1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * VM - Hardware Address Translation management. 28 * 29 * This file describes the contents of the sun-reference-mmu(sfmmu)- 30 * specific hat data structures and the sfmmu-specific hat procedures. 31 * The machine-independent interface is described in <vm/hat.h>. 32 */ 33 34 #ifndef _VM_HAT_SFMMU_H 35 #define _VM_HAT_SFMMU_H 36 37 #ifdef __cplusplus 38 extern "C" { 39 #endif 40 41 #ifndef _ASM 42 43 #include <sys/types.h> 44 45 #endif /* _ASM */ 46 47 #ifdef _KERNEL 48 49 #include <sys/pte.h> 50 #include <vm/mach_sfmmu.h> 51 #include <sys/mmu.h> 52 53 /* 54 * Don't alter these without considering changes to ism_map_t. 55 */ 56 #define DEFAULT_ISM_PAGESIZE MMU_PAGESIZE4M 57 #define DEFAULT_ISM_PAGESZC TTE4M 58 #define ISM_PG_SIZE(ism_vbshift) (1 << ism_vbshift) 59 #define ISM_SZ_MASK(ism_vbshift) (ISM_PG_SIZE(ism_vbshift) - 1) 60 #define ISM_MAP_SLOTS 8 /* Change this carefully. */ 61 62 #ifndef _ASM 63 64 #include <sys/t_lock.h> 65 #include <vm/hat.h> 66 #include <vm/seg.h> 67 #include <sys/machparam.h> 68 #include <sys/systm.h> 69 #include <sys/x_call.h> 70 #include <vm/page.h> 71 #include <sys/ksynch.h> 72 73 typedef struct hat sfmmu_t; 74 typedef struct sf_scd sf_scd_t; 75 76 /* 77 * SFMMU attributes for hat_memload/hat_devload 78 */ 79 #define SFMMU_UNCACHEPTTE 0x01000000 /* unencache in physical $ */ 80 #define SFMMU_UNCACHEVTTE 0x02000000 /* unencache in virtual $ */ 81 #define SFMMU_SIDEFFECT 0x04000000 /* set side effect bit */ 82 #define SFMMU_LOAD_ALLATTR (HAT_PROT_MASK | HAT_ORDER_MASK | \ 83 HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC | \ 84 SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT) 85 86 87 /* 88 * sfmmu flags for hat_memload/hat_devload 89 */ 90 #define SFMMU_NO_TSBLOAD 0x08000000 /* do not preload tsb */ 91 #define SFMMU_LOAD_ALLFLAG (HAT_LOAD | HAT_LOAD_LOCK | \ 92 HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST | \ 93 HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD | \ 94 HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT) 95 96 /* 97 * sfmmu internal flag to hat_pageunload that spares locked mappings 98 */ 99 #define SFMMU_KERNEL_RELOC 0x8000 100 101 /* 102 * mode for sfmmu_chgattr 103 */ 104 #define SFMMU_SETATTR 0x0 105 #define SFMMU_CLRATTR 0x1 106 #define SFMMU_CHGATTR 0x2 107 108 /* 109 * sfmmu specific flags for page_t 110 */ 111 #define P_PNC 0x8 /* non-caching is permanent bit */ 112 #define P_TNC 0x10 /* non-caching is temporary bit */ 113 #define P_KPMS 0x20 /* kpm mapped small (vac alias prevention) */ 114 #define P_KPMC 0x40 /* kpm conflict page (vac alias prevention) */ 115 116 #define PP_GENERIC_ATTR(pp) ((pp)->p_nrm & (P_MOD | P_REF | P_RO)) 117 #define PP_ISMOD(pp) ((pp)->p_nrm & P_MOD) 118 #define PP_ISREF(pp) ((pp)->p_nrm & P_REF) 119 #define PP_ISRO(pp) ((pp)->p_nrm & P_RO) 120 #define PP_ISNC(pp) ((pp)->p_nrm & (P_PNC|P_TNC)) 121 #define PP_ISPNC(pp) ((pp)->p_nrm & P_PNC) 122 #ifdef VAC 123 #define PP_ISTNC(pp) ((pp)->p_nrm & P_TNC) 124 #endif 125 #define PP_ISKPMS(pp) ((pp)->p_nrm & P_KPMS) 126 #define PP_ISKPMC(pp) ((pp)->p_nrm & P_KPMC) 127 128 #define PP_SETMOD(pp) ((pp)->p_nrm |= P_MOD) 129 #define PP_SETREF(pp) ((pp)->p_nrm |= P_REF) 130 #define PP_SETREFMOD(pp) ((pp)->p_nrm |= (P_REF|P_MOD)) 131 #define PP_SETRO(pp) ((pp)->p_nrm |= P_RO) 132 #define PP_SETREFRO(pp) ((pp)->p_nrm |= (P_REF|P_RO)) 133 #define PP_SETPNC(pp) ((pp)->p_nrm |= P_PNC) 134 #ifdef VAC 135 #define PP_SETTNC(pp) ((pp)->p_nrm |= P_TNC) 136 #endif 137 #define PP_SETKPMS(pp) ((pp)->p_nrm |= P_KPMS) 138 #define PP_SETKPMC(pp) ((pp)->p_nrm |= P_KPMC) 139 140 #define PP_CLRMOD(pp) ((pp)->p_nrm &= ~P_MOD) 141 #define PP_CLRREF(pp) ((pp)->p_nrm &= ~P_REF) 142 #define PP_CLRREFMOD(pp) ((pp)->p_nrm &= ~(P_REF|P_MOD)) 143 #define PP_CLRRO(pp) ((pp)->p_nrm &= ~P_RO) 144 #define PP_CLRPNC(pp) ((pp)->p_nrm &= ~P_PNC) 145 #ifdef VAC 146 #define PP_CLRTNC(pp) ((pp)->p_nrm &= ~P_TNC) 147 #endif 148 #define PP_CLRKPMS(pp) ((pp)->p_nrm &= ~P_KPMS) 149 #define PP_CLRKPMC(pp) ((pp)->p_nrm &= ~P_KPMC) 150 151 /* 152 * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM) 153 * will be constrained to a 4M, 32M or 256M alignment. Also since every newly- 154 * created ISM segment is created out of a new address space at base va 155 * of 0 we don't need to store it. 156 */ 157 #define ISM_ALIGN(shift) (1 << shift) /* base va aligned to <n>M */ 158 #define ISM_ALIGNED(shift, va) (((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0) 159 #define ISM_SHIFT(shift, x) ((uintptr_t)x >> (shift)) 160 161 /* 162 * Pad locks out to cache sub-block boundaries to prevent 163 * false sharing, so several processes don't contend for 164 * the same line if they aren't using the same lock. Since 165 * this is a typedef we also have a bit of freedom in 166 * changing lock implementations later if we decide it 167 * is necessary. 168 */ 169 typedef struct hat_lock { 170 kmutex_t hl_mutex; 171 uchar_t hl_pad[64 - sizeof (kmutex_t)]; 172 } hatlock_t; 173 174 #define HATLOCK_MUTEXP(hatlockp) (&((hatlockp)->hl_mutex)) 175 176 /* 177 * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned. 178 * Also size is guaranteed to be in 4M, 32M or 256M chunks. 179 * ism_seg consists of the following members: 180 * [XX..22] base address of ism segment. XX is 63 or 31 depending whether 181 * caddr_t is 64 bits or 32 bits. 182 * [21..0] size of segment. 183 * 184 * NOTE: Don't alter this structure without changing defines above and 185 * the tsb_miss and protection handlers. 186 */ 187 typedef struct ism_map { 188 uintptr_t imap_seg; /* base va + sz of ISM segment */ 189 uchar_t imap_vb_shift; /* mmu_pageshift for ism page size */ 190 uchar_t imap_rid; /* region id for ism */ 191 ushort_t imap_hatflags; /* primary ism page size */ 192 uint_t imap_sz_mask; /* mmu_pagemask for ism page size */ 193 sfmmu_t *imap_ismhat; /* hat id of dummy ISM as */ 194 struct ism_ment *imap_ment; /* pointer to mapping list entry */ 195 } ism_map_t; 196 197 #define ism_start(map) ((caddr_t)((map).imap_seg & \ 198 ~ISM_SZ_MASK((map).imap_vb_shift))) 199 #define ism_size(map) ((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift)) 200 #define ism_end(map) ((caddr_t)(ism_start(map) + (ism_size(map) * \ 201 ISM_PG_SIZE((map).imap_vb_shift)))) 202 /* 203 * ISM mapping entry. Used to link all hat's sharing a ism_hat. 204 * Same function as the p_mapping list for a page. 205 */ 206 typedef struct ism_ment { 207 sfmmu_t *iment_hat; /* back pointer to hat_share() hat */ 208 caddr_t iment_base_va; /* hat's va base for this ism seg */ 209 struct ism_ment *iment_next; /* next ism map entry */ 210 struct ism_ment *iment_prev; /* prev ism map entry */ 211 } ism_ment_t; 212 213 /* 214 * ISM segment block. One will be hung off the sfmmu structure if a 215 * a process uses ISM. More will be linked using ismblk_next if more 216 * than ISM_MAP_SLOTS segments are attached to this proc. 217 * 218 * All modifications to fields in this structure will be protected 219 * by the hat mutex. In order to avoid grabbing this lock in low level 220 * routines (tsb miss/protection handlers and vatopfn) while not 221 * introducing any race conditions with hat_unshare, we will set 222 * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur 223 * for this ctx while this bit is set will be handled in sfmmu_tsb_excption 224 * where it will synchronize behind the hat mutex. 225 */ 226 typedef struct ism_blk { 227 ism_map_t iblk_maps[ISM_MAP_SLOTS]; 228 struct ism_blk *iblk_next; 229 uint64_t iblk_nextpa; 230 } ism_blk_t; 231 232 /* 233 * TSB access information. All fields are protected by the process's 234 * hat lock. 235 */ 236 237 struct tsb_info { 238 caddr_t tsb_va; /* tsb base virtual address */ 239 uint64_t tsb_pa; /* tsb base physical address */ 240 struct tsb_info *tsb_next; /* next tsb used by this process */ 241 uint16_t tsb_szc; /* tsb size code */ 242 uint16_t tsb_flags; /* flags for this tsb; see below */ 243 uint_t tsb_ttesz_mask; /* page size masks; see below */ 244 245 tte_t tsb_tte; /* tte to lock into DTLB */ 246 sfmmu_t *tsb_sfmmu; /* sfmmu */ 247 kmem_cache_t *tsb_cache; /* cache from which mem allocated */ 248 vmem_t *tsb_vmp; /* vmem arena from which mem alloc'd */ 249 }; 250 251 /* 252 * Values for "tsb_ttesz_mask" bitmask. 253 */ 254 #define TSB8K (1 << TTE8K) 255 #define TSB64K (1 << TTE64K) 256 #define TSB512K (1 << TTE512K) 257 #define TSB4M (1 << TTE4M) 258 #define TSB32M (1 << TTE32M) 259 #define TSB256M (1 << TTE256M) 260 261 /* 262 * Values for "tsb_flags" field. 263 */ 264 #define TSB_RELOC_FLAG 0x1 265 #define TSB_FLUSH_NEEDED 0x2 266 #define TSB_SWAPPED 0x4 267 #define TSB_SHAREDCTX 0x8 268 269 #endif /* !_ASM */ 270 271 /* 272 * Data structures for shared hmeblk support. 273 */ 274 275 /* 276 * Do not increase the maximum number of ism/hme regions without checking first 277 * the impact on ism_map_t, TSB miss area, hblk tag and region id type in 278 * sf_region structure. 279 * Initially, shared hmes will only be used for the main text segment 280 * therefore this value will be set to 64, it will be increased when shared 281 * libraries are included. 282 */ 283 284 #define SFMMU_MAX_HME_REGIONS (64) 285 #define SFMMU_HMERGNMAP_WORDS BT_BITOUL(SFMMU_MAX_HME_REGIONS) 286 287 #define SFMMU_PRIVATE 0 288 #define SFMMU_SHARED 1 289 290 #define HMEBLK_ENDPA 1 291 292 #ifndef _ASM 293 294 #define SFMMU_MAX_ISM_REGIONS (64) 295 #define SFMMU_ISMRGNMAP_WORDS BT_BITOUL(SFMMU_MAX_ISM_REGIONS) 296 297 #define SFMMU_RGNMAP_WORDS (SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS) 298 299 #define SFMMU_MAX_REGION_BUCKETS (128) 300 #define SFMMU_MAX_SRD_BUCKETS (2048) 301 302 typedef struct sf_hmeregion_map { 303 ulong_t bitmap[SFMMU_HMERGNMAP_WORDS]; 304 } sf_hmeregion_map_t; 305 306 typedef struct sf_ismregion_map { 307 ulong_t bitmap[SFMMU_ISMRGNMAP_WORDS]; 308 } sf_ismregion_map_t; 309 310 typedef union sf_region_map_u { 311 struct _h_rmap_s { 312 sf_hmeregion_map_t hmeregion_map; 313 sf_ismregion_map_t ismregion_map; 314 } h_rmap_s; 315 ulong_t bitmap[SFMMU_RGNMAP_WORDS]; 316 } sf_region_map_t; 317 318 #define SF_RGNMAP_ZERO(map) { \ 319 int _i; \ 320 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 321 (map).bitmap[_i] = 0; \ 322 } \ 323 } 324 325 /* 326 * Returns 1 if map1 and map2 are equal. 327 */ 328 #define SF_RGNMAP_EQUAL(map1, map2, rval) { \ 329 int _i; \ 330 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 331 if ((map1)->bitmap[_i] != (map2)->bitmap[_i]) \ 332 break; \ 333 } \ 334 if (_i < SFMMU_RGNMAP_WORDS) \ 335 rval = 0; \ 336 else \ 337 rval = 1; \ 338 } 339 340 #define SF_RGNMAP_ADD(map, r) BT_SET((map).bitmap, r) 341 #define SF_RGNMAP_DEL(map, r) BT_CLEAR((map).bitmap, r) 342 #define SF_RGNMAP_TEST(map, r) BT_TEST((map).bitmap, r) 343 344 /* 345 * Tests whether map2 is a subset of map1, returns 1 if 346 * this assertion is true. 347 */ 348 #define SF_RGNMAP_IS_SUBSET(map1, map2, rval) { \ 349 int _i; \ 350 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 351 if (((map1)->bitmap[_i] & (map2)->bitmap[_i]) \ 352 != (map2)->bitmap[_i]) { \ 353 break; \ 354 } \ 355 } \ 356 if (_i < SFMMU_RGNMAP_WORDS) \ 357 rval = 0; \ 358 else \ 359 rval = 1; \ 360 } 361 362 #define SF_SCD_INCR_REF(scdp) { \ 363 atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1); \ 364 } 365 366 #define SF_SCD_DECR_REF(srdp, scdp) { \ 367 sf_region_map_t _scd_rmap = (scdp)->scd_region_map; \ 368 if (!atomic_add_32_nv( \ 369 (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) { \ 370 sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap); \ 371 } \ 372 } 373 374 /* 375 * A sfmmup link in the link list of sfmmups that share the same region. 