1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * VM - Hardware Address Translation management for Spitfire MMU. 30 * 31 * This file implements the machine specific hardware translation 32 * needed by the VM system. The machine independent interface is 33 * described in <vm/hat.h> while the machine dependent interface 34 * and data structures are described in <vm/hat_sfmmu.h>. 35 * 36 * The hat layer manages the address translation hardware as a cache 37 * driven by calls from the higher levels in the VM system. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/kstat.h> 42 #include <vm/hat.h> 43 #include <vm/hat_sfmmu.h> 44 #include <vm/page.h> 45 #include <sys/pte.h> 46 #include <sys/systm.h> 47 #include <sys/mman.h> 48 #include <sys/sysmacros.h> 49 #include <sys/machparam.h> 50 #include <sys/vtrace.h> 51 #include <sys/kmem.h> 52 #include <sys/mmu.h> 53 #include <sys/cmn_err.h> 54 #include <sys/cpu.h> 55 #include <sys/cpuvar.h> 56 #include <sys/debug.h> 57 #include <sys/lgrp.h> 58 #include <sys/archsystm.h> 59 #include <sys/machsystm.h> 60 #include <sys/vmsystm.h> 61 #include <vm/as.h> 62 #include <vm/seg.h> 63 #include <vm/seg_kp.h> 64 #include <vm/seg_kmem.h> 65 #include <vm/seg_kpm.h> 66 #include <vm/rm.h> 67 #include <sys/t_lock.h> 68 #include <sys/obpdefs.h> 69 #include <sys/vm_machparam.h> 70 #include <sys/var.h> 71 #include <sys/trap.h> 72 #include <sys/machtrap.h> 73 #include <sys/scb.h> 74 #include <sys/bitmap.h> 75 #include <sys/machlock.h> 76 #include <sys/membar.h> 77 #include <sys/atomic.h> 78 #include <sys/cpu_module.h> 79 #include <sys/prom_debug.h> 80 #include <sys/ksynch.h> 81 #include <sys/mem_config.h> 82 #include <sys/mem_cage.h> 83 #include <sys/dtrace.h> 84 #include <vm/vm_dep.h> 85 #include <vm/xhat_sfmmu.h> 86 #include <sys/fpu/fpusystm.h> 87 #include <vm/mach_kpm.h> 88 89 #if defined(SF_ERRATA_57) 90 extern caddr_t errata57_limit; 91 #endif 92 93 #define HME8BLK_SZ_RND ((roundup(HME8BLK_SZ, sizeof (int64_t))) / \ 94 (sizeof (int64_t))) 95 #define HBLK_RESERVE ((struct hme_blk *)hblk_reserve) 96 97 #define HBLK_RESERVE_CNT 128 98 #define HBLK_RESERVE_MIN 20 99 100 static struct hme_blk *freehblkp; 101 static kmutex_t freehblkp_lock; 102 static int freehblkcnt; 103 104 static int64_t hblk_reserve[HME8BLK_SZ_RND]; 105 static kmutex_t hblk_reserve_lock; 106 static kthread_t *hblk_reserve_thread; 107 108 static nucleus_hblk8_info_t nucleus_hblk8; 109 static nucleus_hblk1_info_t nucleus_hblk1; 110 111 /* 112 * SFMMU specific hat functions 113 */ 114 void hat_pagecachectl(struct page *, int); 115 116 /* flags for hat_pagecachectl */ 117 #define HAT_CACHE 0x1 118 #define HAT_UNCACHE 0x2 119 #define HAT_TMPNC 0x4 120 121 /* 122 * Flag to allow the creation of non-cacheable translations 123 * to system memory. It is off by default. At the moment this 124 * flag is used by the ecache error injector. The error injector 125 * will turn it on when creating such a translation then shut it 126 * off when it's finished. 127 */ 128 129 int sfmmu_allow_nc_trans = 0; 130 131 /* 132 * Flag to disable large page support. 133 * value of 1 => disable all large pages. 134 * bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively. 135 * 136 * For example, use the value 0x4 to disable 512K pages. 137 * 138 */ 139 #define LARGE_PAGES_OFF 0x1 140 141 /* 142 * The disable_large_pages and disable_ism_large_pages variables control 143 * hat_memload_array and the page sizes to be used by ISM and the kernel. 144 * 145 * The disable_auto_data_large_pages and disable_auto_text_large_pages variables 146 * are only used to control which OOB pages to use at upper VM segment creation 147 * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines. 148 * Their values may come from platform or CPU specific code to disable page 149 * sizes that should not be used. 150 * 151 * WARNING: 512K pages are currently not supported for ISM/DISM. 152 */ 153 uint_t disable_large_pages = 0; 154 uint_t disable_ism_large_pages = (1 << TTE512K); 155 uint_t disable_auto_data_large_pages = 0; 156 uint_t disable_auto_text_large_pages = 0; 157 158 /* 159 * Private sfmmu data structures for hat management 160 */ 161 static struct kmem_cache *sfmmuid_cache; 162 static struct kmem_cache *mmuctxdom_cache; 163 164 /* 165 * Private sfmmu data structures for tsb management 166 */ 167 static struct kmem_cache *sfmmu_tsbinfo_cache; 168 static struct kmem_cache *sfmmu_tsb8k_cache; 169 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX]; 170 static vmem_t *kmem_tsb_arena; 171 172 /* 173 * sfmmu static variables for hmeblk resource management. 174 */ 175 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */ 176 static struct kmem_cache *sfmmu8_cache; 177 static struct kmem_cache *sfmmu1_cache; 178 static struct kmem_cache *pa_hment_cache; 179 180 static kmutex_t ism_mlist_lock; /* mutex for ism mapping list */ 181 /* 182 * private data for ism 183 */ 184 static struct kmem_cache *ism_blk_cache; 185 static struct kmem_cache *ism_ment_cache; 186 #define ISMID_STARTADDR NULL 187 188 /* 189 * Whether to delay TLB flushes and use Cheetah's flush-all support 190 * when removing contexts from the dirty list. 191 */ 192 int delay_tlb_flush; 193 int disable_delay_tlb_flush; 194 195 /* 196 * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists, 197 * HAT flags, synchronizing TLB/TSB coherency, and context management. 198 * The lock is hashed on the sfmmup since the case where we need to lock 199 * all processes is rare but does occur (e.g. we need to unload a shared 200 * mapping from all processes using the mapping). We have a lot of buckets, 201 * and each slab of sfmmu_t's can use about a quarter of them, giving us 202 * a fairly good distribution without wasting too much space and overhead 203 * when we have to grab them all. 204 */ 205 #define SFMMU_NUM_LOCK 128 /* must be power of two */ 206 hatlock_t hat_lock[SFMMU_NUM_LOCK]; 207 208 /* 209 * Hash algorithm optimized for a small number of slabs. 210 * 7 is (highbit((sizeof sfmmu_t)) - 1) 211 * This hash algorithm is based upon the knowledge that sfmmu_t's come from a 212 * kmem_cache, and thus they will be sequential within that cache. In 213 * addition, each new slab will have a different "color" up to cache_maxcolor 214 * which will skew the hashing for each successive slab which is allocated. 215 * If the size of sfmmu_t changed to a larger size, this algorithm may need 216 * to be revisited. 217 */ 218 #define TSB_HASH_SHIFT_BITS (7) 219 #define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS) 220 221 #ifdef DEBUG 222 int tsb_hash_debug = 0; 223 #define TSB_HASH(sfmmup) \ 224 (tsb_hash_debug ? &hat_lock[0] : \ 225 &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]) 226 #else /* DEBUG */ 227 #define TSB_HASH(sfmmup) &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)] 228 #endif /* DEBUG */ 229 230 231 /* sfmmu_replace_tsb() return codes. */ 232 typedef enum tsb_replace_rc { 233 TSB_SUCCESS, 234 TSB_ALLOCFAIL, 235 TSB_LOSTRACE, 236 TSB_ALREADY_SWAPPED, 237 TSB_CANTGROW 238 } tsb_replace_rc_t; 239 240 /* 241 * Flags for TSB allocation routines. 242 */ 243 #define TSB_ALLOC 0x01 244 #define TSB_FORCEALLOC 0x02 245 #define TSB_GROW 0x04 246 #define TSB_SHRINK 0x08 247 #define TSB_SWAPIN 0x10 248 249 /* 250 * Support for HAT callbacks. 251 */ 252 #define SFMMU_MAX_RELOC_CALLBACKS 10 253 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS; 254 static id_t sfmmu_cb_nextid = 0; 255 static id_t sfmmu_tsb_cb_id; 256 struct sfmmu_callback *sfmmu_cb_table; 257 258 /* 259 * Kernel page relocation is enabled by default for non-caged 260 * kernel pages. This has little effect unless segkmem_reloc is 261 * set, since by default kernel memory comes from inside the 262 * kernel cage. 263 */ 264 int hat_kpr_enabled = 1; 265 266 kmutex_t kpr_mutex; 267 kmutex_t kpr_suspendlock; 268 kthread_t *kreloc_thread; 269 270 /* 271 * Enable VA->PA translation sanity checking on DEBUG kernels. 272 * Disabled by default. This is incompatible with some 273 * drivers (error injector, RSM) so if it breaks you get 274 * to keep both pieces. 275 */ 276 int hat_check_vtop = 0; 277 278 /* 279 * Private sfmmu routines (prototypes) 280 */ 281 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t); 282 static struct hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t, 283 struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t); 284 static caddr_t sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t, 285 caddr_t, demap_range_t *, uint_t); 286 static caddr_t sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t, 287 caddr_t, int); 288 static void sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *, 289 uint64_t, struct hme_blk **); 290 static void sfmmu_hblks_list_purge(struct hme_blk **); 291 static uint_t sfmmu_get_free_hblk(struct hme_blk **, uint_t); 292 static uint_t sfmmu_put_free_hblk(struct hme_blk *, uint_t); 293 static struct hme_blk *sfmmu_hblk_steal(int); 294 static int sfmmu_steal_this_hblk(struct hmehash_bucket *, 295 struct hme_blk *, uint64_t, uint64_t, 296 struct hme_blk *); 297 static caddr_t sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t); 298 299 static void sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **, 300 uint_t, uint_t, pgcnt_t); 301 void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, 302 uint_t); 303 static int sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **, 304 uint_t); 305 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *, 306 caddr_t, int); 307 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *, 308 struct hmehash_bucket *, caddr_t, uint_t, uint_t); 309 static int sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *, 310 caddr_t, page_t **, uint_t); 311 static void sfmmu_tteload_release_hashbucket(struct hmehash_bucket *); 312 313 static int sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int); 314 pfn_t sfmmu_uvatopfn(caddr_t, sfmmu_t *); 315 void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 316 #ifdef VAC 317 static void sfmmu_vac_conflict(struct hat *, caddr_t, page_t *); 318 static int sfmmu_vacconflict_array(caddr_t, page_t *, int *); 319 int tst_tnc(page_t *pp, pgcnt_t); 320 void conv_tnc(page_t *pp, int); 321 #endif 322 323 static void sfmmu_get_ctx(sfmmu_t *); 324 static void sfmmu_free_sfmmu(sfmmu_t *); 325 326 static void sfmmu_gettte(struct hat *, caddr_t, tte_t *); 327 static void sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *); 328 static void sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int); 329 330 cpuset_t sfmmu_pageunload(page_t *, struct sf_hment *, int); 331 static void hat_pagereload(struct page *, struct page *); 332 static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t); 333 #ifdef VAC 334 void sfmmu_page_cache_array(page_t *, int, int, pgcnt_t); 335 static void sfmmu_page_cache(page_t *, int, int, int); 336 #endif 337 338 static void sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *, 339 pfn_t, int, int, int, int); 340 static void sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *, 341 pfn_t, int); 342 static void sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int); 343 static void sfmmu_tlb_range_demap(demap_range_t *); 344 static void sfmmu_invalidate_ctx(sfmmu_t *); 345 static void sfmmu_sync_mmustate(sfmmu_t *); 346 347 static void sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t); 348 static int sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t, 349 sfmmu_t *); 350 static void sfmmu_tsb_free(struct tsb_info *); 351 static void sfmmu_tsbinfo_free(struct tsb_info *); 352 static int sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t, 353 sfmmu_t *); 354 355 static void sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *); 356 static int sfmmu_select_tsb_szc(pgcnt_t); 357 static void sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int); 358 #define sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \ 359 sfmmu_mod_tsb(sfmmup, vaddr, tte, szc) 360 #define sfmmu_unload_tsb(sfmmup, vaddr, szc) \ 361 sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc) 362 static void sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *); 363 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t, 364 hatlock_t *, uint_t); 365 static void sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int); 366 367 #ifdef VAC 368 void sfmmu_cache_flush(pfn_t, int); 369 void sfmmu_cache_flushcolor(int, pfn_t); 370 #endif 371 static caddr_t sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t, 372 caddr_t, demap_range_t *, uint_t, int); 373 374 static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *); 375 static uint_t sfmmu_ptov_attr(tte_t *); 376 static caddr_t sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t, 377 caddr_t, demap_range_t *, uint_t); 378 static uint_t sfmmu_vtop_prot(uint_t, uint_t *); 379 static int sfmmu_idcache_constructor(void *, void *, int); 380 static void sfmmu_idcache_destructor(void *, void *); 381 static int sfmmu_hblkcache_constructor(void *, void *, int); 382 static void sfmmu_hblkcache_destructor(void *, void *); 383 static void sfmmu_hblkcache_reclaim(void *); 384 static void sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *, 385 struct hmehash_bucket *); 386 static void sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int); 387 static void sfmmu_rm_large_mappings(page_t *, int); 388 389 static void hat_lock_init(void); 390 static void hat_kstat_init(void); 391 static int sfmmu_kstat_percpu_update(kstat_t *ksp, int rw); 392 static void sfmmu_check_page_sizes(sfmmu_t *, int); 393 int fnd_mapping_sz(page_t *); 394 static void iment_add(struct ism_ment *, struct hat *); 395 static void iment_sub(struct ism_ment *, struct hat *); 396 static pgcnt_t ism_tsb_entries(sfmmu_t *, int szc); 397 extern void sfmmu_setup_tsbinfo(sfmmu_t *); 398 #ifdef sun4v 399 extern void sfmmu_invalidate_tsbinfo(sfmmu_t *); 400 #endif /* sun4v */ 401 extern void sfmmu_clear_utsbinfo(void); 402 403 static void sfmmu_ctx_wrap_around(mmu_ctx_t *); 404 405 /* kpm globals */ 406 #ifdef DEBUG 407 /* 408 * Enable trap level tsbmiss handling 409 */ 410 int kpm_tsbmtl = 1; 411 412 /* 413 * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the 414 * required TLB shootdowns in this case, so handle w/ care. Off by default. 415 */ 416 int kpm_tlb_flush; 417 #endif /* DEBUG */ 418 419 static void *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int); 420 421 #ifdef DEBUG 422 static void sfmmu_check_hblk_flist(); 423 #endif 424 425 /* 426 * Semi-private sfmmu data structures. Some of them are initialize in 427 * startup or in hat_init. Some of them are private but accessed by 428 * assembly code or mach_sfmmu.c 429 */ 430 struct hmehash_bucket *uhme_hash; /* user hmeblk hash table */ 431 struct hmehash_bucket *khme_hash; /* kernel hmeblk hash table */ 432 uint64_t uhme_hash_pa; /* PA of uhme_hash */ 433 uint64_t khme_hash_pa; /* PA of khme_hash */ 434 int uhmehash_num; /* # of buckets in user hash table */ 435 int khmehash_num; /* # of buckets in kernel hash table */ 436 437 uint_t max_mmu_ctxdoms = 0; /* max context domains in the system */ 438 mmu_ctx_t **mmu_ctxs_tbl; /* global array of context domains */ 439 uint64_t mmu_saved_gnum = 0; /* to init incoming MMUs' gnums */ 440 441 #define DEFAULT_NUM_CTXS_PER_MMU 8192 442 static uint_t nctxs = DEFAULT_NUM_CTXS_PER_MMU; 443 444 int cache; /* describes system cache */ 445 446 caddr_t ktsb_base; /* kernel 8k-indexed tsb base address */ 447 uint64_t ktsb_pbase; /* kernel 8k-indexed tsb phys address */ 448 int ktsb_szcode; /* kernel 8k-indexed tsb size code */ 449 int ktsb_sz; /* kernel 8k-indexed tsb size */ 450 451 caddr_t ktsb4m_base; /* kernel 4m-indexed tsb base address */ 452 uint64_t ktsb4m_pbase; /* kernel 4m-indexed tsb phys address */ 453 int ktsb4m_szcode; /* kernel 4m-indexed tsb size code */ 454 int ktsb4m_sz; /* kernel 4m-indexed tsb size */ 455 456 uint64_t kpm_tsbbase; /* kernel seg_kpm 4M TSB base address */ 457 int kpm_tsbsz; /* kernel seg_kpm 4M TSB size code */ 458 uint64_t kpmsm_tsbbase; /* kernel seg_kpm 8K TSB base address */ 459 int kpmsm_tsbsz; /* kernel seg_kpm 8K TSB size code */ 460 461 #ifndef sun4v 462 int utsb_dtlb_ttenum = -1; /* index in TLB for utsb locked TTE */ 463 int utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */ 464 int dtlb_resv_ttenum; /* index in TLB of first reserved TTE */ 465 caddr_t utsb_vabase; /* reserved kernel virtual memory */ 466 caddr_t utsb4m_vabase; /* for trap handler TSB accesses */ 467 #endif /* sun4v */ 468 uint64_t tsb_alloc_bytes = 0; /* bytes allocated to TSBs */ 469 vmem_t *kmem_tsb_default_arena[NLGRPS_MAX]; /* For dynamic TSBs */ 470 471 /* 472 * Size to use for TSB slabs. Future platforms that support page sizes 473 * larger than 4M may wish to change these values, and provide their own 474 * assembly macros for building and decoding the TSB base register contents. 475 * Note disable_large_pages will override the value set here. 476 */ 477 uint_t tsb_slab_ttesz = TTE4M; 478 uint_t tsb_slab_size; 479 uint_t tsb_slab_shift; 480 uint_t tsb_slab_mask; /* PFN mask for TTE */ 481 482 /* largest TSB size to grow to, will be smaller on smaller memory systems */ 483 int tsb_max_growsize = UTSB_MAX_SZCODE; 484 485 /* 486 * Tunable parameters dealing with TSB policies. 487 */ 488 489 /* 490 * This undocumented tunable forces all 8K TSBs to be allocated from 491 * the kernel heap rather than from the kmem_tsb_default_arena arenas. 492 */ 493 #ifdef DEBUG 494 int tsb_forceheap = 0; 495 #endif /* DEBUG */ 496 497 /* 498 * Decide whether to use per-lgroup arenas, or one global set of 499 * TSB arenas. The default is not to break up per-lgroup, since 500 * most platforms don't recognize any tangible benefit from it. 501 */ 502 int tsb_lgrp_affinity = 0; 503 504 /* 505 * Used for growing the TSB based on the process RSS. 506 * tsb_rss_factor is based on the smallest TSB, and is 507 * shifted by the TSB size to determine if we need to grow. 508 * The default will grow the TSB if the number of TTEs for 509 * this page size exceeds 75% of the number of TSB entries, 510 * which should _almost_ eliminate all conflict misses 511 * (at the expense of using up lots and lots of memory). 512 */ 513 #define TSB_RSS_FACTOR (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75) 514 #define SFMMU_RSS_TSBSIZE(tsbszc) (tsb_rss_factor << tsbszc) 515 #define SELECT_TSB_SIZECODE(pgcnt) ( \ 516 (enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \ 517 default_tsb_size) 518 #define TSB_OK_SHRINK() \ 519 (tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree) 520 #define TSB_OK_GROW() \ 521 (tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree) 522 523 int enable_tsb_rss_sizing = 1; 524 int tsb_rss_factor = (int)TSB_RSS_FACTOR; 525 526 /* which TSB size code to use for new address spaces or if rss sizing off */ 527 int default_tsb_size = TSB_8K_SZCODE; 528 529 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */ 530 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */ 531 #define TSB_ALLOC_HIWATER_FACTOR_DEFAULT 32 532 533 #ifdef DEBUG 534 static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */ 535 static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */ 536 static int tsb_alloc_mtbf = 0; /* fail allocation every n attempts */ 537 static int tsb_alloc_fail_mtbf = 0; 538 static int tsb_alloc_count = 0; 539 #endif /* DEBUG */ 540 541 /* if set to 1, will remap valid TTEs when growing TSB. */ 542 int tsb_remap_ttes = 1; 543 544 /* 545 * If we have more than this many mappings, allocate a second TSB. 546 * This default is chosen because the I/D fully associative TLBs are 547 * assumed to have at least 8 available entries. Platforms with a 548 * larger fully-associative TLB could probably override the default. 549 */ 550 int tsb_sectsb_threshold = 8; 551 552 /* 553 * kstat data 554 */ 555 struct sfmmu_global_stat sfmmu_global_stat; 556 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat; 557 558 /* 559 * Global data 560 */ 561 sfmmu_t *ksfmmup; /* kernel's hat id */ 562 563 #ifdef DEBUG 564 static void chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *); 565 #endif 566 567 /* sfmmu locking operations */ 568 static kmutex_t *sfmmu_mlspl_enter(struct page *, int); 569 static int sfmmu_mlspl_held(struct page *, int); 570 571 kmutex_t *sfmmu_page_enter(page_t *); 572 void sfmmu_page_exit(kmutex_t *); 573 int sfmmu_page_spl_held(struct page *); 574 575 /* sfmmu internal locking operations - accessed directly */ 576 static void sfmmu_mlist_reloc_enter(page_t *, page_t *, 577 kmutex_t **, kmutex_t **); 578 static void sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *); 579 static hatlock_t * 580 sfmmu_hat_enter(sfmmu_t *); 581 static hatlock_t * 582 sfmmu_hat_tryenter(sfmmu_t *); 583 static void sfmmu_hat_exit(hatlock_t *); 584 static void sfmmu_hat_lock_all(void); 585 static void sfmmu_hat_unlock_all(void); 586 static void sfmmu_ismhat_enter(sfmmu_t *, int); 587 static void sfmmu_ismhat_exit(sfmmu_t *, int); 588 589 /* 590 * Array of mutexes protecting a page's mapping list and p_nrm field. 591 * 592 * The hash function looks complicated, but is made up so that: 593 * 594 * "pp" not shifted, so adjacent pp values will hash to different cache lines 595 * (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock) 596 * 597 * "pp" >> mml_shift, incorporates more source bits into the hash result 598 * 599 * "& (mml_table_size - 1), should be faster than using remainder "%" 600 * 601 * Hopefully, mml_table, mml_table_size and mml_shift are all in the same 602 * cacheline, since they get declared next to each other below. We'll trust 603 * ld not to do something random. 604 */ 605 #ifdef DEBUG 606 int mlist_hash_debug = 0; 607 #define MLIST_HASH(pp) (mlist_hash_debug ? &mml_table[0] : \ 608 &mml_table[((uintptr_t)(pp) + \ 609 ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]) 610 #else /* !DEBUG */ 611 #define MLIST_HASH(pp) &mml_table[ \ 612 ((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)] 613 #endif /* !DEBUG */ 614 615 kmutex_t *mml_table; 616 uint_t mml_table_sz; /* must be a power of 2 */ 617 uint_t mml_shift; /* log2(mml_table_sz) + 3 for align */ 618 619 kpm_hlk_t *kpmp_table; 620 uint_t kpmp_table_sz; /* must be a power of 2 */ 621 uchar_t kpmp_shift; 622 623 kpm_shlk_t *kpmp_stable; 624 uint_t kpmp_stable_sz; /* must be a power of 2 */ 625 626 /* 627 * SPL_HASH was improved to avoid false cache line sharing 628 */ 629 #define SPL_TABLE_SIZE 128 630 #define SPL_MASK (SPL_TABLE_SIZE - 1) 631 #define SPL_SHIFT 7 /* log2(SPL_TABLE_SIZE) */ 632 633 #define SPL_INDEX(pp) \ 634 ((((uintptr_t)(pp) >> SPL_SHIFT) ^ \ 635 ((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \ 636 (SPL_TABLE_SIZE - 1)) 637 638 #define SPL_HASH(pp) \ 639 (&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex) 640 641 static pad_mutex_t sfmmu_page_lock[SPL_TABLE_SIZE]; 642 643 644 /* 645 * hat_unload_callback() will group together callbacks in order 646 * to avoid xt_sync() calls. This is the maximum size of the group. 647 */ 648 #define MAX_CB_ADDR 32 649 650 tte_t hw_tte; 651 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT; 652 653 static char *mmu_ctx_kstat_names[] = { 654 "mmu_ctx_tsb_exceptions", 655 "mmu_ctx_tsb_raise_exception", 656 "mmu_ctx_wrap_around", 657 }; 658 659 /* 660 * Wrapper for vmem_xalloc since vmem_create only allows limited 661 * parameters for vm_source_alloc functions. This function allows us 662 * to specify alignment consistent with the size of the object being 663 * allocated. 664 */ 665 static void * 666 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag) 667 { 668 return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag)); 669 } 670 671 /* Common code for setting tsb_alloc_hiwater. */ 672 #define SFMMU_SET_TSB_ALLOC_HIWATER(pages) tsb_alloc_hiwater = \ 673 ptob(pages) / tsb_alloc_hiwater_factor 674 675 /* 676 * Set tsb_max_growsize to allow at most all of physical memory to be mapped by 677 * a single TSB. physmem is the number of physical pages so we need physmem 8K 678 * TTEs to represent all those physical pages. We round this up by using 679 * 1<<highbit(). To figure out which size code to use, remember that the size 680 * code is just an amount to shift the smallest TSB size to get the size of 681 * this TSB. So we subtract that size, TSB_START_SIZE, from highbit() (or 682 * highbit() - 1) to get the size code for the smallest TSB that can represent 683 * all of physical memory, while erring on the side of too much. 684 * 685 * If the computed size code is less than the current tsb_max_growsize, we set 686 * tsb_max_growsize to the computed size code. In the case where the computed 687 * size code is greater than tsb_max_growsize, we have these restrictions that 688 * apply to increasing tsb_max_growsize: 689 * 1) TSBs can't grow larger than the TSB slab size 690 * 2) TSBs can't grow larger than UTSB_MAX_SZCODE. 691 */ 692 #define SFMMU_SET_TSB_MAX_GROWSIZE(pages) { \ 693 int i, szc; \ 694 \ 695 i = highbit(pages); \ 696 if ((1 << (i - 1)) == (pages)) \ 697 i--; /* 2^n case, round down */ \ 698 szc = i - TSB_START_SIZE; \ 699 if (szc < tsb_max_growsize) \ 700 tsb_max_growsize = szc; \ 701 else if ((szc > tsb_max_growsize) && \ 702 (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \ 703 tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE); \ 704 } 705 706 /* 707 * Given a pointer to an sfmmu and a TTE size code, return a pointer to the 708 * tsb_info which handles that TTE size. 709 */ 710 #define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) \ 711 (tsbinfop) = (sfmmup)->sfmmu_tsb; \ 712 ASSERT(sfmmu_hat_lock_held(sfmmup)); \ 713 if ((tte_szc) >= TTE4M) \ 714 (tsbinfop) = (tsbinfop)->tsb_next; 715 716 /* 717 * Return the number of mappings present in the HAT 718 * for a particular process and page size. 719 */ 720 #define SFMMU_TTE_CNT(sfmmup, szc) \ 721 (sfmmup)->sfmmu_iblk? \ 722 (sfmmup)->sfmmu_ismttecnt[(szc)] + \ 723 (sfmmup)->sfmmu_ttecnt[(szc)] : \ 724 (sfmmup)->sfmmu_ttecnt[(szc)]; 725 726 /* 727 * Macro to use to unload entries from the TSB. 728 * It has knowledge of which page sizes get replicated in the TSB 729 * and will call the appropriate unload routine for the appropriate size. 730 */ 731 #define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp) \ 732 { \ 733 int ttesz = get_hblk_ttesz(hmeblkp); \ 734 if (ttesz == TTE8K || ttesz == TTE4M) { \ 735 sfmmu_unload_tsb(sfmmup, addr, ttesz); \ 736 } else { \ 737 caddr_t sva = (caddr_t)get_hblk_base(hmeblkp); \ 738 caddr_t eva = sva + get_hblk_span(hmeblkp); \ 739 ASSERT(addr >= sva && addr < eva); \ 740 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); \ 741 } \ 742 } 743 744 745 /* Update tsb_alloc_hiwater after memory is configured. */ 746 /*ARGSUSED*/ 747 static void 748 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages) 749 { 750 /* Assumes physmem has already been updated. */ 751 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 752 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 753 } 754 755 /* 756 * Update tsb_alloc_hiwater before memory is deleted. We'll do nothing here 757 * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is 758 * deleted. 759 */ 760 /*ARGSUSED*/ 761 static int 762 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages) 763 { 764 return (0); 765 } 766 767 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */ 768 /*ARGSUSED*/ 769 static void 770 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled) 771 { 772 /* 773 * Whether the delete was cancelled or not, just go ahead and update 774 * tsb_alloc_hiwater and tsb_max_growsize. 775 */ 776 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 777 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 778 } 779 780 static kphysm_setup_vector_t sfmmu_update_tsb_vec = { 781 KPHYSM_SETUP_VECTOR_VERSION, /* version */ 782 sfmmu_update_tsb_post_add, /* post_add */ 783 sfmmu_update_tsb_pre_del, /* pre_del */ 784 sfmmu_update_tsb_post_del /* post_del */ 785 }; 786 787 788 /* 789 * HME_BLK HASH PRIMITIVES 790 */ 791 792 /* 793 * Enter a hme on the mapping list for page pp. 794 * When large pages are more prevalent in the system we might want to 795 * keep the mapping list in ascending order by the hment size. For now, 796 * small pages are more frequent, so don't slow it down. 797 */ 798 #define HME_ADD(hme, pp) \ 799 { \ 800 ASSERT(sfmmu_mlist_held(pp)); \ 801 \ 802 hme->hme_prev = NULL; \ 803 hme->hme_next = pp->p_mapping; \ 804 hme->hme_page = pp; \ 805 if (pp->p_mapping) { \ 806 ((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\ 807 ASSERT(pp->p_share > 0); \ 808 } else { \ 809 /* EMPTY */ \ 810 ASSERT(pp->p_share == 0); \ 811 } \ 812 pp->p_mapping = hme; \ 813 pp->p_share++; \ 814 } 815 816 /* 817 * Enter a hme on the mapping list for page pp. 818 * If we are unmapping a large translation, we need to make sure that the 819 * change is reflect in the corresponding bit of the p_index field. 820 */ 821 #define HME_SUB(hme, pp) \ 822 { \ 823 ASSERT(sfmmu_mlist_held(pp)); \ 824 ASSERT(hme->hme_page == pp || IS_PAHME(hme)); \ 825 \ 826 if (pp->p_mapping == NULL) { \ 827 panic("hme_remove - no mappings"); \ 828 } \ 829 \ 830 membar_stst(); /* ensure previous stores finish */ \ 831 \ 832 ASSERT(pp->p_share > 0); \ 833 pp->p_share--; \ 834 \ 835 if (hme->hme_prev) { \ 836 ASSERT(pp->p_mapping != hme); \ 837 ASSERT(hme->hme_prev->hme_page == pp || \ 838 IS_PAHME(hme->hme_prev)); \ 839 hme->hme_prev->hme_next = hme->hme_next; \ 840 } else { \ 841 ASSERT(pp->p_mapping == hme); \ 842 pp->p_mapping = hme->hme_next; \ 843 ASSERT((pp->p_mapping == NULL) ? \ 844 (pp->p_share == 0) : 1); \ 845 } \ 846 \ 847 if (hme->hme_next) { \ 848 ASSERT(hme->hme_next->hme_page == pp || \ 849 IS_PAHME(hme->hme_next)); \ 850 hme->hme_next->hme_prev = hme->hme_prev; \ 851 } \ 852 \ 853 /* zero out the entry */ \ 854 hme->hme_next = NULL; \ 855 hme->hme_prev = NULL; \ 856 hme->hme_page = NULL; \ 857 \ 858 if (hme_size(hme) > TTE8K) { \ 859 /* remove mappings for remainder of large pg */ \ 860 sfmmu_rm_large_mappings(pp, hme_size(hme)); \ 861 } \ 862 } 863 864 /* 865 * This function returns the hment given the hme_blk and a vaddr. 866 * It assumes addr has already been checked to belong to hme_blk's 867 * range. 868 */ 869 #define HBLKTOHME(hment, hmeblkp, addr) \ 870 { \ 871 int index; \ 872 HBLKTOHME_IDX(hment, hmeblkp, addr, index) \ 873 } 874 875 /* 876 * Version of HBLKTOHME that also returns the index in hmeblkp 877 * of the hment. 878 */ 879 #define HBLKTOHME_IDX(hment, hmeblkp, addr, idx) \ 880 { \ 881 ASSERT(in_hblk_range((hmeblkp), (addr))); \ 882 \ 883 if (get_hblk_ttesz(hmeblkp) == TTE8K) { \ 884 idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \ 885 } else \ 886 idx = 0; \ 887 \ 888 (hment) = &(hmeblkp)->hblk_hme[idx]; \ 889 } 890 891 /* 892 * Disable any page sizes not supported by the CPU 893 */ 894 void 895 hat_init_pagesizes() 896 { 897 int i; 898 899 mmu_exported_page_sizes = 0; 900 for (i = TTE8K; i < max_mmu_page_sizes; i++) { 901 902 szc_2_userszc[i] = (uint_t)-1; 903 userszc_2_szc[i] = (uint_t)-1; 904 905 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) { 906 disable_large_pages |= (1 << i); 907 } else { 908 szc_2_userszc[i] = mmu_exported_page_sizes; 909 userszc_2_szc[mmu_exported_page_sizes] = i; 910 mmu_exported_page_sizes++; 911 } 912 } 913 914 disable_ism_large_pages |= disable_large_pages; 915 disable_auto_data_large_pages = disable_large_pages; 916 disable_auto_text_large_pages = disable_large_pages; 917 918 /* 919 * Initialize mmu-specific large page sizes. 920 */ 921 if (&mmu_large_pages_disabled) { 922 disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD); 923 disable_ism_large_pages |= 924 mmu_large_pages_disabled(HAT_LOAD_SHARE); 925 disable_auto_data_large_pages |= 926 mmu_large_pages_disabled(HAT_AUTO_DATA); 927 disable_auto_text_large_pages |= 928 mmu_large_pages_disabled(HAT_AUTO_TEXT); 929 } 930 } 931 932 /* 933 * Initialize the hardware address translation structures. 934 */ 935 void 936 hat_init(void) 937 { 938 int i; 939 uint_t sz; 940 uint_t maxtsb; 941 size_t size; 942 943 hat_lock_init(); 944 hat_kstat_init(); 945 946 /* 947 * Hardware-only bits in a TTE 948 */ 949 MAKE_TTE_MASK(&hw_tte); 950 951 hat_init_pagesizes(); 952 953 /* Initialize the hash locks */ 954 for (i = 0; i < khmehash_num; i++) { 955 mutex_init(&khme_hash[i].hmehash_mutex, NULL, 956 MUTEX_DEFAULT, NULL); 957 } 958 for (i = 0; i < uhmehash_num; i++) { 959 mutex_init(&uhme_hash[i].hmehash_mutex, NULL, 960 MUTEX_DEFAULT, NULL); 961 } 962 khmehash_num--; /* make sure counter starts from 0 */ 963 uhmehash_num--; /* make sure counter starts from 0 */ 964 965 /* 966 * Allocate context domain structures. 967 * 968 * A platform may choose to modify max_mmu_ctxdoms in 969 * set_platform_defaults(). If a platform does not define 970 * a set_platform_defaults() or does not choose to modify 971 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU. 972 * 973 * For sun4v, there will be one global context domain, this is to 974 * avoid the ldom cpu substitution problem. 975 * 976 * For all platforms that have CPUs sharing MMUs, this 977 * value must be defined. 978 */ 979 if (max_mmu_ctxdoms == 0) { 980 #ifndef sun4v 981 max_mmu_ctxdoms = max_ncpus; 982 #else /* sun4v */ 983 max_mmu_ctxdoms = 1; 984 #endif /* sun4v */ 985 } 986 987 size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *); 988 mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP); 989 990 /* mmu_ctx_t is 64 bytes aligned */ 991 mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache", 992 sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 993 /* 994 * MMU context domain initialization for the Boot CPU. 995 * This needs the context domains array allocated above. 996 */ 997 mutex_enter(&cpu_lock); 998 sfmmu_cpu_init(CPU); 999 mutex_exit(&cpu_lock); 1000 1001 /* 1002 * Intialize ism mapping list lock. 1003 */ 1004 1005 mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL); 1006 1007 /* 1008 * Each sfmmu structure carries an array of MMU context info 1009 * structures, one per context domain. The size of this array depends 1010 * on the maximum number of context domains. So, the size of the 1011 * sfmmu structure varies per platform. 1012 * 1013 * sfmmu is allocated from static arena, because trap 1014 * handler at TL > 0 is not allowed to touch kernel relocatable 1015 * memory. sfmmu's alignment is changed to 64 bytes from 1016 * default 8 bytes, as the lower 6 bits will be used to pass 1017 * pgcnt to vtag_flush_pgcnt_tl1. 1018 */ 1019 size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1); 1020 1021 sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size, 1022 64, sfmmu_idcache_constructor, sfmmu_idcache_destructor, 1023 NULL, NULL, static_arena, 0); 1024 1025 sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache", 1026 sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0); 1027 1028 /* 1029 * Since we only use the tsb8k cache to "borrow" pages for TSBs 1030 * from the heap when low on memory or when TSB_FORCEALLOC is 1031 * specified, don't use magazines to cache them--we want to return 1032 * them to the system as quickly as possible. 1033 */ 1034 sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache", 1035 MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL, 1036 static_arena, KMC_NOMAGAZINE); 1037 1038 /* 1039 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical 1040 * memory, which corresponds to the old static reserve for TSBs. 1041 * tsb_alloc_hiwater_factor defaults to 32. This caps the amount of 1042 * memory we'll allocate for TSB slabs; beyond this point TSB 1043 * allocations will be taken from the kernel heap (via 1044 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem 1045 * consumer. 1046 */ 1047 if (tsb_alloc_hiwater_factor == 0) { 1048 tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT; 1049 } 1050 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 1051 1052 /* Set tsb_max_growsize. */ 1053 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 1054 1055 /* 1056 * On smaller memory systems, allocate TSB memory in smaller chunks 1057 * than the default 4M slab size. We also honor disable_large_pages 1058 * here. 1059 * 1060 * The trap handlers need to be patched with the final slab shift, 1061 * since they need to be able to construct the TSB pointer at runtime. 1062 */ 1063 if (tsb_max_growsize <= TSB_512K_SZCODE) 1064 tsb_slab_ttesz = TTE512K; 1065 1066 for (sz = tsb_slab_ttesz; sz > 0; sz--) { 1067 if (!(disable_large_pages & (1 << sz))) 1068 break; 1069 } 1070 1071 tsb_slab_ttesz = sz; 1072 tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz; 1073 tsb_slab_size = 1 << tsb_slab_shift; 1074 tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1; 1075 1076 maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); 1077 if (tsb_max_growsize > maxtsb) 1078 tsb_max_growsize = maxtsb; 1079 1080 /* 1081 * Set up memory callback to update tsb_alloc_hiwater and 1082 * tsb_max_growsize. 1083 */ 1084 i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0); 1085 ASSERT(i == 0); 1086 1087 /* 1088 * kmem_tsb_arena is the source from which large TSB slabs are 1089 * drawn. The quantum of this arena corresponds to the largest 1090 * TSB size we can dynamically allocate for user processes. 1091 * Currently it must also be a supported page size since we 1092 * use exactly one translation entry to map each slab page. 1093 * 1094 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from 1095 * which most TSBs are allocated. Since most TSB allocations are 1096 * typically 8K we have a kmem cache we stack on top of each 1097 * kmem_tsb_default_arena to speed up those allocations. 1098 * 1099 * Note the two-level scheme of arenas is required only 1100 * because vmem_create doesn't allow us to specify alignment 1101 * requirements. If this ever changes the code could be 1102 * simplified to use only one level of arenas. 1103 */ 1104 kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size, 1105 sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena, 1106 0, VM_SLEEP); 1107 1108 if (tsb_lgrp_affinity) { 1109 char s[50]; 1110 for (i = 0; i < NLGRPS_MAX; i++) { 1111 (void) sprintf(s, "kmem_tsb_lgrp%d", i); 1112 kmem_tsb_default_arena[i] = 1113 vmem_create(s, NULL, 0, PAGESIZE, 1114 sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free, 1115 kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT); 1116 (void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i); 1117 sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE, 1118 PAGESIZE, NULL, NULL, NULL, NULL, 1119 kmem_tsb_default_arena[i], 0); 1120 } 1121 } else { 1122 kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default", 1123 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc, 1124 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0, 1125 VM_SLEEP | VM_BESTFIT); 1126 1127 sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache", 1128 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL, 1129 kmem_tsb_default_arena[0], 0); 1130 } 1131 1132 sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ, 1133 HMEBLK_ALIGN, sfmmu_hblkcache_constructor, 1134 sfmmu_hblkcache_destructor, 1135 sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ, 1136 hat_memload_arena, KMC_NOHASH); 1137 1138 hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE, 1139 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 1140 1141 sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ, 1142 HMEBLK_ALIGN, sfmmu_hblkcache_constructor, 1143 sfmmu_hblkcache_destructor, 1144 NULL, (void *)HME1BLK_SZ, 1145 hat_memload1_arena, KMC_NOHASH); 1146 1147 pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ, 1148 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 1149 1150 ism_blk_cache = kmem_cache_create("ism_blk_cache", 1151 sizeof (ism_blk_t), ecache_alignsize, NULL, NULL, 1152 NULL, NULL, static_arena, KMC_NOHASH); 1153 1154 ism_ment_cache = kmem_cache_create("ism_ment_cache", 1155 sizeof (ism_ment_t), 0, NULL, NULL, 1156 NULL, NULL, NULL, 0); 1157 1158 /* 1159 * We grab the first hat for the kernel, 1160 */ 1161 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 1162 kas.a_hat = hat_alloc(&kas); 1163 AS_LOCK_EXIT(&kas, &kas.a_lock); 1164 1165 /* 1166 * Initialize hblk_reserve. 1167 */ 1168 ((struct hme_blk *)hblk_reserve)->hblk_nextpa = 1169 va_to_pa((caddr_t)hblk_reserve); 1170 1171 #ifndef UTSB_PHYS 1172 /* 1173 * Reserve some kernel virtual address space for the locked TTEs 1174 * that allow us to probe the TSB from TL>0. 1175 */ 1176 utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size, 1177 0, 0, NULL, NULL, VM_SLEEP); 1178 utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size, 1179 0, 0, NULL, NULL, VM_SLEEP); 1180 #endif 1181 1182 #ifdef VAC 1183 /* 1184 * The big page VAC handling code assumes VAC 1185 * will not be bigger than the smallest big 1186 * page- which is 64K. 1187 */ 1188 if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) { 1189 cmn_err(CE_PANIC, "VAC too big!"); 1190 } 1191 #endif 1192 1193 (void) xhat_init(); 1194 1195 uhme_hash_pa = va_to_pa(uhme_hash); 1196 khme_hash_pa = va_to_pa(khme_hash); 1197 1198 /* 1199 * Initialize relocation locks. kpr_suspendlock is held 1200 * at PIL_MAX to prevent interrupts from pinning the holder 1201 * of a suspended TTE which may access it leading to a 1202 * deadlock condition. 1203 */ 1204 mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL); 1205 mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX); 1206 1207 /* 1208 * Pre-allocate hrm_hashtab before enabling the collection of 1209 * refmod statistics. Allocating on the fly would mean us 1210 * running the risk of suffering recursive mutex enters or 1211 * deadlocks. 1212 */ 1213 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 1214 KM_SLEEP); 1215 } 1216 1217 /* 1218 * Initialize locking for the hat layer, called early during boot. 1219 */ 1220 static void 1221 hat_lock_init() 1222 { 1223 int i; 1224 1225 /* 1226 * initialize the array of mutexes protecting a page's mapping 1227 * list and p_nrm field. 1228 */ 1229 for (i = 0; i < mml_table_sz; i++) 1230 mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL); 1231 1232 if (kpm_enable) { 1233 for (i = 0; i < kpmp_table_sz; i++) { 1234 mutex_init(&kpmp_table[i].khl_mutex, NULL, 1235 MUTEX_DEFAULT, NULL); 1236 } 1237 } 1238 1239 /* 1240 * Initialize array of mutex locks that protects sfmmu fields and 1241 * TSB lists. 1242 */ 1243 for (i = 0; i < SFMMU_NUM_LOCK; i++) 1244 mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT, 1245 NULL); 1246 } 1247 1248 extern caddr_t kmem64_base, kmem64_end; 1249 1250 #define SFMMU_KERNEL_MAXVA \ 1251 (kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT)) 1252 1253 /* 1254 * Allocate a hat structure. 1255 * Called when an address space first uses a hat. 1256 */ 1257 struct hat * 1258 hat_alloc(struct as *as) 1259 { 1260 sfmmu_t *sfmmup; 1261 int i; 1262 uint64_t cnum; 1263 extern uint_t get_color_start(struct as *); 1264 1265 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1266 sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP); 1267 sfmmup->sfmmu_as = as; 1268 sfmmup->sfmmu_flags = 0; 1269 LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock); 1270 1271 if (as == &kas) { 1272 ksfmmup = sfmmup; 1273 sfmmup->sfmmu_cext = 0; 1274 cnum = KCONTEXT; 1275 1276 sfmmup->sfmmu_clrstart = 0; 1277 sfmmup->sfmmu_tsb = NULL; 1278 /* 1279 * hat_kern_setup() will call sfmmu_init_ktsbinfo() 1280 * to setup tsb_info for ksfmmup. 1281 */ 1282 } else { 1283 1284 /* 1285 * Just set to invalid ctx. When it faults, it will 1286 * get a valid ctx. This would avoid the situation 1287 * where we get a ctx, but it gets stolen and then 1288 * we fault when we try to run and so have to get 1289 * another ctx. 1290 */ 1291 sfmmup->sfmmu_cext = 0; 1292 cnum = INVALID_CONTEXT; 1293 1294 /* initialize original physical page coloring bin */ 1295 sfmmup->sfmmu_clrstart = get_color_start(as); 1296 #ifdef DEBUG 1297 if (tsb_random_size) { 1298 uint32_t randval = (uint32_t)gettick() >> 4; 1299 int size = randval % (tsb_max_growsize + 1); 1300 1301 /* chose a random tsb size for stress testing */ 1302 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size, 1303 TSB8K|TSB64K|TSB512K, 0, sfmmup); 1304 } else 1305 #endif /* DEBUG */ 1306 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, 1307 default_tsb_size, 1308 TSB8K|TSB64K|TSB512K, 0, sfmmup); 1309 sfmmup->sfmmu_flags = HAT_SWAPPED; 1310 ASSERT(sfmmup->sfmmu_tsb != NULL); 1311 } 1312 1313 ASSERT(max_mmu_ctxdoms > 0); 1314 for (i = 0; i < max_mmu_ctxdoms; i++) { 1315 sfmmup->sfmmu_ctxs[i].cnum = cnum; 1316 sfmmup->sfmmu_ctxs[i].gnum = 0; 1317 } 1318 1319 sfmmu_setup_tsbinfo(sfmmup); 1320 for (i = 0; i < max_mmu_page_sizes; i++) { 1321 sfmmup->sfmmu_ttecnt[i] = 0; 1322 sfmmup->sfmmu_ismttecnt[i] = 0; 1323 sfmmup->sfmmu_pgsz[i] = TTE8K; 1324 } 1325 1326 sfmmup->sfmmu_iblk = NULL; 1327 sfmmup->sfmmu_ismhat = 0; 1328 sfmmup->sfmmu_ismblkpa = (uint64_t)-1; 1329 if (sfmmup == ksfmmup) { 1330 CPUSET_ALL(sfmmup->sfmmu_cpusran); 1331 } else { 1332 CPUSET_ZERO(sfmmup->sfmmu_cpusran); 1333 } 1334 sfmmup->sfmmu_free = 0; 1335 sfmmup->sfmmu_rmstat = 0; 1336 sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart; 1337 sfmmup->sfmmu_xhat_provider = NULL; 1338 cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL); 1339 return (sfmmup); 1340 } 1341 1342 /* 1343 * Create per-MMU context domain kstats for a given MMU ctx. 1344 */ 1345 static void 1346 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp) 1347 { 1348 mmu_ctx_stat_t stat; 1349 kstat_t *mmu_kstat; 1350 1351 ASSERT(MUTEX_HELD(&cpu_lock)); 1352 ASSERT(mmu_ctxp->mmu_kstat == NULL); 1353 1354 mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx", 1355 "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL); 1356 1357 if (mmu_kstat == NULL) { 1358 cmn_err(CE_WARN, "kstat_create for MMU %d failed", 1359 mmu_ctxp->mmu_idx); 1360 } else { 1361 mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data; 1362 for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++) 1363 kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat], 1364 mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64); 1365 mmu_ctxp->mmu_kstat = mmu_kstat; 1366 kstat_install(mmu_kstat); 1367 } 1368 } 1369 1370 /* 1371 * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU 1372 * context domain information for a given CPU. If a platform does not 1373 * specify that interface, then the function below is used instead to return 1374 * default information. The defaults are as follows: 1375 * 1376 * - For sun4u systems there's one MMU context domain per CPU. 1377 * This default is used by all sun4u systems except OPL. OPL systems 1378 * provide platform specific interface to map CPU ids to MMU ids 1379 * because on OPL more than 1 CPU shares a single MMU. 1380 * Note that on sun4v, there is one global context domain for 1381 * the entire system. This is to avoid running into potential problem 1382 * with ldom physical cpu substitution feature. 