1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * VM - Hardware Address Translation management for Spitfire MMU. 30 * 31 * This file implements the machine specific hardware translation 32 * needed by the VM system. The machine independent interface is 33 * described in <vm/hat.h> while the machine dependent interface 34 * and data structures are described in <vm/hat_sfmmu.h>. 35 * 36 * The hat layer manages the address translation hardware as a cache 37 * driven by calls from the higher levels in the VM system. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/kstat.h> 42 #include <vm/hat.h> 43 #include <vm/hat_sfmmu.h> 44 #include <vm/page.h> 45 #include <sys/pte.h> 46 #include <sys/systm.h> 47 #include <sys/mman.h> 48 #include <sys/sysmacros.h> 49 #include <sys/machparam.h> 50 #include <sys/vtrace.h> 51 #include <sys/kmem.h> 52 #include <sys/mmu.h> 53 #include <sys/cmn_err.h> 54 #include <sys/cpu.h> 55 #include <sys/cpuvar.h> 56 #include <sys/debug.h> 57 #include <sys/lgrp.h> 58 #include <sys/archsystm.h> 59 #include <sys/machsystm.h> 60 #include <sys/vmsystm.h> 61 #include <vm/as.h> 62 #include <vm/seg.h> 63 #include <vm/seg_kp.h> 64 #include <vm/seg_kmem.h> 65 #include <vm/seg_kpm.h> 66 #include <vm/rm.h> 67 #include <sys/t_lock.h> 68 #include <sys/obpdefs.h> 69 #include <sys/vm_machparam.h> 70 #include <sys/var.h> 71 #include <sys/trap.h> 72 #include <sys/machtrap.h> 73 #include <sys/scb.h> 74 #include <sys/bitmap.h> 75 #include <sys/machlock.h> 76 #include <sys/membar.h> 77 #include <sys/atomic.h> 78 #include <sys/cpu_module.h> 79 #include <sys/prom_debug.h> 80 #include <sys/ksynch.h> 81 #include <sys/mem_config.h> 82 #include <sys/mem_cage.h> 83 #include <vm/vm_dep.h> 84 #include <vm/xhat_sfmmu.h> 85 #include <sys/fpu/fpusystm.h> 86 #include <vm/mach_kpm.h> 87 #include <sys/callb.h> 88 89 #ifdef DEBUG 90 #define SFMMU_VALIDATE_HMERID(hat, rid, saddr, len) \ 91 if (SFMMU_IS_SHMERID_VALID(rid)) { \ 92 caddr_t _eaddr = (saddr) + (len); \ 93 sf_srd_t *_srdp; \ 94 sf_region_t *_rgnp; \ 95 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \ 96 ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid)); \ 97 ASSERT((hat) != ksfmmup); \ 98 _srdp = (hat)->sfmmu_srdp; \ 99 ASSERT(_srdp != NULL); \ 100 ASSERT(_srdp->srd_refcnt != 0); \ 101 _rgnp = _srdp->srd_hmergnp[(rid)]; \ 102 ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid); \ 103 ASSERT(_rgnp->rgn_refcnt != 0); \ 104 ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE)); \ 105 ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == \ 106 SFMMU_REGION_HME); \ 107 ASSERT((saddr) >= _rgnp->rgn_saddr); \ 108 ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size); \ 109 ASSERT(_eaddr > _rgnp->rgn_saddr); \ 110 ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size); \ 111 } 112 113 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) \ 114 { \ 115 caddr_t _hsva; \ 116 caddr_t _heva; \ 117 caddr_t _rsva; \ 118 caddr_t _reva; \ 119 int _ttesz = get_hblk_ttesz(hmeblkp); \ 120 int _flagtte; \ 121 ASSERT((srdp)->srd_refcnt != 0); \ 122 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \ 123 ASSERT((rgnp)->rgn_id == rid); \ 124 ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE)); \ 125 ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) == \ 126 SFMMU_REGION_HME); \ 127 ASSERT(_ttesz <= (rgnp)->rgn_pgszc); \ 128 _hsva = (caddr_t)get_hblk_base(hmeblkp); \ 129 _heva = get_hblk_endaddr(hmeblkp); \ 130 _rsva = (caddr_t)P2ALIGN( \ 131 (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES); \ 132 _reva = (caddr_t)P2ROUNDUP( \ 133 (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size), \ 134 HBLK_MIN_BYTES); \ 135 ASSERT(_hsva >= _rsva); \ 136 ASSERT(_hsva < _reva); \ 137 ASSERT(_heva > _rsva); \ 138 ASSERT(_heva <= _reva); \ 139 _flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : \ 140 _ttesz; \ 141 ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte)); \ 142 } 143 144 #else /* DEBUG */ 145 #define SFMMU_VALIDATE_HMERID(hat, rid, addr, len) 146 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) 147 #endif /* DEBUG */ 148 149 #if defined(SF_ERRATA_57) 150 extern caddr_t errata57_limit; 151 #endif 152 153 #define HME8BLK_SZ_RND ((roundup(HME8BLK_SZ, sizeof (int64_t))) / \ 154 (sizeof (int64_t))) 155 #define HBLK_RESERVE ((struct hme_blk *)hblk_reserve) 156 157 #define HBLK_RESERVE_CNT 128 158 #define HBLK_RESERVE_MIN 20 159 160 static struct hme_blk *freehblkp; 161 static kmutex_t freehblkp_lock; 162 static int freehblkcnt; 163 164 static int64_t hblk_reserve[HME8BLK_SZ_RND]; 165 static kmutex_t hblk_reserve_lock; 166 static kthread_t *hblk_reserve_thread; 167 168 static nucleus_hblk8_info_t nucleus_hblk8; 169 static nucleus_hblk1_info_t nucleus_hblk1; 170 171 /* 172 * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here 173 * after the initial phase of removing an hmeblk from the hash chain, see 174 * the detailed comment in sfmmu_hblk_hash_rm() for further details. 175 */ 176 static cpu_hme_pend_t *cpu_hme_pend; 177 static uint_t cpu_hme_pend_thresh; 178 /* 179 * SFMMU specific hat functions 180 */ 181 void hat_pagecachectl(struct page *, int); 182 183 /* flags for hat_pagecachectl */ 184 #define HAT_CACHE 0x1 185 #define HAT_UNCACHE 0x2 186 #define HAT_TMPNC 0x4 187 188 /* 189 * Flag to allow the creation of non-cacheable translations 190 * to system memory. It is off by default. At the moment this 191 * flag is used by the ecache error injector. The error injector 192 * will turn it on when creating such a translation then shut it 193 * off when it's finished. 194 */ 195 196 int sfmmu_allow_nc_trans = 0; 197 198 /* 199 * Flag to disable large page support. 200 * value of 1 => disable all large pages. 201 * bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively. 202 * 203 * For example, use the value 0x4 to disable 512K pages. 204 * 205 */ 206 #define LARGE_PAGES_OFF 0x1 207 208 /* 209 * The disable_large_pages and disable_ism_large_pages variables control 210 * hat_memload_array and the page sizes to be used by ISM and the kernel. 211 * 212 * The disable_auto_data_large_pages and disable_auto_text_large_pages variables 213 * are only used to control which OOB pages to use at upper VM segment creation 214 * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines. 215 * Their values may come from platform or CPU specific code to disable page 216 * sizes that should not be used. 217 * 218 * WARNING: 512K pages are currently not supported for ISM/DISM. 219 */ 220 uint_t disable_large_pages = 0; 221 uint_t disable_ism_large_pages = (1 << TTE512K); 222 uint_t disable_auto_data_large_pages = 0; 223 uint_t disable_auto_text_large_pages = 0; 224 225 /* 226 * Private sfmmu data structures for hat management 227 */ 228 static struct kmem_cache *sfmmuid_cache; 229 static struct kmem_cache *mmuctxdom_cache; 230 231 /* 232 * Private sfmmu data structures for tsb management 233 */ 234 static struct kmem_cache *sfmmu_tsbinfo_cache; 235 static struct kmem_cache *sfmmu_tsb8k_cache; 236 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX]; 237 static vmem_t *kmem_bigtsb_arena; 238 static vmem_t *kmem_tsb_arena; 239 240 /* 241 * sfmmu static variables for hmeblk resource management. 242 */ 243 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */ 244 static struct kmem_cache *sfmmu8_cache; 245 static struct kmem_cache *sfmmu1_cache; 246 static struct kmem_cache *pa_hment_cache; 247 248 static kmutex_t ism_mlist_lock; /* mutex for ism mapping list */ 249 /* 250 * private data for ism 251 */ 252 static struct kmem_cache *ism_blk_cache; 253 static struct kmem_cache *ism_ment_cache; 254 #define ISMID_STARTADDR NULL 255 256 /* 257 * Region management data structures and function declarations. 258 */ 259 260 static void sfmmu_leave_srd(sfmmu_t *); 261 static int sfmmu_srdcache_constructor(void *, void *, int); 262 static void sfmmu_srdcache_destructor(void *, void *); 263 static int sfmmu_rgncache_constructor(void *, void *, int); 264 static void sfmmu_rgncache_destructor(void *, void *); 265 static int sfrgnmap_isnull(sf_region_map_t *); 266 static int sfhmergnmap_isnull(sf_hmeregion_map_t *); 267 static int sfmmu_scdcache_constructor(void *, void *, int); 268 static void sfmmu_scdcache_destructor(void *, void *); 269 static void sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t, 270 size_t, void *, u_offset_t); 271 272 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1; 273 static sf_srd_bucket_t *srd_buckets; 274 static struct kmem_cache *srd_cache; 275 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1; 276 static struct kmem_cache *region_cache; 277 static struct kmem_cache *scd_cache; 278 279 #ifdef sun4v 280 int use_bigtsb_arena = 1; 281 #else 282 int use_bigtsb_arena = 0; 283 #endif 284 285 /* External /etc/system tunable, for turning on&off the shctx support */ 286 int disable_shctx = 0; 287 /* Internal variable, set by MD if the HW supports shctx feature */ 288 int shctx_on = 0; 289 290 #ifdef DEBUG 291 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int); 292 #endif 293 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *); 294 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *); 295 296 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *); 297 static void sfmmu_find_scd(sfmmu_t *); 298 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *); 299 static void sfmmu_finish_join_scd(sfmmu_t *); 300 static void sfmmu_leave_scd(sfmmu_t *, uchar_t); 301 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *); 302 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *); 303 static void sfmmu_free_scd_tsbs(sfmmu_t *); 304 static void sfmmu_tsb_inv_ctx(sfmmu_t *); 305 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *); 306 static void sfmmu_ism_hatflags(sfmmu_t *, int); 307 static int sfmmu_srd_lock_held(sf_srd_t *); 308 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *); 309 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *); 310 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *); 311 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *); 312 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *); 313 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *); 314 315 /* 316 * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists, 317 * HAT flags, synchronizing TLB/TSB coherency, and context management. 