1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * VM - Hardware Address Translation management. 28 * 29 * This file describes the contents of the sun-reference-mmu(sfmmu)- 30 * specific hat data structures and the sfmmu-specific hat procedures. 31 * The machine-independent interface is described in <vm/hat.h>. 32 */ 33 34 #ifndef _VM_HAT_SFMMU_H 35 #define _VM_HAT_SFMMU_H 36 37 #pragma ident "%Z%%M% %I% %E% SMI" 38 39 #ifdef __cplusplus 40 extern "C" { 41 #endif 42 43 #ifndef _ASM 44 45 #include <sys/types.h> 46 47 #endif /* _ASM */ 48 49 #ifdef _KERNEL 50 51 #include <sys/pte.h> 52 #include <vm/mach_sfmmu.h> 53 #include <sys/mmu.h> 54 55 /* 56 * Don't alter these without considering changes to ism_map_t. 57 */ 58 #define DEFAULT_ISM_PAGESIZE MMU_PAGESIZE4M 59 #define DEFAULT_ISM_PAGESZC TTE4M 60 #define ISM_PG_SIZE(ism_vbshift) (1 << ism_vbshift) 61 #define ISM_SZ_MASK(ism_vbshift) (ISM_PG_SIZE(ism_vbshift) - 1) 62 #define ISM_MAP_SLOTS 8 /* Change this carefully. */ 63 64 #ifndef _ASM 65 66 #include <sys/t_lock.h> 67 #include <vm/hat.h> 68 #include <vm/seg.h> 69 #include <sys/machparam.h> 70 #include <sys/systm.h> 71 #include <sys/x_call.h> 72 #include <vm/page.h> 73 #include <sys/ksynch.h> 74 75 typedef struct hat sfmmu_t; 76 typedef struct sf_scd sf_scd_t; 77 78 /* 79 * SFMMU attributes for hat_memload/hat_devload 80 */ 81 #define SFMMU_UNCACHEPTTE 0x01000000 /* unencache in physical $ */ 82 #define SFMMU_UNCACHEVTTE 0x02000000 /* unencache in virtual $ */ 83 #define SFMMU_SIDEFFECT 0x04000000 /* set side effect bit */ 84 #define SFMMU_LOAD_ALLATTR (HAT_PROT_MASK | HAT_ORDER_MASK | \ 85 HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC | \ 86 SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT) 87 88 89 /* 90 * sfmmu flags for hat_memload/hat_devload 91 */ 92 #define SFMMU_NO_TSBLOAD 0x08000000 /* do not preload tsb */ 93 #define SFMMU_LOAD_ALLFLAG (HAT_LOAD | HAT_LOAD_LOCK | \ 94 HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST | \ 95 HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD | \ 96 HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT) 97 98 /* 99 * sfmmu internal flag to hat_pageunload that spares locked mappings 100 */ 101 #define SFMMU_KERNEL_RELOC 0x8000 102 103 /* 104 * mode for sfmmu_chgattr 105 */ 106 #define SFMMU_SETATTR 0x0 107 #define SFMMU_CLRATTR 0x1 108 #define SFMMU_CHGATTR 0x2 109 110 /* 111 * sfmmu specific flags for page_t 112 */ 113 #define P_PNC 0x8 /* non-caching is permanent bit */ 114 #define P_TNC 0x10 /* non-caching is temporary bit */ 115 #define P_KPMS 0x20 /* kpm mapped small (vac alias prevention) */ 116 #define P_KPMC 0x40 /* kpm conflict page (vac alias prevention) */ 117 118 #define PP_GENERIC_ATTR(pp) ((pp)->p_nrm & (P_MOD | P_REF | P_RO)) 119 #define PP_ISMOD(pp) ((pp)->p_nrm & P_MOD) 120 #define PP_ISREF(pp) ((pp)->p_nrm & P_REF) 121 #define PP_ISRO(pp) ((pp)->p_nrm & P_RO) 122 #define PP_ISNC(pp) ((pp)->p_nrm & (P_PNC|P_TNC)) 123 #define PP_ISPNC(pp) ((pp)->p_nrm & P_PNC) 124 #ifdef VAC 125 #define PP_ISTNC(pp) ((pp)->p_nrm & P_TNC) 126 #endif 127 #define PP_ISKPMS(pp) ((pp)->p_nrm & P_KPMS) 128 #define PP_ISKPMC(pp) ((pp)->p_nrm & P_KPMC) 129 130 #define PP_SETMOD(pp) ((pp)->p_nrm |= P_MOD) 131 #define PP_SETREF(pp) ((pp)->p_nrm |= P_REF) 132 #define PP_SETREFMOD(pp) ((pp)->p_nrm |= (P_REF|P_MOD)) 133 #define PP_SETRO(pp) ((pp)->p_nrm |= P_RO) 134 #define PP_SETREFRO(pp) ((pp)->p_nrm |= (P_REF|P_RO)) 135 #define PP_SETPNC(pp) ((pp)->p_nrm |= P_PNC) 136 #ifdef VAC 137 #define PP_SETTNC(pp) ((pp)->p_nrm |= P_TNC) 138 #endif 139 #define PP_SETKPMS(pp) ((pp)->p_nrm |= P_KPMS) 140 #define PP_SETKPMC(pp) ((pp)->p_nrm |= P_KPMC) 141 142 #define PP_CLRMOD(pp) ((pp)->p_nrm &= ~P_MOD) 143 #define PP_CLRREF(pp) ((pp)->p_nrm &= ~P_REF) 144 #define PP_CLRREFMOD(pp) ((pp)->p_nrm &= ~(P_REF|P_MOD)) 145 #define PP_CLRRO(pp) ((pp)->p_nrm &= ~P_RO) 146 #define PP_CLRPNC(pp) ((pp)->p_nrm &= ~P_PNC) 147 #ifdef VAC 148 #define PP_CLRTNC(pp) ((pp)->p_nrm &= ~P_TNC) 149 #endif 150 #define PP_CLRKPMS(pp) ((pp)->p_nrm &= ~P_KPMS) 151 #define PP_CLRKPMC(pp) ((pp)->p_nrm &= ~P_KPMC) 152 153 /* 154 * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM) 155 * will be constrained to a 4M, 32M or 256M alignment. Also since every newly- 156 * created ISM segment is created out of a new address space at base va 157 * of 0 we don't need to store it. 158 */ 159 #define ISM_ALIGN(shift) (1 << shift) /* base va aligned to <n>M */ 160 #define ISM_ALIGNED(shift, va) (((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0) 161 #define ISM_SHIFT(shift, x) ((uintptr_t)x >> (shift)) 162 163 /* 164 * Pad locks out to cache sub-block boundaries to prevent 165 * false sharing, so several processes don't contend for 166 * the same line if they aren't using the same lock. Since 167 * this is a typedef we also have a bit of freedom in 168 * changing lock implementations later if we decide it 169 * is necessary. 170 */ 171 typedef struct hat_lock { 172 kmutex_t hl_mutex; 173 uchar_t hl_pad[64 - sizeof (kmutex_t)]; 174 } hatlock_t; 175 176 #define HATLOCK_MUTEXP(hatlockp) (&((hatlockp)->hl_mutex)) 177 178 /* 179 * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned. 180 * Also size is guaranteed to be in 4M, 32M or 256M chunks. 181 * ism_seg consists of the following members: 182 * [XX..22] base address of ism segment. XX is 63 or 31 depending whether 183 * caddr_t is 64 bits or 32 bits. 184 * [21..0] size of segment. 185 * 186 * NOTE: Don't alter this structure without changing defines above and 187 * the tsb_miss and protection handlers. 188 */ 189 typedef struct ism_map { 190 uintptr_t imap_seg; /* base va + sz of ISM segment */ 191 uchar_t imap_vb_shift; /* mmu_pageshift for ism page size */ 192 uchar_t imap_rid; /* region id for ism */ 193 ushort_t imap_hatflags; /* primary ism page size */ 194 uint_t imap_sz_mask; /* mmu_pagemask for ism page size */ 195 sfmmu_t *imap_ismhat; /* hat id of dummy ISM as */ 196 struct ism_ment *imap_ment; /* pointer to mapping list entry */ 197 } ism_map_t; 198 199 #define ism_start(map) ((caddr_t)((map).imap_seg & \ 200 ~ISM_SZ_MASK((map).imap_vb_shift))) 201 #define ism_size(map) ((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift)) 202 #define ism_end(map) ((caddr_t)(ism_start(map) + (ism_size(map) * \ 203 ISM_PG_SIZE((map).imap_vb_shift)))) 204 /* 205 * ISM mapping entry. Used to link all hat's sharing a ism_hat. 206 * Same function as the p_mapping list for a page. 207 */ 208 typedef struct ism_ment { 209 sfmmu_t *iment_hat; /* back pointer to hat_share() hat */ 210 caddr_t iment_base_va; /* hat's va base for this ism seg */ 211 struct ism_ment *iment_next; /* next ism map entry */ 212 struct ism_ment *iment_prev; /* prev ism map entry */ 213 } ism_ment_t; 214 215 /* 216 * ISM segment block. One will be hung off the sfmmu structure if a 217 * a process uses ISM. More will be linked using ismblk_next if more 218 * than ISM_MAP_SLOTS segments are attached to this proc. 219 * 220 * All modifications to fields in this structure will be protected 221 * by the hat mutex. In order to avoid grabbing this lock in low level 222 * routines (tsb miss/protection handlers and vatopfn) while not 223 * introducing any race conditions with hat_unshare, we will set 224 * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur 225 * for this ctx while this bit is set will be handled in sfmmu_tsb_excption 226 * where it will synchronize behind the hat mutex. 227 */ 228 typedef struct ism_blk { 229 ism_map_t iblk_maps[ISM_MAP_SLOTS]; 230 struct ism_blk *iblk_next; 231 uint64_t iblk_nextpa; 232 } ism_blk_t; 233 234 /* 235 * TSB access information. All fields are protected by the process's 236 * hat lock. 237 */ 238 239 struct tsb_info { 240 caddr_t tsb_va; /* tsb base virtual address */ 241 uint64_t tsb_pa; /* tsb base physical address */ 242 struct tsb_info *tsb_next; /* next tsb used by this process */ 243 uint16_t tsb_szc; /* tsb size code */ 244 uint16_t tsb_flags; /* flags for this tsb; see below */ 245 uint_t tsb_ttesz_mask; /* page size masks; see below */ 246 247 tte_t tsb_tte; /* tte to lock into DTLB */ 248 sfmmu_t *tsb_sfmmu; /* sfmmu */ 249 kmem_cache_t *tsb_cache; /* cache from which mem allocated */ 250 vmem_t *tsb_vmp; /* vmem arena from which mem alloc'd */ 251 }; 252 253 /* 254 * Values for "tsb_ttesz_mask" bitmask. 255 */ 256 #define TSB8K (1 << TTE8K) 257 #define TSB64K (1 << TTE64K) 258 #define TSB512K (1 << TTE512K) 259 #define TSB4M (1 << TTE4M) 260 #define TSB32M (1 << TTE32M) 261 #define TSB256M (1 << TTE256M) 262 263 /* 264 * Values for "tsb_flags" field. 265 */ 266 #define TSB_RELOC_FLAG 0x1 267 #define TSB_FLUSH_NEEDED 0x2 268 #define TSB_SWAPPED 0x4 269 #define TSB_SHAREDCTX 0x8 270 271 #endif /* !_ASM */ 272 273 /* 274 * Data structures for shared hmeblk support. 275 */ 276 277 /* 278 * Do not increase the maximum number of ism/hme regions without checking first 279 * the impact on ism_map_t, TSB miss area, hblk tag and region id type in 280 * sf_region structure. 281 * Initially, shared hmes will only be used for the main text segment 282 * therefore this value will be set to 64, it will be increased when shared 283 * libraries are included. 284 */ 285 286 #define SFMMU_MAX_HME_REGIONS (64) 287 #define SFMMU_HMERGNMAP_WORDS BT_BITOUL(SFMMU_MAX_HME_REGIONS) 288 289 #define SFMMU_PRIVATE 0 290 #define SFMMU_SHARED 1 291 292 #ifndef _ASM 293 294 #define SFMMU_MAX_ISM_REGIONS (64) 295 #define SFMMU_ISMRGNMAP_WORDS BT_BITOUL(SFMMU_MAX_ISM_REGIONS) 296 297 #define SFMMU_RGNMAP_WORDS (SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS) 298 299 #define SFMMU_MAX_REGION_BUCKETS (128) 300 #define SFMMU_MAX_SRD_BUCKETS (2048) 301 302 typedef struct sf_hmeregion_map { 303 ulong_t bitmap[SFMMU_HMERGNMAP_WORDS]; 304 } sf_hmeregion_map_t; 305 306 typedef struct sf_ismregion_map { 307 ulong_t bitmap[SFMMU_ISMRGNMAP_WORDS]; 308 } sf_ismregion_map_t; 309 310 typedef union sf_region_map_u { 311 struct _h_rmap_s { 312 sf_hmeregion_map_t hmeregion_map; 313 sf_ismregion_map_t ismregion_map; 314 } h_rmap_s; 315 ulong_t bitmap[SFMMU_RGNMAP_WORDS]; 316 } sf_region_map_t; 317 318 #define SF_RGNMAP_ZERO(map) { \ 319 int _i; \ 320 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 321 (map).bitmap[_i] = 0; \ 322 } \ 323 } 324 325 /* 326 * Returns 1 if map1 and map2 are equal. 327 */ 328 #define SF_RGNMAP_EQUAL(map1, map2, rval) { \ 329 int _i; \ 330 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 331 if ((map1)->bitmap[_i] != (map2)->bitmap[_i]) \ 332 break; \ 333 } \ 334 if (_i < SFMMU_RGNMAP_WORDS) \ 335 rval = 0; \ 336 else \ 337 rval = 1; \ 338 } 339 340 #define SF_RGNMAP_ADD(map, r) BT_SET((map).bitmap, r) 341 #define SF_RGNMAP_DEL(map, r) BT_CLEAR((map).bitmap, r) 342 #define SF_RGNMAP_TEST(map, r) BT_TEST((map).bitmap, r) 343 344 /* 345 * Tests whether map2 is a subset of map1, returns 1 if 346 * this assertion is true. 347 */ 348 #define SF_RGNMAP_IS_SUBSET(map1, map2, rval) { \ 349 int _i; \ 350 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 351 if (((map1)->bitmap[_i] & (map2)->bitmap[_i]) \ 352 != (map2)->bitmap[_i]) { \ 353 break; \ 354 } \ 355 } \ 356 if (_i < SFMMU_RGNMAP_WORDS) \ 357 rval = 0; \ 358 else \ 359 rval = 1; \ 360 } 361 362 #define SF_SCD_INCR_REF(scdp) { \ 363 atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1); \ 364 } 365 366 #define SF_SCD_DECR_REF(srdp, scdp) { \ 367 sf_region_map_t _scd_rmap = (scdp)->scd_region_map; \ 368 if (!atomic_add_32_nv( \ 369 (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) { \ 370 sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap); \ 371 } \ 372 } 373 374 /* 375 * A sfmmup link in the link list of sfmmups that share the same region. 