ttolwp(curthread)) 188 _fp_write_fprs(fprs); 189 pfp->fpu_fprs = (uint32_t)fprs; 190 } 191 } 192 } 193 } 194 195 #ifdef _SYSCALL32_IMPL 196 void 197 setfpregs32(klwp_t *lwp, fpregset32_t *fp) 198 { 199 fpregset_t fpregs; 200 201 fpuregset_32ton(fp, &fpregs, NULL, NULL); 202 setfpregs(lwp, &fpregs); 203 } 204 #endif /* _SYSCALL32_IMPL */ 205 206 /* 207 * NOTE: 'lwp' might not correspond to 'curthread' since this is 208 * called from code in /proc to set the registers of another lwp. 209 */ 210 void 211 run_fpq(klwp_t *lwp, fpregset_t *fp) 212 { 213 /* 214 * If the context being loaded up includes a floating queue, 215 * we need to simulate those instructions (since we can't reload 216 * the fpu) and pass the process any appropriate signals 217 */ 218 219 if (lwp == ttolwp(curthread)) { 220 if (fpu_exists) { 221 if (fp->fpu_qcnt) 222 fp_runq(lwp->lwp_regs); 223 } 224 } 225 } 226 227 /* 228 * Get floating-point registers. 229 * NOTE: 'lwp' might not correspond to 'curthread' since this is 230 * called from code in /proc to set the registers of another lwp. 231 */ 232 void 233 getfpregs(klwp_t *lwp, fpregset_t *fp) 234 { 235 kfpu_t *pfp; 236 model_t model = lwp_getdatamodel(lwp); 237 238 pfp = lwptofpu(lwp); 239 kpreempt_disable(); 240 if (fpu_exists && ttolwp(curthread) == lwp) 241 pfp->fpu_fprs = _fp_read_fprs(); 242 243 /* 244 * First check the fpu_en case, for normal fp programs. 245 * Next check the fprs case, for fp use by memcpy/threads. 246 */ 247 if (((fp->fpu_en = pfp->fpu_en) != 0) || 248 (pfp->fpu_fprs & FPRS_FEF)) { 249 /* 250 * Force setfpregs to restore the fp context in 251 * setfpregs for the memcpy and threads cases (where 252 * pfp->fpu_en == 0 && (pfp->fp_fprs & FPRS_FEF) == FPRS_FEF). 253 */ 254 if (pfp->fpu_en == 0) 255 fp->fpu_en = MEMCPY_FPU_EN; 256 /* 257 * If we have an fpu and the current thread owns the fp 258 * context, flush fp * registers into the pcb. Save all 259 * the fp regs for v9, xregs_getfpregs saves the upper half 260 * for v8plus. Save entire fsr for v9, only lower half for v8. 261 */ 262 if (fpu_exists && ttolwp(curthread) == lwp) { 263 if ((pfp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 264 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 265 266 _fp_write_fprs(fprs); 267 pfp->fpu_fprs = fprs; 268 #ifdef DEBUG 269 if (fpdispr) 270 cmn_err(CE_NOTE, 271 "getfpregs with fp disabled!\n"); 272 #endif 273 } 274 if (model == DATAMODEL_LP64) 275 fp_fksave(pfp); 276 else 277 fp_v8_fksave(pfp); 278 } 279 (void) kcopy(pfp, fp, sizeof (fp->fpu_fr)); 280 fp->fpu_q = pfp->fpu_q; 281 if (model == DATAMODEL_LP64) 282 fp->fpu_fsr = pfp->fpu_fsr; 283 else 284 fp->fpu_fsr = (uint32_t)pfp->fpu_fsr; 285 fp->fpu_qcnt = pfp->fpu_qcnt; 286 fp->fpu_q_entrysize = pfp->fpu_q_entrysize; 287 } else { 288 int i; 289 for (i = 0; i < 32; i++) /* NaN */ 290 ((uint32_t *)fp->fpu_fr.fpu_regs)[i] = (uint32_t)-1; 291 if (model == DATAMODEL_LP64) { 292 for (i = 16; i < 32; i++) /* NaN */ 293 ((uint64_t *)fp->fpu_fr.fpu_dregs)[i] = 294 (uint64_t)-1; 295 } 296 fp->fpu_fsr = 0; 297 fp->fpu_qcnt = 0; 298 } 299 kpreempt_enable(); 300 } 301 302 #ifdef _SYSCALL32_IMPL 303 void 304 getfpregs32(klwp_t *lwp, fpregset32_t *fp) 305 { 306 fpregset_t fpregs; 307 308 getfpregs(lwp, &fpregs); 309 fpuregset_nto32(&fpregs, fp, NULL); 310 } 311 #endif /* _SYSCALL32_IMPL */ 312 313 /* 314 * Set general registers. 315 * NOTE: 'lwp' might not correspond to 'curthread' since this is 316 * called from code in /proc to set the registers of another lwp. 317 */ 318 319 /* 64-bit gregset_t */ 320 void 321 setgregs(klwp_t *lwp, gregset_t grp) 322 { 323 struct regs *rp = lwptoregs(lwp); 324 kfpu_t *fp = lwptofpu(lwp); 325 uint64_t tbits; 326 327 int current = (lwp == curthread->t_lwp); 328 329 if (current) 330 (void) save_syscall_args(); /* copy the args first */ 331 332 tbits = (((grp[REG_CCR] & TSTATE_CCR_MASK) << TSTATE_CCR_SHIFT) | 333 ((grp[REG_ASI] & TSTATE_ASI_MASK) << TSTATE_ASI_SHIFT)); 334 rp->r_tstate &= ~(((uint64_t)TSTATE_CCR_MASK << TSTATE_CCR_SHIFT) | 335 ((uint64_t)TSTATE_ASI_MASK << TSTATE_ASI_SHIFT)); 336 rp->r_tstate |= tbits; 337 kpreempt_disable(); 338 fp->fpu_fprs = (uint32_t)grp[REG_FPRS]; 339 if (fpu_exists && (current) && (fp->fpu_fprs & FPRS_FEF)) 340 _fp_write_fprs(fp->fpu_fprs); 341 kpreempt_enable(); 342 343 /* 344 * pc and npc must be 4-byte aligned on sparc. 345 * We silently make it so to avoid a watchdog reset. 346 */ 347 rp->r_pc = grp[REG_PC] & ~03L; 348 rp->r_npc = grp[REG_nPC] & ~03L; 349 rp->r_y = grp[REG_Y]; 350 351 rp->r_g1 = grp[REG_G1]; 352 rp->r_g2 = grp[REG_G2]; 353 rp->r_g3 = grp[REG_G3]; 354 rp->r_g4 = grp[REG_G4]; 355 rp->r_g5 = grp[REG_G5]; 356 rp->r_g6 = grp[REG_G6]; 357 rp->r_g7 = grp[REG_G7]; 358 359 rp->r_o0 = grp[REG_O0]; 360 rp->r_o1 = grp[REG_O1]; 361 rp->r_o2 = grp[REG_O2]; 362 rp->r_o3 = grp[REG_O3]; 363 rp->r_o4 = grp[REG_O4]; 364 rp->r_o5 = grp[REG_O5]; 365 rp->r_o6 = grp[REG_O6]; 366 rp->r_o7 = grp[REG_O7]; 367 368 if (current) { 369 /* 370 * This was called from a system call, but we 371 * do not want to return via the shared window; 372 * restoring the CPU context changes everything. 373 */ 374 lwp->lwp_eosys = JUSTRETURN; 375 curthread->t_post_sys = 1; 376 } 377 } 378 379 /* 380 * Return the general registers. 