318 * The lock is hashed on the sfmmup since the case where we need to lock 319 * all processes is rare but does occur (e.g. we need to unload a shared 320 * mapping from all processes using the mapping). We have a lot of buckets, 321 * and each slab of sfmmu_t's can use about a quarter of them, giving us 322 * a fairly good distribution without wasting too much space and overhead 323 * when we have to grab them all. 324 */ 325 #define SFMMU_NUM_LOCK 128 /* must be power of two */ 326 hatlock_t hat_lock[SFMMU_NUM_LOCK]; 327 328 /* 329 * Hash algorithm optimized for a small number of slabs. 330 * 7 is (highbit((sizeof sfmmu_t)) - 1) 331 * This hash algorithm is based upon the knowledge that sfmmu_t's come from a 332 * kmem_cache, and thus they will be sequential within that cache. In 333 * addition, each new slab will have a different "color" up to cache_maxcolor 334 * which will skew the hashing for each successive slab which is allocated. 335 * If the size of sfmmu_t changed to a larger size, this algorithm may need 336 * to be revisited. 337 */ 338 #define TSB_HASH_SHIFT_BITS (7) 339 #define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS) 340 341 #ifdef DEBUG 342 int tsb_hash_debug = 0; 343 #define TSB_HASH(sfmmup) \ 344 (tsb_hash_debug ? &hat_lock[0] : \ 345 &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]) 346 #else /* DEBUG */ 347 #define TSB_HASH(sfmmup) &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)] 348 #endif /* DEBUG */ 349 350 351 /* sfmmu_replace_tsb() return codes. */ 352 typedef enum tsb_replace_rc { 353 TSB_SUCCESS, 354 TSB_ALLOCFAIL, 355 TSB_LOSTRACE, 356 TSB_ALREADY_SWAPPED, 357 TSB_CANTGROW 358 } tsb_replace_rc_t; 359 360 /* 361 * Flags for TSB allocation routines. 362 */ 363 #define TSB_ALLOC 0x01 364 #define TSB_FORCEALLOC 0x02 365 #define TSB_GROW 0x04 366 #define TSB_SHRINK 0x08 367 #define TSB_SWAPIN 0x10 368 369 /* 370 * Support for HAT callbacks. 371 */ 372 #define SFMMU_MAX_RELOC_CALLBACKS 10 373 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS; 374 static id_t sfmmu_cb_nextid = 0; 375 static id_t sfmmu_tsb_cb_id; 376 struct sfmmu_callback *sfmmu_cb_table; 377 378 kmutex_t kpr_mutex; 379 kmutex_t kpr_suspendlock; 380 kthread_t *kreloc_thread; 381 382 /* 383 * Enable VA->PA translation sanity checking on DEBUG kernels. 384 * Disabled by default. This is incompatible with some 385 * drivers (error injector, RSM) so if it breaks you get 386 * to keep both pieces. 387 */ 388 int hat_check_vtop = 0; 389 390 /* 391 * Private sfmmu routines (prototypes) 392 */ 393 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t); 394 static struct hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t, 395 struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t, 396 uint_t); 397 static caddr_t sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t, 398 caddr_t, demap_range_t *, uint_t); 399 static caddr_t sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t, 400 caddr_t, int); 401 static void sfmmu_hblk_free(struct hme_blk **); 402 static void sfmmu_hblks_list_purge(struct hme_blk **, int); 403 static uint_t sfmmu_get_free_hblk(struct hme_blk **, uint_t); 404 static uint_t sfmmu_put_free_hblk(struct hme_blk *, uint_t); 405 static struct hme_blk *sfmmu_hblk_steal(int); 406 static int sfmmu_steal_this_hblk(struct hmehash_bucket *, 407 struct hme_blk *, uint64_t, struct hme_blk *); 408 static caddr_t sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t); 409 410 static void hat_do_memload_array(struct hat *, caddr_t, size_t, 411 struct page **, uint_t, uint_t, uint_t); 412 static void hat_do_memload(struct hat *, caddr_t, struct page *, 413 uint_t, uint_t, uint_t); 414 static void sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **, 415 uint_t, uint_t, pgcnt_t, uint_t); 416 void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, 417 uint_t); 418 static int sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **, 419 uint_t, uint_t); 420 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *, 421 caddr_t, int, uint_t); 422 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *, 423 struct hmehash_bucket *, caddr_t, uint_t, uint_t, 424 uint_t); 425 static int sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *, 426 caddr_t, page_t **, uint_t, uint_t); 427 static void sfmmu_tteload_release_hashbucket(struct hmehash_bucket *); 428 429 static int sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int); 430 static pfn_t sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *); 431 void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 432 #ifdef VAC 433 static void sfmmu_vac_conflict(struct hat *, caddr_t, page_t *); 434 static int sfmmu_vacconflict_array(caddr_t, page_t *, int *); 435 int tst_tnc(page_t *pp, pgcnt_t); 436 void conv_tnc(page_t *pp, int); 437 #endif 438 439 static void sfmmu_get_ctx(sfmmu_t *); 440 static void sfmmu_free_sfmmu(sfmmu_t *); 441 442 static void sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *); 443 static void sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int); 444 445 cpuset_t sfmmu_pageunload(page_t *, struct sf_hment *, int); 446 static void hat_pagereload(struct page *, struct page *); 447 static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t); 448 #ifdef VAC 449 void sfmmu_page_cache_array(page_t *, int, int, pgcnt_t); 450 static void sfmmu_page_cache(page_t *, int, int, int); 451 #endif 452 453 cpuset_t sfmmu_rgntlb_demap(caddr_t, sf_region_t *, 454 struct hme_blk *, int); 455 static void sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *, 456 pfn_t, int, int, int, int); 457 static void sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *, 458 pfn_t, int); 459 static void sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int); 460 static void sfmmu_tlb_range_demap(demap_range_t *); 461 static void sfmmu_invalidate_ctx(sfmmu_t *); 462 static void sfmmu_sync_mmustate(sfmmu_t *); 463 464 static void sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t); 465 static int sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t, 466 sfmmu_t *); 467 static void sfmmu_tsb_free(struct tsb_info *); 468 static void sfmmu_tsbinfo_free(struct tsb_info *); 469 static int sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t, 470 sfmmu_t *); 471 static void sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *); 472 static void sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *); 473 static int sfmmu_select_tsb_szc(pgcnt_t); 474 static void sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int); 475 #define sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \ 476 sfmmu_mod_tsb(sfmmup, vaddr, tte, szc) 477 #define sfmmu_unload_tsb(sfmmup, vaddr, szc) \ 478 sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc) 479 static void sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *); 480 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t, 481 hatlock_t *, uint_t); 482 static void sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int); 483 484 #ifdef VAC 485 void sfmmu_cache_flush(pfn_t, int); 486 void sfmmu_cache_flushcolor(int, pfn_t); 487 #endif 488 static caddr_t sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t, 489 caddr_t, demap_range_t *, uint_t, int); 490 491 static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *); 492 static uint_t sfmmu_ptov_attr(tte_t *); 493 static caddr_t sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t, 494 caddr_t, demap_range_t *, uint_t); 495 static uint_t sfmmu_vtop_prot(uint_t, uint_t *); 496 static int sfmmu_idcache_constructor(void *, void *, int); 497 static void sfmmu_idcache_destructor(void *, void *); 498 static int sfmmu_hblkcache_constructor(void *, void *, int); 499 static void sfmmu_hblkcache_destructor(void *, void *); 500 static void sfmmu_hblkcache_reclaim(void *); 501 static void sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *, 502 struct hmehash_bucket *); 503 static void sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *, 504 struct hme_blk *, struct hme_blk **, int); 505 static void sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *, 506 uint64_t); 507 static struct hme_blk *sfmmu_check_pending_hblks(int); 508 static void sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int); 509 static void sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int); 510 static void sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t, 511 int, caddr_t *); 512 static void sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *); 513 514 static void sfmmu_rm_large_mappings(page_t *, int); 515 516 static void hat_lock_init(void); 517 static void hat_kstat_init(void); 518 static int sfmmu_kstat_percpu_update(kstat_t *ksp, int rw); 519 static void sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *); 520 static int sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t); 521 static void sfmmu_check_page_sizes(sfmmu_t *, int); 522 int fnd_mapping_sz(page_t *); 523 static void iment_add(struct ism_ment *, struct hat *); 524 static void iment_sub(struct ism_ment *, struct hat *); 525 static pgcnt_t ism_tsb_entries(sfmmu_t *, int szc); 526 extern void sfmmu_setup_tsbinfo(sfmmu_t *); 527 extern void sfmmu_clear_utsbinfo(void); 528 529 static void sfmmu_ctx_wrap_around(mmu_ctx_t *, boolean_t); 530 531 extern int vpm_enable; 532 533 /* kpm globals */ 534 #ifdef DEBUG 535 /* 536 * Enable trap level tsbmiss handling 537 */ 538 int kpm_tsbmtl = 1; 539 540 /* 541 * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the 542 * required TLB shootdowns in this case, so handle w/ care. Off by default. 