xref: /titanic_41/usr/src/uts/sparc/os/archdep.c (revision 7c64d3750da7fda7e450b8f9b0b963905ded6379)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/vmparam.h>
35 #include <sys/systm.h>
36 #include <sys/sysmacros.h>
37 #include <sys/signal.h>
38 #include <sys/stack.h>
39 #include <sys/frame.h>
40 #include <sys/proc.h>
41 #include <sys/ucontext.h>
42 #include <sys/siginfo.h>
43 #include <sys/cpuvar.h>
44 #include <sys/asm_linkage.h>
45 #include <sys/kmem.h>
46 #include <sys/errno.h>
47 #include <sys/bootconf.h>
48 #include <sys/archsystm.h>
49 #include <sys/fpu/fpusystm.h>
50 #include <sys/auxv.h>
51 #include <sys/debug.h>
52 #include <sys/elf.h>
53 #include <sys/elf_SPARC.h>
54 #include <sys/cmn_err.h>
55 #include <sys/spl.h>
56 #include <sys/privregs.h>
57 #include <sys/kobj.h>
58 #include <sys/modctl.h>
59 #include <sys/reboot.h>
60 #include <sys/time.h>
61 #include <sys/panic.h>
62 #include <vm/seg_kmem.h>
63 #include <vm/page.h>
64 #include <sys/machpcb.h>
65 
66 extern struct bootops *bootops;
67 
68 /*
69  * Workaround for broken FDDI driver (remove when 4289172 is fixed)
70  */
71 short cputype = 0x80;
72 
73 extern int getpcstack_top(pc_t *pcstack, int limit, uintptr_t *lastfp,
74     pc_t *lastpc);
75 
76 /*
77  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
78  * Returns MIN(current stack depth, pcstack_limit).
79  */
80 int
81 getpcstack(pc_t *pcstack, int pcstack_limit)
82 {
83 	struct frame *fp, *minfp, *stacktop;
84 	uintptr_t nextfp;
85 	pc_t nextpc;
86 	int depth;
87 	int on_intr;
88 	pc_t pcswin[MAXWIN];
89 	int npcwin = MIN(MAXWIN, pcstack_limit);
90 
91 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
92 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
93 	else
94 		stacktop = (struct frame *)curthread->t_stk;
95 
96 	minfp = (struct frame *)((uintptr_t)getfp() + STACK_BIAS);
97 
98 	/*
99 	 * getpcstack_top() processes the frames still in register windows,
100 	 * fills nextfp and nextpc with our starting point, and returns
101 	 * the number of frames it wrote into pcstack.
102 	 *
103 	 * Since we cannot afford to take a relocation trap while we are
104 	 * messing with register windows, we pass getpcstack_top() a buffer
105 	 * on our stack and then copy the result out to the pcstack buffer
106 	 * provided by the caller.  The size of this buffer is the maximum
107 	 * supported number of SPARC register windows; however we ASSERT
108 	 * that it returns fewer than that, since it will skip the current
109 	 * frame.
110 	 */
111 	npcwin = getpcstack_top(pcswin, npcwin, &nextfp, &nextpc);
112 	ASSERT(npcwin >= 0 && npcwin < MAXWIN && npcwin <= pcstack_limit);
113 	for (depth = 0; depth < npcwin; depth++) {
114 		pcstack[depth] = pcswin[depth];
115 	}
116 
117 	fp = (struct frame *)(nextfp + STACK_BIAS);
118 
119 	while (depth < pcstack_limit) {
120 		if (fp <= minfp || fp >= stacktop) {
121 			if (on_intr) {
122 				/*
123 				 * Hop from interrupt stack to thread stack.
124 				 */
125 				stacktop = (struct frame *)curthread->t_stk;
126 				minfp = (struct frame *)curthread->t_stkbase;
127 				on_intr = 0;
128 				continue;
129 			}
130 			break;
131 		}
132 
133 		pcstack[depth++] = nextpc;
134 		minfp = fp;
135 
136 		nextpc = (pc_t)fp->fr_savpc;
137 		fp = (struct frame *)((uintptr_t)fp->fr_savfp + STACK_BIAS);
138 	}
139 
140 	return (depth);
141 }
142 
143 /*
144  * The following ELF header fields are defined as processor-specific
145  * in the SPARC V8 ABI:
146  *
147  *	e_ident[EI_DATA]	encoding of the processor-specific
148  *				data in the object file
149  *	e_machine		processor identification
150  *	e_flags			processor-specific flags associated
151  *				with the file
152  */
153 
154 /*
155  * The value of at_flags reflects a platform's cpu module support.