381 * NOTE: 'lwp' might not correspond to 'curthread' since this is 382 * called from code in /proc to get the registers of another lwp. 383 */ 384 void 385 getgregs(klwp_t *lwp, gregset_t grp) 386 { 387 struct regs *rp = lwptoregs(lwp); 388 uint32_t fprs; 389 390 kpreempt_disable(); 391 if (fpu_exists && ttolwp(curthread) == lwp) { 392 fprs = _fp_read_fprs(); 393 } else { 394 kfpu_t *fp = lwptofpu(lwp); 395 fprs = fp->fpu_fprs; 396 } 397 kpreempt_enable(); 398 grp[REG_CCR] = (rp->r_tstate >> TSTATE_CCR_SHIFT) & TSTATE_CCR_MASK; 399 grp[REG_PC] = rp->r_pc; 400 grp[REG_nPC] = rp->r_npc; 401 grp[REG_Y] = (uint32_t)rp->r_y; 402 grp[REG_G1] = rp->r_g1; 403 grp[REG_G2] = rp->r_g2; 404 grp[REG_G3] = rp->r_g3; 405 grp[REG_G4] = rp->r_g4; 406 grp[REG_G5] = rp->r_g5; 407 grp[REG_G6] = rp->r_g6; 408 grp[REG_G7] = rp->r_g7; 409 grp[REG_O0] = rp->r_o0; 410 grp[REG_O1] = rp->r_o1; 411 grp[REG_O2] = rp->r_o2; 412 grp[REG_O3] = rp->r_o3; 413 grp[REG_O4] = rp->r_o4; 414 grp[REG_O5] = rp->r_o5; 415 grp[REG_O6] = rp->r_o6; 416 grp[REG_O7] = rp->r_o7; 417 grp[REG_ASI] = (rp->r_tstate >> TSTATE_ASI_SHIFT) & TSTATE_ASI_MASK; 418 grp[REG_FPRS] = fprs; 419 } 420 421 void 422 getgregs32(klwp_t *lwp, gregset32_t grp) 423 { 424 struct regs *rp = lwptoregs(lwp); 425 uint32_t fprs; 426 427 kpreempt_disable(); 428 if (fpu_exists && ttolwp(curthread) == lwp) { 429 fprs = _fp_read_fprs(); 430 } else { 431 kfpu_t *fp = lwptofpu(lwp); 432 fprs = fp->fpu_fprs; 433 } 434 kpreempt_enable(); 435 grp[REG_PSR] = mkpsr(rp->r_tstate, fprs); 436 grp[REG_PC] = rp->r_pc; 437 grp[REG_nPC] = rp->r_npc; 438 grp[REG_Y] = rp->r_y; 439 grp[REG_G1] = rp->r_g1; 440 grp[REG_G2] = rp->r_g2; 441 grp[REG_G3] = rp->r_g3; 442 grp[REG_G4] = rp->r_g4; 443 grp[REG_G5] = rp->r_g5; 444 grp[REG_G6] = rp->r_g6; 445 grp[REG_G7] = rp->r_g7; 446 grp[REG_O0] = rp->r_o0; 447 grp[REG_O1] = rp->r_o1; 448 grp[REG_O2] = rp->r_o2; 449 grp[REG_O3] = rp->r_o3; 450 grp[REG_O4] = rp->r_o4; 451 grp[REG_O5] = rp->r_o5; 452 grp[REG_O6] = rp->r_o6; 453 grp[REG_O7] = rp->r_o7; 454 } 455 456 /* 457 * Return the user-level PC. 458 * If in a system call, return the address of the syscall trap. 459 */ 460 greg_t 461 getuserpc() 462 { 463 return (lwptoregs(ttolwp(curthread))->r_pc); 464 } 465 466 /* 467 * Set register windows. 468 */ 469 void 470 setgwins(klwp_t *lwp, gwindows_t *gwins) 471 { 472 struct machpcb *mpcb = lwptompcb(lwp); 473 int wbcnt = gwins->wbcnt; 474 caddr_t sp; 475 int i; 476 struct rwindow32 *rwp; 477 int wbuf_rwindow_size; 478 int is64; 479 480 if (mpcb->mpcb_wstate == WSTATE_USER32) { 481 wbuf_rwindow_size = WINDOWSIZE32; 482 is64 = 0; 483 } else { 484 wbuf_rwindow_size = WINDOWSIZE64; 485 is64 = 1; 486 } 487 ASSERT(wbcnt >= 0 && wbcnt <= SPARC_MAXREGWINDOW); 488 mpcb->mpcb_wbcnt = 0; 489 for (i = 0; i < wbcnt; i++) { 490 sp = (caddr_t)gwins->spbuf[i]; 491 mpcb->mpcb_spbuf[i] = sp; 492 rwp = (struct rwindow32 *) 493 (mpcb->mpcb_wbuf + (i * wbuf_rwindow_size)); 494 if (is64 && IS_V9STACK(sp)) 495 bcopy(&gwins->wbuf[i], rwp, sizeof (struct rwindow)); 496 else 497 rwindow_nto32(&gwins->wbuf[i], rwp); 498 mpcb->mpcb_wbcnt++; 499 } 500 } 501 502 void 503 setgwins32(klwp_t *lwp, gwindows32_t *gwins) 504 { 505 struct machpcb *mpcb = lwptompcb(lwp); 506 int wbcnt = gwins->wbcnt; 507 caddr_t sp; 508 int i; 509 510 struct rwindow *rwp; 511 int wbuf_rwindow_size; 512 int is64; 513 514 if (mpcb->mpcb_wstate == WSTATE_USER32) { 515 wbuf_rwindow_size = WINDOWSIZE32; 516 is64 = 0; 517 } else { 518 wbuf_rwindow_size = WINDOWSIZE64; 519 is64 = 1; 520 } 521 522 ASSERT(wbcnt >= 0 && wbcnt <= SPARC_MAXREGWINDOW); 523 mpcb->mpcb_wbcnt = 0; 524 for (i = 0; i < wbcnt; i++) { 525 sp = (caddr_t)(uintptr_t)gwins->spbuf[i]; 526 mpcb->mpcb_spbuf[i] = sp; 527 rwp = (struct rwindow *) 528 (mpcb->mpcb_wbuf + (i * wbuf_rwindow_size)); 529 if (is64 && IS_V9STACK(sp)) 530 rwindow_32ton(&gwins->wbuf[i], rwp); 531 else 532 bcopy(&gwins->wbuf[i], rwp, sizeof (struct rwindow32)); 533 mpcb->mpcb_wbcnt++; 534 } 535 } 536 537 /* 538 * Get register windows. 539 * NOTE: 'lwp' might not correspond to 'curthread' since this is 540 * called from code in /proc to set the registers of another lwp. 541 */ 542 void 543 getgwins(klwp_t *lwp, gwindows_t *gwp) 544 { 545 struct machpcb *mpcb = lwptompcb(lwp); 546 int wbcnt = mpcb->mpcb_wbcnt; 547 caddr_t sp; 548 int i; 549 struct rwindow32 *rwp; 550 int wbuf_rwindow_size; 551 int is64; 552 553 if (mpcb->mpcb_wstate == WSTATE_USER32) { 554 wbuf_rwindow_size = WINDOWSIZE32; 555 is64 = 0; 556 } else { 557 wbuf_rwindow_size = WINDOWSIZE64; 558 is64 = 1; 559 } 560 ASSERT(wbcnt >= 0 && wbcnt <= SPARC_MAXREGWINDOW); 561 gwp->wbcnt = wbcnt; 562 for (i = 0; i < wbcnt; i++) { 563 sp = mpcb->mpcb_spbuf[i]; 564 gwp->spbuf[i] = (greg_t *)sp; 565 rwp = (struct rwindow32 *) 566 (mpcb->mpcb_wbuf + (i * wbuf_rwindow_size)); 567 if (is64 && IS_V9STACK(sp)) 568 bcopy(rwp, &gwp->wbuf[i], sizeof (struct rwindow)); 569 else 570 rwindow_32ton(rwp, &gwp->wbuf[i]); 571 } 572 } 573 574 void 575 getgwins32(klwp_t *lwp, gwindows32_t *gwp) 576 { 577 struct machpcb *mpcb = lwptompcb(lwp); 578 int wbcnt = mpcb->mpcb_wbcnt; 579 int i; 580 struct rwindow *rwp; 581 int wbuf_rwindow_size; 582 caddr_t sp; 583 int is64; 584 585 if (mpcb->mpcb_wstate == WSTATE_USER32) { 586 wbuf_rwindow_size = WINDOWSIZE32; 587 is64 = 0; 588 } else { 589 wbuf_rwindow_size = WINDOWSIZE64; 590 is64 = 1; 591 } 592 593 ASSERT(wbcnt >= 0 && wbcnt <= SPARC_MAXREGWINDOW); 594 gwp->wbcnt = wbcnt; 595 for (i = 0; i < wbcnt; i++) { 596 sp = mpcb->mpcb_spbuf[i]; 597 rwp = (struct rwindow *) 598 (mpcb->mpcb_wbuf + (i * wbuf_rwindow_size)); 599 gwp->spbuf[i] = (caddr32_t)(uintptr_t)sp; 600 if (is64 && IS_V9STACK(sp)) 601 rwindow_nto32(rwp, &gwp->wbuf[i]); 602 else 603 bcopy(rwp, &gwp->wbuf[i], sizeof (struct rwindow32)); 604 } 605 } 606 607 /* 608 * For things that depend on register state being on the stack, 609 * copy any register windows that get saved into the window buffer 610 * (in the pcb) onto the stack. This normally gets fixed up 611 * before returning to a user program. Callers of this routine 612 * require this to happen immediately because a later kernel 613 * operation depends on window state (like instruction simulation). 