376 */ 377 typedef struct sf_rgn_link { 378 sfmmu_t *next; 379 sfmmu_t *prev; 380 } sf_rgn_link_t; 381 382 /* 383 * rgn_flags values. 384 */ 385 #define SFMMU_REGION_HME 0x1 386 #define SFMMU_REGION_ISM 0x2 387 #define SFMMU_REGION_FREE 0x8 388 389 #define SFMMU_REGION_TYPE_MASK (0x3) 390 391 /* 392 * sf_region defines a text or (D)ISM segment which map 393 * the same underlying physical object. 394 */ 395 typedef struct sf_region { 396 caddr_t rgn_saddr; /* base addr of attached seg */ 397 size_t rgn_size; /* size of attached seg */ 398 void *rgn_obj; /* the underlying object id */ 399 u_offset_t rgn_objoff; /* offset in the object mapped */ 400 uchar_t rgn_perm; /* PROT_READ/WRITE/EXEC */ 401 uchar_t rgn_pgszc; /* page size of the region */ 402 uchar_t rgn_flags; /* region type, free flag */ 403 uchar_t rgn_id; 404 int rgn_refcnt; /* # of hats sharing the region */ 405 /* callback function for hat_unload_callback */ 406 hat_rgn_cb_func_t rgn_cb_function; 407 struct sf_region *rgn_hash; /* hash chain linking the rgns */ 408 kmutex_t rgn_mutex; /* protect region sfmmu list */ 409 /* A link list of processes attached to this region */ 410 sfmmu_t *rgn_sfmmu_head; 411 ulong_t rgn_ttecnt[MMU_PAGE_SIZES]; 412 uint16_t rgn_hmeflags; /* rgn tte size flags */ 413 } sf_region_t; 414 415 #define rgn_next rgn_hash 416 417 /* srd */ 418 typedef struct sf_shared_region_domain { 419 vnode_t *srd_evp; /* executable vnode */ 420 /* hme region table */ 421 sf_region_t *srd_hmergnp[SFMMU_MAX_HME_REGIONS]; 422 /* ism region table */ 423 sf_region_t *srd_ismrgnp[SFMMU_MAX_ISM_REGIONS]; 424 /* hash chain linking srds */ 425 struct sf_shared_region_domain *srd_hash; 426 /* pointer to the next free hme region */ 427 sf_region_t *srd_hmergnfree; 428 /* pointer to the next free ism region */ 429 sf_region_t *srd_ismrgnfree; 430 /* id of next ism region created */ 431 uint16_t srd_next_ismrid; 432 /* id of next hme region created */ 433 uint16_t srd_next_hmerid; 434 uint16_t srd_ismbusyrgns; /* # of ism rgns in use */ 435 uint16_t srd_hmebusyrgns; /* # of hme rgns in use */ 436 int srd_refcnt; /* # of procs in the srd */ 437 kmutex_t srd_mutex; /* sync add/remove rgns */ 438 kmutex_t srd_scd_mutex; 439 sf_scd_t *srd_scdp; /* list of scds in srd */ 440 /* hash of regions associated with the same executable */ 441 sf_region_t *srd_rgnhash[SFMMU_MAX_REGION_BUCKETS]; 442 } sf_srd_t; 443 444 typedef struct sf_srd_bucket { 445 kmutex_t srdb_lock; 446 sf_srd_t *srdb_srdp; 447 } sf_srd_bucket_t; 448 449 /* 450 * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased 451 * to 16 when the use of shared hmes for shared libraries is enabled. 452 */ 453 454 #define SFMMU_L1_HMERLINKS (8) 455 #define SFMMU_L2_HMERLINKS (8) 456 #define SFMMU_L1_HMERLINKS_SHIFT (3) 457 #define SFMMU_L1_HMERLINKS_MASK (SFMMU_L1_HMERLINKS - 1) 458 #define SFMMU_L2_HMERLINKS_MASK (SFMMU_L2_HMERLINKS - 1) 459 #define SFMMU_L1_HMERLINKS_SIZE \ 460 (SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *)) 461 #define SFMMU_L2_HMERLINKS_SIZE \ 462 (SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t)) 463 464 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS) 465 #error Not Enough HMERLINKS 466 #endif 467 468 /* 469 * This macro grabs hat lock and allocates level 2 hat chain 470 * associated with a shme rgn. In the majority of cases, the macro 471 * is called with alloc = 0, and lock = 0. 472 * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp 473 * parameter. 474 */ 475 #define SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock) \ 476 { \ 477 int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) & \ 478 SFMMU_L1_HMERLINKS_MASK; \ 479 int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK); \ 480 hatlock_t *_hatlockp; \ 481 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 482 if (lnkp != NULL) { \ 483 lnkp = &lnkp[_l2ix]; \ 484 } else if (alloc && lock) { \ 485 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 486 _hatlockp = sfmmu_hat_enter(sfmmup); \ 487 if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) { \ 488 sfmmu_hat_exit(_hatlockp); \ 489 kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE); \ 490 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 491 ASSERT(lnkp != NULL); \ 492 } else { \ 493 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 494 sfmmu_hat_exit(_hatlockp); \ 495 } \ 496 lnkp = &lnkp[_l2ix]; \ 497 } else if (alloc) { \ 498 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 499 ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL); \ 500 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 501 lnkp = &lnkp[_l2ix]; \ 502 } \ 503 } 504 505 /* 506 * Per-MMU context domain kstats. 507 * 508 * TSB Miss Exceptions 509 * Number of times a TSB miss exception is handled in an MMU. See 510 * sfmmu_tsbmiss_exception() for more details. 511 * TSB Raise Exception 512 * Number of times the CPUs within an MMU are cross-called 513 * to invalidate either a specific process context (when the process 514 * switches MMU contexts) or the context of any process that is 515 * running on those CPUs (as part of the MMU context wrap-around). 516 * Wrap Around 517 * The number of times a wrap-around of MMU context happens. 518 */ 519 typedef enum mmu_ctx_stat_types { 520 MMU_CTX_TSB_EXCEPTIONS, /* TSB miss exceptions handled */ 521 MMU_CTX_TSB_RAISE_EXCEPTION, /* ctx invalidation cross calls */ 522 MMU_CTX_WRAP_AROUND, /* wraparounds */ 523 MMU_CTX_NUM_STATS 524 } mmu_ctx_stat_t; 525 526 /* 527 * Per-MMU context domain structure. This is instantiated the first time a CPU 528 * belonging to the MMU context domain is configured into the system, at boot 529 * time or at DR time. 530 * 531 * mmu_gnum 532 * The current generation number for the context IDs on this MMU context 533 * domain. It is protected by mmu_lock. 534 * mmu_cnum 535 * The current cnum to be allocated on this MMU context domain. It 536 * is protected via CAS. 537 * mmu_nctxs 538 * The max number of context IDs supported on every CPU in this 539 * MMU context domain. It is 8K except for Rock where it is 64K. 540 * This is needed here in case the system supports mixed type of 541 * processors/MMUs. It also helps to make ctx switch code access 542 * fewer cache lines i.e. no need to retrieve it from some global nctxs. 543 * mmu_lock 544 * The mutex spin lock used to serialize context ID wrap around 545 * mmu_idx 546 * The index for this MMU context domain structure in the global array 547 * mmu_ctxdoms. 548 * mmu_ncpus 549 * The actual number of CPUs that have been configured in this 550 * MMU context domain. This also acts as a reference count for the 551 * structure. When the last CPU in an MMU context domain is unconfigured, 552 * the structure is freed. It is protected by mmu_lock. 553 * mmu_cpuset 554 * The CPU set of configured CPUs for this MMU context domain. Used 555 * to cross-call all the CPUs in the MMU context domain to invalidate 556 * context IDs during a wraparound operation. It is protected by mmu_lock. 557 */ 558 559 typedef struct mmu_ctx { 560 uint64_t mmu_gnum; 561 uint_t mmu_cnum; 562 uint_t mmu_nctxs; 563 kmutex_t mmu_lock; 564 uint_t mmu_idx; 565 uint_t mmu_ncpus; 566 cpuset_t mmu_cpuset; 567 kstat_t *mmu_kstat; 568 kstat_named_t mmu_kstat_data[MMU_CTX_NUM_STATS]; 569 } mmu_ctx_t; 570 571 #define mmu_tsb_exceptions \ 572 mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64 573 #define mmu_tsb_raise_exception \ 574 mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64 575 #define mmu_wrap_around \ 576 mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64 577 578 extern uint_t max_mmu_ctxdoms; 579 extern mmu_ctx_t **mmu_ctxs_tbl; 580 581 extern void sfmmu_cpu_init(cpu_t *); 582 extern void sfmmu_cpu_cleanup(cpu_t *); 583 584 /* 585 * The following structure is used to get MMU context domain information for 586 * a CPU from the platform. 587 * 588 * mmu_idx 589 * The MMU context domain index within the global array mmu_ctxs 590 * mmu_nctxs 591 * The number of context IDs supported in the MMU context domain 592 * (64K for Rock) 593 */ 594 typedef struct mmu_ctx_info { 595 uint_t mmu_idx; 596 uint_t mmu_nctxs; 597 } mmu_ctx_info_t; 598 599 #pragma weak plat_cpuid_to_mmu_ctx_info 600 601 extern void plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *); 602 603 /* 604 * Each address space has an array of sfmmu_ctx_t structures, one structure 605 * per MMU context domain. 606 * 607 * cnum 608 * The context ID allocated for an address space on an MMU context domain 609 * gnum 610 * The generation number for the context ID in the MMU context domain. 611 * 612 * This structure needs to be a power-of-two in size. 613 */ 614 typedef struct sfmmu_ctx { 615 uint64_t gnum:48; 616 uint64_t cnum:16; 617 } sfmmu_ctx_t; 618 619 620 /* 621 * The platform dependent hat structure. 622 * tte counts should be protected by cas. 623 * cpuset is protected by cas. 624 * 625 * ttecnt accounting for mappings which do not use shared hme is carried out 626 * during pagefault handling. In the shared hme case, only the first process 627 * to access a mapping generates a pagefault, subsequent processes simply 628 * find the shared hme entry during trap handling and therefore there is no 629 * corresponding event to initiate ttecnt accounting. Currently, as shared 630 * hmes are only used for text segments, when joining a region we assume the 631 * worst case and add the the number of ttes required to map the entire region 632 * to the ttecnt corresponding to the region pagesize. However, if the region 633 * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail 634 * then 8K pages will be allocated instead and the first TSB which stores 8K 635 * mappings will potentially be undersized. To compensate for the potential 636 * underaccounting in this case we always add 1/4 of the region size to the 8K 637 * ttecnt. 638 * 639 * Note that sfmmu_xhat_provider MUST be the first element. 640 */ 641 642 struct hat { 643 void *sfmmu_xhat_provider; /* NULL for CPU hat */ 644 cpuset_t sfmmu_cpusran; /* cpu bit mask for efficient xcalls */ 645 struct as *sfmmu_as; /* as this hat provides mapping for */ 646 /* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */ 647 ulong_t sfmmu_ttecnt[MMU_PAGE_SIZES]; 648 /* shme rgns ttecnt for rgns in SCD */ 649 ulong_t sfmmu_scdrttecnt[MMU_PAGE_SIZES]; 650 /* est. ism ttes that are NOT in a SCD */ 651 ulong_t sfmmu_ismttecnt[MMU_PAGE_SIZES]; 652 /* ttecnt for isms that are in a SCD */ 653 ulong_t sfmmu_scdismttecnt[MMU_PAGE_SIZES]; 654 /* inflate tsb0 to allow for large page alloc failure in region */ 655 ulong_t sfmmu_tsb0_4minflcnt; 656 union _h_un { 657 ism_blk_t *sfmmu_iblkp; /* maps to ismhat(s) */ 658 ism_ment_t *sfmmu_imentp; /* ism hat's mapping list */ 659 } h_un; 660 uint_t sfmmu_free:1; /* hat to be freed - set on as_free */ 661 uint_t sfmmu_ismhat:1; /* hat is dummy ism hatid */ 662 uint_t sfmmu_scdhat:1; /* hat is dummy scd hatid */ 663 uchar_t sfmmu_rmstat; /* refmod stats refcnt */ 664 ushort_t sfmmu_clrstart; /* start color bin for page coloring */ 665 ushort_t sfmmu_clrbin; /* per as phys page coloring bin */ 666 ushort_t sfmmu_flags; /* flags */ 667 uchar_t sfmmu_tteflags; /* pgsz flags */ 668 uchar_t sfmmu_rtteflags; /* pgsz flags for SRD hmes */ 669 struct tsb_info *sfmmu_tsb; /* list of per as tsbs */ 670 uint64_t sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */ 671 lock_t sfmmu_ctx_lock; /* sync ctx alloc and invalidation */ 672 kcondvar_t sfmmu_tsb_cv; /* signals TSB swapin or relocation */ 673 uchar_t sfmmu_cext; /* context page size encoding */ 674 uint8_t sfmmu_pgsz[MMU_PAGE_SIZES]; /* ranking for MMU */ 675 sf_srd_t *sfmmu_srdp; 676 sf_scd_t *sfmmu_scdp; /* scd this address space belongs to */ 677 sf_region_map_t sfmmu_region_map; 678 sf_rgn_link_t *sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS]; 679 sf_rgn_link_t sfmmu_scd_link; /* link to scd or pending queue */ 680 #ifdef sun4v 681 struct hv_tsb_block sfmmu_hvblock; 682 #endif 683 /* 684 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of 685 * elements. max_mmu_ctxdoms is determined at run-time. 686 * sfmmu_ctxs[1] is just the fist element of an array, it always 687 * has to be the last field to ensure that the memory allocated 688 * for sfmmu_ctxs is consecutive with the memory of the rest of 689 * the hat data structure. 