543 */ 544 int kpm_tlb_flush; 545 #endif /* DEBUG */ 546 547 static void *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int); 548 549 #ifdef DEBUG 550 static void sfmmu_check_hblk_flist(); 551 #endif 552 553 /* 554 * Semi-private sfmmu data structures. Some of them are initialize in 555 * startup or in hat_init. Some of them are private but accessed by 556 * assembly code or mach_sfmmu.c 557 */ 558 struct hmehash_bucket *uhme_hash; /* user hmeblk hash table */ 559 struct hmehash_bucket *khme_hash; /* kernel hmeblk hash table */ 560 uint64_t uhme_hash_pa; /* PA of uhme_hash */ 561 uint64_t khme_hash_pa; /* PA of khme_hash */ 562 int uhmehash_num; /* # of buckets in user hash table */ 563 int khmehash_num; /* # of buckets in kernel hash table */ 564 565 uint_t max_mmu_ctxdoms = 0; /* max context domains in the system */ 566 mmu_ctx_t **mmu_ctxs_tbl; /* global array of context domains */ 567 uint64_t mmu_saved_gnum = 0; /* to init incoming MMUs' gnums */ 568 569 #define DEFAULT_NUM_CTXS_PER_MMU 8192 570 static uint_t nctxs = DEFAULT_NUM_CTXS_PER_MMU; 571 572 int cache; /* describes system cache */ 573 574 caddr_t ktsb_base; /* kernel 8k-indexed tsb base address */ 575 uint64_t ktsb_pbase; /* kernel 8k-indexed tsb phys address */ 576 int ktsb_szcode; /* kernel 8k-indexed tsb size code */ 577 int ktsb_sz; /* kernel 8k-indexed tsb size */ 578 579 caddr_t ktsb4m_base; /* kernel 4m-indexed tsb base address */ 580 uint64_t ktsb4m_pbase; /* kernel 4m-indexed tsb phys address */ 581 int ktsb4m_szcode; /* kernel 4m-indexed tsb size code */ 582 int ktsb4m_sz; /* kernel 4m-indexed tsb size */ 583 584 uint64_t kpm_tsbbase; /* kernel seg_kpm 4M TSB base address */ 585 int kpm_tsbsz; /* kernel seg_kpm 4M TSB size code */ 586 uint64_t kpmsm_tsbbase; /* kernel seg_kpm 8K TSB base address */ 587 int kpmsm_tsbsz; /* kernel seg_kpm 8K TSB size code */ 588 589 #ifndef sun4v 590 int utsb_dtlb_ttenum = -1; /* index in TLB for utsb locked TTE */ 591 int utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */ 592 int dtlb_resv_ttenum; /* index in TLB of first reserved TTE */ 593 caddr_t utsb_vabase; /* reserved kernel virtual memory */ 594 caddr_t utsb4m_vabase; /* for trap handler TSB accesses */ 595 #endif /* sun4v */ 596 uint64_t tsb_alloc_bytes = 0; /* bytes allocated to TSBs */ 597 vmem_t *kmem_tsb_default_arena[NLGRPS_MAX]; /* For dynamic TSBs */ 598 vmem_t *kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */ 599 600 /* 601 * Size to use for TSB slabs. Future platforms that support page sizes 602 * larger than 4M may wish to change these values, and provide their own 603 * assembly macros for building and decoding the TSB base register contents. 604 * Note disable_large_pages will override the value set here. 605 */ 606 static uint_t tsb_slab_ttesz = TTE4M; 607 size_t tsb_slab_size = MMU_PAGESIZE4M; 608 uint_t tsb_slab_shift = MMU_PAGESHIFT4M; 609 /* PFN mask for TTE */ 610 size_t tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT; 611 612 /* 613 * Size to use for TSB slabs. These are used only when 256M tsb arenas 614 * exist. 615 */ 616 static uint_t bigtsb_slab_ttesz = TTE256M; 617 static size_t bigtsb_slab_size = MMU_PAGESIZE256M; 618 static uint_t bigtsb_slab_shift = MMU_PAGESHIFT256M; 619 /* 256M page alignment for 8K pfn */ 620 static size_t bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT; 621 622 /* largest TSB size to grow to, will be smaller on smaller memory systems */ 623 static int tsb_max_growsize = 0; 624 625 /* 626 * Tunable parameters dealing with TSB policies. 627 */ 628 629 /* 630 * This undocumented tunable forces all 8K TSBs to be allocated from 631 * the kernel heap rather than from the kmem_tsb_default_arena arenas. 632 */ 633 #ifdef DEBUG 634 int tsb_forceheap = 0; 635 #endif /* DEBUG */ 636 637 /* 638 * Decide whether to use per-lgroup arenas, or one global set of 639 * TSB arenas. The default is not to break up per-lgroup, since 640 * most platforms don't recognize any tangible benefit from it. 641 */ 642 int tsb_lgrp_affinity = 0; 643 644 /* 645 * Used for growing the TSB based on the process RSS. 646 * tsb_rss_factor is based on the smallest TSB, and is 647 * shifted by the TSB size to determine if we need to grow. 648 * The default will grow the TSB if the number of TTEs for 649 * this page size exceeds 75% of the number of TSB entries, 650 * which should _almost_ eliminate all conflict misses 651 * (at the expense of using up lots and lots of memory). 652 */ 653 #define TSB_RSS_FACTOR (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75) 654 #define SFMMU_RSS_TSBSIZE(tsbszc) (tsb_rss_factor << tsbszc) 655 #define SELECT_TSB_SIZECODE(pgcnt) ( \ 656 (enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \ 657 default_tsb_size) 658 #define TSB_OK_SHRINK() \ 659 (tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree) 660 #define TSB_OK_GROW() \ 661 (tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree) 662 663 int enable_tsb_rss_sizing = 1; 664 int tsb_rss_factor = (int)TSB_RSS_FACTOR; 665 666 /* which TSB size code to use for new address spaces or if rss sizing off */ 667 int default_tsb_size = TSB_8K_SZCODE; 668 669 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */ 670 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */ 671 #define TSB_ALLOC_HIWATER_FACTOR_DEFAULT 32 672 673 #ifdef DEBUG 674 static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */ 675 static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */ 676 static int tsb_alloc_mtbf = 0; /* fail allocation every n attempts */ 677 static int tsb_alloc_fail_mtbf = 0; 678 static int tsb_alloc_count = 0; 679 #endif /* DEBUG */ 680 681 /* if set to 1, will remap valid TTEs when growing TSB. */ 682 int tsb_remap_ttes = 1; 683 684 /* 685 * If we have more than this many mappings, allocate a second TSB. 686 * This default is chosen because the I/D fully associative TLBs are 687 * assumed to have at least 8 available entries. Platforms with a 688 * larger fully-associative TLB could probably override the default. 689 */ 690 691 #ifdef sun4v 692 int tsb_sectsb_threshold = 0; 693 #else 694 int tsb_sectsb_threshold = 8; 695 #endif 696 697 /* 698 * kstat data 699 */ 700 struct sfmmu_global_stat sfmmu_global_stat; 701 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat; 702 703 /* 704 * Global data 705 */ 706 sfmmu_t *ksfmmup; /* kernel's hat id */ 707 708 #ifdef DEBUG 709 static void chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *); 710 #endif 711 712 /* sfmmu locking operations */ 713 static kmutex_t *sfmmu_mlspl_enter(struct page *, int); 714 static int sfmmu_mlspl_held(struct page *, int); 715 716 kmutex_t *sfmmu_page_enter(page_t *); 717 void sfmmu_page_exit(kmutex_t *); 718 int sfmmu_page_spl_held(struct page *); 719 720 /* sfmmu internal locking operations - accessed directly */ 721 static void sfmmu_mlist_reloc_enter(page_t *, page_t *, 722 kmutex_t **, kmutex_t **); 723 static void sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *); 724 static hatlock_t * 725 sfmmu_hat_enter(sfmmu_t *); 726 static hatlock_t * 727 sfmmu_hat_tryenter(sfmmu_t *); 728 static void sfmmu_hat_exit(hatlock_t *); 729 static void sfmmu_hat_lock_all(void); 730 static void sfmmu_hat_unlock_all(void); 731 static void sfmmu_ismhat_enter(sfmmu_t *, int); 732 static void sfmmu_ismhat_exit(sfmmu_t *, int); 733 734 kpm_hlk_t *kpmp_table; 735 uint_t kpmp_table_sz; /* must be a power of 2 */ 736 uchar_t kpmp_shift; 737 738 kpm_shlk_t *kpmp_stable; 739 uint_t kpmp_stable_sz; /* must be a power of 2 */ 740 741 /* 742 * SPL_TABLE_SIZE is 2 * NCPU, but no smaller than 128. 743 * SPL_SHIFT is log2(SPL_TABLE_SIZE). 744 */ 745 #if ((2*NCPU_P2) > 128) 746 #define SPL_SHIFT ((unsigned)(NCPU_LOG2 + 1)) 747 #else 748 #define SPL_SHIFT 7U 749 #endif 750 #define SPL_TABLE_SIZE (1U << SPL_SHIFT) 751 #define SPL_MASK (SPL_TABLE_SIZE - 1) 752 753 /* 754 * We shift by PP_SHIFT to take care of the low-order 0 bits of a page_t 755 * and by multiples of SPL_SHIFT to get as many varied bits as we can. 756 */ 757 #define SPL_INDEX(pp) \ 758 ((((uintptr_t)(pp) >> PP_SHIFT) ^ \ 759 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT)) ^ \ 760 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 2)) ^ \ 761 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 3))) & \ 762 SPL_MASK) 763 764 #define SPL_HASH(pp) \ 765 (&sfmmu_page_lock[SPL_INDEX(pp)].pad_mutex) 766 767 static pad_mutex_t sfmmu_page_lock[SPL_TABLE_SIZE]; 768 769 /* Array of mutexes protecting a page's mapping list and p_nrm field. */ 770 771 #define MML_TABLE_SIZE SPL_TABLE_SIZE 772 #define MLIST_HASH(pp) (&mml_table[SPL_INDEX(pp)].pad_mutex) 773 774 static pad_mutex_t mml_table[MML_TABLE_SIZE]; 775 776 /* 777 * hat_unload_callback() will group together callbacks in order 778 * to avoid xt_sync() calls. This is the maximum size of the group. 779 */ 780 #define MAX_CB_ADDR 32 781 782 tte_t hw_tte; 783 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT; 784 785 static char *mmu_ctx_kstat_names[] = { 786 "mmu_ctx_tsb_exceptions", 787 "mmu_ctx_tsb_raise_exception", 788 "mmu_ctx_wrap_around", 789 }; 790 791 /* 792 * Wrapper for vmem_xalloc since vmem_create only allows limited 793 * parameters for vm_source_alloc functions. This function allows us 794 * to specify alignment consistent with the size of the object being 795 * allocated. 796 */ 797 static void * 798 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag) 799 { 800 return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag)); 801 } 802 803 /* Common code for setting tsb_alloc_hiwater. */ 804 #define SFMMU_SET_TSB_ALLOC_HIWATER(pages) tsb_alloc_hiwater = \ 805 ptob(pages) / tsb_alloc_hiwater_factor 806 807 /* 808 * Set tsb_max_growsize to allow at most all of physical memory to be mapped by 809 * a single TSB. physmem is the number of physical pages so we need physmem 8K 810 * TTEs to represent all those physical pages. We round this up by using 811 * 1<<highbit(). To figure out which size code to use, remember that the size 812 * code is just an amount to shift the smallest TSB size to get the size of 813 * this TSB. So we subtract that size, TSB_START_SIZE, from highbit() (or 814 * highbit() - 1) to get the size code for the smallest TSB that can represent 815 * all of physical memory, while erring on the side of too much. 816 * 817 * Restrict tsb_max_growsize to make sure that: 818 * 1) TSBs can't grow larger than the TSB slab size 819 * 2) TSBs can't grow larger than UTSB_MAX_SZCODE. 820 */ 821 #define SFMMU_SET_TSB_MAX_GROWSIZE(pages) { \ 822 int _i, _szc, _slabszc, _tsbszc; \ 823 \ 824 _i = highbit(pages); \ 825 if ((1 << (_i - 1)) == (pages)) \ 826 _i--; /* 2^n case, round down */ \ 827 _szc = _i - TSB_START_SIZE; \ 828 _slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \ 829 _tsbszc = MIN(_szc, _slabszc); \ 830 tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE); \ 831 } 832 833 /* 834 * Given a pointer to an sfmmu and a TTE size code, return a pointer to the 835 * tsb_info which handles that TTE size. 836 */ 837 #define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) { \ 838 (tsbinfop) = (sfmmup)->sfmmu_tsb; \ 839 ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) || \ 840 sfmmu_hat_lock_held(sfmmup)); \ 841 if ((tte_szc) >= TTE4M) { \ 842 ASSERT((tsbinfop) != NULL); \ 843 (tsbinfop) = (tsbinfop)->tsb_next; \ 844 } \ 845 } 846 847 /* 848 * Macro to use to unload entries from the TSB. 849 * It has knowledge of which page sizes get replicated in the TSB 850 * and will call the appropriate unload routine for the appropriate size. 851 */ 852 #define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat) \ 853 { \ 854 int ttesz = get_hblk_ttesz(hmeblkp); \ 855 if (ttesz == TTE8K || ttesz == TTE4M) { \ 856 sfmmu_unload_tsb(sfmmup, addr, ttesz); \ 857 } else { \ 858 caddr_t sva = ismhat ? addr : \ 859 (caddr_t)get_hblk_base(hmeblkp); \ 860 caddr_t eva = sva + get_hblk_span(hmeblkp); \ 861 ASSERT(addr >= sva && addr < eva); \ 862 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); \ 863 } \ 864 } 865 866 867 /* Update tsb_alloc_hiwater after memory is configured. */ 868 /*ARGSUSED*/ 869 static void 870 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages) 871 { 872 /* Assumes physmem has already been updated. */ 873 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 874 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 875 } 876 877 /* 878 * Update tsb_alloc_hiwater before memory is deleted. We'll do nothing here 879 * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is 880 * deleted. 