614 */ 615 int 616 flush_user_windows_to_stack(caddr_t *psp) 617 { 618 int j, k; 619 caddr_t sp; 620 struct machpcb *mpcb = lwptompcb(ttolwp(curthread)); 621 int err; 622 int error = 0; 623 int wbuf_rwindow_size; 624 int rwindow_size; 625 int stack_align; 626 int watched; 627 628 flush_user_windows(); 629 630 if (mpcb->mpcb_wstate != WSTATE_USER32) 631 wbuf_rwindow_size = WINDOWSIZE64; 632 else 633 wbuf_rwindow_size = WINDOWSIZE32; 634 635 j = mpcb->mpcb_wbcnt; 636 while (j > 0) { 637 sp = mpcb->mpcb_spbuf[--j]; 638 639 if ((mpcb->mpcb_wstate != WSTATE_USER32) && 640 IS_V9STACK(sp)) { 641 sp += V9BIAS64; 642 stack_align = STACK_ALIGN64; 643 rwindow_size = WINDOWSIZE64; 644 } else { 645 /* 646 * Reduce sp to a 32 bit value. This was originally 647 * done by casting down to uint32_t and back up to 648 * caddr_t, but one compiler didn't like that, so the 649 * uintptr_t casts were added. The temporary 32 bit 650 * variable was introduced to avoid depending on all 651 * compilers to generate the desired assembly code for a 652 * quadruple cast in a single expression. 653 */ 654 caddr32_t sp32 = (uint32_t)(uintptr_t)sp; 655 sp = (caddr_t)(uintptr_t)sp32; 656 657 stack_align = STACK_ALIGN32; 658 rwindow_size = WINDOWSIZE32; 659 } 660 if (((uintptr_t)sp & (stack_align - 1)) != 0) 661 continue; 662 663 watched = watch_disable_addr(sp, rwindow_size, S_WRITE); 664 err = xcopyout(mpcb->mpcb_wbuf + 665 (j * wbuf_rwindow_size), sp, rwindow_size); 666 if (err != 0) { 667 if (psp != NULL) { 668 /* 669 * Determine the offending address. 670 * It may not be the stack pointer itself. 671 */ 672 uint_t *kaddr = (uint_t *)(mpcb->mpcb_wbuf + 673 (j * wbuf_rwindow_size)); 674 uint_t *uaddr = (uint_t *)sp; 675 676 for (k = 0; 677 k < rwindow_size / sizeof (int); 678 k++, kaddr++, uaddr++) { 679 if (suword32(uaddr, *kaddr)) 680 break; 681 } 682 683 /* can't happen? */ 684 if (k == rwindow_size / sizeof (int)) 685 uaddr = (uint_t *)sp; 686 687 *psp = (caddr_t)uaddr; 688 } 689 error = err; 690 } else { 691 /* 692 * stack was aligned and copyout succeeded; 693 * move other windows down. 694 */ 695 mpcb->mpcb_wbcnt--; 696 for (k = j; k < mpcb->mpcb_wbcnt; k++) { 697 mpcb->mpcb_spbuf[k] = mpcb->mpcb_spbuf[k+1]; 698 bcopy( 699 mpcb->mpcb_wbuf + 700 ((k+1) * wbuf_rwindow_size), 701 mpcb->mpcb_wbuf + 702 (k * wbuf_rwindow_size), 703 wbuf_rwindow_size); 704 } 705 } 706 if (watched) 707 watch_enable_addr(sp, rwindow_size, S_WRITE); 708 } /* while there are windows in the wbuf */ 709 return (error); 710 } 711 712 static int 713 copy_return_window32(int dotwo) 714 { 715 klwp_t *lwp = ttolwp(curthread); 716 struct machpcb *mpcb = lwptompcb(lwp); 717 struct rwindow32 rwindow32; 718 caddr_t sp1; 719 caddr_t sp2; 720 721 (void) flush_user_windows_to_stack(NULL); 722 if (mpcb->mpcb_rsp[0] == NULL) { 723 /* 724 * Reduce r_sp to a 32 bit value before storing it in sp1. This 725 * was originally done by casting down to uint32_t and back up 726 * to caddr_t, but that generated complaints under one compiler. 727 * The uintptr_t cast was added to address that, and the 728 * temporary 32 bit variable was introduced to avoid depending 729 * on all compilers to generate the desired assembly code for a 730 * triple cast in a single expression. 731 */ 732 caddr32_t sp1_32 = (uint32_t)lwptoregs(lwp)->r_sp; 733 sp1 = (caddr_t)(uintptr_t)sp1_32; 734 735 if ((copyin_nowatch(sp1, &rwindow32, 736 sizeof (struct rwindow32))) == 0) 737 mpcb->mpcb_rsp[0] = sp1; 738 rwindow_32ton(&rwindow32, &mpcb->mpcb_rwin[0]); 739 } 740 mpcb->mpcb_rsp[1] = NULL; 741 if (dotwo && mpcb->mpcb_rsp[0] != NULL && 742 (sp2 = (caddr_t)mpcb->mpcb_rwin[0].rw_fp) != NULL) { 743 if ((copyin_nowatch(sp2, &rwindow32, 744 sizeof (struct rwindow32)) == 0)) 745 mpcb->mpcb_rsp[1] = sp2; 746 rwindow_32ton(&rwindow32, &mpcb->mpcb_rwin[1]); 747 } 748 return (mpcb->mpcb_rsp[0] != NULL); 749 } 750 751 int 752 copy_return_window(int dotwo) 753 { 754 proc_t *p = ttoproc(curthread); 755 klwp_t *lwp; 756 struct machpcb *mpcb; 757 caddr_t sp1; 758 caddr_t sp2; 759 760 if (p->p_model == DATAMODEL_ILP32) 761 return (copy_return_window32(dotwo)); 762 763 lwp = ttolwp(curthread); 764 mpcb = lwptompcb(lwp); 765 (void) flush_user_windows_to_stack(NULL); 766 if (mpcb->mpcb_rsp[0] == NULL) { 767 sp1 = (caddr_t)lwptoregs(lwp)->r_sp + STACK_BIAS; 768 if ((copyin_nowatch(sp1, &mpcb->mpcb_rwin[0], 769 sizeof (struct rwindow)) == 0)) 770 mpcb->mpcb_rsp[0] = sp1 - STACK_BIAS; 771 } 772 mpcb->mpcb_rsp[1] = NULL; 773 if (dotwo && mpcb->mpcb_rsp[0] != NULL && 774 (sp2 = (caddr_t)mpcb->mpcb_rwin[0].rw_fp) != NULL) { 775 sp2 += STACK_BIAS; 776 if ((copyin_nowatch(sp2, &mpcb->mpcb_rwin[1], 777 sizeof (struct rwindow)) == 0)) 778 mpcb->mpcb_rsp[1] = sp2 - STACK_BIAS; 779 } 780 return (mpcb->mpcb_rsp[0] != NULL); 781 } 782 783 /* 784 * Clear registers on exec(2). 785 */ 786 void 787 setregs(uarg_t *args) 788 { 789 struct regs *rp; 790 klwp_t *lwp = ttolwp(curthread); 791 kfpu_t *fpp = lwptofpu(lwp); 792 struct machpcb *mpcb = lwptompcb(lwp); 793 proc_t *p = ttoproc(curthread); 794 795 /* 796 * Initialize user registers. 797 */ 798 (void) save_syscall_args(); /* copy args from registers first */ 799 rp = lwptoregs(lwp); 800 rp->r_g1 = rp->r_g2 = rp->r_g3 = rp->r_g4 = rp->r_g5 = 801 rp->r_g6 = rp->r_o0 = rp->r_o1 = rp->r_o2 = 802 rp->r_o3 = rp->r_o4 = rp->r_o5 = rp->r_o7 = 0; 803 if (p->p_model == DATAMODEL_ILP32) 804 rp->r_tstate = TSTATE_USER32; 805 else 806 rp->r_tstate = TSTATE_USER64; 807 if (!fpu_exists) 808 rp->r_tstate &= ~TSTATE_PEF; 809 rp->r_g7 = args->thrptr; 810 rp->r_pc = args->entry; 811 rp->r_npc = args->entry + 4; 812 rp->r_y = 0; 813 curthread->t_post_sys = 1; 814 lwp->lwp_eosys = JUSTRETURN; 815 lwp->lwp_pcb.pcb_trap0addr = NULL; /* no trap 0 handler */ 816 /* 817 * Clear the fixalignment flag 818 */ 819 p->p_fixalignment = 0; 820 821 /* 822 * Throw out old user windows, init window buf. 823 */ 824 trash_user_windows(); 825 826 if (p->p_model == DATAMODEL_LP64 && 827 mpcb->mpcb_wstate != WSTATE_USER64) { 828 ASSERT(mpcb->mpcb_wbcnt == 0); 829 kmem_cache_free(wbuf32_cache, mpcb->mpcb_wbuf); 830 mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf64_cache, KM_SLEEP); 831 ASSERT(((uintptr_t)mpcb->mpcb_wbuf & 7) == 0); 832 mpcb->mpcb_wstate = WSTATE_USER64; 833 } else if (p->p_model == DATAMODEL_ILP32 && 834 mpcb->mpcb_wstate != WSTATE_USER32) { 835 ASSERT(mpcb->mpcb_wbcnt == 0); 836 kmem_cache_free(wbuf64_cache, mpcb->mpcb_wbuf); 837 mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf32_cache, KM_SLEEP); 838 mpcb->mpcb_wstate = WSTATE_USER32; 839 } 840 mpcb->mpcb_pa = va_to_pa(mpcb); 841 mpcb->mpcb_wbuf_pa = va_to_pa(mpcb->mpcb_wbuf); 842 843 /* 844 * Here we initialize minimal fpu state. 