690 */ 691 sfmmu_ctx_t sfmmu_ctxs[1]; 692 693 }; 694 695 #define sfmmu_iblk h_un.sfmmu_iblkp 696 #define sfmmu_iment h_un.sfmmu_imentp 697 698 #define sfmmu_hmeregion_map sfmmu_region_map.h_rmap_s.hmeregion_map 699 #define sfmmu_ismregion_map sfmmu_region_map.h_rmap_s.ismregion_map 700 701 #define SF_RGNMAP_ISNULL(sfmmup) \ 702 (sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map)) 703 #define SF_HMERGNMAP_ISNULL(sfmmup) \ 704 (sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map)) 705 706 struct sf_scd { 707 sfmmu_t *scd_sfmmup; /* shared context hat */ 708 /* per pgsz ttecnt for shme rgns in SCD */ 709 ulong_t scd_rttecnt[MMU_PAGE_SIZES]; 710 uint_t scd_refcnt; /* address spaces attached to scd */ 711 sf_region_map_t scd_region_map; /* bit mask of attached segments */ 712 sf_scd_t *scd_next; /* link pointers for srd_scd list */ 713 sf_scd_t *scd_prev; 714 sfmmu_t *scd_sf_list; /* list of doubly linked hat structs */ 715 kmutex_t scd_mutex; 716 /* 717 * Link used to add an scd to the sfmmu_iment list. 718 */ 719 ism_ment_t scd_ism_links[SFMMU_MAX_ISM_REGIONS]; 720 }; 721 722 #define scd_hmeregion_map scd_region_map.h_rmap_s.hmeregion_map 723 #define scd_ismregion_map scd_region_map.h_rmap_s.ismregion_map 724 725 extern int disable_shctx; 726 extern int shctx_on; 727 728 /* 729 * bit mask for managing vac conflicts on large pages. 730 * bit 1 is for uncache flag. 731 * bits 2 through min(num of cache colors + 1,31) are 732 * for cache colors that have already been flushed. 733 */ 734 #ifdef VAC 735 #define CACHE_NUM_COLOR (shm_alignment >> MMU_PAGESHIFT) 736 #else 737 #define CACHE_NUM_COLOR 1 738 #endif 739 740 #define CACHE_VCOLOR_MASK(vcolor) (2 << (vcolor & (CACHE_NUM_COLOR - 1))) 741 742 #define CacheColor_IsFlushed(flag, vcolor) \ 743 ((flag) & CACHE_VCOLOR_MASK(vcolor)) 744 745 #define CacheColor_SetFlushed(flag, vcolor) \ 746 ((flag) |= CACHE_VCOLOR_MASK(vcolor)) 747 /* 748 * Flags passed to sfmmu_page_cache to flush page from vac or not. 749 */ 750 #define CACHE_FLUSH 0 751 #define CACHE_NO_FLUSH 1 752 753 /* 754 * Flags passed to sfmmu_tlbcache_demap 755 */ 756 #define FLUSH_NECESSARY_CPUS 0 757 #define FLUSH_ALL_CPUS 1 758 759 #ifdef DEBUG 760 /* 761 * For debugging purpose only. Maybe removed later. 762 */ 763 struct ctx_trace { 764 sfmmu_t *sc_sfmmu_stolen; 765 sfmmu_t *sc_sfmmu_stealing; 766 clock_t sc_time; 767 ushort_t sc_type; 768 ushort_t sc_cnum; 769 }; 770 #define CTX_TRC_STEAL 0x1 771 #define CTX_TRC_FREE 0x0 772 #define TRSIZE 0x400 773 #define NEXT_CTXTR(ptr) (((ptr) >= ctx_trace_last) ? \ 774 ctx_trace_first : ((ptr) + 1)) 775 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \ 776 mutex_enter(mutex); \ 777 (ptr)->sc_sfmmu_stolen = (stolen_sfmmu); \ 778 (ptr)->sc_sfmmu_stealing = (stealing_sfmmu); \ 779 (ptr)->sc_cnum = (cnum); \ 780 (ptr)->sc_type = (type); \ 781 (ptr)->sc_time = lbolt; \ 782 (ptr) = NEXT_CTXTR(ptr); \ 783 num_ctx_stolen += (type); \ 784 mutex_exit(mutex); 785 #else 786 787 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) 788 789 #endif /* DEBUG */ 790 791 #endif /* !_ASM */ 792 793 /* 794 * Macros for sfmmup->sfmmu_flags access. The macros that change the flags 795 * ASSERT() that we're holding the HAT lock before changing the flags; 796 * however callers that read the flags may do so without acquiring the lock 797 * in a fast path, and then recheck the flag after acquiring the lock in 798 * a slow path. 799 */ 800 #define SFMMU_FLAGS_ISSET(sfmmup, flags) \ 801 (((sfmmup)->sfmmu_flags & (flags)) == (flags)) 802 803 #define SFMMU_FLAGS_CLEAR(sfmmup, flags) \ 804 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 805 (sfmmup)->sfmmu_flags &= ~(flags)) 806 807 #define SFMMU_FLAGS_SET(sfmmup, flags) \ 808 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 809 (sfmmup)->sfmmu_flags |= (flags)) 810 811 #define SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \ 812 ((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \ 813 (flags)) 814 815 816 /* 817 * sfmmu tte HAT flags, must fit in 8 bits 818 */ 819 #define HAT_CHKCTX1_FLAG 0x1 820 #define HAT_64K_FLAG (0x1 << TTE64K) 821 #define HAT_512K_FLAG (0x1 << TTE512K) 822 #define HAT_4M_FLAG (0x1 << TTE4M) 823 #define HAT_32M_FLAG (0x1 << TTE32M) 824 #define HAT_256M_FLAG (0x1 << TTE256M) 825 826 /* 827 * sfmmu HAT flags, 16 bits at the moment. 828 */ 829 #define HAT_4MTEXT_FLAG 0x01 830 #define HAT_32M_ISM 0x02 831 #define HAT_256M_ISM 0x04 832 #define HAT_SWAPPED 0x08 /* swapped out */ 833 #define HAT_SWAPIN 0x10 /* swapping in */ 834 #define HAT_BUSY 0x20 /* replacing TSB(s) */ 835 #define HAT_ISMBUSY 0x40 /* adding/removing/traversing ISM maps */ 836 837 #define HAT_CTX1_FLAG 0x100 /* ISM imap hatflag for ctx1 */ 838 #define HAT_JOIN_SCD 0x200 /* region is joining scd */ 839 #define HAT_ALLCTX_INVALID 0x400 /* all per-MMU ctxs are invalidated */ 840 841 #define SFMMU_LGPGS_INUSE(sfmmup) \ 842 (((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) || \ 843 ((sfmmup)->sfmmu_iblk != NULL)) 844 845 /* 846 * Starting with context 0, the first NUM_LOCKED_CTXS contexts 847 * are locked so that sfmmu_getctx can't steal any of these 848 * contexts. At the time this software was being developed, the 849 * only context that needs to be locked is context 0 (the kernel 850 * context), and context 1 (reserved for stolen context). So this constant 851 * was originally defined to be 2. 852 * 853 * For sun4v only, USER_CONTEXT_TYPE represents any user context. Many 854 * routines only care whether the context is kernel, invalid or user. 855 */ 856 857 #define NUM_LOCKED_CTXS 2 858 #define INVALID_CONTEXT 1 859 860 #ifdef sun4v 861 #define USER_CONTEXT_TYPE NUM_LOCKED_CTXS 862 #endif 863 #if defined(sun4v) || defined(UTSB_PHYS) 864 /* 865 * Get the location in the 4MB base TSB of the tsbe for this fault. 866 * Assumes that the second TSB only contains 4M mappings. 867 * 868 * In: 869 * tagacc = tag access register (not clobbered) 870 * tsbe = 2nd TSB base register 871 * tmp1, tmp2 = scratch registers 872 * Out: 873 * tsbe = pointer to the tsbe in the 2nd TSB 874 */ 875 876 #define GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 877 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 878 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 879 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 880 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 881 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 882 srlx tagacc, MMU_PAGESHIFT4M, tmp2; \ 883 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 884 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 885 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 886 887 #define GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 888 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 889 890 /* 891 * Get the location in the 3rd TSB of the tsbe for this fault. 892 * The 3rd TSB corresponds to the shared context, and is used 893 * for 8K - 512k pages. 894 * 895 * In: 896 * tagacc = tag access register (not clobbered) 897 * tsbe, tmp1, tmp2 = scratch registers 898 * Out: 899 * tsbe = pointer to the tsbe in the 3rd TSB 900 */ 901 902 #define GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 903 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 904 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 905 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 906 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 907 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 908 srlx tagacc, MMU_PAGESHIFT, tmp2; \ 909 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 910 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 911 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 912 913 #define GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 914 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 915 /* 916 * Copy the sfmmu_region_map or scd_region_map to the tsbmiss 917 * shmermap or scd_shmermap, from sfmmu_load_mmustate. 918 */ 919 #define SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label) \ 920 /* BEGIN CSTYLED */ \ 921 label: ;\ 922 ldx [rgn_map], tmp ;\ 923 dec cnt ;\ 924 add rgn_map, CLONGSIZE, rgn_map ;\ 925 stx tmp, [tsbmiss_map] ;\ 926 brnz,pt cnt, label ;\ 927 add tsbmiss_map, CLONGSIZE, tsbmiss_map \ 928 /* END CSTYLED */ 929 930 /* 931 * If there is no scd, then zero the tsbmiss scd_shmermap, 932 * from sfmmu_load_mmustate. 933 */ 934 #define ZERO_REGION_MAP(tsbmiss_map, cnt, label) \ 935 /* BEGIN CSTYLED */ \ 936 label: ;\ 937 dec cnt ;\ 938 stx %g0, [tsbmiss_map] ;\ 939 brnz,pt cnt, label ;\ 940 add tsbmiss_map, CLONGSIZE, tsbmiss_map 941 /* END CSTYLED */ 942 943 /* 944 * Set hmemisc to 1 if the shared hme is also part of an scd. 945 * In: 946 * tsbarea = tsbmiss area (not clobbered) 947 * hmeblkpa = hmeblkpa + hmentoff + SFHME_TTE (not clobbered) 948 * hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered) 949 * Out: 950 * use_shctx = 1 if shme is in scd and 0 otherwise 951 */ 952 #define GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx) \ 953 /* BEGIN CSTYLED */ \ 954 sub hmeblkpa, hmentoff, hmentoff /* hmentofff = hmeblkpa */ ;\ 955 add hmentoff, HMEBLK_TAG, hmentoff ;\ 956 ldxa [hmentoff]ASI_MEM, hmentoff /* read 1st part of tag */ ;\ 957 and hmentoff, HTAG_RID_MASK, hmentoff /* mask off rid */ ;\ 958 and hmentoff, BT_ULMASK, use_shctx /* mask bit index */ ;\ 959 srlx hmentoff, BT_ULSHIFT, hmentoff /* extract word */ ;\ 960 sllx hmentoff, CLONGSHIFT, hmentoff /* index */ ;\ 961 add tsbarea, hmentoff, hmentoff /* add to tsbarea */ ;\ 962 ldx [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff /* scdrgn */ ;\ 963 srlx hmentoff, use_shctx, use_shctx ;\ 964 and use_shctx, 0x1, use_shctx \ 965 /* END CSTYLED */ 966 967 /* 968 * Synthesize a TSB base register contents for a process. 969 * 970 * In: 971 * tsbinfo = TSB info pointer (ro) 972 * tsbreg, tmp1 = scratch registers 973 * Out: 974 * tsbreg = value to program into TSB base register 975 */ 976 977 #define MAKE_UTSBREG(tsbinfo, tsbreg, tmp1) \ 978 ldx [tsbinfo + TSBINFO_PADDR], tsbreg; \ 979 lduh [tsbinfo + TSBINFO_SZCODE], tmp1; \ 980 and tmp1, TSB_SOFTSZ_MASK, tmp1; \ 981 or tsbreg, tmp1, tsbreg; 982 983 984 /* 985 * Load TSB base register to TSBMISS area for privte contexts. 986 * This register contains utsb_pabase in bits 63:13, and TSB size 987 * code in bits 2:0. 