376 */ 377 typedef struct sf_rgn_link { 378 sfmmu_t *next; 379 sfmmu_t *prev; 380 } sf_rgn_link_t; 381 382 /* 383 * rgn_flags values. 384 */ 385 #define SFMMU_REGION_HME 0x1 386 #define SFMMU_REGION_ISM 0x2 387 #define SFMMU_REGION_FREE 0x8 388 389 #define SFMMU_REGION_TYPE_MASK (0x3) 390 391 /* 392 * sf_region defines a text or (D)ISM segment which map 393 * the same underlying physical object. 394 */ 395 typedef struct sf_region { 396 caddr_t rgn_saddr; /* base addr of attached seg */ 397 size_t rgn_size; /* size of attached seg */ 398 void *rgn_obj; /* the underlying object id */ 399 u_offset_t rgn_objoff; /* offset in the object mapped */ 400 uchar_t rgn_perm; /* PROT_READ/WRITE/EXEC */ 401 uchar_t rgn_pgszc; /* page size of the region */ 402 uchar_t rgn_flags; /* region type, free flag */ 403 uchar_t rgn_id; 404 int rgn_refcnt; /* # of hats sharing the region */ 405 /* callback function for hat_unload_callback */ 406 hat_rgn_cb_func_t rgn_cb_function; 407 struct sf_region *rgn_hash; /* hash chain linking the rgns */ 408 kmutex_t rgn_mutex; /* protect region sfmmu list */ 409 /* A link list of processes attached to this region */ 410 sfmmu_t *rgn_sfmmu_head; 411 ulong_t rgn_ttecnt[MMU_PAGE_SIZES]; 412 uint16_t rgn_hmeflags; /* rgn tte size flags */ 413 } sf_region_t; 414 415 #define rgn_next rgn_hash 416 417 /* srd */ 418 typedef struct sf_shared_region_domain { 419 vnode_t *srd_evp; /* executable vnode */ 420 /* hme region table */ 421 sf_region_t *srd_hmergnp[SFMMU_MAX_HME_REGIONS]; 422 /* ism region table */ 423 sf_region_t *srd_ismrgnp[SFMMU_MAX_ISM_REGIONS]; 424 /* hash chain linking srds */ 425 struct sf_shared_region_domain *srd_hash; 426 /* pointer to the next free hme region */ 427 sf_region_t *srd_hmergnfree; 428 /* pointer to the next free ism region */ 429 sf_region_t *srd_ismrgnfree; 430 /* id of next ism region created */ 431 uint16_t srd_next_ismrid; 432 /* id of next hme region created */ 433 uint16_t srd_next_hmerid; 434 uint16_t srd_ismbusyrgns; /* # of ism rgns in use */ 435 uint16_t srd_hmebusyrgns; /* # of hme rgns in use */ 436 int srd_refcnt; /* # of procs in the srd */ 437 kmutex_t srd_mutex; /* sync add/remove rgns */ 438 kmutex_t srd_scd_mutex; 439 sf_scd_t *srd_scdp; /* list of scds in srd */ 440 /* hash of regions associated with the same executable */ 441 sf_region_t *srd_rgnhash[SFMMU_MAX_REGION_BUCKETS]; 442 } sf_srd_t; 443 444 typedef struct sf_srd_bucket { 445 kmutex_t srdb_lock; 446 sf_srd_t *srdb_srdp; 447 } sf_srd_bucket_t; 448 449 /* 450 * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased 451 * to 16 when the use of shared hmes for shared libraries is enabled. 452 */ 453 454 #define SFMMU_L1_HMERLINKS (8) 455 #define SFMMU_L2_HMERLINKS (8) 456 #define SFMMU_L1_HMERLINKS_SHIFT (3) 457 #define SFMMU_L1_HMERLINKS_MASK (SFMMU_L1_HMERLINKS - 1) 458 #define SFMMU_L2_HMERLINKS_MASK (SFMMU_L2_HMERLINKS - 1) 459 #define SFMMU_L1_HMERLINKS_SIZE \ 460 (SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *)) 461 #define SFMMU_L2_HMERLINKS_SIZE \ 462 (SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t)) 463 464 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS) 465 #error Not Enough HMERLINKS 466 #endif 467 468 /* 469 * This macro grabs hat lock and allocates level 2 hat chain 470 * associated with a shme rgn. In the majority of cases, the macro 471 * is called with alloc = 0, and lock = 0. 472 * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp 473 * parameter. 474 */ 475 #define SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock) \ 476 { \ 477 int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) & \ 478 SFMMU_L1_HMERLINKS_MASK; \ 479 int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK); \ 480 hatlock_t *_hatlockp; \ 481 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 482 if (lnkp != NULL) { \ 483 lnkp = &lnkp[_l2ix]; \ 484 } else if (alloc && lock) { \ 485 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 486 _hatlockp = sfmmu_hat_enter(sfmmup); \ 487 if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) { \ 488 sfmmu_hat_exit(_hatlockp); \ 489 kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE); \ 490 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 491 ASSERT(lnkp != NULL); \ 492 } else { \ 493 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 494 sfmmu_hat_exit(_hatlockp); \ 495 } \ 496 lnkp = &lnkp[_l2ix]; \ 497 } else if (alloc) { \ 498 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 499 ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL); \ 500 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 501 lnkp = &lnkp[_l2ix]; \ 502 } \ 503 } 504 505 /* 506 * Per cpu pending freelist of hmeblks. 507 */ 508 typedef struct cpu_hme_pend { 509 struct hme_blk *chp_listp; 510 kmutex_t chp_mutex; 511 time_t chp_timestamp; 512 uint_t chp_count; 513 uint8_t chp_pad[36]; /* pad to 64 bytes */ 514 } cpu_hme_pend_t; 515 516 /* 517 * The default value of the threshold for the per cpu pending queues of hmeblks. 518 * The queues are flushed if either the number of hmeblks on the queue is above 519 * the threshold, or one second has elapsed since the last flush. 520 */ 521 #define CPU_HME_PEND_THRESH 1000 522 523 /* 524 * Per-MMU context domain kstats. 525 * 526 * TSB Miss Exceptions 527 * Number of times a TSB miss exception is handled in an MMU. See 528 * sfmmu_tsbmiss_exception() for more details. 529 * TSB Raise Exception 530 * Number of times the CPUs within an MMU are cross-called 531 * to invalidate either a specific process context (when the process 532 * switches MMU contexts) or the context of any process that is 533 * running on those CPUs (as part of the MMU context wrap-around). 534 * Wrap Around 535 * The number of times a wrap-around of MMU context happens. 536 */ 537 typedef enum mmu_ctx_stat_types { 538 MMU_CTX_TSB_EXCEPTIONS, /* TSB miss exceptions handled */ 539 MMU_CTX_TSB_RAISE_EXCEPTION, /* ctx invalidation cross calls */ 540 MMU_CTX_WRAP_AROUND, /* wraparounds */ 541 MMU_CTX_NUM_STATS 542 } mmu_ctx_stat_t; 543 544 /* 545 * Per-MMU context domain structure. This is instantiated the first time a CPU 546 * belonging to the MMU context domain is configured into the system, at boot 547 * time or at DR time. 548 * 549 * mmu_gnum 550 * The current generation number for the context IDs on this MMU context 551 * domain. It is protected by mmu_lock. 552 * mmu_cnum 553 * The current cnum to be allocated on this MMU context domain. It 554 * is protected via CAS. 555 * mmu_nctxs 556 * The max number of context IDs supported on every CPU in this 557 * MMU context domain. This is needed here in case the system supports 558 * mixed type of processors/MMUs. It also helps to make ctx switch code 559 * access fewer cache lines i.e. no need to retrieve it from some global 560 * nctxs. 561 * mmu_lock 562 * The mutex spin lock used to serialize context ID wrap around 563 * mmu_idx 564 * The index for this MMU context domain structure in the global array 565 * mmu_ctxdoms. 566 * mmu_ncpus 567 * The actual number of CPUs that have been configured in this 568 * MMU context domain. This also acts as a reference count for the 569 * structure. When the last CPU in an MMU context domain is unconfigured, 570 * the structure is freed. It is protected by mmu_lock. 571 * mmu_cpuset 572 * The CPU set of configured CPUs for this MMU context domain. Used 573 * to cross-call all the CPUs in the MMU context domain to invalidate 574 * context IDs during a wraparound operation. It is protected by mmu_lock. 575 */ 576 577 typedef struct mmu_ctx { 578 uint64_t mmu_gnum; 579 uint_t mmu_cnum; 580 uint_t mmu_nctxs; 581 kmutex_t mmu_lock; 582 uint_t mmu_idx; 583 uint_t mmu_ncpus; 584 cpuset_t mmu_cpuset; 585 kstat_t *mmu_kstat; 586 kstat_named_t mmu_kstat_data[MMU_CTX_NUM_STATS]; 587 } mmu_ctx_t; 588 589 #define mmu_tsb_exceptions \ 590 mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64 591 #define mmu_tsb_raise_exception \ 592 mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64 593 #define mmu_wrap_around \ 594 mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64 595 596 extern uint_t max_mmu_ctxdoms; 597 extern mmu_ctx_t **mmu_ctxs_tbl; 598 599 extern void sfmmu_cpu_init(cpu_t *); 600 extern void sfmmu_cpu_cleanup(cpu_t *); 601 602 extern uint_t sfmmu_ctxdom_nctxs(int); 603 604 #ifdef sun4v 605 extern void sfmmu_ctxdoms_remove(void); 606 extern void sfmmu_ctxdoms_lock(void); 607 extern void sfmmu_ctxdoms_unlock(void); 608 extern void sfmmu_ctxdoms_update(void); 609 #endif 610 611 /* 612 * The following structure is used to get MMU context domain information for 613 * a CPU from the platform. 614 * 615 * mmu_idx 616 * The MMU context domain index within the global array mmu_ctxs 617 * mmu_nctxs 618 * The number of context IDs supported in the MMU context domain 619 */ 620 typedef struct mmu_ctx_info { 621 uint_t mmu_idx; 622 uint_t mmu_nctxs; 623 } mmu_ctx_info_t; 624 625 #pragma weak plat_cpuid_to_mmu_ctx_info 626 627 extern void plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *); 628 629 /* 630 * Each address space has an array of sfmmu_ctx_t structures, one structure 631 * per MMU context domain. 632 * 633 * cnum 634 * The context ID allocated for an address space on an MMU context domain 635 * gnum 636 * The generation number for the context ID in the MMU context domain. 637 * 638 * This structure needs to be a power-of-two in size. 639 */ 640 typedef struct sfmmu_ctx { 641 uint64_t gnum:48; 642 uint64_t cnum:16; 643 } sfmmu_ctx_t; 644 645 646 /* 647 * The platform dependent hat structure. 648 * tte counts should be protected by cas. 649 * cpuset is protected by cas. 650 * 651 * ttecnt accounting for mappings which do not use shared hme is carried out 652 * during pagefault handling. In the shared hme case, only the first process 653 * to access a mapping generates a pagefault, subsequent processes simply 654 * find the shared hme entry during trap handling and therefore there is no 655 * corresponding event to initiate ttecnt accounting. Currently, as shared 656 * hmes are only used for text segments, when joining a region we assume the 657 * worst case and add the the number of ttes required to map the entire region 658 * to the ttecnt corresponding to the region pagesize. However, if the region 659 * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail 660 * then 8K pages will be allocated instead and the first TSB which stores 8K 661 * mappings will potentially be undersized. To compensate for the potential 662 * underaccounting in this case we always add 1/4 of the region size to the 8K 663 * ttecnt. 664 * 665 * Note that sfmmu_xhat_provider MUST be the first element. 