881 */ 882 /*ARGSUSED*/ 883 static int 884 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages) 885 { 886 return (0); 887 } 888 889 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */ 890 /*ARGSUSED*/ 891 static void 892 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled) 893 { 894 /* 895 * Whether the delete was cancelled or not, just go ahead and update 896 * tsb_alloc_hiwater and tsb_max_growsize. 897 */ 898 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 899 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 900 } 901 902 static kphysm_setup_vector_t sfmmu_update_vec = { 903 KPHYSM_SETUP_VECTOR_VERSION, /* version */ 904 sfmmu_update_post_add, /* post_add */ 905 sfmmu_update_pre_del, /* pre_del */ 906 sfmmu_update_post_del /* post_del */ 907 }; 908 909 910 /* 911 * HME_BLK HASH PRIMITIVES 912 */ 913 914 /* 915 * Enter a hme on the mapping list for page pp. 916 * When large pages are more prevalent in the system we might want to 917 * keep the mapping list in ascending order by the hment size. For now, 918 * small pages are more frequent, so don't slow it down. 919 */ 920 #define HME_ADD(hme, pp) \ 921 { \ 922 ASSERT(sfmmu_mlist_held(pp)); \ 923 \ 924 hme->hme_prev = NULL; \ 925 hme->hme_next = pp->p_mapping; \ 926 hme->hme_page = pp; \ 927 if (pp->p_mapping) { \ 928 ((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\ 929 ASSERT(pp->p_share > 0); \ 930 } else { \ 931 /* EMPTY */ \ 932 ASSERT(pp->p_share == 0); \ 933 } \ 934 pp->p_mapping = hme; \ 935 pp->p_share++; \ 936 } 937 938 /* 939 * Enter a hme on the mapping list for page pp. 940 * If we are unmapping a large translation, we need to make sure that the 941 * change is reflect in the corresponding bit of the p_index field. 942 */ 943 #define HME_SUB(hme, pp) \ 944 { \ 945 ASSERT(sfmmu_mlist_held(pp)); \ 946 ASSERT(hme->hme_page == pp || IS_PAHME(hme)); \ 947 \ 948 if (pp->p_mapping == NULL) { \ 949 panic("hme_remove - no mappings"); \ 950 } \ 951 \ 952 membar_stst(); /* ensure previous stores finish */ \ 953 \ 954 ASSERT(pp->p_share > 0); \ 955 pp->p_share--; \ 956 \ 957 if (hme->hme_prev) { \ 958 ASSERT(pp->p_mapping != hme); \ 959 ASSERT(hme->hme_prev->hme_page == pp || \ 960 IS_PAHME(hme->hme_prev)); \ 961 hme->hme_prev->hme_next = hme->hme_next; \ 962 } else { \ 963 ASSERT(pp->p_mapping == hme); \ 964 pp->p_mapping = hme->hme_next; \ 965 ASSERT((pp->p_mapping == NULL) ? \ 966 (pp->p_share == 0) : 1); \ 967 } \ 968 \ 969 if (hme->hme_next) { \ 970 ASSERT(hme->hme_next->hme_page == pp || \ 971 IS_PAHME(hme->hme_next)); \ 972 hme->hme_next->hme_prev = hme->hme_prev; \ 973 } \ 974 \ 975 /* zero out the entry */ \ 976 hme->hme_next = NULL; \ 977 hme->hme_prev = NULL; \ 978 hme->hme_page = NULL; \ 979 \ 980 if (hme_size(hme) > TTE8K) { \ 981 /* remove mappings for remainder of large pg */ \ 982 sfmmu_rm_large_mappings(pp, hme_size(hme)); \ 983 } \ 984 } 985 986 /* 987 * This function returns the hment given the hme_blk and a vaddr. 988 * It assumes addr has already been checked to belong to hme_blk's 989 * range. 990 */ 991 #define HBLKTOHME(hment, hmeblkp, addr) \ 992 { \ 993 int index; \ 994 HBLKTOHME_IDX(hment, hmeblkp, addr, index) \ 995 } 996 997 /* 998 * Version of HBLKTOHME that also returns the index in hmeblkp 999 * of the hment. 1000 */ 1001 #define HBLKTOHME_IDX(hment, hmeblkp, addr, idx) \ 1002 { \ 1003 ASSERT(in_hblk_range((hmeblkp), (addr))); \ 1004 \ 1005 if (get_hblk_ttesz(hmeblkp) == TTE8K) { \ 1006 idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \ 1007 } else \ 1008 idx = 0; \ 1009 \ 1010 (hment) = &(hmeblkp)->hblk_hme[idx]; \ 1011 } 1012 1013 /* 1014 * Disable any page sizes not supported by the CPU 1015 */ 1016 void 1017 hat_init_pagesizes() 1018 { 1019 int i; 1020 1021 mmu_exported_page_sizes = 0; 1022 for (i = TTE8K; i < max_mmu_page_sizes; i++) { 1023 1024 szc_2_userszc[i] = (uint_t)-1; 1025 userszc_2_szc[i] = (uint_t)-1; 1026 1027 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) { 1028 disable_large_pages |= (1 << i); 1029 } else { 1030 szc_2_userszc[i] = mmu_exported_page_sizes; 1031 userszc_2_szc[mmu_exported_page_sizes] = i; 1032 mmu_exported_page_sizes++; 1033 } 1034 } 1035 1036 disable_ism_large_pages |= disable_large_pages; 1037 disable_auto_data_large_pages = disable_large_pages; 1038 disable_auto_text_large_pages = disable_large_pages; 1039 1040 /* 1041 * Initialize mmu-specific large page sizes. 1042 */ 1043 if (&mmu_large_pages_disabled) { 1044 disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD); 1045 disable_ism_large_pages |= 1046 mmu_large_pages_disabled(HAT_LOAD_SHARE); 1047 disable_auto_data_large_pages |= 1048 mmu_large_pages_disabled(HAT_AUTO_DATA); 1049 disable_auto_text_large_pages |= 1050 mmu_large_pages_disabled(HAT_AUTO_TEXT); 1051 } 1052 } 1053 1054 /* 1055 * Initialize the hardware address translation structures. 1056 */ 1057 void 1058 hat_init(void) 1059 { 1060 int i; 1061 uint_t sz; 1062 size_t size; 1063 1064 hat_lock_init(); 1065 hat_kstat_init(); 1066 1067 /* 1068 * Hardware-only bits in a TTE 1069 */ 1070 MAKE_TTE_MASK(&hw_tte); 1071 1072 hat_init_pagesizes(); 1073 1074 /* Initialize the hash locks */ 1075 for (i = 0; i < khmehash_num; i++) { 1076 mutex_init(&khme_hash[i].hmehash_mutex, NULL, 1077 MUTEX_DEFAULT, NULL); 1078 khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA; 1079 } 1080 for (i = 0; i < uhmehash_num; i++) { 1081 mutex_init(&uhme_hash[i].hmehash_mutex, NULL, 1082 MUTEX_DEFAULT, NULL); 1083 uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA; 1084 } 1085 khmehash_num--; /* make sure counter starts from 0 */ 1086 uhmehash_num--; /* make sure counter starts from 0 */ 1087 1088 /* 1089 * Allocate context domain structures. 1090 * 1091 * A platform may choose to modify max_mmu_ctxdoms in 1092 * set_platform_defaults(). If a platform does not define 1093 * a set_platform_defaults() or does not choose to modify 1094 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU. 1095 * 1096 * For all platforms that have CPUs sharing MMUs, this 1097 * value must be defined. 1098 */ 1099 if (max_mmu_ctxdoms == 0) 1100 max_mmu_ctxdoms = max_ncpus; 1101 1102 size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *); 1103 mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP); 1104 1105 /* mmu_ctx_t is 64 bytes aligned */ 1106 mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache", 1107 sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 1108 /* 1109 * MMU context domain initialization for the Boot CPU. 1110 * This needs the context domains array allocated above. 1111 */ 1112 mutex_enter(&cpu_lock); 1113 sfmmu_cpu_init(CPU); 1114 mutex_exit(&cpu_lock); 1115 1116 /* 1117 * Intialize ism mapping list lock. 1118 */ 1119 1120 mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL); 1121 1122 /* 1123 * Each sfmmu structure carries an array of MMU context info 1124 * structures, one per context domain. The size of this array depends 1125 * on the maximum number of context domains. So, the size of the 1126 * sfmmu structure varies per platform. 1127 * 1128 * sfmmu is allocated from static arena, because trap 1129 * handler at TL > 0 is not allowed to touch kernel relocatable 1130 * memory. sfmmu's alignment is changed to 64 bytes from 1131 * default 8 bytes, as the lower 6 bits will be used to pass 1132 * pgcnt to vtag_flush_pgcnt_tl1. 1133 */ 1134 size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1); 1135 1136 sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size, 1137 64, sfmmu_idcache_constructor, sfmmu_idcache_destructor, 1138 NULL, NULL, static_arena, 0); 1139 1140 sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache", 1141 sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0); 1142 1143 /* 1144 * Since we only use the tsb8k cache to "borrow" pages for TSBs 1145 * from the heap when low on memory or when TSB_FORCEALLOC is 1146 * specified, don't use magazines to cache them--we want to return 1147 * them to the system as quickly as possible. 1148 */ 1149 sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache", 1150 MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL, 1151 static_arena, KMC_NOMAGAZINE); 1152 1153 /* 1154 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical 1155 * memory, which corresponds to the old static reserve for TSBs. 1156 * tsb_alloc_hiwater_factor defaults to 32. This caps the amount of 1157 * memory we'll allocate for TSB slabs; beyond this point TSB 1158 * allocations will be taken from the kernel heap (via 1159 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem 1160 * consumer. 1161 */ 1162 if (tsb_alloc_hiwater_factor == 0) { 1163 tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT; 1164 } 1165 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 1166 1167 for (sz = tsb_slab_ttesz; sz > 0; sz--) { 1168 if (!(disable_large_pages & (1 << sz))) 1169 break; 1170 } 1171 1172 if (sz < tsb_slab_ttesz) { 1173 tsb_slab_ttesz = sz; 1174 tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz; 1175 tsb_slab_size = 1 << tsb_slab_shift; 1176 tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1; 1177 use_bigtsb_arena = 0; 1178 } else if (use_bigtsb_arena && 1179 (disable_large_pages & (1 << bigtsb_slab_ttesz))) { 1180 use_bigtsb_arena = 0; 1181 } 1182 1183 if (!use_bigtsb_arena) { 1184 bigtsb_slab_shift = tsb_slab_shift; 1185 } 1186 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 1187 1188 /* 1189 * On smaller memory systems, allocate TSB memory in smaller chunks 1190 * than the default 4M slab size. We also honor disable_large_pages 1191 * here. 1192 * 1193 * The trap handlers need to be patched with the final slab shift, 1194 * since they need to be able to construct the TSB pointer at runtime. 