988 * 989 * For private context 990 * In: 991 * tsbreg = value to load (ro) 992 * regnum = constant or register 993 * tmp1 = scratch register 994 * Out: 995 * Specified scratchpad register updated 996 * 997 */ 998 #define SET_UTSBREG(regnum, tsbreg, tmp1) \ 999 mov regnum, tmp1; \ 1000 stxa tsbreg, [tmp1]ASI_SCRATCHPAD /* save tsbreg */ 1001 /* 1002 * Get TSB base register from the scratchpad for private contexts 1003 * 1004 * In: 1005 * regnum = constant or register 1006 * tsbreg = scratch 1007 * Out: 1008 * tsbreg = tsbreg from the specified scratchpad register 1009 */ 1010 #define GET_UTSBREG(regnum, tsbreg) \ 1011 mov regnum, tsbreg; \ 1012 ldxa [tsbreg]ASI_SCRATCHPAD, tsbreg 1013 1014 /* 1015 * Load TSB base register to TSBMISS area for shared contexts. 1016 * This register contains utsb_pabase in bits 63:13, and TSB size 1017 * code in bits 2:0. 1018 * 1019 * In: 1020 * tsbmiss = pointer to tsbmiss area 1021 * tsbmissoffset = offset to right tsb pointer 1022 * tsbreg = value to load (ro) 1023 * Out: 1024 * Specified tsbmiss area updated 1025 * 1026 */ 1027 #define SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1028 stx tsbreg, [tsbmiss + tsbmissoffset] /* save tsbreg */ 1029 1030 /* 1031 * Get TSB base register from the scratchpad for 1032 * shared contexts 1033 * 1034 * In: 1035 * tsbmiss = pointer to tsbmiss area 1036 * tsbmissoffset = offset to right tsb pointer 1037 * tsbreg = scratch 1038 * Out: 1039 * tsbreg = tsbreg from the specified scratchpad register 1040 */ 1041 #define GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1042 ldx [tsbmiss + tsbmissoffset], tsbreg 1043 1044 #endif /* defined(sun4v) || defined(UTSB_PHYS) */ 1045 1046 #ifndef _ASM 1047 1048 /* 1049 * Kernel page relocation stuff. 1050 */ 1051 struct sfmmu_callback { 1052 int key; 1053 int (*prehandler)(caddr_t, uint_t, uint_t, void *); 1054 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t); 1055 int (*errhandler)(caddr_t, uint_t, uint_t, void *); 1056 int capture_cpus; 1057 }; 1058 1059 extern int sfmmu_max_cb_id; 1060 extern struct sfmmu_callback *sfmmu_cb_table; 1061 1062 extern int hat_kpr_enabled; 1063 1064 struct pa_hment; 1065 1066 /* 1067 * RFE: With multihat gone we gain back an int. We could use this to 1068 * keep ref bits on a per cpu basis to eliminate xcalls. 1069 */ 1070 struct sf_hment { 1071 tte_t hme_tte; /* tte for this hment */ 1072 1073 union { 1074 struct page *page; /* what page this maps */ 1075 struct pa_hment *data; /* pa_hment */ 1076 } sf_hment_un; 1077 1078 struct sf_hment *hme_next; /* next hment */ 1079 struct sf_hment *hme_prev; /* prev hment */ 1080 }; 1081 1082 struct pa_hment { 1083 caddr_t addr; /* va */ 1084 uint_t len; /* bytes */ 1085 ushort_t flags; /* internal flags */ 1086 ushort_t refcnt; /* reference count */ 1087 id_t cb_id; /* callback id, table index */ 1088 void *pvt; /* handler's private data */ 1089 struct sf_hment sfment; /* corresponding dummy sf_hment */ 1090 }; 1091 1092 #define hme_page sf_hment_un.page 1093 #define hme_data sf_hment_un.data 1094 #define hme_size(sfhmep) ((int)(TTE_CSZ(&(sfhmep)->hme_tte))) 1095 #define PAHME_SZ (sizeof (struct pa_hment)) 1096 #define SFHME_SZ (sizeof (struct sf_hment)) 1097 1098 #define IS_PAHME(hme) ((hme)->hme_tte.ll == 0) 1099 1100 /* 1101 * hmeblk_tag structure 1102 * structure used to obtain a match on a hme_blk. Currently consists of 1103 * the address of the sfmmu struct (or hatid), the base page address of the 1104 * hme_blk, and the rehash count. The rehash count is actually only 2 bits 1105 * and has the following meaning: 1106 * 1 = 8k or 64k hash sequence. 1107 * 2 = 512k hash sequence. 1108 * 3 = 4M hash sequence. 1109 * We require this count because we don't want to get a false hit on a 512K or 1110 * 4M rehash with a base address corresponding to a 8k or 64k hmeblk. 1111 * Note: The ordering and size of the hmeblk_tag members are implictly known 1112 * by the tsb miss handlers written in assembly. Do not change this structure 1113 * without checking those routines. See HTAG_SFMMUPSZ define. 1114 */ 1115 1116 /* 1117 * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID. 1118 */ 1119 typedef union { 1120 struct { 1121 uint64_t hblk_basepg: 51, /* hme_blk base pg # */ 1122 hblk_rehash: 3, /* rehash number */ 1123 hblk_rid: 10; /* hme_blk region id */ 1124 void *hblk_id; 1125 } hblk_tag_un; 1126 uint64_t htag_tag[2]; 1127 } hmeblk_tag; 1128 1129 #define htag_id hblk_tag_un.hblk_id 1130 #define htag_bspage hblk_tag_un.hblk_basepg 1131 #define htag_rehash hblk_tag_un.hblk_rehash 1132 #define htag_rid hblk_tag_un.hblk_rid 1133 1134 #endif /* !_ASM */ 1135 1136 #define HTAG_REHASH_SHIFT 10 1137 #define HTAG_MAX_RID (((0x1 << HTAG_REHASH_SHIFT) - 1)) 1138 #define HTAG_RID_MASK HTAG_MAX_RID 1139 1140 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */ 1141 #define SFMMU_INVALID_SHMERID HTAG_MAX_RID 1142 1143 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1144 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1145 #endif 1146 1147 #define SFMMU_IS_SHMERID_VALID(rid) ((rid) != SFMMU_INVALID_SHMERID) 1148 1149 /* ISM regions */ 1150 #define SFMMU_INVALID_ISMRID 0xff 1151 1152 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1153 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1154 #endif 1155 1156 #define SFMMU_IS_ISMRID_VALID(rid) ((rid) != SFMMU_INVALID_ISMRID) 1157 1158 1159 #define HTAGS_EQ(tag1, tag2) (((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \ 1160 (tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0) 1161 1162 /* 1163 * this macro must only be used for comparing tags in shared hmeblks. 1164 */ 1165 #define HTAGS_EQ_SHME(hmetag, tag, hrmap) \ 1166 (((hmetag).htag_rid != SFMMU_INVALID_SHMERID) && \ 1167 (((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) & \ 1168 ~HTAG_RID_MASK) | \ 1169 ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) && \ 1170 SF_RGNMAP_TEST(hrmap, hmetag.htag_rid)) 1171 1172 #define HME_REHASH(sfmmup) \ 1173 ((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 || \ 1174 (sfmmup)->sfmmu_ttecnt[TTE4M] != 0 || \ 1175 (sfmmup)->sfmmu_ttecnt[TTE32M] != 0 || \ 1176 (sfmmup)->sfmmu_ttecnt[TTE256M] != 0) 1177 1178 #define NHMENTS 8 /* # of hments in an 8k hme_blk */ 1179 /* needs to be multiple of 2 */ 1180 1181 #ifndef _ASM 1182 1183 #ifdef HBLK_TRACE 1184 1185 #define HBLK_LOCK 1 1186 #define HBLK_UNLOCK 0 1187 #define HBLK_STACK_DEPTH 6 1188 #define HBLK_AUDIT_CACHE_SIZE 16 1189 #define HBLK_LOCK_PATTERN 0xaaaaaaaa 1190 #define HBLK_UNLOCK_PATTERN 0xbbbbbbbb 1191 1192 struct hblk_lockcnt_audit { 1193 int flag; /* lock or unlock */ 1194 kthread_id_t thread; 1195 int depth; 1196 pc_t stack[HBLK_STACK_DEPTH]; 1197 }; 1198 1199 #endif /* HBLK_TRACE */ 1200 1201 1202 /* 1203 * Hment block structure. 1204 * The hme_blk is the node data structure which the hash structure 1205 * mantains. An hme_blk can have 2 different sizes depending on the 1206 * number of hments it implicitly contains. When dealing with 64K, 512K, 1207 * or 4M hments there is one hment per hme_blk. When dealing with 1208 * 8k hments we allocate an hme_blk plus an additional 7 hments to 1209 * give us a total of 8 (NHMENTS) hments that can be referenced through a 1210 * hme_blk. 1211 * 1212 * The hmeblk structure contains 2 tte reference counters used to determine if 1213 * it is ok to free up the hmeblk. Both counters have to be zero in order 1214 * to be able to free up hmeblk. They are protected by cas. 1215 * hblk_hmecnt is the number of hments present on pp mapping lists. 1216 * hblk_vcnt reflects number of valid ttes in hmeblk. 1217 * 1218 * The hmeblk now also has per tte lock cnts. This is required because 1219 * the counts can be high and there are not enough bits in the tte. When 1220 * physio is fixed to not lock the translations we should be able to move 1221 * the lock cnt back to the tte. See bug id 1198554. 1222 * 1223 * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc 1224 * and sf_hment are at the same offsets in both structures. Whenever 1225 * hme_blk is changed, xhat_hme_blk may need to be updated as well. 1226 */ 1227 1228 struct hme_blk_misc { 1229 uint_t notused:25; 1230 uint_t shared_bit:1; /* set for SRD shared hmeblk */ 1231 uint_t xhat_bit:1; /* set for an xhat hme_blk */ 1232 uint_t shadow_bit:1; /* set for a shadow hme_blk */ 1233 uint_t nucleus_bit:1; /* set for a nucleus hme_blk */ 1234 uint_t ttesize:3; /* contains ttesz of hmeblk */ 1235 }; 1236 1237 struct hme_blk { 1238 uint64_t hblk_nextpa; /* physical address for hash list */ 1239 1240 hmeblk_tag hblk_tag; /* tag used to obtain an hmeblk match */ 1241 1242 struct hme_blk *hblk_next; /* on free list or on hash list */ 1243 /* protected by hash lock */ 1244 1245 struct hme_blk *hblk_shadow; /* pts to shadow hblk */ 1246 /* protected by hash lock */ 1247 uint_t hblk_span; /* span of memory hmeblk maps */ 1248 1249 struct hme_blk_misc hblk_misc; 1250 1251 union { 1252 struct { 1253 ushort_t hblk_hmecount; /* hment on mlists counter */ 1254 ushort_t hblk_validcnt; /* valid tte reference count */ 1255 } hblk_counts; 1256 uint_t hblk_shadow_mask; 1257 } hblk_un; 1258 1259 uint_t hblk_lckcnt; 1260 1261 #ifdef HBLK_TRACE 1262 kmutex_t hblk_audit_lock; /* lock to protect index */ 1263 uint_t hblk_audit_index; /* index into audit_cache */ 1264 struct hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE]; 1265 #endif /* HBLK_AUDIT */ 1266 1267 struct sf_hment hblk_hme[1]; /* hment array */ 1268 }; 1269 1270 #define hblk_shared hblk_misc.shared_bit 1271 #define hblk_xhat_bit hblk_misc.xhat_bit 1272 #define hblk_shw_bit hblk_misc.shadow_bit 1273 #define hblk_nuc_bit hblk_misc.nucleus_bit 1274 #define hblk_ttesz hblk_misc.ttesize 1275 #define hblk_hmecnt hblk_un.hblk_counts.hblk_hmecount 1276 #define hblk_vcnt hblk_un.hblk_counts.hblk_validcnt 1277 #define hblk_shw_mask hblk_un.hblk_shadow_mask 1278 1279 #define MAX_HBLK_LCKCNT 0xFFFFFFFF 1280 #define HMEBLK_ALIGN 0x8 /* hmeblk has to be double aligned */ 1281 1282 #ifdef HBLK_TRACE 1283 1284 #define HBLK_STACK_TRACE(hmeblkp, lock) \ 1285 { \ 1286 int flag = lock; /* to pacify lint */ \ 1287 int audit_index; \ 1288 \ 1289 mutex_enter(&hmeblkp->hblk_audit_lock); \ 1290 audit_index = hmeblkp->hblk_audit_index; \ 1291 hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) & \ 1292 (HBLK_AUDIT_CACHE_SIZE - 1)); \ 1293 mutex_exit(&hmeblkp->hblk_audit_lock); \ 1294 \ 1295 if (flag) \ 1296 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1297 HBLK_LOCK_PATTERN; \ 1298 else \ 1299 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1300 HBLK_UNLOCK_PATTERN; \ 1301 \ 1302 hmeblkp->hblk_audit_cache[audit_index].thread = curthread; \ 1303 hmeblkp->hblk_audit_cache[audit_index].depth = \ 1304 getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack, \ 1305 HBLK_STACK_DEPTH); \ 1306 } 1307 1308 #else 1309 1310 #define HBLK_STACK_TRACE(hmeblkp, lock) 1311 1312 #endif /* HBLK_TRACE */ 1313 1314 #define HMEHASH_FACTOR 16 /* used to calc # of buckets in hme hash */ 1315 1316 /* 1317 * A maximum number of user hmeblks is defined in order to place an upper 1318 * limit on how much nucleus memory is required and to avoid overflowing the 1319 * tsbmiss uhashsz and khashsz data areas. The number below corresponds to 1320 * the number of buckets required, for an average hash chain length of 4 on 1321 * a 16TB machine. 1322 */ 1323 1324 #define MAX_UHME_BUCKETS (0x1 << 30) 1325 #define MAX_KHME_BUCKETS (0x1 << 30) 1326 1327 /* 1328 * The minimum number of kernel hash buckets. 