845 * The rest is done at the first floating 846 * point instruction that a process executes 847 * or by the lib_psr memcpy routines. 848 */ 849 if (fpu_exists) { 850 extern void _fp_write_fprs(unsigned); 851 _fp_write_fprs(0); 852 } 853 fpp->fpu_en = 0; 854 fpp->fpu_fprs = 0; 855 } 856 857 void 858 lwp_swapin(kthread_t *tp) 859 { 860 struct machpcb *mpcb = lwptompcb(ttolwp(tp)); 861 862 mpcb->mpcb_pa = va_to_pa(mpcb); 863 mpcb->mpcb_wbuf_pa = va_to_pa(mpcb->mpcb_wbuf); 864 } 865 866 /* 867 * Construct the execution environment for the user's signal 868 * handler and arrange for control to be given to it on return 869 * to userland. The library code now calls setcontext() to 870 * clean up after the signal handler, so sigret() is no longer 871 * needed. 872 */ 873 int 874 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)()) 875 { 876 /* 877 * 'volatile' is needed to ensure that values are 878 * correct on the error return from on_fault(). 879 */ 880 volatile int minstacksz; /* min stack required to catch signal */ 881 int newstack = 0; /* if true, switching to altstack */ 882 label_t ljb; 883 caddr_t sp; 884 struct regs *volatile rp; 885 klwp_t *lwp = ttolwp(curthread); 886 proc_t *volatile p = ttoproc(curthread); 887 int fpq_size = 0; 888 struct sigframe { 889 struct frame frwin; 890 ucontext_t uc; 891 }; 892 siginfo_t *sip_addr; 893 struct sigframe *volatile fp; 894 ucontext_t *volatile tuc = NULL; 895 char *volatile xregs = NULL; 896 volatile size_t xregs_size = 0; 897 gwindows_t *volatile gwp = NULL; 898 volatile int gwin_size = 0; 899 kfpu_t *fpp; 900 struct machpcb *mpcb; 901 volatile int watched = 0; 902 volatile int watched2 = 0; 903 caddr_t tos; 904 905 /* 906 * Make sure the current last user window has been flushed to 907 * the stack save area before we change the sp. 908 * Restore register window if a debugger modified it. 909 */ 910 (void) flush_user_windows_to_stack(NULL); 911 if (lwp->lwp_pcb.pcb_xregstat != XREGNONE) 912 xregrestore(lwp, 0); 913 914 mpcb = lwptompcb(lwp); 915 rp = lwptoregs(lwp); 916 917 /* 918 * Clear the watchpoint return stack pointers. 919 */ 920 mpcb->mpcb_rsp[0] = NULL; 921 mpcb->mpcb_rsp[1] = NULL; 922 923 minstacksz = sizeof (struct sigframe); 924 925 /* 926 * We know that sizeof (siginfo_t) is stack-aligned: 927 * 128 bytes for ILP32, 256 bytes for LP64. 928 */ 929 if (sip != NULL) 930 minstacksz += sizeof (siginfo_t); 931 932 /* 933 * These two fields are pointed to by ABI structures and may 934 * be of arbitrary length. Size them now so we know how big 935 * the signal frame has to be. 936 */ 937 fpp = lwptofpu(lwp); 938 fpp->fpu_fprs = _fp_read_fprs(); 939 if ((fpp->fpu_en) || (fpp->fpu_fprs & FPRS_FEF)) { 940 fpq_size = fpp->fpu_q_entrysize * fpp->fpu_qcnt; 941 minstacksz += SA(fpq_size); 942 } 943 944 mpcb = lwptompcb(lwp); 945 if (mpcb->mpcb_wbcnt != 0) { 946 gwin_size = (mpcb->mpcb_wbcnt * sizeof (struct rwindow)) + 947 (SPARC_MAXREGWINDOW * sizeof (caddr_t)) + sizeof (long); 948 minstacksz += SA(gwin_size); 949 } 950 951 /* 952 * Extra registers, if support by this platform, may be of arbitrary 953 * length. Size them now so we know how big the signal frame has to be. 954 * For sparcv9 _LP64 user programs, use asrs instead of the xregs. 955 */ 956 minstacksz += SA(xregs_size); 957 958 /* 959 * Figure out whether we will be handling this signal on 960 * an alternate stack specified by the user. Then allocate 961 * and validate the stack requirements for the signal handler 962 * context. on_fault will catch any faults. 963 */ 964 newstack = (sigismember(&u.u_sigonstack, sig) && 965 !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE))); 966 967 tos = (caddr_t)rp->r_sp + STACK_BIAS; 968 /* 969 * Force proper stack pointer alignment, even in the face of a 970 * misaligned stack pointer from user-level before the signal. 971 * Don't use the SA() macro because that rounds up, not down. 972 */ 973 tos = (caddr_t)((uintptr_t)tos & ~(STACK_ALIGN - 1ul)); 974 975 if (newstack != 0) { 976 fp = (struct sigframe *) 977 (SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) + 978 SA((int)lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN - 979 SA(minstacksz)); 980 } else { 981 /* 982 * If we were unable to flush all register windows to 983 * the stack and we are not now on an alternate stack, 984 * just dump core with a SIGSEGV back in psig(). 985 */ 986 if (sig == SIGSEGV && 987 mpcb->mpcb_wbcnt != 0 && 988 !(lwp->lwp_sigaltstack.ss_flags & SS_ONSTACK)) 989 return (0); 990 fp = (struct sigframe *)(tos - SA(minstacksz)); 991 /* 992 * Could call grow here, but stack growth now handled below 993 * in code protected by on_fault(). 994 */ 995 } 996 sp = (caddr_t)fp + sizeof (struct sigframe); 997 998 /* 999 * Make sure process hasn't trashed its stack. 