1195 */ 1196 if ((tsb_max_growsize <= TSB_512K_SZCODE) && 1197 !(disable_large_pages & (1 << TTE512K))) { 1198 tsb_slab_ttesz = TTE512K; 1199 tsb_slab_shift = MMU_PAGESHIFT512K; 1200 tsb_slab_size = MMU_PAGESIZE512K; 1201 tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT; 1202 use_bigtsb_arena = 0; 1203 } 1204 1205 if (!use_bigtsb_arena) { 1206 bigtsb_slab_ttesz = tsb_slab_ttesz; 1207 bigtsb_slab_shift = tsb_slab_shift; 1208 bigtsb_slab_size = tsb_slab_size; 1209 bigtsb_slab_mask = tsb_slab_mask; 1210 } 1211 1212 1213 /* 1214 * Set up memory callback to update tsb_alloc_hiwater and 1215 * tsb_max_growsize. 1216 */ 1217 i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0); 1218 ASSERT(i == 0); 1219 1220 /* 1221 * kmem_tsb_arena is the source from which large TSB slabs are 1222 * drawn. The quantum of this arena corresponds to the largest 1223 * TSB size we can dynamically allocate for user processes. 1224 * Currently it must also be a supported page size since we 1225 * use exactly one translation entry to map each slab page. 1226 * 1227 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from 1228 * which most TSBs are allocated. Since most TSB allocations are 1229 * typically 8K we have a kmem cache we stack on top of each 1230 * kmem_tsb_default_arena to speed up those allocations. 1231 * 1232 * Note the two-level scheme of arenas is required only 1233 * because vmem_create doesn't allow us to specify alignment 1234 * requirements. If this ever changes the code could be 1235 * simplified to use only one level of arenas. 1236 * 1237 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena 1238 * will be provided in addition to the 4M kmem_tsb_arena. 1239 */ 1240 if (use_bigtsb_arena) { 1241 kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0, 1242 bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper, 1243 vmem_xfree, heap_arena, 0, VM_SLEEP); 1244 } 1245 1246 kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size, 1247 sfmmu_vmem_xalloc_aligned_wrapper, 1248 vmem_xfree, heap_arena, 0, VM_SLEEP); 1249 1250 if (tsb_lgrp_affinity) { 1251 char s[50]; 1252 for (i = 0; i < NLGRPS_MAX; i++) { 1253 if (use_bigtsb_arena) { 1254 (void) sprintf(s, "kmem_bigtsb_lgrp%d", i); 1255 kmem_bigtsb_default_arena[i] = vmem_create(s, 1256 NULL, 0, 2 * tsb_slab_size, 1257 sfmmu_tsb_segkmem_alloc, 1258 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 1259 0, VM_SLEEP | VM_BESTFIT); 1260 } 1261 1262 (void) sprintf(s, "kmem_tsb_lgrp%d", i); 1263 kmem_tsb_default_arena[i] = vmem_create(s, 1264 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc, 1265 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0, 1266 VM_SLEEP | VM_BESTFIT); 1267 1268 (void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i); 1269 sfmmu_tsb_cache[i] = kmem_cache_create(s, 1270 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL, 1271 kmem_tsb_default_arena[i], 0); 1272 } 1273 } else { 1274 if (use_bigtsb_arena) { 1275 kmem_bigtsb_default_arena[0] = 1276 vmem_create("kmem_bigtsb_default", NULL, 0, 1277 2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc, 1278 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0, 1279 VM_SLEEP | VM_BESTFIT); 1280 } 1281 1282 kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default", 1283 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc, 1284 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0, 1285 VM_SLEEP | VM_BESTFIT); 1286 sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache", 1287 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL, 1288 kmem_tsb_default_arena[0], 0); 1289 } 1290 1291 sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ, 1292 HMEBLK_ALIGN, sfmmu_hblkcache_constructor, 1293 sfmmu_hblkcache_destructor, 1294 sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ, 1295 hat_memload_arena, KMC_NOHASH); 1296 1297 hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE, 1298 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, 1299 VMC_DUMPSAFE | VM_SLEEP); 1300 1301 sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ, 1302 HMEBLK_ALIGN, sfmmu_hblkcache_constructor, 1303 sfmmu_hblkcache_destructor, 1304 NULL, (void *)HME1BLK_SZ, 1305 hat_memload1_arena, KMC_NOHASH); 1306 1307 pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ, 1308 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 1309 1310 ism_blk_cache = kmem_cache_create("ism_blk_cache", 1311 sizeof (ism_blk_t), ecache_alignsize, NULL, NULL, 1312 NULL, NULL, static_arena, KMC_NOHASH); 1313 1314 ism_ment_cache = kmem_cache_create("ism_ment_cache", 1315 sizeof (ism_ment_t), 0, NULL, NULL, 1316 NULL, NULL, NULL, 0); 1317 1318 /* 1319 * We grab the first hat for the kernel, 1320 */ 1321 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 1322 kas.a_hat = hat_alloc(&kas); 1323 AS_LOCK_EXIT(&kas, &kas.a_lock); 1324 1325 /* 1326 * Initialize hblk_reserve. 1327 */ 1328 ((struct hme_blk *)hblk_reserve)->hblk_nextpa = 1329 va_to_pa((caddr_t)hblk_reserve); 1330 1331 #ifndef UTSB_PHYS 1332 /* 1333 * Reserve some kernel virtual address space for the locked TTEs 1334 * that allow us to probe the TSB from TL>0. 1335 */ 1336 utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size, 1337 0, 0, NULL, NULL, VM_SLEEP); 1338 utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size, 1339 0, 0, NULL, NULL, VM_SLEEP); 1340 #endif 1341 1342 #ifdef VAC 1343 /* 1344 * The big page VAC handling code assumes VAC 1345 * will not be bigger than the smallest big 1346 * page- which is 64K. 1347 */ 1348 if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) { 1349 cmn_err(CE_PANIC, "VAC too big!"); 1350 } 1351 #endif 1352 1353 (void) xhat_init(); 1354 1355 uhme_hash_pa = va_to_pa(uhme_hash); 1356 khme_hash_pa = va_to_pa(khme_hash); 1357 1358 /* 1359 * Initialize relocation locks. kpr_suspendlock is held 1360 * at PIL_MAX to prevent interrupts from pinning the holder 1361 * of a suspended TTE which may access it leading to a 1362 * deadlock condition. 1363 */ 1364 mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL); 1365 mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX); 1366 1367 /* 1368 * If Shared context support is disabled via /etc/system 1369 * set shctx_on to 0 here if it was set to 1 earlier in boot 1370 * sequence by cpu module initialization code. 1371 */ 1372 if (shctx_on && disable_shctx) { 1373 shctx_on = 0; 1374 } 1375 1376 if (shctx_on) { 1377 srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS * 1378 sizeof (srd_buckets[0]), KM_SLEEP); 1379 for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) { 1380 mutex_init(&srd_buckets[i].srdb_lock, NULL, 1381 MUTEX_DEFAULT, NULL); 1382 } 1383 1384 srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t), 1385 0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor, 1386 NULL, NULL, NULL, 0); 1387 region_cache = kmem_cache_create("region_cache", 1388 sizeof (sf_region_t), 0, sfmmu_rgncache_constructor, 1389 sfmmu_rgncache_destructor, NULL, NULL, NULL, 0); 1390 scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t), 1391 0, sfmmu_scdcache_constructor, sfmmu_scdcache_destructor, 1392 NULL, NULL, NULL, 0); 1393 } 1394 1395 /* 1396 * Pre-allocate hrm_hashtab before enabling the collection of 1397 * refmod statistics. Allocating on the fly would mean us 1398 * running the risk of suffering recursive mutex enters or 1399 * deadlocks. 1400 */ 1401 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 1402 KM_SLEEP); 1403 1404 /* Allocate per-cpu pending freelist of hmeblks */ 1405 cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64, 1406 KM_SLEEP); 1407 cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP( 1408 (uintptr_t)cpu_hme_pend, 64); 1409 1410 for (i = 0; i < NCPU; i++) { 1411 mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT, 1412 NULL); 1413 } 1414 1415 if (cpu_hme_pend_thresh == 0) { 1416 cpu_hme_pend_thresh = CPU_HME_PEND_THRESH; 1417 } 1418 } 1419 1420 /* 1421 * Initialize locking for the hat layer, called early during boot. 1422 */ 1423 static void 1424 hat_lock_init() 1425 { 1426 int i; 1427 1428 /* 1429 * initialize the array of mutexes protecting a page's mapping 1430 * list and p_nrm field. 1431 */ 1432 for (i = 0; i < MML_TABLE_SIZE; i++) 1433 mutex_init(&mml_table[i].pad_mutex, NULL, MUTEX_DEFAULT, NULL); 1434 1435 if (kpm_enable) { 1436 for (i = 0; i < kpmp_table_sz; i++) { 1437 mutex_init(&kpmp_table[i].khl_mutex, NULL, 1438 MUTEX_DEFAULT, NULL); 1439 } 1440 } 1441 1442 /* 1443 * Initialize array of mutex locks that protects sfmmu fields and 1444 * TSB lists. 1445 */ 1446 for (i = 0; i < SFMMU_NUM_LOCK; i++) 1447 mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT, 1448 NULL); 1449 } 1450 1451 #define SFMMU_KERNEL_MAXVA \ 1452 (kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT)) 1453 1454 /* 1455 * Allocate a hat structure. 1456 * Called when an address space first uses a hat. 1457 */ 1458 struct hat * 1459 hat_alloc(struct as *as) 1460 { 1461 sfmmu_t *sfmmup; 1462 int i; 1463 uint64_t cnum; 1464 extern uint_t get_color_start(struct as *); 1465 1466 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1467 sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP); 1468 sfmmup->sfmmu_as = as; 1469 sfmmup->sfmmu_flags = 0; 1470 sfmmup->sfmmu_tteflags = 0; 1471 sfmmup->sfmmu_rtteflags = 0; 1472 LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock); 1473 1474 if (as == &kas) { 1475 ksfmmup = sfmmup; 1476 sfmmup->sfmmu_cext = 0; 1477 cnum = KCONTEXT; 1478 1479 sfmmup->sfmmu_clrstart = 0; 1480 sfmmup->sfmmu_tsb = NULL; 1481 /* 1482 * hat_kern_setup() will call sfmmu_init_ktsbinfo() 1483 * to setup tsb_info for ksfmmup. 