1329 */ 1330 #define MIN_KHME_BUCKETS 0x800 1331 1332 /* 1333 * The number of hash buckets must be a power of 2. If the initial calculated 1334 * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater 1335 * power of 2, otherwise we round down to avoid huge over allocations. 1336 */ 1337 #define USER_BUCKETS_THRESHOLD (1<<22) 1338 1339 #define MAX_NUCUHME_BUCKETS 0x4000 1340 #define MAX_NUCKHME_BUCKETS 0x2000 1341 1342 /* 1343 * There are 2 locks in the hmehash bucket. The hmehash_mutex is 1344 * a regular mutex used to make sure operations on a hash link are only 1345 * done by one thread. Any operation which comes into the hat with 1346 * a <vaddr, as> will grab the hmehash_mutex. Normally one would expect 1347 * the tsb miss handlers to grab the hash lock to make sure the hash list 1348 * is consistent while we traverse it. Unfortunately this can lead to 1349 * deadlocks or recursive mutex enters since it is possible for 1350 * someone holding the lock to take a tlb/tsb miss. 1351 * To solve this problem we have added the hmehash_listlock. This lock 1352 * is only grabbed by the tsb miss handlers, vatopfn, and while 1353 * adding/removing a hmeblk from the hash list. The code is written to 1354 * guarantee we won't take a tlb miss while holding this lock. 1355 */ 1356 struct hmehash_bucket { 1357 kmutex_t hmehash_mutex; 1358 uint64_t hmeh_nextpa; /* physical address for hash list */ 1359 struct hme_blk *hmeblkp; 1360 uint_t hmeh_listlock; 1361 }; 1362 1363 #endif /* !_ASM */ 1364 1365 #define SFMMU_PGCNT_MASK 0x3f 1366 #define SFMMU_PGCNT_SHIFT 6 1367 #define INVALID_MMU_ID -1 1368 #define SFMMU_MMU_GNUM_RSHIFT 16 1369 #define SFMMU_MMU_CNUM_LSHIFT (64 - SFMMU_MMU_GNUM_RSHIFT) 1370 #define MAX_SFMMU_CTX_VAL ((1 << 16) - 1) /* for sanity check */ 1371 #define MAX_SFMMU_GNUM_VAL ((0x1UL << 48) - 1) 1372 1373 /* 1374 * The tsb miss handlers written in assembly know that sfmmup 1375 * is a 64 bit ptr. 1376 * 1377 * The bspage and re-hash part is 64 bits, with the sfmmup being another 64 1378 * bits. 1379 */ 1380 #define HTAG_SFMMUPSZ 0 /* Not really used for LP64 */ 1381 #define HTAG_BSPAGE_SHIFT 13 1382 1383 /* 1384 * Assembly routines need to be able to get to ttesz 1385 */ 1386 #define HBLK_SZMASK 0x7 1387 1388 #ifndef _ASM 1389 1390 /* 1391 * Returns the number of bytes that an hmeblk spans given its tte size 1392 */ 1393 #define get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span) 1394 #define get_hblk_ttesz(hmeblkp) ((hmeblkp)->hblk_ttesz) 1395 #define get_hblk_cache(hmeblkp) (((hmeblkp)->hblk_ttesz == TTE8K) ? \ 1396 sfmmu8_cache : sfmmu1_cache) 1397 #define HMEBLK_SPAN(ttesz) \ 1398 ((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz)) 1399 1400 #define set_hblk_sz(hmeblkp, ttesz) \ 1401 (hmeblkp)->hblk_ttesz = (ttesz); \ 1402 (hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz) 1403 1404 #define get_hblk_base(hmeblkp) \ 1405 ((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT) 1406 1407 #define get_hblk_endaddr(hmeblkp) \ 1408 ((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp))) 1409 1410 #define in_hblk_range(hmeblkp, vaddr) \ 1411 (((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) && \ 1412 ((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) + \ 1413 get_hblk_span(hmeblkp)))) 1414 1415 #define tte_to_vaddr(hmeblkp, tte) ((caddr_t)(get_hblk_base(hmeblkp) \ 1416 + (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum))) 1417 1418 #define tte_to_evaddr(hmeblkp, ttep) ((caddr_t)(get_hblk_base(hmeblkp) \ 1419 + (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1)))) 1420 1421 #define vaddr_to_vshift(hblktag, vaddr, shwsz) \ 1422 ((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\ 1423 TTE_BSZS_SHIFT((shwsz) - 1)) 1424 1425 #define HME8BLK_SZ (sizeof (struct hme_blk) + \ 1426 (NHMENTS - 1) * sizeof (struct sf_hment)) 1427 #define HME1BLK_SZ (sizeof (struct hme_blk)) 1428 #define H1MIN (2 + MAX_BIGKTSB_TTES) /* nucleus text+data, ktsb */ 1429 1430 /* 1431 * Hme_blk hash structure 1432 * Active mappings are kept in a hash structure of hme_blks. The hash 1433 * function is based on (ctx, vaddr) The size of the hash table size is a 1434 * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN. 1435 * The hash actually consists of 2 separate hashes. One hash is for the user 1436 * address space and the other hash is for the kernel address space. 1437 * The number of buckets are calculated at boot time and stored in the global 1438 * variables "uhmehash_num" and "khmehash_num". By making the hash table size 1439 * a power of 2 we can use a simply & function to derive an index instead of 1440 * a divide. 1441 * 1442 * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash 1443 * bucket. 1444 * An hme hash bucket contains a pointer to an hme_blk and the mutex that 1445 * protects the link list. 1446 * Spitfire supports 4 page sizes. 8k and 64K pages only need one hash. 1447 * 512K pages need 2 hashes and 4M pages need 3 hashes. 1448 * The 'shift' parameter controls how many bits the vaddr will be shifted in 1449 * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function 1450 * and it varies depending on the page size as follows: 1451 * 8k pages: HBLK_RANGE_SHIFT 1452 * 64k pages: MMU_PAGESHIFT64K 1453 * 512K pages: MMU_PAGESHIFT512K 1454 * 4M pages: MMU_PAGESHIFT4M 1455 * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All 1456 * changes should be reflected in both versions. This function and the TSB 1457 * miss handlers are the only places which know about the two hashes. 1458 * 1459 * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall 1460 * into the same bucket for a particular process. It is currently set to 1461 * be equivalent to 64K range or one hme_blk. 1462 * 1463 * The hme_blks in the hash are protected by a per hash bucket mutex 1464 * known as SFMMU_HASH_LOCK. 1465 * You need to acquire this lock before traversing the hash bucket link 1466 * list, while adding/removing a hme_blk to the list, and while 1467 * modifying an hme_blk. A possible optimization is to replace these 1468 * mutexes by readers/writer lock but right now it is not clear whether 1469 * this is a win or not. 1470 * 1471 * The HME_HASH_TABLE_SEARCH will search the hash table for the 1472 * hme_blk that contains the hment that corresponds to the passed 1473 * ctx and vaddr. It assumed the SFMMU_HASH_LOCK is held. 1474 */ 1475 1476 #endif /* ! _ASM */ 1477 1478 #define KHATID ksfmmup 1479 #define UHMEHASH_SZ uhmehash_num 1480 #define KHMEHASH_SZ khmehash_num 1481 #define HMENT_HASHAVELEN 4 1482 #define HBLK_RANGE_SHIFT MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */ 1483 #define HBLK_MIN_TTESZ 1 1484 #define HBLK_MIN_BYTES MMU_PAGESIZE64K 1485 #define HBLK_MIN_SHIFT MMU_PAGESHIFT64K 1486 #define MAX_HASHCNT 5 1487 #define DEFAULT_MAX_HASHCNT 3 1488 1489 #ifndef _ASM 1490 1491 #define HASHADDR_MASK(hashno) TTE_PAGEMASK(hashno) 1492 1493 #define HME_HASH_SHIFT(ttesz) \ 1494 ((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz)) 1495 1496 #define HME_HASH_ADDR(vaddr, hmeshift) \ 1497 ((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift))) 1498 1499 #define HME_HASH_BSPAGE(vaddr, hmeshift) \ 1500 (((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT)) 1501 1502 #define HME_HASH_REHASH(ttesz) \ 1503 (((ttesz) < TTE512K)? 1 : (ttesz)) 1504 1505 #define HME_HASH_FUNCTION(hatid, vaddr, shift) \ 1506 ((((void *)hatid) != ((void *)KHATID)) ? \ 1507 (&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1508 UHMEHASH_SZ) ]): \ 1509 (&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1510 KHMEHASH_SZ) ])) 1511 1512 /* 1513 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1514 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1515 * will be set to NULL, otherwise it will point to the correct hme_blk. 1516 * This macro also cleans empty hblks. 1517 */ 1518 #define HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, \ 1519 pr_hblk, prevpa, listp) \ 1520 { \ 1521 struct hme_blk *nx_hblk; \ 1522 uint64_t nx_pa; \ 1523 \ 1524 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1525 hblkp = hmebp->hmeblkp; \ 1526 hblkpa = hmebp->hmeh_nextpa; \ 1527 prevpa = 0; \ 1528 pr_hblk = NULL; \ 1529 while (hblkp) { \ 1530 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1531 /* found hme_blk */ \ 1532 break; \ 1533 } \ 1534 nx_hblk = hblkp->hblk_next; \ 1535 nx_pa = hblkp->hblk_nextpa; \ 1536 if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) { \ 1537 sfmmu_hblk_hash_rm(hmebp, hblkp, prevpa, pr_hblk); \ 1538 sfmmu_hblk_free(hmebp, hblkp, hblkpa, listp); \ 1539 } else { \ 1540 pr_hblk = hblkp; \ 1541 prevpa = hblkpa; \ 1542 } \ 1543 hblkp = nx_hblk; \ 1544 hblkpa = nx_pa; \ 1545 } \ 1546 } 1547 1548 #define HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp) \ 1549 { \ 1550 struct hme_blk *pr_hblk; \ 1551 uint64_t hblkpa, prevpa; \ 1552 \ 1553 HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, pr_hblk, \ 1554 prevpa, listp); \ 1555 } 1556 1557 /* 1558 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1559 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1560 * will be set to NULL, otherwise it will point to the correct hme_blk. 1561 * It doesn't remove empty hblks. 1562 */ 1563 #define HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp) \ 1564 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1565 for (hblkp = hmebp->hmeblkp; hblkp; \ 1566 hblkp = hblkp->hblk_next) { \ 1567 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1568 /* found hme_blk */ \ 1569 break; \ 1570 } \ 1571 } 1572 1573 #define SFMMU_HASH_LOCK(hmebp) \ 1574 (mutex_enter(&hmebp->hmehash_mutex)) 1575 1576 #define SFMMU_HASH_UNLOCK(hmebp) \ 1577 (mutex_exit(&hmebp->hmehash_mutex)) 1578 1579 #define SFMMU_HASH_LOCK_TRYENTER(hmebp) \ 1580 (mutex_tryenter(&hmebp->hmehash_mutex)) 1581 1582 #define SFMMU_HASH_LOCK_ISHELD(hmebp) \ 1583 (mutex_owned(&hmebp->hmehash_mutex)) 1584 1585 #define SFMMU_XCALL_STATS(sfmmup) \ 1586 { \ 1587 if (sfmmup == ksfmmup) { \ 1588 SFMMU_STAT(sf_kernel_xcalls); \ 1589 } else { \ 1590 SFMMU_STAT(sf_user_xcalls); \ 1591 } \ 1592 } 1593 1594 #define astosfmmu(as) ((as)->a_hat) 1595 #define hblktosfmmu(hmeblkp) ((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id) 1596 #define hblktosrd(hmeblkp) ((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id) 1597 #define sfmmutoas(sfmmup) ((sfmmup)->sfmmu_as) 1598 1599 #define sfmmutohtagid(sfmmup, rid) \ 1600 (((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \ 1601 (void *)((sfmmup)->sfmmu_srdp)) 1602 1603 /* 1604 * We use the sfmmu data structure to keep the per as page coloring info. 1605 */ 1606 #define as_color_bin(as) (astosfmmu(as)->sfmmu_clrbin) 1607 #define as_color_start(as) (astosfmmu(as)->sfmmu_clrstart) 1608 1609 typedef struct { 1610 char h8[HME8BLK_SZ]; 1611 } hblk8_t; 1612 1613 typedef struct { 1614 char h1[HME1BLK_SZ]; 1615 } hblk1_t; 1616 1617 typedef struct { 1618 ulong_t index; 1619 ulong_t len; 1620 hblk8_t *list; 1621 } nucleus_hblk8_info_t; 1622 1623 typedef struct { 1624 ulong_t index; 1625 ulong_t len; 1626 hblk1_t *list; 1627 } nucleus_hblk1_info_t; 1628 1629 /* 1630 * This struct is used for accumlating information about a range 1631 * of pages that are unloading so that a single xcall can flush 1632 * the entire range from remote tlbs. A function that must demap 1633 * a range of virtual addresses declares one of these structures 1634 * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this 1635 * struct to the appropriate sfmmu_hblk_* level function which does 1636 * all the bookkeeping using the other macros. When the function has 1637 * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH() 1638 * macro to take care of any remaining unflushed mappings. 