1000 */ 1001 if ((caddr_t)fp >= p->p_usrstack || 1002 (caddr_t)fp + SA(minstacksz) >= p->p_usrstack) { 1003 #ifdef DEBUG 1004 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n", 1005 PTOU(p)->u_comm, p->p_pid, sig); 1006 printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n", 1007 (void *)fp, (void *)hdlr, rp->r_pc); 1008 printf("fp above USRSTACK\n"); 1009 #endif 1010 return (0); 1011 } 1012 1013 watched = watch_disable_addr((caddr_t)fp, SA(minstacksz), S_WRITE); 1014 if (on_fault(&ljb)) 1015 goto badstack; 1016 1017 tuc = kmem_alloc(sizeof (ucontext_t), KM_SLEEP); 1018 savecontext(tuc, lwp->lwp_sigoldmask); 1019 1020 /* 1021 * save extra register state if it exists 1022 */ 1023 if (xregs_size != 0) { 1024 xregs_setptr(lwp, tuc, sp); 1025 xregs = kmem_alloc(xregs_size, KM_SLEEP); 1026 xregs_get(lwp, xregs); 1027 copyout_noerr(xregs, sp, xregs_size); 1028 kmem_free(xregs, xregs_size); 1029 xregs = NULL; 1030 sp += SA(xregs_size); 1031 } 1032 1033 copyout_noerr(tuc, &fp->uc, sizeof (*tuc)); 1034 kmem_free(tuc, sizeof (*tuc)); 1035 tuc = NULL; 1036 1037 if (sip != NULL) { 1038 zoneid_t zoneid; 1039 1040 uzero(sp, sizeof (siginfo_t)); 1041 if (SI_FROMUSER(sip) && 1042 (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID && 1043 zoneid != sip->si_zoneid) { 1044 k_siginfo_t sani_sip = *sip; 1045 sani_sip.si_pid = p->p_zone->zone_zsched->p_pid; 1046 sani_sip.si_uid = 0; 1047 sani_sip.si_ctid = -1; 1048 sani_sip.si_zoneid = zoneid; 1049 copyout_noerr(&sani_sip, sp, sizeof (sani_sip)); 1050 } else { 1051 copyout_noerr(sip, sp, sizeof (*sip)); 1052 } 1053 sip_addr = (siginfo_t *)sp; 1054 sp += sizeof (siginfo_t); 1055 1056 if (sig == SIGPROF && 1057 curthread->t_rprof != NULL && 1058 curthread->t_rprof->rp_anystate) { 1059 /* 1060 * We stand on our head to deal with 1061 * the real time profiling signal. 1062 * Fill in the stuff that doesn't fit 1063 * in a normal k_siginfo structure. 1064 */ 1065 int i = sip->si_nsysarg; 1066 while (--i >= 0) { 1067 sulword_noerr( 1068 (ulong_t *)&sip_addr->si_sysarg[i], 1069 (ulong_t)lwp->lwp_arg[i]); 1070 } 1071 copyout_noerr(curthread->t_rprof->rp_state, 1072 sip_addr->si_mstate, 1073 sizeof (curthread->t_rprof->rp_state)); 1074 } 1075 } else { 1076 sip_addr = (siginfo_t *)NULL; 1077 } 1078 1079 /* 1080 * When flush_user_windows_to_stack() can't save all the 1081 * windows to the stack, it puts them in the lwp's pcb. 1082 */ 1083 if (gwin_size != 0) { 1084 gwp = kmem_alloc(gwin_size, KM_SLEEP); 1085 getgwins(lwp, gwp); 1086 sulword_noerr(&fp->uc.uc_mcontext.gwins, (ulong_t)sp); 1087 copyout_noerr(gwp, sp, gwin_size); 1088 kmem_free(gwp, gwin_size); 1089 gwp = NULL; 1090 sp += SA(gwin_size); 1091 } else 1092 sulword_noerr(&fp->uc.uc_mcontext.gwins, (ulong_t)NULL); 1093 1094 if (fpq_size != 0) { 1095 struct fq *fqp = (struct fq *)sp; 1096 sulword_noerr(&fp->uc.uc_mcontext.fpregs.fpu_q, (ulong_t)fqp); 1097 copyout_noerr(mpcb->mpcb_fpu_q, fqp, fpq_size); 1098 1099 /* 1100 * forget the fp queue so that the signal handler can run 1101 * without being harrassed--it will do a setcontext that will 1102 * re-establish the queue if there still is one 1103 * 1104 * NOTE: fp_runq() relies on the qcnt field being zeroed here 1105 * to terminate its processing of the queue after signal 1106 * delivery. 1107 */ 1108 mpcb->mpcb_fpu->fpu_qcnt = 0; 1109 sp += SA(fpq_size); 1110 1111 /* Also, syscall needs to know about this */ 1112 mpcb->mpcb_flags |= FP_TRAPPED; 1113 1114 } else { 1115 sulword_noerr(&fp->uc.uc_mcontext.fpregs.fpu_q, (ulong_t)NULL); 1116 suword8_noerr(&fp->uc.uc_mcontext.fpregs.fpu_qcnt, 0); 1117 } 1118 1119 1120 /* 1121 * Since we flushed the user's windows and we are changing his 1122 * stack pointer, the window that the user will return to will 1123 * be restored from the save area in the frame we are setting up. 1124 * We copy in save area for old stack pointer so that debuggers 1125 * can do a proper stack backtrace from the signal handler. 1126 */ 1127 if (mpcb->mpcb_wbcnt == 0) { 1128 watched2 = watch_disable_addr(tos, sizeof (struct rwindow), 1129 S_READ); 1130 ucopy(tos, &fp->frwin, sizeof (struct rwindow)); 1131 } 1132 1133 lwp->lwp_oldcontext = (uintptr_t)&fp->uc; 1134 1135 if (newstack != 0) { 1136 lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK; 1137 1138 if (lwp->lwp_ustack) { 1139 copyout_noerr(&lwp->lwp_sigaltstack, 1140 (stack_t *)lwp->lwp_ustack, sizeof (stack_t)); 1141 } 1142 } 1143 1144 no_fault(); 1145 mpcb->mpcb_wbcnt = 0; /* let user go on */ 1146 1147 if (watched2) 1148 watch_enable_addr(tos, sizeof (struct rwindow), S_READ); 1149 if (watched) 1150 watch_enable_addr((caddr_t)fp, SA(minstacksz), S_WRITE); 1151 1152 /* 1153 * Set up user registers for execution of signal handler. 1154 */ 1155 rp->r_sp = (uintptr_t)fp - STACK_BIAS; 1156 rp->r_pc = (uintptr_t)hdlr; 1157 rp->r_npc = (uintptr_t)hdlr + 4; 1158 /* make sure %asi is ASI_PNF */ 1159 rp->r_tstate &= ~((uint64_t)TSTATE_ASI_MASK << TSTATE_ASI_SHIFT); 1160 rp->r_tstate |= ((uint64_t)ASI_PNF << TSTATE_ASI_SHIFT); 1161 rp->r_o0 = sig; 1162 rp->r_o1 = (uintptr_t)sip_addr; 1163 rp->r_o2 = (uintptr_t)&fp->uc; 1164 /* 1165 * Don't set lwp_eosys here. sendsig() is called via psig() after 1166 * lwp_eosys is handled, so setting it here would affect the next 1167 * system call. 1168 */ 1169 return (1); 1170 1171 badstack: 1172 no_fault(); 1173 if (watched2) 1174 watch_enable_addr(tos, sizeof (struct rwindow), S_READ); 1175 if (watched) 1176 watch_enable_addr((caddr_t)fp, SA(minstacksz), S_WRITE); 1177 if (tuc) 1178 kmem_free(tuc, sizeof (ucontext_t)); 1179 if (xregs) 1180 kmem_free(xregs, xregs_size); 1181 if (gwp) 1182 kmem_free(gwp, gwin_size); 1183 #ifdef DEBUG 1184 printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n", 1185 PTOU(p)->u_comm, p->p_pid, sig); 1186 printf("on fault, sigsp = %p, action = %p, upc = 0x%lx\n", 1187 (void *)fp, (void *)hdlr, rp->r_pc); 1188 #endif 1189 return (0); 1190 } 1191 1192 1193 #ifdef _SYSCALL32_IMPL 1194 1195 /* 1196 * Construct the execution environment for the user's signal 1197 * handler and arrange for control to be given to it on return 1198 * to userland. The library code now calls setcontext() to 1199 * clean up after the signal handler, so sigret() is no longer 1200 * needed. 1201 */ 1202 int 1203 sendsig32(int sig, k_siginfo_t *sip, void (*hdlr)()) 1204 { 1205 /* 1206 * 'volatile' is needed to ensure that values are 1207 * correct on the error return from on_fault(). 