1484 */ 1485 } else { 1486 1487 /* 1488 * Just set to invalid ctx. When it faults, it will 1489 * get a valid ctx. This would avoid the situation 1490 * where we get a ctx, but it gets stolen and then 1491 * we fault when we try to run and so have to get 1492 * another ctx. 1493 */ 1494 sfmmup->sfmmu_cext = 0; 1495 cnum = INVALID_CONTEXT; 1496 1497 /* initialize original physical page coloring bin */ 1498 sfmmup->sfmmu_clrstart = get_color_start(as); 1499 #ifdef DEBUG 1500 if (tsb_random_size) { 1501 uint32_t randval = (uint32_t)gettick() >> 4; 1502 int size = randval % (tsb_max_growsize + 1); 1503 1504 /* chose a random tsb size for stress testing */ 1505 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size, 1506 TSB8K|TSB64K|TSB512K, 0, sfmmup); 1507 } else 1508 #endif /* DEBUG */ 1509 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, 1510 default_tsb_size, 1511 TSB8K|TSB64K|TSB512K, 0, sfmmup); 1512 sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID; 1513 ASSERT(sfmmup->sfmmu_tsb != NULL); 1514 } 1515 1516 ASSERT(max_mmu_ctxdoms > 0); 1517 for (i = 0; i < max_mmu_ctxdoms; i++) { 1518 sfmmup->sfmmu_ctxs[i].cnum = cnum; 1519 sfmmup->sfmmu_ctxs[i].gnum = 0; 1520 } 1521 1522 for (i = 0; i < max_mmu_page_sizes; i++) { 1523 sfmmup->sfmmu_ttecnt[i] = 0; 1524 sfmmup->sfmmu_scdrttecnt[i] = 0; 1525 sfmmup->sfmmu_ismttecnt[i] = 0; 1526 sfmmup->sfmmu_scdismttecnt[i] = 0; 1527 sfmmup->sfmmu_pgsz[i] = TTE8K; 1528 } 1529 sfmmup->sfmmu_tsb0_4minflcnt = 0; 1530 sfmmup->sfmmu_iblk = NULL; 1531 sfmmup->sfmmu_ismhat = 0; 1532 sfmmup->sfmmu_scdhat = 0; 1533 sfmmup->sfmmu_ismblkpa = (uint64_t)-1; 1534 if (sfmmup == ksfmmup) { 1535 CPUSET_ALL(sfmmup->sfmmu_cpusran); 1536 } else { 1537 CPUSET_ZERO(sfmmup->sfmmu_cpusran); 1538 } 1539 sfmmup->sfmmu_free = 0; 1540 sfmmup->sfmmu_rmstat = 0; 1541 sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart; 1542 sfmmup->sfmmu_xhat_provider = NULL; 1543 cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL); 1544 sfmmup->sfmmu_srdp = NULL; 1545 SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map); 1546 bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE); 1547 sfmmup->sfmmu_scdp = NULL; 1548 sfmmup->sfmmu_scd_link.next = NULL; 1549 sfmmup->sfmmu_scd_link.prev = NULL; 1550 return (sfmmup); 1551 } 1552 1553 /* 1554 * Create per-MMU context domain kstats for a given MMU ctx. 1555 */ 1556 static void 1557 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp) 1558 { 1559 mmu_ctx_stat_t stat; 1560 kstat_t *mmu_kstat; 1561 1562 ASSERT(MUTEX_HELD(&cpu_lock)); 1563 ASSERT(mmu_ctxp->mmu_kstat == NULL); 1564 1565 mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx", 1566 "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL); 1567 1568 if (mmu_kstat == NULL) { 1569 cmn_err(CE_WARN, "kstat_create for MMU %d failed", 1570 mmu_ctxp->mmu_idx); 1571 } else { 1572 mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data; 1573 for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++) 1574 kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat], 1575 mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64); 1576 mmu_ctxp->mmu_kstat = mmu_kstat; 1577 kstat_install(mmu_kstat); 1578 } 1579 } 1580 1581 /* 1582 * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU 1583 * context domain information for a given CPU. If a platform does not 1584 * specify that interface, then the function below is used instead to return 1585 * default information. The defaults are as follows: 1586 * 1587 * - The number of MMU context IDs supported on any CPU in the 1588 * system is 8K. 1589 * - There is one MMU context domain per CPU. 1590 */ 1591 /*ARGSUSED*/ 1592 static void 1593 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop) 1594 { 1595 infop->mmu_nctxs = nctxs; 1596 infop->mmu_idx = cpu[cpuid]->cpu_seqid; 1597 } 1598 1599 /* 1600 * Called during CPU initialization to set the MMU context-related information 1601 * for a CPU. 1602 * 1603 * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum. 1604 */ 1605 void 1606 sfmmu_cpu_init(cpu_t *cp) 1607 { 1608 mmu_ctx_info_t info; 1609 mmu_ctx_t *mmu_ctxp; 1610 1611 ASSERT(MUTEX_HELD(&cpu_lock)); 1612 1613 if (&plat_cpuid_to_mmu_ctx_info == NULL) 1614 sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info); 1615 else 1616 plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info); 1617 1618 ASSERT(info.mmu_idx < max_mmu_ctxdoms); 1619 1620 if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) { 1621 /* Each mmu_ctx is cacheline aligned. */ 1622 mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP); 1623 bzero(mmu_ctxp, sizeof (mmu_ctx_t)); 1624 1625 mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN, 1626 (void *)ipltospl(DISP_LEVEL)); 1627 mmu_ctxp->mmu_idx = info.mmu_idx; 1628 mmu_ctxp->mmu_nctxs = info.mmu_nctxs; 1629 /* 1630 * Globally for lifetime of a system, 1631 * gnum must always increase. 1632 * mmu_saved_gnum is protected by the cpu_lock. 1633 */ 1634 mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1; 1635 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS; 1636 1637 sfmmu_mmu_kstat_create(mmu_ctxp); 1638 1639 mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp; 1640 } else { 1641 ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx); 1642 ASSERT(mmu_ctxp->mmu_nctxs <= info.mmu_nctxs); 1643 } 1644 1645 /* 1646 * The mmu_lock is acquired here to prevent races with 1647 * the wrap-around code. 1648 */ 1649 mutex_enter(&mmu_ctxp->mmu_lock); 1650 1651 1652 mmu_ctxp->mmu_ncpus++; 1653 CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id); 1654 CPU_MMU_IDX(cp) = info.mmu_idx; 1655 CPU_MMU_CTXP(cp) = mmu_ctxp; 1656 1657 mutex_exit(&mmu_ctxp->mmu_lock); 1658 } 1659 1660 static void 1661 sfmmu_ctxdom_free(mmu_ctx_t *mmu_ctxp) 1662 { 1663 ASSERT(MUTEX_HELD(&cpu_lock)); 1664 ASSERT(!MUTEX_HELD(&mmu_ctxp->mmu_lock)); 1665 1666 mutex_destroy(&mmu_ctxp->mmu_lock); 1667 1668 if (mmu_ctxp->mmu_kstat) 1669 kstat_delete(mmu_ctxp->mmu_kstat); 1670 1671 /* mmu_saved_gnum is protected by the cpu_lock. */ 1672 if (mmu_saved_gnum < mmu_ctxp->mmu_gnum) 1673 mmu_saved_gnum = mmu_ctxp->mmu_gnum; 1674 1675 kmem_cache_free(mmuctxdom_cache, mmu_ctxp); 1676 } 1677 1678 /* 1679 * Called to perform MMU context-related cleanup for a CPU. 1680 */ 1681 void 1682 sfmmu_cpu_cleanup(cpu_t *cp) 1683 { 1684 mmu_ctx_t *mmu_ctxp; 1685 1686 ASSERT(MUTEX_HELD(&cpu_lock)); 1687 1688 mmu_ctxp = CPU_MMU_CTXP(cp); 1689 ASSERT(mmu_ctxp != NULL); 1690 1691 /* 1692 * The mmu_lock is acquired here to prevent races with 1693 * the wrap-around code. 1694 */ 1695 mutex_enter(&mmu_ctxp->mmu_lock); 1696 1697 CPU_MMU_CTXP(cp) = NULL; 1698 1699 CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id); 1700 if (--mmu_ctxp->mmu_ncpus == 0) { 1701 mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL; 1702 mutex_exit(&mmu_ctxp->mmu_lock); 1703 sfmmu_ctxdom_free(mmu_ctxp); 1704 return; 1705 } 1706 1707 mutex_exit(&mmu_ctxp->mmu_lock); 1708 } 1709 1710 uint_t 1711 sfmmu_ctxdom_nctxs(int idx) 1712 { 1713 return (mmu_ctxs_tbl[idx]->mmu_nctxs); 1714 } 1715 1716 #ifdef sun4v 1717 /* 1718 * sfmmu_ctxdoms_* is an interface provided to help keep context domains 1719 * consistant after suspend/resume on system that can resume on a different 1720 * hardware than it was suspended. 1721 * 1722 * sfmmu_ctxdom_lock(void) locks all context domains and prevents new contexts 1723 * from being allocated. It acquires all hat_locks, which blocks most access to 1724 * context data, except for a few cases that are handled separately or are 1725 * harmless. It wraps each domain to increment gnum and invalidate on-CPU 1726 * contexts, and forces cnum to its max. As a result of this call all user 1727 * threads that are running on CPUs trap and try to perform wrap around but 1728 * can't because hat_locks are taken. Threads that were not on CPUs but started 1729 * by scheduler go to sfmmu_alloc_ctx() to aquire context without checking 1730 * hat_lock, but fail, because cnum == nctxs, and therefore also trap and block 1731 * on hat_lock trying to wrap. sfmmu_ctxdom_lock() must be called before CPUs 1732 * are paused, else it could deadlock acquiring locks held by paused CPUs. 1733 * 1734 * sfmmu_ctxdoms_remove() removes context domains from every CPUs and records 1735 * the CPUs that had them. It must be called after CPUs have been paused. This 1736 * ensures that no threads are in sfmmu_alloc_ctx() accessing domain data, 1737 * because pause_cpus sends a mondo interrupt to every CPU, and sfmmu_alloc_ctx 1738 * runs with interrupts disabled. When CPUs are later resumed, they may enter 1739 * sfmmu_alloc_ctx, but it will check for CPU_MMU_CTXP = NULL and immediately 1740 * return failure. Or, they will be blocked trying to acquire hat_lock. Thus 1741 * after sfmmu_ctxdoms_remove returns, we are guaranteed that no one is 1742 * accessing the old context domains. 1743 * 1744 * sfmmu_ctxdoms_update(void) frees space used by old context domains and 1745 * allocates new context domains based on hardware layout. It initializes 1746 * every CPU that had context domain before migration to have one again. 1747 * sfmmu_ctxdoms_update must be called after CPUs are resumed, else it 1748 * could deadlock acquiring locks held by paused CPUs. 1749 * 1750 * sfmmu_ctxdoms_unlock(void) releases all hat_locks after which user threads 1751 * acquire new context ids and continue execution. 1752 * 1753 * Therefore functions should be called in the following order: 1754 * suspend_routine() 1755 * sfmmu_ctxdom_lock() 1756 * pause_cpus() 1757 * suspend() 1758 * if (suspend failed) 1759 * sfmmu_ctxdom_unlock() 1760 * ... 1761 * sfmmu_ctxdom_remove() 1762 * resume_cpus() 1763 * sfmmu_ctxdom_update() 1764 * sfmmu_ctxdom_unlock() 1765 */ 1766 static cpuset_t sfmmu_ctxdoms_pset; 1767 1768 void 1769 sfmmu_ctxdoms_remove() 1770 { 1771 processorid_t id; 1772 cpu_t *cp; 1773 1774 /* 1775 * Record the CPUs that have domains in sfmmu_ctxdoms_pset, so they can 1776 * be restored post-migration. A CPU may be powered off and not have a 1777 * domain, for example. 1778 */ 1779 CPUSET_ZERO(sfmmu_ctxdoms_pset); 1780 1781 for (id = 0; id < NCPU; id++) { 1782 if ((cp = cpu[id]) != NULL && CPU_MMU_CTXP(cp) != NULL) { 1783 CPUSET_ADD(sfmmu_ctxdoms_pset, id); 1784 CPU_MMU_CTXP(cp) = NULL; 1785 } 1786 } 1787 } 1788 1789 void 1790 sfmmu_ctxdoms_lock(void) 1791 { 1792 int idx; 1793 mmu_ctx_t *mmu_ctxp; 1794 1795 sfmmu_hat_lock_all(); 1796 1797 /* 1798 * At this point, no thread can be in sfmmu_ctx_wrap_around, because 1799 * hat_lock is always taken before calling it. 1800 * 1801 * For each domain, set mmu_cnum to max so no more contexts can be 1802 * allocated, and wrap to flush on-CPU contexts and force threads to 1803 * acquire a new context when we later drop hat_lock after migration. 