1639 * 1640 * The maximum range this struct can represent is the number of bits 1641 * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only 1642 * MMU_PAGESIZE pages are supported. 1643 * 1644 * Since there are now cases where it's no longer necessary to do 1645 * flushes (e.g. when the process isn't runnable because it's swapping 1646 * out or exiting) we allow these macros to take a NULL dmr input and do 1647 * nothing in that case. 1648 */ 1649 typedef struct { 1650 sfmmu_t *dmr_sfmmup; /* relevant hat */ 1651 caddr_t dmr_addr; /* beginning address */ 1652 caddr_t dmr_endaddr; /* ending address */ 1653 ulong_t dmr_bitvec; /* valid pages found */ 1654 ulong_t dmr_bit; /* next page to examine */ 1655 ulong_t dmr_maxbit; /* highest page in range */ 1656 ulong_t dmr_pgsz; /* page size in range */ 1657 } demap_range_t; 1658 1659 #define DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */ 1660 1661 #define DEMAP_RANGE_INIT(sfmmup, dmrp) \ 1662 if ((dmrp) != NULL) { \ 1663 (dmrp)->dmr_sfmmup = (sfmmup); \ 1664 (dmrp)->dmr_bitvec = 0; \ 1665 (dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \ 1666 (dmrp)->dmr_pgsz = MMU_PAGESIZE; \ 1667 } 1668 1669 #define DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE) 1670 1671 #define DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \ 1672 if ((dmrp) != NULL) { \ 1673 if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \ 1674 sfmmu_tlb_range_demap(dmrp); \ 1675 (dmrp)->dmr_endaddr = (endaddr); \ 1676 } 1677 1678 #define DEMAP_RANGE_FLUSH(dmrp) \ 1679 if ((dmrp) != NULL) { \ 1680 if ((dmrp)->dmr_bitvec != 0) \ 1681 sfmmu_tlb_range_demap(dmrp); \ 1682 } 1683 1684 #define DEMAP_RANGE_MARKPG(dmrp, addr) \ 1685 if ((dmrp) != NULL) { \ 1686 if ((dmrp)->dmr_bitvec == 0) { \ 1687 (dmrp)->dmr_addr = (addr); \ 1688 (dmrp)->dmr_bit = 1; \ 1689 } \ 1690 (dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \ 1691 } 1692 1693 #define DEMAP_RANGE_NEXTPG(dmrp) \ 1694 if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \ 1695 if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \ 1696 sfmmu_tlb_range_demap(dmrp); \ 1697 } else { \ 1698 (dmrp)->dmr_bit <<= 1; \ 1699 } \ 1700 } 1701 1702 /* 1703 * TSB related structures 1704 * 1705 * The TSB is made up of tte entries. Both the tag and data are present 1706 * in the TSB. The TSB locking is managed as follows: 1707 * A software bit in the tsb tag is used to indicate that entry is locked. 1708 * If a cpu servicing a tsb miss reads a locked entry the tag compare will 1709 * fail forcing the cpu to go to the hat hash for the translation. 1710 * The cpu who holds the lock can then modify the data side, and the tag side. 1711 * The last write should be to the word containing the lock bit which will 1712 * clear the lock and allow the tsb entry to be read. It is assumed that all 1713 * cpus reading the tsb will do so with atomic 128-bit loads. An atomic 128 1714 * bit load is required to prevent the following from happening: 1715 * 1716 * cpu 0 cpu 1 comments 1717 * 1718 * ldx tag tag unlocked 1719 * ldstub lock set lock 1720 * stx data 1721 * stx tag unlock 1722 * ldx tag incorrect tte!!! 1723 * 1724 * The software also maintains a bit in the tag to indicate an invalid 1725 * tsb entry. The purpose of this bit is to allow the tsb invalidate code 1726 * to invalidate a tsb entry with a single cas. See code for details. 1727 */ 1728 1729 union tsb_tag { 1730 struct { 1731 uint32_t tag_res0:16; /* reserved - context area */ 1732 uint32_t tag_inv:1; /* sw - invalid tsb entry */ 1733 uint32_t tag_lock:1; /* sw - locked tsb entry */ 1734 uint32_t tag_res1:4; /* reserved */ 1735 uint32_t tag_va_hi:10; /* va[63:54] */ 1736 uint32_t tag_va_lo; /* va[53:22] */ 1737 } tagbits; 1738 struct tsb_tagints { 1739 uint32_t inthi; 1740 uint32_t intlo; 1741 } tagints; 1742 }; 1743 #define tag_invalid tagbits.tag_inv 1744 #define tag_locked tagbits.tag_lock 1745 #define tag_vahi tagbits.tag_va_hi 1746 #define tag_valo tagbits.tag_va_lo 1747 #define tag_inthi tagints.inthi 1748 #define tag_intlo tagints.intlo 1749 1750 struct tsbe { 1751 union tsb_tag tte_tag; 1752 tte_t tte_data; 1753 }; 1754 1755 /* 1756 * A per cpu struct is kept that duplicates some info 1757 * used by the tl>0 tsb miss handlers plus it provides 1758 * a scratch area. Its purpose is to minimize cache misses 1759 * in the tsb miss handler and is 128 bytes (2 e$ lines). 1760 * 1761 * There should be one allocated per cpu in nucleus memory 1762 * and should be aligned on an ecache line boundary. 1763 */ 1764 struct tsbmiss { 1765 sfmmu_t *ksfmmup; /* kernel hat id */ 1766 sfmmu_t *usfmmup; /* user hat id */ 1767 sf_srd_t *usrdp; /* user's SRD hat id */ 1768 struct tsbe *tsbptr; /* hardware computed ptr */ 1769 struct tsbe *tsbptr4m; /* hardware computed ptr */ 1770 struct tsbe *tsbscdptr; /* hardware computed ptr */ 1771 struct tsbe *tsbscdptr4m; /* hardware computed ptr */ 1772 uint64_t ismblkpa; 1773 struct hmehash_bucket *khashstart; 1774 struct hmehash_bucket *uhashstart; 1775 uint_t khashsz; 1776 uint_t uhashsz; 1777 uint16_t dcache_line_mask; /* used to flush dcache */ 1778 uchar_t uhat_tteflags; /* private page sizes */ 1779 uchar_t uhat_rtteflags; /* SHME pagesizes */ 1780 uint32_t utsb_misses; 1781 uint32_t ktsb_misses; 1782 uint16_t uprot_traps; 1783 uint16_t kprot_traps; 1784 /* 1785 * scratch[0] -> TSB_TAGACC 1786 * scratch[1] -> TSBMISS_HMEBP 1787 * scratch[2] -> TSBMISS_HATID 1788 */ 1789 uintptr_t scratch[3]; 1790 ulong_t shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1791 ulong_t scd_shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1792 uint8_t pad[48]; /* pad to 64 bytes */ 1793 }; 1794 1795 /* 1796 * A per cpu struct is kept for the use within the tl>0 kpm tsb 1797 * miss handler. Some members are duplicates of common data or 1798 * the physical addresses of common data. A few members are also 1799 * written by the tl>0 kpm tsb miss handler. Its purpose is to 1800 * minimize cache misses in the kpm tsb miss handler and occupies 1801 * one ecache line. There should be one allocated per cpu in 1802 * nucleus memory and it should be aligned on an ecache line 1803 * boundary. It is not merged w/ struct tsbmiss since there is 1804 * not much to share and the tsbmiss pathes are different, so 1805 * a kpm tlbmiss/tsbmiss only touches one cacheline, except for 1806 * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter 1807 * of struct tsbmiss is used on every dtlb miss. 1808 */ 1809 struct kpmtsbm { 1810 caddr_t vbase; /* start of address kpm range */ 1811 caddr_t vend; /* end of address kpm range */ 1812 uchar_t flags; /* flags needed in TL tsbmiss handler */ 1813 uchar_t sz_shift; /* for single kpm window */ 1814 uchar_t kpmp_shift; /* hash lock shift */ 1815 uchar_t kpmp2pshft; /* kpm page to page shift */ 1816 uint_t kpmp_table_sz; /* size of kpmp_table or kpmp_stable */ 1817 uint64_t kpmp_tablepa; /* paddr of kpmp_table or kpmp_stable */ 1818 uint64_t msegphashpa; /* paddr of memseg_phash */ 1819 struct tsbe *tsbptr; /* saved ktsb pointer */ 1820 uint_t kpm_dtlb_misses; /* kpm tlbmiss counter */ 1821 uint_t kpm_tsb_misses; /* kpm tsbmiss counter */ 1822 uintptr_t pad[1]; 1823 }; 1824 1825 extern size_t tsb_slab_size; 1826 extern uint_t tsb_slab_shift; 1827 extern size_t tsb_slab_mask; 1828 1829 #endif /* !_ASM */ 1830 1831 /* 1832 * Flags for TL kpm tsbmiss handler 1833 */ 1834 #define KPMTSBM_ENABLE_FLAG 0x01 /* bit copy of kpm_enable */ 1835 #define KPMTSBM_TLTSBM_FLAG 0x02 /* use TL tsbmiss handler */ 1836 #define KPMTSBM_TSBPHYS_FLAG 0x04 /* use ASI_MEM for TSB update */ 1837 1838 /* 1839 * The TSB 1840 * All TSB sizes supported by the hardware are now supported (8K - 1M). 1841 * For kernel TSBs we may go beyond the hardware supported sizes and support 1842 * larger TSBs via software. 1843 * All TTE sizes are supported in the TSB; the manner in which this is 1844 * done is cpu dependent. 1845 */ 1846 #define TSB_MIN_SZCODE TSB_8K_SZCODE /* min. supported TSB size */ 1847 #define TSB_MIN_OFFSET_MASK (TSB_OFFSET_MASK(TSB_MIN_SZCODE)) 1848 1849 #ifdef sun4v 1850 #define UTSB_MAX_SZCODE TSB_256M_SZCODE /* max. supported TSB size */ 1851 #else /* sun4u */ 1852 #define UTSB_MAX_SZCODE TSB_1M_SZCODE /* max. supported TSB size */ 1853 #endif /* sun4v */ 1854 1855 #define UTSB_MAX_OFFSET_MASK (TSB_OFFSET_MASK(UTSB_MAX_SZCODE)) 1856 1857 #define TSB_FREEMEM_MIN 0x1000 /* 32 mb */ 1858 #define TSB_FREEMEM_LARGE 0x10000 /* 512 mb */ 1859 #define TSB_8K_SZCODE 0 /* 512 entries */ 1860 #define TSB_16K_SZCODE 1 /* 1k entries */ 1861 #define TSB_32K_SZCODE 2 /* 2k entries */ 1862 #define TSB_64K_SZCODE 3 /* 4k entries */ 1863 #define TSB_128K_SZCODE 4 /* 8k entries */ 1864 #define TSB_256K_SZCODE 5 /* 16k entries */ 1865 #define TSB_512K_SZCODE 6 /* 32k entries */ 1866 #define TSB_1M_SZCODE 7 /* 64k entries */ 1867 #define TSB_2M_SZCODE 8 /* 128k entries */ 1868 #define TSB_4M_SZCODE 9 /* 256k entries */ 1869 #define TSB_8M_SZCODE 10 /* 512k entries */ 1870 #define TSB_16M_SZCODE 11 /* 1M entries */ 1871 #define TSB_32M_SZCODE 12 /* 2M entries */ 1872 #define TSB_64M_SZCODE 13 /* 4M entries */ 1873 #define TSB_128M_SZCODE 14 /* 8M entries */ 1874 #define TSB_256M_SZCODE 15 /* 16M entries */ 1875 #define TSB_ENTRY_SHIFT 4 /* each entry = 128 bits = 16 bytes */ 1876 #define TSB_ENTRY_SIZE (1 << 4) 1877 #define TSB_START_SIZE 9 1878 #define TSB_ENTRIES(tsbsz) (1 << (TSB_START_SIZE + tsbsz)) 1879 #define TSB_BYTES(tsbsz) (TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT) 1880 #define TSB_OFFSET_MASK(tsbsz) (TSB_ENTRIES(tsbsz) - 1) 1881 #define TSB_BASEADDR_MASK ((1 << 12) - 1) 1882 1883 /* 1884 * sun4u platforms 1885 * --------------- 1886 * We now support two user TSBs with one TSB base register. 1887 * Hence the TSB base register is split up as follows: 1888 * 1889 * When only one TSB present: 1890 * [63 62..42 41..13 12..4 3..0] 1891 * ^ ^ ^ ^ ^ 1892 * | | | | | 1893 * | | | | |_ TSB size code 1894 * | | | | 1895 * | | | |_ Reserved 0 1896 * | | | 1897 * | | |_ TSB VA[41..13] 1898 * | | 1899 * | |_ VA hole (Spitfire), zeros (Cheetah and beyond) 1900 * | 1901 * |_ 0 1902 * 1903 * When second TSB present: 1904 * [63 62..42 41..33 32..29 28..22 21..13 12..4 3..0] 1905 * ^ ^ ^ ^ ^ ^ ^ ^ 1906 * | | | | | | | | 1907 * | | | | | | | |_ First TSB size code 1908 * | | | | | | | 1909 * | | | | | | |_ Reserved 0 1910 * | | | | | | 1911 * | | | | | |_ First TSB's VA[21..13] 1912 * | | | | | 1913 * | | | | |_ Reserved for future use 1914 * | | | | 1915 * | | | |_ Second TSB's size code 1916 * | | | 1917 * | | |_ Second TSB's VA[21..13] 1918 * | | 1919 * | |_ VA hole (Spitfire) / ones (Cheetah and beyond) 1920 * | 1921 * |_ 1 1922 * 1923 * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs 1924 * may be up to 4M in size. For now, only hardware supported TSB sizes 1925 * are supported, though the slabs are usually 4M in size. 1926 * 1927 * sun4u platforms that define UTSB_PHYS use physical addressing to access 1928 * the user TSBs at TL>0. The first user TSB base is in the MMU I/D TSB Base 1929 * registers. The second TSB base uses a dedicated scratchpad register which 1930 * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h. The layout for 1931 * both registers is equivalent to sun4v below, except the TSB PA range is 1932 * [46..13] for sun4u. 1933 * 1934 * sun4v platforms 1935 * --------------- 1936 * On sun4v platforms, we use two dedicated scratchpad registers as pseudo 1937 * hardware TSB base registers to hold up to two different user TSBs. 1938 * 1939 * Each register contains TSB's physical base and size code information 1940 * as follows: 1941 * 1942 * [63..56 55..13 12..4 3..0] 1943 * ^ ^ ^ ^ 1944 * | | | | 1945 * | | | |_ TSB size code 1946 * | | | 1947 * | | |_ Reserved 0 1948 * | | 1949 * | |_ TSB PA[55..13] 1950 * | 1951 * | 1952 * | 1953 * |_ 0 for valid TSB 1954 * 1955 * Absence of a user TSB (primarily the second user TSB) is indicated by 1956 * storing a negative value in the TSB base register. This allows us to 1957 * check for presence of a user TSB by simply checking bit# 63. 