1383 * - The number of MMU context IDs supported on any CPU in the 1384 * system is 8K. 1385 */ 1386 /*ARGSUSED*/ 1387 static void 1388 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop) 1389 { 1390 infop->mmu_nctxs = nctxs; 1391 #ifndef sun4v 1392 infop->mmu_idx = cpu[cpuid]->cpu_seqid; 1393 #else /* sun4v */ 1394 infop->mmu_idx = 0; 1395 #endif /* sun4v */ 1396 } 1397 1398 /* 1399 * Called during CPU initialization to set the MMU context-related information 1400 * for a CPU. 1401 * 1402 * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum. 1403 */ 1404 void 1405 sfmmu_cpu_init(cpu_t *cp) 1406 { 1407 mmu_ctx_info_t info; 1408 mmu_ctx_t *mmu_ctxp; 1409 1410 ASSERT(MUTEX_HELD(&cpu_lock)); 1411 1412 if (&plat_cpuid_to_mmu_ctx_info == NULL) 1413 sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info); 1414 else 1415 plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info); 1416 1417 ASSERT(info.mmu_idx < max_mmu_ctxdoms); 1418 1419 if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) { 1420 /* Each mmu_ctx is cacheline aligned. */ 1421 mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP); 1422 bzero(mmu_ctxp, sizeof (mmu_ctx_t)); 1423 1424 mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN, 1425 (void *)ipltospl(DISP_LEVEL)); 1426 mmu_ctxp->mmu_idx = info.mmu_idx; 1427 mmu_ctxp->mmu_nctxs = info.mmu_nctxs; 1428 /* 1429 * Globally for lifetime of a system, 1430 * gnum must always increase. 1431 * mmu_saved_gnum is protected by the cpu_lock. 1432 */ 1433 mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1; 1434 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS; 1435 1436 sfmmu_mmu_kstat_create(mmu_ctxp); 1437 1438 mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp; 1439 } else { 1440 ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx); 1441 } 1442 1443 /* 1444 * The mmu_lock is acquired here to prevent races with 1445 * the wrap-around code. 1446 */ 1447 mutex_enter(&mmu_ctxp->mmu_lock); 1448 1449 1450 mmu_ctxp->mmu_ncpus++; 1451 CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id); 1452 CPU_MMU_IDX(cp) = info.mmu_idx; 1453 CPU_MMU_CTXP(cp) = mmu_ctxp; 1454 1455 mutex_exit(&mmu_ctxp->mmu_lock); 1456 } 1457 1458 /* 1459 * Called to perform MMU context-related cleanup for a CPU. 1460 */ 1461 void 1462 sfmmu_cpu_cleanup(cpu_t *cp) 1463 { 1464 mmu_ctx_t *mmu_ctxp; 1465 1466 ASSERT(MUTEX_HELD(&cpu_lock)); 1467 1468 mmu_ctxp = CPU_MMU_CTXP(cp); 1469 ASSERT(mmu_ctxp != NULL); 1470 1471 /* 1472 * The mmu_lock is acquired here to prevent races with 1473 * the wrap-around code. 1474 */ 1475 mutex_enter(&mmu_ctxp->mmu_lock); 1476 1477 CPU_MMU_CTXP(cp) = NULL; 1478 1479 CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id); 1480 if (--mmu_ctxp->mmu_ncpus == 0) { 1481 mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL; 1482 mutex_exit(&mmu_ctxp->mmu_lock); 1483 mutex_destroy(&mmu_ctxp->mmu_lock); 1484 1485 if (mmu_ctxp->mmu_kstat) 1486 kstat_delete(mmu_ctxp->mmu_kstat); 1487 1488 /* mmu_saved_gnum is protected by the cpu_lock. */ 1489 if (mmu_saved_gnum < mmu_ctxp->mmu_gnum) 1490 mmu_saved_gnum = mmu_ctxp->mmu_gnum; 1491 1492 kmem_cache_free(mmuctxdom_cache, mmu_ctxp); 1493 1494 return; 1495 } 1496 1497 mutex_exit(&mmu_ctxp->mmu_lock); 1498 } 1499 1500 /* 1501 * Hat_setup, makes an address space context the current active one. 1502 * In sfmmu this translates to setting the secondary context with the 1503 * corresponding context. 1504 */ 1505 void 1506 hat_setup(struct hat *sfmmup, int allocflag) 1507 { 1508 hatlock_t *hatlockp; 1509 1510 /* Init needs some special treatment. */ 1511 if (allocflag == HAT_INIT) { 1512 /* 1513 * Make sure that we have 1514 * 1. a TSB 1515 * 2. a valid ctx that doesn't get stolen after this point. 1516 */ 1517 hatlockp = sfmmu_hat_enter(sfmmup); 1518 1519 /* 1520 * Swap in the TSB. hat_init() allocates tsbinfos without 1521 * TSBs, but we need one for init, since the kernel does some 1522 * special things to set up its stack and needs the TSB to 1523 * resolve page faults. 1524 */ 1525 sfmmu_tsb_swapin(sfmmup, hatlockp); 1526 1527 sfmmu_get_ctx(sfmmup); 1528 1529 sfmmu_hat_exit(hatlockp); 1530 } else { 1531 ASSERT(allocflag == HAT_ALLOC); 1532 1533 hatlockp = sfmmu_hat_enter(sfmmup); 1534 kpreempt_disable(); 1535 1536 CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id); 1537 1538 /* 1539 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter, 1540 * pagesize bits don't matter in this case since we are passing 1541 * INVALID_CONTEXT to it. 1542 */ 1543 sfmmu_setctx_sec(INVALID_CONTEXT); 1544 sfmmu_clear_utsbinfo(); 1545 1546 kpreempt_enable(); 1547 sfmmu_hat_exit(hatlockp); 1548 } 1549 } 1550 1551 /* 1552 * Free all the translation resources for the specified address space. 1553 * Called from as_free when an address space is being destroyed. 1554 */ 1555 void 1556 hat_free_start(struct hat *sfmmup) 1557 { 1558 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 1559 ASSERT(sfmmup != ksfmmup); 1560 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1561 1562 sfmmup->sfmmu_free = 1; 1563 } 1564 1565 void 1566 hat_free_end(struct hat *sfmmup) 1567 { 1568 int i; 1569 1570 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1571 if (sfmmup->sfmmu_ismhat) { 1572 for (i = 0; i < mmu_page_sizes; i++) { 1573 sfmmup->sfmmu_ttecnt[i] = 0; 1574 sfmmup->sfmmu_ismttecnt[i] = 0; 1575 } 1576 } else { 1577 /* EMPTY */ 1578 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0); 1579 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0); 1580 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0); 1581 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0); 1582 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 1583 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 1584 } 1585 1586 if (sfmmup->sfmmu_rmstat) { 1587 hat_freestat(sfmmup->sfmmu_as, NULL); 1588 } 1589 1590 while (sfmmup->sfmmu_tsb != NULL) { 1591 struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next; 1592 sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb); 1593 sfmmup->sfmmu_tsb = next; 1594 } 1595 sfmmu_free_sfmmu(sfmmup); 1596 1597 kmem_cache_free(sfmmuid_cache, sfmmup); 1598 } 1599 1600 /* 1601 * Set up any translation structures, for the specified address space, 1602 * that are needed or preferred when the process is being swapped in. 1603 */ 1604 /* ARGSUSED */ 1605 void 1606 hat_swapin(struct hat *hat) 1607 { 1608 ASSERT(hat->sfmmu_xhat_provider == NULL); 1609 } 1610 1611 /* 1612 * Free all of the translation resources, for the specified address space, 1613 * that can be freed while the process is swapped out. Called from as_swapout. 1614 * Also, free up the ctx that this process was using. 1615 */ 1616 void 1617 hat_swapout(struct hat *sfmmup) 1618 { 1619 struct hmehash_bucket *hmebp; 1620 struct hme_blk *hmeblkp; 1621 struct hme_blk *pr_hblk = NULL; 1622 struct hme_blk *nx_hblk; 1623 int i; 1624 uint64_t hblkpa, prevpa, nx_pa; 1625 struct hme_blk *list = NULL; 1626 hatlock_t *hatlockp; 1627 struct tsb_info *tsbinfop; 1628 struct free_tsb { 1629 struct free_tsb *next; 1630 struct tsb_info *tsbinfop; 1631 }; /* free list of TSBs */ 1632 struct free_tsb *freelist, *last, *next; 1633 1634 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1635 SFMMU_STAT(sf_swapout); 1636 1637 /* 1638 * There is no way to go from an as to all its translations in sfmmu. 1639 * Here is one of the times when we take the big hit and traverse 1640 * the hash looking for hme_blks to free up. Not only do we free up 1641 * this as hme_blks but all those that are free. We are obviously 1642 * swapping because we need memory so let's free up as much 1643 * as we can. 1644 * 1645 * Note that we don't flush TLB/TSB here -- it's not necessary 1646 * because: 1647 * 1) we free the ctx we're using and throw away the TSB(s); 1648 * 2) processes aren't runnable while being swapped out. 1649 */ 1650 ASSERT(sfmmup != KHATID); 1651 for (i = 0; i <= UHMEHASH_SZ; i++) { 1652 hmebp = &uhme_hash[i]; 1653 SFMMU_HASH_LOCK(hmebp); 1654 hmeblkp = hmebp->hmeblkp; 1655 hblkpa = hmebp->hmeh_nextpa; 1656 prevpa = 0; 1657 pr_hblk = NULL; 1658 while (hmeblkp) { 1659 1660 ASSERT(!hmeblkp->hblk_xhat_bit); 1661 1662 if ((hmeblkp->hblk_tag.htag_id == sfmmup) && 1663 !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) { 1664 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 1665 (caddr_t)get_hblk_base(hmeblkp), 1666 get_hblk_endaddr(hmeblkp), 1667 NULL, HAT_UNLOAD); 1668 } 1669 nx_hblk = hmeblkp->hblk_next; 1670 nx_pa = hmeblkp->hblk_nextpa; 1671 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 1672 ASSERT(!hmeblkp->hblk_lckcnt); 1673 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 1674 prevpa, pr_hblk); 1675 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 1676 } else { 1677 pr_hblk = hmeblkp; 1678 prevpa = hblkpa; 1679 } 1680 hmeblkp = nx_hblk; 1681 hblkpa = nx_pa; 1682 } 1683 SFMMU_HASH_UNLOCK(hmebp); 1684 } 1685 1686 sfmmu_hblks_list_purge(&list); 1687 1688 /* 1689 * Now free up the ctx so that others can reuse it. 1690 */ 1691 hatlockp = sfmmu_hat_enter(sfmmup); 1692 1693 sfmmu_invalidate_ctx(sfmmup); 1694 1695 /* 1696 * Free TSBs, but not tsbinfos, and set SWAPPED flag. 1697 * If TSBs were never swapped in, just return. 1698 * This implies that we don't support partial swapping 1699 * of TSBs -- either all are swapped out, or none are. 1700 * 1701 * We must hold the HAT lock here to prevent racing with another 1702 * thread trying to unmap TTEs from the TSB or running the post- 1703 * relocator after relocating the TSB's memory. Unfortunately, we 1704 * can't free memory while holding the HAT lock or we could 1705 * deadlock, so we build a list of TSBs to be freed after marking 1706 * the tsbinfos as swapped out and free them after dropping the 1707 * lock. 1708 */ 1709 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 1710 sfmmu_hat_exit(hatlockp); 1711 return; 1712 } 1713 1714 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED); 1715 last = freelist = NULL; 1716 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 1717 tsbinfop = tsbinfop->tsb_next) { 1718 ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0); 1719 1720 /* 1721 * Cast the TSB into a struct free_tsb and put it on the free 1722 * list. 1723 */ 1724 if (freelist == NULL) { 1725 last = freelist = (struct free_tsb *)tsbinfop->tsb_va; 1726 } else { 1727 last->next = (struct free_tsb *)tsbinfop->tsb_va; 1728 last = last->next; 1729 } 1730 last->next = NULL; 1731 last->tsbinfop = tsbinfop; 1732 tsbinfop->tsb_flags |= TSB_SWAPPED; 1733 /* 1734 * Zero out the TTE to clear the valid bit. 1735 * Note we can't use a value like 0xbad because we want to 1736 * ensure diagnostic bits are NEVER set on TTEs that might 1737 * be loaded. The intent is to catch any invalid access 1738 * to the swapped TSB, such as a thread running with a valid 1739 * context without first calling sfmmu_tsb_swapin() to 1740 * allocate TSB memory. 1741 */ 1742 tsbinfop->tsb_tte.ll = 0; 1743 } 1744 1745 #ifdef sun4v 1746 if (freelist) 1747 sfmmu_invalidate_tsbinfo(sfmmup); 1748 #endif /* sun4v */ 1749 1750 /* Now we can drop the lock and free the TSB memory. */ 1751 sfmmu_hat_exit(hatlockp); 1752 for (; freelist != NULL; freelist = next) { 1753 next = freelist->next; 1754 sfmmu_tsb_free(freelist->tsbinfop); 1755 } 1756 } 1757 1758 /* 1759 * Duplicate the translations of an as into another newas 1760 */ 1761 /* ARGSUSED */ 1762 int 1763 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len, 1764 uint_t flag) 1765 { 1766 ASSERT(hat->sfmmu_xhat_provider == NULL); 1767 ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW)); 1768 1769 if (flag == HAT_DUP_COW) { 1770 panic("hat_dup: HAT_DUP_COW not supported"); 1771 } 1772 return (0); 1773 } 1774 1775 /* 1776 * Set up addr to map to page pp with protection prot. 1777 * As an optimization we also load the TSB with the 1778 * corresponding tte but it is no big deal if the tte gets kicked out. 1779 */ 1780 void 1781 hat_memload(struct hat *hat, caddr_t addr, struct page *pp, 1782 uint_t attr, uint_t flags) 1783 { 1784 tte_t tte; 1785 1786 1787 ASSERT(hat != NULL); 1788 ASSERT(PAGE_LOCKED(pp)); 1789 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 1790 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG)); 1791 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 1792 1793 if (PP_ISFREE(pp)) { 1794 panic("hat_memload: loading a mapping to free page %p", 1795 (void *)pp); 1796 } 1797 1798 if (hat->sfmmu_xhat_provider) { 1799 XHAT_MEMLOAD(hat, addr, pp, attr, flags); 1800 return; 1801 } 1802 1803 ASSERT((hat == ksfmmup) || 1804 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock)); 1805 1806 if (flags & ~SFMMU_LOAD_ALLFLAG) 1807 cmn_err(CE_NOTE, "hat_memload: unsupported flags %d", 1808 flags & ~SFMMU_LOAD_ALLFLAG); 1809 1810 if (hat->sfmmu_rmstat) 1811 hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr); 1812 1813 #if defined(SF_ERRATA_57) 1814 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 1815 (addr < errata57_limit) && (attr & PROT_EXEC) && 1816 !(flags & HAT_LOAD_SHARE)) { 1817 cmn_err(CE_WARN, "hat_memload: illegal attempt to make user " 1818 " page executable"); 1819 attr &= ~PROT_EXEC; 1820 } 1821 #endif 1822 1823 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K); 1824 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags); 1825 1826 /* 1827 * Check TSB and TLB page sizes. 1828 */ 1829 if ((flags & HAT_LOAD_SHARE) == 0) { 1830 sfmmu_check_page_sizes(hat, 1); 1831 } 1832 } 1833 1834 /* 1835 * hat_devload can be called to map real memory (e.g. 1836 * /dev/kmem) and even though hat_devload will determine pf is 1837 * for memory, it will be unable to get a shared lock on the 1838 * page (because someone else has it exclusively) and will 1839 * pass dp = NULL. If tteload doesn't get a non-NULL 1840 * page pointer it can't cache memory. 1841 */ 1842 void 1843 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn, 1844 uint_t attr, int flags) 1845 { 1846 tte_t tte; 1847 struct page *pp = NULL; 1848 int use_lgpg = 0; 1849 1850 ASSERT(hat != NULL); 1851 1852 if (hat->sfmmu_xhat_provider) { 1853 XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags); 1854 return; 1855 } 1856 1857 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG)); 1858 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 1859 ASSERT((hat == ksfmmup) || 1860 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock)); 1861 if (len == 0) 1862 panic("hat_devload: zero len"); 1863 if (flags & ~SFMMU_LOAD_ALLFLAG) 1864 cmn_err(CE_NOTE, "hat_devload: unsupported flags %d", 1865 flags & ~SFMMU_LOAD_ALLFLAG); 1866 1867 #if defined(SF_ERRATA_57) 1868 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 1869 (addr < errata57_limit) && (attr & PROT_EXEC) && 1870 !(flags & HAT_LOAD_SHARE)) { 1871 cmn_err(CE_WARN, "hat_devload: illegal attempt to make user " 1872 " page executable"); 1873 attr &= ~PROT_EXEC; 1874 } 1875 #endif 1876 1877 /* 1878 * If it's a memory page find its pp 1879 */ 1880 if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) { 1881 pp = page_numtopp_nolock(pfn); 1882 if (pp == NULL) { 1883 flags |= HAT_LOAD_NOCONSIST; 1884 } else { 1885 if (PP_ISFREE(pp)) { 1886 panic("hat_memload: loading " 1887 "a mapping to free page %p", 1888 (void *)pp); 1889 } 1890 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 1891 panic("hat_memload: loading a mapping " 1892 "to unlocked relocatable page %p", 1893 (void *)pp); 1894 } 1895 ASSERT(len == MMU_PAGESIZE); 1896 } 1897 } 1898 1899 if (hat->sfmmu_rmstat) 1900 hat_resvstat(len, hat->sfmmu_as, addr); 1901 1902 if (flags & HAT_LOAD_NOCONSIST) { 1903 attr |= SFMMU_UNCACHEVTTE; 1904 use_lgpg = 1; 1905 } 1906 if (!pf_is_memory(pfn)) { 1907 attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC; 1908 use_lgpg = 1; 1909 switch (attr & HAT_ORDER_MASK) { 1910 case HAT_STRICTORDER: 1911 case HAT_UNORDERED_OK: 1912 /* 1913 * we set the side effect bit for all non 1914 * memory mappings unless merging is ok 1915 */ 1916 attr |= SFMMU_SIDEFFECT; 1917 break; 1918 case HAT_MERGING_OK: 1919 case HAT_LOADCACHING_OK: 1920 case HAT_STORECACHING_OK: 1921 break; 1922 default: 1923 panic("hat_devload: bad attr"); 1924 break; 1925 } 1926 } 1927 while (len) { 1928 if (!use_lgpg) { 1929 sfmmu_memtte(&tte, pfn, attr, TTE8K); 1930 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 1931 flags); 1932 len -= MMU_PAGESIZE; 1933 addr += MMU_PAGESIZE; 1934 pfn++; 1935 continue; 1936 } 1937 /* 1938 * try to use large pages, check va/pa alignments 1939 * Note that 32M/256M page sizes are not (yet) supported. 1940 */ 1941 if ((len >= MMU_PAGESIZE4M) && 1942 !((uintptr_t)addr & MMU_PAGEOFFSET4M) && 1943 !(disable_large_pages & (1 << TTE4M)) && 1944 !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) { 1945 sfmmu_memtte(&tte, pfn, attr, TTE4M); 1946 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 1947 flags); 1948 len -= MMU_PAGESIZE4M; 1949 addr += MMU_PAGESIZE4M; 1950 pfn += MMU_PAGESIZE4M / MMU_PAGESIZE; 1951 } else if ((len >= MMU_PAGESIZE512K) && 1952 !((uintptr_t)addr & MMU_PAGEOFFSET512K) && 1953 !(disable_large_pages & (1 << TTE512K)) && 1954 !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) { 1955 sfmmu_memtte(&tte, pfn, attr, TTE512K); 1956 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 1957 flags); 1958 len -= MMU_PAGESIZE512K; 1959 addr += MMU_PAGESIZE512K; 1960 pfn += MMU_PAGESIZE512K / MMU_PAGESIZE; 1961 } else if ((len >= MMU_PAGESIZE64K) && 1962 !((uintptr_t)addr & MMU_PAGEOFFSET64K) && 1963 !(disable_large_pages & (1 << TTE64K)) && 1964 !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) { 1965 sfmmu_memtte(&tte, pfn, attr, TTE64K); 1966 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 1967 flags); 1968 len -= MMU_PAGESIZE64K; 1969 addr += MMU_PAGESIZE64K; 1970 pfn += MMU_PAGESIZE64K / MMU_PAGESIZE; 1971 } else { 1972 sfmmu_memtte(&tte, pfn, attr, TTE8K); 1973 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 1974 flags); 1975 len -= MMU_PAGESIZE; 1976 addr += MMU_PAGESIZE; 1977 pfn++; 1978 } 1979 } 1980 1981 /* 1982 * Check TSB and TLB page sizes. 1983 */ 1984 if ((flags & HAT_LOAD_SHARE) == 0) { 1985 sfmmu_check_page_sizes(hat, 1); 1986 } 1987 } 1988 1989 /* 1990 * Map the largest extend possible out of the page array. The array may NOT 1991 * be in order. The largest possible mapping a page can have 1992 * is specified in the p_szc field. The p_szc field 1993 * cannot change as long as there any mappings (large or small) 1994 * to any of the pages that make up the large page. (ie. any 1995 * promotion/demotion of page size is not up to the hat but up to 1996 * the page free list manager). The array 1997 * should consist of properly aligned contigous pages that are 1998 * part of a big page for a large mapping to be created. 1999 */ 2000 void 2001 hat_memload_array(struct hat *hat, caddr_t addr, size_t len, 2002 struct page **pps, uint_t attr, uint_t flags) 2003 { 2004 int ttesz; 2005 size_t mapsz; 2006 pgcnt_t numpg, npgs; 2007 tte_t tte; 2008 page_t *pp; 2009 uint_t large_pages_disable; 2010 2011 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 2012 2013 if (hat->sfmmu_xhat_provider) { 2014 XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags); 2015 return; 2016 } 2017 2018 if (hat->sfmmu_rmstat) 2019 hat_resvstat(len, hat->sfmmu_as, addr); 2020 2021 #if defined(SF_ERRATA_57) 2022 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 2023 (addr < errata57_limit) && (attr & PROT_EXEC) && 2024 !(flags & HAT_LOAD_SHARE)) { 2025 cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make " 2026 "user page executable"); 2027 attr &= ~PROT_EXEC; 2028 } 2029 #endif 2030 2031 /* Get number of pages */ 2032 npgs = len >> MMU_PAGESHIFT; 2033 2034 if (flags & HAT_LOAD_SHARE) { 2035 large_pages_disable = disable_ism_large_pages; 2036 } else { 2037 large_pages_disable = disable_large_pages; 2038 } 2039 2040 if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) { 2041 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs); 2042 return; 2043 } 2044 2045 while (npgs >= NHMENTS) { 2046 pp = *pps; 2047 for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) { 2048 /* 2049 * Check if this page size is disabled. 2050 */ 2051 if (large_pages_disable & (1 << ttesz)) 2052 continue; 2053 2054 numpg = TTEPAGES(ttesz); 2055 mapsz = numpg << MMU_PAGESHIFT; 2056 if ((npgs >= numpg) && 2057 IS_P2ALIGNED(addr, mapsz) && 2058 IS_P2ALIGNED(pp->p_pagenum, numpg)) { 2059 /* 2060 * At this point we have enough pages and 2061 * we know the virtual address and the pfn 2062 * are properly aligned. We still need 2063 * to check for physical contiguity but since 2064 * it is very likely that this is the case 2065 * we will assume they are so and undo 2066 * the request if necessary. It would 2067 * be great if we could get a hint flag 2068 * like HAT_CONTIG which would tell us 2069 * the pages are contigous for sure. 2070 */ 2071 sfmmu_memtte(&tte, (*pps)->p_pagenum, 2072 attr, ttesz); 2073 if (!sfmmu_tteload_array(hat, &tte, addr, 2074 pps, flags)) { 2075 break; 2076 } 2077 } 2078 } 2079 if (ttesz == TTE8K) { 2080 /* 2081 * We were not able to map array using a large page 2082 * batch a hmeblk or fraction at a time. 2083 */ 2084 numpg = ((uintptr_t)addr >> MMU_PAGESHIFT) 2085 & (NHMENTS-1); 2086 numpg = NHMENTS - numpg; 2087 ASSERT(numpg <= npgs); 2088 mapsz = numpg * MMU_PAGESIZE; 2089 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, 2090 numpg); 2091 } 2092 addr += mapsz; 2093 npgs -= numpg; 2094 pps += numpg; 2095 } 2096 2097 if (npgs) { 2098 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs); 2099 } 2100 2101 /* 2102 * Check TSB and TLB page sizes. 2103 */ 2104 if ((flags & HAT_LOAD_SHARE) == 0) { 2105 sfmmu_check_page_sizes(hat, 1); 2106 } 2107 } 2108 2109 /* 2110 * Function tries to batch 8K pages into the same hme blk. 2111 */ 2112 static void 2113 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps, 2114 uint_t attr, uint_t flags, pgcnt_t npgs) 2115 { 2116 tte_t tte; 2117 page_t *pp; 2118 struct hmehash_bucket *hmebp; 2119 struct hme_blk *hmeblkp; 2120 int index; 2121 2122 while (npgs) { 2123 /* 2124 * Acquire the hash bucket. 2125 */ 2126 hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K); 2127 ASSERT(hmebp); 2128 2129 /* 2130 * Find the hment block. 2131 */ 2132 hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr, 2133 TTE8K, flags); 2134 ASSERT(hmeblkp); 2135 2136 do { 2137 /* 2138 * Make the tte. 2139 */ 2140 pp = *pps; 2141 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K); 2142 2143 /* 2144 * Add the translation. 2145 */ 2146 (void) sfmmu_tteload_addentry(hat, hmeblkp, &tte, 2147 vaddr, pps, flags); 2148 2149 /* 2150 * Goto next page. 2151 */ 2152 pps++; 2153 npgs--; 2154 2155 /* 2156 * Goto next address. 2157 */ 2158 vaddr += MMU_PAGESIZE; 2159 2160 /* 2161 * Don't crossover into a different hmentblk. 2162 */ 2163 index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) & 2164 (NHMENTS-1)); 2165 2166 } while (index != 0 && npgs != 0); 2167 2168 /* 2169 * Release the hash bucket. 2170 */ 2171 2172 sfmmu_tteload_release_hashbucket(hmebp); 2173 } 2174 } 2175 2176 /* 2177 * Construct a tte for a page: 2178 * 2179 * tte_valid = 1 2180 * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only) 2181 * tte_size = size 2182 * tte_nfo = attr & HAT_NOFAULT 2183 * tte_ie = attr & HAT_STRUCTURE_LE 2184 * tte_hmenum = hmenum 2185 * tte_pahi = pp->p_pagenum >> TTE_PASHIFT; 2186 * tte_palo = pp->p_pagenum & TTE_PALOMASK; 2187 * tte_ref = 1 (optimization) 2188 * tte_wr_perm = attr & PROT_WRITE; 2189 * tte_no_sync = attr & HAT_NOSYNC 2190 * tte_lock = attr & SFMMU_LOCKTTE 2191 * tte_cp = !(attr & SFMMU_UNCACHEPTTE) 2192 * tte_cv = !(attr & SFMMU_UNCACHEVTTE) 2193 * tte_e = attr & SFMMU_SIDEFFECT 2194 * tte_priv = !(attr & PROT_USER) 2195 * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt) 2196 * tte_glb = 0 2197 */ 2198 void 2199 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz) 2200 { 2201 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 2202 2203 ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */); 2204 ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */); 2205 2206 if (TTE_IS_NOSYNC(ttep)) { 2207 TTE_SET_REF(ttep); 2208 if (TTE_IS_WRITABLE(ttep)) { 2209 TTE_SET_MOD(ttep); 2210 } 2211 } 2212 if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) { 2213 panic("sfmmu_memtte: can't set both NFO and EXEC bits"); 2214 } 2215 } 2216 2217 /* 2218 * This function will add a translation to the hme_blk and allocate the 2219 * hme_blk if one does not exist. 2220 * If a page structure is specified then it will add the 2221 * corresponding hment to the mapping list. 2222 * It will also update the hmenum field for the tte. 2223 */ 2224 void 2225 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp, 2226 uint_t flags) 2227 { 2228 (void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags); 2229 } 2230 2231 /* 2232 * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB. 2233 * Assumes that a particular page size may only be resident in one TSB. 2234 */ 2235 static void 2236 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz) 2237 { 2238 struct tsb_info *tsbinfop = NULL; 2239 uint64_t tag; 2240 struct tsbe *tsbe_addr; 2241 uint64_t tsb_base; 2242 uint_t tsb_size; 2243 int vpshift = MMU_PAGESHIFT; 2244 int phys = 0; 2245 2246 if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */ 2247 phys = ktsb_phys; 2248 if (ttesz >= TTE4M) { 2249 #ifndef sun4v 2250 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M)); 2251 #endif 2252 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base; 2253 tsb_size = ktsb4m_szcode; 2254 } else { 2255 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base; 2256 tsb_size = ktsb_szcode; 2257 } 2258 } else { 2259 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz); 2260 2261 /* 2262 * If there isn't a TSB for this page size, or the TSB is 2263 * swapped out, there is nothing to do. Note that the latter 2264 * case seems impossible but can occur if hat_pageunload() 2265 * is called on an ISM mapping while the process is swapped 2266 * out. 2267 */ 2268 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED)) 2269 return; 2270 2271 /* 2272 * If another thread is in the middle of relocating a TSB 2273 * we can't unload the entry so set a flag so that the 2274 * TSB will be flushed before it can be accessed by the 2275 * process. 2276 */ 2277 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) { 2278 if (ttep == NULL) 2279 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED; 2280 return; 2281 } 2282 #if defined(UTSB_PHYS) 2283 phys = 1; 2284 tsb_base = (uint64_t)tsbinfop->tsb_pa; 2285 #else 2286 tsb_base = (uint64_t)tsbinfop->tsb_va; 2287 #endif 2288 tsb_size = tsbinfop->tsb_szc; 2289 } 2290 if (ttesz >= TTE4M) 2291 vpshift = MMU_PAGESHIFT4M; 2292 2293 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size); 2294 tag = sfmmu_make_tsbtag(vaddr); 2295 2296 if (ttep == NULL) { 2297 sfmmu_unload_tsbe(tsbe_addr, tag, phys); 2298 } else { 2299 if (ttesz >= TTE4M) { 2300 SFMMU_STAT(sf_tsb_load4m); 2301 } else { 2302 SFMMU_STAT(sf_tsb_load8k); 2303 } 2304 2305 sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys); 2306 } 2307 } 2308 2309 /* 2310 * Unmap all entries from [start, end) matching the given page size. 2311 * 2312 * This function is used primarily to unmap replicated 64K or 512K entries 2313 * from the TSB that are inserted using the base page size TSB pointer, but 2314 * it may also be called to unmap a range of addresses from the TSB. 2315 */ 2316 void 2317 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz) 2318 { 2319 struct tsb_info *tsbinfop; 2320 uint64_t tag; 2321 struct tsbe *tsbe_addr; 2322 caddr_t vaddr; 2323 uint64_t tsb_base; 2324 int vpshift, vpgsz; 2325 uint_t tsb_size; 2326 int phys = 0; 2327 2328 /* 2329 * Assumptions: 2330 * If ttesz == 8K, 64K or 512K, we walk through the range 8K 2331 * at a time shooting down any valid entries we encounter. 2332 * 2333 * If ttesz >= 4M we walk the range 4M at a time shooting 2334 * down any valid mappings we find. 2335 */ 2336 if (sfmmup == ksfmmup) { 2337 phys = ktsb_phys; 2338 if (ttesz >= TTE4M) { 2339 #ifndef sun4v 2340 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M)); 2341 #endif 2342 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base; 2343 tsb_size = ktsb4m_szcode; 2344 } else { 2345 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base; 2346 tsb_size = ktsb_szcode; 2347 } 2348 } else { 2349 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz); 2350 2351 /* 2352 * If there isn't a TSB for this page size, or the TSB is 2353 * swapped out, there is nothing to do. Note that the latter 2354 * case seems impossible but can occur if hat_pageunload() 2355 * is called on an ISM mapping while the process is swapped 2356 * out. 2357 */ 2358 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED)) 2359 return; 2360 2361 /* 2362 * If another thread is in the middle of relocating a TSB 2363 * we can't unload the entry so set a flag so that the 2364 * TSB will be flushed before it can be accessed by the 2365 * process. 2366 */ 2367 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) { 2368 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED; 2369 return; 2370 } 2371 #if defined(UTSB_PHYS) 2372 phys = 1; 2373 tsb_base = (uint64_t)tsbinfop->tsb_pa; 2374 #else 2375 tsb_base = (uint64_t)tsbinfop->tsb_va; 2376 #endif 2377 tsb_size = tsbinfop->tsb_szc; 2378 } 2379 if (ttesz >= TTE4M) { 2380 vpshift = MMU_PAGESHIFT4M; 2381 vpgsz = MMU_PAGESIZE4M; 2382 } else { 2383 vpshift = MMU_PAGESHIFT; 2384 vpgsz = MMU_PAGESIZE; 2385 } 2386 2387 for (vaddr = start; vaddr < end; vaddr += vpgsz) { 2388 tag = sfmmu_make_tsbtag(vaddr); 2389 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size); 2390 sfmmu_unload_tsbe(tsbe_addr, tag, phys); 2391 } 2392 } 2393 2394 /* 2395 * Select the optimum TSB size given the number of mappings 2396 * that need to be cached. 2397 */ 2398 static int 2399 sfmmu_select_tsb_szc(pgcnt_t pgcnt) 2400 { 2401 int szc = 0; 2402 2403 #ifdef DEBUG 2404 if (tsb_grow_stress) { 2405 uint32_t randval = (uint32_t)gettick() >> 4; 2406 return (randval % (tsb_max_growsize + 1)); 2407 } 2408 #endif /* DEBUG */ 2409 2410 while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc))) 2411 szc++; 2412 return (szc); 2413 } 2414 2415 /* 2416 * This function will add a translation to the hme_blk and allocate the 2417 * hme_blk if one does not exist. 2418 * If a page structure is specified then it will add the 2419 * corresponding hment to the mapping list. 2420 * It will also update the hmenum field for the tte. 2421 * Furthermore, it attempts to create a large page translation 2422 * for <addr,hat> at page array pps. It assumes addr and first 2423 * pp is correctly aligned. It returns 0 if successful and 1 otherwise. 2424 */ 2425 static int 2426 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr, 2427 page_t **pps, uint_t flags) 2428 { 2429 struct hmehash_bucket *hmebp; 2430 struct hme_blk *hmeblkp; 2431 int ret; 2432 uint_t size; 2433 2434 /* 2435 * Get mapping size. 2436 */ 2437 size = TTE_CSZ(ttep); 2438 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size))); 2439 2440 /* 2441 * Acquire the hash bucket. 2442 */ 2443 hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size); 2444 ASSERT(hmebp); 2445 2446 /* 2447 * Find the hment block. 2448 */ 2449 hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags); 2450 ASSERT(hmeblkp); 2451 2452 /* 2453 * Add the translation. 2454 */ 2455 ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags); 2456 2457 /* 2458 * Release the hash bucket. 2459 */ 2460 sfmmu_tteload_release_hashbucket(hmebp); 2461 2462 return (ret); 2463 } 2464 2465 /* 2466 * Function locks and returns a pointer to the hash bucket for vaddr and size. 2467 */ 2468 static struct hmehash_bucket * 2469 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size) 2470 { 2471 struct hmehash_bucket *hmebp; 2472 int hmeshift; 2473 2474 hmeshift = HME_HASH_SHIFT(size); 2475 2476 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 2477 2478 SFMMU_HASH_LOCK(hmebp); 2479 2480 return (hmebp); 2481 } 2482 2483 /* 2484 * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the 2485 * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is 2486 * allocated. 2487 */ 2488 static struct hme_blk * 2489 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp, 2490 caddr_t vaddr, uint_t size, uint_t flags) 2491 { 2492 hmeblk_tag hblktag; 2493 int hmeshift; 2494 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL; 2495 uint64_t hblkpa, prevpa; 2496 struct kmem_cache *sfmmu_cache; 2497 uint_t forcefree; 2498 2499 hblktag.htag_id = sfmmup; 2500 hmeshift = HME_HASH_SHIFT(size); 2501 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 2502 hblktag.htag_rehash = HME_HASH_REHASH(size); 2503 2504 ttearray_realloc: 2505 2506 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, 2507 pr_hblk, prevpa, &list); 2508 2509 /* 2510 * We block until hblk_reserve_lock is released; it's held by 2511 * the thread, temporarily using hblk_reserve, until hblk_reserve is 2512 * replaced by a hblk from sfmmu8_cache. 2513 */ 2514 if (hmeblkp == (struct hme_blk *)hblk_reserve && 2515 hblk_reserve_thread != curthread) { 2516 SFMMU_HASH_UNLOCK(hmebp); 2517 mutex_enter(&hblk_reserve_lock); 2518 mutex_exit(&hblk_reserve_lock); 2519 SFMMU_STAT(sf_hblk_reserve_hit); 2520 SFMMU_HASH_LOCK(hmebp); 2521 goto ttearray_realloc; 2522 } 2523 2524 if (hmeblkp == NULL) { 2525 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size, 2526 hblktag, flags); 2527 } else { 2528 /* 2529 * It is possible for 8k and 64k hblks to collide since they 2530 * have the same rehash value. This is because we 2531 * lazily free hblks and 8K/64K blks could be lingering. 2532 * If we find size mismatch we free the block and & try again. 2533 */ 2534 if (get_hblk_ttesz(hmeblkp) != size) { 2535 ASSERT(!hmeblkp->hblk_vcnt); 2536 ASSERT(!hmeblkp->hblk_hmecnt); 2537 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk); 2538 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 2539 goto ttearray_realloc; 2540 } 2541 if (hmeblkp->hblk_shw_bit) { 2542 /* 2543 * if the hblk was previously used as a shadow hblk then 2544 * we will change it to a normal hblk 2545 */ 2546 if (hmeblkp->hblk_shw_mask) { 2547 sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp); 2548 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 2549 goto ttearray_realloc; 2550 } else { 2551 hmeblkp->hblk_shw_bit = 0; 2552 } 2553 } 2554 SFMMU_STAT(sf_hblk_hit); 2555 } 2556 2557 /* 2558 * hat_memload() should never call kmem_cache_free(); see block 2559 * comment showing the stacktrace in sfmmu_hblk_alloc(); 2560 * enqueue each hblk in the list to reserve list if it's created 2561 * from sfmmu8_cache *and* sfmmup == KHATID. 2562 */ 2563 forcefree = (sfmmup == KHATID) ? 1 : 0; 2564 while ((pr_hblk = list) != NULL) { 2565 list = pr_hblk->hblk_next; 2566 sfmmu_cache = get_hblk_cache(pr_hblk); 2567 if ((sfmmu_cache == sfmmu8_cache) && 2568 sfmmu_put_free_hblk(pr_hblk, forcefree)) 2569 continue; 2570 2571 ASSERT(sfmmup != KHATID); 2572 kmem_cache_free(sfmmu_cache, pr_hblk); 2573 } 2574 2575 ASSERT(get_hblk_ttesz(hmeblkp) == size); 2576 ASSERT(!hmeblkp->hblk_shw_bit); 2577 2578 return (hmeblkp); 2579 } 2580 2581 /* 2582 * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1 2583 * otherwise. 2584 */ 2585 static int 2586 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep, 2587 caddr_t vaddr, page_t **pps, uint_t flags) 2588 { 2589 page_t *pp = *pps; 2590 int hmenum, size, remap; 2591 tte_t tteold, flush_tte; 2592 #ifdef DEBUG 2593 tte_t orig_old; 2594 #endif /* DEBUG */ 2595 struct sf_hment *sfhme; 2596 kmutex_t *pml, *pmtx; 2597 hatlock_t *hatlockp; 2598 2599 /* 2600 * remove this panic when we decide to let user virtual address 2601 * space be >= USERLIMIT. 2602 */ 2603 if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT) 2604 panic("user addr %p in kernel space", vaddr); 2605 #if defined(TTE_IS_GLOBAL) 2606 if (TTE_IS_GLOBAL(ttep)) 2607 panic("sfmmu_tteload: creating global tte"); 2608 #endif 2609 2610 #ifdef DEBUG 2611 if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) && 2612 !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans) 2613 panic("sfmmu_tteload: non cacheable memory tte"); 2614 #endif /* DEBUG */ 2615 2616 if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) || 2617 !TTE_IS_MOD(ttep)) { 2618 /* 2619 * Don't load TSB for dummy as in ISM. Also don't preload 2620 * the TSB if the TTE isn't writable since we're likely to 2621 * fault on it again -- preloading can be fairly expensive. 2622 */ 2623 flags |= SFMMU_NO_TSBLOAD; 2624 } 2625 2626 size = TTE_CSZ(ttep); 2627 switch (size) { 2628 case TTE8K: 2629 SFMMU_STAT(sf_tteload8k); 2630 break; 2631 case TTE64K: 2632 SFMMU_STAT(sf_tteload64k); 2633 break; 2634 case TTE512K: 2635 SFMMU_STAT(sf_tteload512k); 2636 break; 2637 case TTE4M: 2638 SFMMU_STAT(sf_tteload4m); 2639 break; 2640 case (TTE32M): 2641 SFMMU_STAT(sf_tteload32m); 2642 ASSERT(mmu_page_sizes == max_mmu_page_sizes); 2643 break; 2644 case (TTE256M): 2645 SFMMU_STAT(sf_tteload256m); 2646 ASSERT(mmu_page_sizes == max_mmu_page_sizes); 2647 break; 2648 } 2649 2650 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size))); 2651 2652 HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum); 2653 2654 /* 2655 * Need to grab mlist lock here so that pageunload 2656 * will not change tte behind us. 2657 */ 2658 if (pp) { 2659 pml = sfmmu_mlist_enter(pp); 2660 } 2661 2662 sfmmu_copytte(&sfhme->hme_tte, &tteold); 2663 /* 2664 * Look for corresponding hment and if valid verify 2665 * pfns are equal. 2666 */ 2667 remap = TTE_IS_VALID(&tteold); 2668 if (remap) { 2669 pfn_t new_pfn, old_pfn; 2670 2671 old_pfn = TTE_TO_PFN(vaddr, &tteold); 2672 new_pfn = TTE_TO_PFN(vaddr, ttep); 2673 2674 if (flags & HAT_LOAD_REMAP) { 2675 /* make sure we are remapping same type of pages */ 2676 if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) { 2677 panic("sfmmu_tteload - tte remap io<->memory"); 2678 } 2679 if (old_pfn != new_pfn && 2680 (pp != NULL || sfhme->hme_page != NULL)) { 2681 panic("sfmmu_tteload - tte remap pp != NULL"); 2682 } 2683 } else if (old_pfn != new_pfn) { 2684 panic("sfmmu_tteload - tte remap, hmeblkp 0x%p", 2685 (void *)hmeblkp); 2686 } 2687 ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep)); 2688 } 2689 2690 if (pp) { 2691 if (size == TTE8K) { 2692 #ifdef VAC 2693 /* 2694 * Handle VAC consistency 2695 */ 2696 if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) { 2697 sfmmu_vac_conflict(sfmmup, vaddr, pp); 2698 } 2699 #endif 2700 2701 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) { 2702 pmtx = sfmmu_page_enter(pp); 2703 PP_CLRRO(pp); 2704 sfmmu_page_exit(pmtx); 2705 } else if (!PP_ISMAPPED(pp) && 2706 (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) { 2707 pmtx = sfmmu_page_enter(pp); 2708 if (!(PP_ISMOD(pp))) { 2709 PP_SETRO(pp); 2710 } 2711 sfmmu_page_exit(pmtx); 2712 } 2713 2714 } else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) { 2715 /* 2716 * sfmmu_pagearray_setup failed so return 2717 */ 2718 sfmmu_mlist_exit(pml); 2719 return (1); 2720 } 2721 } 2722 2723 /* 2724 * Make sure hment is not on a mapping list. 2725 */ 2726 ASSERT(remap || (sfhme->hme_page == NULL)); 2727 2728 /* if it is not a remap then hme->next better be NULL */ 2729 ASSERT((!remap) ? sfhme->hme_next == NULL : 1); 2730 2731 if (flags & HAT_LOAD_LOCK) { 2732 if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) { 2733 panic("too high lckcnt-hmeblk %p", 2734 (void *)hmeblkp); 2735 } 2736 atomic_add_16(&hmeblkp->hblk_lckcnt, 1); 2737 2738 HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK); 2739 } 2740 2741 #ifdef VAC 2742 if (pp && PP_ISNC(pp)) { 2743 /* 2744 * If the physical page is marked to be uncacheable, like 2745 * by a vac conflict, make sure the new mapping is also 2746 * uncacheable. 2747 */ 2748 TTE_CLR_VCACHEABLE(ttep); 2749 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR); 2750 } 2751 #endif 2752 ttep->tte_hmenum = hmenum; 2753 2754 #ifdef DEBUG 2755 orig_old = tteold; 2756 #endif /* DEBUG */ 2757 2758 while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) { 2759 if ((sfmmup == KHATID) && 2760 (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) { 2761 sfmmu_copytte(&sfhme->hme_tte, &tteold); 2762 } 2763 #ifdef DEBUG 2764 chk_tte(&orig_old, &tteold, ttep, hmeblkp); 2765 #endif /* DEBUG */ 2766 } 2767 2768 if (!TTE_IS_VALID(&tteold)) { 2769 2770 atomic_add_16(&hmeblkp->hblk_vcnt, 1); 2771 atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1); 2772 2773 /* 2774 * HAT_RELOAD_SHARE has been deprecated with lpg DISM. 2775 */ 2776 2777 if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 && 2778 sfmmup != ksfmmup) { 2779 /* 2780 * If this is the first large mapping for the process 2781 * we must force any CPUs running this process to TL=0 2782 * where they will reload the HAT flags from the 2783 * tsbmiss area. This is necessary to make the large 2784 * mappings we are about to load visible to those CPUs; 2785 * otherwise they'll loop forever calling pagefault() 2786 * since we don't search large hash chains by default. 2787 */ 2788 hatlockp = sfmmu_hat_enter(sfmmup); 2789 if (size == TTE512K && 2790 !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) { 2791 SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG); 2792 sfmmu_sync_mmustate(sfmmup); 2793 } else if (size == TTE4M && 2794 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) { 2795 SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG); 2796 sfmmu_sync_mmustate(sfmmup); 2797 } else if (size == TTE64K && 2798 !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) { 2799 SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG); 2800 /* no sync mmustate; 64K shares 8K hashes */ 2801 } else if (mmu_page_sizes == max_mmu_page_sizes) { 2802 if (size == TTE32M && 2803 !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) { 2804 SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG); 2805 sfmmu_sync_mmustate(sfmmup); 2806 } else if (size == TTE256M && 2807 !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) { 2808 SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG); 2809 sfmmu_sync_mmustate(sfmmup); 2810 } 2811 } 2812 if (size >= TTE4M && (flags & HAT_LOAD_TEXT) && 2813 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) { 2814 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG); 2815 } 2816 sfmmu_hat_exit(hatlockp); 2817 } 2818 } 2819 ASSERT(TTE_IS_VALID(&sfhme->hme_tte)); 2820 2821 flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) & 2822 hw_tte.tte_intlo; 2823 flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) & 2824 hw_tte.tte_inthi; 2825 2826 if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) { 2827 /* 2828 * If remap and new tte differs from old tte we need 2829 * to sync the mod bit and flush TLB/TSB. We don't 2830 * need to sync ref bit because we currently always set 2831 * ref bit in tteload. 2832 */ 2833 ASSERT(TTE_IS_REF(ttep)); 2834 if (TTE_IS_MOD(&tteold)) { 2835 sfmmu_ttesync(sfmmup, vaddr, &tteold, pp); 2836 } 2837 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0); 2838 xt_sync(sfmmup->sfmmu_cpusran); 2839 } 2840 2841 if ((flags & SFMMU_NO_TSBLOAD) == 0) { 2842 /* 2843 * We only preload 8K and 4M mappings into the TSB, since 2844 * 64K and 512K mappings are replicated and hence don't 2845 * have a single, unique TSB entry. Ditto for 32M/256M. 2846 */ 2847 if (size == TTE8K || size == TTE4M) { 2848 hatlockp = sfmmu_hat_enter(sfmmup); 2849 sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size); 2850 sfmmu_hat_exit(hatlockp); 2851 } 2852 } 2853 if (pp) { 2854 if (!remap) { 2855 HME_ADD(sfhme, pp); 2856 atomic_add_16(&hmeblkp->hblk_hmecnt, 1); 2857 ASSERT(hmeblkp->hblk_hmecnt > 0); 2858 2859 /* 2860 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS) 2861 * see pageunload() for comment. 