1208 */ 1209 volatile int minstacksz; /* min stack required to catch signal */ 1210 int newstack = 0; /* if true, switching to altstack */ 1211 label_t ljb; 1212 caddr_t sp; 1213 struct regs *volatile rp; 1214 klwp_t *lwp = ttolwp(curthread); 1215 proc_t *volatile p = ttoproc(curthread); 1216 struct fq32 fpu_q[MAXFPQ]; /* to hold floating queue */ 1217 struct fq32 *dfq = NULL; 1218 size_t fpq_size = 0; 1219 struct sigframe32 { 1220 struct frame32 frwin; 1221 ucontext32_t uc; 1222 }; 1223 struct sigframe32 *volatile fp; 1224 siginfo32_t *sip_addr; 1225 ucontext32_t *volatile tuc = NULL; 1226 char *volatile xregs = NULL; 1227 volatile int xregs_size = 0; 1228 gwindows32_t *volatile gwp = NULL; 1229 volatile size_t gwin_size = 0; 1230 kfpu_t *fpp; 1231 struct machpcb *mpcb; 1232 volatile int watched = 0; 1233 volatile int watched2 = 0; 1234 caddr_t tos; 1235 1236 /* 1237 * Make sure the current last user window has been flushed to 1238 * the stack save area before we change the sp. 1239 * Restore register window if a debugger modified it. 1240 */ 1241 (void) flush_user_windows_to_stack(NULL); 1242 if (lwp->lwp_pcb.pcb_xregstat != XREGNONE) 1243 xregrestore(lwp, 0); 1244 1245 mpcb = lwptompcb(lwp); 1246 rp = lwptoregs(lwp); 1247 1248 /* 1249 * Clear the watchpoint return stack pointers. 1250 */ 1251 mpcb->mpcb_rsp[0] = NULL; 1252 mpcb->mpcb_rsp[1] = NULL; 1253 1254 minstacksz = sizeof (struct sigframe32); 1255 1256 if (sip != NULL) 1257 minstacksz += sizeof (siginfo32_t); 1258 1259 /* 1260 * These two fields are pointed to by ABI structures and may 1261 * be of arbitrary length. Size them now so we know how big 1262 * the signal frame has to be. 1263 */ 1264 fpp = lwptofpu(lwp); 1265 fpp->fpu_fprs = _fp_read_fprs(); 1266 if ((fpp->fpu_en) || (fpp->fpu_fprs & FPRS_FEF)) { 1267 fpq_size = sizeof (struct fpq32) * fpp->fpu_qcnt; 1268 minstacksz += fpq_size; 1269 dfq = fpu_q; 1270 } 1271 1272 mpcb = lwptompcb(lwp); 1273 if (mpcb->mpcb_wbcnt != 0) { 1274 gwin_size = (mpcb->mpcb_wbcnt * sizeof (struct rwindow32)) + 1275 (SPARC_MAXREGWINDOW * sizeof (caddr32_t)) + 1276 sizeof (int32_t); 1277 minstacksz += gwin_size; 1278 } 1279 1280 /* 1281 * Extra registers, if supported by this platform, may be of arbitrary 1282 * length. Size them now so we know how big the signal frame has to be. 1283 */ 1284 xregs_size = xregs_getsize(p); 1285 minstacksz += SA32(xregs_size); 1286 1287 /* 1288 * Figure out whether we will be handling this signal on 1289 * an alternate stack specified by the user. Then allocate 1290 * and validate the stack requirements for the signal handler 1291 * context. on_fault will catch any faults. 1292 */ 1293 newstack = (sigismember(&u.u_sigonstack, sig) && 1294 !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE))); 1295 1296 tos = (void *)(uintptr_t)(uint32_t)rp->r_sp; 1297 /* 1298 * Force proper stack pointer alignment, even in the face of a 1299 * misaligned stack pointer from user-level before the signal. 1300 * Don't use the SA32() macro because that rounds up, not down. 1301 */ 1302 tos = (caddr_t)((uintptr_t)tos & ~(STACK_ALIGN32 - 1ul)); 1303 1304 if (newstack != 0) { 1305 fp = (struct sigframe32 *) 1306 (SA32((uintptr_t)lwp->lwp_sigaltstack.ss_sp) + 1307 SA32((int)lwp->lwp_sigaltstack.ss_size) - 1308 STACK_ALIGN32 - 1309 SA32(minstacksz)); 1310 } else { 1311 /* 1312 * If we were unable to flush all register windows to 1313 * the stack and we are not now on an alternate stack, 1314 * just dump core with a SIGSEGV back in psig(). 1315 */ 1316 if (sig == SIGSEGV && 1317 mpcb->mpcb_wbcnt != 0 && 1318 !(lwp->lwp_sigaltstack.ss_flags & SS_ONSTACK)) 1319 return (0); 1320 fp = (struct sigframe32 *)(tos - SA32(minstacksz)); 1321 /* 1322 * Could call grow here, but stack growth now handled below 1323 * in code protected by on_fault(). 1324 */ 1325 } 1326 sp = (caddr_t)fp + sizeof (struct sigframe32); 1327 1328 /* 1329 * Make sure process hasn't trashed its stack. 1330 */ 1331 if ((caddr_t)fp >= p->p_usrstack || 1332 (caddr_t)fp + SA32(minstacksz) >= p->p_usrstack) { 1333 #ifdef DEBUG 1334 printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n", 1335 PTOU(p)->u_comm, p->p_pid, sig); 1336 printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n", 1337 (void *)fp, (void *)hdlr, rp->r_pc); 1338 printf("fp above USRSTACK32\n"); 1339 #endif 1340 return (0); 1341 } 1342 1343 watched = watch_disable_addr((caddr_t)fp, SA32(minstacksz), S_WRITE); 1344 if (on_fault(&ljb)) 1345 goto badstack; 1346 1347 tuc = kmem_alloc(sizeof (ucontext32_t), KM_SLEEP); 1348 savecontext32(tuc, lwp->lwp_sigoldmask, dfq); 1349 1350 /* 1351 * save extra register state if it exists 1352 */ 1353 if (xregs_size != 0) { 1354 xregs_setptr32(lwp, tuc, (caddr32_t)(uintptr_t)sp); 1355 xregs = kmem_alloc(xregs_size, KM_SLEEP); 1356 xregs_get(lwp, xregs); 1357 copyout_noerr(xregs, sp, xregs_size); 1358 kmem_free(xregs, xregs_size); 1359 xregs = NULL; 1360 sp += SA32(xregs_size); 1361 } 1362 1363 copyout_noerr(tuc, &fp->uc, sizeof (*tuc)); 1364 kmem_free(tuc, sizeof (*tuc)); 1365 tuc = NULL; 1366 1367 if (sip != NULL) { 1368 siginfo32_t si32; 1369 zoneid_t zoneid; 1370 1371 siginfo_kto32(sip, &si32); 1372 if (SI_FROMUSER(sip) && 1373 (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID && 1374 zoneid != sip->si_zoneid) { 1375 si32.si_pid = p->p_zone->zone_zsched->p_pid; 1376 si32.si_uid = 0; 1377 si32.si_ctid = -1; 1378 si32.si_zoneid = zoneid; 1379 } 1380 uzero(sp, sizeof (siginfo32_t)); 1381 copyout_noerr(&si32, sp, sizeof (siginfo32_t)); 1382 sip_addr = (siginfo32_t *)sp; 1383 sp += sizeof (siginfo32_t); 1384 1385 if (sig == SIGPROF && 1386 curthread->t_rprof != NULL && 1387 curthread->t_rprof->rp_anystate) { 1388 /* 1389 * We stand on our head to deal with 1390 * the real time profiling signal. 1391 * Fill in the stuff that doesn't fit 1392 * in a normal k_siginfo structure. 