666 */ 667 668 struct hat { 669 void *sfmmu_xhat_provider; /* NULL for CPU hat */ 670 cpuset_t sfmmu_cpusran; /* cpu bit mask for efficient xcalls */ 671 struct as *sfmmu_as; /* as this hat provides mapping for */ 672 /* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */ 673 ulong_t sfmmu_ttecnt[MMU_PAGE_SIZES]; 674 /* shme rgns ttecnt for rgns in SCD */ 675 ulong_t sfmmu_scdrttecnt[MMU_PAGE_SIZES]; 676 /* est. ism ttes that are NOT in a SCD */ 677 ulong_t sfmmu_ismttecnt[MMU_PAGE_SIZES]; 678 /* ttecnt for isms that are in a SCD */ 679 ulong_t sfmmu_scdismttecnt[MMU_PAGE_SIZES]; 680 /* inflate tsb0 to allow for large page alloc failure in region */ 681 ulong_t sfmmu_tsb0_4minflcnt; 682 union _h_un { 683 ism_blk_t *sfmmu_iblkp; /* maps to ismhat(s) */ 684 ism_ment_t *sfmmu_imentp; /* ism hat's mapping list */ 685 } h_un; 686 uint_t sfmmu_free:1; /* hat to be freed - set on as_free */ 687 uint_t sfmmu_ismhat:1; /* hat is dummy ism hatid */ 688 uint_t sfmmu_scdhat:1; /* hat is dummy scd hatid */ 689 uchar_t sfmmu_rmstat; /* refmod stats refcnt */ 690 ushort_t sfmmu_clrstart; /* start color bin for page coloring */ 691 ushort_t sfmmu_clrbin; /* per as phys page coloring bin */ 692 ushort_t sfmmu_flags; /* flags */ 693 uchar_t sfmmu_tteflags; /* pgsz flags */ 694 uchar_t sfmmu_rtteflags; /* pgsz flags for SRD hmes */ 695 struct tsb_info *sfmmu_tsb; /* list of per as tsbs */ 696 uint64_t sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */ 697 lock_t sfmmu_ctx_lock; /* sync ctx alloc and invalidation */ 698 kcondvar_t sfmmu_tsb_cv; /* signals TSB swapin or relocation */ 699 uchar_t sfmmu_cext; /* context page size encoding */ 700 uint8_t sfmmu_pgsz[MMU_PAGE_SIZES]; /* ranking for MMU */ 701 sf_srd_t *sfmmu_srdp; 702 sf_scd_t *sfmmu_scdp; /* scd this address space belongs to */ 703 sf_region_map_t sfmmu_region_map; 704 sf_rgn_link_t *sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS]; 705 sf_rgn_link_t sfmmu_scd_link; /* link to scd or pending queue */ 706 #ifdef sun4v 707 struct hv_tsb_block sfmmu_hvblock; 708 #endif 709 /* 710 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of 711 * elements. max_mmu_ctxdoms is determined at run-time. 712 * sfmmu_ctxs[1] is just the fist element of an array, it always 713 * has to be the last field to ensure that the memory allocated 714 * for sfmmu_ctxs is consecutive with the memory of the rest of 715 * the hat data structure. 716 */ 717 sfmmu_ctx_t sfmmu_ctxs[1]; 718 719 }; 720 721 #define sfmmu_iblk h_un.sfmmu_iblkp 722 #define sfmmu_iment h_un.sfmmu_imentp 723 724 #define sfmmu_hmeregion_map sfmmu_region_map.h_rmap_s.hmeregion_map 725 #define sfmmu_ismregion_map sfmmu_region_map.h_rmap_s.ismregion_map 726 727 #define SF_RGNMAP_ISNULL(sfmmup) \ 728 (sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map)) 729 #define SF_HMERGNMAP_ISNULL(sfmmup) \ 730 (sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map)) 731 732 struct sf_scd { 733 sfmmu_t *scd_sfmmup; /* shared context hat */ 734 /* per pgsz ttecnt for shme rgns in SCD */ 735 ulong_t scd_rttecnt[MMU_PAGE_SIZES]; 736 uint_t scd_refcnt; /* address spaces attached to scd */ 737 sf_region_map_t scd_region_map; /* bit mask of attached segments */ 738 sf_scd_t *scd_next; /* link pointers for srd_scd list */ 739 sf_scd_t *scd_prev; 740 sfmmu_t *scd_sf_list; /* list of doubly linked hat structs */ 741 kmutex_t scd_mutex; 742 /* 743 * Link used to add an scd to the sfmmu_iment list. 744 */ 745 ism_ment_t scd_ism_links[SFMMU_MAX_ISM_REGIONS]; 746 }; 747 748 #define scd_hmeregion_map scd_region_map.h_rmap_s.hmeregion_map 749 #define scd_ismregion_map scd_region_map.h_rmap_s.ismregion_map 750 751 extern int disable_shctx; 752 extern int shctx_on; 753 754 /* 755 * bit mask for managing vac conflicts on large pages. 756 * bit 1 is for uncache flag. 757 * bits 2 through min(num of cache colors + 1,31) are 758 * for cache colors that have already been flushed. 759 */ 760 #ifdef VAC 761 #define CACHE_NUM_COLOR (shm_alignment >> MMU_PAGESHIFT) 762 #else 763 #define CACHE_NUM_COLOR 1 764 #endif 765 766 #define CACHE_VCOLOR_MASK(vcolor) (2 << (vcolor & (CACHE_NUM_COLOR - 1))) 767 768 #define CacheColor_IsFlushed(flag, vcolor) \ 769 ((flag) & CACHE_VCOLOR_MASK(vcolor)) 770 771 #define CacheColor_SetFlushed(flag, vcolor) \ 772 ((flag) |= CACHE_VCOLOR_MASK(vcolor)) 773 /* 774 * Flags passed to sfmmu_page_cache to flush page from vac or not. 775 */ 776 #define CACHE_FLUSH 0 777 #define CACHE_NO_FLUSH 1 778 779 /* 780 * Flags passed to sfmmu_tlbcache_demap 781 */ 782 #define FLUSH_NECESSARY_CPUS 0 783 #define FLUSH_ALL_CPUS 1 784 785 #ifdef DEBUG 786 /* 787 * For debugging purpose only. Maybe removed later. 788 */ 789 struct ctx_trace { 790 sfmmu_t *sc_sfmmu_stolen; 791 sfmmu_t *sc_sfmmu_stealing; 792 clock_t sc_time; 793 ushort_t sc_type; 794 ushort_t sc_cnum; 795 }; 796 #define CTX_TRC_STEAL 0x1 797 #define CTX_TRC_FREE 0x0 798 #define TRSIZE 0x400 799 #define NEXT_CTXTR(ptr) (((ptr) >= ctx_trace_last) ? \ 800 ctx_trace_first : ((ptr) + 1)) 801 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \ 802 mutex_enter(mutex); \ 803 (ptr)->sc_sfmmu_stolen = (stolen_sfmmu); \ 804 (ptr)->sc_sfmmu_stealing = (stealing_sfmmu); \ 805 (ptr)->sc_cnum = (cnum); \ 806 (ptr)->sc_type = (type); \ 807 (ptr)->sc_time = ddi_get_lbolt(); \ 808 (ptr) = NEXT_CTXTR(ptr); \ 809 num_ctx_stolen += (type); \ 810 mutex_exit(mutex); 811 #else 812 813 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) 814 815 #endif /* DEBUG */ 816 817 #endif /* !_ASM */ 818 819 /* 820 * Macros for sfmmup->sfmmu_flags access. The macros that change the flags 821 * ASSERT() that we're holding the HAT lock before changing the flags; 822 * however callers that read the flags may do so without acquiring the lock 823 * in a fast path, and then recheck the flag after acquiring the lock in 824 * a slow path. 825 */ 826 #define SFMMU_FLAGS_ISSET(sfmmup, flags) \ 827 (((sfmmup)->sfmmu_flags & (flags)) == (flags)) 828 829 #define SFMMU_FLAGS_CLEAR(sfmmup, flags) \ 830 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 831 (sfmmup)->sfmmu_flags &= ~(flags)) 832 833 #define SFMMU_FLAGS_SET(sfmmup, flags) \ 834 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 835 (sfmmup)->sfmmu_flags |= (flags)) 836 837 #define SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \ 838 ((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \ 839 (flags)) 840 841 842 /* 843 * sfmmu tte HAT flags, must fit in 8 bits 844 */ 845 #define HAT_CHKCTX1_FLAG 0x1 846 #define HAT_64K_FLAG (0x1 << TTE64K) 847 #define HAT_512K_FLAG (0x1 << TTE512K) 848 #define HAT_4M_FLAG (0x1 << TTE4M) 849 #define HAT_32M_FLAG (0x1 << TTE32M) 850 #define HAT_256M_FLAG (0x1 << TTE256M) 851 852 /* 853 * sfmmu HAT flags, 16 bits at the moment. 854 */ 855 #define HAT_4MTEXT_FLAG 0x01 856 #define HAT_32M_ISM 0x02 857 #define HAT_256M_ISM 0x04 858 #define HAT_SWAPPED 0x08 /* swapped out */ 859 #define HAT_SWAPIN 0x10 /* swapping in */ 860 #define HAT_BUSY 0x20 /* replacing TSB(s) */ 861 #define HAT_ISMBUSY 0x40 /* adding/removing/traversing ISM maps */ 862 863 #define HAT_CTX1_FLAG 0x100 /* ISM imap hatflag for ctx1 */ 864 #define HAT_JOIN_SCD 0x200 /* region is joining scd */ 865 #define HAT_ALLCTX_INVALID 0x400 /* all per-MMU ctxs are invalidated */ 866 867 #define SFMMU_LGPGS_INUSE(sfmmup) \ 868 (((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) || \ 869 ((sfmmup)->sfmmu_iblk != NULL)) 870 871 /* 872 * Starting with context 0, the first NUM_LOCKED_CTXS contexts 873 * are locked so that sfmmu_getctx can't steal any of these 874 * contexts. At the time this software was being developed, the 875 * only context that needs to be locked is context 0 (the kernel 876 * context), and context 1 (reserved for stolen context). So this constant 877 * was originally defined to be 2. 878 * 879 * For sun4v only, USER_CONTEXT_TYPE represents any user context. Many 880 * routines only care whether the context is kernel, invalid or user. 881 */ 882 883 #define NUM_LOCKED_CTXS 2 884 #define INVALID_CONTEXT 1 885 886 #ifdef sun4v 887 #define USER_CONTEXT_TYPE NUM_LOCKED_CTXS 888 #endif 889 #if defined(sun4v) || defined(UTSB_PHYS) 890 /* 891 * Get the location in the 4MB base TSB of the tsbe for this fault. 892 * Assumes that the second TSB only contains 4M mappings. 893 * 894 * In: 895 * tagacc = tag access register (not clobbered) 896 * tsbe = 2nd TSB base register 897 * tmp1, tmp2 = scratch registers 898 * Out: 899 * tsbe = pointer to the tsbe in the 2nd TSB 900 */ 901 902 #define GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 903 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 904 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 905 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 906 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 907 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 908 srlx tagacc, MMU_PAGESHIFT4M, tmp2; \ 909 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 910 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 911 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 912 913 #define GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 914 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 915 916 /* 917 * Get the location in the 3rd TSB of the tsbe for this fault. 918 * The 3rd TSB corresponds to the shared context, and is used 919 * for 8K - 512k pages. 920 * 921 * In: 922 * tagacc = tag access register (not clobbered) 923 * tsbe, tmp1, tmp2 = scratch registers 924 * Out: 925 * tsbe = pointer to the tsbe in the 3rd TSB 926 */ 927 928 #define GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 929 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 930 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 931 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 932 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 933 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 934 srlx tagacc, MMU_PAGESHIFT, tmp2; \ 935 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 936 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 937 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 938 939 #define GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 940 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 941 /* 942 * Copy the sfmmu_region_map or scd_region_map to the tsbmiss 943 * shmermap or scd_shmermap, from sfmmu_load_mmustate. 944 */ 945 #define SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label) \ 946 /* BEGIN CSTYLED */ \ 947 label: ;\ 948 ldx [rgn_map], tmp ;\ 949 dec cnt ;\ 950 add rgn_map, CLONGSIZE, rgn_map ;\ 951 stx tmp, [tsbmiss_map] ;\ 952 brnz,pt cnt, label ;\ 953 add tsbmiss_map, CLONGSIZE, tsbmiss_map \ 954 /* END CSTYLED */ 955 956 /* 957 * If there is no scd, then zero the tsbmiss scd_shmermap, 958 * from sfmmu_load_mmustate. 959 */ 960 #define ZERO_REGION_MAP(tsbmiss_map, cnt, label) \ 961 /* BEGIN CSTYLED */ \ 962 label: ;\ 963 dec cnt ;\ 964 stx %g0, [tsbmiss_map] ;\ 965 brnz,pt cnt, label ;\ 966 add tsbmiss_map, CLONGSIZE, tsbmiss_map 967 /* END CSTYLED */ 968 969 /* 970 * Set hmemisc to 1 if the shared hme is also part of an scd. 971 * In: 972 * tsbarea = tsbmiss area (not clobbered) 973 * hmeblkpa = hmeblkpa + hmentoff + SFHME_TTE (not clobbered) 974 * hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered) 975 * Out: 976 * use_shctx = 1 if shme is in scd and 0 otherwise 977 */ 978 #define GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx) \ 979 /* BEGIN CSTYLED */ \ 980 sub hmeblkpa, hmentoff, hmentoff /* hmentofff = hmeblkpa */ ;\ 981 add hmentoff, HMEBLK_TAG, hmentoff ;\ 982 ldxa [hmentoff]ASI_MEM, hmentoff /* read 1st part of tag */ ;\ 983 and hmentoff, HTAG_RID_MASK, hmentoff /* mask off rid */ ;\ 984 and hmentoff, BT_ULMASK, use_shctx /* mask bit index */ ;\ 985 srlx hmentoff, BT_ULSHIFT, hmentoff /* extract word */ ;\ 986 sllx hmentoff, CLONGSHIFT, hmentoff /* index */ ;\ 987 add tsbarea, hmentoff, hmentoff /* add to tsbarea */ ;\ 988 ldx [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff /* scdrgn */ ;\ 989 srlx hmentoff, use_shctx, use_shctx ;\ 990 and use_shctx, 0x1, use_shctx \ 991 /* END CSTYLED */ 992 993 /* 994 * Synthesize a TSB base register contents for a process. 995 * 996 * In: 997 * tsbinfo = TSB info pointer (ro) 998 * tsbreg, tmp1 = scratch registers 999 * Out: 1000 * tsbreg = value to program into TSB base register 1001 */ 1002 1003 #define MAKE_UTSBREG(tsbinfo, tsbreg, tmp1) \ 1004 ldx [tsbinfo + TSBINFO_PADDR], tsbreg; \ 1005 lduh [tsbinfo + TSBINFO_SZCODE], tmp1; \ 1006 and tmp1, TSB_SOFTSZ_MASK, tmp1; \ 1007 or tsbreg, tmp1, tsbreg; 1008 1009 1010 /* 1011 * Load TSB base register to TSBMISS area for privte contexts. 