2862 */ 2863 } 2864 sfmmu_mlist_exit(pml); 2865 } 2866 2867 return (0); 2868 } 2869 /* 2870 * Function unlocks hash bucket. 2871 */ 2872 static void 2873 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp) 2874 { 2875 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 2876 SFMMU_HASH_UNLOCK(hmebp); 2877 } 2878 2879 /* 2880 * function which checks and sets up page array for a large 2881 * translation. Will set p_vcolor, p_index, p_ro fields. 2882 * Assumes addr and pfnum of first page are properly aligned. 2883 * Will check for physical contiguity. If check fails it return 2884 * non null. 2885 */ 2886 static int 2887 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap) 2888 { 2889 int i, index, ttesz; 2890 pfn_t pfnum; 2891 pgcnt_t npgs; 2892 page_t *pp, *pp1; 2893 kmutex_t *pmtx; 2894 #ifdef VAC 2895 int osz; 2896 int cflags = 0; 2897 int vac_err = 0; 2898 #endif 2899 int newidx = 0; 2900 2901 ttesz = TTE_CSZ(ttep); 2902 2903 ASSERT(ttesz > TTE8K); 2904 2905 npgs = TTEPAGES(ttesz); 2906 index = PAGESZ_TO_INDEX(ttesz); 2907 2908 pfnum = (*pps)->p_pagenum; 2909 ASSERT(IS_P2ALIGNED(pfnum, npgs)); 2910 2911 /* 2912 * Save the first pp so we can do HAT_TMPNC at the end. 2913 */ 2914 pp1 = *pps; 2915 #ifdef VAC 2916 osz = fnd_mapping_sz(pp1); 2917 #endif 2918 2919 for (i = 0; i < npgs; i++, pps++) { 2920 pp = *pps; 2921 ASSERT(PAGE_LOCKED(pp)); 2922 ASSERT(pp->p_szc >= ttesz); 2923 ASSERT(pp->p_szc == pp1->p_szc); 2924 ASSERT(sfmmu_mlist_held(pp)); 2925 2926 /* 2927 * XXX is it possible to maintain P_RO on the root only? 2928 */ 2929 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) { 2930 pmtx = sfmmu_page_enter(pp); 2931 PP_CLRRO(pp); 2932 sfmmu_page_exit(pmtx); 2933 } else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) && 2934 !PP_ISMOD(pp)) { 2935 pmtx = sfmmu_page_enter(pp); 2936 if (!(PP_ISMOD(pp))) { 2937 PP_SETRO(pp); 2938 } 2939 sfmmu_page_exit(pmtx); 2940 } 2941 2942 /* 2943 * If this is a remap we skip vac & contiguity checks. 2944 */ 2945 if (remap) 2946 continue; 2947 2948 /* 2949 * set p_vcolor and detect any vac conflicts. 2950 */ 2951 #ifdef VAC 2952 if (vac_err == 0) { 2953 vac_err = sfmmu_vacconflict_array(addr, pp, &cflags); 2954 2955 } 2956 #endif 2957 2958 /* 2959 * Save current index in case we need to undo it. 2960 * Note: "PAGESZ_TO_INDEX(sz) (1 << (sz))" 2961 * "SFMMU_INDEX_SHIFT 6" 2962 * "SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1)" 2963 * "PP_MAPINDEX(p_index) (p_index & SFMMU_INDEX_MASK)" 2964 * 2965 * So: index = PAGESZ_TO_INDEX(ttesz); 2966 * if ttesz == 1 then index = 0x2 2967 * 2 then index = 0x4 2968 * 3 then index = 0x8 2969 * 4 then index = 0x10 2970 * 5 then index = 0x20 2971 * The code below checks if it's a new pagesize (ie, newidx) 2972 * in case we need to take it back out of p_index, 2973 * and then or's the new index into the existing index. 2974 */ 2975 if ((PP_MAPINDEX(pp) & index) == 0) 2976 newidx = 1; 2977 pp->p_index = (PP_MAPINDEX(pp) | index); 2978 2979 /* 2980 * contiguity check 2981 */ 2982 if (pp->p_pagenum != pfnum) { 2983 /* 2984 * If we fail the contiguity test then 2985 * the only thing we need to fix is the p_index field. 2986 * We might get a few extra flushes but since this 2987 * path is rare that is ok. The p_ro field will 2988 * get automatically fixed on the next tteload to 2989 * the page. NO TNC bit is set yet. 2990 */ 2991 while (i >= 0) { 2992 pp = *pps; 2993 if (newidx) 2994 pp->p_index = (PP_MAPINDEX(pp) & 2995 ~index); 2996 pps--; 2997 i--; 2998 } 2999 return (1); 3000 } 3001 pfnum++; 3002 addr += MMU_PAGESIZE; 3003 } 3004 3005 #ifdef VAC 3006 if (vac_err) { 3007 if (ttesz > osz) { 3008 /* 3009 * There are some smaller mappings that causes vac 3010 * conflicts. Convert all existing small mappings to 3011 * TNC. 3012 */ 3013 SFMMU_STAT_ADD(sf_uncache_conflict, npgs); 3014 sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH, 3015 npgs); 3016 } else { 3017 /* EMPTY */ 3018 /* 3019 * If there exists an big page mapping, 3020 * that means the whole existing big page 3021 * has TNC setting already. No need to covert to 3022 * TNC again. 3023 */ 3024 ASSERT(PP_ISTNC(pp1)); 3025 } 3026 } 3027 #endif /* VAC */ 3028 3029 return (0); 3030 } 3031 3032 #ifdef VAC 3033 /* 3034 * Routine that detects vac consistency for a large page. It also 3035 * sets virtual color for all pp's for this big mapping. 3036 */ 3037 static int 3038 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags) 3039 { 3040 int vcolor, ocolor; 3041 3042 ASSERT(sfmmu_mlist_held(pp)); 3043 3044 if (PP_ISNC(pp)) { 3045 return (HAT_TMPNC); 3046 } 3047 3048 vcolor = addr_to_vcolor(addr); 3049 if (PP_NEWPAGE(pp)) { 3050 PP_SET_VCOLOR(pp, vcolor); 3051 return (0); 3052 } 3053 3054 ocolor = PP_GET_VCOLOR(pp); 3055 if (ocolor == vcolor) { 3056 return (0); 3057 } 3058 3059 if (!PP_ISMAPPED(pp)) { 3060 /* 3061 * Previous user of page had a differnet color 3062 * but since there are no current users 3063 * we just flush the cache and change the color. 3064 * As an optimization for large pages we flush the 3065 * entire cache of that color and set a flag. 3066 */ 3067 SFMMU_STAT(sf_pgcolor_conflict); 3068 if (!CacheColor_IsFlushed(*cflags, ocolor)) { 3069 CacheColor_SetFlushed(*cflags, ocolor); 3070 sfmmu_cache_flushcolor(ocolor, pp->p_pagenum); 3071 } 3072 PP_SET_VCOLOR(pp, vcolor); 3073 return (0); 3074 } 3075 3076 /* 3077 * We got a real conflict with a current mapping. 3078 * set flags to start unencaching all mappings 3079 * and return failure so we restart looping 3080 * the pp array from the beginning. 3081 */ 3082 return (HAT_TMPNC); 3083 } 3084 #endif /* VAC */ 3085 3086 /* 3087 * creates a large page shadow hmeblk for a tte. 3088 * The purpose of this routine is to allow us to do quick unloads because 3089 * the vm layer can easily pass a very large but sparsely populated range. 3090 */ 3091 static struct hme_blk * 3092 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags) 3093 { 3094 struct hmehash_bucket *hmebp; 3095 hmeblk_tag hblktag; 3096 int hmeshift, size, vshift; 3097 uint_t shw_mask, newshw_mask; 3098 struct hme_blk *hmeblkp; 3099 3100 ASSERT(sfmmup != KHATID); 3101 if (mmu_page_sizes == max_mmu_page_sizes) { 3102 ASSERT(ttesz < TTE256M); 3103 } else { 3104 ASSERT(ttesz < TTE4M); 3105 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 3106 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 3107 } 3108 3109 if (ttesz == TTE8K) { 3110 size = TTE512K; 3111 } else { 3112 size = ++ttesz; 3113 } 3114 3115 hblktag.htag_id = sfmmup; 3116 hmeshift = HME_HASH_SHIFT(size); 3117 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 3118 hblktag.htag_rehash = HME_HASH_REHASH(size); 3119 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 3120 3121 SFMMU_HASH_LOCK(hmebp); 3122 3123 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 3124 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve); 3125 if (hmeblkp == NULL) { 3126 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size, 3127 hblktag, flags); 3128 } 3129 ASSERT(hmeblkp); 3130 if (!hmeblkp->hblk_shw_mask) { 3131 /* 3132 * if this is a unused hblk it was just allocated or could 3133 * potentially be a previous large page hblk so we need to 3134 * set the shadow bit. 3135 */ 3136 hmeblkp->hblk_shw_bit = 1; 3137 } 3138 ASSERT(hmeblkp->hblk_shw_bit == 1); 3139 vshift = vaddr_to_vshift(hblktag, vaddr, size); 3140 ASSERT(vshift < 8); 3141 /* 3142 * Atomically set shw mask bit 3143 */ 3144 do { 3145 shw_mask = hmeblkp->hblk_shw_mask; 3146 newshw_mask = shw_mask | (1 << vshift); 3147 newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask, 3148 newshw_mask); 3149 } while (newshw_mask != shw_mask); 3150 3151 SFMMU_HASH_UNLOCK(hmebp); 3152 3153 return (hmeblkp); 3154 } 3155 3156 /* 3157 * This routine cleanup a previous shadow hmeblk and changes it to 3158 * a regular hblk. This happens rarely but it is possible 3159 * when a process wants to use large pages and there are hblks still 3160 * lying around from the previous as that used these hmeblks. 3161 * The alternative was to cleanup the shadow hblks at unload time 3162 * but since so few user processes actually use large pages, it is 3163 * better to be lazy and cleanup at this time. 3164 */ 3165 static void 3166 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 3167 struct hmehash_bucket *hmebp) 3168 { 3169 caddr_t addr, endaddr; 3170 int hashno, size; 3171 3172 ASSERT(hmeblkp->hblk_shw_bit); 3173 3174 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 3175 3176 if (!hmeblkp->hblk_shw_mask) { 3177 hmeblkp->hblk_shw_bit = 0; 3178 return; 3179 } 3180 addr = (caddr_t)get_hblk_base(hmeblkp); 3181 endaddr = get_hblk_endaddr(hmeblkp); 3182 size = get_hblk_ttesz(hmeblkp); 3183 hashno = size - 1; 3184 ASSERT(hashno > 0); 3185 SFMMU_HASH_UNLOCK(hmebp); 3186 3187 sfmmu_free_hblks(sfmmup, addr, endaddr, hashno); 3188 3189 SFMMU_HASH_LOCK(hmebp); 3190 } 3191 3192 static void 3193 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr, 3194 int hashno) 3195 { 3196 int hmeshift, shadow = 0; 3197 hmeblk_tag hblktag; 3198 struct hmehash_bucket *hmebp; 3199 struct hme_blk *hmeblkp; 3200 struct hme_blk *nx_hblk, *pr_hblk, *list = NULL; 3201 uint64_t hblkpa, prevpa, nx_pa; 3202 3203 ASSERT(hashno > 0); 3204 hblktag.htag_id = sfmmup; 3205 hblktag.htag_rehash = hashno; 3206 3207 hmeshift = HME_HASH_SHIFT(hashno); 3208 3209 while (addr < endaddr) { 3210 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3211 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 3212 SFMMU_HASH_LOCK(hmebp); 3213 /* inline HME_HASH_SEARCH */ 3214 hmeblkp = hmebp->hmeblkp; 3215 hblkpa = hmebp->hmeh_nextpa; 3216 prevpa = 0; 3217 pr_hblk = NULL; 3218 while (hmeblkp) { 3219 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp)); 3220 if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) { 3221 /* found hme_blk */ 3222 if (hmeblkp->hblk_shw_bit) { 3223 if (hmeblkp->hblk_shw_mask) { 3224 shadow = 1; 3225 sfmmu_shadow_hcleanup(sfmmup, 3226 hmeblkp, hmebp); 3227 break; 3228 } else { 3229 hmeblkp->hblk_shw_bit = 0; 3230 } 3231 } 3232 3233 /* 3234 * Hblk_hmecnt and hblk_vcnt could be non zero 3235 * since hblk_unload() does not gurantee that. 3236 * 3237 * XXX - this could cause tteload() to spin 3238 * where sfmmu_shadow_hcleanup() is called. 3239 */ 3240 } 3241 3242 nx_hblk = hmeblkp->hblk_next; 3243 nx_pa = hmeblkp->hblk_nextpa; 3244 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 3245 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, 3246 pr_hblk); 3247 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 3248 } else { 3249 pr_hblk = hmeblkp; 3250 prevpa = hblkpa; 3251 } 3252 hmeblkp = nx_hblk; 3253 hblkpa = nx_pa; 3254 } 3255 3256 SFMMU_HASH_UNLOCK(hmebp); 3257 3258 if (shadow) { 3259 /* 3260 * We found another shadow hblk so cleaned its 3261 * children. We need to go back and cleanup 3262 * the original hblk so we don't change the 3263 * addr. 3264 */ 3265 shadow = 0; 3266 } else { 3267 addr = (caddr_t)roundup((uintptr_t)addr + 1, 3268 (1 << hmeshift)); 3269 } 3270 } 3271 sfmmu_hblks_list_purge(&list); 3272 } 3273 3274 /* 3275 * Release one hardware address translation lock on the given address range. 3276 */ 3277 void 3278 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len) 3279 { 3280 struct hmehash_bucket *hmebp; 3281 hmeblk_tag hblktag; 3282 int hmeshift, hashno = 1; 3283 struct hme_blk *hmeblkp, *list = NULL; 3284 caddr_t endaddr; 3285 3286 ASSERT(sfmmup != NULL); 3287 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 3288 3289 ASSERT((sfmmup == ksfmmup) || 3290 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 3291 ASSERT((len & MMU_PAGEOFFSET) == 0); 3292 endaddr = addr + len; 3293 hblktag.htag_id = sfmmup; 3294 3295 /* 3296 * Spitfire supports 4 page sizes. 3297 * Most pages are expected to be of the smallest page size (8K) and 3298 * these will not need to be rehashed. 64K pages also don't need to be 3299 * rehashed because an hmeblk spans 64K of address space. 512K pages 3300 * might need 1 rehash and and 4M pages might need 2 rehashes. 3301 */ 3302 while (addr < endaddr) { 3303 hmeshift = HME_HASH_SHIFT(hashno); 3304 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3305 hblktag.htag_rehash = hashno; 3306 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 3307 3308 SFMMU_HASH_LOCK(hmebp); 3309 3310 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 3311 if (hmeblkp != NULL) { 3312 /* 3313 * If we encounter a shadow hmeblk then 3314 * we know there are no valid hmeblks mapping 3315 * this address at this size or larger. 3316 * Just increment address by the smallest 3317 * page size. 3318 */ 3319 if (hmeblkp->hblk_shw_bit) { 3320 addr += MMU_PAGESIZE; 3321 } else { 3322 addr = sfmmu_hblk_unlock(hmeblkp, addr, 3323 endaddr); 3324 } 3325 SFMMU_HASH_UNLOCK(hmebp); 3326 hashno = 1; 3327 continue; 3328 } 3329 SFMMU_HASH_UNLOCK(hmebp); 3330 3331 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 3332 /* 3333 * We have traversed the whole list and rehashed 3334 * if necessary without finding the address to unlock 3335 * which should never happen. 3336 */ 3337 panic("sfmmu_unlock: addr not found. " 3338 "addr %p hat %p", (void *)addr, (void *)sfmmup); 3339 } else { 3340 hashno++; 3341 } 3342 } 3343 3344 sfmmu_hblks_list_purge(&list); 3345 } 3346 3347 /* 3348 * Function to unlock a range of addresses in an hmeblk. It returns the 3349 * next address that needs to be unlocked. 3350 * Should be called with the hash lock held. 3351 */ 3352 static caddr_t 3353 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr) 3354 { 3355 struct sf_hment *sfhme; 3356 tte_t tteold, ttemod; 3357 int ttesz, ret; 3358 3359 ASSERT(in_hblk_range(hmeblkp, addr)); 3360 ASSERT(hmeblkp->hblk_shw_bit == 0); 3361 3362 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 3363 ttesz = get_hblk_ttesz(hmeblkp); 3364 3365 HBLKTOHME(sfhme, hmeblkp, addr); 3366 while (addr < endaddr) { 3367 readtte: 3368 sfmmu_copytte(&sfhme->hme_tte, &tteold); 3369 if (TTE_IS_VALID(&tteold)) { 3370 3371 ttemod = tteold; 3372 3373 ret = sfmmu_modifytte_try(&tteold, &ttemod, 3374 &sfhme->hme_tte); 3375 3376 if (ret < 0) 3377 goto readtte; 3378 3379 if (hmeblkp->hblk_lckcnt == 0) 3380 panic("zero hblk lckcnt"); 3381 3382 if (((uintptr_t)addr + TTEBYTES(ttesz)) > 3383 (uintptr_t)endaddr) 3384 panic("can't unlock large tte"); 3385 3386 ASSERT(hmeblkp->hblk_lckcnt > 0); 3387 atomic_add_16(&hmeblkp->hblk_lckcnt, -1); 3388 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK); 3389 } else { 3390 panic("sfmmu_hblk_unlock: invalid tte"); 3391 } 3392 addr += TTEBYTES(ttesz); 3393 sfhme++; 3394 } 3395 return (addr); 3396 } 3397 3398 /* 3399 * Physical Address Mapping Framework 3400 * 3401 * General rules: 3402 * 3403 * (1) Applies only to seg_kmem memory pages. To make things easier, 3404 * seg_kpm addresses are also accepted by the routines, but nothing 3405 * is done with them since by definition their PA mappings are static. 3406 * (2) hat_add_callback() may only be called while holding the page lock 3407 * SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()), 3408 * or passing HAC_PAGELOCK flag. 3409 * (3) prehandler() and posthandler() may not call hat_add_callback() or 3410 * hat_delete_callback(), nor should they allocate memory. Post quiesce 3411 * callbacks may not sleep or acquire adaptive mutex locks. 3412 * (4) Either prehandler() or posthandler() (but not both) may be specified 3413 * as being NULL. Specifying an errhandler() is optional. 3414 * 3415 * Details of using the framework: 3416 * 3417 * registering a callback (hat_register_callback()) 3418 * 3419 * Pass prehandler, posthandler, errhandler addresses 3420 * as described below. If capture_cpus argument is nonzero, 3421 * suspend callback to the prehandler will occur with CPUs 3422 * captured and executing xc_loop() and CPUs will remain 3423 * captured until after the posthandler suspend callback 3424 * occurs. 3425 * 3426 * adding a callback (hat_add_callback()) 3427 * 3428 * as_pagelock(); 3429 * hat_add_callback(); 3430 * save returned pfn in private data structures or program registers; 3431 * as_pageunlock(); 3432 * 3433 * prehandler() 3434 * 3435 * Stop all accesses by physical address to this memory page. 3436 * Called twice: the first, PRESUSPEND, is a context safe to acquire 3437 * adaptive locks. The second, SUSPEND, is called at high PIL with 3438 * CPUs captured so adaptive locks may NOT be acquired (and all spin 3439 * locks must be XCALL_PIL or higher locks). 3440 * 3441 * May return the following errors: 3442 * EIO: A fatal error has occurred. This will result in panic. 3443 * EAGAIN: The page cannot be suspended. This will fail the 3444 * relocation. 3445 * 0: Success. 3446 * 3447 * posthandler() 3448 * 3449 * Save new pfn in private data structures or program registers; 3450 * not allowed to fail (non-zero return values will result in panic). 3451 * 3452 * errhandler() 3453 * 3454 * called when an error occurs related to the callback. Currently 3455 * the only such error is HAT_CB_ERR_LEAKED which indicates that 3456 * a page is being freed, but there are still outstanding callback(s) 3457 * registered on the page. 3458 * 3459 * removing a callback (hat_delete_callback(); e.g., prior to freeing memory) 3460 * 3461 * stop using physical address 3462 * hat_delete_callback(); 3463 * 3464 */ 3465 3466 /* 3467 * Register a callback class. Each subsystem should do this once and 3468 * cache the id_t returned for use in setting up and tearing down callbacks. 3469 * 3470 * There is no facility for removing callback IDs once they are created; 3471 * the "key" should be unique for each module, so in case a module is unloaded 3472 * and subsequently re-loaded, we can recycle the module's previous entry. 3473 */ 3474 id_t 3475 hat_register_callback(int key, 3476 int (*prehandler)(caddr_t, uint_t, uint_t, void *), 3477 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t), 3478 int (*errhandler)(caddr_t, uint_t, uint_t, void *), 3479 int capture_cpus) 3480 { 3481 id_t id; 3482 3483 /* 3484 * Search the table for a pre-existing callback associated with 3485 * the identifier "key". If one exists, we re-use that entry in 3486 * the table for this instance, otherwise we assign the next 3487 * available table slot. 3488 */ 3489 for (id = 0; id < sfmmu_max_cb_id; id++) { 3490 if (sfmmu_cb_table[id].key == key) 3491 break; 3492 } 3493 3494 if (id == sfmmu_max_cb_id) { 3495 id = sfmmu_cb_nextid++; 3496 if (id >= sfmmu_max_cb_id) 3497 panic("hat_register_callback: out of callback IDs"); 3498 } 3499 3500 ASSERT(prehandler != NULL || posthandler != NULL); 3501 3502 sfmmu_cb_table[id].key = key; 3503 sfmmu_cb_table[id].prehandler = prehandler; 3504 sfmmu_cb_table[id].posthandler = posthandler; 3505 sfmmu_cb_table[id].errhandler = errhandler; 3506 sfmmu_cb_table[id].capture_cpus = capture_cpus; 3507 3508 return (id); 3509 } 3510 3511 #define HAC_COOKIE_NONE (void *)-1 3512 3513 /* 3514 * Add relocation callbacks to the specified addr/len which will be called 3515 * when relocating the associated page. See the description of pre and 3516 * posthandler above for more details. 3517 * 3518 * If HAC_PAGELOCK is included in flags, the underlying memory page is 3519 * locked internally so the caller must be able to deal with the callback 3520 * running even before this function has returned. If HAC_PAGELOCK is not 3521 * set, it is assumed that the underlying memory pages are locked. 3522 * 3523 * Since the caller must track the individual page boundaries anyway, 3524 * we only allow a callback to be added to a single page (large 3525 * or small). Thus [addr, addr + len) MUST be contained within a single 3526 * page. 3527 * 3528 * Registering multiple callbacks on the same [addr, addr+len) is supported, 3529 * _provided_that_ a unique parameter is specified for each callback. 3530 * If multiple callbacks are registered on the same range the callback will 3531 * be invoked with each unique parameter. Registering the same callback with 3532 * the same argument more than once will result in corrupted kernel state. 3533 * 3534 * Returns the pfn of the underlying kernel page in *rpfn 3535 * on success, or PFN_INVALID on failure. 3536 * 3537 * cookiep (if passed) provides storage space for an opaque cookie 3538 * to return later to hat_delete_callback(). This cookie makes the callback 3539 * deletion significantly quicker by avoiding a potentially lengthy hash 3540 * search. 3541 * 3542 * Returns values: 3543 * 0: success 3544 * ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP) 3545 * EINVAL: callback ID is not valid 3546 * ENXIO: ["vaddr", "vaddr" + len) is not mapped in the kernel's address 3547 * space 3548 * ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary 3549 */ 3550 int 3551 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags, 3552 void *pvt, pfn_t *rpfn, void **cookiep) 3553 { 3554 struct hmehash_bucket *hmebp; 3555 hmeblk_tag hblktag; 3556 struct hme_blk *hmeblkp; 3557 int hmeshift, hashno; 3558 caddr_t saddr, eaddr, baseaddr; 3559 struct pa_hment *pahmep; 3560 struct sf_hment *sfhmep, *osfhmep; 3561 kmutex_t *pml; 3562 tte_t tte; 3563 page_t *pp; 3564 vnode_t *vp; 3565 u_offset_t off; 3566 pfn_t pfn; 3567 int kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP; 3568 int locked = 0; 3569 3570 /* 3571 * For KPM mappings, just return the physical address since we 3572 * don't need to register any callbacks. 3573 */ 3574 if (IS_KPM_ADDR(vaddr)) { 3575 uint64_t paddr; 3576 SFMMU_KPM_VTOP(vaddr, paddr); 3577 *rpfn = btop(paddr); 3578 if (cookiep != NULL) 3579 *cookiep = HAC_COOKIE_NONE; 3580 return (0); 3581 } 3582 3583 if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) { 3584 *rpfn = PFN_INVALID; 3585 return (EINVAL); 3586 } 3587 3588 if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) { 3589 *rpfn = PFN_INVALID; 3590 return (ENOMEM); 3591 } 3592 3593 sfhmep = &pahmep->sfment; 3594 3595 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK); 3596 eaddr = saddr + len; 3597 3598 rehash: 3599 /* Find the mapping(s) for this page */ 3600 for (hashno = TTE64K, hmeblkp = NULL; 3601 hmeblkp == NULL && hashno <= mmu_hashcnt; 3602 hashno++) { 3603 hmeshift = HME_HASH_SHIFT(hashno); 3604 hblktag.htag_id = ksfmmup; 3605 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift); 3606 hblktag.htag_rehash = hashno; 3607 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift); 3608 3609 SFMMU_HASH_LOCK(hmebp); 3610 3611 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 3612 3613 if (hmeblkp == NULL) 3614 SFMMU_HASH_UNLOCK(hmebp); 3615 } 3616 3617 if (hmeblkp == NULL) { 3618 kmem_cache_free(pa_hment_cache, pahmep); 3619 *rpfn = PFN_INVALID; 3620 return (ENXIO); 3621 } 3622 3623 HBLKTOHME(osfhmep, hmeblkp, saddr); 3624 sfmmu_copytte(&osfhmep->hme_tte, &tte); 3625 3626 if (!TTE_IS_VALID(&tte)) { 3627 SFMMU_HASH_UNLOCK(hmebp); 3628 kmem_cache_free(pa_hment_cache, pahmep); 3629 *rpfn = PFN_INVALID; 3630 return (ENXIO); 3631 } 3632 3633 /* 3634 * Make sure the boundaries for the callback fall within this 3635 * single mapping. 3636 */ 3637 baseaddr = (caddr_t)get_hblk_base(hmeblkp); 3638 ASSERT(saddr >= baseaddr); 3639 if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) { 3640 SFMMU_HASH_UNLOCK(hmebp); 3641 kmem_cache_free(pa_hment_cache, pahmep); 3642 *rpfn = PFN_INVALID; 3643 return (ERANGE); 3644 } 3645 3646 pfn = sfmmu_ttetopfn(&tte, vaddr); 3647 3648 /* 3649 * The pfn may not have a page_t underneath in which case we 3650 * just return it. This can happen if we are doing I/O to a 3651 * static portion of the kernel's address space, for instance. 3652 */ 3653 pp = osfhmep->hme_page; 3654 if (pp == NULL) { 3655 SFMMU_HASH_UNLOCK(hmebp); 3656 kmem_cache_free(pa_hment_cache, pahmep); 3657 *rpfn = pfn; 3658 if (cookiep) 3659 *cookiep = HAC_COOKIE_NONE; 3660 return (0); 3661 } 3662 ASSERT(pp == PP_PAGEROOT(pp)); 3663 3664 vp = pp->p_vnode; 3665 off = pp->p_offset; 3666 3667 pml = sfmmu_mlist_enter(pp); 3668 3669 if (flags & HAC_PAGELOCK) { 3670 if (!page_trylock(pp, SE_SHARED)) { 3671 /* 3672 * Somebody is holding SE_EXCL lock. Might 3673 * even be hat_page_relocate(). Drop all 3674 * our locks, lookup the page in &kvp, and 3675 * retry. If it doesn't exist in &kvp and &zvp, 3676 * then we must be dealing with a kernel mapped 3677 * page which doesn't actually belong to 3678 * segkmem so we punt. 3679 */ 3680 sfmmu_mlist_exit(pml); 3681 SFMMU_HASH_UNLOCK(hmebp); 3682 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED); 3683 3684 /* check zvp before giving up */ 3685 if (pp == NULL) 3686 pp = page_lookup(&zvp, (u_offset_t)saddr, 3687 SE_SHARED); 3688 3689 /* Okay, we didn't find it, give up */ 3690 if (pp == NULL) { 3691 kmem_cache_free(pa_hment_cache, pahmep); 3692 *rpfn = pfn; 3693 if (cookiep) 3694 *cookiep = HAC_COOKIE_NONE; 3695 return (0); 3696 } 3697 page_unlock(pp); 3698 goto rehash; 3699 } 3700 locked = 1; 3701 } 3702 3703 if (!PAGE_LOCKED(pp) && !panicstr) 3704 panic("hat_add_callback: page 0x%p not locked", pp); 3705 3706 if (osfhmep->hme_page != pp || pp->p_vnode != vp || 3707 pp->p_offset != off) { 3708 /* 3709 * The page moved before we got our hands on it. Drop 3710 * all the locks and try again. 3711 */ 3712 ASSERT((flags & HAC_PAGELOCK) != 0); 3713 sfmmu_mlist_exit(pml); 3714 SFMMU_HASH_UNLOCK(hmebp); 3715 page_unlock(pp); 3716 locked = 0; 3717 goto rehash; 3718 } 3719 3720 if (!VN_ISKAS(vp)) { 3721 /* 3722 * This is not a segkmem page but another page which 3723 * has been kernel mapped. It had better have at least 3724 * a share lock on it. Return the pfn. 3725 */ 3726 sfmmu_mlist_exit(pml); 3727 SFMMU_HASH_UNLOCK(hmebp); 3728 if (locked) 3729 page_unlock(pp); 3730 kmem_cache_free(pa_hment_cache, pahmep); 3731 ASSERT(PAGE_LOCKED(pp)); 3732 *rpfn = pfn; 3733 if (cookiep) 3734 *cookiep = HAC_COOKIE_NONE; 3735 return (0); 3736 } 3737 3738 /* 3739 * Setup this pa_hment and link its embedded dummy sf_hment into 3740 * the mapping list. 3741 */ 3742 pp->p_share++; 3743 pahmep->cb_id = callback_id; 3744 pahmep->addr = vaddr; 3745 pahmep->len = len; 3746 pahmep->refcnt = 1; 3747 pahmep->flags = 0; 3748 pahmep->pvt = pvt; 3749 3750 sfhmep->hme_tte.ll = 0; 3751 sfhmep->hme_data = pahmep; 3752 sfhmep->hme_prev = osfhmep; 3753 sfhmep->hme_next = osfhmep->hme_next; 3754 3755 if (osfhmep->hme_next) 3756 osfhmep->hme_next->hme_prev = sfhmep; 3757 3758 osfhmep->hme_next = sfhmep; 3759 3760 sfmmu_mlist_exit(pml); 3761 SFMMU_HASH_UNLOCK(hmebp); 3762 3763 if (locked) 3764 page_unlock(pp); 3765 3766 *rpfn = pfn; 3767 if (cookiep) 3768 *cookiep = (void *)pahmep; 3769 3770 return (0); 3771 } 3772 3773 /* 3774 * Remove the relocation callbacks from the specified addr/len. 3775 */ 3776 void 3777 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags, 3778 void *cookie) 3779 { 3780 struct hmehash_bucket *hmebp; 3781 hmeblk_tag hblktag; 3782 struct hme_blk *hmeblkp; 3783 int hmeshift, hashno; 3784 caddr_t saddr; 3785 struct pa_hment *pahmep; 3786 struct sf_hment *sfhmep, *osfhmep; 3787 kmutex_t *pml; 3788 tte_t tte; 3789 page_t *pp; 3790 vnode_t *vp; 3791 u_offset_t off; 3792 int locked = 0; 3793 3794 /* 3795 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to 3796 * remove so just return. 3797 */ 3798 if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr)) 3799 return; 3800 3801 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK); 3802 3803 rehash: 3804 /* Find the mapping(s) for this page */ 3805 for (hashno = TTE64K, hmeblkp = NULL; 3806 hmeblkp == NULL && hashno <= mmu_hashcnt; 3807 hashno++) { 3808 hmeshift = HME_HASH_SHIFT(hashno); 3809 hblktag.htag_id = ksfmmup; 3810 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift); 3811 hblktag.htag_rehash = hashno; 3812 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift); 3813 3814 SFMMU_HASH_LOCK(hmebp); 3815 3816 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 3817 3818 if (hmeblkp == NULL) 3819 SFMMU_HASH_UNLOCK(hmebp); 3820 } 3821 3822 if (hmeblkp == NULL) 3823 return; 3824 3825 HBLKTOHME(osfhmep, hmeblkp, saddr); 3826 3827 sfmmu_copytte(&osfhmep->hme_tte, &tte); 3828 if (!TTE_IS_VALID(&tte)) { 3829 SFMMU_HASH_UNLOCK(hmebp); 3830 return; 3831 } 3832 3833 pp = osfhmep->hme_page; 3834 if (pp == NULL) { 3835 SFMMU_HASH_UNLOCK(hmebp); 3836 ASSERT(cookie == NULL); 3837 return; 3838 } 3839 3840 vp = pp->p_vnode; 3841 off = pp->p_offset; 3842 3843 pml = sfmmu_mlist_enter(pp); 3844 3845 if (flags & HAC_PAGELOCK) { 3846 if (!page_trylock(pp, SE_SHARED)) { 3847 /* 3848 * Somebody is holding SE_EXCL lock. Might 3849 * even be hat_page_relocate(). Drop all 3850 * our locks, lookup the page in &kvp, and 3851 * retry. If it doesn't exist in &kvp and &zvp, 3852 * then we must be dealing with a kernel mapped 3853 * page which doesn't actually belong to 3854 * segkmem so we punt. 3855 */ 3856 sfmmu_mlist_exit(pml); 3857 SFMMU_HASH_UNLOCK(hmebp); 3858 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED); 3859 /* check zvp before giving up */ 3860 if (pp == NULL) 3861 pp = page_lookup(&zvp, (u_offset_t)saddr, 3862 SE_SHARED); 3863 3864 if (pp == NULL) { 3865 ASSERT(cookie == NULL); 3866 return; 3867 } 3868 page_unlock(pp); 3869 goto rehash; 3870 } 3871 locked = 1; 3872 } 3873 3874 ASSERT(PAGE_LOCKED(pp)); 3875 3876 if (osfhmep->hme_page != pp || pp->p_vnode != vp || 3877 pp->p_offset != off) { 3878 /* 3879 * The page moved before we got our hands on it. Drop 3880 * all the locks and try again. 3881 */ 3882 ASSERT((flags & HAC_PAGELOCK) != 0); 3883 sfmmu_mlist_exit(pml); 3884 SFMMU_HASH_UNLOCK(hmebp); 3885 page_unlock(pp); 3886 locked = 0; 3887 goto rehash; 3888 } 3889 3890 if (!VN_ISKAS(vp)) { 3891 /* 3892 * This is not a segkmem page but another page which 3893 * has been kernel mapped. 3894 */ 3895 sfmmu_mlist_exit(pml); 3896 SFMMU_HASH_UNLOCK(hmebp); 3897 if (locked) 3898 page_unlock(pp); 3899 ASSERT(cookie == NULL); 3900 return; 3901 } 3902 3903 if (cookie != NULL) { 3904 pahmep = (struct pa_hment *)cookie; 3905 sfhmep = &pahmep->sfment; 3906 } else { 3907 for (sfhmep = pp->p_mapping; sfhmep != NULL; 3908 sfhmep = sfhmep->hme_next) { 3909 3910 /* 3911 * skip va<->pa mappings 3912 */ 3913 if (!IS_PAHME(sfhmep)) 3914 continue; 3915 3916 pahmep = sfhmep->hme_data; 3917 ASSERT(pahmep != NULL); 3918 3919 /* 3920 * if pa_hment matches, remove it 3921 */ 3922 if ((pahmep->pvt == pvt) && 3923 (pahmep->addr == vaddr) && 3924 (pahmep->len == len)) { 3925 break; 3926 } 3927 } 3928 } 3929 3930 if (sfhmep == NULL) { 3931 if (!panicstr) { 3932 panic("hat_delete_callback: pa_hment not found, pp %p", 3933 (void *)pp); 3934 } 3935 return; 3936 } 3937 3938 /* 3939 * Note: at this point a valid kernel mapping must still be 3940 * present on this page. 3941 */ 3942 pp->p_share--; 3943 if (pp->p_share <= 0) 3944 panic("hat_delete_callback: zero p_share"); 3945 3946 if (--pahmep->refcnt == 0) { 3947 if (pahmep->flags != 0) 3948 panic("hat_delete_callback: pa_hment is busy"); 3949 3950 /* 3951 * Remove sfhmep from the mapping list for the page. 3952 */ 3953 if (sfhmep->hme_prev) { 3954 sfhmep->hme_prev->hme_next = sfhmep->hme_next; 3955 } else { 3956 pp->p_mapping = sfhmep->hme_next; 3957 } 3958 3959 if (sfhmep->hme_next) 3960 sfhmep->hme_next->hme_prev = sfhmep->hme_prev; 3961 3962 sfmmu_mlist_exit(pml); 3963 SFMMU_HASH_UNLOCK(hmebp); 3964 3965 if (locked) 3966 page_unlock(pp); 3967 3968 kmem_cache_free(pa_hment_cache, pahmep); 3969 return; 3970 } 3971 3972 sfmmu_mlist_exit(pml); 3973 SFMMU_HASH_UNLOCK(hmebp); 3974 if (locked) 3975 page_unlock(pp); 3976 } 3977 3978 /* 3979 * hat_probe returns 1 if the translation for the address 'addr' is 3980 * loaded, zero otherwise. 3981 * 3982 * hat_probe should be used only for advisorary purposes because it may 3983 * occasionally return the wrong value. The implementation must guarantee that 3984 * returning the wrong value is a very rare event. hat_probe is used 3985 * to implement optimizations in the segment drivers. 3986 * 3987 */ 3988 int 3989 hat_probe(struct hat *sfmmup, caddr_t addr) 3990 { 3991 pfn_t pfn; 3992 tte_t tte; 3993 3994 ASSERT(sfmmup != NULL); 3995 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 3996 3997 ASSERT((sfmmup == ksfmmup) || 3998 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 3999 4000 if (sfmmup == ksfmmup) { 4001 while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte)) 4002 == PFN_SUSPENDED) { 4003 sfmmu_vatopfn_suspended(addr, sfmmup, &tte); 4004 } 4005 } else { 4006 pfn = sfmmu_uvatopfn(addr, sfmmup); 4007 } 4008 4009 if (pfn != PFN_INVALID) 4010 return (1); 4011 else 4012 return (0); 4013 } 4014 4015 ssize_t 4016 hat_getpagesize(struct hat *sfmmup, caddr_t addr) 4017 { 4018 tte_t tte; 4019 4020 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4021 4022 sfmmu_gettte(sfmmup, addr, &tte); 4023 if (TTE_IS_VALID(&tte)) { 4024 return (TTEBYTES(TTE_CSZ(&tte))); 4025 } 4026 return (-1); 4027 } 4028 4029 static void 4030 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep) 4031 { 4032 struct hmehash_bucket *hmebp; 4033 hmeblk_tag hblktag; 4034 int hmeshift, hashno = 1; 4035 struct hme_blk *hmeblkp, *list = NULL; 4036 struct sf_hment *sfhmep; 4037 4038 /* support for ISM */ 4039 ism_map_t *ism_map; 4040 ism_blk_t *ism_blkp; 4041 int i; 4042 sfmmu_t *ism_hatid = NULL; 4043 sfmmu_t *locked_hatid = NULL; 4044 4045 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 4046 4047 ism_blkp = sfmmup->sfmmu_iblk; 4048 if (ism_blkp) { 4049 sfmmu_ismhat_enter(sfmmup, 0); 4050 locked_hatid = sfmmup; 4051 } 4052 while (ism_blkp && ism_hatid == NULL) { 4053 ism_map = ism_blkp->iblk_maps; 4054 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) { 4055 if (addr >= ism_start(ism_map[i]) && 4056 addr < ism_end(ism_map[i])) { 4057 sfmmup = ism_hatid = ism_map[i].imap_ismhat; 4058 addr = (caddr_t)(addr - 4059 ism_start(ism_map[i])); 4060 break; 4061 } 4062 } 4063 ism_blkp = ism_blkp->iblk_next; 4064 } 4065 if (locked_hatid) { 4066 sfmmu_ismhat_exit(locked_hatid, 0); 4067 } 4068 4069 hblktag.htag_id = sfmmup; 4070 ttep->ll = 0; 4071 4072 do { 4073 hmeshift = HME_HASH_SHIFT(hashno); 4074 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 4075 hblktag.htag_rehash = hashno; 4076 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 4077 4078 SFMMU_HASH_LOCK(hmebp); 4079 4080 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 4081 if (hmeblkp != NULL) { 4082 HBLKTOHME(sfhmep, hmeblkp, addr); 4083 sfmmu_copytte(&sfhmep->hme_tte, ttep); 4084 SFMMU_HASH_UNLOCK(hmebp); 4085 break; 4086 } 4087 SFMMU_HASH_UNLOCK(hmebp); 4088 hashno++; 4089 } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt)); 4090 4091 sfmmu_hblks_list_purge(&list); 4092 } 4093 4094 uint_t 4095 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr) 4096 { 4097 tte_t tte; 4098 4099 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4100 4101 sfmmu_gettte(sfmmup, addr, &tte); 4102 if (TTE_IS_VALID(&tte)) { 4103 *attr = sfmmu_ptov_attr(&tte); 4104 return (0); 4105 } 4106 *attr = 0; 4107 return ((uint_t)0xffffffff); 4108 } 4109 4110 /* 4111 * Enables more attributes on specified address range (ie. logical OR) 4112 */ 4113 void 4114 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4115 { 4116 if (hat->sfmmu_xhat_provider) { 4117 XHAT_SETATTR(hat, addr, len, attr); 4118 return; 4119 } else { 4120 /* 4121 * This must be a CPU HAT. If the address space has 4122 * XHATs attached, change attributes for all of them, 4123 * just in case 4124 */ 4125 ASSERT(hat->sfmmu_as != NULL); 4126 if (hat->sfmmu_as->a_xhat != NULL) 4127 xhat_setattr_all(hat->sfmmu_as, addr, len, attr); 4128 } 4129 4130 sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR); 4131 } 4132 4133 /* 4134 * Assigns attributes to the specified address range. All the attributes 4135 * are specified. 4136 */ 4137 void 4138 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4139 { 4140 if (hat->sfmmu_xhat_provider) { 4141 XHAT_CHGATTR(hat, addr, len, attr); 4142 return; 4143 } else { 4144 /* 4145 * This must be a CPU HAT. If the address space has 4146 * XHATs attached, change attributes for all of them, 4147 * just in case 4148 */ 4149 ASSERT(hat->sfmmu_as != NULL); 4150 if (hat->sfmmu_as->a_xhat != NULL) 4151 xhat_chgattr_all(hat->sfmmu_as, addr, len, attr); 4152 } 4153 4154 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR); 4155 } 4156 4157 /* 4158 * Remove attributes on the specified address range (ie. loginal NAND) 4159 */ 4160 void 4161 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4162 { 4163 if (hat->sfmmu_xhat_provider) { 4164 XHAT_CLRATTR(hat, addr, len, attr); 4165 return; 4166 } else { 4167 /* 4168 * This must be a CPU HAT. If the address space has 4169 * XHATs attached, change attributes for all of them, 4170 * just in case 4171 */ 4172 ASSERT(hat->sfmmu_as != NULL); 4173 if (hat->sfmmu_as->a_xhat != NULL) 4174 xhat_clrattr_all(hat->sfmmu_as, addr, len, attr); 4175 } 4176 4177 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR); 4178 } 4179 4180 /* 4181 * Change attributes on an address range to that specified by attr and mode. 4182 */ 4183 static void 4184 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr, 4185 int mode) 4186 { 4187 struct hmehash_bucket *hmebp; 4188 hmeblk_tag hblktag; 4189 int hmeshift, hashno = 1; 4190 struct hme_blk *hmeblkp, *list = NULL; 4191 caddr_t endaddr; 4192 cpuset_t cpuset; 4193 demap_range_t dmr; 4194 4195 CPUSET_ZERO(cpuset); 4196 4197 ASSERT((sfmmup == ksfmmup) || 4198 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 4199 ASSERT((len & MMU_PAGEOFFSET) == 0); 4200 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0); 4201 4202 if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) && 4203 ((addr + len) > (caddr_t)USERLIMIT)) { 4204 panic("user addr %p in kernel space", 4205 (void *)addr); 4206 } 4207 4208 endaddr = addr + len; 4209 hblktag.htag_id = sfmmup; 4210 DEMAP_RANGE_INIT(sfmmup, &dmr); 4211 4212 while (addr < endaddr) { 4213 hmeshift = HME_HASH_SHIFT(hashno); 4214 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 4215 hblktag.htag_rehash = hashno; 4216 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 4217 4218 SFMMU_HASH_LOCK(hmebp); 4219 4220 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 4221 if (hmeblkp != NULL) { 4222 /* 4223 * We've encountered a shadow hmeblk so skip the range 4224 * of the next smaller mapping size. 4225 */ 4226 if (hmeblkp->hblk_shw_bit) { 4227 ASSERT(sfmmup != ksfmmup); 4228 ASSERT(hashno > 1); 4229 addr = (caddr_t)P2END((uintptr_t)addr, 4230 TTEBYTES(hashno - 1)); 4231 } else { 4232 addr = sfmmu_hblk_chgattr(sfmmup, 4233 hmeblkp, addr, endaddr, &dmr, attr, mode); 4234 } 4235 SFMMU_HASH_UNLOCK(hmebp); 4236 hashno = 1; 4237 continue; 4238 } 4239 SFMMU_HASH_UNLOCK(hmebp); 4240 4241 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 4242 /* 4243 * We have traversed the whole list and rehashed 4244 * if necessary without finding the address to chgattr. 4245 * This is ok, so we increment the address by the 4246 * smallest hmeblk range for kernel mappings or for 4247 * user mappings with no large pages, and the largest 4248 * hmeblk range, to account for shadow hmeblks, for 4249 * user mappings with large pages and continue. 4250 */ 4251 if (sfmmup == ksfmmup) 4252 addr = (caddr_t)P2END((uintptr_t)addr, 4253 TTEBYTES(1)); 4254 else 4255 addr = (caddr_t)P2END((uintptr_t)addr, 4256 TTEBYTES(hashno)); 4257 hashno = 1; 4258 } else { 4259 hashno++; 4260 } 4261 } 4262 4263 sfmmu_hblks_list_purge(&list); 4264 DEMAP_RANGE_FLUSH(&dmr); 4265 cpuset = sfmmup->sfmmu_cpusran; 4266 xt_sync(cpuset); 4267 } 4268 4269 /* 4270 * This function chgattr on a range of addresses in an hmeblk. It returns the 4271 * next addres that needs to be chgattr. 4272 * It should be called with the hash lock held. 4273 * XXX It should be possible to optimize chgattr by not flushing every time but 4274 * on the other hand: 4275 * 1. do one flush crosscall. 4276 * 2. only flush if we are increasing permissions (make sure this will work) 4277 */ 4278 static caddr_t 4279 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 4280 caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode) 4281 { 4282 tte_t tte, tteattr, tteflags, ttemod; 4283 struct sf_hment *sfhmep; 4284 int ttesz; 4285 struct page *pp = NULL; 4286 kmutex_t *pml, *pmtx; 4287 int ret; 4288 int use_demap_range; 4289 #if defined(SF_ERRATA_57) 4290 int check_exec; 4291 #endif 4292 4293 ASSERT(in_hblk_range(hmeblkp, addr)); 4294 ASSERT(hmeblkp->hblk_shw_bit == 0); 4295 4296 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 4297 ttesz = get_hblk_ttesz(hmeblkp); 4298 4299 /* 4300 * Flush the current demap region if addresses have been 4301 * skipped or the page size doesn't match. 4302 */ 4303 use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)); 4304 if (use_demap_range) { 4305 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 4306 } else { 4307 DEMAP_RANGE_FLUSH(dmrp); 4308 } 4309 4310 tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags); 4311 #if defined(SF_ERRATA_57) 4312 check_exec = (sfmmup != ksfmmup) && 4313 AS_TYPE_64BIT(sfmmup->sfmmu_as) && 4314 TTE_IS_EXECUTABLE(&tteattr); 4315 #endif 4316 HBLKTOHME(sfhmep, hmeblkp, addr); 4317 while (addr < endaddr) { 4318 sfmmu_copytte(&sfhmep->hme_tte, &tte); 4319 if (TTE_IS_VALID(&tte)) { 4320 if ((tte.ll & tteflags.ll) == tteattr.ll) { 4321 /* 4322 * if the new attr is the same as old 4323 * continue 4324 */ 4325 goto next_addr; 4326 } 4327 if (!TTE_IS_WRITABLE(&tteattr)) { 4328 /* 4329 * make sure we clear hw modify bit if we 4330 * removing write protections 4331 */ 4332 tteflags.tte_intlo |= TTE_HWWR_INT; 4333 } 4334 4335 pml = NULL; 4336 pp = sfhmep->hme_page; 4337 if (pp) { 4338 pml = sfmmu_mlist_enter(pp); 4339 } 4340 4341 if (pp != sfhmep->hme_page) { 4342 /* 4343 * tte must have been unloaded. 4344 */ 4345 ASSERT(pml); 4346 sfmmu_mlist_exit(pml); 4347 continue; 4348 } 4349 4350 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 4351 4352 ttemod = tte; 4353 ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll; 4354 ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte)); 4355 4356 #if defined(SF_ERRATA_57) 4357 if (check_exec && addr < errata57_limit) 4358 ttemod.tte_exec_perm = 0; 4359 #endif 4360 ret = sfmmu_modifytte_try(&tte, &ttemod, 4361 &sfhmep->hme_tte); 4362 4363 if (ret < 0) { 4364 /* tte changed underneath us */ 4365 if (pml) { 4366 sfmmu_mlist_exit(pml); 4367 } 4368 continue; 4369 } 4370 4371 if (tteflags.tte_intlo & TTE_HWWR_INT) { 4372 /* 4373 * need to sync if we are clearing modify bit. 4374 */ 4375 sfmmu_ttesync(sfmmup, addr, &tte, pp); 4376 } 4377 4378 if (pp && PP_ISRO(pp)) { 4379 if (tteattr.tte_intlo & TTE_WRPRM_INT) { 4380 pmtx = sfmmu_page_enter(pp); 4381 PP_CLRRO(pp); 4382 sfmmu_page_exit(pmtx); 4383 } 4384 } 4385 4386 if (ret > 0 && use_demap_range) { 4387 DEMAP_RANGE_MARKPG(dmrp, addr); 4388 } else if (ret > 0) { 4389 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 4390 } 4391 4392 if (pml) { 4393 sfmmu_mlist_exit(pml); 4394 } 4395 } 4396 next_addr: 4397 addr += TTEBYTES(ttesz); 4398 sfhmep++; 4399 DEMAP_RANGE_NEXTPG(dmrp); 4400 } 4401 return (addr); 4402 } 4403 4404 /* 4405 * This routine converts virtual attributes to physical ones. It will 4406 * update the tteflags field with the tte mask corresponding to the attributes 4407 * affected and it returns the new attributes. It will also clear the modify 4408 * bit if we are taking away write permission. This is necessary since the 4409 * modify bit is the hardware permission bit and we need to clear it in order 4410 * to detect write faults. 4411 */ 4412 static uint64_t 4413 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp) 4414 { 4415 tte_t ttevalue; 4416 4417 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 4418 4419 switch (mode) { 4420 case SFMMU_CHGATTR: 4421 /* all attributes specified */ 4422 ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr); 4423 ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr); 4424 ttemaskp->tte_inthi = TTEINTHI_ATTR; 4425 ttemaskp->tte_intlo = TTEINTLO_ATTR; 4426 break; 4427 case SFMMU_SETATTR: 4428 ASSERT(!(attr & ~HAT_PROT_MASK)); 4429 ttemaskp->ll = 0; 4430 ttevalue.ll = 0; 4431 /* 4432 * a valid tte implies exec and read for sfmmu 4433 * so no need to do anything about them. 4434 * since priviledged access implies user access 4435 * PROT_USER doesn't make sense either. 