156  * at_flags is used to check for allowing a binary to execute and
157  * is passed as the value of the AT_FLAGS auxiliary vector.
158  */
159 int at_flags = 0;
160 
161 /*
162  * Check the processor-specific fields of an ELF header.
163  *
164  * returns 1 if the fields are valid, 0 otherwise
165  */
166 int
167 elfheadcheck(
168 	unsigned char e_data,
169 	Elf32_Half e_machine,
170 	Elf32_Word e_flags)
171 {
172 	Elf32_Word needed_flags;
173 	int supported_flags;
174 
175 	if (e_data != ELFDATA2MSB)
176 		return (0);
177 
178 	switch (e_machine) {
179 	case EM_SPARC:
180 		if (e_flags == 0)
181 			return (1);
182 		else
183 			return (0);
184 	case EM_SPARCV9:
185 		/*
186 		 * Check that ELF flags are set to supported SPARC V9 flags
187 		 */
188 		needed_flags = e_flags & EF_SPARC_EXT_MASK;
189 		supported_flags = at_flags & ~EF_SPARC_32PLUS;
190 
191 		if (needed_flags & ~supported_flags)
192 			return (0);
193 		else
194 			return (1);
195 	case EM_SPARC32PLUS:
196 		if ((e_flags & EF_SPARC_32PLUS) != 0 &&
197 		    ((e_flags & ~at_flags) & EF_SPARC_32PLUS_MASK) == 0)
198 			return (1);
199 		else
200 			return (0);
201 	default:
202 		return (0);
203 	}
204 }
205 
206 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
207 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
208 #if defined(_SYSCALL32_IMPL)
209 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
210 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
211 #endif
212 
213 uint_t cpu_hwcap_flags = 0;	/* set by cpu-dependent code */
214 
215 /*
216  * Gather information about the processor and place it into auxv_hwcap
217  * so that it can be exported to the linker via the aux vector.
218  *
219  * We use this seemingly complicated mechanism so that we can ensure
220  * that /etc/system can be used to override what the system can or
221  * cannot discover for itself.
222  */
223 void
224 bind_hwcap(void)
225 {
226 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) &
227 	    ~auxv_hwcap_exclude;
228 
229 	if (auxv_hwcap_include || auxv_hwcap_exclude)
230 		cmn_err(CE_CONT, "?user ABI extensions: %b\n",
231 		    auxv_hwcap, FMT_AV_SPARC);
232 
233 #if defined(_SYSCALL32_IMPL)
234 	/*
235 	 * These are now a compatibility artifact; all supported SPARC CPUs
236 	 * are V9-capable (and thus support v8plus) and fully implement
237 	 * {s,u}mul and {s,u}div.
238 	 */
239 	cpu_hwcap_flags |= AV_SPARC_MUL32 | AV_SPARC_DIV32 | AV_SPARC_V8PLUS;
240 
241 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) &
242 	    ~auxv_hwcap32_exclude;
243 
244 	if (auxv_hwcap32_include || auxv_hwcap32_exclude)
245 		cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n",
246 		    auxv_hwcap32, FMT_AV_SPARC);
247 #endif
248 }
249 
250 int
251 __ipltospl(int ipl)
252 {
253 	return (ipltospl(ipl));
254 }
255 
256 /*
257  * Print a stack backtrace using the specified stack pointer.  We delay two
258  * seconds before continuing, unless this is the panic traceback.  Note
259  * that the frame for the starting stack pointer value is omitted because
260  * the corresponding %pc is not known.
261  */
262 void
263 traceback(caddr_t sp)
264 {
265 	struct frame *fp = (struct frame *)(sp + STACK_BIAS);
266 	struct frame *nextfp, *minfp, *stacktop;
267 	int on_intr;
268 
269 	cpu_t *cpu;
270 
271 	flush_windows();
272 
273 	if (!panicstr)
274 		printf("traceback: %%sp = %p\n", (void *)sp);
275 
276 	/*
277 	 * If we are panicking, the high-level interrupt information in
278 	 * CPU was overwritten.  panic_cpu has the correct values.
279 	 */
280 	kpreempt_disable();			/* prevent migration */
281 
282 	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
283 
284 	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
285 		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
286 	else
287 		stacktop = (struct frame *)curthread->t_stk;
288 
289 	kpreempt_enable();
290 
291 	minfp = fp;
292 
293 	while ((uintptr_t)fp >= KERNELBASE) {
294 		uintptr_t pc = (uintptr_t)fp->fr_savpc;
295 		ulong_t off;
296 		char *sym;
297 
298 		nextfp = (struct frame *)((uintptr_t)fp->fr_savfp + STACK_BIAS);
299 		if (nextfp <= minfp || nextfp >= stacktop) {
300 			if (on_intr) {
301 				/*
302 				 * Hop from interrupt stack to thread stack.