1393 */ 1394 int i = sip->si_nsysarg; 1395 while (--i >= 0) { 1396 suword32_noerr(&sip_addr->si_sysarg[i], 1397 (uint32_t)lwp->lwp_arg[i]); 1398 } 1399 copyout_noerr(curthread->t_rprof->rp_state, 1400 sip_addr->si_mstate, 1401 sizeof (curthread->t_rprof->rp_state)); 1402 } 1403 } else { 1404 sip_addr = NULL; 1405 } 1406 1407 /* 1408 * When flush_user_windows_to_stack() can't save all the 1409 * windows to the stack, it puts them in the lwp's pcb. 1410 */ 1411 if (gwin_size != 0) { 1412 gwp = kmem_alloc(gwin_size, KM_SLEEP); 1413 getgwins32(lwp, gwp); 1414 suword32_noerr(&fp->uc.uc_mcontext.gwins, 1415 (uint32_t)(uintptr_t)sp); 1416 copyout_noerr(gwp, sp, gwin_size); 1417 kmem_free(gwp, gwin_size); 1418 gwp = NULL; 1419 sp += gwin_size; 1420 } else { 1421 suword32_noerr(&fp->uc.uc_mcontext.gwins, (uint32_t)NULL); 1422 } 1423 1424 if (fpq_size != 0) { 1425 /* 1426 * Update the (already copied out) fpu32.fpu_q pointer 1427 * from NULL to the 32-bit address on the user's stack 1428 * where we then copyout the fq32 to. 1429 */ 1430 struct fq32 *fqp = (struct fq32 *)sp; 1431 suword32_noerr(&fp->uc.uc_mcontext.fpregs.fpu_q, 1432 (uint32_t)(uintptr_t)fqp); 1433 copyout_noerr(dfq, fqp, fpq_size); 1434 1435 /* 1436 * forget the fp queue so that the signal handler can run 1437 * without being harrassed--it will do a setcontext that will 1438 * re-establish the queue if there still is one 1439 * 1440 * NOTE: fp_runq() relies on the qcnt field being zeroed here 1441 * to terminate its processing of the queue after signal 1442 * delivery. 1443 */ 1444 mpcb->mpcb_fpu->fpu_qcnt = 0; 1445 sp += fpq_size; 1446 1447 /* Also, syscall needs to know about this */ 1448 mpcb->mpcb_flags |= FP_TRAPPED; 1449 1450 } else { 1451 suword32_noerr(&fp->uc.uc_mcontext.fpregs.fpu_q, 1452 (uint32_t)NULL); 1453 suword8_noerr(&fp->uc.uc_mcontext.fpregs.fpu_qcnt, 0); 1454 } 1455 1456 1457 /* 1458 * Since we flushed the user's windows and we are changing his 1459 * stack pointer, the window that the user will return to will 1460 * be restored from the save area in the frame we are setting up. 1461 * We copy in save area for old stack pointer so that debuggers 1462 * can do a proper stack backtrace from the signal handler. 1463 */ 1464 if (mpcb->mpcb_wbcnt == 0) { 1465 watched2 = watch_disable_addr(tos, sizeof (struct rwindow32), 1466 S_READ); 1467 ucopy(tos, &fp->frwin, sizeof (struct rwindow32)); 1468 } 1469 1470 lwp->lwp_oldcontext = (uintptr_t)&fp->uc; 1471 1472 if (newstack != 0) { 1473 lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK; 1474 if (lwp->lwp_ustack) { 1475 stack32_t stk32; 1476 1477 stk32.ss_sp = 1478 (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp; 1479 stk32.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size; 1480 stk32.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags; 1481 1482 copyout_noerr(&stk32, (stack32_t *)lwp->lwp_ustack, 1483 sizeof (stack32_t)); 1484 } 1485 } 1486 1487 no_fault(); 1488 mpcb->mpcb_wbcnt = 0; /* let user go on */ 1489 1490 if (watched2) 1491 watch_enable_addr(tos, sizeof (struct rwindow32), S_READ); 1492 if (watched) 1493 watch_enable_addr((caddr_t)fp, SA32(minstacksz), S_WRITE); 1494 1495 /* 1496 * Set up user registers for execution of signal handler. 1497 */ 1498 rp->r_sp = (uintptr_t)fp; 1499 rp->r_pc = (uintptr_t)hdlr; 1500 rp->r_npc = (uintptr_t)hdlr + 4; 1501 /* make sure %asi is ASI_PNF */ 1502 rp->r_tstate &= ~((uint64_t)TSTATE_ASI_MASK << TSTATE_ASI_SHIFT); 1503 rp->r_tstate |= ((uint64_t)ASI_PNF << TSTATE_ASI_SHIFT); 1504 rp->r_o0 = sig; 1505 rp->r_o1 = (uintptr_t)sip_addr; 1506 rp->r_o2 = (uintptr_t)&fp->uc; 1507 /* 1508 * Don't set lwp_eosys here. sendsig() is called via psig() after 1509 * lwp_eosys is handled, so setting it here would affect the next 1510 * system call. 1511 */ 1512 return (1); 1513 1514 badstack: 1515 no_fault(); 1516 if (watched2) 1517 watch_enable_addr(tos, sizeof (struct rwindow32), S_READ); 1518 if (watched) 1519 watch_enable_addr((caddr_t)fp, SA32(minstacksz), S_WRITE); 1520 if (tuc) 1521 kmem_free(tuc, sizeof (*tuc)); 1522 if (xregs) 1523 kmem_free(xregs, xregs_size); 1524 if (gwp) 1525 kmem_free(gwp, gwin_size); 1526 #ifdef DEBUG 1527 printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n", 1528 PTOU(p)->u_comm, p->p_pid, sig); 1529 printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n", 1530 (void *)fp, (void *)hdlr, rp->r_pc); 1531 #endif 1532 return (0); 1533 } 1534 1535 #endif /* _SYSCALL32_IMPL */ 1536 1537 1538 /* 1539 * load user registers into lwp. 1540 * thrptr ignored for sparc. 1541 */ 1542 /* ARGSUSED2 */ 1543 void 1544 lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr) 1545 { 1546 setgregs(lwp, grp); 1547 if (lwptoproc(lwp)->p_model == DATAMODEL_ILP32) 1548 lwptoregs(lwp)->r_tstate = TSTATE_USER32; 1549 else 1550 lwptoregs(lwp)->r_tstate = TSTATE_USER64; 1551 1552 if (!fpu_exists) 1553 lwptoregs(lwp)->r_tstate &= ~TSTATE_PEF; 1554 lwp->lwp_eosys = JUSTRETURN; 1555 lwptot(lwp)->t_post_sys = 1; 1556 } 1557 1558 /* 1559 * set syscall()'s return values for a lwp. 1560 */ 1561 void 1562 lwp_setrval(klwp_t *lwp, int v1, int v2) 1563 { 1564 struct regs *rp = lwptoregs(lwp); 1565 1566 rp->r_tstate &= ~TSTATE_IC; 1567 rp->r_o0 = v1; 1568 rp->r_o1 = v2; 1569 } 1570 1571 /* 1572 * set stack pointer for a lwp 1573 */ 1574 void 1575 lwp_setsp(klwp_t *lwp, caddr_t sp) 1576 { 1577 struct regs *rp = lwptoregs(lwp); 1578 rp->r_sp = (uintptr_t)sp; 1579 } 1580 1581 /* 1582 * Take any PCB specific actions that are required or flagged in the PCB. 1583 */ 1584 extern void trap_async_hwerr(void); 1585 #pragma weak trap_async_hwerr 1586 1587 void 1588 lwp_pcb_exit(void) 1589 { 1590 klwp_t *lwp = ttolwp(curthread); 1591 1592 if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) { 1593 trap_async_hwerr(); 1594 } 1595 } 1596 1597 /* 1598 * Invalidate the saved user register windows in the pcb struct 1599 * for the current thread. They will no longer be preserved. 1600 */ 1601 void 1602 lwp_clear_uwin(void) 1603 { 1604 struct machpcb *m = lwptompcb(ttolwp(curthread)); 1605 1606 /* 1607 * This has the effect of invalidating all (any) of the 1608 * user level windows that are currently sitting in the 1609 * kernel buffer. 