4436 */ 4437 if (attr & PROT_WRITE) { 4438 ttemaskp->tte_intlo |= TTE_WRPRM_INT; 4439 ttevalue.tte_intlo |= TTE_WRPRM_INT; 4440 } 4441 break; 4442 case SFMMU_CLRATTR: 4443 /* attributes will be nand with current ones */ 4444 if (attr & ~(PROT_WRITE | PROT_USER)) { 4445 panic("sfmmu: attr %x not supported", attr); 4446 } 4447 ttemaskp->ll = 0; 4448 ttevalue.ll = 0; 4449 if (attr & PROT_WRITE) { 4450 /* clear both writable and modify bit */ 4451 ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT; 4452 } 4453 if (attr & PROT_USER) { 4454 ttemaskp->tte_intlo |= TTE_PRIV_INT; 4455 ttevalue.tte_intlo |= TTE_PRIV_INT; 4456 } 4457 break; 4458 default: 4459 panic("sfmmu_vtop_attr: bad mode %x", mode); 4460 } 4461 ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0); 4462 return (ttevalue.ll); 4463 } 4464 4465 static uint_t 4466 sfmmu_ptov_attr(tte_t *ttep) 4467 { 4468 uint_t attr; 4469 4470 ASSERT(TTE_IS_VALID(ttep)); 4471 4472 attr = PROT_READ; 4473 4474 if (TTE_IS_WRITABLE(ttep)) { 4475 attr |= PROT_WRITE; 4476 } 4477 if (TTE_IS_EXECUTABLE(ttep)) { 4478 attr |= PROT_EXEC; 4479 } 4480 if (!TTE_IS_PRIVILEGED(ttep)) { 4481 attr |= PROT_USER; 4482 } 4483 if (TTE_IS_NFO(ttep)) { 4484 attr |= HAT_NOFAULT; 4485 } 4486 if (TTE_IS_NOSYNC(ttep)) { 4487 attr |= HAT_NOSYNC; 4488 } 4489 if (TTE_IS_SIDEFFECT(ttep)) { 4490 attr |= SFMMU_SIDEFFECT; 4491 } 4492 if (!TTE_IS_VCACHEABLE(ttep)) { 4493 attr |= SFMMU_UNCACHEVTTE; 4494 } 4495 if (!TTE_IS_PCACHEABLE(ttep)) { 4496 attr |= SFMMU_UNCACHEPTTE; 4497 } 4498 return (attr); 4499 } 4500 4501 /* 4502 * hat_chgprot is a deprecated hat call. New segment drivers 4503 * should store all attributes and use hat_*attr calls. 4504 * 4505 * Change the protections in the virtual address range 4506 * given to the specified virtual protection. If vprot is ~PROT_WRITE, 4507 * then remove write permission, leaving the other 4508 * permissions unchanged. If vprot is ~PROT_USER, remove user permissions. 4509 * 4510 */ 4511 void 4512 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot) 4513 { 4514 struct hmehash_bucket *hmebp; 4515 hmeblk_tag hblktag; 4516 int hmeshift, hashno = 1; 4517 struct hme_blk *hmeblkp, *list = NULL; 4518 caddr_t endaddr; 4519 cpuset_t cpuset; 4520 demap_range_t dmr; 4521 4522 ASSERT((len & MMU_PAGEOFFSET) == 0); 4523 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0); 4524 4525 if (sfmmup->sfmmu_xhat_provider) { 4526 XHAT_CHGPROT(sfmmup, addr, len, vprot); 4527 return; 4528 } else { 4529 /* 4530 * This must be a CPU HAT. If the address space has 4531 * XHATs attached, change attributes for all of them, 4532 * just in case 4533 */ 4534 ASSERT(sfmmup->sfmmu_as != NULL); 4535 if (sfmmup->sfmmu_as->a_xhat != NULL) 4536 xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot); 4537 } 4538 4539 CPUSET_ZERO(cpuset); 4540 4541 if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) && 4542 ((addr + len) > (caddr_t)USERLIMIT)) { 4543 panic("user addr %p vprot %x in kernel space", 4544 (void *)addr, vprot); 4545 } 4546 endaddr = addr + len; 4547 hblktag.htag_id = sfmmup; 4548 DEMAP_RANGE_INIT(sfmmup, &dmr); 4549 4550 while (addr < endaddr) { 4551 hmeshift = HME_HASH_SHIFT(hashno); 4552 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 4553 hblktag.htag_rehash = hashno; 4554 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 4555 4556 SFMMU_HASH_LOCK(hmebp); 4557 4558 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 4559 if (hmeblkp != NULL) { 4560 /* 4561 * We've encountered a shadow hmeblk so skip the range 4562 * of the next smaller mapping size. 4563 */ 4564 if (hmeblkp->hblk_shw_bit) { 4565 ASSERT(sfmmup != ksfmmup); 4566 ASSERT(hashno > 1); 4567 addr = (caddr_t)P2END((uintptr_t)addr, 4568 TTEBYTES(hashno - 1)); 4569 } else { 4570 addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp, 4571 addr, endaddr, &dmr, vprot); 4572 } 4573 SFMMU_HASH_UNLOCK(hmebp); 4574 hashno = 1; 4575 continue; 4576 } 4577 SFMMU_HASH_UNLOCK(hmebp); 4578 4579 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 4580 /* 4581 * We have traversed the whole list and rehashed 4582 * if necessary without finding the address to chgprot. 4583 * This is ok so we increment the address by the 4584 * smallest hmeblk range for kernel mappings and the 4585 * largest hmeblk range, to account for shadow hmeblks, 4586 * for user mappings and continue. 4587 */ 4588 if (sfmmup == ksfmmup) 4589 addr = (caddr_t)P2END((uintptr_t)addr, 4590 TTEBYTES(1)); 4591 else 4592 addr = (caddr_t)P2END((uintptr_t)addr, 4593 TTEBYTES(hashno)); 4594 hashno = 1; 4595 } else { 4596 hashno++; 4597 } 4598 } 4599 4600 sfmmu_hblks_list_purge(&list); 4601 DEMAP_RANGE_FLUSH(&dmr); 4602 cpuset = sfmmup->sfmmu_cpusran; 4603 xt_sync(cpuset); 4604 } 4605 4606 /* 4607 * This function chgprots a range of addresses in an hmeblk. It returns the 4608 * next addres that needs to be chgprot. 4609 * It should be called with the hash lock held. 4610 * XXX It shold be possible to optimize chgprot by not flushing every time but 4611 * on the other hand: 4612 * 1. do one flush crosscall. 4613 * 2. only flush if we are increasing permissions (make sure this will work) 4614 */ 4615 static caddr_t 4616 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 4617 caddr_t endaddr, demap_range_t *dmrp, uint_t vprot) 4618 { 4619 uint_t pprot; 4620 tte_t tte, ttemod; 4621 struct sf_hment *sfhmep; 4622 uint_t tteflags; 4623 int ttesz; 4624 struct page *pp = NULL; 4625 kmutex_t *pml, *pmtx; 4626 int ret; 4627 int use_demap_range; 4628 #if defined(SF_ERRATA_57) 4629 int check_exec; 4630 #endif 4631 4632 ASSERT(in_hblk_range(hmeblkp, addr)); 4633 ASSERT(hmeblkp->hblk_shw_bit == 0); 4634 4635 #ifdef DEBUG 4636 if (get_hblk_ttesz(hmeblkp) != TTE8K && 4637 (endaddr < get_hblk_endaddr(hmeblkp))) { 4638 panic("sfmmu_hblk_chgprot: partial chgprot of large page"); 4639 } 4640 #endif /* DEBUG */ 4641 4642 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 4643 ttesz = get_hblk_ttesz(hmeblkp); 4644 4645 pprot = sfmmu_vtop_prot(vprot, &tteflags); 4646 #if defined(SF_ERRATA_57) 4647 check_exec = (sfmmup != ksfmmup) && 4648 AS_TYPE_64BIT(sfmmup->sfmmu_as) && 4649 ((vprot & PROT_EXEC) == PROT_EXEC); 4650 #endif 4651 HBLKTOHME(sfhmep, hmeblkp, addr); 4652 4653 /* 4654 * Flush the current demap region if addresses have been 4655 * skipped or the page size doesn't match. 4656 */ 4657 use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE); 4658 if (use_demap_range) { 4659 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 4660 } else { 4661 DEMAP_RANGE_FLUSH(dmrp); 4662 } 4663 4664 while (addr < endaddr) { 4665 sfmmu_copytte(&sfhmep->hme_tte, &tte); 4666 if (TTE_IS_VALID(&tte)) { 4667 if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) { 4668 /* 4669 * if the new protection is the same as old 4670 * continue 4671 */ 4672 goto next_addr; 4673 } 4674 pml = NULL; 4675 pp = sfhmep->hme_page; 4676 if (pp) { 4677 pml = sfmmu_mlist_enter(pp); 4678 } 4679 if (pp != sfhmep->hme_page) { 4680 /* 4681 * tte most have been unloaded 4682 * underneath us. Recheck 4683 */ 4684 ASSERT(pml); 4685 sfmmu_mlist_exit(pml); 4686 continue; 4687 } 4688 4689 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 4690 4691 ttemod = tte; 4692 TTE_SET_LOFLAGS(&ttemod, tteflags, pprot); 4693 #if defined(SF_ERRATA_57) 4694 if (check_exec && addr < errata57_limit) 4695 ttemod.tte_exec_perm = 0; 4696 #endif 4697 ret = sfmmu_modifytte_try(&tte, &ttemod, 4698 &sfhmep->hme_tte); 4699 4700 if (ret < 0) { 4701 /* tte changed underneath us */ 4702 if (pml) { 4703 sfmmu_mlist_exit(pml); 4704 } 4705 continue; 4706 } 4707 4708 if (tteflags & TTE_HWWR_INT) { 4709 /* 4710 * need to sync if we are clearing modify bit. 4711 */ 4712 sfmmu_ttesync(sfmmup, addr, &tte, pp); 4713 } 4714 4715 if (pp && PP_ISRO(pp)) { 4716 if (pprot & TTE_WRPRM_INT) { 4717 pmtx = sfmmu_page_enter(pp); 4718 PP_CLRRO(pp); 4719 sfmmu_page_exit(pmtx); 4720 } 4721 } 4722 4723 if (ret > 0 && use_demap_range) { 4724 DEMAP_RANGE_MARKPG(dmrp, addr); 4725 } else if (ret > 0) { 4726 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 4727 } 4728 4729 if (pml) { 4730 sfmmu_mlist_exit(pml); 4731 } 4732 } 4733 next_addr: 4734 addr += TTEBYTES(ttesz); 4735 sfhmep++; 4736 DEMAP_RANGE_NEXTPG(dmrp); 4737 } 4738 return (addr); 4739 } 4740 4741 /* 4742 * This routine is deprecated and should only be used by hat_chgprot. 4743 * The correct routine is sfmmu_vtop_attr. 4744 * This routine converts virtual page protections to physical ones. It will 4745 * update the tteflags field with the tte mask corresponding to the protections 4746 * affected and it returns the new protections. It will also clear the modify 4747 * bit if we are taking away write permission. This is necessary since the 4748 * modify bit is the hardware permission bit and we need to clear it in order 4749 * to detect write faults. 4750 * It accepts the following special protections: 4751 * ~PROT_WRITE = remove write permissions. 4752 * ~PROT_USER = remove user permissions. 4753 */ 4754 static uint_t 4755 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp) 4756 { 4757 if (vprot == (uint_t)~PROT_WRITE) { 4758 *tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT; 4759 return (0); /* will cause wrprm to be cleared */ 4760 } 4761 if (vprot == (uint_t)~PROT_USER) { 4762 *tteflagsp = TTE_PRIV_INT; 4763 return (0); /* will cause privprm to be cleared */ 4764 } 4765 if ((vprot == 0) || (vprot == PROT_USER) || 4766 ((vprot & PROT_ALL) != vprot)) { 4767 panic("sfmmu_vtop_prot -- bad prot %x", vprot); 4768 } 4769 4770 switch (vprot) { 4771 case (PROT_READ): 4772 case (PROT_EXEC): 4773 case (PROT_EXEC | PROT_READ): 4774 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT; 4775 return (TTE_PRIV_INT); /* set prv and clr wrt */ 4776 case (PROT_WRITE): 4777 case (PROT_WRITE | PROT_READ): 4778 case (PROT_EXEC | PROT_WRITE): 4779 case (PROT_EXEC | PROT_WRITE | PROT_READ): 4780 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT; 4781 return (TTE_PRIV_INT | TTE_WRPRM_INT); /* set prv and wrt */ 4782 case (PROT_USER | PROT_READ): 4783 case (PROT_USER | PROT_EXEC): 4784 case (PROT_USER | PROT_EXEC | PROT_READ): 4785 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT; 4786 return (0); /* clr prv and wrt */ 4787 case (PROT_USER | PROT_WRITE): 4788 case (PROT_USER | PROT_WRITE | PROT_READ): 4789 case (PROT_USER | PROT_EXEC | PROT_WRITE): 4790 case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ): 4791 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT; 4792 return (TTE_WRPRM_INT); /* clr prv and set wrt */ 4793 default: 4794 panic("sfmmu_vtop_prot -- bad prot %x", vprot); 4795 } 4796 return (0); 4797 } 4798 4799 /* 4800 * Alternate unload for very large virtual ranges. With a true 64 bit VA, 4801 * the normal algorithm would take too long for a very large VA range with 4802 * few real mappings. This routine just walks thru all HMEs in the global 4803 * hash table to find and remove mappings. 4804 */ 4805 static void 4806 hat_unload_large_virtual( 4807 struct hat *sfmmup, 4808 caddr_t startaddr, 4809 size_t len, 4810 uint_t flags, 4811 hat_callback_t *callback) 4812 { 4813 struct hmehash_bucket *hmebp; 4814 struct hme_blk *hmeblkp; 4815 struct hme_blk *pr_hblk = NULL; 4816 struct hme_blk *nx_hblk; 4817 struct hme_blk *list = NULL; 4818 int i; 4819 uint64_t hblkpa, prevpa, nx_pa; 4820 demap_range_t dmr, *dmrp; 4821 cpuset_t cpuset; 4822 caddr_t endaddr = startaddr + len; 4823 caddr_t sa; 4824 caddr_t ea; 4825 caddr_t cb_sa[MAX_CB_ADDR]; 4826 caddr_t cb_ea[MAX_CB_ADDR]; 4827 int addr_cnt = 0; 4828 int a = 0; 4829 4830 if (sfmmup->sfmmu_free) { 4831 dmrp = NULL; 4832 } else { 4833 dmrp = &dmr; 4834 DEMAP_RANGE_INIT(sfmmup, dmrp); 4835 } 4836 4837 /* 4838 * Loop through all the hash buckets of HME blocks looking for matches. 4839 */ 4840 for (i = 0; i <= UHMEHASH_SZ; i++) { 4841 hmebp = &uhme_hash[i]; 4842 SFMMU_HASH_LOCK(hmebp); 4843 hmeblkp = hmebp->hmeblkp; 4844 hblkpa = hmebp->hmeh_nextpa; 4845 prevpa = 0; 4846 pr_hblk = NULL; 4847 while (hmeblkp) { 4848 nx_hblk = hmeblkp->hblk_next; 4849 nx_pa = hmeblkp->hblk_nextpa; 4850 4851 /* 4852 * skip if not this context, if a shadow block or 4853 * if the mapping is not in the requested range 4854 */ 4855 if (hmeblkp->hblk_tag.htag_id != sfmmup || 4856 hmeblkp->hblk_shw_bit || 4857 (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr || 4858 (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) { 4859 pr_hblk = hmeblkp; 4860 prevpa = hblkpa; 4861 goto next_block; 4862 } 4863 4864 /* 4865 * unload if there are any current valid mappings 4866 */ 4867 if (hmeblkp->hblk_vcnt != 0 || 4868 hmeblkp->hblk_hmecnt != 0) 4869 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 4870 sa, ea, dmrp, flags); 4871 4872 /* 4873 * on unmap we also release the HME block itself, once 4874 * all mappings are gone. 4875 */ 4876 if ((flags & HAT_UNLOAD_UNMAP) != 0 && 4877 !hmeblkp->hblk_vcnt && 4878 !hmeblkp->hblk_hmecnt) { 4879 ASSERT(!hmeblkp->hblk_lckcnt); 4880 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 4881 prevpa, pr_hblk); 4882 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 4883 } else { 4884 pr_hblk = hmeblkp; 4885 prevpa = hblkpa; 4886 } 4887 4888 if (callback == NULL) 4889 goto next_block; 4890 4891 /* 4892 * HME blocks may span more than one page, but we may be 4893 * unmapping only one page, so check for a smaller range 4894 * for the callback 4895 */ 4896 if (sa < startaddr) 4897 sa = startaddr; 4898 if (--ea > endaddr) 4899 ea = endaddr - 1; 4900 4901 cb_sa[addr_cnt] = sa; 4902 cb_ea[addr_cnt] = ea; 4903 if (++addr_cnt == MAX_CB_ADDR) { 4904 if (dmrp != NULL) { 4905 DEMAP_RANGE_FLUSH(dmrp); 4906 cpuset = sfmmup->sfmmu_cpusran; 4907 xt_sync(cpuset); 4908 } 4909 4910 for (a = 0; a < MAX_CB_ADDR; ++a) { 4911 callback->hcb_start_addr = cb_sa[a]; 4912 callback->hcb_end_addr = cb_ea[a]; 4913 callback->hcb_function(callback); 4914 } 4915 addr_cnt = 0; 4916 } 4917 4918 next_block: 4919 hmeblkp = nx_hblk; 4920 hblkpa = nx_pa; 4921 } 4922 SFMMU_HASH_UNLOCK(hmebp); 4923 } 4924 4925 sfmmu_hblks_list_purge(&list); 4926 if (dmrp != NULL) { 4927 DEMAP_RANGE_FLUSH(dmrp); 4928 cpuset = sfmmup->sfmmu_cpusran; 4929 xt_sync(cpuset); 4930 } 4931 4932 for (a = 0; a < addr_cnt; ++a) { 4933 callback->hcb_start_addr = cb_sa[a]; 4934 callback->hcb_end_addr = cb_ea[a]; 4935 callback->hcb_function(callback); 4936 } 4937 4938 /* 4939 * Check TSB and TLB page sizes if the process isn't exiting. 4940 */ 4941 if (!sfmmup->sfmmu_free) 4942 sfmmu_check_page_sizes(sfmmup, 0); 4943 } 4944 4945 /* 4946 * Unload all the mappings in the range [addr..addr+len). addr and len must 4947 * be MMU_PAGESIZE aligned. 4948 */ 4949 4950 extern struct seg *segkmap; 4951 #define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \ 4952 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size)) 4953 4954 4955 void 4956 hat_unload_callback( 4957 struct hat *sfmmup, 4958 caddr_t addr, 4959 size_t len, 4960 uint_t flags, 4961 hat_callback_t *callback) 4962 { 4963 struct hmehash_bucket *hmebp; 4964 hmeblk_tag hblktag; 4965 int hmeshift, hashno, iskernel; 4966 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL; 4967 caddr_t endaddr; 4968 cpuset_t cpuset; 4969 uint64_t hblkpa, prevpa; 4970 int addr_count = 0; 4971 int a; 4972 caddr_t cb_start_addr[MAX_CB_ADDR]; 4973 caddr_t cb_end_addr[MAX_CB_ADDR]; 4974 int issegkmap = ISSEGKMAP(sfmmup, addr); 4975 demap_range_t dmr, *dmrp; 4976 4977 if (sfmmup->sfmmu_xhat_provider) { 4978 XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback); 4979 return; 4980 } else { 4981 /* 4982 * This must be a CPU HAT. If the address space has 4983 * XHATs attached, unload the mappings for all of them, 4984 * just in case 4985 */ 4986 ASSERT(sfmmup->sfmmu_as != NULL); 4987 if (sfmmup->sfmmu_as->a_xhat != NULL) 4988 xhat_unload_callback_all(sfmmup->sfmmu_as, addr, 4989 len, flags, callback); 4990 } 4991 4992 ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \ 4993 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 4994 4995 ASSERT(sfmmup != NULL); 4996 ASSERT((len & MMU_PAGEOFFSET) == 0); 4997 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 4998 4999 /* 5000 * Probing through a large VA range (say 63 bits) will be slow, even 5001 * at 4 Meg steps between the probes. So, when the virtual address range 5002 * is very large, search the HME entries for what to unload. 5003 * 5004 * len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need 5005 * 5006 * UHMEHASH_SZ is number of hash buckets to examine 5007 * 5008 */ 5009 if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) { 5010 hat_unload_large_virtual(sfmmup, addr, len, flags, callback); 5011 return; 5012 } 5013 5014 CPUSET_ZERO(cpuset); 5015 5016 /* 5017 * If the process is exiting, we can save a lot of fuss since 5018 * we'll flush the TLB when we free the ctx anyway. 5019 */ 5020 if (sfmmup->sfmmu_free) 5021 dmrp = NULL; 5022 else 5023 dmrp = &dmr; 5024 5025 DEMAP_RANGE_INIT(sfmmup, dmrp); 5026 endaddr = addr + len; 5027 hblktag.htag_id = sfmmup; 5028 5029 /* 5030 * It is likely for the vm to call unload over a wide range of 5031 * addresses that are actually very sparsely populated by 5032 * translations. In order to speed this up the sfmmu hat supports 5033 * the concept of shadow hmeblks. Dummy large page hmeblks that 5034 * correspond to actual small translations are allocated at tteload 5035 * time and are referred to as shadow hmeblks. Now, during unload 5036 * time, we first check if we have a shadow hmeblk for that 5037 * translation. The absence of one means the corresponding address 5038 * range is empty and can be skipped. 5039 * 5040 * The kernel is an exception to above statement and that is why 5041 * we don't use shadow hmeblks and hash starting from the smallest 5042 * page size. 5043 */ 5044 if (sfmmup == KHATID) { 5045 iskernel = 1; 5046 hashno = TTE64K; 5047 } else { 5048 iskernel = 0; 5049 if (mmu_page_sizes == max_mmu_page_sizes) { 5050 hashno = TTE256M; 5051 } else { 5052 hashno = TTE4M; 5053 } 5054 } 5055 while (addr < endaddr) { 5056 hmeshift = HME_HASH_SHIFT(hashno); 5057 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 5058 hblktag.htag_rehash = hashno; 5059 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 5060 5061 SFMMU_HASH_LOCK(hmebp); 5062 5063 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk, 5064 prevpa, &list); 5065 if (hmeblkp == NULL) { 5066 /* 5067 * didn't find an hmeblk. skip the appropiate 5068 * address range. 5069 */ 5070 SFMMU_HASH_UNLOCK(hmebp); 5071 if (iskernel) { 5072 if (hashno < mmu_hashcnt) { 5073 hashno++; 5074 continue; 5075 } else { 5076 hashno = TTE64K; 5077 addr = (caddr_t)roundup((uintptr_t)addr 5078 + 1, MMU_PAGESIZE64K); 5079 continue; 5080 } 5081 } 5082 addr = (caddr_t)roundup((uintptr_t)addr + 1, 5083 (1 << hmeshift)); 5084 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5085 ASSERT(hashno == TTE64K); 5086 continue; 5087 } 5088 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5089 hashno = TTE512K; 5090 continue; 5091 } 5092 if (mmu_page_sizes == max_mmu_page_sizes) { 5093 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5094 hashno = TTE4M; 5095 continue; 5096 } 5097 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5098 hashno = TTE32M; 5099 continue; 5100 } 5101 hashno = TTE256M; 5102 continue; 5103 } else { 5104 hashno = TTE4M; 5105 continue; 5106 } 5107 } 5108 ASSERT(hmeblkp); 5109 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 5110 /* 5111 * If the valid count is zero we can skip the range 5112 * mapped by this hmeblk. 5113 * We free hblks in the case of HAT_UNMAP. HAT_UNMAP 5114 * is used by segment drivers as a hint 5115 * that the mapping resource won't be used any longer. 5116 * The best example of this is during exit(). 5117 */ 5118 addr = (caddr_t)roundup((uintptr_t)addr + 1, 5119 get_hblk_span(hmeblkp)); 5120 if ((flags & HAT_UNLOAD_UNMAP) || 5121 (iskernel && !issegkmap)) { 5122 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, 5123 pr_hblk); 5124 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 5125 } 5126 SFMMU_HASH_UNLOCK(hmebp); 5127 5128 if (iskernel) { 5129 hashno = TTE64K; 5130 continue; 5131 } 5132 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5133 ASSERT(hashno == TTE64K); 5134 continue; 5135 } 5136 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5137 hashno = TTE512K; 5138 continue; 5139 } 5140 if (mmu_page_sizes == max_mmu_page_sizes) { 5141 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5142 hashno = TTE4M; 5143 continue; 5144 } 5145 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5146 hashno = TTE32M; 5147 continue; 5148 } 5149 hashno = TTE256M; 5150 continue; 5151 } else { 5152 hashno = TTE4M; 5153 continue; 5154 } 5155 } 5156 if (hmeblkp->hblk_shw_bit) { 5157 /* 5158 * If we encounter a shadow hmeblk we know there is 5159 * smaller sized hmeblks mapping the same address space. 5160 * Decrement the hash size and rehash. 5161 */ 5162 ASSERT(sfmmup != KHATID); 5163 hashno--; 5164 SFMMU_HASH_UNLOCK(hmebp); 5165 continue; 5166 } 5167 5168 /* 5169 * track callback address ranges. 5170 * only start a new range when it's not contiguous 5171 */ 5172 if (callback != NULL) { 5173 if (addr_count > 0 && 5174 addr == cb_end_addr[addr_count - 1]) 5175 --addr_count; 5176 else 5177 cb_start_addr[addr_count] = addr; 5178 } 5179 5180 addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr, 5181 dmrp, flags); 5182 5183 if (callback != NULL) 5184 cb_end_addr[addr_count++] = addr; 5185 5186 if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) && 5187 !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 5188 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, 5189 pr_hblk); 5190 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 5191 } 5192 SFMMU_HASH_UNLOCK(hmebp); 5193 5194 /* 5195 * Notify our caller as to exactly which pages 5196 * have been unloaded. We do these in clumps, 5197 * to minimize the number of xt_sync()s that need to occur. 5198 */ 5199 if (callback != NULL && addr_count == MAX_CB_ADDR) { 5200 DEMAP_RANGE_FLUSH(dmrp); 5201 if (dmrp != NULL) { 5202 cpuset = sfmmup->sfmmu_cpusran; 5203 xt_sync(cpuset); 5204 } 5205 5206 for (a = 0; a < MAX_CB_ADDR; ++a) { 5207 callback->hcb_start_addr = cb_start_addr[a]; 5208 callback->hcb_end_addr = cb_end_addr[a]; 5209 callback->hcb_function(callback); 5210 } 5211 addr_count = 0; 5212 } 5213 if (iskernel) { 5214 hashno = TTE64K; 5215 continue; 5216 } 5217 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5218 ASSERT(hashno == TTE64K); 5219 continue; 5220 } 5221 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5222 hashno = TTE512K; 5223 continue; 5224 } 5225 if (mmu_page_sizes == max_mmu_page_sizes) { 5226 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5227 hashno = TTE4M; 5228 continue; 5229 } 5230 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5231 hashno = TTE32M; 5232 continue; 5233 } 5234 hashno = TTE256M; 5235 } else { 5236 hashno = TTE4M; 5237 } 5238 } 5239 5240 sfmmu_hblks_list_purge(&list); 5241 DEMAP_RANGE_FLUSH(dmrp); 5242 if (dmrp != NULL) { 5243 cpuset = sfmmup->sfmmu_cpusran; 5244 xt_sync(cpuset); 5245 } 5246 if (callback && addr_count != 0) { 5247 for (a = 0; a < addr_count; ++a) { 5248 callback->hcb_start_addr = cb_start_addr[a]; 5249 callback->hcb_end_addr = cb_end_addr[a]; 5250 callback->hcb_function(callback); 5251 } 5252 } 5253 5254 /* 5255 * Check TSB and TLB page sizes if the process isn't exiting. 5256 */ 5257 if (!sfmmup->sfmmu_free) 5258 sfmmu_check_page_sizes(sfmmup, 0); 5259 } 5260 5261 /* 5262 * Unload all the mappings in the range [addr..addr+len). addr and len must 5263 * be MMU_PAGESIZE aligned. 5264 */ 5265 void 5266 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags) 5267 { 5268 if (sfmmup->sfmmu_xhat_provider) { 5269 XHAT_UNLOAD(sfmmup, addr, len, flags); 5270 return; 5271 } 5272 hat_unload_callback(sfmmup, addr, len, flags, NULL); 5273 } 5274 5275 5276 /* 5277 * Find the largest mapping size for this page. 5278 */ 5279 int 5280 fnd_mapping_sz(page_t *pp) 5281 { 5282 int sz; 5283 int p_index; 5284 5285 p_index = PP_MAPINDEX(pp); 5286 5287 sz = 0; 5288 p_index >>= 1; /* don't care about 8K bit */ 5289 for (; p_index; p_index >>= 1) { 5290 sz++; 5291 } 5292 5293 return (sz); 5294 } 5295 5296 /* 5297 * This function unloads a range of addresses for an hmeblk. 5298 * It returns the next address to be unloaded. 5299 * It should be called with the hash lock held. 5300 */ 5301 static caddr_t 5302 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 5303 caddr_t endaddr, demap_range_t *dmrp, uint_t flags) 5304 { 5305 tte_t tte, ttemod; 5306 struct sf_hment *sfhmep; 5307 int ttesz; 5308 long ttecnt; 5309 page_t *pp; 5310 kmutex_t *pml; 5311 int ret; 5312 int use_demap_range; 5313 5314 ASSERT(in_hblk_range(hmeblkp, addr)); 5315 ASSERT(!hmeblkp->hblk_shw_bit); 5316 #ifdef DEBUG 5317 if (get_hblk_ttesz(hmeblkp) != TTE8K && 5318 (endaddr < get_hblk_endaddr(hmeblkp))) { 5319 panic("sfmmu_hblk_unload: partial unload of large page"); 5320 } 5321 #endif /* DEBUG */ 5322 5323 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 5324 ttesz = get_hblk_ttesz(hmeblkp); 5325 5326 use_demap_range = (do_virtual_coloring && 5327 ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp))); 5328 if (use_demap_range) { 5329 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 5330 } else { 5331 DEMAP_RANGE_FLUSH(dmrp); 5332 } 5333 ttecnt = 0; 5334 HBLKTOHME(sfhmep, hmeblkp, addr); 5335 5336 while (addr < endaddr) { 5337 pml = NULL; 5338 again: 5339 sfmmu_copytte(&sfhmep->hme_tte, &tte); 5340 if (TTE_IS_VALID(&tte)) { 5341 pp = sfhmep->hme_page; 5342 if (pp && pml == NULL) { 5343 pml = sfmmu_mlist_enter(pp); 5344 } 5345 5346 /* 5347 * Verify if hme still points to 'pp' now that 5348 * we have p_mapping lock. 5349 */ 5350 if (sfhmep->hme_page != pp) { 5351 if (pp != NULL && sfhmep->hme_page != NULL) { 5352 if (pml) { 5353 sfmmu_mlist_exit(pml); 5354 } 5355 /* Re-start this iteration. */ 5356 continue; 5357 } 5358 ASSERT((pp != NULL) && 5359 (sfhmep->hme_page == NULL)); 5360 goto tte_unloaded; 5361 } 5362 5363 /* 5364 * This point on we have both HASH and p_mapping 5365 * lock. 5366 */ 5367 ASSERT(pp == sfhmep->hme_page); 5368 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 5369 5370 /* 5371 * We need to loop on modify tte because it is 5372 * possible for pagesync to come along and 5373 * change the software bits beneath us. 5374 * 5375 * Page_unload can also invalidate the tte after 5376 * we read tte outside of p_mapping lock. 5377 */ 5378 ttemod = tte; 5379 5380 TTE_SET_INVALID(&ttemod); 5381 ret = sfmmu_modifytte_try(&tte, &ttemod, 5382 &sfhmep->hme_tte); 5383 5384 if (ret <= 0) { 5385 if (TTE_IS_VALID(&tte)) { 5386 goto again; 5387 } else { 5388 /* 5389 * We read in a valid pte, but it 5390 * is unloaded by page_unload. 5391 * hme_page has become NULL and 5392 * we hold no p_mapping lock. 5393 */ 5394 ASSERT(pp == NULL && pml == NULL); 5395 goto tte_unloaded; 5396 } 5397 } 5398 5399 if (!(flags & HAT_UNLOAD_NOSYNC)) { 5400 sfmmu_ttesync(sfmmup, addr, &tte, pp); 5401 } 5402 5403 /* 5404 * Ok- we invalidated the tte. Do the rest of the job. 5405 */ 5406 ttecnt++; 5407 5408 if (flags & HAT_UNLOAD_UNLOCK) { 5409 ASSERT(hmeblkp->hblk_lckcnt > 0); 5410 atomic_add_16(&hmeblkp->hblk_lckcnt, -1); 5411 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK); 5412 } 5413 5414 /* 5415 * Normally we would need to flush the page 5416 * from the virtual cache at this point in 5417 * order to prevent a potential cache alias 5418 * inconsistency. 5419 * The particular scenario we need to worry 5420 * about is: 5421 * Given: va1 and va2 are two virtual address 5422 * that alias and map the same physical 5423 * address. 5424 * 1. mapping exists from va1 to pa and data 5425 * has been read into the cache. 5426 * 2. unload va1. 5427 * 3. load va2 and modify data using va2. 5428 * 4 unload va2. 5429 * 5. load va1 and reference data. Unless we 5430 * flush the data cache when we unload we will 5431 * get stale data. 5432 * Fortunately, page coloring eliminates the 5433 * above scenario by remembering the color a 5434 * physical page was last or is currently 5435 * mapped to. Now, we delay the flush until 5436 * the loading of translations. Only when the 5437 * new translation is of a different color 5438 * are we forced to flush. 5439 */ 5440 if (use_demap_range) { 5441 /* 5442 * Mark this page as needing a demap. 5443 */ 5444 DEMAP_RANGE_MARKPG(dmrp, addr); 5445 } else { 5446 if (do_virtual_coloring) { 5447 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 5448 sfmmup->sfmmu_free, 0); 5449 } else { 5450 pfn_t pfnum; 5451 5452 pfnum = TTE_TO_PFN(addr, &tte); 5453 sfmmu_tlbcache_demap(addr, sfmmup, 5454 hmeblkp, pfnum, sfmmup->sfmmu_free, 5455 FLUSH_NECESSARY_CPUS, 5456 CACHE_FLUSH, 0); 5457 } 5458 } 5459 5460 if (pp) { 5461 /* 5462 * Remove the hment from the mapping list 5463 */ 5464 ASSERT(hmeblkp->hblk_hmecnt > 0); 5465 5466 /* 5467 * Again, we cannot 5468 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS); 5469 */ 5470 HME_SUB(sfhmep, pp); 5471 membar_stst(); 5472 atomic_add_16(&hmeblkp->hblk_hmecnt, -1); 5473 } 5474 5475 ASSERT(hmeblkp->hblk_vcnt > 0); 5476 atomic_add_16(&hmeblkp->hblk_vcnt, -1); 5477 5478 ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt || 5479 !hmeblkp->hblk_lckcnt); 5480 5481 #ifdef VAC 5482 if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) { 5483 if (PP_ISTNC(pp)) { 5484 /* 5485 * If page was temporary 5486 * uncached, try to recache 5487 * it. Note that HME_SUB() was 5488 * called above so p_index and 5489 * mlist had been updated. 5490 */ 5491 conv_tnc(pp, ttesz); 5492 } else if (pp->p_mapping == NULL) { 5493 ASSERT(kpm_enable); 5494 /* 5495 * Page is marked to be in VAC conflict 5496 * to an existing kpm mapping and/or is 5497 * kpm mapped using only the regular 5498 * pagesize. 5499 */ 5500 sfmmu_kpm_hme_unload(pp); 5501 } 5502 } 5503 #endif /* VAC */ 5504 } else if ((pp = sfhmep->hme_page) != NULL) { 5505 /* 5506 * TTE is invalid but the hme 5507 * still exists. let pageunload 5508 * complete its job. 5509 */ 5510 ASSERT(pml == NULL); 5511 pml = sfmmu_mlist_enter(pp); 5512 if (sfhmep->hme_page != NULL) { 5513 sfmmu_mlist_exit(pml); 5514 pml = NULL; 5515 goto again; 5516 } 5517 ASSERT(sfhmep->hme_page == NULL); 5518 } else if (hmeblkp->hblk_hmecnt != 0) { 5519 /* 5520 * pageunload may have not finished decrementing 5521 * hblk_vcnt and hblk_hmecnt. Find page_t if any and 5522 * wait for pageunload to finish. Rely on pageunload 5523 * to decrement hblk_hmecnt after hblk_vcnt. 5524 */ 5525 pfn_t pfn = TTE_TO_TTEPFN(&tte); 5526 ASSERT(pml == NULL); 5527 if (pf_is_memory(pfn)) { 5528 pp = page_numtopp_nolock(pfn); 5529 if (pp != NULL) { 5530 pml = sfmmu_mlist_enter(pp); 5531 sfmmu_mlist_exit(pml); 5532 pml = NULL; 5533 } 5534 } 5535 } 5536 5537 tte_unloaded: 5538 /* 5539 * At this point, the tte we are looking at 5540 * should be unloaded, and hme has been unlinked 5541 * from page too. This is important because in 5542 * pageunload, it does ttesync() then HME_SUB. 5543 * We need to make sure HME_SUB has been completed 5544 * so we know ttesync() has been completed. Otherwise, 5545 * at exit time, after return from hat layer, VM will 5546 * release as structure which hat_setstat() (called 5547 * by ttesync()) needs. 5548 */ 5549 #ifdef DEBUG 5550 { 5551 tte_t dtte; 5552 5553 ASSERT(sfhmep->hme_page == NULL); 5554 5555 sfmmu_copytte(&sfhmep->hme_tte, &dtte); 5556 ASSERT(!TTE_IS_VALID(&dtte)); 5557 } 5558 #endif 5559 5560 if (pml) { 5561 sfmmu_mlist_exit(pml); 5562 } 5563 5564 addr += TTEBYTES(ttesz); 5565 sfhmep++; 5566 DEMAP_RANGE_NEXTPG(dmrp); 5567 } 5568 if (ttecnt > 0) 5569 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt); 5570 return (addr); 5571 } 5572 5573 /* 5574 * Synchronize all the mappings in the range [addr..addr+len). 5575 * Can be called with clearflag having two states: 5576 * HAT_SYNC_DONTZERO means just return the rm stats 5577 * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats 5578 */ 5579 void 5580 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag) 5581 { 5582 struct hmehash_bucket *hmebp; 5583 hmeblk_tag hblktag; 5584 int hmeshift, hashno = 1; 5585 struct hme_blk *hmeblkp, *list = NULL; 5586 caddr_t endaddr; 5587 cpuset_t cpuset; 5588 5589 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 5590 ASSERT((sfmmup == ksfmmup) || 5591 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 5592 ASSERT((len & MMU_PAGEOFFSET) == 0); 5593 ASSERT((clearflag == HAT_SYNC_DONTZERO) || 5594 (clearflag == HAT_SYNC_ZERORM)); 5595 5596 CPUSET_ZERO(cpuset); 5597 5598 endaddr = addr + len; 5599 hblktag.htag_id = sfmmup; 5600 /* 5601 * Spitfire supports 4 page sizes. 5602 * Most pages are expected to be of the smallest page 5603 * size (8K) and these will not need to be rehashed. 64K 5604 * pages also don't need to be rehashed because the an hmeblk 5605 * spans 64K of address space. 512K pages might need 1 rehash and 5606 * and 4M pages 2 rehashes. 5607 */ 5608 while (addr < endaddr) { 5609 hmeshift = HME_HASH_SHIFT(hashno); 5610 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 5611 hblktag.htag_rehash = hashno; 5612 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 5613 5614 SFMMU_HASH_LOCK(hmebp); 5615 5616 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 5617 if (hmeblkp != NULL) { 5618 /* 5619 * We've encountered a shadow hmeblk so skip the range 5620 * of the next smaller mapping size. 5621 */ 5622 if (hmeblkp->hblk_shw_bit) { 5623 ASSERT(sfmmup != ksfmmup); 5624 ASSERT(hashno > 1); 5625 addr = (caddr_t)P2END((uintptr_t)addr, 5626 TTEBYTES(hashno - 1)); 5627 } else { 5628 addr = sfmmu_hblk_sync(sfmmup, hmeblkp, 5629 addr, endaddr, clearflag); 5630 } 5631 SFMMU_HASH_UNLOCK(hmebp); 5632 hashno = 1; 5633 continue; 5634 } 5635 SFMMU_HASH_UNLOCK(hmebp); 5636 5637 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 5638 /* 5639 * We have traversed the whole list and rehashed 5640 * if necessary without finding the address to sync. 5641 * This is ok so we increment the address by the 5642 * smallest hmeblk range for kernel mappings and the 5643 * largest hmeblk range, to account for shadow hmeblks, 5644 * for user mappings and continue. 5645 */ 5646 if (sfmmup == ksfmmup) 5647 addr = (caddr_t)P2END((uintptr_t)addr, 5648 TTEBYTES(1)); 5649 else 5650 addr = (caddr_t)P2END((uintptr_t)addr, 5651 TTEBYTES(hashno)); 5652 hashno = 1; 5653 } else { 5654 hashno++; 5655 } 5656 } 5657 sfmmu_hblks_list_purge(&list); 5658 cpuset = sfmmup->sfmmu_cpusran; 5659 xt_sync(cpuset); 5660 } 5661 5662 static caddr_t 5663 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 5664 caddr_t endaddr, int clearflag) 5665 { 5666 tte_t tte, ttemod; 5667 struct sf_hment *sfhmep; 5668 int ttesz; 5669 struct page *pp; 5670 kmutex_t *pml; 5671 int ret; 5672 5673 ASSERT(hmeblkp->hblk_shw_bit == 0); 5674 5675 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 5676 5677 ttesz = get_hblk_ttesz(hmeblkp); 5678 HBLKTOHME(sfhmep, hmeblkp, addr); 5679 5680 while (addr < endaddr) { 5681 sfmmu_copytte(&sfhmep->hme_tte, &tte); 5682 if (TTE_IS_VALID(&tte)) { 5683 pml = NULL; 5684 pp = sfhmep->hme_page; 5685 if (pp) { 5686 pml = sfmmu_mlist_enter(pp); 5687 } 5688 if (pp != sfhmep->hme_page) { 5689 /* 5690 * tte most have been unloaded 5691 * underneath us. Recheck 5692 */ 5693 ASSERT(pml); 5694 sfmmu_mlist_exit(pml); 5695 continue; 5696 } 5697 5698 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 5699 5700 if (clearflag == HAT_SYNC_ZERORM) { 5701 ttemod = tte; 5702 TTE_CLR_RM(&ttemod); 5703 ret = sfmmu_modifytte_try(&tte, &ttemod, 5704 &sfhmep->hme_tte); 5705 if (ret < 0) { 5706 if (pml) { 5707 sfmmu_mlist_exit(pml); 5708 } 5709 continue; 5710 } 5711 5712 if (ret > 0) { 5713 sfmmu_tlb_demap(addr, sfmmup, 5714 hmeblkp, 0, 0); 5715 } 5716 } 5717 sfmmu_ttesync(sfmmup, addr, &tte, pp); 5718 if (pml) { 5719 sfmmu_mlist_exit(pml); 5720 } 5721 } 5722 addr += TTEBYTES(ttesz); 5723 sfhmep++; 5724 } 5725 return (addr); 5726 } 5727 5728 /* 5729 * This function will sync a tte to the page struct and it will 5730 * update the hat stats. Currently it allows us to pass a NULL pp 5731 * and we will simply update the stats. We may want to change this 5732 * so we only keep stats for pages backed by pp's. 5733 */ 5734 static void 5735 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp) 5736 { 5737 uint_t rm = 0; 5738 int sz; 5739 pgcnt_t npgs; 5740 5741 ASSERT(TTE_IS_VALID(ttep)); 5742 5743 if (TTE_IS_NOSYNC(ttep)) { 5744 return; 5745 } 5746 5747 if (TTE_IS_REF(ttep)) { 5748 rm = P_REF; 5749 } 5750 if (TTE_IS_MOD(ttep)) { 5751 rm |= P_MOD; 5752 } 5753 5754 if (rm == 0) { 5755 return; 5756 } 5757 5758 sz = TTE_CSZ(ttep); 5759 if (sfmmup->sfmmu_rmstat) { 5760 int i; 5761 caddr_t vaddr = addr; 5762 5763 for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) { 5764 hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm); 5765 } 5766 5767 } 5768 5769 /* 5770 * XXX I want to use cas to update nrm bits but they 5771 * currently belong in common/vm and not in hat where 5772 * they should be. 5773 * The nrm bits are protected by the same mutex as 5774 * the one that protects the page's mapping list. 5775 */ 5776 if (!pp) 5777 return; 5778 ASSERT(sfmmu_mlist_held(pp)); 5779 /* 5780 * If the tte is for a large page, we need to sync all the 5781 * pages covered by the tte. 5782 */ 5783 if (sz != TTE8K) { 5784 ASSERT(pp->p_szc != 0); 5785 pp = PP_GROUPLEADER(pp, sz); 5786 ASSERT(sfmmu_mlist_held(pp)); 5787 } 5788 5789 /* Get number of pages from tte size. */ 5790 npgs = TTEPAGES(sz); 5791 5792 do { 5793 ASSERT(pp); 5794 ASSERT(sfmmu_mlist_held(pp)); 5795 if (((rm & P_REF) != 0 && !PP_ISREF(pp)) || 5796 ((rm & P_MOD) != 0 && !PP_ISMOD(pp))) 5797 hat_page_setattr(pp, rm); 5798 5799 /* 5800 * Are we done? If not, we must have a large mapping. 5801 * For large mappings we need to sync the rest of the pages 5802 * covered by this tte; goto the next page. 5803 */ 5804 } while (--npgs > 0 && (pp = PP_PAGENEXT(pp))); 5805 } 5806 5807 /* 5808 * Execute pre-callback handler of each pa_hment linked to pp 5809 * 5810 * Inputs: 5811 * flag: either HAT_PRESUSPEND or HAT_SUSPEND. 5812 * capture_cpus: pointer to return value (below) 5813 * 5814 * Returns: 5815 * Propagates the subsystem callback return values back to the caller; 5816 * returns 0 on success. If capture_cpus is non-NULL, the value returned 5817 * is zero if all of the pa_hments are of a type that do not require 5818 * capturing CPUs prior to suspending the mapping, else it is 1. 5819 */ 5820 static int 5821 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus) 5822 { 5823 struct sf_hment *sfhmep; 5824 struct pa_hment *pahmep; 5825 int (*f)(caddr_t, uint_t, uint_t, void *); 5826 int ret; 5827 id_t id; 5828 int locked = 0; 5829 kmutex_t *pml; 5830 5831 ASSERT(PAGE_EXCL(pp)); 5832 if (!sfmmu_mlist_held(pp)) { 5833 pml = sfmmu_mlist_enter(pp); 5834 locked = 1; 5835 } 5836 5837 if (capture_cpus) 5838 *capture_cpus = 0; 5839 5840 top: 5841 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 5842 /* 5843 * skip sf_hments corresponding to VA<->PA mappings; 5844 * for pa_hment's, hme_tte.ll is zero 5845 */ 5846 if (!IS_PAHME(sfhmep)) 5847 continue; 5848 5849 pahmep = sfhmep->hme_data; 5850 ASSERT(pahmep != NULL); 5851 5852 /* 5853 * skip if pre-handler has been called earlier in this loop 5854 */ 5855 if (pahmep->flags & flag) 5856 continue; 5857 5858 id = pahmep->cb_id; 5859 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid); 5860 if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0) 5861 *capture_cpus = 1; 5862 if ((f = sfmmu_cb_table[id].prehandler) == NULL) { 5863 pahmep->flags |= flag; 5864 continue; 5865 } 5866 5867 /* 5868 * Drop the mapping list lock to avoid locking order issues. 5869 */ 5870 if (locked) 5871 sfmmu_mlist_exit(pml); 5872 5873 ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt); 5874 if (ret != 0) 5875 return (ret); /* caller must do the cleanup */ 5876 5877 if (locked) { 5878 pml = sfmmu_mlist_enter(pp); 5879 pahmep->flags |= flag; 5880 goto top; 5881 } 5882 5883 pahmep->flags |= flag; 5884 } 5885 5886 if (locked) 5887 sfmmu_mlist_exit(pml); 5888 5889 return (0); 5890 } 5891 5892 /* 5893 * Execute post-callback handler of each pa_hment linked to pp 5894 * 5895 * Same overall assumptions and restrictions apply as for 5896 * hat_pageprocess_precallbacks(). 5897 */ 5898 static void 5899 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag) 5900 { 5901 pfn_t pgpfn = pp->p_pagenum; 5902 pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1; 5903 pfn_t newpfn; 5904 struct sf_hment *sfhmep; 5905 struct pa_hment *pahmep; 5906 int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t); 5907 id_t id; 5908 int locked = 0; 5909 kmutex_t *pml; 5910 5911 ASSERT(PAGE_EXCL(pp)); 5912 if (!sfmmu_mlist_held(pp)) { 5913 pml = sfmmu_mlist_enter(pp); 5914 locked = 1; 5915 } 5916 5917 top: 5918 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 5919 /* 5920 * skip sf_hments corresponding to VA<->PA mappings; 5921 * for pa_hment's, hme_tte.ll is zero 5922 */ 5923 if (!IS_PAHME(sfhmep)) 5924 continue; 5925 5926 pahmep = sfhmep->hme_data; 5927 ASSERT(pahmep != NULL); 5928 5929 if ((pahmep->flags & flag) == 0) 5930 continue; 5931 5932 pahmep->flags &= ~flag; 5933 5934 id = pahmep->cb_id; 5935 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid); 5936 if ((f = sfmmu_cb_table[id].posthandler) == NULL) 5937 continue; 5938 5939 /* 5940 * Convert the base page PFN into the constituent PFN 5941 * which is needed by the callback handler. 5942 */ 5943 newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask); 5944 5945 /* 5946 * Drop the mapping list lock to avoid locking order issues. 5947 */ 5948 if (locked) 5949 sfmmu_mlist_exit(pml); 5950 5951 if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn) 5952 != 0) 5953 panic("sfmmu: posthandler failed"); 5954 5955 if (locked) { 5956 pml = sfmmu_mlist_enter(pp); 5957 goto top; 5958 } 5959 } 5960 5961 if (locked) 5962 sfmmu_mlist_exit(pml); 5963 } 5964 5965 /* 5966 * Suspend locked kernel mapping 5967 */ 5968 void 5969 hat_pagesuspend(struct page *pp) 5970 { 5971 struct sf_hment *sfhmep; 5972 sfmmu_t *sfmmup; 5973 tte_t tte, ttemod; 5974 struct hme_blk *hmeblkp; 5975 caddr_t addr; 5976 int index, cons; 5977 cpuset_t cpuset; 5978 5979 ASSERT(PAGE_EXCL(pp)); 5980 ASSERT(sfmmu_mlist_held(pp)); 5981 5982 mutex_enter(&kpr_suspendlock); 5983 5984 /* 5985 * Call into dtrace to tell it we're about to suspend a 5986 * kernel mapping. This prevents us from running into issues 5987 * with probe context trying to touch a suspended page 5988 * in the relocation codepath itself. 5989 */ 5990 if (dtrace_kreloc_init) 5991 (*dtrace_kreloc_init)(); 5992 5993 index = PP_MAPINDEX(pp); 5994 cons = TTE8K; 5995 5996 retry: 5997 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 5998 5999 if (IS_PAHME(sfhmep)) 6000 continue; 6001 6002 if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons) 6003 continue; 6004 6005 /* 6006 * Loop until we successfully set the suspend bit in 6007 * the TTE. 6008 */ 6009 again: 6010 sfmmu_copytte(&sfhmep->hme_tte, &tte); 6011 ASSERT(TTE_IS_VALID(&tte)); 6012 6013 ttemod = tte; 6014 TTE_SET_SUSPEND(&ttemod); 6015 if (sfmmu_modifytte_try(&tte, &ttemod, 6016 &sfhmep->hme_tte) < 0) 6017 goto again; 6018 6019 /* 6020 * Invalidate TSB entry 6021 */ 6022 hmeblkp = sfmmu_hmetohblk(sfhmep); 6023 6024 sfmmup = hblktosfmmu(hmeblkp); 6025 ASSERT(sfmmup == ksfmmup); 6026 6027 addr = tte_to_vaddr(hmeblkp, tte); 6028 6029 /* 6030 * No need to make sure that the TSB for this sfmmu is 6031 * not being relocated since it is ksfmmup and thus it 6032 * will never be relocated. 6033 */ 6034 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp); 6035 6036 /* 6037 * Update xcall stats 6038 */ 6039 cpuset = cpu_ready_set; 6040 CPUSET_DEL(cpuset, CPU->cpu_id); 6041 6042 /* LINTED: constant in conditional context */ 6043 SFMMU_XCALL_STATS(ksfmmup); 6044 6045 /* 6046 * Flush TLB entry on remote CPU's 6047 */ 6048 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, 6049 (uint64_t)ksfmmup); 6050 xt_sync(cpuset); 6051 6052 /* 6053 * Flush TLB entry on local CPU 6054 */ 6055 vtag_flushpage(addr, (uint64_t)ksfmmup); 6056 } 6057 6058 while (index != 0) { 6059 index = index >> 1; 6060 if (index != 0) 6061 cons++; 6062 if (index & 0x1) { 6063 pp = PP_GROUPLEADER(pp, cons); 6064 goto retry; 6065 } 6066 } 6067 } 6068 6069 #ifdef DEBUG 6070 6071 #define N_PRLE 1024 6072 struct prle { 6073 page_t *targ; 6074 page_t *repl; 6075 int status; 6076 int pausecpus; 6077 hrtime_t whence; 6078 }; 6079 6080 static struct prle page_relocate_log[N_PRLE]; 6081 static int prl_entry; 6082 static kmutex_t prl_mutex; 6083 6084 #define PAGE_RELOCATE_LOG(t, r, s, p) \ 6085 mutex_enter(&prl_mutex); \ 6086 page_relocate_log[prl_entry].targ = *(t); \ 6087 page_relocate_log[prl_entry].repl = *(r); \ 6088 page_relocate_log[prl_entry].status = (s); \ 6089 page_relocate_log[prl_entry].pausecpus = (p); \ 6090 page_relocate_log[prl_entry].whence = gethrtime(); \ 6091 prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1; \ 6092 mutex_exit(&prl_mutex); 6093 6094 #else /* !DEBUG */ 6095 #define PAGE_RELOCATE_LOG(t, r, s, p) 6096 #endif 6097 6098 /* 6099 * Core Kernel Page Relocation Algorithm 6100 * 6101 * Input: 6102 * 6103 * target : constituent pages are SE_EXCL locked. 6104 * replacement: constituent pages are SE_EXCL locked. 6105 * 6106 * Output: 6107 * 6108 * nrelocp: number of pages relocated 6109 */ 6110 int 6111 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp) 6112 { 6113 page_t *targ, *repl; 6114 page_t *tpp, *rpp; 6115 kmutex_t *low, *high; 6116 spgcnt_t npages, i; 6117 page_t *pl = NULL; 6118 int old_pil; 6119 cpuset_t cpuset; 6120 int cap_cpus; 6121 int ret; 6122 6123 if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) { 6124 PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1); 6125 return (EAGAIN); 6126 } 6127 6128 mutex_enter(&kpr_mutex); 6129 kreloc_thread = curthread; 6130 6131 targ = *target; 6132 repl = *replacement; 6133 ASSERT(repl != NULL); 6134 ASSERT(targ->p_szc == repl->p_szc); 6135 6136 npages = page_get_pagecnt(targ->p_szc); 6137 6138 /* 6139 * unload VA<->PA mappings that are not locked 6140 */ 6141 tpp = targ; 6142 for (i = 0; i < npages; i++) { 6143 (void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC); 6144 tpp++; 6145 } 6146 6147 /* 6148 * Do "presuspend" callbacks, in a context from which we can still 6149 * block as needed. Note that we don't hold the mapping list lock 6150 * of "targ" at this point due to potential locking order issues; 6151 * we assume that between the hat_pageunload() above and holding 6152 * the SE_EXCL lock that the mapping list *cannot* change at this 6153 * point. 