1958 */ 1959 #define TSBREG_MSB_SHIFT 32 /* set upper bits */ 1960 #define TSBREG_MSB_CONST 0xfffff800 /* set bits 63..43 */ 1961 #define TSBREG_FIRTSB_SHIFT 42 /* to clear bits 63:22 */ 1962 #define TSBREG_SECTSB_MKSHIFT 20 /* 21:13 --> 41:33 */ 1963 #define TSBREG_SECTSB_LSHIFT 22 /* to clear bits 63:42 */ 1964 #define TSBREG_SECTSB_RSHIFT (TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT) 1965 /* sectsb va -> bits 21:13 */ 1966 /* after clearing upper bits */ 1967 #define TSBREG_SECSZ_SHIFT 29 /* to get sectsb szc to 3:0 */ 1968 #define TSBREG_VAMASK_SHIFT 13 /* set up VA mask */ 1969 1970 #define BIGKTSB_SZ_MASK 0xf 1971 #define TSB_SOFTSZ_MASK BIGKTSB_SZ_MASK 1972 #define MIN_BIGKTSB_SZCODE 9 /* 256k entries */ 1973 #define MAX_BIGKTSB_SZCODE 11 /* 1024k entries */ 1974 #define MAX_BIGKTSB_TTES (TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M) 1975 1976 #define TAG_VALO_SHIFT 22 /* tag's va are bits 63-22 */ 1977 /* 1978 * sw bits used on tsb_tag - bit masks used only in assembly 1979 * use only a sethi for these fields. 1980 */ 1981 #define TSBTAG_INVALID 0x00008000 /* tsb_tag.tag_invalid */ 1982 #define TSBTAG_LOCKED 0x00004000 /* tsb_tag.tag_locked */ 1983 1984 #ifdef _ASM 1985 1986 /* 1987 * Marker to indicate that this instruction will be hot patched at runtime 1988 * to some other value. 1989 * This value must be zero since it fills in the imm bits of the target 1990 * instructions to be patched 1991 */ 1992 #define RUNTIME_PATCH (0) 1993 1994 /* 1995 * V9 defines nop instruction as the following, which we use 1996 * at runtime to nullify some instructions we don't want to 1997 * execute in the trap handlers on certain platforms. 1998 */ 1999 #define MAKE_NOP_INSTR(reg) \ 2000 sethi %hi(0x1000000), reg 2001 2002 /* 2003 * This macro constructs a SPARC V9 "jmpl <source reg>, %g0" 2004 * instruction, with the source register specified by the jump_reg_number. 2005 * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14]. 2006 * The instruction is returned in reg. The macro is used to patch in a jmpl 2007 * instruction at runtime. 2008 */ 2009 #define MAKE_JMP_INSTR(jump_reg_number, reg, tmp) \ 2010 sethi %hi(0x81c00000), reg; \ 2011 mov jump_reg_number, tmp; \ 2012 sll tmp, 14, tmp; \ 2013 or reg, tmp, reg 2014 2015 /* 2016 * Macro to get hat per-MMU cnum on this CPU. 2017 * sfmmu - In, pass in "sfmmup" from the caller. 2018 * cnum - Out, return 'cnum' to the caller 2019 * scr - scratch 2020 */ 2021 #define SFMMU_CPU_CNUM(sfmmu, cnum, scr) \ 2022 CPU_ADDR(scr, cnum); /* scr = load CPU struct addr */ \ 2023 ld [scr + CPU_MMU_IDX], cnum; /* cnum = mmuid */ \ 2024 add sfmmu, SFMMU_CTXS, scr; /* scr = sfmmup->sfmmu_ctxs[] */ \ 2025 sllx cnum, SFMMU_MMU_CTX_SHIFT, cnum; \ 2026 add scr, cnum, scr; /* scr = sfmmup->sfmmu_ctxs[id] */ \ 2027 ldx [scr + SFMMU_MMU_GC_NUM], scr; /* sfmmu_ctxs[id].gcnum */ \ 2028 sllx scr, SFMMU_MMU_CNUM_LSHIFT, scr; \ 2029 srlx scr, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2030 2031 /* 2032 * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry 2033 * entry - In, pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller. 2034 * gnum - Out, return sfmmu gnum 2035 * cnum - Out, return sfmmu cnum 2036 * reg - scratch 2037 */ 2038 #define SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg) \ 2039 ldx [entry + SFMMU_CTXS], reg; /* reg = sfmmu (gnum | cnum) */ \ 2040 srlx reg, SFMMU_MMU_GNUM_RSHIFT, gnum; /* gnum = sfmmu gnum */ \ 2041 sllx reg, SFMMU_MMU_CNUM_LSHIFT, cnum; \ 2042 srlx cnum, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2043 2044 /* 2045 * Macro to get this CPU's tsbmiss area. 2046 */ 2047 #define CPU_TSBMISS_AREA(tsbmiss, tmp1) \ 2048 CPU_INDEX(tmp1, tsbmiss); /* tmp1 = cpu idx */ \ 2049 sethi %hi(tsbmiss_area), tsbmiss; /* tsbmiss base ptr */ \ 2050 mulx tmp1, TSBMISS_SIZE, tmp1; /* byte offset */ \ 2051 or tsbmiss, %lo(tsbmiss_area), tsbmiss; \ 2052 add tsbmiss, tmp1, tsbmiss /* tsbmiss area of CPU */ 2053 2054 2055 /* 2056 * Macro to set kernel context + page size codes in DMMU primary context 2057 * register. It is only necessary for sun4u because sun4v does not need 2058 * page size codes 2059 */ 2060 #ifdef sun4v 2061 2062 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) 2063 2064 #else 2065 2066 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \ 2067 sethi %hi(kcontextreg), reg0; \ 2068 ldx [reg0 + %lo(kcontextreg)], reg0; \ 2069 mov MMU_PCONTEXT, reg1; \ 2070 ldxa [reg1]ASI_MMU_CTX, reg2; \ 2071 xor reg0, reg2, reg2; \ 2072 brz reg2, label3; \ 2073 srlx reg2, CTXREG_NEXT_SHIFT, reg2; \ 2074 rdpr %pstate, reg3; /* disable interrupts */ \ 2075 btst PSTATE_IE, reg3; \ 2076 /*CSTYLED*/ \ 2077 bnz,a,pt %icc, label1; \ 2078 wrpr reg3, PSTATE_IE, %pstate; \ 2079 /*CSTYLED*/ \ 2080 label1:; \ 2081 brz reg2, label2; /* need demap if N_pgsz0/1 change */ \ 2082 sethi %hi(FLUSH_ADDR), reg4; \ 2083 mov DEMAP_ALL_TYPE, reg2; \ 2084 stxa %g0, [reg2]ASI_DTLB_DEMAP; \ 2085 stxa %g0, [reg2]ASI_ITLB_DEMAP; \ 2086 /*CSTYLED*/ \ 2087 label2:; \ 2088 stxa reg0, [reg1]ASI_MMU_CTX; \ 2089 flush reg4; \ 2090 btst PSTATE_IE, reg3; \ 2091 /*CSTYLED*/ \ 2092 bnz,a,pt %icc, label3; \ 2093 wrpr %g0, reg3, %pstate; /* restore interrupt state */ \ 2094 label3:; 2095 2096 #endif 2097 2098 /* 2099 * Macro to setup arguments with kernel sfmmup context + page size before 2100 * calling sfmmu_setctx_sec() 2101 */ 2102 #ifdef sun4v 2103 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2104 set KCONTEXT, arg0; \ 2105 set 0, arg1; 2106 #else 2107 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2108 ldub [sfmmup + SFMMU_CEXT], arg1; \ 2109 set KCONTEXT, arg0; \ 2110 sll arg1, CTXREG_EXT_SHIFT, arg1; 2111 #endif 2112 2113 #define PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr) \ 2114 andcc pstatereg, PSTATE_IE, %g0; /* panic if intrs */ \ 2115 /*CSTYLED*/ \ 2116 bnz,pt %icc, label; /* already disabled */ \ 2117 nop; \ 2118 \ 2119 sethi %hi(panicstr), scr; \ 2120 ldx [scr + %lo(panicstr)], scr; \ 2121 tst scr; \ 2122 /*CSTYLED*/ \ 2123 bnz,pt %xcc, label; \ 2124 nop; \ 2125 \ 2126 save %sp, -SA(MINFRAME), %sp; \ 2127 sethi %hi(sfmmu_panic1), %o0; \ 2128 call panic; \ 2129 or %o0, %lo(sfmmu_panic1), %o0; \ 2130 /*CSTYLED*/ \ 2131 label: 2132 2133 #define PANIC_IF_INTR_ENABLED_PSTR(label, scr) \ 2134 /* \ 2135 * The caller must have disabled interrupts. \ 2136 * If interrupts are not disabled, panic \ 2137 */ \ 2138 rdpr %pstate, scr; \ 2139 andcc scr, PSTATE_IE, %g0; \ 2140 /*CSTYLED*/ \ 2141 bz,pt %icc, label; \ 2142 nop; \ 2143 \ 2144 sethi %hi(panicstr), scr; \ 2145 ldx [scr + %lo(panicstr)], scr; \ 2146 tst scr; \ 2147 /*CSTYLED*/ \ 2148 bnz,pt %xcc, label; \ 2149 nop; \ 2150 \ 2151 sethi %hi(sfmmu_panic6), %o0; \ 2152 call panic; \ 2153 or %o0, %lo(sfmmu_panic6), %o0; \ 2154 /*CSTYLED*/ \ 2155 label: 2156 2157 #endif /* _ASM */ 2158 2159 #ifndef _ASM 2160 2161 #ifdef VAC 2162 /* 2163 * Page coloring 2164 * The p_vcolor field of the page struct (1 byte) is used to store the 2165 * virtual page color. This provides for 255 colors. The value zero is 2166 * used to mean the page has no color - never been mapped or somehow 2167 * purified. 2168 */ 2169 2170 #define PP_GET_VCOLOR(pp) (((pp)->p_vcolor) - 1) 2171 #define PP_NEWPAGE(pp) (!(pp)->p_vcolor) 2172 #define PP_SET_VCOLOR(pp, color) \ 2173 ((pp)->p_vcolor = ((color) + 1)) 2174 2175 /* 2176 * As mentioned p_vcolor == 0 means there is no color for this page. 2177 * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus 2178 * one so we define this constant. 2179 */ 2180 #define NO_VCOLOR (-1) 2181 2182 #define addr_to_vcolor(addr) \ 2183 (((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask) 2184 #else /* VAC */ 2185 #define addr_to_vcolor(addr) (0) 2186 #endif /* VAC */ 2187 2188 /* 2189 * The field p_index in the psm page structure is for large pages support. 2190 * P_index is a bit-vector of the different mapping sizes that a given page 2191 * is part of. An hme structure for a large mapping is only added in the 2192 * group leader page (first page). All pages covered by a given large mapping 2193 * have the corrosponding mapping bit set in their p_index field. This allows 2194 * us to only store an explicit hme structure in the leading page which 2195 * simplifies the mapping link list management. Furthermore, it provides us 2196 * a fast mechanism for determining the largest mapping a page is part of. For 2197 * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A. 2198 * 2199 * Implementation note: even though the first bit in p_index is reserved 2200 * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set. 2201 * In addition, the upper four bits of the p_index field are used by the 2202 * code as temporaries 2203 */ 2204 2205 /* 2206 * Defines for psm page struct fields and large page support 2207 */ 2208 #define SFMMU_INDEX_SHIFT 6 2209 #define SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1) 2210 2211 /* Return the mapping index */ 2212 #define PP_MAPINDEX(pp) ((pp)->p_index & SFMMU_INDEX_MASK) 2213 2214 /* 2215 * These macros rely on the following property: 2216 * All pages constituting a large page are covered by a virtually 2217 * contiguous set of page_t's. 2218 */ 2219 2220 /* Return the leader for this mapping size */ 2221 #define PP_GROUPLEADER(pp, sz) \ 2222 (&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))]) 2223 2224 /* Return the root page for this page based on p_szc */ 2225 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 2226 PP_GROUPLEADER((pp), (pp)->p_szc)) 2227 2228 #define PP_PAGENEXT_N(pp, n) ((pp) + (n)) 2229 #define PP_PAGENEXT(pp) PP_PAGENEXT_N((pp), 1) 2230 2231 #define PP_PAGEPREV_N(pp, n) ((pp) - (n)) 2232 #define PP_PAGEPREV(pp) PP_PAGEPREV_N((pp), 1) 2233 2234 #define PP_ISMAPPED_LARGE(pp) (PP_MAPINDEX(pp) != 0) 2235 2236 /* Need function to test the page mappping which takes p_index into account */ 2237 #define PP_ISMAPPED(pp) ((pp)->p_mapping || PP_ISMAPPED_LARGE(pp)) 2238 2239 /* 2240 * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT 2241 * set p_index field. 