1804 * Setting mmu_cnum may race with sfmmu_alloc_ctx which also sets cnum, 1805 * but the latter uses CAS and will miscompare and not overwrite it. 1806 */ 1807 kpreempt_disable(); /* required by sfmmu_ctx_wrap_around */ 1808 for (idx = 0; idx < max_mmu_ctxdoms; idx++) { 1809 if ((mmu_ctxp = mmu_ctxs_tbl[idx]) != NULL) { 1810 mutex_enter(&mmu_ctxp->mmu_lock); 1811 mmu_ctxp->mmu_cnum = mmu_ctxp->mmu_nctxs; 1812 /* make sure updated cnum visible */ 1813 membar_enter(); 1814 mutex_exit(&mmu_ctxp->mmu_lock); 1815 sfmmu_ctx_wrap_around(mmu_ctxp, B_FALSE); 1816 } 1817 } 1818 kpreempt_enable(); 1819 } 1820 1821 void 1822 sfmmu_ctxdoms_unlock(void) 1823 { 1824 sfmmu_hat_unlock_all(); 1825 } 1826 1827 void 1828 sfmmu_ctxdoms_update(void) 1829 { 1830 processorid_t id; 1831 cpu_t *cp; 1832 uint_t idx; 1833 mmu_ctx_t *mmu_ctxp; 1834 1835 /* 1836 * Free all context domains. As side effect, this increases 1837 * mmu_saved_gnum to the maximum gnum over all domains, which is used to 1838 * init gnum in the new domains, which therefore will be larger than the 1839 * sfmmu gnum for any process, guaranteeing that every process will see 1840 * a new generation and allocate a new context regardless of what new 1841 * domain it runs in. 1842 */ 1843 mutex_enter(&cpu_lock); 1844 1845 for (idx = 0; idx < max_mmu_ctxdoms; idx++) { 1846 if (mmu_ctxs_tbl[idx] != NULL) { 1847 mmu_ctxp = mmu_ctxs_tbl[idx]; 1848 mmu_ctxs_tbl[idx] = NULL; 1849 sfmmu_ctxdom_free(mmu_ctxp); 1850 } 1851 } 1852 1853 for (id = 0; id < NCPU; id++) { 1854 if (CPU_IN_SET(sfmmu_ctxdoms_pset, id) && 1855 (cp = cpu[id]) != NULL) 1856 sfmmu_cpu_init(cp); 1857 } 1858 mutex_exit(&cpu_lock); 1859 } 1860 #endif 1861 1862 /* 1863 * Hat_setup, makes an address space context the current active one. 1864 * In sfmmu this translates to setting the secondary context with the 1865 * corresponding context. 1866 */ 1867 void 1868 hat_setup(struct hat *sfmmup, int allocflag) 1869 { 1870 hatlock_t *hatlockp; 1871 1872 /* Init needs some special treatment. */ 1873 if (allocflag == HAT_INIT) { 1874 /* 1875 * Make sure that we have 1876 * 1. a TSB 1877 * 2. a valid ctx that doesn't get stolen after this point. 1878 */ 1879 hatlockp = sfmmu_hat_enter(sfmmup); 1880 1881 /* 1882 * Swap in the TSB. hat_init() allocates tsbinfos without 1883 * TSBs, but we need one for init, since the kernel does some 1884 * special things to set up its stack and needs the TSB to 1885 * resolve page faults. 1886 */ 1887 sfmmu_tsb_swapin(sfmmup, hatlockp); 1888 1889 sfmmu_get_ctx(sfmmup); 1890 1891 sfmmu_hat_exit(hatlockp); 1892 } else { 1893 ASSERT(allocflag == HAT_ALLOC); 1894 1895 hatlockp = sfmmu_hat_enter(sfmmup); 1896 kpreempt_disable(); 1897 1898 CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id); 1899 /* 1900 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter, 1901 * pagesize bits don't matter in this case since we are passing 1902 * INVALID_CONTEXT to it. 1903 * Compatibility Note: hw takes care of MMU_SCONTEXT1 1904 */ 1905 sfmmu_setctx_sec(INVALID_CONTEXT); 1906 sfmmu_clear_utsbinfo(); 1907 1908 kpreempt_enable(); 1909 sfmmu_hat_exit(hatlockp); 1910 } 1911 } 1912 1913 /* 1914 * Free all the translation resources for the specified address space. 1915 * Called from as_free when an address space is being destroyed. 1916 */ 1917 void 1918 hat_free_start(struct hat *sfmmup) 1919 { 1920 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 1921 ASSERT(sfmmup != ksfmmup); 1922 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1923 1924 sfmmup->sfmmu_free = 1; 1925 if (sfmmup->sfmmu_scdp != NULL) { 1926 sfmmu_leave_scd(sfmmup, 0); 1927 } 1928 1929 ASSERT(sfmmup->sfmmu_scdp == NULL); 1930 } 1931 1932 void 1933 hat_free_end(struct hat *sfmmup) 1934 { 1935 int i; 1936 1937 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1938 ASSERT(sfmmup->sfmmu_free == 1); 1939 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0); 1940 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0); 1941 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0); 1942 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0); 1943 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 1944 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 1945 1946 if (sfmmup->sfmmu_rmstat) { 1947 hat_freestat(sfmmup->sfmmu_as, NULL); 1948 } 1949 1950 while (sfmmup->sfmmu_tsb != NULL) { 1951 struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next; 1952 sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb); 1953 sfmmup->sfmmu_tsb = next; 1954 } 1955 1956 if (sfmmup->sfmmu_srdp != NULL) { 1957 sfmmu_leave_srd(sfmmup); 1958 ASSERT(sfmmup->sfmmu_srdp == NULL); 1959 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) { 1960 if (sfmmup->sfmmu_hmeregion_links[i] != NULL) { 1961 kmem_free(sfmmup->sfmmu_hmeregion_links[i], 1962 SFMMU_L2_HMERLINKS_SIZE); 1963 sfmmup->sfmmu_hmeregion_links[i] = NULL; 1964 } 1965 } 1966 } 1967 sfmmu_free_sfmmu(sfmmup); 1968 1969 #ifdef DEBUG 1970 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) { 1971 ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL); 1972 } 1973 #endif 1974 1975 kmem_cache_free(sfmmuid_cache, sfmmup); 1976 } 1977 1978 /* 1979 * Set up any translation structures, for the specified address space, 1980 * that are needed or preferred when the process is being swapped in. 1981 */ 1982 /* ARGSUSED */ 1983 void 1984 hat_swapin(struct hat *hat) 1985 { 1986 ASSERT(hat->sfmmu_xhat_provider == NULL); 1987 } 1988 1989 /* 1990 * Free all of the translation resources, for the specified address space, 1991 * that can be freed while the process is swapped out. Called from as_swapout. 1992 * Also, free up the ctx that this process was using. 1993 */ 1994 void 1995 hat_swapout(struct hat *sfmmup) 1996 { 1997 struct hmehash_bucket *hmebp; 1998 struct hme_blk *hmeblkp; 1999 struct hme_blk *pr_hblk = NULL; 2000 struct hme_blk *nx_hblk; 2001 int i; 2002 struct hme_blk *list = NULL; 2003 hatlock_t *hatlockp; 2004 struct tsb_info *tsbinfop; 2005 struct free_tsb { 2006 struct free_tsb *next; 2007 struct tsb_info *tsbinfop; 2008 }; /* free list of TSBs */ 2009 struct free_tsb *freelist, *last, *next; 2010 2011 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 2012 SFMMU_STAT(sf_swapout); 2013 2014 /* 2015 * There is no way to go from an as to all its translations in sfmmu. 2016 * Here is one of the times when we take the big hit and traverse 2017 * the hash looking for hme_blks to free up. Not only do we free up 2018 * this as hme_blks but all those that are free. We are obviously 2019 * swapping because we need memory so let's free up as much 2020 * as we can. 2021 * 2022 * Note that we don't flush TLB/TSB here -- it's not necessary 2023 * because: 2024 * 1) we free the ctx we're using and throw away the TSB(s); 2025 * 2) processes aren't runnable while being swapped out. 2026 */ 2027 ASSERT(sfmmup != KHATID); 2028 for (i = 0; i <= UHMEHASH_SZ; i++) { 2029 hmebp = &uhme_hash[i]; 2030 SFMMU_HASH_LOCK(hmebp); 2031 hmeblkp = hmebp->hmeblkp; 2032 pr_hblk = NULL; 2033 while (hmeblkp) { 2034 2035 ASSERT(!hmeblkp->hblk_xhat_bit); 2036 2037 if ((hmeblkp->hblk_tag.htag_id == sfmmup) && 2038 !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) { 2039 ASSERT(!hmeblkp->hblk_shared); 2040 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 2041 (caddr_t)get_hblk_base(hmeblkp), 2042 get_hblk_endaddr(hmeblkp), 2043 NULL, HAT_UNLOAD); 2044 } 2045 nx_hblk = hmeblkp->hblk_next; 2046 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 2047 ASSERT(!hmeblkp->hblk_lckcnt); 2048 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 2049 &list, 0); 2050 } else { 2051 pr_hblk = hmeblkp; 2052 } 2053 hmeblkp = nx_hblk; 2054 } 2055 SFMMU_HASH_UNLOCK(hmebp); 2056 } 2057 2058 sfmmu_hblks_list_purge(&list, 0); 2059 2060 /* 2061 * Now free up the ctx so that others can reuse it. 2062 */ 2063 hatlockp = sfmmu_hat_enter(sfmmup); 2064 2065 sfmmu_invalidate_ctx(sfmmup); 2066 2067 /* 2068 * Free TSBs, but not tsbinfos, and set SWAPPED flag. 2069 * If TSBs were never swapped in, just return. 2070 * This implies that we don't support partial swapping 2071 * of TSBs -- either all are swapped out, or none are. 2072 * 2073 * We must hold the HAT lock here to prevent racing with another 2074 * thread trying to unmap TTEs from the TSB or running the post- 2075 * relocator after relocating the TSB's memory. Unfortunately, we 2076 * can't free memory while holding the HAT lock or we could 2077 * deadlock, so we build a list of TSBs to be freed after marking 2078 * the tsbinfos as swapped out and free them after dropping the 2079 * lock. 2080 */ 2081 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 2082 sfmmu_hat_exit(hatlockp); 2083 return; 2084 } 2085 2086 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED); 2087 last = freelist = NULL; 2088 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 2089 tsbinfop = tsbinfop->tsb_next) { 2090 ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0); 2091 2092 /* 2093 * Cast the TSB into a struct free_tsb and put it on the free 2094 * list. 2095 */ 2096 if (freelist == NULL) { 2097 last = freelist = (struct free_tsb *)tsbinfop->tsb_va; 2098 } else { 2099 last->next = (struct free_tsb *)tsbinfop->tsb_va; 2100 last = last->next; 2101 } 2102 last->next = NULL; 2103 last->tsbinfop = tsbinfop; 2104 tsbinfop->tsb_flags |= TSB_SWAPPED; 2105 /* 2106 * Zero out the TTE to clear the valid bit. 2107 * Note we can't use a value like 0xbad because we want to 2108 * ensure diagnostic bits are NEVER set on TTEs that might 2109 * be loaded. The intent is to catch any invalid access 2110 * to the swapped TSB, such as a thread running with a valid 2111 * context without first calling sfmmu_tsb_swapin() to 2112 * allocate TSB memory. 