6154 */ 6155 ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus); 6156 if (ret != 0) { 6157 /* 6158 * EIO translates to fatal error, for all others cleanup 6159 * and return EAGAIN. 6160 */ 6161 ASSERT(ret != EIO); 6162 hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND); 6163 PAGE_RELOCATE_LOG(target, replacement, ret, -1); 6164 kreloc_thread = NULL; 6165 mutex_exit(&kpr_mutex); 6166 return (EAGAIN); 6167 } 6168 6169 /* 6170 * acquire p_mapping list lock for both the target and replacement 6171 * root pages. 6172 * 6173 * low and high refer to the need to grab the mlist locks in a 6174 * specific order in order to prevent race conditions. Thus the 6175 * lower lock must be grabbed before the higher lock. 6176 * 6177 * This will block hat_unload's accessing p_mapping list. Since 6178 * we have SE_EXCL lock, hat_memload and hat_pageunload will be 6179 * blocked. Thus, no one else will be accessing the p_mapping list 6180 * while we suspend and reload the locked mapping below. 6181 */ 6182 tpp = targ; 6183 rpp = repl; 6184 sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high); 6185 6186 kpreempt_disable(); 6187 6188 #ifdef VAC 6189 /* 6190 * If the replacement page is of a different virtual color 6191 * than the page it is replacing, we need to handle the VAC 6192 * consistency for it just as we would if we were setting up 6193 * a new mapping to a page. 6194 */ 6195 if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) { 6196 if (tpp->p_vcolor != rpp->p_vcolor) { 6197 sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp), 6198 rpp->p_pagenum); 6199 } 6200 } 6201 #endif 6202 6203 /* 6204 * We raise our PIL to 13 so that we don't get captured by 6205 * another CPU or pinned by an interrupt thread. We can't go to 6206 * PIL 14 since the nexus driver(s) may need to interrupt at 6207 * that level in the case of IOMMU pseudo mappings. 6208 */ 6209 cpuset = cpu_ready_set; 6210 CPUSET_DEL(cpuset, CPU->cpu_id); 6211 if (!cap_cpus || CPUSET_ISNULL(cpuset)) { 6212 old_pil = splr(XCALL_PIL); 6213 } else { 6214 old_pil = -1; 6215 xc_attention(cpuset); 6216 } 6217 ASSERT(getpil() == XCALL_PIL); 6218 6219 /* 6220 * Now do suspend callbacks. In the case of an IOMMU mapping 6221 * this will suspend all DMA activity to the page while it is 6222 * being relocated. Since we are well above LOCK_LEVEL and CPUs 6223 * may be captured at this point we should have acquired any needed 6224 * locks in the presuspend callback. 6225 */ 6226 ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL); 6227 if (ret != 0) { 6228 repl = targ; 6229 goto suspend_fail; 6230 } 6231 6232 /* 6233 * Raise the PIL yet again, this time to block all high-level 6234 * interrupts on this CPU. This is necessary to prevent an 6235 * interrupt routine from pinning the thread which holds the 6236 * mapping suspended and then touching the suspended page. 6237 * 6238 * Once the page is suspended we also need to be careful to 6239 * avoid calling any functions which touch any seg_kmem memory 6240 * since that memory may be backed by the very page we are 6241 * relocating in here! 6242 */ 6243 hat_pagesuspend(targ); 6244 6245 /* 6246 * Now that we are confident everybody has stopped using this page, 6247 * copy the page contents. Note we use a physical copy to prevent 6248 * locking issues and to avoid fpRAS because we can't handle it in 6249 * this context. 6250 */ 6251 for (i = 0; i < npages; i++, tpp++, rpp++) { 6252 /* 6253 * Copy the contents of the page. 6254 */ 6255 ppcopy_kernel(tpp, rpp); 6256 } 6257 6258 tpp = targ; 6259 rpp = repl; 6260 for (i = 0; i < npages; i++, tpp++, rpp++) { 6261 /* 6262 * Copy attributes. VAC consistency was handled above, 6263 * if required. 6264 */ 6265 rpp->p_nrm = tpp->p_nrm; 6266 tpp->p_nrm = 0; 6267 rpp->p_index = tpp->p_index; 6268 tpp->p_index = 0; 6269 #ifdef VAC 6270 rpp->p_vcolor = tpp->p_vcolor; 6271 #endif 6272 } 6273 6274 /* 6275 * First, unsuspend the page, if we set the suspend bit, and transfer 6276 * the mapping list from the target page to the replacement page. 6277 * Next process postcallbacks; since pa_hment's are linked only to the 6278 * p_mapping list of root page, we don't iterate over the constituent 6279 * pages. 6280 */ 6281 hat_pagereload(targ, repl); 6282 6283 suspend_fail: 6284 hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND); 6285 6286 /* 6287 * Now lower our PIL and release any captured CPUs since we 6288 * are out of the "danger zone". After this it will again be 6289 * safe to acquire adaptive mutex locks, or to drop them... 6290 */ 6291 if (old_pil != -1) { 6292 splx(old_pil); 6293 } else { 6294 xc_dismissed(cpuset); 6295 } 6296 6297 kpreempt_enable(); 6298 6299 sfmmu_mlist_reloc_exit(low, high); 6300 6301 /* 6302 * Postsuspend callbacks should drop any locks held across 6303 * the suspend callbacks. As before, we don't hold the mapping 6304 * list lock at this point.. our assumption is that the mapping 6305 * list still can't change due to our holding SE_EXCL lock and 6306 * there being no unlocked mappings left. Hence the restriction 6307 * on calling context to hat_delete_callback() 6308 */ 6309 hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND); 6310 if (ret != 0) { 6311 /* 6312 * The second presuspend call failed: we got here through 6313 * the suspend_fail label above. 6314 */ 6315 ASSERT(ret != EIO); 6316 PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus); 6317 kreloc_thread = NULL; 6318 mutex_exit(&kpr_mutex); 6319 return (EAGAIN); 6320 } 6321 6322 /* 6323 * Now that we're out of the performance critical section we can 6324 * take care of updating the hash table, since we still 6325 * hold all the pages locked SE_EXCL at this point we 6326 * needn't worry about things changing out from under us. 6327 */ 6328 tpp = targ; 6329 rpp = repl; 6330 for (i = 0; i < npages; i++, tpp++, rpp++) { 6331 6332 /* 6333 * replace targ with replacement in page_hash table 6334 */ 6335 targ = tpp; 6336 page_relocate_hash(rpp, targ); 6337 6338 /* 6339 * concatenate target; caller of platform_page_relocate() 6340 * expects target to be concatenated after returning. 6341 */ 6342 ASSERT(targ->p_next == targ); 6343 ASSERT(targ->p_prev == targ); 6344 page_list_concat(&pl, &targ); 6345 } 6346 6347 ASSERT(*target == pl); 6348 *nrelocp = npages; 6349 PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus); 6350 kreloc_thread = NULL; 6351 mutex_exit(&kpr_mutex); 6352 return (0); 6353 } 6354 6355 /* 6356 * Called when stray pa_hments are found attached to a page which is 6357 * being freed. Notify the subsystem which attached the pa_hment of 6358 * the error if it registered a suitable handler, else panic. 6359 */ 6360 static void 6361 sfmmu_pahment_leaked(struct pa_hment *pahmep) 6362 { 6363 id_t cb_id = pahmep->cb_id; 6364 6365 ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid); 6366 if (sfmmu_cb_table[cb_id].errhandler != NULL) { 6367 if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len, 6368 HAT_CB_ERR_LEAKED, pahmep->pvt) == 0) 6369 return; /* non-fatal */ 6370 } 6371 panic("pa_hment leaked: 0x%p", pahmep); 6372 } 6373 6374 /* 6375 * Remove all mappings to page 'pp'. 6376 */ 6377 int 6378 hat_pageunload(struct page *pp, uint_t forceflag) 6379 { 6380 struct page *origpp = pp; 6381 struct sf_hment *sfhme, *tmphme; 6382 struct hme_blk *hmeblkp; 6383 kmutex_t *pml; 6384 #ifdef VAC 6385 kmutex_t *pmtx; 6386 #endif 6387 cpuset_t cpuset, tset; 6388 int index, cons; 6389 int xhme_blks; 6390 int pa_hments; 6391 6392 ASSERT(PAGE_EXCL(pp)); 6393 6394 retry_xhat: 6395 tmphme = NULL; 6396 xhme_blks = 0; 6397 pa_hments = 0; 6398 CPUSET_ZERO(cpuset); 6399 6400 pml = sfmmu_mlist_enter(pp); 6401 6402 #ifdef VAC 6403 if (pp->p_kpmref) 6404 sfmmu_kpm_pageunload(pp); 6405 ASSERT(!PP_ISMAPPED_KPM(pp)); 6406 #endif 6407 6408 index = PP_MAPINDEX(pp); 6409 cons = TTE8K; 6410 retry: 6411 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 6412 tmphme = sfhme->hme_next; 6413 6414 if (IS_PAHME(sfhme)) { 6415 ASSERT(sfhme->hme_data != NULL); 6416 pa_hments++; 6417 continue; 6418 } 6419 6420 hmeblkp = sfmmu_hmetohblk(sfhme); 6421 if (hmeblkp->hblk_xhat_bit) { 6422 struct xhat_hme_blk *xblk = 6423 (struct xhat_hme_blk *)hmeblkp; 6424 6425 (void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat, 6426 pp, forceflag, XBLK2PROVBLK(xblk)); 6427 6428 xhme_blks = 1; 6429 continue; 6430 } 6431 6432 /* 6433 * If there are kernel mappings don't unload them, they will 6434 * be suspended. 6435 */ 6436 if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt && 6437 hmeblkp->hblk_tag.htag_id == ksfmmup) 6438 continue; 6439 6440 tset = sfmmu_pageunload(pp, sfhme, cons); 6441 CPUSET_OR(cpuset, tset); 6442 } 6443 6444 while (index != 0) { 6445 index = index >> 1; 6446 if (index != 0) 6447 cons++; 6448 if (index & 0x1) { 6449 /* Go to leading page */ 6450 pp = PP_GROUPLEADER(pp, cons); 6451 ASSERT(sfmmu_mlist_held(pp)); 6452 goto retry; 6453 } 6454 } 6455 6456 /* 6457 * cpuset may be empty if the page was only mapped by segkpm, 6458 * in which case we won't actually cross-trap. 6459 */ 6460 xt_sync(cpuset); 6461 6462 /* 6463 * The page should have no mappings at this point, unless 6464 * we were called from hat_page_relocate() in which case we 6465 * leave the locked mappings which will be suspended later. 6466 */ 6467 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments || 6468 (forceflag == SFMMU_KERNEL_RELOC)); 6469 6470 #ifdef VAC 6471 if (PP_ISTNC(pp)) { 6472 if (cons == TTE8K) { 6473 pmtx = sfmmu_page_enter(pp); 6474 PP_CLRTNC(pp); 6475 sfmmu_page_exit(pmtx); 6476 } else { 6477 conv_tnc(pp, cons); 6478 } 6479 } 6480 #endif /* VAC */ 6481 6482 if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) { 6483 /* 6484 * Unlink any pa_hments and free them, calling back 6485 * the responsible subsystem to notify it of the error. 6486 * This can occur in situations such as drivers leaking 6487 * DMA handles: naughty, but common enough that we'd like 6488 * to keep the system running rather than bringing it 6489 * down with an obscure error like "pa_hment leaked" 6490 * which doesn't aid the user in debugging their driver. 6491 */ 6492 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 6493 tmphme = sfhme->hme_next; 6494 if (IS_PAHME(sfhme)) { 6495 struct pa_hment *pahmep = sfhme->hme_data; 6496 sfmmu_pahment_leaked(pahmep); 6497 HME_SUB(sfhme, pp); 6498 kmem_cache_free(pa_hment_cache, pahmep); 6499 } 6500 } 6501 6502 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks); 6503 } 6504 6505 sfmmu_mlist_exit(pml); 6506 6507 /* 6508 * XHAT may not have finished unloading pages 6509 * because some other thread was waiting for 6510 * mlist lock and XHAT_PAGEUNLOAD let it do 6511 * the job. 6512 */ 6513 if (xhme_blks) { 6514 pp = origpp; 6515 goto retry_xhat; 6516 } 6517 6518 return (0); 6519 } 6520 6521 cpuset_t 6522 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons) 6523 { 6524 struct hme_blk *hmeblkp; 6525 sfmmu_t *sfmmup; 6526 tte_t tte, ttemod; 6527 #ifdef DEBUG 6528 tte_t orig_old; 6529 #endif /* DEBUG */ 6530 caddr_t addr; 6531 int ttesz; 6532 int ret; 6533 cpuset_t cpuset; 6534 6535 ASSERT(pp != NULL); 6536 ASSERT(sfmmu_mlist_held(pp)); 6537 ASSERT(!PP_ISKAS(pp)); 6538 6539 CPUSET_ZERO(cpuset); 6540 6541 hmeblkp = sfmmu_hmetohblk(sfhme); 6542 6543 readtte: 6544 sfmmu_copytte(&sfhme->hme_tte, &tte); 6545 if (TTE_IS_VALID(&tte)) { 6546 sfmmup = hblktosfmmu(hmeblkp); 6547 ttesz = get_hblk_ttesz(hmeblkp); 6548 /* 6549 * Only unload mappings of 'cons' size. 6550 */ 6551 if (ttesz != cons) 6552 return (cpuset); 6553 6554 /* 6555 * Note that we have p_mapping lock, but no hash lock here. 6556 * hblk_unload() has to have both hash lock AND p_mapping 6557 * lock before it tries to modify tte. So, the tte could 6558 * not become invalid in the sfmmu_modifytte_try() below. 6559 */ 6560 ttemod = tte; 6561 #ifdef DEBUG 6562 orig_old = tte; 6563 #endif /* DEBUG */ 6564 6565 TTE_SET_INVALID(&ttemod); 6566 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 6567 if (ret < 0) { 6568 #ifdef DEBUG 6569 /* only R/M bits can change. */ 6570 chk_tte(&orig_old, &tte, &ttemod, hmeblkp); 6571 #endif /* DEBUG */ 6572 goto readtte; 6573 } 6574 6575 if (ret == 0) { 6576 panic("pageunload: cas failed?"); 6577 } 6578 6579 addr = tte_to_vaddr(hmeblkp, tte); 6580 6581 sfmmu_ttesync(sfmmup, addr, &tte, pp); 6582 6583 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1); 6584 6585 /* 6586 * We need to flush the page from the virtual cache 6587 * in order to prevent a virtual cache alias 6588 * inconsistency. The particular scenario we need 6589 * to worry about is: 6590 * Given: va1 and va2 are two virtual address that 6591 * alias and will map the same physical address. 6592 * 1. mapping exists from va1 to pa and data has 6593 * been read into the cache. 6594 * 2. unload va1. 6595 * 3. load va2 and modify data using va2. 6596 * 4 unload va2. 6597 * 5. load va1 and reference data. Unless we flush 6598 * the data cache when we unload we will get 6599 * stale data. 6600 * This scenario is taken care of by using virtual 6601 * page coloring. 6602 */ 6603 if (sfmmup->sfmmu_ismhat) { 6604 /* 6605 * Flush TSBs, TLBs and caches 6606 * of every process 6607 * sharing this ism segment. 6608 */ 6609 sfmmu_hat_lock_all(); 6610 mutex_enter(&ism_mlist_lock); 6611 kpreempt_disable(); 6612 if (do_virtual_coloring) 6613 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp, 6614 pp->p_pagenum, CACHE_NO_FLUSH); 6615 else 6616 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp, 6617 pp->p_pagenum, CACHE_FLUSH); 6618 kpreempt_enable(); 6619 mutex_exit(&ism_mlist_lock); 6620 sfmmu_hat_unlock_all(); 6621 cpuset = cpu_ready_set; 6622 } else if (do_virtual_coloring) { 6623 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 6624 cpuset = sfmmup->sfmmu_cpusran; 6625 } else { 6626 sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp, 6627 pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS, 6628 CACHE_FLUSH, 0); 6629 cpuset = sfmmup->sfmmu_cpusran; 6630 } 6631 6632 /* 6633 * Hme_sub has to run after ttesync() and a_rss update. 6634 * See hblk_unload(). 6635 */ 6636 HME_SUB(sfhme, pp); 6637 membar_stst(); 6638 6639 /* 6640 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS) 6641 * since pteload may have done a HME_ADD() right after 6642 * we did the HME_SUB() above. Hmecnt is now maintained 6643 * by cas only. no lock guranteed its value. The only 6644 * gurantee we have is the hmecnt should not be less than 6645 * what it should be so the hblk will not be taken away. 6646 * It's also important that we decremented the hmecnt after 6647 * we are done with hmeblkp so that this hmeblk won't be 6648 * stolen. 6649 */ 6650 ASSERT(hmeblkp->hblk_hmecnt > 0); 6651 ASSERT(hmeblkp->hblk_vcnt > 0); 6652 atomic_add_16(&hmeblkp->hblk_vcnt, -1); 6653 atomic_add_16(&hmeblkp->hblk_hmecnt, -1); 6654 /* 6655 * This is bug 4063182. 6656 * XXX: fixme 6657 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt || 6658 * !hmeblkp->hblk_lckcnt); 6659 */ 6660 } else { 6661 panic("invalid tte? pp %p &tte %p", 6662 (void *)pp, (void *)&tte); 6663 } 6664 6665 return (cpuset); 6666 } 6667 6668 /* 6669 * While relocating a kernel page, this function will move the mappings 6670 * from tpp to dpp and modify any associated data with these mappings. 6671 * It also unsuspends the suspended kernel mapping. 6672 */ 6673 static void 6674 hat_pagereload(struct page *tpp, struct page *dpp) 6675 { 6676 struct sf_hment *sfhme; 6677 tte_t tte, ttemod; 6678 int index, cons; 6679 6680 ASSERT(getpil() == PIL_MAX); 6681 ASSERT(sfmmu_mlist_held(tpp)); 6682 ASSERT(sfmmu_mlist_held(dpp)); 6683 6684 index = PP_MAPINDEX(tpp); 6685 cons = TTE8K; 6686 6687 /* Update real mappings to the page */ 6688 retry: 6689 for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) { 6690 if (IS_PAHME(sfhme)) 6691 continue; 6692 sfmmu_copytte(&sfhme->hme_tte, &tte); 6693 ttemod = tte; 6694 6695 /* 6696 * replace old pfn with new pfn in TTE 6697 */ 6698 PFN_TO_TTE(ttemod, dpp->p_pagenum); 6699 6700 /* 6701 * clear suspend bit 6702 */ 6703 ASSERT(TTE_IS_SUSPEND(&ttemod)); 6704 TTE_CLR_SUSPEND(&ttemod); 6705 6706 if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0) 6707 panic("hat_pagereload(): sfmmu_modifytte_try() failed"); 6708 6709 /* 6710 * set hme_page point to new page 6711 */ 6712 sfhme->hme_page = dpp; 6713 } 6714 6715 /* 6716 * move p_mapping list from old page to new page 6717 */ 6718 dpp->p_mapping = tpp->p_mapping; 6719 tpp->p_mapping = NULL; 6720 dpp->p_share = tpp->p_share; 6721 tpp->p_share = 0; 6722 6723 while (index != 0) { 6724 index = index >> 1; 6725 if (index != 0) 6726 cons++; 6727 if (index & 0x1) { 6728 tpp = PP_GROUPLEADER(tpp, cons); 6729 dpp = PP_GROUPLEADER(dpp, cons); 6730 goto retry; 6731 } 6732 } 6733 6734 if (dtrace_kreloc_fini) 6735 (*dtrace_kreloc_fini)(); 6736 mutex_exit(&kpr_suspendlock); 6737 } 6738 6739 uint_t 6740 hat_pagesync(struct page *pp, uint_t clearflag) 6741 { 6742 struct sf_hment *sfhme, *tmphme = NULL; 6743 struct hme_blk *hmeblkp; 6744 kmutex_t *pml; 6745 cpuset_t cpuset, tset; 6746 int index, cons; 6747 extern ulong_t po_share; 6748 page_t *save_pp = pp; 6749 6750 CPUSET_ZERO(cpuset); 6751 6752 if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) { 6753 return (PP_GENERIC_ATTR(pp)); 6754 } 6755 6756 if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) && 6757 PP_ISREF(pp)) { 6758 return (PP_GENERIC_ATTR(pp)); 6759 } 6760 6761 if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) && 6762 PP_ISMOD(pp)) { 6763 return (PP_GENERIC_ATTR(pp)); 6764 } 6765 6766 if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 && 6767 (pp->p_share > po_share) && 6768 !(clearflag & HAT_SYNC_ZERORM)) { 6769 if (PP_ISRO(pp)) 6770 hat_page_setattr(pp, P_REF); 6771 return (PP_GENERIC_ATTR(pp)); 6772 } 6773 6774 clearflag &= ~HAT_SYNC_STOPON_SHARED; 6775 pml = sfmmu_mlist_enter(pp); 6776 index = PP_MAPINDEX(pp); 6777 cons = TTE8K; 6778 retry: 6779 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 6780 /* 6781 * We need to save the next hment on the list since 6782 * it is possible for pagesync to remove an invalid hment 6783 * from the list. 6784 */ 6785 tmphme = sfhme->hme_next; 6786 /* 6787 * If we are looking for large mappings and this hme doesn't 6788 * reach the range we are seeking, just ignore its. 6789 */ 6790 hmeblkp = sfmmu_hmetohblk(sfhme); 6791 if (hmeblkp->hblk_xhat_bit) 6792 continue; 6793 6794 if (hme_size(sfhme) < cons) 6795 continue; 6796 tset = sfmmu_pagesync(pp, sfhme, 6797 clearflag & ~HAT_SYNC_STOPON_RM); 6798 CPUSET_OR(cpuset, tset); 6799 /* 6800 * If clearflag is HAT_SYNC_DONTZERO, break out as soon 6801 * as the "ref" or "mod" is set. 6802 */ 6803 if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO && 6804 ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) || 6805 ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) { 6806 index = 0; 6807 break; 6808 } 6809 } 6810 6811 while (index) { 6812 index = index >> 1; 6813 cons++; 6814 if (index & 0x1) { 6815 /* Go to leading page */ 6816 pp = PP_GROUPLEADER(pp, cons); 6817 goto retry; 6818 } 6819 } 6820 6821 xt_sync(cpuset); 6822 sfmmu_mlist_exit(pml); 6823 return (PP_GENERIC_ATTR(save_pp)); 6824 } 6825 6826 /* 6827 * Get all the hardware dependent attributes for a page struct 6828 */ 6829 static cpuset_t 6830 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme, 6831 uint_t clearflag) 6832 { 6833 caddr_t addr; 6834 tte_t tte, ttemod; 6835 struct hme_blk *hmeblkp; 6836 int ret; 6837 sfmmu_t *sfmmup; 6838 cpuset_t cpuset; 6839 6840 ASSERT(pp != NULL); 6841 ASSERT(sfmmu_mlist_held(pp)); 6842 ASSERT((clearflag == HAT_SYNC_DONTZERO) || 6843 (clearflag == HAT_SYNC_ZERORM)); 6844 6845 SFMMU_STAT(sf_pagesync); 6846 6847 CPUSET_ZERO(cpuset); 6848 6849 sfmmu_pagesync_retry: 6850 6851 sfmmu_copytte(&sfhme->hme_tte, &tte); 6852 if (TTE_IS_VALID(&tte)) { 6853 hmeblkp = sfmmu_hmetohblk(sfhme); 6854 sfmmup = hblktosfmmu(hmeblkp); 6855 addr = tte_to_vaddr(hmeblkp, tte); 6856 if (clearflag == HAT_SYNC_ZERORM) { 6857 ttemod = tte; 6858 TTE_CLR_RM(&ttemod); 6859 ret = sfmmu_modifytte_try(&tte, &ttemod, 6860 &sfhme->hme_tte); 6861 if (ret < 0) { 6862 /* 6863 * cas failed and the new value is not what 6864 * we want. 6865 */ 6866 goto sfmmu_pagesync_retry; 6867 } 6868 6869 if (ret > 0) { 6870 /* we win the cas */ 6871 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 6872 cpuset = sfmmup->sfmmu_cpusran; 6873 } 6874 } 6875 6876 sfmmu_ttesync(sfmmup, addr, &tte, pp); 6877 } 6878 return (cpuset); 6879 } 6880 6881 /* 6882 * Remove write permission from a mappings to a page, so that 6883 * we can detect the next modification of it. This requires modifying 6884 * the TTE then invalidating (demap) any TLB entry using that TTE. 6885 * This code is similar to sfmmu_pagesync(). 6886 */ 6887 static cpuset_t 6888 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme) 6889 { 6890 caddr_t addr; 6891 tte_t tte; 6892 tte_t ttemod; 6893 struct hme_blk *hmeblkp; 6894 int ret; 6895 sfmmu_t *sfmmup; 6896 cpuset_t cpuset; 6897 6898 ASSERT(pp != NULL); 6899 ASSERT(sfmmu_mlist_held(pp)); 6900 6901 CPUSET_ZERO(cpuset); 6902 SFMMU_STAT(sf_clrwrt); 6903 6904 retry: 6905 6906 sfmmu_copytte(&sfhme->hme_tte, &tte); 6907 if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) { 6908 hmeblkp = sfmmu_hmetohblk(sfhme); 6909 6910 /* 6911 * xhat mappings should never be to a VMODSORT page. 6912 */ 6913 ASSERT(hmeblkp->hblk_xhat_bit == 0); 6914 6915 sfmmup = hblktosfmmu(hmeblkp); 6916 addr = tte_to_vaddr(hmeblkp, tte); 6917 6918 ttemod = tte; 6919 TTE_CLR_WRT(&ttemod); 6920 TTE_CLR_MOD(&ttemod); 6921 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 6922 6923 /* 6924 * if cas failed and the new value is not what 6925 * we want retry 6926 */ 6927 if (ret < 0) 6928 goto retry; 6929 6930 /* we win the cas */ 6931 if (ret > 0) { 6932 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 6933 cpuset = sfmmup->sfmmu_cpusran; 6934 } 6935 } 6936 6937 return (cpuset); 6938 } 6939 6940 /* 6941 * Walk all mappings of a page, removing write permission and clearing the 6942 * ref/mod bits. This code is similar to hat_pagesync() 6943 */ 6944 static void 6945 hat_page_clrwrt(page_t *pp) 6946 { 6947 struct sf_hment *sfhme; 6948 struct sf_hment *tmphme = NULL; 6949 kmutex_t *pml; 6950 cpuset_t cpuset; 6951 cpuset_t tset; 6952 int index; 6953 int cons; 6954 6955 CPUSET_ZERO(cpuset); 6956 6957 pml = sfmmu_mlist_enter(pp); 6958 index = PP_MAPINDEX(pp); 6959 cons = TTE8K; 6960 retry: 6961 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 6962 tmphme = sfhme->hme_next; 6963 6964 /* 6965 * If we are looking for large mappings and this hme doesn't 6966 * reach the range we are seeking, just ignore its. 6967 */ 6968 6969 if (hme_size(sfhme) < cons) 6970 continue; 6971 6972 tset = sfmmu_pageclrwrt(pp, sfhme); 6973 CPUSET_OR(cpuset, tset); 6974 } 6975 6976 while (index) { 6977 index = index >> 1; 6978 cons++; 6979 if (index & 0x1) { 6980 /* Go to leading page */ 6981 pp = PP_GROUPLEADER(pp, cons); 6982 goto retry; 6983 } 6984 } 6985 6986 xt_sync(cpuset); 6987 sfmmu_mlist_exit(pml); 6988 } 6989 6990 /* 6991 * Set the given REF/MOD/RO bits for the given page. 6992 * For a vnode with a sorted v_pages list, we need to change 6993 * the attributes and the v_pages list together under page_vnode_mutex. 6994 */ 6995 void 6996 hat_page_setattr(page_t *pp, uint_t flag) 6997 { 6998 vnode_t *vp = pp->p_vnode; 6999 page_t **listp; 7000 kmutex_t *pmtx; 7001 kmutex_t *vphm = NULL; 7002 7003 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7004 7005 /* 7006 * nothing to do if attribute already set 7007 */ 7008 if ((pp->p_nrm & flag) == flag) 7009 return; 7010 7011 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 7012 vphm = page_vnode_mutex(vp); 7013 mutex_enter(vphm); 7014 } 7015 7016 pmtx = sfmmu_page_enter(pp); 7017 pp->p_nrm |= flag; 7018 sfmmu_page_exit(pmtx); 7019 7020 if (vphm != NULL) { 7021 /* 7022 * Some File Systems examine v_pages for NULL w/o 7023 * grabbing the vphm mutex. Must not let it become NULL when 7024 * pp is the only page on the list. 7025 */ 7026 if (pp->p_vpnext != pp) { 7027 page_vpsub(&vp->v_pages, pp); 7028 if (vp->v_pages != NULL) 7029 listp = &vp->v_pages->p_vpprev->p_vpnext; 7030 else 7031 listp = &vp->v_pages; 7032 page_vpadd(listp, pp); 7033 } 7034 mutex_exit(vphm); 7035 } 7036 } 7037 7038 void 7039 hat_page_clrattr(page_t *pp, uint_t flag) 7040 { 7041 vnode_t *vp = pp->p_vnode; 7042 kmutex_t *pmtx; 7043 7044 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7045 7046 pmtx = sfmmu_page_enter(pp); 7047 7048 /* 7049 * Caller is expected to hold page's io lock for VMODSORT to work 7050 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 7051 * bit is cleared. 7052 * We don't have assert to avoid tripping some existing third party 7053 * code. The dirty page is moved back to top of the v_page list 7054 * after IO is done in pvn_write_done(). 7055 */ 7056 pp->p_nrm &= ~flag; 7057 sfmmu_page_exit(pmtx); 7058 7059 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 7060 7061 /* 7062 * VMODSORT works by removing write permissions and getting 7063 * a fault when a page is made dirty. At this point 7064 * we need to remove write permission from all mappings 7065 * to this page. 7066 */ 7067 hat_page_clrwrt(pp); 7068 } 7069 } 7070 7071 uint_t 7072 hat_page_getattr(page_t *pp, uint_t flag) 7073 { 7074 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7075 return ((uint_t)(pp->p_nrm & flag)); 7076 } 7077 7078 /* 7079 * DEBUG kernels: verify that a kernel va<->pa translation 7080 * is safe by checking the underlying page_t is in a page 7081 * relocation-safe state. 7082 */ 7083 #ifdef DEBUG 7084 void 7085 sfmmu_check_kpfn(pfn_t pfn) 7086 { 7087 page_t *pp; 7088 int index, cons; 7089 7090 if (hat_check_vtop == 0) 7091 return; 7092 7093 if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr) 7094 return; 7095 7096 pp = page_numtopp_nolock(pfn); 7097 if (!pp) 7098 return; 7099 7100 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp)) 7101 return; 7102 7103 /* 7104 * Handed a large kernel page, we dig up the root page since we 7105 * know the root page might have the lock also. 7106 */ 7107 if (pp->p_szc != 0) { 7108 index = PP_MAPINDEX(pp); 7109 cons = TTE8K; 7110 again: 7111 while (index != 0) { 7112 index >>= 1; 7113 if (index != 0) 7114 cons++; 7115 if (index & 0x1) { 7116 pp = PP_GROUPLEADER(pp, cons); 7117 goto again; 7118 } 7119 } 7120 } 7121 7122 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp)) 7123 return; 7124 7125 /* 7126 * Pages need to be locked or allocated "permanent" (either from 7127 * static_arena arena or explicitly setting PG_NORELOC when calling 7128 * page_create_va()) for VA->PA translations to be valid. 7129 */ 7130 if (!PP_ISNORELOC(pp)) 7131 panic("Illegal VA->PA translation, pp 0x%p not permanent", pp); 7132 else 7133 panic("Illegal VA->PA translation, pp 0x%p not locked", pp); 7134 } 7135 #endif /* DEBUG */ 7136 7137 /* 7138 * Returns a page frame number for a given virtual address. 7139 * Returns PFN_INVALID to indicate an invalid mapping 7140 */ 7141 pfn_t 7142 hat_getpfnum(struct hat *hat, caddr_t addr) 7143 { 7144 pfn_t pfn; 7145 tte_t tte; 7146 7147 /* 7148 * We would like to 7149 * ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 7150 * but we can't because the iommu driver will call this 7151 * routine at interrupt time and it can't grab the as lock 7152 * or it will deadlock: A thread could have the as lock 7153 * and be waiting for io. The io can't complete 7154 * because the interrupt thread is blocked trying to grab 7155 * the as lock. 7156 */ 7157 7158 ASSERT(hat->sfmmu_xhat_provider == NULL); 7159 7160 if (hat == ksfmmup) { 7161 if (segkpm && IS_KPM_ADDR(addr)) 7162 return (sfmmu_kpm_vatopfn(addr)); 7163 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte)) 7164 == PFN_SUSPENDED) { 7165 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte); 7166 } 7167 sfmmu_check_kpfn(pfn); 7168 return (pfn); 7169 } else { 7170 return (sfmmu_uvatopfn(addr, hat)); 7171 } 7172 } 7173 7174 /* 7175 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 7176 * Use hat_getpfnum(kas.a_hat, ...) instead. 7177 * 7178 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 7179 * but can't right now due to the fact that some software has grown to use 7180 * this interface incorrectly. So for now when the interface is misused, 7181 * return a warning to the user that in the future it won't work in the 7182 * way they're abusing it, and carry on (after disabling page relocation). 7183 */ 7184 pfn_t 7185 hat_getkpfnum(caddr_t addr) 7186 { 7187 pfn_t pfn; 7188 tte_t tte; 7189 int badcaller = 0; 7190 extern int segkmem_reloc; 7191 7192 if (segkpm && IS_KPM_ADDR(addr)) { 7193 badcaller = 1; 7194 pfn = sfmmu_kpm_vatopfn(addr); 7195 } else { 7196 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte)) 7197 == PFN_SUSPENDED) { 7198 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte); 7199 } 7200 badcaller = pf_is_memory(pfn); 7201 } 7202 7203 if (badcaller) { 7204 /* 7205 * We can't return PFN_INVALID or the caller may panic 7206 * or corrupt the system. The only alternative is to 7207 * disable page relocation at this point for all kernel 7208 * memory. This will impact any callers of page_relocate() 7209 * such as FMA or DR. 7210 * 7211 * RFE: Add junk here to spit out an ereport so the sysadmin 7212 * can be advised that he should upgrade his device driver 7213 * so that this doesn't happen. 7214 */ 7215 hat_getkpfnum_badcall(caller()); 7216 if (hat_kpr_enabled && segkmem_reloc) { 7217 hat_kpr_enabled = 0; 7218 segkmem_reloc = 0; 7219 cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED"); 7220 } 7221 } 7222 return (pfn); 7223 } 7224 7225 pfn_t 7226 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup) 7227 { 7228 struct hmehash_bucket *hmebp; 7229 hmeblk_tag hblktag; 7230 int hmeshift, hashno = 1; 7231 struct hme_blk *hmeblkp = NULL; 7232 7233 struct sf_hment *sfhmep; 7234 tte_t tte; 7235 pfn_t pfn; 7236 7237 /* support for ISM */ 7238 ism_map_t *ism_map; 7239 ism_blk_t *ism_blkp; 7240 int i; 7241 sfmmu_t *ism_hatid = NULL; 7242 sfmmu_t *locked_hatid = NULL; 7243 7244 7245 ASSERT(sfmmup != ksfmmup); 7246 SFMMU_STAT(sf_user_vtop); 7247 /* 7248 * Set ism_hatid if vaddr falls in a ISM segment. 7249 */ 7250 ism_blkp = sfmmup->sfmmu_iblk; 7251 if (ism_blkp) { 7252 sfmmu_ismhat_enter(sfmmup, 0); 7253 locked_hatid = sfmmup; 7254 } 7255 while (ism_blkp && ism_hatid == NULL) { 7256 ism_map = ism_blkp->iblk_maps; 7257 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) { 7258 if (vaddr >= ism_start(ism_map[i]) && 7259 vaddr < ism_end(ism_map[i])) { 7260 sfmmup = ism_hatid = ism_map[i].imap_ismhat; 7261 vaddr = (caddr_t)(vaddr - 7262 ism_start(ism_map[i])); 7263 break; 7264 } 7265 } 7266 ism_blkp = ism_blkp->iblk_next; 7267 } 7268 if (locked_hatid) { 7269 sfmmu_ismhat_exit(locked_hatid, 0); 7270 } 7271 7272 hblktag.htag_id = sfmmup; 7273 do { 7274 hmeshift = HME_HASH_SHIFT(hashno); 7275 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 7276 hblktag.htag_rehash = hashno; 7277 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 7278 7279 SFMMU_HASH_LOCK(hmebp); 7280 7281 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 7282 if (hmeblkp != NULL) { 7283 HBLKTOHME(sfhmep, hmeblkp, vaddr); 7284 sfmmu_copytte(&sfhmep->hme_tte, &tte); 7285 if (TTE_IS_VALID(&tte)) { 7286 pfn = TTE_TO_PFN(vaddr, &tte); 7287 } else { 7288 pfn = PFN_INVALID; 7289 } 7290 SFMMU_HASH_UNLOCK(hmebp); 7291 return (pfn); 7292 } 7293 SFMMU_HASH_UNLOCK(hmebp); 7294 hashno++; 7295 } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt)); 7296 return (PFN_INVALID); 7297 } 7298 7299 7300 /* 7301 * For compatability with AT&T and later optimizations 7302 */ 7303 /* ARGSUSED */ 7304 void 7305 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags) 7306 { 7307 ASSERT(hat != NULL); 7308 ASSERT(hat->sfmmu_xhat_provider == NULL); 7309 } 7310 7311 /* 7312 * Return the number of mappings to a particular page. 7313 * This number is an approximation of the number of 7314 * number of people sharing the page. 7315 */ 7316 ulong_t 7317 hat_page_getshare(page_t *pp) 7318 { 7319 page_t *spp = pp; /* start page */ 7320 kmutex_t *pml; 7321 ulong_t cnt; 7322 int index, sz = TTE64K; 7323 7324 /* 7325 * We need to grab the mlist lock to make sure any outstanding 7326 * load/unloads complete. Otherwise we could return zero 7327 * even though the unload(s) hasn't finished yet. 7328 */ 7329 pml = sfmmu_mlist_enter(spp); 7330 cnt = spp->p_share; 7331 7332 #ifdef VAC 7333 if (kpm_enable) 7334 cnt += spp->p_kpmref; 7335 #endif 7336 7337 /* 7338 * If we have any large mappings, we count the number of 7339 * mappings that this large page is part of. 7340 */ 7341 index = PP_MAPINDEX(spp); 7342 index >>= 1; 7343 while (index) { 7344 pp = PP_GROUPLEADER(spp, sz); 7345 if ((index & 0x1) && pp != spp) { 7346 cnt += pp->p_share; 7347 spp = pp; 7348 } 7349 index >>= 1; 7350 sz++; 7351 } 7352 sfmmu_mlist_exit(pml); 7353 return (cnt); 7354 } 7355 7356 /* 7357 * Unload all large mappings to the pp and reset the p_szc field of every 7358 * constituent page according to the remaining mappings. 7359 * 7360 * pp must be locked SE_EXCL. Even though no other constituent pages are 7361 * locked it's legal to unload the large mappings to the pp because all 7362 * constituent pages of large locked mappings have to be locked SE_SHARED. 7363 * This means if we have SE_EXCL lock on one of constituent pages none of the 7364 * large mappings to pp are locked. 7365 * 7366 * Decrease p_szc field starting from the last constituent page and ending 7367 * with the root page. This method is used because other threads rely on the 7368 * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc 7369 * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This 7370 * ensures that p_szc changes of the constituent pages appears atomic for all 7371 * threads that use sfmmu_mlspl_enter() to examine p_szc field. 7372 * 7373 * This mechanism is only used for file system pages where it's not always 7374 * possible to get SE_EXCL locks on all constituent pages to demote the size 7375 * code (as is done for anonymous or kernel large pages). 7376 * 7377 * See more comments in front of sfmmu_mlspl_enter(). 7378 */ 7379 void 7380 hat_page_demote(page_t *pp) 7381 { 7382 int index; 7383 int sz; 7384 cpuset_t cpuset; 7385 int sync = 0; 7386 page_t *rootpp; 7387 struct sf_hment *sfhme; 7388 struct sf_hment *tmphme = NULL; 7389 struct hme_blk *hmeblkp; 7390 uint_t pszc; 7391 page_t *lastpp; 7392 cpuset_t tset; 7393 pgcnt_t npgs; 7394 kmutex_t *pml; 7395 kmutex_t *pmtx = NULL; 7396 7397 ASSERT(PAGE_EXCL(pp)); 7398 ASSERT(!PP_ISFREE(pp)); 7399 ASSERT(page_szc_lock_assert(pp)); 7400 pml = sfmmu_mlist_enter(pp); 7401 7402 pszc = pp->p_szc; 7403 if (pszc == 0) { 7404 goto out; 7405 } 7406 7407 index = PP_MAPINDEX(pp) >> 1; 7408 7409 if (index) { 7410 CPUSET_ZERO(cpuset); 7411 sz = TTE64K; 7412 sync = 1; 7413 } 7414 7415 while (index) { 7416 if (!(index & 0x1)) { 7417 index >>= 1; 7418 sz++; 7419 continue; 7420 } 7421 ASSERT(sz <= pszc); 7422 rootpp = PP_GROUPLEADER(pp, sz); 7423 for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) { 7424 tmphme = sfhme->hme_next; 7425 hmeblkp = sfmmu_hmetohblk(sfhme); 7426 if (hme_size(sfhme) != sz) { 7427 continue; 7428 } 7429 if (hmeblkp->hblk_xhat_bit) { 7430 cmn_err(CE_PANIC, 7431 "hat_page_demote: xhat hmeblk"); 7432 } 7433 tset = sfmmu_pageunload(rootpp, sfhme, sz); 7434 CPUSET_OR(cpuset, tset); 7435 } 7436 if (index >>= 1) { 7437 sz++; 7438 } 7439 } 7440 7441 ASSERT(!PP_ISMAPPED_LARGE(pp)); 7442 7443 if (sync) { 7444 xt_sync(cpuset); 7445 #ifdef VAC 7446 if (PP_ISTNC(pp)) { 7447 conv_tnc(rootpp, sz); 7448 } 7449 #endif /* VAC */ 7450 } 7451 7452 pmtx = sfmmu_page_enter(pp); 7453 7454 ASSERT(pp->p_szc == pszc); 7455 rootpp = PP_PAGEROOT(pp); 7456 ASSERT(rootpp->p_szc == pszc); 7457 lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1); 7458 7459 while (lastpp != rootpp) { 7460 sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0; 7461 ASSERT(sz < pszc); 7462 npgs = (sz == 0) ? 1 : TTEPAGES(sz); 7463 ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1); 7464 while (--npgs > 0) { 7465 lastpp->p_szc = (uchar_t)sz; 7466 lastpp = PP_PAGEPREV(lastpp); 7467 } 7468 if (sz) { 7469 /* 7470 * make sure before current root's pszc 7471 * is updated all updates to constituent pages pszc 7472 * fields are globally visible. 7473 */ 7474 membar_producer(); 7475 } 7476 lastpp->p_szc = sz; 7477 ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz))); 7478 if (lastpp != rootpp) { 7479 lastpp = PP_PAGEPREV(lastpp); 7480 } 7481 } 7482 if (sz == 0) { 7483 /* the loop above doesn't cover this case */ 7484 rootpp->p_szc = 0; 7485 } 7486 out: 7487 ASSERT(pp->p_szc == 0); 7488 if (pmtx != NULL) { 7489 sfmmu_page_exit(pmtx); 7490 } 7491 sfmmu_mlist_exit(pml); 7492 } 7493 7494 /* 7495 * Refresh the HAT ismttecnt[] element for size szc. 7496 * Caller must have set ISM busy flag to prevent mapping 7497 * lists from changing while we're traversing them. 7498 */ 7499 pgcnt_t 7500 ism_tsb_entries(sfmmu_t *sfmmup, int szc) 7501 { 7502 ism_blk_t *ism_blkp = sfmmup->sfmmu_iblk; 7503 ism_map_t *ism_map; 7504 pgcnt_t npgs = 0; 7505 int j; 7506 7507 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 7508 for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) { 7509 ism_map = ism_blkp->iblk_maps; 7510 for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) 7511 npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc]; 7512 } 7513 sfmmup->sfmmu_ismttecnt[szc] = npgs; 7514 return (npgs); 7515 } 7516 7517 /* 7518 * Yield the memory claim requirement for an address space. 7519 * 7520 * This is currently implemented as the number of bytes that have active 7521 * hardware translations that have page structures. Therefore, it can 7522 * underestimate the traditional resident set size, eg, if the 7523 * physical page is present and the hardware translation is missing; 7524 * and it can overestimate the rss, eg, if there are active 7525 * translations to a frame buffer with page structs. 7526 * Also, it does not take sharing into account. 7527 * 7528 * Note that we don't acquire locks here since this function is most often 7529 * called from the clock thread. 7530 */ 7531 size_t 7532 hat_get_mapped_size(struct hat *hat) 7533 { 7534 size_t assize = 0; 7535 int i; 7536 7537 if (hat == NULL) 7538 return (0); 7539 7540 ASSERT(hat->sfmmu_xhat_provider == NULL); 7541 7542 for (i = 0; i < mmu_page_sizes; i++) 7543 assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i); 7544 7545 if (hat->sfmmu_iblk == NULL) 7546 return (assize); 7547 7548 for (i = 0; i < mmu_page_sizes; i++) 7549 assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i); 7550 7551 return (assize); 7552 } 7553 7554 int 7555 hat_stats_enable(struct hat *hat) 7556 { 7557 hatlock_t *hatlockp; 7558 7559 ASSERT(hat->sfmmu_xhat_provider == NULL); 7560 7561 hatlockp = sfmmu_hat_enter(hat); 7562 hat->sfmmu_rmstat++; 7563 sfmmu_hat_exit(hatlockp); 7564 return (1); 7565 } 7566 7567 void 7568 hat_stats_disable(struct hat *hat) 7569 { 7570 hatlock_t *hatlockp; 7571 7572 ASSERT(hat->sfmmu_xhat_provider == NULL); 7573 7574 hatlockp = sfmmu_hat_enter(hat); 7575 hat->sfmmu_rmstat--; 7576 sfmmu_hat_exit(hatlockp); 7577 } 7578 7579 /* 7580 * Routines for entering or removing ourselves from the 7581 * ism_hat's mapping list. 7582 */ 7583 static void 7584 iment_add(struct ism_ment *iment, struct hat *ism_hat) 7585 { 7586 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 7587 7588 iment->iment_prev = NULL; 7589 iment->iment_next = ism_hat->sfmmu_iment; 7590 if (ism_hat->sfmmu_iment) { 7591 ism_hat->sfmmu_iment->iment_prev = iment; 7592 } 7593 ism_hat->sfmmu_iment = iment; 7594 } 7595 7596 static void 7597 iment_sub(struct ism_ment *iment, struct hat *ism_hat) 7598 { 7599 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 7600 7601 if (ism_hat->sfmmu_iment == NULL) { 7602 panic("ism map entry remove - no entries"); 7603 } 7604 7605 if (iment->iment_prev) { 7606 ASSERT(ism_hat->sfmmu_iment != iment); 7607 iment->iment_prev->iment_next = iment->iment_next; 7608 } else { 7609 ASSERT(ism_hat->sfmmu_iment == iment); 7610 ism_hat->sfmmu_iment = iment->iment_next; 7611 } 7612 7613 if (iment->iment_next) { 7614 iment->iment_next->iment_prev = iment->iment_prev; 7615 } 7616 7617 /* 7618 * zero out the entry 7619 */ 7620 iment->iment_next = NULL; 7621 iment->iment_prev = NULL; 7622 iment->iment_hat = NULL; 7623 } 7624 7625 /* 7626 * Hat_share()/unshare() return an (non-zero) error 7627 * when saddr and daddr are not properly aligned. 7628 * 7629 * The top level mapping element determines the alignment 7630 * requirement for saddr and daddr, depending on different 7631 * architectures. 7632 * 7633 * When hat_share()/unshare() are not supported, 7634 * HATOP_SHARE()/UNSHARE() return 0 7635 */ 7636 int 7637 hat_share(struct hat *sfmmup, caddr_t addr, 7638 struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc) 7639 { 7640 ism_blk_t *ism_blkp; 7641 ism_blk_t *new_iblk; 7642 ism_map_t *ism_map; 7643 ism_ment_t *ism_ment; 7644 int i, added; 7645 hatlock_t *hatlockp; 7646 int reload_mmu = 0; 7647 uint_t ismshift = page_get_shift(ismszc); 7648 size_t ismpgsz = page_get_pagesize(ismszc); 7649 uint_t ismmask = (uint_t)ismpgsz - 1; 7650 size_t sh_size = ISM_SHIFT(ismshift, len); 7651 ushort_t ismhatflag; 7652 7653 #ifdef DEBUG 7654 caddr_t eaddr = addr + len; 7655 #endif /* DEBUG */ 7656 7657 ASSERT(ism_hatid != NULL && sfmmup != NULL); 7658 ASSERT(sptaddr == ISMID_STARTADDR); 7659 /* 7660 * Check the alignment. 7661 */ 7662 if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr)) 7663 return (EINVAL); 7664 7665 /* 7666 * Check size alignment. 7667 */ 7668 if (!ISM_ALIGNED(ismshift, len)) 7669 return (EINVAL); 7670 7671 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 7672 7673 /* 7674 * Allocate ism_ment for the ism_hat's mapping list, and an 7675 * ism map blk in case we need one. We must do our 7676 * allocations before acquiring locks to prevent a deadlock 7677 * in the kmem allocator on the mapping list lock. 7678 */ 7679 new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP); 7680 ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP); 7681 7682 /* 7683 * Serialize ISM mappings with the ISM busy flag, and also the 7684 * trap handlers. 7685 */ 7686 sfmmu_ismhat_enter(sfmmup, 0); 7687 7688 /* 7689 * Allocate an ism map blk if necessary. 7690 */ 7691 if (sfmmup->sfmmu_iblk == NULL) { 7692 sfmmup->sfmmu_iblk = new_iblk; 7693 bzero(new_iblk, sizeof (*new_iblk)); 7694 new_iblk->iblk_nextpa = (uint64_t)-1; 7695 membar_stst(); /* make sure next ptr visible to all CPUs */ 7696 sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk); 7697 reload_mmu = 1; 7698 new_iblk = NULL; 7699 } 7700 7701 #ifdef DEBUG 7702 /* 7703 * Make sure mapping does not already exist. 7704 */ 7705 ism_blkp = sfmmup->sfmmu_iblk; 7706 while (ism_blkp) { 7707 ism_map = ism_blkp->iblk_maps; 7708 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) { 7709 if ((addr >= ism_start(ism_map[i]) && 7710 addr < ism_end(ism_map[i])) || 7711 eaddr > ism_start(ism_map[i]) && 7712 eaddr <= ism_end(ism_map[i])) { 7713 panic("sfmmu_share: Already mapped!"); 7714 } 7715 } 7716 ism_blkp = ism_blkp->iblk_next; 7717 } 7718 #endif /* DEBUG */ 7719 7720 ASSERT(ismszc >= TTE4M); 7721 if (ismszc == TTE4M) { 7722 ismhatflag = HAT_4M_FLAG; 7723 } else if (ismszc == TTE32M) { 7724 ismhatflag = HAT_32M_FLAG; 7725 } else if (ismszc == TTE256M) { 7726 ismhatflag = HAT_256M_FLAG; 7727 } 7728 /* 7729 * Add mapping to first available mapping slot. 7730 */ 7731 ism_blkp = sfmmup->sfmmu_iblk; 7732 added = 0; 7733 while (!added) { 7734 ism_map = ism_blkp->iblk_maps; 7735 for (i = 0; i < ISM_MAP_SLOTS; i++) { 7736 if (ism_map[i].imap_ismhat == NULL) { 7737 7738 ism_map[i].imap_ismhat = ism_hatid; 7739 ism_map[i].imap_vb_shift = (ushort_t)ismshift; 7740 ism_map[i].imap_hatflags = ismhatflag; 7741 ism_map[i].imap_sz_mask = ismmask; 7742 /* 7743 * imap_seg is checked in ISM_CHECK to see if 7744 * non-NULL, then other info assumed valid. 7745 */ 7746 membar_stst(); 7747 ism_map[i].imap_seg = (uintptr_t)addr | sh_size; 7748 ism_map[i].imap_ment = ism_ment; 7749 7750 /* 7751 * Now add ourselves to the ism_hat's 7752 * mapping list. 7753 */ 7754 ism_ment->iment_hat = sfmmup; 7755 ism_ment->iment_base_va = addr; 7756 ism_hatid->sfmmu_ismhat = 1; 7757 ism_hatid->sfmmu_flags = 0; 7758 mutex_enter(&ism_mlist_lock); 7759 iment_add(ism_ment, ism_hatid); 7760 mutex_exit(&ism_mlist_lock); 7761 added = 1; 7762 break; 7763 } 7764 } 7765 if (!added && ism_blkp->iblk_next == NULL) { 7766 ism_blkp->iblk_next = new_iblk; 7767 new_iblk = NULL; 7768 bzero(ism_blkp->iblk_next, 7769 sizeof (*ism_blkp->iblk_next)); 7770 ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1; 7771 membar_stst(); 7772 ism_blkp->iblk_nextpa = 7773 va_to_pa((caddr_t)ism_blkp->iblk_next); 7774 } 7775 ism_blkp = ism_blkp->iblk_next; 7776 } 7777 7778 /* 7779 * Update our counters for this sfmmup's ism mappings. 