1012 * This register contains utsb_pabase in bits 63:13, and TSB size 1013 * code in bits 2:0. 1014 * 1015 * For private context 1016 * In: 1017 * tsbreg = value to load (ro) 1018 * regnum = constant or register 1019 * tmp1 = scratch register 1020 * Out: 1021 * Specified scratchpad register updated 1022 * 1023 */ 1024 #define SET_UTSBREG(regnum, tsbreg, tmp1) \ 1025 mov regnum, tmp1; \ 1026 stxa tsbreg, [tmp1]ASI_SCRATCHPAD /* save tsbreg */ 1027 /* 1028 * Get TSB base register from the scratchpad for private contexts 1029 * 1030 * In: 1031 * regnum = constant or register 1032 * tsbreg = scratch 1033 * Out: 1034 * tsbreg = tsbreg from the specified scratchpad register 1035 */ 1036 #define GET_UTSBREG(regnum, tsbreg) \ 1037 mov regnum, tsbreg; \ 1038 ldxa [tsbreg]ASI_SCRATCHPAD, tsbreg 1039 1040 /* 1041 * Load TSB base register to TSBMISS area for shared contexts. 1042 * This register contains utsb_pabase in bits 63:13, and TSB size 1043 * code in bits 2:0. 1044 * 1045 * In: 1046 * tsbmiss = pointer to tsbmiss area 1047 * tsbmissoffset = offset to right tsb pointer 1048 * tsbreg = value to load (ro) 1049 * Out: 1050 * Specified tsbmiss area updated 1051 * 1052 */ 1053 #define SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1054 stx tsbreg, [tsbmiss + tsbmissoffset] /* save tsbreg */ 1055 1056 /* 1057 * Get TSB base register from the scratchpad for 1058 * shared contexts 1059 * 1060 * In: 1061 * tsbmiss = pointer to tsbmiss area 1062 * tsbmissoffset = offset to right tsb pointer 1063 * tsbreg = scratch 1064 * Out: 1065 * tsbreg = tsbreg from the specified scratchpad register 1066 */ 1067 #define GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1068 ldx [tsbmiss + tsbmissoffset], tsbreg 1069 1070 #endif /* defined(sun4v) || defined(UTSB_PHYS) */ 1071 1072 #ifndef _ASM 1073 1074 /* 1075 * Kernel page relocation stuff. 1076 */ 1077 struct sfmmu_callback { 1078 int key; 1079 int (*prehandler)(caddr_t, uint_t, uint_t, void *); 1080 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t); 1081 int (*errhandler)(caddr_t, uint_t, uint_t, void *); 1082 int capture_cpus; 1083 }; 1084 1085 extern int sfmmu_max_cb_id; 1086 extern struct sfmmu_callback *sfmmu_cb_table; 1087 1088 extern int hat_kpr_enabled; 1089 1090 struct pa_hment; 1091 1092 /* 1093 * RFE: With multihat gone we gain back an int. We could use this to 1094 * keep ref bits on a per cpu basis to eliminate xcalls. 1095 */ 1096 struct sf_hment { 1097 tte_t hme_tte; /* tte for this hment */ 1098 1099 union { 1100 struct page *page; /* what page this maps */ 1101 struct pa_hment *data; /* pa_hment */ 1102 } sf_hment_un; 1103 1104 struct sf_hment *hme_next; /* next hment */ 1105 struct sf_hment *hme_prev; /* prev hment */ 1106 }; 1107 1108 struct pa_hment { 1109 caddr_t addr; /* va */ 1110 uint_t len; /* bytes */ 1111 ushort_t flags; /* internal flags */ 1112 ushort_t refcnt; /* reference count */ 1113 id_t cb_id; /* callback id, table index */ 1114 void *pvt; /* handler's private data */ 1115 struct sf_hment sfment; /* corresponding dummy sf_hment */ 1116 }; 1117 1118 #define hme_page sf_hment_un.page 1119 #define hme_data sf_hment_un.data 1120 #define hme_size(sfhmep) ((int)(TTE_CSZ(&(sfhmep)->hme_tte))) 1121 #define PAHME_SZ (sizeof (struct pa_hment)) 1122 #define SFHME_SZ (sizeof (struct sf_hment)) 1123 1124 #define IS_PAHME(hme) ((hme)->hme_tte.ll == 0) 1125 1126 /* 1127 * hmeblk_tag structure 1128 * structure used to obtain a match on a hme_blk. Currently consists of 1129 * the address of the sfmmu struct (or hatid), the base page address of the 1130 * hme_blk, and the rehash count. The rehash count is actually only 2 bits 1131 * and has the following meaning: 1132 * 1 = 8k or 64k hash sequence. 1133 * 2 = 512k hash sequence. 1134 * 3 = 4M hash sequence. 1135 * We require this count because we don't want to get a false hit on a 512K or 1136 * 4M rehash with a base address corresponding to a 8k or 64k hmeblk. 1137 * Note: The ordering and size of the hmeblk_tag members are implictly known 1138 * by the tsb miss handlers written in assembly. Do not change this structure 1139 * without checking those routines. See HTAG_SFMMUPSZ define. 1140 */ 1141 1142 /* 1143 * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID. 1144 */ 1145 typedef union { 1146 struct { 1147 uint64_t hblk_basepg: 51, /* hme_blk base pg # */ 1148 hblk_rehash: 3, /* rehash number */ 1149 hblk_rid: 10; /* hme_blk region id */ 1150 void *hblk_id; 1151 } hblk_tag_un; 1152 uint64_t htag_tag[2]; 1153 } hmeblk_tag; 1154 1155 #define htag_id hblk_tag_un.hblk_id 1156 #define htag_bspage hblk_tag_un.hblk_basepg 1157 #define htag_rehash hblk_tag_un.hblk_rehash 1158 #define htag_rid hblk_tag_un.hblk_rid 1159 1160 #endif /* !_ASM */ 1161 1162 #define HTAG_REHASH_SHIFT 10 1163 #define HTAG_MAX_RID (((0x1 << HTAG_REHASH_SHIFT) - 1)) 1164 #define HTAG_RID_MASK HTAG_MAX_RID 1165 1166 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */ 1167 #define SFMMU_INVALID_SHMERID HTAG_MAX_RID 1168 1169 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1170 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1171 #endif 1172 1173 #define SFMMU_IS_SHMERID_VALID(rid) ((rid) != SFMMU_INVALID_SHMERID) 1174 1175 /* ISM regions */ 1176 #define SFMMU_INVALID_ISMRID 0xff 1177 1178 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1179 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1180 #endif 1181 1182 #define SFMMU_IS_ISMRID_VALID(rid) ((rid) != SFMMU_INVALID_ISMRID) 1183 1184 1185 #define HTAGS_EQ(tag1, tag2) (((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \ 1186 (tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0) 1187 1188 /* 1189 * this macro must only be used for comparing tags in shared hmeblks. 1190 */ 1191 #define HTAGS_EQ_SHME(hmetag, tag, hrmap) \ 1192 (((hmetag).htag_rid != SFMMU_INVALID_SHMERID) && \ 1193 (((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) & \ 1194 ~HTAG_RID_MASK) | \ 1195 ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) && \ 1196 SF_RGNMAP_TEST(hrmap, hmetag.htag_rid)) 1197 1198 #define HME_REHASH(sfmmup) \ 1199 ((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 || \ 1200 (sfmmup)->sfmmu_ttecnt[TTE4M] != 0 || \ 1201 (sfmmup)->sfmmu_ttecnt[TTE32M] != 0 || \ 1202 (sfmmup)->sfmmu_ttecnt[TTE256M] != 0) 1203 1204 #define NHMENTS 8 /* # of hments in an 8k hme_blk */ 1205 /* needs to be multiple of 2 */ 1206 1207 #ifndef _ASM 1208 1209 #ifdef HBLK_TRACE 1210 1211 #define HBLK_LOCK 1 1212 #define HBLK_UNLOCK 0 1213 #define HBLK_STACK_DEPTH 6 1214 #define HBLK_AUDIT_CACHE_SIZE 16 1215 #define HBLK_LOCK_PATTERN 0xaaaaaaaa 1216 #define HBLK_UNLOCK_PATTERN 0xbbbbbbbb 1217 1218 struct hblk_lockcnt_audit { 1219 int flag; /* lock or unlock */ 1220 kthread_id_t thread; 1221 int depth; 1222 pc_t stack[HBLK_STACK_DEPTH]; 1223 }; 1224 1225 #endif /* HBLK_TRACE */ 1226 1227 1228 /* 1229 * Hment block structure. 1230 * The hme_blk is the node data structure which the hash structure 1231 * mantains. An hme_blk can have 2 different sizes depending on the 1232 * number of hments it implicitly contains. When dealing with 64K, 512K, 1233 * or 4M hments there is one hment per hme_blk. When dealing with 1234 * 8k hments we allocate an hme_blk plus an additional 7 hments to 1235 * give us a total of 8 (NHMENTS) hments that can be referenced through a 1236 * hme_blk. 1237 * 1238 * The hmeblk structure contains 2 tte reference counters used to determine if 1239 * it is ok to free up the hmeblk. Both counters have to be zero in order 1240 * to be able to free up hmeblk. They are protected by cas. 1241 * hblk_hmecnt is the number of hments present on pp mapping lists. 1242 * hblk_vcnt reflects number of valid ttes in hmeblk. 1243 * 1244 * The hmeblk now also has per tte lock cnts. This is required because 1245 * the counts can be high and there are not enough bits in the tte. When 1246 * physio is fixed to not lock the translations we should be able to move 1247 * the lock cnt back to the tte. See bug id 1198554. 1248 * 1249 * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc 1250 * and sf_hment are at the same offsets in both structures. Whenever 1251 * hme_blk is changed, xhat_hme_blk may need to be updated as well. 1252 */ 1253 1254 struct hme_blk_misc { 1255 uint_t notused:25; 1256 uint_t shared_bit:1; /* set for SRD shared hmeblk */ 1257 uint_t xhat_bit:1; /* set for an xhat hme_blk */ 1258 uint_t shadow_bit:1; /* set for a shadow hme_blk */ 1259 uint_t nucleus_bit:1; /* set for a nucleus hme_blk */ 1260 uint_t ttesize:3; /* contains ttesz of hmeblk */ 1261 }; 1262 1263 struct hme_blk { 1264 volatile uint64_t hblk_nextpa; /* physical address for hash list */ 1265 1266 hmeblk_tag hblk_tag; /* tag used to obtain an hmeblk match */ 1267 1268 struct hme_blk *hblk_next; /* on free list or on hash list */ 1269 /* protected by hash lock */ 1270 1271 struct hme_blk *hblk_shadow; /* pts to shadow hblk */ 1272 /* protected by hash lock */ 1273 uint_t hblk_span; /* span of memory hmeblk maps */ 1274 1275 struct hme_blk_misc hblk_misc; 1276 1277 union { 1278 struct { 1279 ushort_t hblk_hmecount; /* hment on mlists counter */ 1280 ushort_t hblk_validcnt; /* valid tte reference count */ 1281 } hblk_counts; 1282 uint_t hblk_shadow_mask; 1283 } hblk_un; 1284 1285 uint_t hblk_lckcnt; 1286 1287 #ifdef HBLK_TRACE 1288 kmutex_t hblk_audit_lock; /* lock to protect index */ 1289 uint_t hblk_audit_index; /* index into audit_cache */ 1290 struct hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE]; 1291 #endif /* HBLK_AUDIT */ 1292 1293 struct sf_hment hblk_hme[1]; /* hment array */ 1294 }; 1295 1296 #define hblk_shared hblk_misc.shared_bit 1297 #define hblk_xhat_bit hblk_misc.xhat_bit 1298 #define hblk_shw_bit hblk_misc.shadow_bit 1299 #define hblk_nuc_bit hblk_misc.nucleus_bit 1300 #define hblk_ttesz hblk_misc.ttesize 1301 #define hblk_hmecnt hblk_un.hblk_counts.hblk_hmecount 1302 #define hblk_vcnt hblk_un.hblk_counts.hblk_validcnt 1303 #define hblk_shw_mask hblk_un.hblk_shadow_mask 1304 1305 #define MAX_HBLK_LCKCNT 0xFFFFFFFF 1306 #define HMEBLK_ALIGN 0x8 /* hmeblk has to be double aligned */ 1307 1308 #ifdef HBLK_TRACE 1309 1310 #define HBLK_STACK_TRACE(hmeblkp, lock) \ 1311 { \ 1312 int flag = lock; /* to pacify lint */ \ 1313 int audit_index; \ 1314 \ 1315 mutex_enter(&hmeblkp->hblk_audit_lock); \ 1316 audit_index = hmeblkp->hblk_audit_index; \ 1317 hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) & \ 1318 (HBLK_AUDIT_CACHE_SIZE - 1)); \ 1319 mutex_exit(&hmeblkp->hblk_audit_lock); \ 1320 \ 1321 if (flag) \ 1322 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1323 HBLK_LOCK_PATTERN; \ 1324 else \ 1325 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1326 HBLK_UNLOCK_PATTERN; \ 1327 \ 1328 hmeblkp->hblk_audit_cache[audit_index].thread = curthread; \ 1329 hmeblkp->hblk_audit_cache[audit_index].depth = \ 1330 getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack, \ 1331 HBLK_STACK_DEPTH); \ 1332 } 1333 1334 #else 1335 1336 #define HBLK_STACK_TRACE(hmeblkp, lock) 1337 1338 #endif /* HBLK_TRACE */ 1339 1340 #define HMEHASH_FACTOR 16 /* used to calc # of buckets in hme hash */ 1341 1342 /* 1343 * A maximum number of user hmeblks is defined in order to place an upper 1344 * limit on how much nucleus memory is required and to avoid overflowing the 1345 * tsbmiss uhashsz and khashsz data areas. The number below corresponds to 1346 * the number of buckets required, for an average hash chain length of 4 on 1347 * a 16TB machine. 