1610 */ 1611 m->mpcb_wbcnt = 0; 1612 } 1613 1614 static uint_t 1615 mkpsr(uint64_t tstate, uint_t fprs) 1616 { 1617 uint_t psr, icc; 1618 1619 psr = tstate & TSTATE_CWP_MASK; 1620 if (tstate & TSTATE_PRIV) 1621 psr |= PSR_PS; 1622 if (fprs & FPRS_FEF) 1623 psr |= PSR_EF; 1624 icc = (uint_t)(tstate >> PSR_TSTATE_CC_SHIFT) & PSR_ICC; 1625 psr |= icc; 1626 psr |= V9_PSR_IMPLVER; 1627 return (psr); 1628 } 1629 1630 void 1631 sync_icache(caddr_t va, uint_t len) 1632 { 1633 caddr_t end; 1634 1635 end = va + len; 1636 va = (caddr_t)((uintptr_t)va & -8l); /* sparc needs 8-byte align */ 1637 while (va < end) { 1638 doflush(va); 1639 va += 8; 1640 } 1641 } 1642 1643 #ifdef _SYSCALL32_IMPL 1644 1645 /* 1646 * Copy the floating point queue if and only if there is a queue and a place 1647 * to copy it to. Let xregs take care of the other fp regs, for v8plus. 1648 * The issue is that while we are handling the fq32 in sendsig, we 1649 * still need a 64-bit pointer to it, and the caddr32_t in fpregset32_t 1650 * will not suffice, so we have the third parameter to this function. 1651 */ 1652 void 1653 fpuregset_nto32(const fpregset_t *src, fpregset32_t *dest, struct fq32 *dfq) 1654 { 1655 int i; 1656 1657 bzero(dest, sizeof (*dest)); 1658 for (i = 0; i < 32; i++) 1659 dest->fpu_fr.fpu_regs[i] = src->fpu_fr.fpu_regs[i]; 1660 dest->fpu_q = NULL; 1661 dest->fpu_fsr = (uint32_t)src->fpu_fsr; 1662 dest->fpu_qcnt = src->fpu_qcnt; 1663 dest->fpu_q_entrysize = sizeof (struct fpq32); 1664 dest->fpu_en = src->fpu_en; 1665 1666 if ((src->fpu_qcnt) && (dfq != NULL)) { 1667 struct fq *sfq = src->fpu_q; 1668 for (i = 0; i < src->fpu_qcnt; i++, dfq++, sfq++) { 1669 dfq->FQu.fpq.fpq_addr = 1670 (caddr32_t)(uintptr_t)sfq->FQu.fpq.fpq_addr; 1671 dfq->FQu.fpq.fpq_instr = sfq->FQu.fpq.fpq_instr; 1672 } 1673 } 1674 } 1675 1676 /* 1677 * Copy the floating point queue if and only if there is a queue and a place 1678 * to copy it to. Let xregs take care of the other fp regs, for v8plus. 1679 * The *dfq is required to escape the bzero in both this function and in 1680 * ucontext_32ton. The *sfq is required because once the fq32 is copied 1681 * into the kernel, in setcontext, then we need a 64-bit pointer to it. 1682 */ 1683 static void 1684 fpuregset_32ton(const fpregset32_t *src, fpregset_t *dest, 1685 const struct fq32 *sfq, struct fq *dfq) 1686 { 1687 int i; 1688 1689 bzero(dest, sizeof (*dest)); 1690 for (i = 0; i < 32; i++) 1691 dest->fpu_fr.fpu_regs[i] = src->fpu_fr.fpu_regs[i]; 1692 dest->fpu_q = dfq; 1693 dest->fpu_fsr = (uint64_t)src->fpu_fsr; 1694 if ((dest->fpu_qcnt = src->fpu_qcnt) > 0) 1695 dest->fpu_q_entrysize = sizeof (struct fpq); 1696 else 1697 dest->fpu_q_entrysize = 0; 1698 dest->fpu_en = src->fpu_en; 1699 1700 if ((src->fpu_qcnt) && (sfq) && (dfq)) { 1701 for (i = 0; i < src->fpu_qcnt; i++, dfq++, sfq++) { 1702 dfq->FQu.fpq.fpq_addr = 1703 (unsigned int *)(uintptr_t)sfq->FQu.fpq.fpq_addr; 1704 dfq->FQu.fpq.fpq_instr = sfq->FQu.fpq.fpq_instr; 1705 } 1706 } 1707 } 1708 1709 void 1710 ucontext_32ton(const ucontext32_t *src, ucontext_t *dest, 1711 const struct fq32 *sfq, struct fq *dfq) 1712 { 1713 int i; 1714 1715 bzero(dest, sizeof (*dest)); 1716 1717 dest->uc_flags = src->uc_flags; 1718 dest->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; 1719 1720 for (i = 0; i < 4; i++) { 1721 dest->uc_sigmask.__sigbits[i] = src->uc_sigmask.__sigbits[i]; 1722 } 1723 1724 dest->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; 1725 dest->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; 1726 dest->uc_stack.ss_flags = src->uc_stack.ss_flags; 1727 1728 /* REG_CCR is 0, skip over it and handle it after this loop */ 1729 for (i = 1; i < _NGREG32; i++) 1730 dest->uc_mcontext.gregs[i] = 1731 (greg_t)(uint32_t)src->uc_mcontext.gregs[i]; 1732 dest->uc_mcontext.gregs[REG_CCR] = 1733 (src->uc_mcontext.gregs[REG_PSR] & PSR_ICC) >> PSR_ICC_SHIFT; 1734 dest->uc_mcontext.gregs[REG_ASI] = ASI_PNF; 1735 /* 1736 * A valid fpregs is only copied in if (uc.uc_flags & UC_FPU), 1737 * otherwise there is no guarantee that anything in fpregs is valid. 1738 */ 1739 if (src->uc_flags & UC_FPU) { 1740 dest->uc_mcontext.gregs[REG_FPRS] = 1741 ((src->uc_mcontext.fpregs.fpu_en) ? 1742 (FPRS_DU|FPRS_DL|FPRS_FEF) : 0); 1743 } else { 1744 dest->uc_mcontext.gregs[REG_FPRS] = 0; 1745 } 1746 dest->uc_mcontext.gwins = 1747 (gwindows_t *)(uintptr_t)src->uc_mcontext.gwins; 1748 if (src->uc_flags & UC_FPU) { 1749 fpuregset_32ton(&src->uc_mcontext.fpregs, 1750 &dest->uc_mcontext.fpregs, sfq, dfq); 1751 } 1752 } 1753 1754 void 1755 rwindow_nto32(struct rwindow *src, struct rwindow32 *dest) 1756 { 1757 greg_t *s = (greg_t *)src; 1758 greg32_t *d = (greg32_t *)dest; 1759 int i; 1760 1761 for (i = 0; i < 16; i++) 1762 *d++ = (greg32_t)*s++; 1763 } 1764 1765 void 1766 rwindow_32ton(struct rwindow32 *src, struct rwindow *dest) 1767 { 1768 greg32_t *s = (greg32_t *)src; 1769 greg_t *d = (greg_t *)dest; 1770 int i; 1771 1772 for (i = 0; i < 16; i++) 1773 *d++ = (uint32_t)*s++; 1774 } 1775 1776 #endif /* _SYSCALL32_IMPL */ 1777 1778 /* 1779 * The panic code invokes panic_saveregs() to record the contents of a 1780 * regs structure into the specified panic_data structure for debuggers. 1781 */ 1782 void 1783 panic_saveregs(panic_data_t *pdp, struct regs *rp) 1784 { 1785 panic_nv_t *pnv = PANICNVGET(pdp); 1786 1787 PANICNVADD(pnv, "tstate", rp->r_tstate); 1788 PANICNVADD(pnv, "g1", rp->r_g1); 1789 PANICNVADD(pnv, "g2", rp->r_g2); 1790 PANICNVADD(pnv, "g3", rp->r_g3); 1791 PANICNVADD(pnv, "g4", rp->r_g4); 1792 PANICNVADD(pnv, "g5", rp->r_g5); 1793 PANICNVADD(pnv, "g6", rp->r_g6); 1794 PANICNVADD(pnv, "g7", rp->r_g7); 1795 PANICNVADD(pnv, "o0", rp->r_o0); 1796 PANICNVADD(pnv, "o1", rp->r_o1); 1797 PANICNVADD(pnv, "o2", rp->r_o2); 1798 PANICNVADD(pnv, "o3", rp->r_o3); 1799 PANICNVADD(pnv, "o4", rp->r_o4); 1800 PANICNVADD(pnv, "o5", rp->r_o5); 1801 PANICNVADD(pnv, "o6", rp->r_o6); 1802 PANICNVADD(pnv, "o7", rp->r_o7); 1803 PANICNVADD(pnv, "pc", (ulong_t)rp->r_pc); 1804 PANICNVADD(pnv, "npc", (ulong_t)rp->r_npc); 1805 PANICNVADD(pnv, "y", (uint32_t)rp->r_y); 1806 1807 PANICNVSET(pdp, pnv); 1808 } 1809