7780 */ 7781 for (i = 0; i <= ismszc; i++) { 7782 if (!(disable_ism_large_pages & (1 << i))) 7783 (void) ism_tsb_entries(sfmmup, i); 7784 } 7785 7786 hatlockp = sfmmu_hat_enter(sfmmup); 7787 7788 /* 7789 * For ISM and DISM we do not support 512K pages, so we only 7790 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search 7791 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus. 7792 */ 7793 ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0); 7794 7795 if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) 7796 SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG); 7797 7798 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) 7799 SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG); 7800 7801 /* 7802 * If we updated the ismblkpa for this HAT or we need 7803 * to start searching the 256M or 32M or 4M hash, we must 7804 * make sure all CPUs running this process reload their 7805 * tsbmiss area. Otherwise they will fail to load the mappings 7806 * in the tsbmiss handler and will loop calling pagefault(). 7807 */ 7808 switch (ismszc) { 7809 case TTE256M: 7810 if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) { 7811 SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG); 7812 sfmmu_sync_mmustate(sfmmup); 7813 } 7814 break; 7815 case TTE32M: 7816 if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) { 7817 SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG); 7818 sfmmu_sync_mmustate(sfmmup); 7819 } 7820 break; 7821 case TTE4M: 7822 if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) { 7823 SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG); 7824 sfmmu_sync_mmustate(sfmmup); 7825 } 7826 break; 7827 default: 7828 break; 7829 } 7830 7831 /* 7832 * Now we can drop the locks. 7833 */ 7834 sfmmu_ismhat_exit(sfmmup, 1); 7835 sfmmu_hat_exit(hatlockp); 7836 7837 /* 7838 * Free up ismblk if we didn't use it. 7839 */ 7840 if (new_iblk != NULL) 7841 kmem_cache_free(ism_blk_cache, new_iblk); 7842 7843 /* 7844 * Check TSB and TLB page sizes. 7845 */ 7846 sfmmu_check_page_sizes(sfmmup, 1); 7847 7848 return (0); 7849 } 7850 7851 /* 7852 * hat_unshare removes exactly one ism_map from 7853 * this process's as. It expects multiple calls 7854 * to hat_unshare for multiple shm segments. 7855 */ 7856 void 7857 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc) 7858 { 7859 ism_map_t *ism_map; 7860 ism_ment_t *free_ment = NULL; 7861 ism_blk_t *ism_blkp; 7862 struct hat *ism_hatid; 7863 int found, i; 7864 hatlock_t *hatlockp; 7865 struct tsb_info *tsbinfo; 7866 uint_t ismshift = page_get_shift(ismszc); 7867 size_t sh_size = ISM_SHIFT(ismshift, len); 7868 7869 ASSERT(ISM_ALIGNED(ismshift, addr)); 7870 ASSERT(ISM_ALIGNED(ismshift, len)); 7871 ASSERT(sfmmup != NULL); 7872 ASSERT(sfmmup != ksfmmup); 7873 7874 if (sfmmup->sfmmu_xhat_provider) { 7875 XHAT_UNSHARE(sfmmup, addr, len); 7876 return; 7877 } else { 7878 /* 7879 * This must be a CPU HAT. If the address space has 7880 * XHATs attached, inform all XHATs that ISM segment 7881 * is going away 7882 */ 7883 ASSERT(sfmmup->sfmmu_as != NULL); 7884 if (sfmmup->sfmmu_as->a_xhat != NULL) 7885 xhat_unshare_all(sfmmup->sfmmu_as, addr, len); 7886 } 7887 7888 /* 7889 * Make sure that during the entire time ISM mappings are removed, 7890 * the trap handlers serialize behind us, and that no one else 7891 * can be mucking with ISM mappings. This also lets us get away 7892 * with not doing expensive cross calls to flush the TLB -- we 7893 * just discard the context, flush the entire TSB, and call it 7894 * a day. 7895 */ 7896 sfmmu_ismhat_enter(sfmmup, 0); 7897 7898 /* 7899 * Remove the mapping. 7900 * 7901 * We can't have any holes in the ism map. 7902 * The tsb miss code while searching the ism map will 7903 * stop on an empty map slot. So we must move 7904 * everyone past the hole up 1 if any. 7905 * 7906 * Also empty ism map blks are not freed until the 7907 * process exits. This is to prevent a MT race condition 7908 * between sfmmu_unshare() and sfmmu_tsbmiss_exception(). 7909 */ 7910 found = 0; 7911 ism_blkp = sfmmup->sfmmu_iblk; 7912 while (!found && ism_blkp) { 7913 ism_map = ism_blkp->iblk_maps; 7914 for (i = 0; i < ISM_MAP_SLOTS; i++) { 7915 if (addr == ism_start(ism_map[i]) && 7916 sh_size == (size_t)(ism_size(ism_map[i]))) { 7917 found = 1; 7918 break; 7919 } 7920 } 7921 if (!found) 7922 ism_blkp = ism_blkp->iblk_next; 7923 } 7924 7925 if (found) { 7926 ism_hatid = ism_map[i].imap_ismhat; 7927 ASSERT(ism_hatid != NULL); 7928 ASSERT(ism_hatid->sfmmu_ismhat == 1); 7929 7930 /* 7931 * First remove ourselves from the ism mapping list. 7932 */ 7933 mutex_enter(&ism_mlist_lock); 7934 iment_sub(ism_map[i].imap_ment, ism_hatid); 7935 mutex_exit(&ism_mlist_lock); 7936 free_ment = ism_map[i].imap_ment; 7937 7938 /* 7939 * Now gurantee that any other cpu 7940 * that tries to process an ISM miss 7941 * will go to tl=0. 7942 */ 7943 hatlockp = sfmmu_hat_enter(sfmmup); 7944 7945 sfmmu_invalidate_ctx(sfmmup); 7946 7947 sfmmu_hat_exit(hatlockp); 7948 7949 /* 7950 * We delete the ism map by copying 7951 * the next map over the current one. 7952 * We will take the next one in the maps 7953 * array or from the next ism_blk. 7954 */ 7955 while (ism_blkp) { 7956 ism_map = ism_blkp->iblk_maps; 7957 while (i < (ISM_MAP_SLOTS - 1)) { 7958 ism_map[i] = ism_map[i + 1]; 7959 i++; 7960 } 7961 /* i == (ISM_MAP_SLOTS - 1) */ 7962 ism_blkp = ism_blkp->iblk_next; 7963 if (ism_blkp) { 7964 ism_map[i] = ism_blkp->iblk_maps[0]; 7965 i = 0; 7966 } else { 7967 ism_map[i].imap_seg = 0; 7968 ism_map[i].imap_vb_shift = 0; 7969 ism_map[i].imap_hatflags = 0; 7970 ism_map[i].imap_sz_mask = 0; 7971 ism_map[i].imap_ismhat = NULL; 7972 ism_map[i].imap_ment = NULL; 7973 } 7974 } 7975 7976 /* 7977 * Now flush entire TSB for the process, since 7978 * demapping page by page can be too expensive. 7979 * We don't have to flush the TLB here anymore 7980 * since we switch to a new TLB ctx instead. 7981 * Also, there is no need to flush if the process 7982 * is exiting since the TSB will be freed later. 7983 */ 7984 if (!sfmmup->sfmmu_free) { 7985 hatlockp = sfmmu_hat_enter(sfmmup); 7986 for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL; 7987 tsbinfo = tsbinfo->tsb_next) { 7988 if (tsbinfo->tsb_flags & TSB_SWAPPED) 7989 continue; 7990 sfmmu_inv_tsb(tsbinfo->tsb_va, 7991 TSB_BYTES(tsbinfo->tsb_szc)); 7992 } 7993 sfmmu_hat_exit(hatlockp); 7994 } 7995 } 7996 7997 /* 7998 * Update our counters for this sfmmup's ism mappings. 7999 */ 8000 for (i = 0; i <= ismszc; i++) { 8001 if (!(disable_ism_large_pages & (1 << i))) 8002 (void) ism_tsb_entries(sfmmup, i); 8003 } 8004 8005 sfmmu_ismhat_exit(sfmmup, 0); 8006 8007 /* 8008 * We must do our freeing here after dropping locks 8009 * to prevent a deadlock in the kmem allocator on the 8010 * mapping list lock. 8011 */ 8012 if (free_ment != NULL) 8013 kmem_cache_free(ism_ment_cache, free_ment); 8014 8015 /* 8016 * Check TSB and TLB page sizes if the process isn't exiting. 8017 */ 8018 if (!sfmmup->sfmmu_free) 8019 sfmmu_check_page_sizes(sfmmup, 0); 8020 } 8021 8022 /* ARGSUSED */ 8023 static int 8024 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags) 8025 { 8026 /* void *buf is sfmmu_t pointer */ 8027 return (0); 8028 } 8029 8030 /* ARGSUSED */ 8031 static void 8032 sfmmu_idcache_destructor(void *buf, void *cdrarg) 8033 { 8034 /* void *buf is sfmmu_t pointer */ 8035 } 8036 8037 /* 8038 * setup kmem hmeblks by bzeroing all members and initializing the nextpa 8039 * field to be the pa of this hmeblk 8040 */ 8041 /* ARGSUSED */ 8042 static int 8043 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags) 8044 { 8045 struct hme_blk *hmeblkp; 8046 8047 bzero(buf, (size_t)cdrarg); 8048 hmeblkp = (struct hme_blk *)buf; 8049 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp); 8050 8051 #ifdef HBLK_TRACE 8052 mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL); 8053 #endif /* HBLK_TRACE */ 8054 8055 return (0); 8056 } 8057 8058 /* ARGSUSED */ 8059 static void 8060 sfmmu_hblkcache_destructor(void *buf, void *cdrarg) 8061 { 8062 8063 #ifdef HBLK_TRACE 8064 8065 struct hme_blk *hmeblkp; 8066 8067 hmeblkp = (struct hme_blk *)buf; 8068 mutex_destroy(&hmeblkp->hblk_audit_lock); 8069 8070 #endif /* HBLK_TRACE */ 8071 } 8072 8073 #define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8 8074 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO; 8075 /* 8076 * The kmem allocator will callback into our reclaim routine when the system 8077 * is running low in memory. We traverse the hash and free up all unused but 8078 * still cached hme_blks. We also traverse the free list and free them up 8079 * as well. 8080 */ 8081 /*ARGSUSED*/ 8082 static void 8083 sfmmu_hblkcache_reclaim(void *cdrarg) 8084 { 8085 int i; 8086 uint64_t hblkpa, prevpa, nx_pa; 8087 struct hmehash_bucket *hmebp; 8088 struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL; 8089 static struct hmehash_bucket *uhmehash_reclaim_hand; 8090 static struct hmehash_bucket *khmehash_reclaim_hand; 8091 struct hme_blk *list = NULL; 8092 8093 hmebp = uhmehash_reclaim_hand; 8094 if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ]) 8095 uhmehash_reclaim_hand = hmebp = uhme_hash; 8096 uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; 8097 8098 for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) { 8099 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) { 8100 hmeblkp = hmebp->hmeblkp; 8101 hblkpa = hmebp->hmeh_nextpa; 8102 prevpa = 0; 8103 pr_hblk = NULL; 8104 while (hmeblkp) { 8105 nx_hblk = hmeblkp->hblk_next; 8106 nx_pa = hmeblkp->hblk_nextpa; 8107 if (!hmeblkp->hblk_vcnt && 8108 !hmeblkp->hblk_hmecnt) { 8109 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 8110 prevpa, pr_hblk); 8111 sfmmu_hblk_free(hmebp, hmeblkp, 8112 hblkpa, &list); 8113 } else { 8114 pr_hblk = hmeblkp; 8115 prevpa = hblkpa; 8116 } 8117 hmeblkp = nx_hblk; 8118 hblkpa = nx_pa; 8119 } 8120 SFMMU_HASH_UNLOCK(hmebp); 8121 } 8122 if (hmebp++ == &uhme_hash[UHMEHASH_SZ]) 8123 hmebp = uhme_hash; 8124 } 8125 8126 hmebp = khmehash_reclaim_hand; 8127 if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ]) 8128 khmehash_reclaim_hand = hmebp = khme_hash; 8129 khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; 8130 8131 for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) { 8132 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) { 8133 hmeblkp = hmebp->hmeblkp; 8134 hblkpa = hmebp->hmeh_nextpa; 8135 prevpa = 0; 8136 pr_hblk = NULL; 8137 while (hmeblkp) { 8138 nx_hblk = hmeblkp->hblk_next; 8139 nx_pa = hmeblkp->hblk_nextpa; 8140 if (!hmeblkp->hblk_vcnt && 8141 !hmeblkp->hblk_hmecnt) { 8142 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 8143 prevpa, pr_hblk); 8144 sfmmu_hblk_free(hmebp, hmeblkp, 8145 hblkpa, &list); 8146 } else { 8147 pr_hblk = hmeblkp; 8148 prevpa = hblkpa; 8149 } 8150 hmeblkp = nx_hblk; 8151 hblkpa = nx_pa; 8152 } 8153 SFMMU_HASH_UNLOCK(hmebp); 8154 } 8155 if (hmebp++ == &khme_hash[KHMEHASH_SZ]) 8156 hmebp = khme_hash; 8157 } 8158 sfmmu_hblks_list_purge(&list); 8159 } 8160 8161 /* 8162 * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface. 8163 * same goes for sfmmu_get_addrvcolor(). 8164 * 8165 * This function will return the virtual color for the specified page. The 8166 * virtual color corresponds to this page current mapping or its last mapping. 8167 * It is used by memory allocators to choose addresses with the correct 8168 * alignment so vac consistency is automatically maintained. If the page 8169 * has no color it returns -1. 8170 */ 8171 /*ARGSUSED*/ 8172 int 8173 sfmmu_get_ppvcolor(struct page *pp) 8174 { 8175 #ifdef VAC 8176 int color; 8177 8178 if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) { 8179 return (-1); 8180 } 8181 color = PP_GET_VCOLOR(pp); 8182 ASSERT(color < mmu_btop(shm_alignment)); 8183 return (color); 8184 #else 8185 return (-1); 8186 #endif /* VAC */ 8187 } 8188 8189 /* 8190 * This function will return the desired alignment for vac consistency 8191 * (vac color) given a virtual address. If no vac is present it returns -1. 8192 */ 8193 /*ARGSUSED*/ 8194 int 8195 sfmmu_get_addrvcolor(caddr_t vaddr) 8196 { 8197 #ifdef VAC 8198 if (cache & CACHE_VAC) { 8199 return (addr_to_vcolor(vaddr)); 8200 } else { 8201 return (-1); 8202 } 8203 #else 8204 return (-1); 8205 #endif /* VAC */ 8206 } 8207 8208 #ifdef VAC 8209 /* 8210 * Check for conflicts. 8211 * A conflict exists if the new and existent mappings do not match in 8212 * their "shm_alignment fields. If conflicts exist, the existant mappings 8213 * are flushed unless one of them is locked. If one of them is locked, then 8214 * the mappings are flushed and converted to non-cacheable mappings. 8215 */ 8216 static void 8217 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp) 8218 { 8219 struct hat *tmphat; 8220 struct sf_hment *sfhmep, *tmphme = NULL; 8221 struct hme_blk *hmeblkp; 8222 int vcolor; 8223 tte_t tte; 8224 8225 ASSERT(sfmmu_mlist_held(pp)); 8226 ASSERT(!PP_ISNC(pp)); /* page better be cacheable */ 8227 8228 vcolor = addr_to_vcolor(addr); 8229 if (PP_NEWPAGE(pp)) { 8230 PP_SET_VCOLOR(pp, vcolor); 8231 return; 8232 } 8233 8234 if (PP_GET_VCOLOR(pp) == vcolor) { 8235 return; 8236 } 8237 8238 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) { 8239 /* 8240 * Previous user of page had a different color 8241 * but since there are no current users 8242 * we just flush the cache and change the color. 8243 */ 8244 SFMMU_STAT(sf_pgcolor_conflict); 8245 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 8246 PP_SET_VCOLOR(pp, vcolor); 8247 return; 8248 } 8249 8250 /* 8251 * If we get here we have a vac conflict with a current 8252 * mapping. VAC conflict policy is as follows. 8253 * - The default is to unload the other mappings unless: 8254 * - If we have a large mapping we uncache the page. 8255 * We need to uncache the rest of the large page too. 8256 * - If any of the mappings are locked we uncache the page. 8257 * - If the requested mapping is inconsistent 8258 * with another mapping and that mapping 8259 * is in the same address space we have to 8260 * make it non-cached. The default thing 8261 * to do is unload the inconsistent mapping 8262 * but if they are in the same address space 8263 * we run the risk of unmapping the pc or the 8264 * stack which we will use as we return to the user, 8265 * in which case we can then fault on the thing 8266 * we just unloaded and get into an infinite loop. 8267 */ 8268 if (PP_ISMAPPED_LARGE(pp)) { 8269 int sz; 8270 8271 /* 8272 * Existing mapping is for big pages. We don't unload 8273 * existing big mappings to satisfy new mappings. 8274 * Always convert all mappings to TNC. 8275 */ 8276 sz = fnd_mapping_sz(pp); 8277 pp = PP_GROUPLEADER(pp, sz); 8278 SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz)); 8279 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 8280 TTEPAGES(sz)); 8281 8282 return; 8283 } 8284 8285 /* 8286 * check if any mapping is in same as or if it is locked 8287 * since in that case we need to uncache. 8288 */ 8289 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 8290 tmphme = sfhmep->hme_next; 8291 hmeblkp = sfmmu_hmetohblk(sfhmep); 8292 if (hmeblkp->hblk_xhat_bit) 8293 continue; 8294 tmphat = hblktosfmmu(hmeblkp); 8295 sfmmu_copytte(&sfhmep->hme_tte, &tte); 8296 ASSERT(TTE_IS_VALID(&tte)); 8297 if ((tmphat == hat) || hmeblkp->hblk_lckcnt) { 8298 /* 8299 * We have an uncache conflict 8300 */ 8301 SFMMU_STAT(sf_uncache_conflict); 8302 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1); 8303 return; 8304 } 8305 } 8306 8307 /* 8308 * We have an unload conflict 8309 * We have already checked for LARGE mappings, therefore 8310 * the remaining mapping(s) must be TTE8K. 8311 */ 8312 SFMMU_STAT(sf_unload_conflict); 8313 8314 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 8315 tmphme = sfhmep->hme_next; 8316 hmeblkp = sfmmu_hmetohblk(sfhmep); 8317 if (hmeblkp->hblk_xhat_bit) 8318 continue; 8319 (void) sfmmu_pageunload(pp, sfhmep, TTE8K); 8320 } 8321 8322 if (PP_ISMAPPED_KPM(pp)) 8323 sfmmu_kpm_vac_unload(pp, addr); 8324 8325 /* 8326 * Unloads only do TLB flushes so we need to flush the 8327 * cache here. 8328 */ 8329 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 8330 PP_SET_VCOLOR(pp, vcolor); 8331 } 8332 8333 /* 8334 * Whenever a mapping is unloaded and the page is in TNC state, 8335 * we see if the page can be made cacheable again. 'pp' is 8336 * the page that we just unloaded a mapping from, the size 8337 * of mapping that was unloaded is 'ottesz'. 8338 * Remark: 8339 * The recache policy for mpss pages can leave a performance problem 8340 * under the following circumstances: 8341 * . A large page in uncached mode has just been unmapped. 8342 * . All constituent pages are TNC due to a conflicting small mapping. 8343 * . There are many other, non conflicting, small mappings around for 8344 * a lot of the constituent pages. 8345 * . We're called w/ the "old" groupleader page and the old ottesz, 8346 * but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so 8347 * we end up w/ TTE8K or npages == 1. 8348 * . We call tst_tnc w/ the old groupleader only, and if there is no 8349 * conflict, we re-cache only this page. 8350 * . All other small mappings are not checked and will be left in TNC mode. 8351 * The problem is not very serious because: 8352 * . mpss is actually only defined for heap and stack, so the probability 8353 * is not very high that a large page mapping exists in parallel to a small 8354 * one (this is possible, but seems to be bad programming style in the 8355 * appl). 8356 * . The problem gets a little bit more serious, when those TNC pages 8357 * have to be mapped into kernel space, e.g. for networking. 8358 * . When VAC alias conflicts occur in applications, this is regarded 8359 * as an application bug. So if kstat's show them, the appl should 8360 * be changed anyway. 8361 */ 8362 void 8363 conv_tnc(page_t *pp, int ottesz) 8364 { 8365 int cursz, dosz; 8366 pgcnt_t curnpgs, dopgs; 8367 pgcnt_t pg64k; 8368 page_t *pp2; 8369 8370 /* 8371 * Determine how big a range we check for TNC and find 8372 * leader page. cursz is the size of the biggest 8373 * mapping that still exist on 'pp'. 8374 */ 8375 if (PP_ISMAPPED_LARGE(pp)) { 8376 cursz = fnd_mapping_sz(pp); 8377 } else { 8378 cursz = TTE8K; 8379 } 8380 8381 if (ottesz >= cursz) { 8382 dosz = ottesz; 8383 pp2 = pp; 8384 } else { 8385 dosz = cursz; 8386 pp2 = PP_GROUPLEADER(pp, dosz); 8387 } 8388 8389 pg64k = TTEPAGES(TTE64K); 8390 dopgs = TTEPAGES(dosz); 8391 8392 ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0)); 8393 8394 while (dopgs != 0) { 8395 curnpgs = TTEPAGES(cursz); 8396 if (tst_tnc(pp2, curnpgs)) { 8397 SFMMU_STAT_ADD(sf_recache, curnpgs); 8398 sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH, 8399 curnpgs); 8400 } 8401 8402 ASSERT(dopgs >= curnpgs); 8403 dopgs -= curnpgs; 8404 8405 if (dopgs == 0) { 8406 break; 8407 } 8408 8409 pp2 = PP_PAGENEXT_N(pp2, curnpgs); 8410 if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) { 8411 cursz = fnd_mapping_sz(pp2); 8412 } else { 8413 cursz = TTE8K; 8414 } 8415 } 8416 } 8417 8418 /* 8419 * Returns 1 if page(s) can be converted from TNC to cacheable setting, 8420 * returns 0 otherwise. Note that oaddr argument is valid for only 8421 * 8k pages. 8422 */ 8423 int 8424 tst_tnc(page_t *pp, pgcnt_t npages) 8425 { 8426 struct sf_hment *sfhme; 8427 struct hme_blk *hmeblkp; 8428 tte_t tte; 8429 caddr_t vaddr; 8430 int clr_valid = 0; 8431 int color, color1, bcolor; 8432 int i, ncolors; 8433 8434 ASSERT(pp != NULL); 8435 ASSERT(!(cache & CACHE_WRITEBACK)); 8436 8437 if (npages > 1) { 8438 ncolors = CACHE_NUM_COLOR; 8439 } 8440 8441 for (i = 0; i < npages; i++) { 8442 ASSERT(sfmmu_mlist_held(pp)); 8443 ASSERT(PP_ISTNC(pp)); 8444 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR); 8445 8446 if (PP_ISPNC(pp)) { 8447 return (0); 8448 } 8449 8450 clr_valid = 0; 8451 if (PP_ISMAPPED_KPM(pp)) { 8452 caddr_t kpmvaddr; 8453 8454 ASSERT(kpm_enable); 8455 kpmvaddr = hat_kpm_page2va(pp, 1); 8456 ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr))); 8457 color1 = addr_to_vcolor(kpmvaddr); 8458 clr_valid = 1; 8459 } 8460 8461 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) { 8462 hmeblkp = sfmmu_hmetohblk(sfhme); 8463 if (hmeblkp->hblk_xhat_bit) 8464 continue; 8465 8466 sfmmu_copytte(&sfhme->hme_tte, &tte); 8467 ASSERT(TTE_IS_VALID(&tte)); 8468 8469 vaddr = tte_to_vaddr(hmeblkp, tte); 8470 color = addr_to_vcolor(vaddr); 8471 8472 if (npages > 1) { 8473 /* 8474 * If there is a big mapping, make sure 8475 * 8K mapping is consistent with the big 8476 * mapping. 8477 */ 8478 bcolor = i % ncolors; 8479 if (color != bcolor) { 8480 return (0); 8481 } 8482 } 8483 if (!clr_valid) { 8484 clr_valid = 1; 8485 color1 = color; 8486 } 8487 8488 if (color1 != color) { 8489 return (0); 8490 } 8491 } 8492 8493 pp = PP_PAGENEXT(pp); 8494 } 8495 8496 return (1); 8497 } 8498 8499 void 8500 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag, 8501 pgcnt_t npages) 8502 { 8503 kmutex_t *pmtx; 8504 int i, ncolors, bcolor; 8505 kpm_hlk_t *kpmp; 8506 cpuset_t cpuset; 8507 8508 ASSERT(pp != NULL); 8509 ASSERT(!(cache & CACHE_WRITEBACK)); 8510 8511 kpmp = sfmmu_kpm_kpmp_enter(pp, npages); 8512 pmtx = sfmmu_page_enter(pp); 8513 8514 /* 8515 * Fast path caching single unmapped page 8516 */ 8517 if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) && 8518 flags == HAT_CACHE) { 8519 PP_CLRTNC(pp); 8520 PP_CLRPNC(pp); 8521 sfmmu_page_exit(pmtx); 8522 sfmmu_kpm_kpmp_exit(kpmp); 8523 return; 8524 } 8525 8526 /* 8527 * We need to capture all cpus in order to change cacheability 8528 * because we can't allow one cpu to access the same physical 8529 * page using a cacheable and a non-cachebale mapping at the same 8530 * time. Since we may end up walking the ism mapping list 8531 * have to grab it's lock now since we can't after all the 8532 * cpus have been captured. 8533 */ 8534 sfmmu_hat_lock_all(); 8535 mutex_enter(&ism_mlist_lock); 8536 kpreempt_disable(); 8537 cpuset = cpu_ready_set; 8538 xc_attention(cpuset); 8539 8540 if (npages > 1) { 8541 /* 8542 * Make sure all colors are flushed since the 8543 * sfmmu_page_cache() only flushes one color- 8544 * it does not know big pages. 8545 */ 8546 ncolors = CACHE_NUM_COLOR; 8547 if (flags & HAT_TMPNC) { 8548 for (i = 0; i < ncolors; i++) { 8549 sfmmu_cache_flushcolor(i, pp->p_pagenum); 8550 } 8551 cache_flush_flag = CACHE_NO_FLUSH; 8552 } 8553 } 8554 8555 for (i = 0; i < npages; i++) { 8556 8557 ASSERT(sfmmu_mlist_held(pp)); 8558 8559 if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) { 8560 8561 if (npages > 1) { 8562 bcolor = i % ncolors; 8563 } else { 8564 bcolor = NO_VCOLOR; 8565 } 8566 8567 sfmmu_page_cache(pp, flags, cache_flush_flag, 8568 bcolor); 8569 } 8570 8571 pp = PP_PAGENEXT(pp); 8572 } 8573 8574 xt_sync(cpuset); 8575 xc_dismissed(cpuset); 8576 mutex_exit(&ism_mlist_lock); 8577 sfmmu_hat_unlock_all(); 8578 sfmmu_page_exit(pmtx); 8579 sfmmu_kpm_kpmp_exit(kpmp); 8580 kpreempt_enable(); 8581 } 8582 8583 /* 8584 * This function changes the virtual cacheability of all mappings to a 8585 * particular page. When changing from uncache to cacheable the mappings will 8586 * only be changed if all of them have the same virtual color. 8587 * We need to flush the cache in all cpus. It is possible that 8588 * a process referenced a page as cacheable but has sinced exited 8589 * and cleared the mapping list. We still to flush it but have no 8590 * state so all cpus is the only alternative. 8591 */ 8592 static void 8593 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor) 8594 { 8595 struct sf_hment *sfhme; 8596 struct hme_blk *hmeblkp; 8597 sfmmu_t *sfmmup; 8598 tte_t tte, ttemod; 8599 caddr_t vaddr; 8600 int ret, color; 8601 pfn_t pfn; 8602 8603 color = bcolor; 8604 pfn = pp->p_pagenum; 8605 8606 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) { 8607 8608 hmeblkp = sfmmu_hmetohblk(sfhme); 8609 8610 if (hmeblkp->hblk_xhat_bit) 8611 continue; 8612 8613 sfmmu_copytte(&sfhme->hme_tte, &tte); 8614 ASSERT(TTE_IS_VALID(&tte)); 8615 vaddr = tte_to_vaddr(hmeblkp, tte); 8616 color = addr_to_vcolor(vaddr); 8617 8618 #ifdef DEBUG 8619 if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) { 8620 ASSERT(color == bcolor); 8621 } 8622 #endif 8623 8624 ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp)); 8625 8626 ttemod = tte; 8627 if (flags & (HAT_UNCACHE | HAT_TMPNC)) { 8628 TTE_CLR_VCACHEABLE(&ttemod); 8629 } else { /* flags & HAT_CACHE */ 8630 TTE_SET_VCACHEABLE(&ttemod); 8631 } 8632 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 8633 if (ret < 0) { 8634 /* 8635 * Since all cpus are captured modifytte should not 8636 * fail. 8637 */ 8638 panic("sfmmu_page_cache: write to tte failed"); 8639 } 8640 8641 sfmmup = hblktosfmmu(hmeblkp); 8642 if (cache_flush_flag == CACHE_FLUSH) { 8643 /* 8644 * Flush TSBs, TLBs and caches 8645 */ 8646 if (sfmmup->sfmmu_ismhat) { 8647 if (flags & HAT_CACHE) { 8648 SFMMU_STAT(sf_ism_recache); 8649 } else { 8650 SFMMU_STAT(sf_ism_uncache); 8651 } 8652 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp, 8653 pfn, CACHE_FLUSH); 8654 } else { 8655 sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp, 8656 pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1); 8657 } 8658 8659 /* 8660 * all cache entries belonging to this pfn are 8661 * now flushed. 8662 */ 8663 cache_flush_flag = CACHE_NO_FLUSH; 8664 } else { 8665 8666 /* 8667 * Flush only TSBs and TLBs. 8668 */ 8669 if (sfmmup->sfmmu_ismhat) { 8670 if (flags & HAT_CACHE) { 8671 SFMMU_STAT(sf_ism_recache); 8672 } else { 8673 SFMMU_STAT(sf_ism_uncache); 8674 } 8675 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp, 8676 pfn, CACHE_NO_FLUSH); 8677 } else { 8678 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1); 8679 } 8680 } 8681 } 8682 8683 if (PP_ISMAPPED_KPM(pp)) 8684 sfmmu_kpm_page_cache(pp, flags, cache_flush_flag); 8685 8686 switch (flags) { 8687 8688 default: 8689 panic("sfmmu_pagecache: unknown flags"); 8690 break; 8691 8692 case HAT_CACHE: 8693 PP_CLRTNC(pp); 8694 PP_CLRPNC(pp); 8695 PP_SET_VCOLOR(pp, color); 8696 break; 8697 8698 case HAT_TMPNC: 8699 PP_SETTNC(pp); 8700 PP_SET_VCOLOR(pp, NO_VCOLOR); 8701 break; 8702 8703 case HAT_UNCACHE: 8704 PP_SETPNC(pp); 8705 PP_CLRTNC(pp); 8706 PP_SET_VCOLOR(pp, NO_VCOLOR); 8707 break; 8708 } 8709 } 8710 #endif /* VAC */ 8711 8712 8713 /* 8714 * Wrapper routine used to return a context. 8715 * 8716 * It's the responsibility of the caller to guarantee that the 8717 * process serializes on calls here by taking the HAT lock for 8718 * the hat. 8719 * 8720 */ 8721 static void 8722 sfmmu_get_ctx(sfmmu_t *sfmmup) 8723 { 8724 mmu_ctx_t *mmu_ctxp; 8725 uint_t pstate_save; 8726 8727 ASSERT(sfmmu_hat_lock_held(sfmmup)); 8728 ASSERT(sfmmup != ksfmmup); 8729 8730 kpreempt_disable(); 8731 8732 mmu_ctxp = CPU_MMU_CTXP(CPU); 8733 ASSERT(mmu_ctxp); 8734 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms); 8735 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]); 8736 8737 /* 8738 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU. 8739 */ 8740 if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs) 8741 sfmmu_ctx_wrap_around(mmu_ctxp); 8742 8743 /* 8744 * Let the MMU set up the page sizes to use for 8745 * this context in the TLB. Don't program 2nd dtlb for ism hat. 8746 */ 8747 if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) { 8748 mmu_set_ctx_page_sizes(sfmmup); 8749 } 8750 8751 /* 8752 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with 8753 * interrupts disabled to prevent race condition with wrap-around 8754 * ctx invalidatation. In sun4v, ctx invalidation also involves 8755 * a HV call to set the number of TSBs to 0. If interrupts are not 8756 * disabled until after sfmmu_load_mmustate is complete TSBs may 8757 * become assigned to INVALID_CONTEXT. This is not allowed. 8758 */ 8759 pstate_save = sfmmu_disable_intrs(); 8760 8761 sfmmu_alloc_ctx(sfmmup, 1, CPU); 8762 sfmmu_load_mmustate(sfmmup); 8763 8764 sfmmu_enable_intrs(pstate_save); 8765 8766 kpreempt_enable(); 8767 } 8768 8769 /* 8770 * When all cnums are used up in a MMU, cnum will wrap around to the 8771 * next generation and start from 2. 8772 */ 8773 static void 8774 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp) 8775 { 8776 8777 /* caller must have disabled the preemption */ 8778 ASSERT(curthread->t_preempt >= 1); 8779 ASSERT(mmu_ctxp != NULL); 8780 8781 /* acquire Per-MMU (PM) spin lock */ 8782 mutex_enter(&mmu_ctxp->mmu_lock); 8783 8784 /* re-check to see if wrap-around is needed */ 8785 if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs) 8786 goto done; 8787 8788 SFMMU_MMU_STAT(mmu_wrap_around); 8789 8790 /* update gnum */ 8791 ASSERT(mmu_ctxp->mmu_gnum != 0); 8792 mmu_ctxp->mmu_gnum++; 8793 if (mmu_ctxp->mmu_gnum == 0 || 8794 mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) { 8795 cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.", 8796 (void *)mmu_ctxp); 8797 } 8798 8799 if (mmu_ctxp->mmu_ncpus > 1) { 8800 cpuset_t cpuset; 8801 8802 membar_enter(); /* make sure updated gnum visible */ 8803 8804 SFMMU_XCALL_STATS(NULL); 8805 8806 /* xcall to others on the same MMU to invalidate ctx */ 8807 cpuset = mmu_ctxp->mmu_cpuset; 8808 ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id)); 8809 CPUSET_DEL(cpuset, CPU->cpu_id); 8810 CPUSET_AND(cpuset, cpu_ready_set); 8811 8812 /* 8813 * Pass in INVALID_CONTEXT as the first parameter to 8814 * sfmmu_raise_tsb_exception, which invalidates the context 8815 * of any process running on the CPUs in the MMU. 8816 */ 8817 xt_some(cpuset, sfmmu_raise_tsb_exception, 8818 INVALID_CONTEXT, INVALID_CONTEXT); 8819 xt_sync(cpuset); 8820 8821 SFMMU_MMU_STAT(mmu_tsb_raise_exception); 8822 } 8823 8824 if (sfmmu_getctx_sec() != INVALID_CONTEXT) { 8825 sfmmu_setctx_sec(INVALID_CONTEXT); 8826 sfmmu_clear_utsbinfo(); 8827 } 8828 8829 /* 8830 * No xcall is needed here. For sun4u systems all CPUs in context 8831 * domain share a single physical MMU therefore it's enough to flush 8832 * TLB on local CPU. On sun4v systems we use 1 global context 8833 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception 8834 * handler. Note that vtag_flushall_uctxs() is called 8835 * for Ultra II machine, where the equivalent flushall functionality 8836 * is implemented in SW, and only user ctx TLB entries are flushed. 8837 */ 8838 if (&vtag_flushall_uctxs != NULL) { 8839 vtag_flushall_uctxs(); 8840 } else { 8841 vtag_flushall(); 8842 } 8843 8844 /* reset mmu cnum, skips cnum 0 and 1 */ 8845 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS; 8846 8847 done: 8848 mutex_exit(&mmu_ctxp->mmu_lock); 8849 } 8850 8851 8852 /* 8853 * For multi-threaded process, set the process context to INVALID_CONTEXT 8854 * so that it faults and reloads the MMU state from TL=0. For single-threaded 8855 * process, we can just load the MMU state directly without having to 8856 * set context invalid. Caller must hold the hat lock since we don't 8857 * acquire it here. 8858 */ 8859 static void 8860 sfmmu_sync_mmustate(sfmmu_t *sfmmup) 8861 { 8862 uint_t cnum; 8863 uint_t pstate_save; 8864 8865 ASSERT(sfmmup != ksfmmup); 8866 ASSERT(sfmmu_hat_lock_held(sfmmup)); 8867 8868 kpreempt_disable(); 8869 8870 /* 8871 * We check whether the pass'ed-in sfmmup is the same as the 8872 * current running proc. This is to makes sure the current proc 8873 * stays single-threaded if it already is. 8874 */ 8875 if ((sfmmup == curthread->t_procp->p_as->a_hat) && 8876 (curthread->t_procp->p_lwpcnt == 1)) { 8877 /* single-thread */ 8878 cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum; 8879 if (cnum != INVALID_CONTEXT) { 8880 uint_t curcnum; 8881 /* 8882 * Disable interrupts to prevent race condition 8883 * with sfmmu_ctx_wrap_around ctx invalidation. 8884 * In sun4v, ctx invalidation involves setting 8885 * TSB to NULL, hence, interrupts should be disabled 8886 * untill after sfmmu_load_mmustate is completed. 8887 */ 8888 pstate_save = sfmmu_disable_intrs(); 8889 curcnum = sfmmu_getctx_sec(); 8890 if (curcnum == cnum) 8891 sfmmu_load_mmustate(sfmmup); 8892 sfmmu_enable_intrs(pstate_save); 8893 ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT); 8894 } 8895 } else { 8896 /* 8897 * multi-thread 8898 * or when sfmmup is not the same as the curproc. 8899 */ 8900 sfmmu_invalidate_ctx(sfmmup); 8901 } 8902 8903 kpreempt_enable(); 8904 } 8905 8906 8907 /* 8908 * Replace the specified TSB with a new TSB. This function gets called when 8909 * we grow, shrink or swapin a TSB. When swapping in a TSB (TSB_SWAPIN), the 8910 * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB 8911 * (8K). 8912 * 8913 * Caller must hold the HAT lock, but should assume any tsb_info 8914 * pointers it has are no longer valid after calling this function. 8915 * 8916 * Return values: 8917 * TSB_ALLOCFAIL Failed to allocate a TSB, due to memory constraints 8918 * TSB_LOSTRACE HAT is busy, i.e. another thread is already doing 8919 * something to this tsbinfo/TSB 8920 * TSB_SUCCESS Operation succeeded 8921 */ 8922 static tsb_replace_rc_t 8923 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc, 8924 hatlock_t *hatlockp, uint_t flags) 8925 { 8926 struct tsb_info *new_tsbinfo = NULL; 8927 struct tsb_info *curtsb, *prevtsb; 8928 uint_t tte_sz_mask; 8929 int i; 8930 8931 ASSERT(sfmmup != ksfmmup); 8932 ASSERT(sfmmup->sfmmu_ismhat == 0); 8933 ASSERT(sfmmu_hat_lock_held(sfmmup)); 8934 ASSERT(szc <= tsb_max_growsize); 8935 8936 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY)) 8937 return (TSB_LOSTRACE); 8938 8939 /* 8940 * Find the tsb_info ahead of this one in the list, and 8941 * also make sure that the tsb_info passed in really 8942 * exists! 8943 */ 8944 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb; 8945 curtsb != old_tsbinfo && curtsb != NULL; 8946 prevtsb = curtsb, curtsb = curtsb->tsb_next); 8947 ASSERT(curtsb != NULL); 8948 8949 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 8950 /* 8951 * The process is swapped out, so just set the new size 8952 * code. When it swaps back in, we'll allocate a new one 8953 * of the new chosen size. 8954 */ 8955 curtsb->tsb_szc = szc; 8956 return (TSB_SUCCESS); 8957 } 8958 SFMMU_FLAGS_SET(sfmmup, HAT_BUSY); 8959 8960 tte_sz_mask = old_tsbinfo->tsb_ttesz_mask; 8961 8962 /* 8963 * All initialization is done inside of sfmmu_tsbinfo_alloc(). 8964 * If we fail to allocate a TSB, exit. 8965 */ 8966 sfmmu_hat_exit(hatlockp); 8967 if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask, 8968 flags, sfmmup)) { 8969 (void) sfmmu_hat_enter(sfmmup); 8970 if (!(flags & TSB_SWAPIN)) 8971 SFMMU_STAT(sf_tsb_resize_failures); 8972 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 8973 return (TSB_ALLOCFAIL); 8974 } 8975 (void) sfmmu_hat_enter(sfmmup); 8976 8977 /* 8978 * Re-check to make sure somebody else didn't muck with us while we 8979 * didn't hold the HAT lock. If the process swapped out, fine, just 8980 * exit; this can happen if we try to shrink the TSB from the context 8981 * of another process (such as on an ISM unmap), though it is rare. 8982 */ 8983 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 8984 SFMMU_STAT(sf_tsb_resize_failures); 8985 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 8986 sfmmu_hat_exit(hatlockp); 8987 sfmmu_tsbinfo_free(new_tsbinfo); 8988 (void) sfmmu_hat_enter(sfmmup); 8989 return (TSB_LOSTRACE); 8990 } 8991 8992 #ifdef DEBUG 8993 /* Reverify that the tsb_info still exists.. for debugging only */ 8994 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb; 8995 curtsb != old_tsbinfo && curtsb != NULL; 8996 prevtsb = curtsb, curtsb = curtsb->tsb_next); 8997 ASSERT(curtsb != NULL); 8998 #endif /* DEBUG */ 8999 9000 /* 9001 * Quiesce any CPUs running this process on their next TLB miss 9002 * so they atomically see the new tsb_info. We temporarily set the 9003 * context to invalid context so new threads that come on processor 9004 * after we do the xcall to cpusran will also serialize behind the 9005 * HAT lock on TLB miss and will see the new TSB. Since this short 9006 * race with a new thread coming on processor is relatively rare, 9007 * this synchronization mechanism should be cheaper than always 9008 * pausing all CPUs for the duration of the setup, which is what 9009 * the old implementation did. This is particuarly true if we are 9010 * copying a huge chunk of memory around during that window. 9011 * 9012 * The memory barriers are to make sure things stay consistent 9013 * with resume() since it does not hold the HAT lock while 9014 * walking the list of tsb_info structures. 9015 */ 9016 if ((flags & TSB_SWAPIN) != TSB_SWAPIN) { 9017 /* The TSB is either growing or shrinking. */ 9018 sfmmu_invalidate_ctx(sfmmup); 9019 } else { 9020 /* 9021 * It is illegal to swap in TSBs from a process other 9022 * than a process being swapped in. This in turn 9023 * implies we do not have a valid MMU context here 9024 * since a process needs one to resolve translation 9025 * misses. 9026 */ 9027 ASSERT(curthread->t_procp->p_as->a_hat == sfmmup); 9028 } 9029 9030 #ifdef DEBUG 9031 ASSERT(max_mmu_ctxdoms > 0); 9032 9033 /* 9034 * Process should have INVALID_CONTEXT on all MMUs 9035 */ 9036 for (i = 0; i < max_mmu_ctxdoms; i++) { 9037 9038 ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT); 9039 } 9040 #endif 9041 9042 new_tsbinfo->tsb_next = old_tsbinfo->tsb_next; 9043 membar_stst(); /* strict ordering required */ 9044 if (prevtsb) 9045 prevtsb->tsb_next = new_tsbinfo; 9046 else 9047 sfmmup->sfmmu_tsb = new_tsbinfo; 9048 membar_enter(); /* make sure new TSB globally visible */ 9049 sfmmu_setup_tsbinfo(sfmmup); 9050 9051 /* 9052 * We need to migrate TSB entries from the old TSB to the new TSB 9053 * if tsb_remap_ttes is set and the TSB is growing. 9054 */ 9055 if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW)) 9056 sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo); 9057 9058 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 9059 9060 /* 9061 * Drop the HAT lock to free our old tsb_info. 9062 */ 9063 sfmmu_hat_exit(hatlockp); 9064 9065 if ((flags & TSB_GROW) == TSB_GROW) { 9066 SFMMU_STAT(sf_tsb_grow); 9067 } else if ((flags & TSB_SHRINK) == TSB_SHRINK) { 9068 SFMMU_STAT(sf_tsb_shrink); 9069 } 9070 9071 sfmmu_tsbinfo_free(old_tsbinfo); 9072 9073 (void) sfmmu_hat_enter(sfmmup); 9074 return (TSB_SUCCESS); 9075 } 9076 9077 /* 9078 * This function will re-program hat pgsz array, and invalidate the 9079 * process' context, forcing the process to switch to another 9080 * context on the next TLB miss, and therefore start using the 9081 * TLB that is reprogrammed for the new page sizes. 9082 */ 9083 void 9084 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz) 9085 { 9086 int i; 9087 hatlock_t *hatlockp = NULL; 9088 9089 hatlockp = sfmmu_hat_enter(sfmmup); 9090 /* USIII+-IV+ optimization, requires hat lock */ 9091 if (tmp_pgsz) { 9092 for (i = 0; i < mmu_page_sizes; i++) 9093 sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i]; 9094 } 9095 SFMMU_STAT(sf_tlb_reprog_pgsz); 9096 9097 sfmmu_invalidate_ctx(sfmmup); 9098 9099 sfmmu_hat_exit(hatlockp); 9100 } 9101 9102 /* 9103 * This function assumes that there are either four or six supported page 9104 * sizes and at most two programmable TLBs, so we need to decide which 9105 * page sizes are most important and then tell the MMU layer so it 9106 * can adjust the TLB page sizes accordingly (if supported). 9107 * 9108 * If these assumptions change, this function will need to be 9109 * updated to support whatever the new limits are. 9110 * 9111 * The growing flag is nonzero if we are growing the address space, 9112 * and zero if it is shrinking. This allows us to decide whether 9113 * to grow or shrink our TSB, depending upon available memory 9114 * conditions. 9115 */ 9116 static void 9117 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing) 9118 { 9119 uint64_t ttecnt[MMU_PAGE_SIZES]; 9120 uint64_t tte8k_cnt, tte4m_cnt; 9121 uint8_t i; 9122 int sectsb_thresh; 9123 9124 /* 9125 * Kernel threads, processes with small address spaces not using 9126 * large pages, and dummy ISM HATs need not apply. 9127 */ 9128 if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL) 9129 return; 9130 9131 if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 && 9132 sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor) 9133 return; 9134 9135 for (i = 0; i < mmu_page_sizes; i++) { 9136 ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i); 9137 } 9138 9139 /* Check pagesizes in use, and possibly reprogram DTLB. */ 9140 if (&mmu_check_page_sizes) 9141 mmu_check_page_sizes(sfmmup, ttecnt); 9142 9143 /* 9144 * Calculate the number of 8k ttes to represent the span of these 9145 * pages. 9146 */ 9147 tte8k_cnt = ttecnt[TTE8K] + 9148 (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) + 9149 (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT)); 9150 if (mmu_page_sizes == max_mmu_page_sizes) { 9151 tte4m_cnt = ttecnt[TTE4M] + 9152 (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) + 9153 (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M)); 9154 } else { 9155 tte4m_cnt = ttecnt[TTE4M]; 9156 } 9157 9158 /* 9159 * Inflate TSB sizes by a factor of 2 if this process 9160 * uses 4M text pages to minimize extra conflict misses 9161 * in the first TSB since without counting text pages 9162 * 8K TSB may become too small. 9163 * 9164 * Also double the size of the second TSB to minimize 9165 * extra conflict misses due to competition between 4M text pages 9166 * and data pages. 9167 * 9168 * We need to adjust the second TSB allocation threshold by the 9169 * inflation factor, since there is no point in creating a second 9170 * TSB when we know all the mappings can fit in the I/D TLBs. 9171 */ 9172 sectsb_thresh = tsb_sectsb_threshold; 9173 if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) { 9174 tte8k_cnt <<= 1; 9175 tte4m_cnt <<= 1; 9176 sectsb_thresh <<= 1; 9177 } 9178 9179 /* 9180 * Check to see if our TSB is the right size; we may need to 9181 * grow or shrink it. If the process is small, our work is 9182 * finished at this point. 9183 */ 9184 if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) { 9185 return; 9186 } 9187 sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh); 9188 } 9189 9190 static void 9191 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt, 9192 uint64_t tte4m_cnt, int sectsb_thresh) 9193 { 9194 int tsb_bits; 9195 uint_t tsb_szc; 9196 struct tsb_info *tsbinfop; 9197 hatlock_t *hatlockp = NULL; 9198 9199 hatlockp = sfmmu_hat_enter(sfmmup); 9200 ASSERT(hatlockp != NULL); 9201 tsbinfop = sfmmup->sfmmu_tsb; 9202 ASSERT(tsbinfop != NULL); 9203 9204 /* 9205 * If we're growing, select the size based on RSS. If we're 9206 * shrinking, leave some room so we don't have to turn around and 9207 * grow again immediately. 9208 */ 9209 if (growing) 9210 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt); 9211 else 9212 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1); 9213 9214 if (!growing && (tsb_szc < tsbinfop->tsb_szc) && 9215 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) { 9216 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc, 9217 hatlockp, TSB_SHRINK); 9218 } else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) { 9219 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc, 9220 hatlockp, TSB_GROW); 9221 } 9222 tsbinfop = sfmmup->sfmmu_tsb; 9223 9224 /* 9225 * With the TLB and first TSB out of the way, we need to see if 9226 * we need a second TSB for 4M pages. If we managed to reprogram 9227 * the TLB page sizes above, the process will start using this new 9228 * TSB right away; otherwise, it will start using it on the next 9229 * context switch. Either way, it's no big deal so there's no 9230 * synchronization with the trap handlers here unless we grow the 9231 * TSB (in which case it's required to prevent using the old one 9232 * after it's freed). Note: second tsb is required for 32M/256M 9233 * page sizes. 9234 */ 9235 if (tte4m_cnt > sectsb_thresh) { 9236 /* 9237 * If we're growing, select the size based on RSS. If we're 9238 * shrinking, leave some room so we don't have to turn 9239 * around and grow again immediately. 9240 */ 9241 if (growing) 9242 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt); 9243 else 9244 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1); 9245 if (tsbinfop->tsb_next == NULL) { 9246 struct tsb_info *newtsb; 9247 int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)? 9248 0 : TSB_ALLOC; 9249 9250 sfmmu_hat_exit(hatlockp); 9251 9252 /* 9253 * Try to allocate a TSB for 4[32|256]M pages. If we 9254 * can't get the size we want, retry w/a minimum sized 9255 * TSB. If that still didn't work, give up; we can 9256 * still run without one. 9257 */ 9258 tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)? 