1348 */ 1349 1350 #define MAX_UHME_BUCKETS (0x1 << 30) 1351 #define MAX_KHME_BUCKETS (0x1 << 30) 1352 1353 /* 1354 * The minimum number of kernel hash buckets. 1355 */ 1356 #define MIN_KHME_BUCKETS 0x800 1357 1358 /* 1359 * The number of hash buckets must be a power of 2. If the initial calculated 1360 * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater 1361 * power of 2, otherwise we round down to avoid huge over allocations. 1362 */ 1363 #define USER_BUCKETS_THRESHOLD (1<<22) 1364 1365 #define MAX_NUCUHME_BUCKETS 0x4000 1366 #define MAX_NUCKHME_BUCKETS 0x2000 1367 1368 /* 1369 * There are 2 locks in the hmehash bucket. The hmehash_mutex is 1370 * a regular mutex used to make sure operations on a hash link are only 1371 * done by one thread. Any operation which comes into the hat with 1372 * a <vaddr, as> will grab the hmehash_mutex. Normally one would expect 1373 * the tsb miss handlers to grab the hash lock to make sure the hash list 1374 * is consistent while we traverse it. Unfortunately this can lead to 1375 * deadlocks or recursive mutex enters since it is possible for 1376 * someone holding the lock to take a tlb/tsb miss. 1377 * To solve this problem we have added the hmehash_listlock. This lock 1378 * is only grabbed by the tsb miss handlers, vatopfn, and while 1379 * adding/removing a hmeblk from the hash list. The code is written to 1380 * guarantee we won't take a tlb miss while holding this lock. 1381 */ 1382 struct hmehash_bucket { 1383 kmutex_t hmehash_mutex; 1384 volatile uint64_t hmeh_nextpa; /* physical address for hash list */ 1385 struct hme_blk *hmeblkp; 1386 uint_t hmeh_listlock; 1387 }; 1388 1389 #endif /* !_ASM */ 1390 1391 #define SFMMU_PGCNT_MASK 0x3f 1392 #define SFMMU_PGCNT_SHIFT 6 1393 #define INVALID_MMU_ID -1 1394 #define SFMMU_MMU_GNUM_RSHIFT 16 1395 #define SFMMU_MMU_CNUM_LSHIFT (64 - SFMMU_MMU_GNUM_RSHIFT) 1396 #define MAX_SFMMU_CTX_VAL ((1 << 16) - 1) /* for sanity check */ 1397 #define MAX_SFMMU_GNUM_VAL ((0x1UL << 48) - 1) 1398 1399 /* 1400 * The tsb miss handlers written in assembly know that sfmmup 1401 * is a 64 bit ptr. 1402 * 1403 * The bspage and re-hash part is 64 bits, with the sfmmup being another 64 1404 * bits. 1405 */ 1406 #define HTAG_SFMMUPSZ 0 /* Not really used for LP64 */ 1407 #define HTAG_BSPAGE_SHIFT 13 1408 1409 /* 1410 * Assembly routines need to be able to get to ttesz 1411 */ 1412 #define HBLK_SZMASK 0x7 1413 1414 #ifndef _ASM 1415 1416 /* 1417 * Returns the number of bytes that an hmeblk spans given its tte size 1418 */ 1419 #define get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span) 1420 #define get_hblk_ttesz(hmeblkp) ((hmeblkp)->hblk_ttesz) 1421 #define get_hblk_cache(hmeblkp) (((hmeblkp)->hblk_ttesz == TTE8K) ? \ 1422 sfmmu8_cache : sfmmu1_cache) 1423 #define HMEBLK_SPAN(ttesz) \ 1424 ((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz)) 1425 1426 #define set_hblk_sz(hmeblkp, ttesz) \ 1427 (hmeblkp)->hblk_ttesz = (ttesz); \ 1428 (hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz) 1429 1430 #define get_hblk_base(hmeblkp) \ 1431 ((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT) 1432 1433 #define get_hblk_endaddr(hmeblkp) \ 1434 ((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp))) 1435 1436 #define in_hblk_range(hmeblkp, vaddr) \ 1437 (((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) && \ 1438 ((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) + \ 1439 get_hblk_span(hmeblkp)))) 1440 1441 #define tte_to_vaddr(hmeblkp, tte) ((caddr_t)(get_hblk_base(hmeblkp) \ 1442 + (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum))) 1443 1444 #define tte_to_evaddr(hmeblkp, ttep) ((caddr_t)(get_hblk_base(hmeblkp) \ 1445 + (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1)))) 1446 1447 #define vaddr_to_vshift(hblktag, vaddr, shwsz) \ 1448 ((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\ 1449 TTE_BSZS_SHIFT((shwsz) - 1)) 1450 1451 #define HME8BLK_SZ (sizeof (struct hme_blk) + \ 1452 (NHMENTS - 1) * sizeof (struct sf_hment)) 1453 #define HME1BLK_SZ (sizeof (struct hme_blk)) 1454 #define H1MIN (2 + MAX_BIGKTSB_TTES) /* nucleus text+data, ktsb */ 1455 1456 /* 1457 * Hme_blk hash structure 1458 * Active mappings are kept in a hash structure of hme_blks. The hash 1459 * function is based on (ctx, vaddr) The size of the hash table size is a 1460 * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN. 1461 * The hash actually consists of 2 separate hashes. One hash is for the user 1462 * address space and the other hash is for the kernel address space. 1463 * The number of buckets are calculated at boot time and stored in the global 1464 * variables "uhmehash_num" and "khmehash_num". By making the hash table size 1465 * a power of 2 we can use a simply & function to derive an index instead of 1466 * a divide. 1467 * 1468 * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash 1469 * bucket. 1470 * An hme hash bucket contains a pointer to an hme_blk and the mutex that 1471 * protects the link list. 1472 * Spitfire supports 4 page sizes. 8k and 64K pages only need one hash. 1473 * 512K pages need 2 hashes and 4M pages need 3 hashes. 1474 * The 'shift' parameter controls how many bits the vaddr will be shifted in 1475 * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function 1476 * and it varies depending on the page size as follows: 1477 * 8k pages: HBLK_RANGE_SHIFT 1478 * 64k pages: MMU_PAGESHIFT64K 1479 * 512K pages: MMU_PAGESHIFT512K 1480 * 4M pages: MMU_PAGESHIFT4M 1481 * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All 1482 * changes should be reflected in both versions. This function and the TSB 1483 * miss handlers are the only places which know about the two hashes. 1484 * 1485 * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall 1486 * into the same bucket for a particular process. It is currently set to 1487 * be equivalent to 64K range or one hme_blk. 1488 * 1489 * The hme_blks in the hash are protected by a per hash bucket mutex 1490 * known as SFMMU_HASH_LOCK. 1491 * You need to acquire this lock before traversing the hash bucket link 1492 * list, while adding/removing a hme_blk to the list, and while 1493 * modifying an hme_blk. A possible optimization is to replace these 1494 * mutexes by readers/writer lock but right now it is not clear whether 1495 * this is a win or not. 1496 * 1497 * The HME_HASH_TABLE_SEARCH will search the hash table for the 1498 * hme_blk that contains the hment that corresponds to the passed 1499 * ctx and vaddr. It assumed the SFMMU_HASH_LOCK is held. 1500 */ 1501 1502 #endif /* ! _ASM */ 1503 1504 #define KHATID ksfmmup 1505 #define UHMEHASH_SZ uhmehash_num 1506 #define KHMEHASH_SZ khmehash_num 1507 #define HMENT_HASHAVELEN 4 1508 #define HBLK_RANGE_SHIFT MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */ 1509 #define HBLK_MIN_TTESZ 1 1510 #define HBLK_MIN_BYTES MMU_PAGESIZE64K 1511 #define HBLK_MIN_SHIFT MMU_PAGESHIFT64K 1512 #define MAX_HASHCNT 5 1513 #define DEFAULT_MAX_HASHCNT 3 1514 1515 #ifndef _ASM 1516 1517 #define HASHADDR_MASK(hashno) TTE_PAGEMASK(hashno) 1518 1519 #define HME_HASH_SHIFT(ttesz) \ 1520 ((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz)) 1521 1522 #define HME_HASH_ADDR(vaddr, hmeshift) \ 1523 ((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift))) 1524 1525 #define HME_HASH_BSPAGE(vaddr, hmeshift) \ 1526 (((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT)) 1527 1528 #define HME_HASH_REHASH(ttesz) \ 1529 (((ttesz) < TTE512K)? 1 : (ttesz)) 1530 1531 #define HME_HASH_FUNCTION(hatid, vaddr, shift) \ 1532 ((((void *)hatid) != ((void *)KHATID)) ? \ 1533 (&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1534 UHMEHASH_SZ) ]): \ 1535 (&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1536 KHMEHASH_SZ) ])) 1537 1538 /* 1539 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1540 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1541 * will be set to NULL, otherwise it will point to the correct hme_blk. 1542 * This macro also cleans empty hblks. 1543 */ 1544 #define HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp) \ 1545 { \ 1546 struct hme_blk *nx_hblk; \ 1547 \ 1548 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1549 hblkp = hmebp->hmeblkp; \ 1550 pr_hblk = NULL; \ 1551 while (hblkp) { \ 1552 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1553 /* found hme_blk */ \ 1554 break; \ 1555 } \ 1556 nx_hblk = hblkp->hblk_next; \ 1557 if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) { \ 1558 sfmmu_hblk_hash_rm(hmebp, hblkp, pr_hblk, \ 1559 listp, 0); \ 1560 } else { \ 1561 pr_hblk = hblkp; \ 1562 } \ 1563 hblkp = nx_hblk; \ 1564 } \ 1565 } 1566 1567 #define HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp) \ 1568 { \ 1569 struct hme_blk *pr_hblk; \ 1570 \ 1571 HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp); \ 1572 } 1573 1574 /* 1575 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1576 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1577 * will be set to NULL, otherwise it will point to the correct hme_blk. 1578 * It doesn't remove empty hblks. 1579 */ 1580 #define HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp) \ 1581 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1582 for (hblkp = hmebp->hmeblkp; hblkp; \ 1583 hblkp = hblkp->hblk_next) { \ 1584 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1585 /* found hme_blk */ \ 1586 break; \ 1587 } \ 1588 } 1589 1590 #define SFMMU_HASH_LOCK(hmebp) \ 1591 (mutex_enter(&hmebp->hmehash_mutex)) 1592 1593 #define SFMMU_HASH_UNLOCK(hmebp) \ 1594 (mutex_exit(&hmebp->hmehash_mutex)) 1595 1596 #define SFMMU_HASH_LOCK_TRYENTER(hmebp) \ 1597 (mutex_tryenter(&hmebp->hmehash_mutex)) 1598 1599 #define SFMMU_HASH_LOCK_ISHELD(hmebp) \ 1600 (mutex_owned(&hmebp->hmehash_mutex)) 1601 1602 #define SFMMU_XCALL_STATS(sfmmup) \ 1603 { \ 1604 if (sfmmup == ksfmmup) { \ 1605 SFMMU_STAT(sf_kernel_xcalls); \ 1606 } else { \ 1607 SFMMU_STAT(sf_user_xcalls); \ 1608 } \ 1609 } 1610 1611 #define astosfmmu(as) ((as)->a_hat) 1612 #define hblktosfmmu(hmeblkp) ((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id) 1613 #define hblktosrd(hmeblkp) ((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id) 1614 #define sfmmutoas(sfmmup) ((sfmmup)->sfmmu_as) 1615 1616 #define sfmmutohtagid(sfmmup, rid) \ 1617 (((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \ 1618 (void *)((sfmmup)->sfmmu_srdp)) 1619 1620 /* 1621 * We use the sfmmu data structure to keep the per as page coloring info. 1622 */ 1623 #define as_color_bin(as) (astosfmmu(as)->sfmmu_clrbin) 1624 #define as_color_start(as) (astosfmmu(as)->sfmmu_clrstart) 1625 1626 typedef struct { 1627 char h8[HME8BLK_SZ]; 1628 } hblk8_t; 1629 1630 typedef struct { 1631 char h1[HME1BLK_SZ]; 1632 } hblk1_t; 1633 1634 typedef struct { 1635 ulong_t index; 1636 ulong_t len; 1637 hblk8_t *list; 1638 } nucleus_hblk8_info_t; 1639 1640 typedef struct { 1641 ulong_t index; 1642 ulong_t len; 1643 hblk1_t *list; 1644 } nucleus_hblk1_info_t; 1645 1646 /* 1647 * This struct is used for accumlating information about a range 1648 * of pages that are unloading so that a single xcall can flush 1649 * the entire range from remote tlbs. A function that must demap 1650 * a range of virtual addresses declares one of these structures 1651 * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this 1652 * struct to the appropriate sfmmu_hblk_* level function which does 1653 * all the bookkeeping using the other macros. When the function has 1654 * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH() 1655 * macro to take care of any remaining unflushed mappings. 