303 				 */
304 				stacktop = (struct frame *)curthread->t_stk;
305 				minfp = (struct frame *)curthread->t_stkbase;
306 				on_intr = 0;
307 				continue;
308 			}
309 			break; /* we're outside of the expected range */
310 		}
311 
312 		if ((uintptr_t)nextfp & (STACK_ALIGN - 1)) {
313 			printf("  >> mis-aligned %%fp = %p\n", (void *)nextfp);
314 			break;
315 		}
316 
317 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
318 			printf("%016lx %s:%s+%lx "
319 			    "(%lx, %lx, %lx, %lx, %lx, %lx)\n", (ulong_t)nextfp,
320 			    mod_containing_pc((caddr_t)pc), sym, off,
321 			    nextfp->fr_arg[0], nextfp->fr_arg[1],
322 			    nextfp->fr_arg[2], nextfp->fr_arg[3],
323 			    nextfp->fr_arg[4], nextfp->fr_arg[5]);
324 		} else {
325 			printf("%016lx %p (%lx, %lx, %lx, %lx, %lx, %lx)\n",
326 			    (ulong_t)nextfp, (void *)pc,
327 			    nextfp->fr_arg[0], nextfp->fr_arg[1],
328 			    nextfp->fr_arg[2], nextfp->fr_arg[3],
329 			    nextfp->fr_arg[4], nextfp->fr_arg[5]);
330 		}
331 
332 		printf("  %%l0-3: %016lx %016lx %016lx %016lx\n"
333 		    "  %%l4-7: %016lx %016lx %016lx %016lx\n",
334 		    nextfp->fr_local[0], nextfp->fr_local[1],
335 		    nextfp->fr_local[2], nextfp->fr_local[3],
336 		    nextfp->fr_local[4], nextfp->fr_local[5],
337 		    nextfp->fr_local[6], nextfp->fr_local[7]);
338 
339 		fp = nextfp;
340 		minfp = fp;
341 	}
342 
343 	if (!panicstr) {
344 		printf("end of traceback\n");
345 		DELAY(2 * MICROSEC);
346 	}
347 }
348 
349 /*
350  * Generate a stack backtrace from a saved register set.
351  */
352 void
353 traceregs(struct regs *rp)
354 {
355 	traceback((caddr_t)rp->r_sp);
356 }
357 
358 void
359 exec_set_sp(size_t stksize)
360 {
361 	klwp_t *lwp = ttolwp(curthread);
362 
363 	lwp->lwp_pcb.pcb_xregstat = XREGNONE;
364 	if (curproc->p_model == DATAMODEL_NATIVE)
365 		stksize += sizeof (struct rwindow) + STACK_BIAS;
366 	else
367 		stksize += sizeof (struct rwindow32);
368 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
369 }
370 
371 /*
372  * Allocate a region of virtual address space, unmapped.
373  *
374  * When a hard-redzone (firewall) is in effect, redzone violations are
375  * caught by the hardware the instant they happen because the first byte
376  * past the logical end of a firewalled buffer lies at the start of an
377  * unmapped page.  This firewalling is accomplished by bumping up the
378  * requested address allocation, effectively removing an additional page
379  * beyond the original request from the available virtual memory arena.
380  * However, the size of the allocation passed to boot, in boot_alloc(),
381  * doesn't reflect this additional page and fragmentation of the OBP
382  * "virtual-memory" "available" lists property occurs.  Calling
383  * prom_claim_virt() for the firewall page avoids this fragmentation.
384  */
385 void *
386 boot_virt_alloc(void *addr, size_t size)
387 {
388 	return (BOP_ALLOC_VIRT((caddr_t)addr, size));
389 }
390 
391 
392 /*ARGSUSED*/
393 int
394 xcopyin_nta(const void *uaddr, void *kaddr, size_t count, int dummy)
395 {
396 	return (xcopyin(uaddr, kaddr, count));
397 }
398 /*ARGSUSED*/
399 int
400 xcopyout_nta(const void *kaddr, void *uaddr, size_t count, int dummy)
401 {
402 	return (xcopyout(kaddr, uaddr, count));
403 }
404 /*ARGSUSED*/
405 int
406 kcopy_nta(const void *from, void *to, size_t count, int dummy)
407 {
408 	return (kcopy(from, to, count));
409 }
410