9259 TSB4M|TSB32M|TSB256M:TSB4M; 9260 if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits, 9261 allocflags, sfmmup) != 0) && 9262 (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE, 9263 tsb_bits, allocflags, sfmmup) != 0)) { 9264 return; 9265 } 9266 9267 hatlockp = sfmmu_hat_enter(sfmmup); 9268 9269 if (sfmmup->sfmmu_tsb->tsb_next == NULL) { 9270 sfmmup->sfmmu_tsb->tsb_next = newtsb; 9271 SFMMU_STAT(sf_tsb_sectsb_create); 9272 sfmmu_setup_tsbinfo(sfmmup); 9273 sfmmu_hat_exit(hatlockp); 9274 return; 9275 } else { 9276 /* 9277 * It's annoying, but possible for us 9278 * to get here.. we dropped the HAT lock 9279 * because of locking order in the kmem 9280 * allocator, and while we were off getting 9281 * our memory, some other thread decided to 9282 * do us a favor and won the race to get a 9283 * second TSB for this process. Sigh. 9284 */ 9285 sfmmu_hat_exit(hatlockp); 9286 sfmmu_tsbinfo_free(newtsb); 9287 return; 9288 } 9289 } 9290 9291 /* 9292 * We have a second TSB, see if it's big enough. 9293 */ 9294 tsbinfop = tsbinfop->tsb_next; 9295 9296 /* 9297 * Check to see if our second TSB is the right size; 9298 * we may need to grow or shrink it. 9299 * To prevent thrashing (e.g. growing the TSB on a 9300 * subsequent map operation), only try to shrink if 9301 * the TSB reach exceeds twice the virtual address 9302 * space size. 9303 */ 9304 if (!growing && (tsb_szc < tsbinfop->tsb_szc) && 9305 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) { 9306 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, 9307 tsb_szc, hatlockp, TSB_SHRINK); 9308 } else if (growing && tsb_szc > tsbinfop->tsb_szc && 9309 TSB_OK_GROW()) { 9310 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, 9311 tsb_szc, hatlockp, TSB_GROW); 9312 } 9313 } 9314 9315 sfmmu_hat_exit(hatlockp); 9316 } 9317 9318 /* 9319 * Free up a sfmmu 9320 * Since the sfmmu is currently embedded in the hat struct we simply zero 9321 * out our fields and free up the ism map blk list if any. 9322 */ 9323 static void 9324 sfmmu_free_sfmmu(sfmmu_t *sfmmup) 9325 { 9326 ism_blk_t *blkp, *nx_blkp; 9327 #ifdef DEBUG 9328 ism_map_t *map; 9329 int i; 9330 #endif 9331 9332 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0); 9333 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0); 9334 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0); 9335 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0); 9336 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 9337 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 9338 9339 sfmmup->sfmmu_free = 0; 9340 sfmmup->sfmmu_ismhat = 0; 9341 9342 blkp = sfmmup->sfmmu_iblk; 9343 sfmmup->sfmmu_iblk = NULL; 9344 9345 while (blkp) { 9346 #ifdef DEBUG 9347 map = blkp->iblk_maps; 9348 for (i = 0; i < ISM_MAP_SLOTS; i++) { 9349 ASSERT(map[i].imap_seg == 0); 9350 ASSERT(map[i].imap_ismhat == NULL); 9351 ASSERT(map[i].imap_ment == NULL); 9352 } 9353 #endif 9354 nx_blkp = blkp->iblk_next; 9355 blkp->iblk_next = NULL; 9356 blkp->iblk_nextpa = (uint64_t)-1; 9357 kmem_cache_free(ism_blk_cache, blkp); 9358 blkp = nx_blkp; 9359 } 9360 } 9361 9362 /* 9363 * Locking primitves accessed by HATLOCK macros 9364 */ 9365 9366 #define SFMMU_SPL_MTX (0x0) 9367 #define SFMMU_ML_MTX (0x1) 9368 9369 #define SFMMU_MLSPL_MTX(type, pg) (((type) == SFMMU_SPL_MTX) ? \ 9370 SPL_HASH(pg) : MLIST_HASH(pg)) 9371 9372 kmutex_t * 9373 sfmmu_page_enter(struct page *pp) 9374 { 9375 return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX)); 9376 } 9377 9378 void 9379 sfmmu_page_exit(kmutex_t *spl) 9380 { 9381 mutex_exit(spl); 9382 } 9383 9384 int 9385 sfmmu_page_spl_held(struct page *pp) 9386 { 9387 return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX)); 9388 } 9389 9390 kmutex_t * 9391 sfmmu_mlist_enter(struct page *pp) 9392 { 9393 return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX)); 9394 } 9395 9396 void 9397 sfmmu_mlist_exit(kmutex_t *mml) 9398 { 9399 mutex_exit(mml); 9400 } 9401 9402 int 9403 sfmmu_mlist_held(struct page *pp) 9404 { 9405 9406 return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX)); 9407 } 9408 9409 /* 9410 * Common code for sfmmu_mlist_enter() and sfmmu_page_enter(). For 9411 * sfmmu_mlist_enter() case mml_table lock array is used and for 9412 * sfmmu_page_enter() sfmmu_page_lock lock array is used. 9413 * 9414 * The lock is taken on a root page so that it protects an operation on all 9415 * constituent pages of a large page pp belongs to. 9416 * 9417 * The routine takes a lock from the appropriate array. The lock is determined 9418 * by hashing the root page. After taking the lock this routine checks if the 9419 * root page has the same size code that was used to determine the root (i.e 9420 * that root hasn't changed). If root page has the expected p_szc field we 9421 * have the right lock and it's returned to the caller. If root's p_szc 9422 * decreased we release the lock and retry from the beginning. This case can 9423 * happen due to hat_page_demote() decreasing p_szc between our load of p_szc 9424 * value and taking the lock. The number of retries due to p_szc decrease is 9425 * limited by the maximum p_szc value. If p_szc is 0 we return the lock 9426 * determined by hashing pp itself. 9427 * 9428 * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also 9429 * possible that p_szc can increase. To increase p_szc a thread has to lock 9430 * all constituent pages EXCL and do hat_pageunload() on all of them. All the 9431 * callers that don't hold a page locked recheck if hmeblk through which pp 9432 * was found still maps this pp. If it doesn't map it anymore returned lock 9433 * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of 9434 * p_szc increase after taking the lock it returns this lock without further 9435 * retries because in this case the caller doesn't care about which lock was 9436 * taken. The caller will drop it right away. 9437 * 9438 * After the routine returns it's guaranteed that hat_page_demote() can't 9439 * change p_szc field of any of constituent pages of a large page pp belongs 9440 * to as long as pp was either locked at least SHARED prior to this call or 9441 * the caller finds that hment that pointed to this pp still references this 9442 * pp (this also assumes that the caller holds hme hash bucket lock so that 9443 * the same pp can't be remapped into the same hmeblk after it was unmapped by 9444 * hat_pageunload()). 9445 */ 9446 static kmutex_t * 9447 sfmmu_mlspl_enter(struct page *pp, int type) 9448 { 9449 kmutex_t *mtx; 9450 uint_t prev_rszc = UINT_MAX; 9451 page_t *rootpp; 9452 uint_t szc; 9453 uint_t rszc; 9454 uint_t pszc = pp->p_szc; 9455 9456 ASSERT(pp != NULL); 9457 9458 again: 9459 if (pszc == 0) { 9460 mtx = SFMMU_MLSPL_MTX(type, pp); 9461 mutex_enter(mtx); 9462 return (mtx); 9463 } 9464 9465 /* The lock lives in the root page */ 9466 rootpp = PP_GROUPLEADER(pp, pszc); 9467 mtx = SFMMU_MLSPL_MTX(type, rootpp); 9468 mutex_enter(mtx); 9469 9470 /* 9471 * Return mml in the following 3 cases: 9472 * 9473 * 1) If pp itself is root since if its p_szc decreased before we took 9474 * the lock pp is still the root of smaller szc page. And if its p_szc 9475 * increased it doesn't matter what lock we return (see comment in 9476 * front of this routine). 9477 * 9478 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size 9479 * large page we have the right lock since any previous potential 9480 * hat_page_demote() is done demoting from greater than current root's 9481 * p_szc because hat_page_demote() changes root's p_szc last. No 9482 * further hat_page_demote() can start or be in progress since it 9483 * would need the same lock we currently hold. 9484 * 9485 * 3) If rootpp's p_szc increased since previous iteration it doesn't 9486 * matter what lock we return (see comment in front of this routine). 9487 */ 9488 if (pp == rootpp || (rszc = rootpp->p_szc) == pszc || 9489 rszc >= prev_rszc) { 9490 return (mtx); 9491 } 9492 9493 /* 9494 * hat_page_demote() could have decreased root's p_szc. 9495 * In this case pp's p_szc must also be smaller than pszc. 9496 * Retry. 9497 */ 9498 if (rszc < pszc) { 9499 szc = pp->p_szc; 9500 if (szc < pszc) { 9501 mutex_exit(mtx); 9502 pszc = szc; 9503 goto again; 9504 } 9505 /* 9506 * pp's p_szc increased after it was decreased. 9507 * page cannot be mapped. Return current lock. The caller 9508 * will drop it right away. 9509 */ 9510 return (mtx); 9511 } 9512 9513 /* 9514 * root's p_szc is greater than pp's p_szc. 9515 * hat_page_demote() is not done with all pages 9516 * yet. Wait for it to complete. 9517 */ 9518 mutex_exit(mtx); 9519 rootpp = PP_GROUPLEADER(rootpp, rszc); 9520 mtx = SFMMU_MLSPL_MTX(type, rootpp); 9521 mutex_enter(mtx); 9522 mutex_exit(mtx); 9523 prev_rszc = rszc; 9524 goto again; 9525 } 9526 9527 static int 9528 sfmmu_mlspl_held(struct page *pp, int type) 9529 { 9530 kmutex_t *mtx; 9531 9532 ASSERT(pp != NULL); 9533 /* The lock lives in the root page */ 9534 pp = PP_PAGEROOT(pp); 9535 ASSERT(pp != NULL); 9536 9537 mtx = SFMMU_MLSPL_MTX(type, pp); 9538 return (MUTEX_HELD(mtx)); 9539 } 9540 9541 static uint_t 9542 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical) 9543 { 9544 struct hme_blk *hblkp; 9545 9546 if (freehblkp != NULL) { 9547 mutex_enter(&freehblkp_lock); 9548 if (freehblkp != NULL) { 9549 /* 9550 * If the current thread is owning hblk_reserve, 9551 * let it succede even if freehblkcnt is really low. 9552 */ 9553 if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) { 9554 SFMMU_STAT(sf_get_free_throttle); 9555 mutex_exit(&freehblkp_lock); 9556 return (0); 9557 } 9558 freehblkcnt--; 9559 *hmeblkpp = freehblkp; 9560 hblkp = *hmeblkpp; 9561 freehblkp = hblkp->hblk_next; 9562 mutex_exit(&freehblkp_lock); 9563 hblkp->hblk_next = NULL; 9564 SFMMU_STAT(sf_get_free_success); 9565 return (1); 9566 } 9567 mutex_exit(&freehblkp_lock); 9568 } 9569 SFMMU_STAT(sf_get_free_fail); 9570 return (0); 9571 } 9572 9573 static uint_t 9574 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical) 9575 { 9576 struct hme_blk *hblkp; 9577 9578 /* 9579 * If the current thread is mapping into kernel space, 9580 * let it succede even if freehblkcnt is max 9581 * so that it will avoid freeing it to kmem. 9582 * This will prevent stack overflow due to 9583 * possible recursion since kmem_cache_free() 9584 * might require creation of a slab which 9585 * in turn needs an hmeblk to map that slab; 9586 * let's break this vicious chain at the first 9587 * opportunity. 9588 */ 9589 if (freehblkcnt < HBLK_RESERVE_CNT || critical) { 9590 mutex_enter(&freehblkp_lock); 9591 if (freehblkcnt < HBLK_RESERVE_CNT || critical) { 9592 SFMMU_STAT(sf_put_free_success); 9593 freehblkcnt++; 9594 hmeblkp->hblk_next = freehblkp; 9595 freehblkp = hmeblkp; 9596 mutex_exit(&freehblkp_lock); 9597 return (1); 9598 } 9599 mutex_exit(&freehblkp_lock); 9600 } 9601 9602 /* 9603 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here 9604 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and* 9605 * we are not in the process of mapping into kernel space. 9606 */ 9607 ASSERT(!critical); 9608 while (freehblkcnt > HBLK_RESERVE_CNT) { 9609 mutex_enter(&freehblkp_lock); 9610 if (freehblkcnt > HBLK_RESERVE_CNT) { 9611 freehblkcnt--; 9612 hblkp = freehblkp; 9613 freehblkp = hblkp->hblk_next; 9614 mutex_exit(&freehblkp_lock); 9615 ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache); 9616 kmem_cache_free(sfmmu8_cache, hblkp); 9617 continue; 9618 } 9619 mutex_exit(&freehblkp_lock); 9620 } 9621 SFMMU_STAT(sf_put_free_fail); 9622 return (0); 9623 } 9624 9625 static void 9626 sfmmu_hblk_swap(struct hme_blk *new) 9627 { 9628 struct hme_blk *old, *hblkp, *prev; 9629 uint64_t hblkpa, prevpa, newpa; 9630 caddr_t base, vaddr, endaddr; 9631 struct hmehash_bucket *hmebp; 9632 struct sf_hment *osfhme, *nsfhme; 9633 page_t *pp; 9634 kmutex_t *pml; 9635 tte_t tte; 9636 9637 #ifdef DEBUG 9638 hmeblk_tag hblktag; 9639 struct hme_blk *found; 9640 #endif 9641 old = HBLK_RESERVE; 9642 9643 /* 9644 * save pa before bcopy clobbers it 9645 */ 9646 newpa = new->hblk_nextpa; 9647 9648 base = (caddr_t)get_hblk_base(old); 9649 endaddr = base + get_hblk_span(old); 9650 9651 /* 9652 * acquire hash bucket lock. 9653 */ 9654 hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K); 9655 9656 /* 9657 * copy contents from old to new 9658 */ 9659 bcopy((void *)old, (void *)new, HME8BLK_SZ); 9660 9661 /* 9662 * add new to hash chain 9663 */ 9664 sfmmu_hblk_hash_add(hmebp, new, newpa); 9665 9666 /* 9667 * search hash chain for hblk_reserve; this needs to be performed 9668 * after adding new, otherwise prevpa and prev won't correspond 9669 * to the hblk which is prior to old in hash chain when we call 9670 * sfmmu_hblk_hash_rm to remove old later. 9671 */ 9672 for (prevpa = 0, prev = NULL, 9673 hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp; 9674 hblkp != NULL && hblkp != old; 9675 prevpa = hblkpa, prev = hblkp, 9676 hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next); 9677 9678 if (hblkp != old) 9679 panic("sfmmu_hblk_swap: hblk_reserve not found"); 9680 9681 /* 9682 * p_mapping list is still pointing to hments in hblk_reserve; 9683 * fix up p_mapping list so that they point to hments in new. 9684 * 9685 * Since all these mappings are created by hblk_reserve_thread 9686 * on the way and it's using at least one of the buffers from each of 9687 * the newly minted slabs, there is no danger of any of these 9688 * mappings getting unloaded by another thread. 9689 * 9690 * tsbmiss could only modify ref/mod bits of hments in old/new. 9691 * Since all of these hments hold mappings established by segkmem 9692 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits 9693 * have no meaning for the mappings in hblk_reserve. hments in 9694 * old and new are identical except for ref/mod bits. 9695 */ 9696 for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) { 9697 9698 HBLKTOHME(osfhme, old, vaddr); 9699 sfmmu_copytte(&osfhme->hme_tte, &tte); 9700 9701 if (TTE_IS_VALID(&tte)) { 9702 if ((pp = osfhme->hme_page) == NULL) 9703 panic("sfmmu_hblk_swap: page not mapped"); 9704 9705 pml = sfmmu_mlist_enter(pp); 9706 9707 if (pp != osfhme->hme_page) 9708 panic("sfmmu_hblk_swap: mapping changed"); 9709 9710 HBLKTOHME(nsfhme, new, vaddr); 9711 9712 HME_ADD(nsfhme, pp); 9713 HME_SUB(osfhme, pp); 9714 9715 sfmmu_mlist_exit(pml); 9716 } 9717 } 9718 9719 /* 9720 * remove old from hash chain 9721 */ 9722 sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev); 9723 9724 #ifdef DEBUG 9725 9726 hblktag.htag_id = ksfmmup; 9727 hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K)); 9728 hblktag.htag_rehash = HME_HASH_REHASH(TTE8K); 9729 HME_HASH_FAST_SEARCH(hmebp, hblktag, found); 9730 9731 if (found != new) 9732 panic("sfmmu_hblk_swap: new hblk not found"); 9733 #endif 9734 9735 SFMMU_HASH_UNLOCK(hmebp); 9736 9737 /* 9738 * Reset hblk_reserve 9739 */ 9740 bzero((void *)old, HME8BLK_SZ); 9741 old->hblk_nextpa = va_to_pa((caddr_t)old); 9742 } 9743 9744 /* 9745 * Grab the mlist mutex for both pages passed in. 9746 * 9747 * low and high will be returned as pointers to the mutexes for these pages. 9748 * low refers to the mutex residing in the lower bin of the mlist hash, while 9749 * high refers to the mutex residing in the higher bin of the mlist hash. This 9750 * is due to the locking order restrictions on the same thread grabbing 9751 * multiple mlist mutexes. The low lock must be acquired before the high lock. 9752 * 9753 * If both pages hash to the same mutex, only grab that single mutex, and 9754 * high will be returned as NULL 9755 * If the pages hash to different bins in the hash, grab the lower addressed 9756 * lock first and then the higher addressed lock in order to follow the locking 9757 * rules involved with the same thread grabbing multiple mlist mutexes. 9758 * low and high will both have non-NULL values. 9759 */ 9760 static void 9761 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl, 9762 kmutex_t **low, kmutex_t **high) 9763 { 9764 kmutex_t *mml_targ, *mml_repl; 9765 9766 /* 9767 * no need to do the dance around szc as in sfmmu_mlist_enter() 9768 * because this routine is only called by hat_page_relocate() and all 9769 * targ and repl pages are already locked EXCL so szc can't change. 9770 */ 9771 9772 mml_targ = MLIST_HASH(PP_PAGEROOT(targ)); 9773 mml_repl = MLIST_HASH(PP_PAGEROOT(repl)); 9774 9775 if (mml_targ == mml_repl) { 9776 *low = mml_targ; 9777 *high = NULL; 9778 } else { 9779 if (mml_targ < mml_repl) { 9780 *low = mml_targ; 9781 *high = mml_repl; 9782 } else { 9783 *low = mml_repl; 9784 *high = mml_targ; 9785 } 9786 } 9787 9788 mutex_enter(*low); 9789 if (*high) 9790 mutex_enter(*high); 9791 } 9792 9793 static void 9794 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high) 9795 { 9796 if (high) 9797 mutex_exit(high); 9798 mutex_exit(low); 9799 } 9800 9801 static hatlock_t * 9802 sfmmu_hat_enter(sfmmu_t *sfmmup) 9803 { 9804 hatlock_t *hatlockp; 9805 9806 if (sfmmup != ksfmmup) { 9807 hatlockp = TSB_HASH(sfmmup); 9808 mutex_enter(HATLOCK_MUTEXP(hatlockp)); 9809 return (hatlockp); 9810 } 9811 return (NULL); 9812 } 9813 9814 static hatlock_t * 9815 sfmmu_hat_tryenter(sfmmu_t *sfmmup) 9816 { 9817 hatlock_t *hatlockp; 9818 9819 if (sfmmup != ksfmmup) { 9820 hatlockp = TSB_HASH(sfmmup); 9821 if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0) 9822 return (NULL); 9823 return (hatlockp); 9824 } 9825 return (NULL); 9826 } 9827 9828 static void 9829 sfmmu_hat_exit(hatlock_t *hatlockp) 9830 { 9831 if (hatlockp != NULL) 9832 mutex_exit(HATLOCK_MUTEXP(hatlockp)); 9833 } 9834 9835 static void 9836 sfmmu_hat_lock_all(void) 9837 { 9838 int i; 9839 for (i = 0; i < SFMMU_NUM_LOCK; i++) 9840 mutex_enter(HATLOCK_MUTEXP(&hat_lock[i])); 9841 } 9842 9843 static void 9844 sfmmu_hat_unlock_all(void) 9845 { 9846 int i; 9847 for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--) 9848 mutex_exit(HATLOCK_MUTEXP(&hat_lock[i])); 9849 } 9850 9851 int 9852 sfmmu_hat_lock_held(sfmmu_t *sfmmup) 9853 { 9854 ASSERT(sfmmup != ksfmmup); 9855 return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup)))); 9856 } 9857 9858 /* 9859 * Locking primitives to provide consistency between ISM unmap 9860 * and other operations. Since ISM unmap can take a long time, we 9861 * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating 9862 * contention on the hatlock buckets while ISM segments are being 9863 * unmapped. The tradeoff is that the flags don't prevent priority 9864 * inversion from occurring, so we must request kernel priority in 9865 * case we have to sleep to keep from getting buried while holding 9866 * the HAT_ISMBUSY flag set, which in turn could block other kernel 9867 * threads from running (for example, in sfmmu_uvatopfn()). 9868 */ 9869 static void 9870 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held) 9871 { 9872 hatlock_t *hatlockp; 9873 9874 THREAD_KPRI_REQUEST(); 9875 if (!hatlock_held) 9876 hatlockp = sfmmu_hat_enter(sfmmup); 9877 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) 9878 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp)); 9879 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY); 9880 if (!hatlock_held) 9881 sfmmu_hat_exit(hatlockp); 9882 } 9883 9884 static void 9885 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held) 9886 { 9887 hatlock_t *hatlockp; 9888 9889 if (!hatlock_held) 9890 hatlockp = sfmmu_hat_enter(sfmmup); 9891 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 9892 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY); 9893 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 9894 if (!hatlock_held) 9895 sfmmu_hat_exit(hatlockp); 9896 THREAD_KPRI_RELEASE(); 9897 } 9898 9899 /* 9900 * 9901 * Algorithm: 9902 * 9903 * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed 9904 * hblks. 9905 * 9906 * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache, 9907 * 9908 * (a) try to return an hblk from reserve pool of free hblks; 9909 * (b) if the reserve pool is empty, acquire hblk_reserve_lock 9910 * and return hblk_reserve. 9911 * 9912 * (3) call kmem_cache_alloc() to allocate hblk; 9913 * 9914 * (a) if hblk_reserve_lock is held by the current thread, 9915 * atomically replace hblk_reserve by the hblk that is 9916 * returned by kmem_cache_alloc; release hblk_reserve_lock 9917 * and call kmem_cache_alloc() again. 9918 * (b) if reserve pool is not full, add the hblk that is 9919 * returned by kmem_cache_alloc to reserve pool and 9920 * call kmem_cache_alloc again. 9921 * 9922 */ 9923 static struct hme_blk * 9924 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr, 9925 struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag, 9926 uint_t flags) 9927 { 9928 struct hme_blk *hmeblkp = NULL; 9929 struct hme_blk *newhblkp; 9930 struct hme_blk *shw_hblkp = NULL; 9931 struct kmem_cache *sfmmu_cache = NULL; 9932 uint64_t hblkpa; 9933 ulong_t index; 9934 uint_t owner; /* set to 1 if using hblk_reserve */ 9935 uint_t forcefree; 9936 int sleep; 9937 9938 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 9939 9940 /* 9941 * If segkmem is not created yet, allocate from static hmeblks 9942 * created at the end of startup_modules(). See the block comment 9943 * in startup_modules() describing how we estimate the number of 9944 * static hmeblks that will be needed during re-map. 9945 */ 9946 if (!hblk_alloc_dynamic) { 9947 9948 if (size == TTE8K) { 9949 index = nucleus_hblk8.index; 9950 if (index >= nucleus_hblk8.len) { 9951 /* 9952 * If we panic here, see startup_modules() to 9953 * make sure that we are calculating the 9954 * number of hblk8's that we need correctly. 9955 */ 9956 panic("no nucleus hblk8 to allocate"); 9957 } 9958 hmeblkp = 9959 (struct hme_blk *)&nucleus_hblk8.list[index]; 9960 nucleus_hblk8.index++; 9961 SFMMU_STAT(sf_hblk8_nalloc); 9962 } else { 9963 index = nucleus_hblk1.index; 9964 if (nucleus_hblk1.index >= nucleus_hblk1.len) { 9965 /* 9966 * If we panic here, see startup_modules() 9967 * and H8TOH1; most likely you need to 9968 * update the calculation of the number 9969 * of hblk1's the kernel needs to boot. 9970 */ 9971 panic("no nucleus hblk1 to allocate"); 9972 } 9973 hmeblkp = 9974 (struct hme_blk *)&nucleus_hblk1.list[index]; 9975 nucleus_hblk1.index++; 9976 SFMMU_STAT(sf_hblk1_nalloc); 9977 } 9978 9979 goto hblk_init; 9980 } 9981 9982 SFMMU_HASH_UNLOCK(hmebp); 9983 9984 if (sfmmup != KHATID) { 9985 if (mmu_page_sizes == max_mmu_page_sizes) { 9986 if (size < TTE256M) 9987 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr, 9988 size, flags); 9989 } else { 9990 if (size < TTE4M) 9991 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr, 9992 size, flags); 9993 } 9994 } 9995 9996 fill_hblk: 9997 owner = (hblk_reserve_thread == curthread) ? 1 : 0; 9998 9999 if (owner && size == TTE8K) { 10000 10001 /* 10002 * We are really in a tight spot. We already own 10003 * hblk_reserve and we need another hblk. In anticipation 10004 * of this kind of scenario, we specifically set aside 10005 * HBLK_RESERVE_MIN number of hblks to be used exclusively 10006 * by owner of hblk_reserve. 10007 */ 10008 SFMMU_STAT(sf_hblk_recurse_cnt); 10009 10010 if (!sfmmu_get_free_hblk(&hmeblkp, 1)) 10011 panic("sfmmu_hblk_alloc: reserve list is empty"); 10012 10013 goto hblk_verify; 10014 } 10015 10016 ASSERT(!owner); 10017 10018 if ((flags & HAT_NO_KALLOC) == 0) { 10019 10020 sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache); 10021 sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP); 10022 10023 if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) { 10024 hmeblkp = sfmmu_hblk_steal(size); 10025 } else { 10026 /* 10027 * if we are the owner of hblk_reserve, 10028 * swap hblk_reserve with hmeblkp and 10029 * start a fresh life. Hope things go 10030 * better this time. 10031 */ 10032 if (hblk_reserve_thread == curthread) { 10033 ASSERT(sfmmu_cache == sfmmu8_cache); 10034 sfmmu_hblk_swap(hmeblkp); 10035 hblk_reserve_thread = NULL; 10036 mutex_exit(&hblk_reserve_lock); 10037 goto fill_hblk; 10038 } 10039 /* 10040 * let's donate this hblk to our reserve list if 10041 * we are not mapping kernel range 10042 */ 10043 if (size == TTE8K && sfmmup != KHATID) 10044 if (sfmmu_put_free_hblk(hmeblkp, 0)) 10045 goto fill_hblk; 10046 } 10047 } else { 10048 /* 10049 * We are here to map the slab in sfmmu8_cache; let's 10050 * check if we could tap our reserve list; if successful, 10051 * this will avoid the pain of going thru sfmmu_hblk_swap 10052 */ 10053 SFMMU_STAT(sf_hblk_slab_cnt); 10054 if (!sfmmu_get_free_hblk(&hmeblkp, 0)) { 10055 /* 10056 * let's start hblk_reserve dance 10057 */ 10058 SFMMU_STAT(sf_hblk_reserve_cnt); 10059 owner = 1; 10060 mutex_enter(&hblk_reserve_lock); 10061 hmeblkp = HBLK_RESERVE; 10062 hblk_reserve_thread = curthread; 10063 } 10064 } 10065 10066 hblk_verify: 10067 ASSERT(hmeblkp != NULL); 10068 set_hblk_sz(hmeblkp, size); 10069 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp)); 10070 SFMMU_HASH_LOCK(hmebp); 10071 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp); 10072 if (newhblkp != NULL) { 10073 SFMMU_HASH_UNLOCK(hmebp); 10074 if (hmeblkp != HBLK_RESERVE) { 10075 /* 10076 * This is really tricky! 10077 * 10078 * vmem_alloc(vmem_seg_arena) 10079 * vmem_alloc(vmem_internal_arena) 10080 * segkmem_alloc(heap_arena) 10081 * vmem_alloc(heap_arena) 10082 * page_create() 10083 * hat_memload() 10084 * kmem_cache_free() 10085 * kmem_cache_alloc() 10086 * kmem_slab_create() 10087 * vmem_alloc(kmem_internal_arena) 10088 * segkmem_alloc(heap_arena) 10089 * vmem_alloc(heap_arena) 10090 * page_create() 10091 * hat_memload() 10092 * kmem_cache_free() 10093 * ... 10094 * 10095 * Thus, hat_memload() could call kmem_cache_free 10096 * for enough number of times that we could easily 10097 * hit the bottom of the stack or run out of reserve 10098 * list of vmem_seg structs. So, we must donate 10099 * this hblk to reserve list if it's allocated 10100 * from sfmmu8_cache *and* mapping kernel range. 10101 * We don't need to worry about freeing hmeblk1's 10102 * to kmem since they don't map any kmem slabs. 10103 * 10104 * Note: When segkmem supports largepages, we must 10105 * free hmeblk1's to reserve list as well. 10106 */ 10107 forcefree = (sfmmup == KHATID) ? 1 : 0; 10108 if (size == TTE8K && 10109 sfmmu_put_free_hblk(hmeblkp, forcefree)) { 10110 goto re_verify; 10111 } 10112 ASSERT(sfmmup != KHATID); 10113 kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp); 10114 } else { 10115 /* 10116 * Hey! we don't need hblk_reserve any more. 10117 */ 10118 ASSERT(owner); 10119 hblk_reserve_thread = NULL; 10120 mutex_exit(&hblk_reserve_lock); 10121 owner = 0; 10122 } 10123 re_verify: 10124 /* 10125 * let's check if the goodies are still present 10126 */ 10127 SFMMU_HASH_LOCK(hmebp); 10128 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp); 10129 if (newhblkp != NULL) { 10130 /* 10131 * return newhblkp if it's not hblk_reserve; 10132 * if newhblkp is hblk_reserve, return it 10133 * _only if_ we are the owner of hblk_reserve. 10134 */ 10135 if (newhblkp != HBLK_RESERVE || owner) { 10136 return (newhblkp); 10137 } else { 10138 /* 10139 * we just hit hblk_reserve in the hash and 10140 * we are not the owner of that; 10141 * 10142 * block until hblk_reserve_thread completes 10143 * swapping hblk_reserve and try the dance 10144 * once again. 10145 */ 10146 SFMMU_HASH_UNLOCK(hmebp); 10147 mutex_enter(&hblk_reserve_lock); 10148 mutex_exit(&hblk_reserve_lock); 10149 SFMMU_STAT(sf_hblk_reserve_hit); 10150 goto fill_hblk; 10151 } 10152 } else { 10153 /* 10154 * it's no more! try the dance once again. 10155 */ 10156 SFMMU_HASH_UNLOCK(hmebp); 10157 goto fill_hblk; 10158 } 10159 } 10160 10161 hblk_init: 10162 set_hblk_sz(hmeblkp, size); 10163 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 10164 hmeblkp->hblk_next = (struct hme_blk *)NULL; 10165 hmeblkp->hblk_tag = hblktag; 10166 hmeblkp->hblk_shadow = shw_hblkp; 10167 hblkpa = hmeblkp->hblk_nextpa; 10168 hmeblkp->hblk_nextpa = 0; 10169 10170 ASSERT(get_hblk_ttesz(hmeblkp) == size); 10171 ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size)); 10172 ASSERT(hmeblkp->hblk_hmecnt == 0); 10173 ASSERT(hmeblkp->hblk_vcnt == 0); 10174 ASSERT(hmeblkp->hblk_lckcnt == 0); 10175 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp)); 10176 sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa); 10177 return (hmeblkp); 10178 } 10179 10180 /* 10181 * This function performs any cleanup required on the hme_blk 10182 * and returns it to the free list. 10183 */ 10184 /* ARGSUSED */ 10185 static void 10186 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 10187 uint64_t hblkpa, struct hme_blk **listp) 10188 { 10189 int shw_size, vshift; 10190 struct hme_blk *shw_hblkp; 10191 uint_t shw_mask, newshw_mask; 10192 uintptr_t vaddr; 10193 int size; 10194 uint_t critical; 10195 10196 ASSERT(hmeblkp); 10197 ASSERT(!hmeblkp->hblk_hmecnt); 10198 ASSERT(!hmeblkp->hblk_vcnt); 10199 ASSERT(!hmeblkp->hblk_lckcnt); 10200 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp)); 10201 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve); 10202 10203 critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0; 10204 10205 size = get_hblk_ttesz(hmeblkp); 10206 shw_hblkp = hmeblkp->hblk_shadow; 10207 if (shw_hblkp) { 10208 ASSERT(hblktosfmmu(hmeblkp) != KHATID); 10209 if (mmu_page_sizes == max_mmu_page_sizes) { 10210 ASSERT(size < TTE256M); 10211 } else { 10212 ASSERT(size < TTE4M); 10213 } 10214 10215 shw_size = get_hblk_ttesz(shw_hblkp); 10216 vaddr = get_hblk_base(hmeblkp); 10217 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size); 10218 ASSERT(vshift < 8); 10219 /* 10220 * Atomically clear shadow mask bit 10221 */ 10222 do { 10223 shw_mask = shw_hblkp->hblk_shw_mask; 10224 ASSERT(shw_mask & (1 << vshift)); 10225 newshw_mask = shw_mask & ~(1 << vshift); 10226 newshw_mask = cas32(&shw_hblkp->hblk_shw_mask, 10227 shw_mask, newshw_mask); 10228 } while (newshw_mask != shw_mask); 10229 hmeblkp->hblk_shadow = NULL; 10230 } 10231 hmeblkp->hblk_next = NULL; 10232 hmeblkp->hblk_nextpa = hblkpa; 10233 hmeblkp->hblk_shw_bit = 0; 10234 10235 if (hmeblkp->hblk_nuc_bit == 0) { 10236 10237 if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical)) 10238 return; 10239 10240 hmeblkp->hblk_next = *listp; 10241 *listp = hmeblkp; 10242 } 10243 } 10244 10245 static void 10246 sfmmu_hblks_list_purge(struct hme_blk **listp) 10247 { 10248 struct hme_blk *hmeblkp; 10249 10250 while ((hmeblkp = *listp) != NULL) { 10251 *listp = hmeblkp->hblk_next; 10252 kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp); 10253 } 10254 } 10255 10256 #define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30 10257 10258 static uint_t sfmmu_hblk_steal_twice; 10259 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count; 10260 10261 /* 10262 * Steal a hmeblk 10263 * Enough hmeblks were allocated at startup (nucleus hmeblks) and also 10264 * hmeblks were added dynamically. We should never ever not be able to 10265 * find one. Look for an unused/unlocked hmeblk in user hash table. 10266 */ 10267 static struct hme_blk * 10268 sfmmu_hblk_steal(int size) 10269 { 10270 static struct hmehash_bucket *uhmehash_steal_hand = NULL; 10271 struct hmehash_bucket *hmebp; 10272 struct hme_blk *hmeblkp = NULL, *pr_hblk; 10273 uint64_t hblkpa, prevpa; 10274 int i; 10275 10276 for (;;) { 10277 hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash : 10278 uhmehash_steal_hand; 10279 ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]); 10280 10281 for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ + 10282 BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) { 10283 SFMMU_HASH_LOCK(hmebp); 10284 hmeblkp = hmebp->hmeblkp; 10285 hblkpa = hmebp->hmeh_nextpa; 10286 prevpa = 0; 10287 pr_hblk = NULL; 10288 while (hmeblkp) { 10289 /* 10290 * check if it is a hmeblk that is not locked 10291 * and not shared. skip shadow hmeblks with 10292 * shadow_mask set i.e valid count non zero. 10293 */ 10294 if ((get_hblk_ttesz(hmeblkp) == size) && 10295 (hmeblkp->hblk_shw_bit == 0 || 10296 hmeblkp->hblk_vcnt == 0) && 10297 (hmeblkp->hblk_lckcnt == 0)) { 10298 /* 10299 * there is a high probability that we 10300 * will find a free one. search some 10301 * buckets for a free hmeblk initially 10302 * before unloading a valid hmeblk. 10303 */ 10304 if ((hmeblkp->hblk_vcnt == 0 && 10305 hmeblkp->hblk_hmecnt == 0) || (i >= 10306 BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) { 10307 if (sfmmu_steal_this_hblk(hmebp, 10308 hmeblkp, hblkpa, prevpa, 10309 pr_hblk)) { 10310 /* 10311 * Hblk is unloaded 10312 * successfully 10313 */ 10314 break; 10315 } 10316 } 10317 } 10318 pr_hblk = hmeblkp; 10319 prevpa = hblkpa; 10320 hblkpa = hmeblkp->hblk_nextpa; 10321 hmeblkp = hmeblkp->hblk_next; 10322 } 10323 10324 SFMMU_HASH_UNLOCK(hmebp); 10325 if (hmebp++ == &uhme_hash[UHMEHASH_SZ]) 10326 hmebp = uhme_hash; 10327 } 10328 uhmehash_steal_hand = hmebp; 10329 10330 if (hmeblkp != NULL) 10331 break; 10332 10333 /* 10334 * in the worst case, look for a free one in the kernel 10335 * hash table. 10336 */ 10337 for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) { 10338 SFMMU_HASH_LOCK(hmebp); 10339 hmeblkp = hmebp->hmeblkp; 10340 hblkpa = hmebp->hmeh_nextpa; 10341 prevpa = 0; 10342 pr_hblk = NULL; 10343 while (hmeblkp) { 10344 /* 10345 * check if it is free hmeblk 10346 */ 10347 if ((get_hblk_ttesz(hmeblkp) == size) && 10348 (hmeblkp->hblk_lckcnt == 0) && 10349 (hmeblkp->hblk_vcnt == 0) && 10350 (hmeblkp->hblk_hmecnt == 0)) { 10351 if (sfmmu_steal_this_hblk(hmebp, 10352 hmeblkp, hblkpa, prevpa, pr_hblk)) { 10353 break; 10354 } else { 10355 /* 10356 * Cannot fail since we have 10357 * hash lock. 10358 */ 10359 panic("fail to steal?"); 10360 } 10361 } 10362 10363 pr_hblk = hmeblkp; 10364 prevpa = hblkpa; 10365 hblkpa = hmeblkp->hblk_nextpa; 10366 hmeblkp = hmeblkp->hblk_next; 10367 } 10368 10369 SFMMU_HASH_UNLOCK(hmebp); 10370 if (hmebp++ == &khme_hash[KHMEHASH_SZ]) 10371 hmebp = khme_hash; 10372 } 10373 10374 if (hmeblkp != NULL) 10375 break; 10376 sfmmu_hblk_steal_twice++; 10377 } 10378 return (hmeblkp); 10379 } 10380 10381 /* 10382 * This routine does real work to prepare a hblk to be "stolen" by 10383 * unloading the mappings, updating shadow counts .... 10384 * It returns 1 if the block is ready to be reused (stolen), or 0 10385 * means the block cannot be stolen yet- pageunload is still working 10386 * on this hblk. 10387 */ 10388 static int 10389 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 10390 uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk) 10391 { 10392 int shw_size, vshift; 10393 struct hme_blk *shw_hblkp; 10394 uintptr_t vaddr; 10395 uint_t shw_mask, newshw_mask; 10396 10397 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 10398 10399 /* 10400 * check if the hmeblk is free, unload if necessary 10401 */ 10402 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 10403 sfmmu_t *sfmmup; 10404 demap_range_t dmr; 10405 10406 sfmmup = hblktosfmmu(hmeblkp); 10407 DEMAP_RANGE_INIT(sfmmup, &dmr); 10408 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 10409 (caddr_t)get_hblk_base(hmeblkp), 10410 get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD); 10411 DEMAP_RANGE_FLUSH(&dmr); 10412 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 10413 /* 10414 * Pageunload is working on the same hblk. 10415 */ 10416 return (0); 10417 } 10418 10419 sfmmu_hblk_steal_unload_count++; 10420 } 10421 10422 ASSERT(hmeblkp->hblk_lckcnt == 0); 10423 ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0); 10424 10425 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk); 10426 hmeblkp->hblk_nextpa = hblkpa; 10427 10428 shw_hblkp = hmeblkp->hblk_shadow; 10429 if (shw_hblkp) { 10430 shw_size = get_hblk_ttesz(shw_hblkp); 10431 vaddr = get_hblk_base(hmeblkp); 10432 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size); 10433 ASSERT(vshift < 8); 10434 /* 10435 * Atomically clear shadow mask bit 10436 */ 10437 do { 10438 shw_mask = shw_hblkp->hblk_shw_mask; 10439 ASSERT(shw_mask & (1 << vshift)); 10440 newshw_mask = shw_mask & ~(1 << vshift); 10441 newshw_mask = cas32(&shw_hblkp->hblk_shw_mask, 10442 shw_mask, newshw_mask); 10443 } while (newshw_mask != shw_mask); 10444 hmeblkp->hblk_shadow = NULL; 10445 } 10446 10447 /* 10448 * remove shadow bit if we are stealing an unused shadow hmeblk. 10449 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if 10450 * we are indeed allocating a shadow hmeblk. 10451 */ 10452 hmeblkp->hblk_shw_bit = 0; 10453 10454 sfmmu_hblk_steal_count++; 10455 SFMMU_STAT(sf_steal_count); 10456 10457 return (1); 10458 } 10459 10460 struct hme_blk * 10461 sfmmu_hmetohblk(struct sf_hment *sfhme) 10462 { 10463 struct hme_blk *hmeblkp; 10464 struct sf_hment *sfhme0; 10465 struct hme_blk *hblk_dummy = 0; 10466 10467 /* 10468 * No dummy sf_hments, please. 10469 */ 10470 ASSERT(sfhme->hme_tte.ll != 0); 10471 10472 sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum; 10473 hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 - 10474 (uintptr_t)&hblk_dummy->hblk_hme[0]); 10475 10476 return (hmeblkp); 10477 } 10478 10479 /* 10480 * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag. 10481 * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using 10482 * KM_SLEEP allocation. 10483 * 10484 * Return 0 on success, -1 otherwise. 10485 */ 10486 static void 10487 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp) 10488 { 10489 struct tsb_info *tsbinfop, *next; 10490 tsb_replace_rc_t rc; 10491 boolean_t gotfirst = B_FALSE; 10492 10493 ASSERT(sfmmup != ksfmmup); 10494 ASSERT(sfmmu_hat_lock_held(sfmmup)); 10495 10496 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) { 10497 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp)); 10498 } 10499 10500 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 10501 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN); 10502 } else { 10503 return; 10504 } 10505 10506 ASSERT(sfmmup->sfmmu_tsb != NULL); 10507 10508 /* 10509 * Loop over all tsbinfo's replacing them with ones that actually have 10510 * a TSB. If any of the replacements ever fail, bail out of the loop. 10511 */ 10512 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) { 10513 ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED); 10514 next = tsbinfop->tsb_next; 10515 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc, 10516 hatlockp, TSB_SWAPIN); 10517 if (rc != TSB_SUCCESS) { 10518 break; 10519 } 10520 gotfirst = B_TRUE; 10521 } 10522 10523 switch (rc) { 10524 case TSB_SUCCESS: 10525 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN); 10526 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 10527 return; 10528 case TSB_ALLOCFAIL: 10529 break; 10530 default: 10531 panic("sfmmu_replace_tsb returned unrecognized failure code " 10532 "%d", rc); 10533 } 10534 10535 /* 10536 * In this case, we failed to get one of our TSBs. If we failed to 10537 * get the first TSB, get one of minimum size (8KB). Walk the list 10538 * and throw away the tsbinfos, starting where the allocation failed; 10539 * we can get by with just one TSB as long as we don't leave the 10540 * SWAPPED tsbinfo structures lying around. 10541 */ 10542 tsbinfop = sfmmup->sfmmu_tsb; 10543 next = tsbinfop->tsb_next; 10544 tsbinfop->tsb_next = NULL; 10545 10546 sfmmu_hat_exit(hatlockp); 10547 for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) { 10548 next = tsbinfop->tsb_next; 10549 sfmmu_tsbinfo_free(tsbinfop); 10550 } 10551 hatlockp = sfmmu_hat_enter(sfmmup); 10552 10553 /* 10554 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K 10555 * pages. 10556 */ 10557 if (!gotfirst) { 10558 tsbinfop = sfmmup->sfmmu_tsb; 10559 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE, 10560 hatlockp, TSB_SWAPIN | TSB_FORCEALLOC); 10561 ASSERT(rc == TSB_SUCCESS); 10562 } else { 10563 /* update machine specific tsbinfo */ 10564 sfmmu_setup_tsbinfo(sfmmup); 10565 } 10566 10567 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN); 10568 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 10569 } 10570 10571 /* 10572 * Handle exceptions for low level tsb_handler. 10573 * 10574 * There are many scenarios that could land us here: 10575 * 10576 * If the context is invalid we land here. The context can be invalid 10577 * for 3 reasons: 1) we couldn't allocate a new context and now need to 10578 * perform a wrap around operation in order to allocate a new context. 10579 * 2) Context was invalidated to change pagesize programming 3) ISMs or 10580 * TSBs configuration is changeing for this process and we are forced into 10581 * here to do a syncronization operation. If the context is valid we can 10582 * be here from window trap hanlder. In this case just call trap to handle 10583 * the fault. 10584 * 10585 * Note that the process will run in INVALID_CONTEXT before 10586 * faulting into here and subsequently loading the MMU registers 10587 * (including the TSB base register) associated with this process. 10588 * For this reason, the trap handlers must all test for 10589 * INVALID_CONTEXT before attempting to access any registers other 10590 * than the context registers. 10591 */ 10592 void 10593 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype) 10594 { 10595 sfmmu_t *sfmmup; 10596 uint_t ctxnum; 10597 klwp_id_t lwp; 10598 char lwp_save_state; 10599 hatlock_t *hatlockp; 10600 struct tsb_info *tsbinfop; 10601 10602 SFMMU_STAT(sf_tsb_exceptions); 10603 SFMMU_MMU_STAT(mmu_tsb_exceptions); 10604 sfmmup = astosfmmu(curthread->t_procp->p_as); 10605 ctxnum = tagaccess & TAGACC_CTX_MASK; 10606 10607 ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT); 10608 ASSERT(sfmmup->sfmmu_ismhat == 0); 10609 /* 10610 * First, make sure we come out of here with a valid ctx, 10611 * since if we don't get one we'll simply loop on the 10612 * faulting instruction. 10613 * 10614 * If the ISM mappings are changing, the TSB is being relocated, or 10615 * the process is swapped out we serialize behind the controlling 10616 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable. 10617 * Otherwise we synchronize with the context stealer or the thread 10618 * that required us to change out our MMU registers (such 10619 * as a thread changing out our TSB while we were running) by 10620 * locking the HAT and grabbing the rwlock on the context as a 10621 * reader temporarily. 10622 */ 10623 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) || 10624 ctxnum == INVALID_CONTEXT); 10625 10626 if (ctxnum == INVALID_CONTEXT) { 10627 /* 10628 * Must set lwp state to LWP_SYS before 10629 * trying to acquire any adaptive lock 10630 */ 10631 lwp = ttolwp(curthread); 10632 ASSERT(lwp); 10633 lwp_save_state = lwp->lwp_state; 10634 lwp->lwp_state = LWP_SYS; 10635 10636 hatlockp = sfmmu_hat_enter(sfmmup); 10637 retry: 10638 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 10639 tsbinfop = tsbinfop->tsb_next) { 10640 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) { 10641 cv_wait(&sfmmup->sfmmu_tsb_cv, 10642 HATLOCK_MUTEXP(hatlockp)); 10643 goto retry; 10644 } 10645 } 10646 10647 /* 10648 * Wait for ISM maps to be updated. 10649 */ 10650 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) { 10651 cv_wait(&sfmmup->sfmmu_tsb_cv, 10652 HATLOCK_MUTEXP(hatlockp)); 10653 goto retry; 10654 } 10655 10656 /* 10657 * If we're swapping in, get TSB(s). Note that we must do 10658 * this before we get a ctx or load the MMU state. Once 10659 * we swap in we have to recheck to make sure the TSB(s) and 10660 * ISM mappings didn't change while we slept. 10661 */ 10662 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 10663 sfmmu_tsb_swapin(sfmmup, hatlockp); 10664 goto retry; 10665 } 10666 10667 sfmmu_get_ctx(sfmmup); 10668 10669 sfmmu_hat_exit(hatlockp); 10670 /* 10671 * Must restore lwp_state if not calling 10672 * trap() for further processing. Restore 10673 * it anyway. 10674 */ 10675 lwp->lwp_state = lwp_save_state; 10676 if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 || 10677 sfmmup->sfmmu_ttecnt[TTE64K] != 0 || 10678 sfmmup->sfmmu_ttecnt[TTE512K] != 0 || 10679 sfmmup->sfmmu_ttecnt[TTE4M] != 0 || 10680 sfmmup->sfmmu_ttecnt[TTE32M] != 0 || 10681 sfmmup->sfmmu_ttecnt[TTE256M] != 0) { 10682 return; 10683 } 10684 if (traptype == T_DATA_PROT) { 10685 traptype = T_DATA_MMU_MISS; 10686 } 10687 } 10688 trap(rp, (caddr_t)tagaccess, traptype, 0); 10689 } 10690 10691 /* 10692 * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and 10693 * TTE_SUSPENDED bit set in tte we block on aquiring a page lock 10694 * rather than spinning to avoid send mondo timeouts with 10695 * interrupts enabled. When the lock is acquired it is immediately 10696 * released and we return back to sfmmu_vatopfn just after 10697 * the GET_TTE call. 10698 */ 10699 void 10700 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep) 10701 { 10702 struct page **pp; 10703 10704 (void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE); 10705 as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE); 10706 } 10707 10708 /* 10709 * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and 10710 * TTE_SUSPENDED bit set in tte. We do this so that we can handle 10711 * cross traps which cannot be handled while spinning in the 10712 * trap handlers. Simply enter and exit the kpr_suspendlock spin 10713 * mutex, which is held by the holder of the suspend bit, and then 10714 * retry the trapped instruction after unwinding. 10715 */ 10716 /*ARGSUSED*/ 10717 void 10718 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype) 10719 { 10720 ASSERT(curthread != kreloc_thread); 10721 mutex_enter(&kpr_suspendlock); 10722 mutex_exit(&kpr_suspendlock); 10723 } 10724 10725 /* 10726 * Special routine to flush out ism mappings- TSBs, TLBs and D-caches. 