1656 * 1657 * The maximum range this struct can represent is the number of bits 1658 * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only 1659 * MMU_PAGESIZE pages are supported. 1660 * 1661 * Since there are now cases where it's no longer necessary to do 1662 * flushes (e.g. when the process isn't runnable because it's swapping 1663 * out or exiting) we allow these macros to take a NULL dmr input and do 1664 * nothing in that case. 1665 */ 1666 typedef struct { 1667 sfmmu_t *dmr_sfmmup; /* relevant hat */ 1668 caddr_t dmr_addr; /* beginning address */ 1669 caddr_t dmr_endaddr; /* ending address */ 1670 ulong_t dmr_bitvec; /* valid pages found */ 1671 ulong_t dmr_bit; /* next page to examine */ 1672 ulong_t dmr_maxbit; /* highest page in range */ 1673 ulong_t dmr_pgsz; /* page size in range */ 1674 } demap_range_t; 1675 1676 #define DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */ 1677 1678 #define DEMAP_RANGE_INIT(sfmmup, dmrp) \ 1679 if ((dmrp) != NULL) { \ 1680 (dmrp)->dmr_sfmmup = (sfmmup); \ 1681 (dmrp)->dmr_bitvec = 0; \ 1682 (dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \ 1683 (dmrp)->dmr_pgsz = MMU_PAGESIZE; \ 1684 } 1685 1686 #define DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE) 1687 1688 #define DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \ 1689 if ((dmrp) != NULL) { \ 1690 if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \ 1691 sfmmu_tlb_range_demap(dmrp); \ 1692 (dmrp)->dmr_endaddr = (endaddr); \ 1693 } 1694 1695 #define DEMAP_RANGE_FLUSH(dmrp) \ 1696 if ((dmrp) != NULL) { \ 1697 if ((dmrp)->dmr_bitvec != 0) \ 1698 sfmmu_tlb_range_demap(dmrp); \ 1699 } 1700 1701 #define DEMAP_RANGE_MARKPG(dmrp, addr) \ 1702 if ((dmrp) != NULL) { \ 1703 if ((dmrp)->dmr_bitvec == 0) { \ 1704 (dmrp)->dmr_addr = (addr); \ 1705 (dmrp)->dmr_bit = 1; \ 1706 } \ 1707 (dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \ 1708 } 1709 1710 #define DEMAP_RANGE_NEXTPG(dmrp) \ 1711 if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \ 1712 if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \ 1713 sfmmu_tlb_range_demap(dmrp); \ 1714 } else { \ 1715 (dmrp)->dmr_bit <<= 1; \ 1716 } \ 1717 } 1718 1719 /* 1720 * TSB related structures 1721 * 1722 * The TSB is made up of tte entries. Both the tag and data are present 1723 * in the TSB. The TSB locking is managed as follows: 1724 * A software bit in the tsb tag is used to indicate that entry is locked. 1725 * If a cpu servicing a tsb miss reads a locked entry the tag compare will 1726 * fail forcing the cpu to go to the hat hash for the translation. 1727 * The cpu who holds the lock can then modify the data side, and the tag side. 1728 * The last write should be to the word containing the lock bit which will 1729 * clear the lock and allow the tsb entry to be read. It is assumed that all 1730 * cpus reading the tsb will do so with atomic 128-bit loads. An atomic 128 1731 * bit load is required to prevent the following from happening: 1732 * 1733 * cpu 0 cpu 1 comments 1734 * 1735 * ldx tag tag unlocked 1736 * ldstub lock set lock 1737 * stx data 1738 * stx tag unlock 1739 * ldx tag incorrect tte!!! 1740 * 1741 * The software also maintains a bit in the tag to indicate an invalid 1742 * tsb entry. The purpose of this bit is to allow the tsb invalidate code 1743 * to invalidate a tsb entry with a single cas. See code for details. 1744 */ 1745 1746 union tsb_tag { 1747 struct { 1748 uint32_t tag_res0:16; /* reserved - context area */ 1749 uint32_t tag_inv:1; /* sw - invalid tsb entry */ 1750 uint32_t tag_lock:1; /* sw - locked tsb entry */ 1751 uint32_t tag_res1:4; /* reserved */ 1752 uint32_t tag_va_hi:10; /* va[63:54] */ 1753 uint32_t tag_va_lo; /* va[53:22] */ 1754 } tagbits; 1755 struct tsb_tagints { 1756 uint32_t inthi; 1757 uint32_t intlo; 1758 } tagints; 1759 }; 1760 #define tag_invalid tagbits.tag_inv 1761 #define tag_locked tagbits.tag_lock 1762 #define tag_vahi tagbits.tag_va_hi 1763 #define tag_valo tagbits.tag_va_lo 1764 #define tag_inthi tagints.inthi 1765 #define tag_intlo tagints.intlo 1766 1767 struct tsbe { 1768 union tsb_tag tte_tag; 1769 tte_t tte_data; 1770 }; 1771 1772 /* 1773 * A per cpu struct is kept that duplicates some info 1774 * used by the tl>0 tsb miss handlers plus it provides 1775 * a scratch area. Its purpose is to minimize cache misses 1776 * in the tsb miss handler and is 128 bytes (2 e$ lines). 1777 * 1778 * There should be one allocated per cpu in nucleus memory 1779 * and should be aligned on an ecache line boundary. 1780 */ 1781 struct tsbmiss { 1782 sfmmu_t *ksfmmup; /* kernel hat id */ 1783 sfmmu_t *usfmmup; /* user hat id */ 1784 sf_srd_t *usrdp; /* user's SRD hat id */ 1785 struct tsbe *tsbptr; /* hardware computed ptr */ 1786 struct tsbe *tsbptr4m; /* hardware computed ptr */ 1787 struct tsbe *tsbscdptr; /* hardware computed ptr */ 1788 struct tsbe *tsbscdptr4m; /* hardware computed ptr */ 1789 uint64_t ismblkpa; 1790 struct hmehash_bucket *khashstart; 1791 struct hmehash_bucket *uhashstart; 1792 uint_t khashsz; 1793 uint_t uhashsz; 1794 uint16_t dcache_line_mask; /* used to flush dcache */ 1795 uchar_t uhat_tteflags; /* private page sizes */ 1796 uchar_t uhat_rtteflags; /* SHME pagesizes */ 1797 uint32_t utsb_misses; 1798 uint32_t ktsb_misses; 1799 uint16_t uprot_traps; 1800 uint16_t kprot_traps; 1801 /* 1802 * scratch[0] -> TSB_TAGACC 1803 * scratch[1] -> TSBMISS_HMEBP 1804 * scratch[2] -> TSBMISS_HATID 1805 */ 1806 uintptr_t scratch[3]; 1807 ulong_t shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1808 ulong_t scd_shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1809 uint8_t pad[48]; /* pad to 64 bytes */ 1810 }; 1811 1812 /* 1813 * A per cpu struct is kept for the use within the tl>0 kpm tsb 1814 * miss handler. Some members are duplicates of common data or 1815 * the physical addresses of common data. A few members are also 1816 * written by the tl>0 kpm tsb miss handler. Its purpose is to 1817 * minimize cache misses in the kpm tsb miss handler and occupies 1818 * one ecache line. There should be one allocated per cpu in 1819 * nucleus memory and it should be aligned on an ecache line 1820 * boundary. It is not merged w/ struct tsbmiss since there is 1821 * not much to share and the tsbmiss pathes are different, so 1822 * a kpm tlbmiss/tsbmiss only touches one cacheline, except for 1823 * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter 1824 * of struct tsbmiss is used on every dtlb miss. 1825 */ 1826 struct kpmtsbm { 1827 caddr_t vbase; /* start of address kpm range */ 1828 caddr_t vend; /* end of address kpm range */ 1829 uchar_t flags; /* flags needed in TL tsbmiss handler */ 1830 uchar_t sz_shift; /* for single kpm window */ 1831 uchar_t kpmp_shift; /* hash lock shift */ 1832 uchar_t kpmp2pshft; /* kpm page to page shift */ 1833 uint_t kpmp_table_sz; /* size of kpmp_table or kpmp_stable */ 1834 uint64_t kpmp_tablepa; /* paddr of kpmp_table or kpmp_stable */ 1835 uint64_t msegphashpa; /* paddr of memseg_phash */ 1836 struct tsbe *tsbptr; /* saved ktsb pointer */ 1837 uint_t kpm_dtlb_misses; /* kpm tlbmiss counter */ 1838 uint_t kpm_tsb_misses; /* kpm tsbmiss counter */ 1839 uintptr_t pad[1]; 1840 }; 1841 1842 extern size_t tsb_slab_size; 1843 extern uint_t tsb_slab_shift; 1844 extern size_t tsb_slab_mask; 1845 1846 #endif /* !_ASM */ 1847 1848 /* 1849 * Flags for TL kpm tsbmiss handler 1850 */ 1851 #define KPMTSBM_ENABLE_FLAG 0x01 /* bit copy of kpm_enable */ 1852 #define KPMTSBM_TLTSBM_FLAG 0x02 /* use TL tsbmiss handler */ 1853 #define KPMTSBM_TSBPHYS_FLAG 0x04 /* use ASI_MEM for TSB update */ 1854 1855 /* 1856 * The TSB 1857 * All TSB sizes supported by the hardware are now supported (8K - 1M). 1858 * For kernel TSBs we may go beyond the hardware supported sizes and support 1859 * larger TSBs via software. 1860 * All TTE sizes are supported in the TSB; the manner in which this is 1861 * done is cpu dependent. 1862 */ 1863 #define TSB_MIN_SZCODE TSB_8K_SZCODE /* min. supported TSB size */ 1864 #define TSB_MIN_OFFSET_MASK (TSB_OFFSET_MASK(TSB_MIN_SZCODE)) 1865 1866 #ifdef sun4v 1867 #define UTSB_MAX_SZCODE TSB_256M_SZCODE /* max. supported TSB size */ 1868 #else /* sun4u */ 1869 #define UTSB_MAX_SZCODE TSB_1M_SZCODE /* max. supported TSB size */ 1870 #endif /* sun4v */ 1871 1872 #define UTSB_MAX_OFFSET_MASK (TSB_OFFSET_MASK(UTSB_MAX_SZCODE)) 1873 1874 #define TSB_FREEMEM_MIN 0x1000 /* 32 mb */ 1875 #define TSB_FREEMEM_LARGE 0x10000 /* 512 mb */ 1876 #define TSB_8K_SZCODE 0 /* 512 entries */ 1877 #define TSB_16K_SZCODE 1 /* 1k entries */ 1878 #define TSB_32K_SZCODE 2 /* 2k entries */ 1879 #define TSB_64K_SZCODE 3 /* 4k entries */ 1880 #define TSB_128K_SZCODE 4 /* 8k entries */ 1881 #define TSB_256K_SZCODE 5 /* 16k entries */ 1882 #define TSB_512K_SZCODE 6 /* 32k entries */ 1883 #define TSB_1M_SZCODE 7 /* 64k entries */ 1884 #define TSB_2M_SZCODE 8 /* 128k entries */ 1885 #define TSB_4M_SZCODE 9 /* 256k entries */ 1886 #define TSB_8M_SZCODE 10 /* 512k entries */ 1887 #define TSB_16M_SZCODE 11 /* 1M entries */ 1888 #define TSB_32M_SZCODE 12 /* 2M entries */ 1889 #define TSB_64M_SZCODE 13 /* 4M entries */ 1890 #define TSB_128M_SZCODE 14 /* 8M entries */ 1891 #define TSB_256M_SZCODE 15 /* 16M entries */ 1892 #define TSB_ENTRY_SHIFT 4 /* each entry = 128 bits = 16 bytes */ 1893 #define TSB_ENTRY_SIZE (1 << 4) 1894 #define TSB_START_SIZE 9 1895 #define TSB_ENTRIES(tsbsz) (1 << (TSB_START_SIZE + tsbsz)) 1896 #define TSB_BYTES(tsbsz) (TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT) 1897 #define TSB_OFFSET_MASK(tsbsz) (TSB_ENTRIES(tsbsz) - 1) 1898 #define TSB_BASEADDR_MASK ((1 << 12) - 1) 1899 1900 /* 1901 * sun4u platforms 1902 * --------------- 1903 * We now support two user TSBs with one TSB base register. 1904 * Hence the TSB base register is split up as follows: 1905 * 1906 * When only one TSB present: 1907 * [63 62..42 41..13 12..4 3..0] 1908 * ^ ^ ^ ^ ^ 1909 * | | | | | 1910 * | | | | |_ TSB size code 1911 * | | | | 1912 * | | | |_ Reserved 0 1913 * | | | 1914 * | | |_ TSB VA[41..13] 1915 * | | 1916 * | |_ VA hole (Spitfire), zeros (Cheetah and beyond) 1917 * | 1918 * |_ 0 1919 * 1920 * When second TSB present: 1921 * [63 62..42 41..33 32..29 28..22 21..13 12..4 3..0] 1922 * ^ ^ ^ ^ ^ ^ ^ ^ 1923 * | | | | | | | | 1924 * | | | | | | | |_ First TSB size code 1925 * | | | | | | | 1926 * | | | | | | |_ Reserved 0 1927 * | | | | | | 1928 * | | | | | |_ First TSB's VA[21..13] 1929 * | | | | | 1930 * | | | | |_ Reserved for future use 1931 * | | | | 1932 * | | | |_ Second TSB's size code 1933 * | | | 1934 * | | |_ Second TSB's VA[21..13] 1935 * | | 1936 * | |_ VA hole (Spitfire) / ones (Cheetah and beyond) 1937 * | 1938 * |_ 1 1939 * 1940 * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs 1941 * may be up to 4M in size. For now, only hardware supported TSB sizes 1942 * are supported, though the slabs are usually 4M in size. 1943 * 1944 * sun4u platforms that define UTSB_PHYS use physical addressing to access 1945 * the user TSBs at TL>0. The first user TSB base is in the MMU I/D TSB Base 1946 * registers. The second TSB base uses a dedicated scratchpad register which 1947 * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h. The layout for 1948 * both registers is equivalent to sun4v below, except the TSB PA range is 1949 * [46..13] for sun4u. 1950 * 1951 * sun4v platforms 1952 * --------------- 1953 * On sun4v platforms, we use two dedicated scratchpad registers as pseudo 1954 * hardware TSB base registers to hold up to two different user TSBs. 1955 * 1956 * Each register contains TSB's physical base and size code information 1957 * as follows: 1958 * 1959 * [63..56 55..13 12..4 3..0] 1960 * ^ ^ ^ ^ 1961 * | | | | 1962 * | | | |_ TSB size code 1963 * | | | 1964 * | | |_ Reserved 0 1965 * | | 1966 * | |_ TSB PA[55..13] 1967 * | 1968 * | 1969 * | 1970 * |_ 0 for valid TSB 1971 * 1972 * Absence of a user TSB (primarily the second user TSB) is indicated by 1973 * storing a negative value in the TSB base register. This allows us to 1974 * check for presence of a user TSB by simply checking bit# 63. 