2242 */ 2243 #define PAGESZ_TO_INDEX(sz) (1 << (sz)) 2244 2245 2246 /* 2247 * prototypes for hat assembly routines. Some of these are 2248 * known to machine dependent VM code. 2249 */ 2250 extern uint64_t sfmmu_make_tsbtag(caddr_t); 2251 extern struct tsbe * 2252 sfmmu_get_tsbe(uint64_t, caddr_t, int, int); 2253 extern void sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int); 2254 extern void sfmmu_unload_tsbe(struct tsbe *, uint64_t, int); 2255 extern void sfmmu_load_mmustate(sfmmu_t *); 2256 extern void sfmmu_raise_tsb_exception(uint64_t, uint64_t); 2257 #ifndef sun4v 2258 extern void sfmmu_itlb_ld_kva(caddr_t, tte_t *); 2259 extern void sfmmu_dtlb_ld_kva(caddr_t, tte_t *); 2260 #endif /* sun4v */ 2261 extern void sfmmu_copytte(tte_t *, tte_t *); 2262 extern int sfmmu_modifytte(tte_t *, tte_t *, tte_t *); 2263 extern int sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *); 2264 extern pfn_t sfmmu_ttetopfn(tte_t *, caddr_t); 2265 extern void sfmmu_hblk_hash_rm(struct hmehash_bucket *, 2266 struct hme_blk *, uint64_t, struct hme_blk *); 2267 extern void sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *, 2268 uint64_t); 2269 extern uint_t sfmmu_disable_intrs(void); 2270 extern void sfmmu_enable_intrs(uint_t); 2271 /* 2272 * functions exported to machine dependent VM code 2273 */ 2274 extern void sfmmu_patch_ktsb(void); 2275 #ifndef UTSB_PHYS 2276 extern void sfmmu_patch_utsb(void); 2277 #endif /* UTSB_PHYS */ 2278 extern pfn_t sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *); 2279 extern void sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *); 2280 extern pfn_t sfmmu_kvaszc2pfn(caddr_t, int); 2281 #ifdef DEBUG 2282 extern void sfmmu_check_kpfn(pfn_t); 2283 #else 2284 #define sfmmu_check_kpfn(pfn) /* disabled */ 2285 #endif /* DEBUG */ 2286 extern void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 2287 extern void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, uint_t); 2288 extern void sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t); 2289 extern void sfmmu_init_tsbs(void); 2290 extern caddr_t sfmmu_ktsb_alloc(caddr_t); 2291 extern int sfmmu_getctx_pri(void); 2292 extern int sfmmu_getctx_sec(void); 2293 extern void sfmmu_setctx_sec(uint_t); 2294 extern void sfmmu_inv_tsb(caddr_t, uint_t); 2295 extern void sfmmu_init_ktsbinfo(void); 2296 extern int sfmmu_setup_4lp(void); 2297 extern void sfmmu_patch_mmu_asi(int); 2298 extern void sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int); 2299 extern void sfmmu_cache_flushall(void); 2300 extern pgcnt_t sfmmu_tte_cnt(sfmmu_t *, uint_t); 2301 extern void *sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int); 2302 extern void sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t); 2303 extern void sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *); 2304 2305 extern void hat_kern_setup(void); 2306 extern int hat_page_relocate(page_t **, page_t **, spgcnt_t *); 2307 extern int sfmmu_get_ppvcolor(struct page *); 2308 extern int sfmmu_get_addrvcolor(caddr_t); 2309 extern int sfmmu_hat_lock_held(sfmmu_t *); 2310 extern int sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int); 2311 2312 /* 2313 * Functions exported to xhat_sfmmu.c 2314 */ 2315 extern kmutex_t *sfmmu_mlist_enter(page_t *); 2316 extern void sfmmu_mlist_exit(kmutex_t *); 2317 extern int sfmmu_mlist_held(struct page *); 2318 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *); 2319 2320 /* 2321 * MMU-specific functions optionally imported from the CPU module 2322 */ 2323 #pragma weak mmu_large_pages_disabled 2324 #pragma weak mmu_set_ctx_page_sizes 2325 #pragma weak mmu_check_page_sizes 2326 2327 extern uint_t mmu_large_pages_disabled(uint_t); 2328 extern void mmu_set_ctx_page_sizes(sfmmu_t *); 2329 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *); 2330 2331 extern sfmmu_t *ksfmmup; 2332 extern caddr_t ktsb_base; 2333 extern uint64_t ktsb_pbase; 2334 extern int ktsb_sz; 2335 extern int ktsb_szcode; 2336 extern caddr_t ktsb4m_base; 2337 extern uint64_t ktsb4m_pbase; 2338 extern int ktsb4m_sz; 2339 extern int ktsb4m_szcode; 2340 extern uint64_t kpm_tsbbase; 2341 extern int kpm_tsbsz; 2342 extern int ktsb_phys; 2343 extern int enable_bigktsb; 2344 #ifndef sun4v 2345 extern int utsb_dtlb_ttenum; 2346 extern int utsb4m_dtlb_ttenum; 2347 #endif /* sun4v */ 2348 extern int uhmehash_num; 2349 extern int khmehash_num; 2350 extern struct hmehash_bucket *uhme_hash; 2351 extern struct hmehash_bucket *khme_hash; 2352 extern kmutex_t *mml_table; 2353 extern uint_t mml_table_sz; 2354 extern uint_t mml_shift; 2355 extern uint_t hblk_alloc_dynamic; 2356 extern struct tsbmiss tsbmiss_area[NCPU]; 2357 extern struct kpmtsbm kpmtsbm_area[NCPU]; 2358 2359 #ifndef sun4v 2360 extern int dtlb_resv_ttenum; 2361 extern caddr_t utsb_vabase; 2362 extern caddr_t utsb4m_vabase; 2363 #endif /* sun4v */ 2364 extern vmem_t *kmem_tsb_default_arena[]; 2365 extern int tsb_lgrp_affinity; 2366 2367 extern uint_t disable_large_pages; 2368 extern uint_t disable_ism_large_pages; 2369 extern uint_t disable_auto_data_large_pages; 2370 extern uint_t disable_auto_text_large_pages; 2371 2372 /* kpm externals */ 2373 extern pfn_t sfmmu_kpm_vatopfn(caddr_t); 2374 extern void sfmmu_kpm_patch_tlbm(void); 2375 extern void sfmmu_kpm_patch_tsbm(void); 2376 extern void sfmmu_patch_shctx(void); 2377 extern void sfmmu_kpm_load_tsb(caddr_t, tte_t *, int); 2378 extern void sfmmu_kpm_unload_tsb(caddr_t, int); 2379 extern void sfmmu_kpm_tsbmtl(short *, uint_t *, int); 2380 extern int sfmmu_kpm_stsbmtl(char *, uint_t *, int); 2381 extern caddr_t kpm_vbase; 2382 extern size_t kpm_size; 2383 extern struct memseg *memseg_hash[]; 2384 extern uint64_t memseg_phash[]; 2385 extern kpm_hlk_t *kpmp_table; 2386 extern kpm_shlk_t *kpmp_stable; 2387 extern uint_t kpmp_table_sz; 2388 extern uint_t kpmp_stable_sz; 2389 extern uchar_t kpmp_shift; 2390 2391 #define PP_ISMAPPED_KPM(pp) ((pp)->p_kpmref > 0) 2392 2393 #define IS_KPM_ALIAS_RANGE(vaddr) \ 2394 (((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0) 2395 2396 #endif /* !_ASM */ 2397 2398 /* sfmmu_kpm_tsbmtl flags */ 2399 #define KPMTSBM_STOP 0 2400 #define KPMTSBM_START 1 2401 2402 /* kpm_smallpages kp_mapped values */ 2403 #define KPM_MAPPEDS -1 /* small mapping valid, no conflict */ 2404 #define KPM_MAPPEDSC 1 /* small mapping valid, conflict */ 2405 2406 /* Physical memseg address NULL marker */ 2407 #define MSEG_NULLPTR_PA -1 2408 2409 /* 2410 * Memseg hash defines for kpm trap level tsbmiss handler. 2411 * Must be in sync w/ page.h . 2412 */ 2413 #define SFMMU_MEM_HASH_SHIFT 0x9 2414 #define SFMMU_N_MEM_SLOTS 0x200 2415 #define SFMMU_MEM_HASH_ENTRY_SHIFT 3 2416 2417 #ifndef _ASM 2418 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT) 2419 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT 2420 #endif 2421 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS) 2422 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS 2423 #endif 2424 2425 /* Physical memseg address NULL marker */ 2426 #define SFMMU_MEMSEG_NULLPTR_PA -1 2427 2428 /* 2429 * Check KCONTEXT to be zero, asm parts depend on that assumption. 2430 */ 2431 #if (KCONTEXT != 0) 2432 #error KCONTEXT != 0 2433 #endif 2434 #endif /* !_ASM */ 2435 2436 2437 #endif /* _KERNEL */ 2438 2439 #ifndef _ASM 2440 /* 2441 * ctx, hmeblk, mlistlock and other stats for sfmmu 2442 */ 2443 struct sfmmu_global_stat { 2444 int sf_tsb_exceptions; /* # of tsb exceptions */ 2445 int sf_tsb_raise_exception; /* # tsb exc. w/o TLB flush */ 2446 2447 int sf_pagefaults; /* # of pagefaults */ 2448 2449 int sf_uhash_searches; /* # of user hash searches */ 2450 int sf_uhash_links; /* # of user hash links */ 2451 int sf_khash_searches; /* # of kernel hash searches */ 2452 int sf_khash_links; /* # of kernel hash links */ 2453 2454 int sf_swapout; /* # times hat swapped out */ 2455 2456 int sf_tsb_alloc; /* # TSB allocations */ 2457 int sf_tsb_allocfail; /* # times TSB alloc fail */ 2458 int sf_tsb_sectsb_create; /* # times second TSB added */ 2459 2460 int sf_scd_1sttsb_alloc; /* # SCD 1st TSB allocations */ 2461 int sf_scd_2ndtsb_alloc; /* # SCD 2nd TSB allocations */ 2462 int sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */ 2463 int sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */ 2464 2465 2466 int sf_tteload8k; /* calls to sfmmu_tteload */ 2467 int sf_tteload64k; /* calls to sfmmu_tteload */ 2468 int sf_tteload512k; /* calls to sfmmu_tteload */ 2469 int sf_tteload4m; /* calls to sfmmu_tteload */ 2470 int sf_tteload32m; /* calls to sfmmu_tteload */ 2471 int sf_tteload256m; /* calls to sfmmu_tteload */ 2472 2473 int sf_tsb_load8k; /* # times loaded 8K tsbent */ 2474 int sf_tsb_load4m; /* # times loaded 4M tsbent */ 2475 2476 int sf_hblk_hit; /* found hblk during tteload */ 2477 int sf_hblk8_ncreate; /* static hblk8's created */ 2478 int sf_hblk8_nalloc; /* static hblk8's allocated */ 2479 int sf_hblk1_ncreate; /* static hblk1's created */ 2480 int sf_hblk1_nalloc; /* static hblk1's allocated */ 2481 int sf_hblk_slab_cnt; /* sfmmu8_cache slab creates */ 2482 int sf_hblk_reserve_cnt; /* hblk_reserve usage */ 2483 int sf_hblk_recurse_cnt; /* hblk_reserve owner reqs */ 2484 int sf_hblk_reserve_hit; /* hblk_reserve hash hits */ 2485 int sf_get_free_success; /* reserve list allocs */ 2486 int sf_get_free_throttle; /* fails due to throttling */ 2487 int sf_get_free_fail; /* fails due to empty list */ 2488 int sf_put_free_success; /* reserve list frees */ 2489 int sf_put_free_fail; /* fails due to full list */ 2490 2491 int sf_pgcolor_conflict; /* VAC conflict resolution */ 2492 int sf_uncache_conflict; /* VAC conflict resolution */ 2493 int sf_unload_conflict; /* VAC unload resolution */ 2494 int sf_ism_uncache; /* VAC conflict resolution */ 2495 int sf_ism_recache; /* VAC conflict resolution */ 2496 int sf_recache; /* VAC conflict resolution */ 2497 2498 int sf_steal_count; /* # of hblks stolen */ 2499 2500 int sf_pagesync; /* # of pagesyncs */ 2501 int sf_clrwrt; /* # of clear write perms */ 2502 int sf_pagesync_invalid; /* pagesync with inv tte */ 2503 2504 int sf_kernel_xcalls; /* # of kernel cross calls */ 2505 int sf_user_xcalls; /* # of user cross calls */ 2506 2507 int sf_tsb_grow; /* # of user tsb grows */ 2508 int sf_tsb_shrink; /* # of user tsb shrinks */ 2509 int sf_tsb_resize_failures; /* # of user tsb resize */ 2510 int sf_tsb_reloc; /* # of user tsb relocations */ 2511 2512 int sf_user_vtop; /* # of user vatopfn calls */ 2513 2514 int sf_ctx_inv; /* #times invalidate MMU ctx */ 2515 2516 int sf_tlb_reprog_pgsz; /* # times switch TLB pgsz */ 2517 2518 int sf_region_remap_demap; /* # times shme remap demap */ 2519 2520 int sf_create_scd; /* # times SCD is created */ 2521 int sf_join_scd; /* # process joined scd */ 2522 int sf_leave_scd; /* # process left scd */ 2523 int sf_destroy_scd; /* # times SCD is destroyed */ 2524 }; 2525 2526 struct sfmmu_tsbsize_stat { 2527 int sf_tsbsz_8k; 2528 int sf_tsbsz_16k; 2529 int sf_tsbsz_32k; 2530 int sf_tsbsz_64k; 2531 int sf_tsbsz_128k; 2532 int sf_tsbsz_256k; 2533 int sf_tsbsz_512k; 2534 int sf_tsbsz_1m; 2535 int sf_tsbsz_2m; 2536 int sf_tsbsz_4m; 2537 int sf_tsbsz_8m; 2538 int sf_tsbsz_16m; 2539 int sf_tsbsz_32m; 2540 int sf_tsbsz_64m; 2541 int sf_tsbsz_128m; 2542 int sf_tsbsz_256m; 2543 }; 2544 2545 struct sfmmu_percpu_stat { 2546 int sf_itlb_misses; /* # of itlb misses */ 2547 int sf_dtlb_misses; /* # of dtlb misses */ 2548 int sf_utsb_misses; /* # of user tsb misses */ 2549 int sf_ktsb_misses; /* # of kernel tsb misses */ 2550 int sf_tsb_hits; /* # of tsb hits */ 2551 int sf_umod_faults; /* # of mod (prot viol) flts */ 2552 int sf_kmod_faults; /* # of mod (prot viol) flts */ 2553 }; 2554 2555 #define SFMMU_STAT(stat) sfmmu_global_stat.stat++ 2556 #define SFMMU_STAT_ADD(stat, amount) sfmmu_global_stat.stat += (amount) 2557 #define SFMMU_STAT_SET(stat, count) sfmmu_global_stat.stat = (count) 2558 2559 #define SFMMU_MMU_STAT(stat) CPU->cpu_m.cpu_mmu_ctxp->stat++ 2560 2561 #endif /* !_ASM */ 2562 2563 #ifdef __cplusplus 2564 } 2565 #endif 2566 2567 #endif /* _VM_HAT_SFMMU_H */ 2568