10727 * This routine may be called with all cpu's captured. Therefore, the 10728 * caller is responsible for holding all locks and disabling kernel 10729 * preemption. 10730 */ 10731 /* ARGSUSED */ 10732 static void 10733 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup, 10734 struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag) 10735 { 10736 cpuset_t cpuset; 10737 caddr_t va; 10738 ism_ment_t *ment; 10739 sfmmu_t *sfmmup; 10740 #ifdef VAC 10741 int vcolor; 10742 #endif 10743 int ttesz; 10744 10745 /* 10746 * Walk the ism_hat's mapping list and flush the page 10747 * from every hat sharing this ism_hat. This routine 10748 * may be called while all cpu's have been captured. 10749 * Therefore we can't attempt to grab any locks. For now 10750 * this means we will protect the ism mapping list under 10751 * a single lock which will be grabbed by the caller. 10752 * If hat_share/unshare scalibility becomes a performance 10753 * problem then we may need to re-think ism mapping list locking. 10754 */ 10755 ASSERT(ism_sfmmup->sfmmu_ismhat); 10756 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 10757 addr = addr - ISMID_STARTADDR; 10758 for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) { 10759 10760 sfmmup = ment->iment_hat; 10761 10762 va = ment->iment_base_va; 10763 va = (caddr_t)((uintptr_t)va + (uintptr_t)addr); 10764 10765 /* 10766 * Flush TSB of ISM mappings. 10767 */ 10768 ttesz = get_hblk_ttesz(hmeblkp); 10769 if (ttesz == TTE8K || ttesz == TTE4M) { 10770 sfmmu_unload_tsb(sfmmup, va, ttesz); 10771 } else { 10772 caddr_t sva = va; 10773 caddr_t eva; 10774 ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp)); 10775 eva = sva + get_hblk_span(hmeblkp); 10776 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); 10777 } 10778 10779 cpuset = sfmmup->sfmmu_cpusran; 10780 CPUSET_AND(cpuset, cpu_ready_set); 10781 CPUSET_DEL(cpuset, CPU->cpu_id); 10782 10783 SFMMU_XCALL_STATS(sfmmup); 10784 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va, 10785 (uint64_t)sfmmup); 10786 10787 vtag_flushpage(va, (uint64_t)sfmmup); 10788 10789 #ifdef VAC 10790 /* 10791 * Flush D$ 10792 * When flushing D$ we must flush all 10793 * cpu's. See sfmmu_cache_flush(). 10794 */ 10795 if (cache_flush_flag == CACHE_FLUSH) { 10796 cpuset = cpu_ready_set; 10797 CPUSET_DEL(cpuset, CPU->cpu_id); 10798 10799 SFMMU_XCALL_STATS(sfmmup); 10800 vcolor = addr_to_vcolor(va); 10801 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 10802 vac_flushpage(pfnum, vcolor); 10803 } 10804 #endif /* VAC */ 10805 } 10806 } 10807 10808 /* 10809 * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of 10810 * a particular virtual address and ctx. If noflush is set we do not 10811 * flush the TLB/TSB. This function may or may not be called with the 10812 * HAT lock held. 10813 */ 10814 static void 10815 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 10816 pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag, 10817 int hat_lock_held) 10818 { 10819 #ifdef VAC 10820 int vcolor; 10821 #endif 10822 cpuset_t cpuset; 10823 hatlock_t *hatlockp; 10824 10825 #if defined(lint) && !defined(VAC) 10826 pfnum = pfnum; 10827 cpu_flag = cpu_flag; 10828 cache_flush_flag = cache_flush_flag; 10829 #endif 10830 /* 10831 * There is no longer a need to protect against ctx being 10832 * stolen here since we don't store the ctx in the TSB anymore. 10833 */ 10834 #ifdef VAC 10835 vcolor = addr_to_vcolor(addr); 10836 #endif 10837 10838 /* 10839 * We must hold the hat lock during the flush of TLB, 10840 * to avoid a race with sfmmu_invalidate_ctx(), where 10841 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT, 10842 * causing TLB demap routine to skip flush on that MMU. 10843 * If the context on a MMU has already been set to 10844 * INVALID_CONTEXT, we just get an extra flush on 10845 * that MMU. 10846 */ 10847 if (!hat_lock_held && !tlb_noflush) 10848 hatlockp = sfmmu_hat_enter(sfmmup); 10849 10850 kpreempt_disable(); 10851 if (!tlb_noflush) { 10852 /* 10853 * Flush the TSB and TLB. 10854 */ 10855 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp); 10856 10857 cpuset = sfmmup->sfmmu_cpusran; 10858 CPUSET_AND(cpuset, cpu_ready_set); 10859 CPUSET_DEL(cpuset, CPU->cpu_id); 10860 10861 SFMMU_XCALL_STATS(sfmmup); 10862 10863 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, 10864 (uint64_t)sfmmup); 10865 10866 vtag_flushpage(addr, (uint64_t)sfmmup); 10867 } 10868 10869 if (!hat_lock_held && !tlb_noflush) 10870 sfmmu_hat_exit(hatlockp); 10871 10872 #ifdef VAC 10873 /* 10874 * Flush the D$ 10875 * 10876 * Even if the ctx is stolen, we need to flush the 10877 * cache. Our ctx stealer only flushes the TLBs. 10878 */ 10879 if (cache_flush_flag == CACHE_FLUSH) { 10880 if (cpu_flag & FLUSH_ALL_CPUS) { 10881 cpuset = cpu_ready_set; 10882 } else { 10883 cpuset = sfmmup->sfmmu_cpusran; 10884 CPUSET_AND(cpuset, cpu_ready_set); 10885 } 10886 CPUSET_DEL(cpuset, CPU->cpu_id); 10887 SFMMU_XCALL_STATS(sfmmup); 10888 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 10889 vac_flushpage(pfnum, vcolor); 10890 } 10891 #endif /* VAC */ 10892 kpreempt_enable(); 10893 } 10894 10895 /* 10896 * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual 10897 * address and ctx. If noflush is set we do not currently do anything. 10898 * This function may or may not be called with the HAT lock held. 10899 */ 10900 static void 10901 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 10902 int tlb_noflush, int hat_lock_held) 10903 { 10904 cpuset_t cpuset; 10905 hatlock_t *hatlockp; 10906 10907 /* 10908 * If the process is exiting we have nothing to do. 10909 */ 10910 if (tlb_noflush) 10911 return; 10912 10913 /* 10914 * Flush TSB. 10915 */ 10916 if (!hat_lock_held) 10917 hatlockp = sfmmu_hat_enter(sfmmup); 10918 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp); 10919 10920 kpreempt_disable(); 10921 10922 cpuset = sfmmup->sfmmu_cpusran; 10923 CPUSET_AND(cpuset, cpu_ready_set); 10924 CPUSET_DEL(cpuset, CPU->cpu_id); 10925 10926 SFMMU_XCALL_STATS(sfmmup); 10927 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup); 10928 10929 vtag_flushpage(addr, (uint64_t)sfmmup); 10930 10931 if (!hat_lock_held) 10932 sfmmu_hat_exit(hatlockp); 10933 10934 kpreempt_enable(); 10935 10936 } 10937 10938 /* 10939 * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall 10940 * call handler that can flush a range of pages to save on xcalls. 10941 */ 10942 static int sfmmu_xcall_save; 10943 10944 static void 10945 sfmmu_tlb_range_demap(demap_range_t *dmrp) 10946 { 10947 sfmmu_t *sfmmup = dmrp->dmr_sfmmup; 10948 hatlock_t *hatlockp; 10949 cpuset_t cpuset; 10950 uint64_t sfmmu_pgcnt; 10951 pgcnt_t pgcnt = 0; 10952 int pgunload = 0; 10953 int dirtypg = 0; 10954 caddr_t addr = dmrp->dmr_addr; 10955 caddr_t eaddr; 10956 uint64_t bitvec = dmrp->dmr_bitvec; 10957 10958 ASSERT(bitvec & 1); 10959 10960 /* 10961 * Flush TSB and calculate number of pages to flush. 10962 */ 10963 while (bitvec != 0) { 10964 dirtypg = 0; 10965 /* 10966 * Find the first page to flush and then count how many 10967 * pages there are after it that also need to be flushed. 10968 * This way the number of TSB flushes is minimized. 10969 */ 10970 while ((bitvec & 1) == 0) { 10971 pgcnt++; 10972 addr += MMU_PAGESIZE; 10973 bitvec >>= 1; 10974 } 10975 while (bitvec & 1) { 10976 dirtypg++; 10977 bitvec >>= 1; 10978 } 10979 eaddr = addr + ptob(dirtypg); 10980 hatlockp = sfmmu_hat_enter(sfmmup); 10981 sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K); 10982 sfmmu_hat_exit(hatlockp); 10983 pgunload += dirtypg; 10984 addr = eaddr; 10985 pgcnt += dirtypg; 10986 } 10987 10988 ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr); 10989 if (sfmmup->sfmmu_free == 0) { 10990 addr = dmrp->dmr_addr; 10991 bitvec = dmrp->dmr_bitvec; 10992 10993 /* 10994 * make sure it has SFMMU_PGCNT_SHIFT bits only, 10995 * as it will be used to pack argument for xt_some 10996 */ 10997 ASSERT((pgcnt > 0) && 10998 (pgcnt <= (1 << SFMMU_PGCNT_SHIFT))); 10999 11000 /* 11001 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in 11002 * the low 6 bits of sfmmup. This is doable since pgcnt 11003 * always >= 1. 11004 */ 11005 ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK)); 11006 sfmmu_pgcnt = (uint64_t)sfmmup | 11007 ((pgcnt - 1) & SFMMU_PGCNT_MASK); 11008 11009 /* 11010 * We must hold the hat lock during the flush of TLB, 11011 * to avoid a race with sfmmu_invalidate_ctx(), where 11012 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT, 11013 * causing TLB demap routine to skip flush on that MMU. 11014 * If the context on a MMU has already been set to 11015 * INVALID_CONTEXT, we just get an extra flush on 11016 * that MMU. 11017 */ 11018 hatlockp = sfmmu_hat_enter(sfmmup); 11019 kpreempt_disable(); 11020 11021 cpuset = sfmmup->sfmmu_cpusran; 11022 CPUSET_AND(cpuset, cpu_ready_set); 11023 CPUSET_DEL(cpuset, CPU->cpu_id); 11024 11025 SFMMU_XCALL_STATS(sfmmup); 11026 xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr, 11027 sfmmu_pgcnt); 11028 11029 for (; bitvec != 0; bitvec >>= 1) { 11030 if (bitvec & 1) 11031 vtag_flushpage(addr, (uint64_t)sfmmup); 11032 addr += MMU_PAGESIZE; 11033 } 11034 kpreempt_enable(); 11035 sfmmu_hat_exit(hatlockp); 11036 11037 sfmmu_xcall_save += (pgunload-1); 11038 } 11039 dmrp->dmr_bitvec = 0; 11040 } 11041 11042 /* 11043 * In cases where we need to synchronize with TLB/TSB miss trap 11044 * handlers, _and_ need to flush the TLB, it's a lot easier to 11045 * throw away the context from the process than to do a 11046 * special song and dance to keep things consistent for the 11047 * handlers. 11048 * 11049 * Since the process suddenly ends up without a context and our caller 11050 * holds the hat lock, threads that fault after this function is called 11051 * will pile up on the lock. We can then do whatever we need to 11052 * atomically from the context of the caller. The first blocked thread 11053 * to resume executing will get the process a new context, and the 11054 * process will resume executing. 11055 * 11056 * One added advantage of this approach is that on MMUs that 11057 * support a "flush all" operation, we will delay the flush until 11058 * cnum wrap-around, and then flush the TLB one time. This 11059 * is rather rare, so it's a lot less expensive than making 8000 11060 * x-calls to flush the TLB 8000 times. 11061 * 11062 * A per-process (PP) lock is used to synchronize ctx allocations in 11063 * resume() and ctx invalidations here. 11064 */ 11065 static void 11066 sfmmu_invalidate_ctx(sfmmu_t *sfmmup) 11067 { 11068 cpuset_t cpuset; 11069 int cnum, currcnum; 11070 mmu_ctx_t *mmu_ctxp; 11071 int i; 11072 uint_t pstate_save; 11073 11074 SFMMU_STAT(sf_ctx_inv); 11075 11076 ASSERT(sfmmu_hat_lock_held(sfmmup)); 11077 ASSERT(sfmmup != ksfmmup); 11078 11079 kpreempt_disable(); 11080 11081 mmu_ctxp = CPU_MMU_CTXP(CPU); 11082 ASSERT(mmu_ctxp); 11083 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms); 11084 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]); 11085 11086 currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum; 11087 11088 pstate_save = sfmmu_disable_intrs(); 11089 11090 lock_set(&sfmmup->sfmmu_ctx_lock); /* acquire PP lock */ 11091 /* set HAT cnum invalid across all context domains. */ 11092 for (i = 0; i < max_mmu_ctxdoms; i++) { 11093 11094 cnum = sfmmup->sfmmu_ctxs[i].cnum; 11095 if (cnum == INVALID_CONTEXT) { 11096 continue; 11097 } 11098 11099 sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT; 11100 } 11101 membar_enter(); /* make sure globally visible to all CPUs */ 11102 lock_clear(&sfmmup->sfmmu_ctx_lock); /* release PP lock */ 11103 11104 sfmmu_enable_intrs(pstate_save); 11105 11106 cpuset = sfmmup->sfmmu_cpusran; 11107 CPUSET_DEL(cpuset, CPU->cpu_id); 11108 CPUSET_AND(cpuset, cpu_ready_set); 11109 if (!CPUSET_ISNULL(cpuset)) { 11110 SFMMU_XCALL_STATS(sfmmup); 11111 xt_some(cpuset, sfmmu_raise_tsb_exception, 11112 (uint64_t)sfmmup, INVALID_CONTEXT); 11113 xt_sync(cpuset); 11114 SFMMU_STAT(sf_tsb_raise_exception); 11115 SFMMU_MMU_STAT(mmu_tsb_raise_exception); 11116 } 11117 11118 /* 11119 * If the hat to-be-invalidated is the same as the current 11120 * process on local CPU we need to invalidate 11121 * this CPU context as well. 11122 */ 11123 if ((sfmmu_getctx_sec() == currcnum) && 11124 (currcnum != INVALID_CONTEXT)) { 11125 sfmmu_setctx_sec(INVALID_CONTEXT); 11126 sfmmu_clear_utsbinfo(); 11127 } 11128 11129 kpreempt_enable(); 11130 11131 /* 11132 * we hold the hat lock, so nobody should allocate a context 11133 * for us yet 11134 */ 11135 ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT); 11136 } 11137 11138 #ifdef VAC 11139 /* 11140 * We need to flush the cache in all cpus. It is possible that 11141 * a process referenced a page as cacheable but has sinced exited 11142 * and cleared the mapping list. We still to flush it but have no 11143 * state so all cpus is the only alternative. 11144 */ 11145 void 11146 sfmmu_cache_flush(pfn_t pfnum, int vcolor) 11147 { 11148 cpuset_t cpuset; 11149 11150 kpreempt_disable(); 11151 cpuset = cpu_ready_set; 11152 CPUSET_DEL(cpuset, CPU->cpu_id); 11153 SFMMU_XCALL_STATS(NULL); /* account to any ctx */ 11154 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 11155 xt_sync(cpuset); 11156 vac_flushpage(pfnum, vcolor); 11157 kpreempt_enable(); 11158 } 11159 11160 void 11161 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum) 11162 { 11163 cpuset_t cpuset; 11164 11165 ASSERT(vcolor >= 0); 11166 11167 kpreempt_disable(); 11168 cpuset = cpu_ready_set; 11169 CPUSET_DEL(cpuset, CPU->cpu_id); 11170 SFMMU_XCALL_STATS(NULL); /* account to any ctx */ 11171 xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum); 11172 xt_sync(cpuset); 11173 vac_flushcolor(vcolor, pfnum); 11174 kpreempt_enable(); 11175 } 11176 #endif /* VAC */ 11177 11178 /* 11179 * We need to prevent processes from accessing the TSB using a cached physical 11180 * address. It's alright if they try to access the TSB via virtual address 11181 * since they will just fault on that virtual address once the mapping has 11182 * been suspended. 11183 */ 11184 #pragma weak sendmondo_in_recover 11185 11186 /* ARGSUSED */ 11187 static int 11188 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo) 11189 { 11190 hatlock_t *hatlockp; 11191 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo; 11192 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu; 11193 extern uint32_t sendmondo_in_recover; 11194 11195 if (flags != HAT_PRESUSPEND) 11196 return (0); 11197 11198 hatlockp = sfmmu_hat_enter(sfmmup); 11199 11200 tsbinfop->tsb_flags |= TSB_RELOC_FLAG; 11201 11202 /* 11203 * For Cheetah+ Erratum 25: 11204 * Wait for any active recovery to finish. We can't risk 11205 * relocating the TSB of the thread running mondo_recover_proc() 11206 * since, if we did that, we would deadlock. The scenario we are 11207 * trying to avoid is as follows: 11208 * 11209 * THIS CPU RECOVER CPU 11210 * -------- ----------- 11211 * Begins recovery, walking through TSB 11212 * hat_pagesuspend() TSB TTE 11213 * TLB miss on TSB TTE, spins at TL1 11214 * xt_sync() 11215 * send_mondo_timeout() 11216 * mondo_recover_proc() 11217 * ((deadlocked)) 11218 * 11219 * The second half of the workaround is that mondo_recover_proc() 11220 * checks to see if the tsb_info has the RELOC flag set, and if it 11221 * does, it skips over that TSB without ever touching tsbinfop->tsb_va 11222 * and hence avoiding the TLB miss that could result in a deadlock. 11223 */ 11224 if (&sendmondo_in_recover) { 11225 membar_enter(); /* make sure RELOC flag visible */ 11226 while (sendmondo_in_recover) { 11227 drv_usecwait(1); 11228 membar_consumer(); 11229 } 11230 } 11231 11232 sfmmu_invalidate_ctx(sfmmup); 11233 sfmmu_hat_exit(hatlockp); 11234 11235 return (0); 11236 } 11237 11238 /* ARGSUSED */ 11239 static int 11240 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags, 11241 void *tsbinfo, pfn_t newpfn) 11242 { 11243 hatlock_t *hatlockp; 11244 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo; 11245 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu; 11246 11247 if (flags != HAT_POSTUNSUSPEND) 11248 return (0); 11249 11250 hatlockp = sfmmu_hat_enter(sfmmup); 11251 11252 SFMMU_STAT(sf_tsb_reloc); 11253 11254 /* 11255 * The process may have swapped out while we were relocating one 11256 * of its TSBs. If so, don't bother doing the setup since the 11257 * process can't be using the memory anymore. 11258 */ 11259 if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) { 11260 ASSERT(va == tsbinfop->tsb_va); 11261 sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn); 11262 sfmmu_setup_tsbinfo(sfmmup); 11263 11264 if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) { 11265 sfmmu_inv_tsb(tsbinfop->tsb_va, 11266 TSB_BYTES(tsbinfop->tsb_szc)); 11267 tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED; 11268 } 11269 } 11270 11271 membar_exit(); 11272 tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG; 11273 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 11274 11275 sfmmu_hat_exit(hatlockp); 11276 11277 return (0); 11278 } 11279 11280 /* 11281 * Allocate and initialize a tsb_info structure. Note that we may or may not 11282 * allocate a TSB here, depending on the flags passed in. 11283 */ 11284 static int 11285 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask, 11286 uint_t flags, sfmmu_t *sfmmup) 11287 { 11288 int err; 11289 11290 *tsbinfopp = (struct tsb_info *)kmem_cache_alloc( 11291 sfmmu_tsbinfo_cache, KM_SLEEP); 11292 11293 if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask, 11294 tsb_szc, flags, sfmmup)) != 0) { 11295 kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp); 11296 SFMMU_STAT(sf_tsb_allocfail); 11297 *tsbinfopp = NULL; 11298 return (err); 11299 } 11300 SFMMU_STAT(sf_tsb_alloc); 11301 11302 /* 11303 * Bump the TSB size counters for this TSB size. 11304 */ 11305 (*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++; 11306 return (0); 11307 } 11308 11309 static void 11310 sfmmu_tsb_free(struct tsb_info *tsbinfo) 11311 { 11312 caddr_t tsbva = tsbinfo->tsb_va; 11313 uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc); 11314 struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache; 11315 vmem_t *vmp = tsbinfo->tsb_vmp; 11316 11317 /* 11318 * If we allocated this TSB from relocatable kernel memory, then we 11319 * need to uninstall the callback handler. 11320 */ 11321 if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) { 11322 uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT; 11323 caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask); 11324 page_t **ppl; 11325 int ret; 11326 11327 ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE); 11328 ASSERT(ret == 0); 11329 hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo, 11330 0, NULL); 11331 as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE); 11332 } 11333 11334 if (kmem_cachep != NULL) { 11335 kmem_cache_free(kmem_cachep, tsbva); 11336 } else { 11337 vmem_xfree(vmp, (void *)tsbva, tsb_size); 11338 } 11339 tsbinfo->tsb_va = (caddr_t)0xbad00bad; 11340 atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size); 11341 } 11342 11343 static void 11344 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo) 11345 { 11346 if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) { 11347 sfmmu_tsb_free(tsbinfo); 11348 } 11349 kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo); 11350 11351 } 11352 11353 /* 11354 * Setup all the references to physical memory for this tsbinfo. 11355 * The underlying page(s) must be locked. 11356 */ 11357 static void 11358 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn) 11359 { 11360 ASSERT(pfn != PFN_INVALID); 11361 ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va)); 11362 11363 #ifndef sun4v 11364 if (tsbinfo->tsb_szc == 0) { 11365 sfmmu_memtte(&tsbinfo->tsb_tte, pfn, 11366 PROT_WRITE|PROT_READ, TTE8K); 11367 } else { 11368 /* 11369 * Round down PA and use a large mapping; the handlers will 11370 * compute the TSB pointer at the correct offset into the 11371 * big virtual page. NOTE: this assumes all TSBs larger 11372 * than 8K must come from physically contiguous slabs of 11373 * size tsb_slab_size. 11374 */ 11375 sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask, 11376 PROT_WRITE|PROT_READ, tsb_slab_ttesz); 11377 } 11378 tsbinfo->tsb_pa = ptob(pfn); 11379 11380 TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */ 11381 TTE_SET_MOD(&tsbinfo->tsb_tte); /* enable writes */ 11382 11383 ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte)); 11384 ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte)); 11385 #else /* sun4v */ 11386 tsbinfo->tsb_pa = ptob(pfn); 11387 #endif /* sun4v */ 11388 } 11389 11390 11391 /* 11392 * Returns zero on success, ENOMEM if over the high water mark, 11393 * or EAGAIN if the caller needs to retry with a smaller TSB 11394 * size (or specify TSB_FORCEALLOC if the allocation can't fail). 11395 * 11396 * This call cannot fail to allocate a TSB if TSB_FORCEALLOC 11397 * is specified and the TSB requested is PAGESIZE, though it 11398 * may sleep waiting for memory if sufficient memory is not 11399 * available. 11400 */ 11401 static int 11402 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask, 11403 int tsbcode, uint_t flags, sfmmu_t *sfmmup) 11404 { 11405 caddr_t vaddr = NULL; 11406 caddr_t slab_vaddr; 11407 uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT; 11408 int tsbbytes = TSB_BYTES(tsbcode); 11409 int lowmem = 0; 11410 struct kmem_cache *kmem_cachep = NULL; 11411 vmem_t *vmp = NULL; 11412 lgrp_id_t lgrpid = LGRP_NONE; 11413 pfn_t pfn; 11414 uint_t cbflags = HAC_SLEEP; 11415 page_t **pplist; 11416 int ret; 11417 11418 if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK)) 11419 flags |= TSB_ALLOC; 11420 11421 ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE); 11422 11423 tsbinfo->tsb_sfmmu = sfmmup; 11424 11425 /* 11426 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and 11427 * return. 11428 */ 11429 if ((flags & TSB_ALLOC) == 0) { 11430 tsbinfo->tsb_szc = tsbcode; 11431 tsbinfo->tsb_ttesz_mask = tteszmask; 11432 tsbinfo->tsb_va = (caddr_t)0xbadbadbeef; 11433 tsbinfo->tsb_pa = -1; 11434 tsbinfo->tsb_tte.ll = 0; 11435 tsbinfo->tsb_next = NULL; 11436 tsbinfo->tsb_flags = TSB_SWAPPED; 11437 tsbinfo->tsb_cache = NULL; 11438 tsbinfo->tsb_vmp = NULL; 11439 return (0); 11440 } 11441 11442 #ifdef DEBUG 11443 /* 11444 * For debugging: 11445 * Randomly force allocation failures every tsb_alloc_mtbf 11446 * tries if TSB_FORCEALLOC is not specified. This will 11447 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if 11448 * it is even, to allow testing of both failure paths... 11449 */ 11450 if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) && 11451 (tsb_alloc_count++ == tsb_alloc_mtbf)) { 11452 tsb_alloc_count = 0; 11453 tsb_alloc_fail_mtbf++; 11454 return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN); 11455 } 11456 #endif /* DEBUG */ 11457 11458 /* 11459 * Enforce high water mark if we are not doing a forced allocation 11460 * and are not shrinking a process' TSB. 11461 */ 11462 if ((flags & TSB_SHRINK) == 0 && 11463 (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) { 11464 if ((flags & TSB_FORCEALLOC) == 0) 11465 return (ENOMEM); 11466 lowmem = 1; 11467 } 11468 11469 /* 11470 * Allocate from the correct location based upon the size of the TSB 11471 * compared to the base page size, and what memory conditions dictate. 11472 * Note we always do nonblocking allocations from the TSB arena since 11473 * we don't want memory fragmentation to cause processes to block 11474 * indefinitely waiting for memory; until the kernel algorithms that 11475 * coalesce large pages are improved this is our best option. 11476 * 11477 * Algorithm: 11478 * If allocating a "large" TSB (>8K), allocate from the 11479 * appropriate kmem_tsb_default_arena vmem arena 11480 * else if low on memory or the TSB_FORCEALLOC flag is set or 11481 * tsb_forceheap is set 11482 * Allocate from kernel heap via sfmmu_tsb8k_cache with 11483 * KM_SLEEP (never fails) 11484 * else 11485 * Allocate from appropriate sfmmu_tsb_cache with 11486 * KM_NOSLEEP 11487 * endif 11488 */ 11489 if (tsb_lgrp_affinity) 11490 lgrpid = lgrp_home_id(curthread); 11491 if (lgrpid == LGRP_NONE) 11492 lgrpid = 0; /* use lgrp of boot CPU */ 11493 11494 if (tsbbytes > MMU_PAGESIZE) { 11495 vmp = kmem_tsb_default_arena[lgrpid]; 11496 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0, 11497 NULL, NULL, VM_NOSLEEP); 11498 #ifdef DEBUG 11499 } else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) { 11500 #else /* !DEBUG */ 11501 } else if (lowmem || (flags & TSB_FORCEALLOC)) { 11502 #endif /* DEBUG */ 11503 kmem_cachep = sfmmu_tsb8k_cache; 11504 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP); 11505 ASSERT(vaddr != NULL); 11506 } else { 11507 kmem_cachep = sfmmu_tsb_cache[lgrpid]; 11508 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP); 11509 } 11510 11511 tsbinfo->tsb_cache = kmem_cachep; 11512 tsbinfo->tsb_vmp = vmp; 11513 11514 if (vaddr == NULL) { 11515 return (EAGAIN); 11516 } 11517 11518 atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes); 11519 kmem_cachep = tsbinfo->tsb_cache; 11520 11521 /* 11522 * If we are allocating from outside the cage, then we need to 11523 * register a relocation callback handler. Note that for now 11524 * since pseudo mappings always hang off of the slab's root page, 11525 * we need only lock the first 8K of the TSB slab. This is a bit 11526 * hacky but it is good for performance. 11527 */ 11528 if (kmem_cachep != sfmmu_tsb8k_cache) { 11529 slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask); 11530 ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE); 11531 ASSERT(ret == 0); 11532 ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes, 11533 cbflags, (void *)tsbinfo, &pfn, NULL); 11534 11535 /* 11536 * Need to free up resources if we could not successfully 11537 * add the callback function and return an error condition. 11538 */ 11539 if (ret != 0) { 11540 if (kmem_cachep) { 11541 kmem_cache_free(kmem_cachep, vaddr); 11542 } else { 11543 vmem_xfree(vmp, (void *)vaddr, tsbbytes); 11544 } 11545 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, 11546 S_WRITE); 11547 return (EAGAIN); 11548 } 11549 } else { 11550 /* 11551 * Since allocation of 8K TSBs from heap is rare and occurs 11552 * during memory pressure we allocate them from permanent 11553 * memory rather than using callbacks to get the PFN. 11554 */ 11555 pfn = hat_getpfnum(kas.a_hat, vaddr); 11556 } 11557 11558 tsbinfo->tsb_va = vaddr; 11559 tsbinfo->tsb_szc = tsbcode; 11560 tsbinfo->tsb_ttesz_mask = tteszmask; 11561 tsbinfo->tsb_next = NULL; 11562 tsbinfo->tsb_flags = 0; 11563 11564 sfmmu_tsbinfo_setup_phys(tsbinfo, pfn); 11565 11566 if (kmem_cachep != sfmmu_tsb8k_cache) { 11567 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE); 11568 } 11569 11570 sfmmu_inv_tsb(vaddr, tsbbytes); 11571 return (0); 11572 } 11573 11574 /* 11575 * Initialize per cpu tsb and per cpu tsbmiss_area 11576 */ 11577 void 11578 sfmmu_init_tsbs(void) 11579 { 11580 int i; 11581 struct tsbmiss *tsbmissp; 11582 struct kpmtsbm *kpmtsbmp; 11583 #ifndef sun4v 11584 extern int dcache_line_mask; 11585 #endif /* sun4v */ 11586 extern uint_t vac_colors; 11587 11588 /* 11589 * Init. tsb miss area. 11590 */ 11591 tsbmissp = tsbmiss_area; 11592 11593 for (i = 0; i < NCPU; tsbmissp++, i++) { 11594 /* 11595 * initialize the tsbmiss area. 11596 * Do this for all possible CPUs as some may be added 11597 * while the system is running. There is no cost to this. 11598 */ 11599 tsbmissp->ksfmmup = ksfmmup; 11600 #ifndef sun4v 11601 tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask; 11602 #endif /* sun4v */ 11603 tsbmissp->khashstart = 11604 (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash); 11605 tsbmissp->uhashstart = 11606 (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash); 11607 tsbmissp->khashsz = khmehash_num; 11608 tsbmissp->uhashsz = uhmehash_num; 11609 } 11610 11611 sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B', 11612 sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0); 11613 11614 if (kpm_enable == 0) 11615 return; 11616 11617 /* -- Begin KPM specific init -- */ 11618 11619 if (kpm_smallpages) { 11620 /* 11621 * If we're using base pagesize pages for seg_kpm 11622 * mappings, we use the kernel TSB since we can't afford 11623 * to allocate a second huge TSB for these mappings. 11624 */ 11625 kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base; 11626 kpm_tsbsz = ktsb_szcode; 11627 kpmsm_tsbbase = kpm_tsbbase; 11628 kpmsm_tsbsz = kpm_tsbsz; 11629 } else { 11630 /* 11631 * In VAC conflict case, just put the entries in the 11632 * kernel 8K indexed TSB for now so we can find them. 11633 * This could really be changed in the future if we feel 11634 * the need... 11635 */ 11636 kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base; 11637 kpmsm_tsbsz = ktsb_szcode; 11638 kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base; 11639 kpm_tsbsz = ktsb4m_szcode; 11640 } 11641 11642 kpmtsbmp = kpmtsbm_area; 11643 for (i = 0; i < NCPU; kpmtsbmp++, i++) { 11644 /* 11645 * Initialize the kpmtsbm area. 11646 * Do this for all possible CPUs as some may be added 11647 * while the system is running. There is no cost to this. 11648 */ 11649 kpmtsbmp->vbase = kpm_vbase; 11650 kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors; 11651 kpmtsbmp->sz_shift = kpm_size_shift; 11652 kpmtsbmp->kpmp_shift = kpmp_shift; 11653 kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft; 11654 if (kpm_smallpages == 0) { 11655 kpmtsbmp->kpmp_table_sz = kpmp_table_sz; 11656 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table); 11657 } else { 11658 kpmtsbmp->kpmp_table_sz = kpmp_stable_sz; 11659 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable); 11660 } 11661 kpmtsbmp->msegphashpa = va_to_pa(memseg_phash); 11662 kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG; 11663 #ifdef DEBUG 11664 kpmtsbmp->flags |= (kpm_tsbmtl) ? KPMTSBM_TLTSBM_FLAG : 0; 11665 #endif /* DEBUG */ 11666 if (ktsb_phys) 11667 kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG; 11668 } 11669 11670 /* -- End KPM specific init -- */ 11671 } 11672 11673 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */ 11674 struct tsb_info ktsb_info[2]; 11675 11676 /* 11677 * Called from hat_kern_setup() to setup the tsb_info for ksfmmup. 11678 */ 11679 void 11680 sfmmu_init_ktsbinfo() 11681 { 11682 ASSERT(ksfmmup != NULL); 11683 ASSERT(ksfmmup->sfmmu_tsb == NULL); 11684 /* 11685 * Allocate tsbinfos for kernel and copy in data 11686 * to make debug easier and sun4v setup easier. 11687 */ 11688 ktsb_info[0].tsb_sfmmu = ksfmmup; 11689 ktsb_info[0].tsb_szc = ktsb_szcode; 11690 ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K; 11691 ktsb_info[0].tsb_va = ktsb_base; 11692 ktsb_info[0].tsb_pa = ktsb_pbase; 11693 ktsb_info[0].tsb_flags = 0; 11694 ktsb_info[0].tsb_tte.ll = 0; 11695 ktsb_info[0].tsb_cache = NULL; 11696 11697 ktsb_info[1].tsb_sfmmu = ksfmmup; 11698 ktsb_info[1].tsb_szc = ktsb4m_szcode; 11699 ktsb_info[1].tsb_ttesz_mask = TSB4M; 11700 ktsb_info[1].tsb_va = ktsb4m_base; 11701 ktsb_info[1].tsb_pa = ktsb4m_pbase; 11702 ktsb_info[1].tsb_flags = 0; 11703 ktsb_info[1].tsb_tte.ll = 0; 11704 ktsb_info[1].tsb_cache = NULL; 11705 11706 /* Link them into ksfmmup. */ 11707 ktsb_info[0].tsb_next = &ktsb_info[1]; 11708 ktsb_info[1].tsb_next = NULL; 11709 ksfmmup->sfmmu_tsb = &ktsb_info[0]; 11710 11711 sfmmu_setup_tsbinfo(ksfmmup); 11712 } 11713 11714 /* 11715 * Cache the last value returned from va_to_pa(). If the VA specified 11716 * in the current call to cached_va_to_pa() maps to the same Page (as the 11717 * previous call to cached_va_to_pa()), then compute the PA using 11718 * cached info, else call va_to_pa(). 11719 * 11720 * Note: this function is neither MT-safe nor consistent in the presence 11721 * of multiple, interleaved threads. This function was created to enable 11722 * an optimization used during boot (at a point when there's only one thread 11723 * executing on the "boot CPU", and before startup_vm() has been called). 11724 */ 11725 static uint64_t 11726 cached_va_to_pa(void *vaddr) 11727 { 11728 static uint64_t prev_vaddr_base = 0; 11729 static uint64_t prev_pfn = 0; 11730 11731 if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) { 11732 return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET)); 11733 } else { 11734 uint64_t pa = va_to_pa(vaddr); 11735 11736 if (pa != ((uint64_t)-1)) { 11737 /* 11738 * Computed physical address is valid. Cache its 11739 * related info for the next cached_va_to_pa() call. 11740 */ 11741 prev_pfn = pa & MMU_PAGEMASK; 11742 prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK; 11743 } 11744 11745 return (pa); 11746 } 11747 } 11748 11749 /* 11750 * Carve up our nucleus hblk region. We may allocate more hblks than 11751 * asked due to rounding errors but we are guaranteed to have at least 11752 * enough space to allocate the requested number of hblk8's and hblk1's. 11753 */ 11754 void 11755 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1) 11756 { 11757 struct hme_blk *hmeblkp; 11758 size_t hme8blk_sz, hme1blk_sz; 11759 size_t i; 11760 size_t hblk8_bound; 11761 ulong_t j = 0, k = 0; 11762 11763 ASSERT(addr != NULL && size != 0); 11764 11765 /* Need to use proper structure alignment */ 11766 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 11767 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 11768 11769 nucleus_hblk8.list = (void *)addr; 11770 nucleus_hblk8.index = 0; 11771 11772 /* 11773 * Use as much memory as possible for hblk8's since we 11774 * expect all bop_alloc'ed memory to be allocated in 8k chunks. 11775 * We need to hold back enough space for the hblk1's which 11776 * we'll allocate next. 11777 */ 11778 hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz; 11779 for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) { 11780 hmeblkp = (struct hme_blk *)addr; 11781 addr += hme8blk_sz; 11782 hmeblkp->hblk_nuc_bit = 1; 11783 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp); 11784 } 11785 nucleus_hblk8.len = j; 11786 ASSERT(j >= nhblk8); 11787 SFMMU_STAT_ADD(sf_hblk8_ncreate, j); 11788 11789 nucleus_hblk1.list = (void *)addr; 11790 nucleus_hblk1.index = 0; 11791 for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) { 11792 hmeblkp = (struct hme_blk *)addr; 11793 addr += hme1blk_sz; 11794 hmeblkp->hblk_nuc_bit = 1; 11795 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp); 11796 } 11797 ASSERT(k >= nhblk1); 11798 nucleus_hblk1.len = k; 11799 SFMMU_STAT_ADD(sf_hblk1_ncreate, k); 11800 } 11801 11802 /* 11803 * This function is currently not supported on this platform. For what 11804 * it's supposed to do, see hat.c and hat_srmmu.c 11805 */ 11806 /* ARGSUSED */ 11807 faultcode_t 11808 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp, 11809 uint_t flags) 11810 { 11811 ASSERT(hat->sfmmu_xhat_provider == NULL); 11812 return (FC_NOSUPPORT); 11813 } 11814 11815 /* 11816 * Searchs the mapping list of the page for a mapping of the same size. If not 11817 * found the corresponding bit is cleared in the p_index field. When large 11818 * pages are more prevalent in the system, we can maintain the mapping list 11819 * in order and we don't have to traverse the list each time. Just check the 11820 * next and prev entries, and if both are of different size, we clear the bit. 11821 */ 11822 static void 11823 sfmmu_rm_large_mappings(page_t *pp, int ttesz) 11824 { 11825 struct sf_hment *sfhmep; 11826 struct hme_blk *hmeblkp; 11827 int index; 11828 pgcnt_t npgs; 11829 11830 ASSERT(ttesz > TTE8K); 11831 11832 ASSERT(sfmmu_mlist_held(pp)); 11833 11834 ASSERT(PP_ISMAPPED_LARGE(pp)); 11835 11836 /* 11837 * Traverse mapping list looking for another mapping of same size. 11838 * since we only want to clear index field if all mappings of 11839 * that size are gone. 11840 */ 11841 11842 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 11843 hmeblkp = sfmmu_hmetohblk(sfhmep); 11844 if (hmeblkp->hblk_xhat_bit) 11845 continue; 11846 if (hme_size(sfhmep) == ttesz) { 11847 /* 11848 * another mapping of the same size. don't clear index. 11849 */ 11850 return; 11851 } 11852 } 11853 11854 /* 11855 * Clear the p_index bit for large page. 11856 */ 11857 index = PAGESZ_TO_INDEX(ttesz); 11858 npgs = TTEPAGES(ttesz); 11859 while (npgs-- > 0) { 11860 ASSERT(pp->p_index & index); 11861 pp->p_index &= ~index; 11862 pp = PP_PAGENEXT(pp); 11863 } 11864 } 11865 11866 /* 11867 * return supported features 11868 */ 11869 /* ARGSUSED */ 11870 int 11871 hat_supported(enum hat_features feature, void *arg) 11872 { 11873 switch (feature) { 11874 case HAT_SHARED_PT: 11875 case HAT_DYNAMIC_ISM_UNMAP: 11876 case HAT_VMODSORT: 11877 return (1); 11878 default: 11879 return (0); 11880 } 11881 } 11882 11883 void 11884 hat_enter(struct hat *hat) 11885 { 11886 hatlock_t *hatlockp; 11887 11888 if (hat != ksfmmup) { 11889 hatlockp = TSB_HASH(hat); 11890 mutex_enter(HATLOCK_MUTEXP(hatlockp)); 11891 } 11892 } 11893 11894 void 11895 hat_exit(struct hat *hat) 11896 { 11897 hatlock_t *hatlockp; 11898 11899 if (hat != ksfmmup) { 11900 hatlockp = TSB_HASH(hat); 11901 mutex_exit(HATLOCK_MUTEXP(hatlockp)); 11902 } 11903 } 11904 11905 /*ARGSUSED*/ 11906 void 11907 hat_reserve(struct as *as, caddr_t addr, size_t len) 11908 { 11909 } 11910 11911 static void 11912 hat_kstat_init(void) 11913 { 11914 kstat_t *ksp; 11915 11916 ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat", 11917 KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat), 11918 KSTAT_FLAG_VIRTUAL); 11919 if (ksp) { 11920 ksp->ks_data = (void *) &sfmmu_global_stat; 11921 kstat_install(ksp); 11922 } 11923 ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat", 11924 KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat), 11925 KSTAT_FLAG_VIRTUAL); 11926 if (ksp) { 11927 ksp->ks_data = (void *) &sfmmu_tsbsize_stat; 11928 kstat_install(ksp); 11929 } 11930 ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat", 11931 KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU, 11932 KSTAT_FLAG_WRITABLE); 11933 if (ksp) { 11934 ksp->ks_update = sfmmu_kstat_percpu_update; 11935 kstat_install(ksp); 11936 } 11937 } 11938 11939 /* ARGSUSED */ 11940 static int 11941 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw) 11942 { 11943 struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data; 11944 struct tsbmiss *tsbm = tsbmiss_area; 11945 struct kpmtsbm *kpmtsbm = kpmtsbm_area; 11946 int i; 11947 11948 ASSERT(cpu_kstat); 11949 if (rw == KSTAT_READ) { 11950 for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) { 11951 cpu_kstat->sf_itlb_misses = tsbm->itlb_misses; 11952 cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses; 11953 cpu_kstat->sf_utsb_misses = tsbm->utsb_misses - 11954 tsbm->uprot_traps; 11955 cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses + 11956 kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps; 11957 11958 if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) { 11959 cpu_kstat->sf_tsb_hits = 11960 (tsbm->itlb_misses + tsbm->dtlb_misses) - 11961 (tsbm->utsb_misses + tsbm->ktsb_misses + 11962 kpmtsbm->kpm_tsb_misses); 11963 } else { 11964 cpu_kstat->sf_tsb_hits = 0; 11965 } 11966 cpu_kstat->sf_umod_faults = tsbm->uprot_traps; 11967 cpu_kstat->sf_kmod_faults = tsbm->kprot_traps; 11968 } 11969 } else { 11970 /* KSTAT_WRITE is used to clear stats */ 11971 for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) { 11972 tsbm->itlb_misses = 0; 11973 tsbm->dtlb_misses = 0; 11974 tsbm->utsb_misses = 0; 11975 tsbm->ktsb_misses = 0; 11976 tsbm->uprot_traps = 0; 11977 tsbm->kprot_traps = 0; 11978 kpmtsbm->kpm_dtlb_misses = 0; 11979 kpmtsbm->kpm_tsb_misses = 0; 11980 } 11981 } 11982 return (0); 11983 } 11984 11985 #ifdef DEBUG 11986 11987 tte_t *gorig[NCPU], *gcur[NCPU], *gnew[NCPU]; 11988 11989 /* 11990 * A tte checker. *orig_old is the value we read before cas. 11991 * *cur is the value returned by cas. 11992 * *new is the desired value when we do the cas. 11993 * 11994 * *hmeblkp is currently unused. 11995 */ 11996 11997 /* ARGSUSED */ 11998 void 11999 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp) 12000 { 12001 pfn_t i, j, k; 12002 int cpuid = CPU->cpu_id; 12003 12004 gorig[cpuid] = orig_old; 12005 gcur[cpuid] = cur; 12006 gnew[cpuid] = new; 12007 12008 #ifdef lint 12009 hmeblkp = hmeblkp; 12010 #endif 12011 12012 if (TTE_IS_VALID(orig_old)) { 12013 if (TTE_IS_VALID(cur)) { 12014 i = TTE_TO_TTEPFN(orig_old); 12015 j = TTE_TO_TTEPFN(cur); 12016 k = TTE_TO_TTEPFN(new); 12017 if (i != j) { 12018 /* remap error? */ 12019 panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j); 12020 } 12021 12022 if (i != k) { 12023 /* remap error? */ 12024 panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k); 12025 } 12026 } else { 12027 if (TTE_IS_VALID(new)) { 12028 panic("chk_tte: invalid cur? "); 12029 } 12030 12031 i = TTE_TO_TTEPFN(orig_old); 12032 k = TTE_TO_TTEPFN(new); 12033 if (i != k) { 12034 panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k); 12035 } 12036 } 12037 } else { 12038 if (TTE_IS_VALID(cur)) { 12039 j = TTE_TO_TTEPFN(cur); 12040 if (TTE_IS_VALID(new)) { 12041 k = TTE_TO_TTEPFN(new); 12042 if (j != k) { 12043 panic("chk_tte: bad pfn4, 0x%lx, 0x%lx", 12044 j, k); 12045 } 12046 } else { 12047 panic("chk_tte: why here?"); 12048 } 12049 } else { 12050 if (!TTE_IS_VALID(new)) { 12051 panic("chk_tte: why here2 ?"); 12052 } 12053 } 12054 } 12055 } 12056 12057 #endif /* DEBUG */ 12058 12059 extern void prefetch_tsbe_read(struct tsbe *); 12060 extern void prefetch_tsbe_write(struct tsbe *); 12061 12062 12063 /* 12064 * We want to prefetch 7 cache lines ahead for our read prefetch. This gives 12065 * us optimal performance on Cheetah+. You can only have 8 outstanding 12066 * prefetches at any one time, so we opted for 7 read prefetches and 1 write 12067 * prefetch to make the most utilization of the prefetch capability. 12068 */ 12069 #define TSBE_PREFETCH_STRIDE (7) 12070 12071 void 12072 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo) 12073 { 12074 int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc); 12075 int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc); 12076 int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc); 12077 int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc); 12078 struct tsbe *old; 12079 struct tsbe *new; 12080 struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va; 12081 uint64_t va; 12082 int new_offset; 12083 int i; 12084 int vpshift; 12085 int last_prefetch; 12086 12087 if (old_bytes == new_bytes) { 12088 bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes); 12089 } else { 12090 12091 /* 12092 * A TSBE is 16 bytes which means there are four TSBE's per 12093 * P$ line (64 bytes), thus every 4 TSBE's we prefetch. 12094 */ 12095 old = (struct tsbe *)old_tsbinfo->tsb_va; 12096 last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1)); 12097 for (i = 0; i < old_entries; i++, old++) { 12098 if (((i & (4-1)) == 0) && (i < last_prefetch)) 12099 prefetch_tsbe_read(old); 12100 if (!old->tte_tag.tag_invalid) { 12101 /* 12102 * We have a valid TTE to remap. Check the 12103 * size. We won't remap 64K or 512K TTEs 12104 * because they span more than one TSB entry 12105 * and are indexed using an 8K virt. page. 12106 * Ditto for 32M and 256M TTEs. 12107 */ 12108 if (TTE_CSZ(&old->tte_data) == TTE64K || 12109 TTE_CSZ(&old->tte_data) == TTE512K) 12110 continue; 12111 if (mmu_page_sizes == max_mmu_page_sizes) { 12112 if (TTE_CSZ(&old->tte_data) == TTE32M || 12113 TTE_CSZ(&old->tte_data) == TTE256M) 12114 continue; 12115 } 12116 12117 /* clear the lower 22 bits of the va */ 12118 va = *(uint64_t *)old << 22; 12119 /* turn va into a virtual pfn */ 12120 va >>= 22 - TSB_START_SIZE; 12121 /* 12122 * or in bits from the offset in the tsb 12123 * to get the real virtual pfn. These 12124 * correspond to bits [21:13] in the va 12125 */ 12126 vpshift = 12127 TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) & 12128 0x1ff; 12129 va |= (i << vpshift); 12130 va >>= vpshift; 12131 new_offset = va & (new_entries - 1); 12132 new = new_base + new_offset; 12133 prefetch_tsbe_write(new); 12134 *new = *old; 12135 } 12136 } 12137 } 12138 } 12139 12140 /* 12141 * unused in sfmmu 12142 */ 12143 void 12144 hat_dump(void) 12145 { 12146 } 12147 12148 /* 12149 * Called when a thread is exiting and we have switched to the kernel address 12150 * space. Perform the same VM initialization resume() uses when switching 12151 * processes. 12152 * 12153 * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but 12154 * we call it anyway in case the semantics change in the future. 12155 */ 12156 /*ARGSUSED*/ 12157 void 12158 hat_thread_exit(kthread_t *thd) 12159 { 12160 uint64_t pgsz_cnum; 12161 uint_t pstate_save; 12162 12163 ASSERT(thd->t_procp->p_as == &kas); 12164 12165 pgsz_cnum = KCONTEXT; 12166 #ifdef sun4u 12167 pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT); 12168 #endif 12169 /* 12170 * Note that sfmmu_load_mmustate() is currently a no-op for 12171 * kernel threads. We need to disable interrupts here, 12172 * simply because otherwise sfmmu_load_mmustate() would panic 12173 * if the caller does not disable interrupts. 12174 */ 12175 pstate_save = sfmmu_disable_intrs(); 12176 sfmmu_setctx_sec(pgsz_cnum); 12177 sfmmu_load_mmustate(ksfmmup); 12178 sfmmu_enable_intrs(pstate_save); 12179 } 12180