1975 */ 1976 #define TSBREG_MSB_SHIFT 32 /* set upper bits */ 1977 #define TSBREG_MSB_CONST 0xfffff800 /* set bits 63..43 */ 1978 #define TSBREG_FIRTSB_SHIFT 42 /* to clear bits 63:22 */ 1979 #define TSBREG_SECTSB_MKSHIFT 20 /* 21:13 --> 41:33 */ 1980 #define TSBREG_SECTSB_LSHIFT 22 /* to clear bits 63:42 */ 1981 #define TSBREG_SECTSB_RSHIFT (TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT) 1982 /* sectsb va -> bits 21:13 */ 1983 /* after clearing upper bits */ 1984 #define TSBREG_SECSZ_SHIFT 29 /* to get sectsb szc to 3:0 */ 1985 #define TSBREG_VAMASK_SHIFT 13 /* set up VA mask */ 1986 1987 #define BIGKTSB_SZ_MASK 0xf 1988 #define TSB_SOFTSZ_MASK BIGKTSB_SZ_MASK 1989 #define MIN_BIGKTSB_SZCODE 9 /* 256k entries */ 1990 #define MAX_BIGKTSB_SZCODE 11 /* 1024k entries */ 1991 #define MAX_BIGKTSB_TTES (TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M) 1992 1993 #define TAG_VALO_SHIFT 22 /* tag's va are bits 63-22 */ 1994 /* 1995 * sw bits used on tsb_tag - bit masks used only in assembly 1996 * use only a sethi for these fields. 1997 */ 1998 #define TSBTAG_INVALID 0x00008000 /* tsb_tag.tag_invalid */ 1999 #define TSBTAG_LOCKED 0x00004000 /* tsb_tag.tag_locked */ 2000 2001 #ifdef _ASM 2002 2003 /* 2004 * Marker to indicate that this instruction will be hot patched at runtime 2005 * to some other value. 2006 * This value must be zero since it fills in the imm bits of the target 2007 * instructions to be patched 2008 */ 2009 #define RUNTIME_PATCH (0) 2010 2011 /* 2012 * V9 defines nop instruction as the following, which we use 2013 * at runtime to nullify some instructions we don't want to 2014 * execute in the trap handlers on certain platforms. 2015 */ 2016 #define MAKE_NOP_INSTR(reg) \ 2017 sethi %hi(0x1000000), reg 2018 2019 /* 2020 * This macro constructs a SPARC V9 "jmpl <source reg>, %g0" 2021 * instruction, with the source register specified by the jump_reg_number. 2022 * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14]. 2023 * The instruction is returned in reg. The macro is used to patch in a jmpl 2024 * instruction at runtime. 2025 */ 2026 #define MAKE_JMP_INSTR(jump_reg_number, reg, tmp) \ 2027 sethi %hi(0x81c00000), reg; \ 2028 mov jump_reg_number, tmp; \ 2029 sll tmp, 14, tmp; \ 2030 or reg, tmp, reg 2031 2032 /* 2033 * Macro to get hat per-MMU cnum on this CPU. 2034 * sfmmu - In, pass in "sfmmup" from the caller. 2035 * cnum - Out, return 'cnum' to the caller 2036 * scr - scratch 2037 */ 2038 #define SFMMU_CPU_CNUM(sfmmu, cnum, scr) \ 2039 CPU_ADDR(scr, cnum); /* scr = load CPU struct addr */ \ 2040 ld [scr + CPU_MMU_IDX], cnum; /* cnum = mmuid */ \ 2041 add sfmmu, SFMMU_CTXS, scr; /* scr = sfmmup->sfmmu_ctxs[] */ \ 2042 sllx cnum, SFMMU_MMU_CTX_SHIFT, cnum; \ 2043 add scr, cnum, scr; /* scr = sfmmup->sfmmu_ctxs[id] */ \ 2044 ldx [scr + SFMMU_MMU_GC_NUM], scr; /* sfmmu_ctxs[id].gcnum */ \ 2045 sllx scr, SFMMU_MMU_CNUM_LSHIFT, scr; \ 2046 srlx scr, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2047 2048 /* 2049 * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry 2050 * entry - In, pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller. 2051 * gnum - Out, return sfmmu gnum 2052 * cnum - Out, return sfmmu cnum 2053 * reg - scratch 2054 */ 2055 #define SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg) \ 2056 ldx [entry + SFMMU_CTXS], reg; /* reg = sfmmu (gnum | cnum) */ \ 2057 srlx reg, SFMMU_MMU_GNUM_RSHIFT, gnum; /* gnum = sfmmu gnum */ \ 2058 sllx reg, SFMMU_MMU_CNUM_LSHIFT, cnum; \ 2059 srlx cnum, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2060 2061 /* 2062 * Macro to get this CPU's tsbmiss area. 2063 */ 2064 #define CPU_TSBMISS_AREA(tsbmiss, tmp1) \ 2065 CPU_INDEX(tmp1, tsbmiss); /* tmp1 = cpu idx */ \ 2066 sethi %hi(tsbmiss_area), tsbmiss; /* tsbmiss base ptr */ \ 2067 mulx tmp1, TSBMISS_SIZE, tmp1; /* byte offset */ \ 2068 or tsbmiss, %lo(tsbmiss_area), tsbmiss; \ 2069 add tsbmiss, tmp1, tsbmiss /* tsbmiss area of CPU */ 2070 2071 2072 /* 2073 * Macro to set kernel context + page size codes in DMMU primary context 2074 * register. It is only necessary for sun4u because sun4v does not need 2075 * page size codes 2076 */ 2077 #ifdef sun4v 2078 2079 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) 2080 2081 #else 2082 2083 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \ 2084 sethi %hi(kcontextreg), reg0; \ 2085 ldx [reg0 + %lo(kcontextreg)], reg0; \ 2086 mov MMU_PCONTEXT, reg1; \ 2087 ldxa [reg1]ASI_MMU_CTX, reg2; \ 2088 xor reg0, reg2, reg2; \ 2089 brz reg2, label3; \ 2090 srlx reg2, CTXREG_NEXT_SHIFT, reg2; \ 2091 rdpr %pstate, reg3; /* disable interrupts */ \ 2092 btst PSTATE_IE, reg3; \ 2093 /*CSTYLED*/ \ 2094 bnz,a,pt %icc, label1; \ 2095 wrpr reg3, PSTATE_IE, %pstate; \ 2096 /*CSTYLED*/ \ 2097 label1:; \ 2098 brz reg2, label2; /* need demap if N_pgsz0/1 change */ \ 2099 sethi %hi(FLUSH_ADDR), reg4; \ 2100 mov DEMAP_ALL_TYPE, reg2; \ 2101 stxa %g0, [reg2]ASI_DTLB_DEMAP; \ 2102 stxa %g0, [reg2]ASI_ITLB_DEMAP; \ 2103 /*CSTYLED*/ \ 2104 label2:; \ 2105 stxa reg0, [reg1]ASI_MMU_CTX; \ 2106 flush reg4; \ 2107 btst PSTATE_IE, reg3; \ 2108 /*CSTYLED*/ \ 2109 bnz,a,pt %icc, label3; \ 2110 wrpr %g0, reg3, %pstate; /* restore interrupt state */ \ 2111 label3:; 2112 2113 #endif 2114 2115 /* 2116 * Macro to setup arguments with kernel sfmmup context + page size before 2117 * calling sfmmu_setctx_sec() 2118 */ 2119 #ifdef sun4v 2120 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2121 set KCONTEXT, arg0; \ 2122 set 0, arg1; 2123 #else 2124 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2125 ldub [sfmmup + SFMMU_CEXT], arg1; \ 2126 set KCONTEXT, arg0; \ 2127 sll arg1, CTXREG_EXT_SHIFT, arg1; 2128 #endif 2129 2130 #define PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr) \ 2131 andcc pstatereg, PSTATE_IE, %g0; /* panic if intrs */ \ 2132 /*CSTYLED*/ \ 2133 bnz,pt %icc, label; /* already disabled */ \ 2134 nop; \ 2135 \ 2136 sethi %hi(panicstr), scr; \ 2137 ldx [scr + %lo(panicstr)], scr; \ 2138 tst scr; \ 2139 /*CSTYLED*/ \ 2140 bnz,pt %xcc, label; \ 2141 nop; \ 2142 \ 2143 save %sp, -SA(MINFRAME), %sp; \ 2144 sethi %hi(sfmmu_panic1), %o0; \ 2145 call panic; \ 2146 or %o0, %lo(sfmmu_panic1), %o0; \ 2147 /*CSTYLED*/ \ 2148 label: 2149 2150 #define PANIC_IF_INTR_ENABLED_PSTR(label, scr) \ 2151 /* \ 2152 * The caller must have disabled interrupts. \ 2153 * If interrupts are not disabled, panic \ 2154 */ \ 2155 rdpr %pstate, scr; \ 2156 andcc scr, PSTATE_IE, %g0; \ 2157 /*CSTYLED*/ \ 2158 bz,pt %icc, label; \ 2159 nop; \ 2160 \ 2161 sethi %hi(panicstr), scr; \ 2162 ldx [scr + %lo(panicstr)], scr; \ 2163 tst scr; \ 2164 /*CSTYLED*/ \ 2165 bnz,pt %xcc, label; \ 2166 nop; \ 2167 \ 2168 sethi %hi(sfmmu_panic6), %o0; \ 2169 call panic; \ 2170 or %o0, %lo(sfmmu_panic6), %o0; \ 2171 /*CSTYLED*/ \ 2172 label: 2173 2174 #endif /* _ASM */ 2175 2176 #ifndef _ASM 2177 2178 #ifdef VAC 2179 /* 2180 * Page coloring 2181 * The p_vcolor field of the page struct (1 byte) is used to store the 2182 * virtual page color. This provides for 255 colors. The value zero is 2183 * used to mean the page has no color - never been mapped or somehow 2184 * purified. 2185 */ 2186 2187 #define PP_GET_VCOLOR(pp) (((pp)->p_vcolor) - 1) 2188 #define PP_NEWPAGE(pp) (!(pp)->p_vcolor) 2189 #define PP_SET_VCOLOR(pp, color) \ 2190 ((pp)->p_vcolor = ((color) + 1)) 2191 2192 /* 2193 * As mentioned p_vcolor == 0 means there is no color for this page. 2194 * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus 2195 * one so we define this constant. 2196 */ 2197 #define NO_VCOLOR (-1) 2198 2199 #define addr_to_vcolor(addr) \ 2200 (((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask) 2201 #else /* VAC */ 2202 #define addr_to_vcolor(addr) (0) 2203 #endif /* VAC */ 2204 2205 /* 2206 * The field p_index in the psm page structure is for large pages support. 2207 * P_index is a bit-vector of the different mapping sizes that a given page 2208 * is part of. An hme structure for a large mapping is only added in the 2209 * group leader page (first page). All pages covered by a given large mapping 2210 * have the corrosponding mapping bit set in their p_index field. This allows 2211 * us to only store an explicit hme structure in the leading page which 2212 * simplifies the mapping link list management. Furthermore, it provides us 2213 * a fast mechanism for determining the largest mapping a page is part of. For 2214 * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A. 2215 * 2216 * Implementation note: even though the first bit in p_index is reserved 2217 * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set. 2218 * In addition, the upper four bits of the p_index field are used by the 2219 * code as temporaries 2220 */ 2221 2222 /* 2223 * Defines for psm page struct fields and large page support 2224 */ 2225 #define SFMMU_INDEX_SHIFT 6 2226 #define SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1) 2227 2228 /* Return the mapping index */ 2229 #define PP_MAPINDEX(pp) ((pp)->p_index & SFMMU_INDEX_MASK) 2230 2231 /* 2232 * These macros rely on the following property: 2233 * All pages constituting a large page are covered by a virtually 2234 * contiguous set of page_t's. 2235 */ 2236 2237 /* Return the leader for this mapping size */ 2238 #define PP_GROUPLEADER(pp, sz) \ 2239 (&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))]) 2240 2241 /* Return the root page for this page based on p_szc */ 2242 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 2243 PP_GROUPLEADER((pp), (pp)->p_szc)) 2244 2245 #define PP_PAGENEXT_N(pp, n) ((pp) + (n)) 2246 #define PP_PAGENEXT(pp) PP_PAGENEXT_N((pp), 1) 2247 2248 #define PP_PAGEPREV_N(pp, n) ((pp) - (n)) 2249 #define PP_PAGEPREV(pp) PP_PAGEPREV_N((pp), 1) 2250 2251 #define PP_ISMAPPED_LARGE(pp) (PP_MAPINDEX(pp) != 0) 2252 2253 /* Need function to test the page mappping which takes p_index into account */ 2254 #define PP_ISMAPPED(pp) ((pp)->p_mapping || PP_ISMAPPED_LARGE(pp)) 2255 2256 /* 2257 * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT 2258 * set p_index field. 2259 */ 2260 #define PAGESZ_TO_INDEX(sz) (1 << (sz)) 2261 2262 2263 /* 2264 * prototypes for hat assembly routines. Some of these are 2265 * known to machine dependent VM code. 2266 */ 2267 extern uint64_t sfmmu_make_tsbtag(caddr_t); 2268 extern struct tsbe * 2269 sfmmu_get_tsbe(uint64_t, caddr_t, int, int); 2270 extern void sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int); 2271 extern void sfmmu_unload_tsbe(struct tsbe *, uint64_t, int); 2272 extern void sfmmu_load_mmustate(sfmmu_t *); 2273 extern void sfmmu_raise_tsb_exception(uint64_t, uint64_t); 2274 #ifndef sun4v 2275 extern void sfmmu_itlb_ld_kva(caddr_t, tte_t *); 2276 extern void sfmmu_dtlb_ld_kva(caddr_t, tte_t *); 2277 #endif /* sun4v */ 2278 extern void sfmmu_copytte(tte_t *, tte_t *); 2279 extern int sfmmu_modifytte(tte_t *, tte_t *, tte_t *); 2280 extern int sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *); 2281 extern pfn_t sfmmu_ttetopfn(tte_t *, caddr_t); 2282 extern uint_t sfmmu_disable_intrs(void); 2283 extern void sfmmu_enable_intrs(uint_t); 2284 /* 2285 * functions exported to machine dependent VM code 2286 */ 2287 extern void sfmmu_patch_ktsb(void); 2288 #ifndef UTSB_PHYS 2289 extern void sfmmu_patch_utsb(void); 2290 #endif /* UTSB_PHYS */ 2291 extern pfn_t sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *); 2292 extern void sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *); 2293 extern pfn_t sfmmu_kvaszc2pfn(caddr_t, int); 2294 #ifdef DEBUG 2295 extern void sfmmu_check_kpfn(pfn_t); 2296 #else 2297 #define sfmmu_check_kpfn(pfn) /* disabled */ 2298 #endif /* DEBUG */ 2299 extern void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 2300 extern void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, uint_t); 2301 extern void sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t); 2302 extern void sfmmu_init_tsbs(void); 2303 extern caddr_t sfmmu_ktsb_alloc(caddr_t); 2304 extern int sfmmu_getctx_pri(void); 2305 extern int sfmmu_getctx_sec(void); 2306 extern void sfmmu_setctx_sec(uint_t); 2307 extern void sfmmu_inv_tsb(caddr_t, uint_t); 2308 extern void sfmmu_init_ktsbinfo(void); 2309 extern int sfmmu_setup_4lp(void); 2310 extern void sfmmu_patch_mmu_asi(int); 2311 extern void sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int); 2312 extern void sfmmu_cache_flushall(void); 2313 extern pgcnt_t sfmmu_tte_cnt(sfmmu_t *, uint_t); 2314 extern void *sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int); 2315 extern void sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t); 2316 extern void sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *); 2317 2318 extern void hat_kern_setup(void); 2319 extern int hat_page_relocate(page_t **, page_t **, spgcnt_t *); 2320 extern int sfmmu_get_ppvcolor(struct page *); 2321 extern int sfmmu_get_addrvcolor(caddr_t); 2322 extern int sfmmu_hat_lock_held(sfmmu_t *); 2323 extern int sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int); 2324 2325 /* 2326 * Functions exported to xhat_sfmmu.c 2327 */ 2328 extern kmutex_t *sfmmu_mlist_enter(page_t *); 2329 extern void sfmmu_mlist_exit(kmutex_t *); 2330 extern int sfmmu_mlist_held(struct page *); 2331 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *); 2332 2333 /* 2334 * MMU-specific functions optionally imported from the CPU module 2335 */ 2336 #pragma weak mmu_init_scd 2337 #pragma weak mmu_large_pages_disabled 2338 #pragma weak mmu_set_ctx_page_sizes 2339 #pragma weak mmu_check_page_sizes 2340 2341 extern void mmu_init_scd(sf_scd_t *); 2342 extern uint_t mmu_large_pages_disabled(uint_t); 2343 extern void mmu_set_ctx_page_sizes(sfmmu_t *); 2344 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *); 2345 2346 extern sfmmu_t *ksfmmup; 2347 extern caddr_t ktsb_base; 2348 extern uint64_t ktsb_pbase; 2349 extern int ktsb_sz; 2350 extern int ktsb_szcode; 2351 extern caddr_t ktsb4m_base; 2352 extern uint64_t ktsb4m_pbase; 2353 extern int ktsb4m_sz; 2354 extern int ktsb4m_szcode; 2355 extern uint64_t kpm_tsbbase; 2356 extern int kpm_tsbsz; 2357 extern int ktsb_phys; 2358 extern int enable_bigktsb; 2359 #ifndef sun4v 2360 extern int utsb_dtlb_ttenum; 2361 extern int utsb4m_dtlb_ttenum; 2362 #endif /* sun4v */ 2363 extern int uhmehash_num; 2364 extern int khmehash_num; 2365 extern struct hmehash_bucket *uhme_hash; 2366 extern struct hmehash_bucket *khme_hash; 2367 extern kmutex_t *mml_table; 2368 extern uint_t mml_table_sz; 2369 extern uint_t mml_shift; 2370 extern uint_t hblk_alloc_dynamic; 2371 extern struct tsbmiss tsbmiss_area[NCPU]; 2372 extern struct kpmtsbm kpmtsbm_area[NCPU]; 2373 2374 #ifndef sun4v 2375 extern int dtlb_resv_ttenum; 2376 extern caddr_t utsb_vabase; 2377 extern caddr_t utsb4m_vabase; 2378 #endif /* sun4v */ 2379 extern vmem_t *kmem_tsb_default_arena[]; 2380 extern int tsb_lgrp_affinity; 2381 2382 extern uint_t disable_large_pages; 2383 extern uint_t disable_ism_large_pages; 2384 extern uint_t disable_auto_data_large_pages; 2385 extern uint_t disable_auto_text_large_pages; 2386 2387 /* kpm externals */ 2388 extern pfn_t sfmmu_kpm_vatopfn(caddr_t); 2389 extern void sfmmu_kpm_patch_tlbm(void); 2390 extern void sfmmu_kpm_patch_tsbm(void); 2391 extern void sfmmu_patch_shctx(void); 2392 extern void sfmmu_kpm_load_tsb(caddr_t, tte_t *, int); 2393 extern void sfmmu_kpm_unload_tsb(caddr_t, int); 2394 extern void sfmmu_kpm_tsbmtl(short *, uint_t *, int); 2395 extern int sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int); 2396 extern caddr_t kpm_vbase; 2397 extern size_t kpm_size; 2398 extern struct memseg *memseg_hash[]; 2399 extern uint64_t memseg_phash[]; 2400 extern kpm_hlk_t *kpmp_table; 2401 extern kpm_shlk_t *kpmp_stable; 2402 extern uint_t kpmp_table_sz; 2403 extern uint_t kpmp_stable_sz; 2404 extern uchar_t kpmp_shift; 2405 2406 #define PP_ISMAPPED_KPM(pp) ((pp)->p_kpmref > 0) 2407 2408 #define IS_KPM_ALIAS_RANGE(vaddr) \ 2409 (((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0) 2410 2411 #endif /* !_ASM */ 2412 2413 /* sfmmu_kpm_tsbmtl flags */ 2414 #define KPMTSBM_STOP 0 2415 #define KPMTSBM_START 1 2416 2417 /* 2418 * For kpm_smallpages, the state about how a kpm page is mapped and whether 2419 * it is ready to go is indicated by the two 4-bit fields defined in the 2420 * kpm_spage structure as follows: 2421 * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not 2422 * kp_mapped_flag bit[4:7] - the mapping is ready to go or not 2423 * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss 2424 * handler can drop the mapping in regardless of the caching state of the 2425 * mapping. Otherwise, we will have C handler resolve the VAC conflict no 2426 * matter the page is currently mapped cacheable or non-cacheable. 2427 */ 2428 #define KPM_MAPPEDS 0x1 /* small mapping valid, no conflict */ 2429 #define KPM_MAPPEDSC 0x2 /* small mapping valid, conflict */ 2430 #define KPM_MAPPED_GO 0x10 /* the mapping is ready to go */ 2431 #define KPM_MAPPED_MASK 0xf 2432 2433 /* Physical memseg address NULL marker */ 2434 #define MSEG_NULLPTR_PA -1 2435 2436 /* 2437 * Memseg hash defines for kpm trap level tsbmiss handler. 2438 * Must be in sync w/ page.h . 2439 */ 2440 #define SFMMU_MEM_HASH_SHIFT 0x9 2441 #define SFMMU_N_MEM_SLOTS 0x200 2442 #define SFMMU_MEM_HASH_ENTRY_SHIFT 3 2443 2444 #ifndef _ASM 2445 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT) 2446 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT 2447 #endif 2448 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS) 2449 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS 2450 #endif 2451 2452 /* Physical memseg address NULL marker */ 2453 #define SFMMU_MEMSEG_NULLPTR_PA -1 2454 2455 /* 2456 * Check KCONTEXT to be zero, asm parts depend on that assumption. 2457 */ 2458 #if (KCONTEXT != 0) 2459 #error KCONTEXT != 0 2460 #endif 2461 #endif /* !_ASM */ 2462 2463 2464 #endif /* _KERNEL */ 2465 2466 #ifndef _ASM 2467 /* 2468 * ctx, hmeblk, mlistlock and other stats for sfmmu 2469 */ 2470 struct sfmmu_global_stat { 2471 int sf_tsb_exceptions; /* # of tsb exceptions */ 2472 int sf_tsb_raise_exception; /* # tsb exc. w/o TLB flush */ 2473 2474 int sf_pagefaults; /* # of pagefaults */ 2475 2476 int sf_uhash_searches; /* # of user hash searches */ 2477 int sf_uhash_links; /* # of user hash links */ 2478 int sf_khash_searches; /* # of kernel hash searches */ 2479 int sf_khash_links; /* # of kernel hash links */ 2480 2481 int sf_swapout; /* # times hat swapped out */ 2482 2483 int sf_tsb_alloc; /* # TSB allocations */ 2484 int sf_tsb_allocfail; /* # times TSB alloc fail */ 2485 int sf_tsb_sectsb_create; /* # times second TSB added */ 2486 2487 int sf_scd_1sttsb_alloc; /* # SCD 1st TSB allocations */ 2488 int sf_scd_2ndtsb_alloc; /* # SCD 2nd TSB allocations */ 2489 int sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */ 2490 int sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */ 2491 2492 2493 int sf_tteload8k; /* calls to sfmmu_tteload */ 2494 int sf_tteload64k; /* calls to sfmmu_tteload */ 2495 int sf_tteload512k; /* calls to sfmmu_tteload */ 2496 int sf_tteload4m; /* calls to sfmmu_tteload */ 2497 int sf_tteload32m; /* calls to sfmmu_tteload */ 2498 int sf_tteload256m; /* calls to sfmmu_tteload */ 2499 2500 int sf_tsb_load8k; /* # times loaded 8K tsbent */ 2501 int sf_tsb_load4m; /* # times loaded 4M tsbent */ 2502 2503 int sf_hblk_hit; /* found hblk during tteload */ 2504 int sf_hblk8_ncreate; /* static hblk8's created */ 2505 int sf_hblk8_nalloc; /* static hblk8's allocated */ 2506 int sf_hblk1_ncreate; /* static hblk1's created */ 2507 int sf_hblk1_nalloc; /* static hblk1's allocated */ 2508 int sf_hblk_slab_cnt; /* sfmmu8_cache slab creates */ 2509 int sf_hblk_reserve_cnt; /* hblk_reserve usage */ 2510 int sf_hblk_recurse_cnt; /* hblk_reserve owner reqs */ 2511 int sf_hblk_reserve_hit; /* hblk_reserve hash hits */ 2512 int sf_get_free_success; /* reserve list allocs */ 2513 int sf_get_free_throttle; /* fails due to throttling */ 2514 int sf_get_free_fail; /* fails due to empty list */ 2515 int sf_put_free_success; /* reserve list frees */ 2516 int sf_put_free_fail; /* fails due to full list */ 2517 2518 int sf_pgcolor_conflict; /* VAC conflict resolution */ 2519 int sf_uncache_conflict; /* VAC conflict resolution */ 2520 int sf_unload_conflict; /* VAC unload resolution */ 2521 int sf_ism_uncache; /* VAC conflict resolution */ 2522 int sf_ism_recache; /* VAC conflict resolution */ 2523 int sf_recache; /* VAC conflict resolution */ 2524 2525 int sf_steal_count; /* # of hblks stolen */ 2526 2527 int sf_pagesync; /* # of pagesyncs */ 2528 int sf_clrwrt; /* # of clear write perms */ 2529 int sf_pagesync_invalid; /* pagesync with inv tte */ 2530 2531 int sf_kernel_xcalls; /* # of kernel cross calls */ 2532 int sf_user_xcalls; /* # of user cross calls */ 2533 2534 int sf_tsb_grow; /* # of user tsb grows */ 2535 int sf_tsb_shrink; /* # of user tsb shrinks */ 2536 int sf_tsb_resize_failures; /* # of user tsb resize */ 2537 int sf_tsb_reloc; /* # of user tsb relocations */ 2538 2539 int sf_user_vtop; /* # of user vatopfn calls */ 2540 2541 int sf_ctx_inv; /* #times invalidate MMU ctx */ 2542 2543 int sf_tlb_reprog_pgsz; /* # times switch TLB pgsz */ 2544 2545 int sf_region_remap_demap; /* # times shme remap demap */ 2546 2547 int sf_create_scd; /* # times SCD is created */ 2548 int sf_join_scd; /* # process joined scd */ 2549 int sf_leave_scd; /* # process left scd */ 2550 int sf_destroy_scd; /* # times SCD is destroyed */ 2551 }; 2552 2553 struct sfmmu_tsbsize_stat { 2554 int sf_tsbsz_8k; 2555 int sf_tsbsz_16k; 2556 int sf_tsbsz_32k; 2557 int sf_tsbsz_64k; 2558 int sf_tsbsz_128k; 2559 int sf_tsbsz_256k; 2560 int sf_tsbsz_512k; 2561 int sf_tsbsz_1m; 2562 int sf_tsbsz_2m; 2563 int sf_tsbsz_4m; 2564 int sf_tsbsz_8m; 2565 int sf_tsbsz_16m; 2566 int sf_tsbsz_32m; 2567 int sf_tsbsz_64m; 2568 int sf_tsbsz_128m; 2569 int sf_tsbsz_256m; 2570 }; 2571 2572 struct sfmmu_percpu_stat { 2573 int sf_itlb_misses; /* # of itlb misses */ 2574 int sf_dtlb_misses; /* # of dtlb misses */ 2575 int sf_utsb_misses; /* # of user tsb misses */ 2576 int sf_ktsb_misses; /* # of kernel tsb misses */ 2577 int sf_tsb_hits; /* # of tsb hits */ 2578 int sf_umod_faults; /* # of mod (prot viol) flts */ 2579 int sf_kmod_faults; /* # of mod (prot viol) flts */ 2580 }; 2581 2582 #define SFMMU_STAT(stat) sfmmu_global_stat.stat++ 2583 #define SFMMU_STAT_ADD(stat, amount) sfmmu_global_stat.stat += (amount) 2584 #define SFMMU_STAT_SET(stat, count) sfmmu_global_stat.stat = (count) 2585 2586 #define SFMMU_MMU_STAT(stat) { \ 2587 mmu_ctx_t *ctx = CPU->cpu_m.cpu_mmu_ctxp; \ 2588 if (ctx) \ 2589 ctx->stat++; \ 2590 } 2591 2592 #endif /* !_ASM */ 2593 2594 #ifdef __cplusplus 2595 } 2596 #endif 2597 2598 #endif /* _VM_HAT_SFMMU_H */ 2599