2113 */ 2114 tsbinfop->tsb_tte.ll = 0; 2115 } 2116 2117 /* Now we can drop the lock and free the TSB memory. */ 2118 sfmmu_hat_exit(hatlockp); 2119 for (; freelist != NULL; freelist = next) { 2120 next = freelist->next; 2121 sfmmu_tsb_free(freelist->tsbinfop); 2122 } 2123 } 2124 2125 /* 2126 * Duplicate the translations of an as into another newas 2127 */ 2128 /* ARGSUSED */ 2129 int 2130 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len, 2131 uint_t flag) 2132 { 2133 sf_srd_t *srdp; 2134 sf_scd_t *scdp; 2135 int i; 2136 extern uint_t get_color_start(struct as *); 2137 2138 ASSERT(hat->sfmmu_xhat_provider == NULL); 2139 ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) || 2140 (flag == HAT_DUP_SRD)); 2141 ASSERT(hat != ksfmmup); 2142 ASSERT(newhat != ksfmmup); 2143 ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp); 2144 2145 if (flag == HAT_DUP_COW) { 2146 panic("hat_dup: HAT_DUP_COW not supported"); 2147 } 2148 2149 if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) { 2150 ASSERT(srdp->srd_evp != NULL); 2151 VN_HOLD(srdp->srd_evp); 2152 ASSERT(srdp->srd_refcnt > 0); 2153 newhat->sfmmu_srdp = srdp; 2154 atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt); 2155 } 2156 2157 /* 2158 * HAT_DUP_ALL flag is used after as duplication is done. 2159 */ 2160 if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) { 2161 ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2); 2162 newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags; 2163 if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) { 2164 newhat->sfmmu_flags |= HAT_4MTEXT_FLAG; 2165 } 2166 2167 /* check if need to join scd */ 2168 if ((scdp = hat->sfmmu_scdp) != NULL && 2169 newhat->sfmmu_scdp != scdp) { 2170 int ret; 2171 SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map, 2172 &scdp->scd_region_map, ret); 2173 ASSERT(ret); 2174 sfmmu_join_scd(scdp, newhat); 2175 ASSERT(newhat->sfmmu_scdp == scdp && 2176 scdp->scd_refcnt >= 2); 2177 for (i = 0; i < max_mmu_page_sizes; i++) { 2178 newhat->sfmmu_ismttecnt[i] = 2179 hat->sfmmu_ismttecnt[i]; 2180 newhat->sfmmu_scdismttecnt[i] = 2181 hat->sfmmu_scdismttecnt[i]; 2182 } 2183 } 2184 2185 sfmmu_check_page_sizes(newhat, 1); 2186 } 2187 2188 if (flag == HAT_DUP_ALL && consistent_coloring == 0 && 2189 update_proc_pgcolorbase_after_fork != 0) { 2190 hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as); 2191 } 2192 return (0); 2193 } 2194 2195 void 2196 hat_memload(struct hat *hat, caddr_t addr, struct page *pp, 2197 uint_t attr, uint_t flags) 2198 { 2199 hat_do_memload(hat, addr, pp, attr, flags, 2200 SFMMU_INVALID_SHMERID); 2201 } 2202 2203 void 2204 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 2205 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 2206 { 2207 uint_t rid; 2208 if (rcookie == HAT_INVALID_REGION_COOKIE || 2209 hat->sfmmu_xhat_provider != NULL) { 2210 hat_do_memload(hat, addr, pp, attr, flags, 2211 SFMMU_INVALID_SHMERID); 2212 return; 2213 } 2214 rid = (uint_t)((uint64_t)rcookie); 2215 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 2216 hat_do_memload(hat, addr, pp, attr, flags, rid); 2217 } 2218 2219 /* 2220 * Set up addr to map to page pp with protection prot. 2221 * As an optimization we also load the TSB with the 2222 * corresponding tte but it is no big deal if the tte gets kicked out. 2223 */ 2224 static void 2225 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp, 2226 uint_t attr, uint_t flags, uint_t rid) 2227 { 2228 tte_t tte; 2229 2230 2231 ASSERT(hat != NULL); 2232 ASSERT(PAGE_LOCKED(pp)); 2233 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 2234 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG)); 2235 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 2236 SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE); 2237 2238 if (PP_ISFREE(pp)) { 2239 panic("hat_memload: loading a mapping to free page %p", 2240 (void *)pp); 2241 } 2242 2243 if (hat->sfmmu_xhat_provider) { 2244 /* no regions for xhats */ 2245 ASSERT(!SFMMU_IS_SHMERID_VALID(rid)); 2246 XHAT_MEMLOAD(hat, addr, pp, attr, flags); 2247 return; 2248 } 2249 2250 ASSERT((hat == ksfmmup) || 2251 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock)); 2252 2253 if (flags & ~SFMMU_LOAD_ALLFLAG) 2254 cmn_err(CE_NOTE, "hat_memload: unsupported flags %d", 2255 flags & ~SFMMU_LOAD_ALLFLAG); 2256 2257 if (hat->sfmmu_rmstat) 2258 hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr); 2259 2260 #if defined(SF_ERRATA_57) 2261 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 2262 (addr < errata57_limit) && (attr & PROT_EXEC) && 2263 !(flags & HAT_LOAD_SHARE)) { 2264 cmn_err(CE_WARN, "hat_memload: illegal attempt to make user " 2265 " page executable"); 2266 attr &= ~PROT_EXEC; 2267 } 2268 #endif 2269 2270 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K); 2271 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid); 2272 2273 /* 2274 * Check TSB and TLB page sizes. 2275 */ 2276 if ((flags & HAT_LOAD_SHARE) == 0) { 2277 sfmmu_check_page_sizes(hat, 1); 2278 } 2279 } 2280 2281 /* 2282 * hat_devload can be called to map real memory (e.g. 2283 * /dev/kmem) and even though hat_devload will determine pf is 2284 * for memory, it will be unable to get a shared lock on the 2285 * page (because someone else has it exclusively) and will 2286 * pass dp = NULL. If tteload doesn't get a non-NULL 2287 * page pointer it can't cache memory. 2288 */ 2289 void 2290 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn, 2291 uint_t attr, int flags) 2292 { 2293 tte_t tte; 2294 struct page *pp = NULL; 2295 int use_lgpg = 0; 2296 2297 ASSERT(hat != NULL); 2298 2299 if (hat->sfmmu_xhat_provider) { 2300 XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags); 2301 return; 2302 } 2303 2304 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG)); 2305 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 2306 ASSERT((hat == ksfmmup) || 2307 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock)); 2308 if (len == 0) 2309 panic("hat_devload: zero len"); 2310 if (flags & ~SFMMU_LOAD_ALLFLAG) 2311 cmn_err(CE_NOTE, "hat_devload: unsupported flags %d", 2312 flags & ~SFMMU_LOAD_ALLFLAG); 2313 2314 #if defined(SF_ERRATA_57) 2315 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 2316 (addr < errata57_limit) && (attr & PROT_EXEC) && 2317 !(flags & HAT_LOAD_SHARE)) { 2318 cmn_err(CE_WARN, "hat_devload: illegal attempt to make user " 2319 " page executable"); 2320 attr &= ~PROT_EXEC; 2321 } 2322 #endif 2323 2324 /* 2325 * If it's a memory page find its pp 2326 */ 2327 if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) { 2328 pp = page_numtopp_nolock(pfn); 2329 if (pp == NULL) { 2330 flags |= HAT_LOAD_NOCONSIST; 2331 } else { 2332 if (PP_ISFREE(pp)) { 2333 panic("hat_memload: loading " 2334 "a mapping to free page %p", 2335 (void *)pp); 2336 } 2337 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 2338 panic("hat_memload: loading a mapping " 2339 "to unlocked relocatable page %p", 2340 (void *)pp); 2341 } 2342 ASSERT(len == MMU_PAGESIZE); 2343 } 2344 } 2345 2346 if (hat->sfmmu_rmstat) 2347 hat_resvstat(len, hat->sfmmu_as, addr); 2348 2349 if (flags & HAT_LOAD_NOCONSIST) { 2350 attr |= SFMMU_UNCACHEVTTE; 2351 use_lgpg = 1; 2352 } 2353 if (!pf_is_memory(pfn)) { 2354 attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC; 2355 use_lgpg = 1; 2356 switch (attr & HAT_ORDER_MASK) { 2357 case HAT_STRICTORDER: 2358 case HAT_UNORDERED_OK: 2359 /* 2360 * we set the side effect bit for all non 2361 * memory mappings unless merging is ok 2362 */ 2363 attr |= SFMMU_SIDEFFECT; 2364 break; 2365 case HAT_MERGING_OK: 2366 case HAT_LOADCACHING_OK: 2367 case HAT_STORECACHING_OK: 2368 break; 2369 default: 2370 panic("hat_devload: bad attr"); 2371 break; 2372 } 2373 } 2374 while (len) { 2375 if (!use_lgpg) { 2376 sfmmu_memtte(&tte, pfn, attr, TTE8K); 2377 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2378 flags, SFMMU_INVALID_SHMERID); 2379 len -= MMU_PAGESIZE; 2380 addr += MMU_PAGESIZE; 2381 pfn++; 2382 continue; 2383 } 2384 /* 2385 * try to use large pages, check va/pa alignments 2386 * Note that 32M/256M page sizes are not (yet) supported. 2387 */ 2388 if ((len >= MMU_PAGESIZE4M) && 2389 !((uintptr_t)addr & MMU_PAGEOFFSET4M) && 2390 !(disable_large_pages & (1 << TTE4M)) && 2391 !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) { 2392 sfmmu_memtte(&tte, pfn, attr, TTE4M); 2393 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2394 flags, SFMMU_INVALID_SHMERID); 2395 len -= MMU_PAGESIZE4M; 2396 addr += MMU_PAGESIZE4M; 2397 pfn += MMU_PAGESIZE4M / MMU_PAGESIZE; 2398 } else if ((len >= MMU_PAGESIZE512K) && 2399 !((uintptr_t)addr & MMU_PAGEOFFSET512K) && 2400 !(disable_large_pages & (1 << TTE512K)) && 2401 !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) { 2402 sfmmu_memtte(&tte, pfn, attr, TTE512K); 2403 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2404 flags, SFMMU_INVALID_SHMERID); 2405 len -= MMU_PAGESIZE512K; 2406 addr += MMU_PAGESIZE512K; 2407 pfn += MMU_PAGESIZE512K / MMU_PAGESIZE; 2408 } else if ((len >= MMU_PAGESIZE64K) && 2409 !((uintptr_t)addr & MMU_PAGEOFFSET64K) && 2410 !(disable_large_pages & (1 << TTE64K)) && 2411 !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) { 2412 sfmmu_memtte(&tte, pfn, attr, TTE64K); 2413 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2414 flags, SFMMU_INVALID_SHMERID); 2415 len -= MMU_PAGESIZE64K; 2416 addr += MMU_PAGESIZE64K; 2417 pfn += MMU_PAGESIZE64K / MMU_PAGESIZE; 2418 } else { 2419 sfmmu_memtte(&tte, pfn, attr, TTE8K); 2420 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2421 flags, SFMMU_INVALID_SHMERID); 2422 len -= MMU_PAGESIZE; 2423 addr += MMU_PAGESIZE; 2424 pfn++; 2425 } 2426 } 2427 2428 /* 2429 * Check TSB and TLB page sizes. 2430 */ 2431 if ((flags & HAT_LOAD_SHARE) == 0) { 2432 sfmmu_check_page_sizes(hat, 1); 2433 } 2434 } 2435 2436 void 2437 hat_memload_array(struct hat *hat, caddr_t addr, size_t len, 2438 struct page **pps, uint_t attr, uint_t flags) 2439 { 2440 hat_do_memload_array(hat, addr, len, pps, attr, flags, 2441 SFMMU_INVALID_SHMERID); 2442 } 2443 2444 void 2445 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 2446 struct page **pps, uint_t attr, uint_t flags, 2447 hat_region_cookie_t rcookie) 2448 { 2449 uint_t rid; 2450 if (rcookie == HAT_INVALID_REGION_COOKIE || 2451 hat->sfmmu_xhat_provider != NULL) { 2452 hat_do_memload_array(hat, addr, len, pps, attr, flags, 2453 SFMMU_INVALID_SHMERID); 2454 return; 2455 } 2456 rid = (uint_t)((uint64_t)rcookie); 2457 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 2458 hat_do_memload_array(hat, addr, len, pps, attr, flags, rid); 2459 } 2460 2461 /* 2462 * Map the largest extend possible out of the page array. The array may NOT 2463 * be in order. The largest possible mapping a page can have 2464 * is specified in the p_szc field. The p_szc field 2465 * cannot change as long as there any mappings (large or small) 2466 * to any of the pages that make up the large page. (ie. any 2467 * promotion/demotion of page size is not up to the hat but up to 2468 * the page free list manager). The array 2469 * should consist of properly aligned contigous pages that are 2470 * part of a big page for a large mapping to be created. 2471 */ 2472 static void 2473 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len, 2474 struct page **pps, uint_t attr, uint_t flags, uint_t rid) 2475 { 2476 int ttesz; 2477 size_t mapsz; 2478 pgcnt_t numpg, npgs; 2479 tte_t tte; 2480 page_t *pp; 2481 uint_t large_pages_disable; 2482 2483 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 2484 SFMMU_VALIDATE_HMERID(hat, rid, addr, len); 2485 2486 if (hat->sfmmu_xhat_provider) { 2487 ASSERT(!SFMMU_IS_SHMERID_VALID(rid)); 2488 XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags); 2489 return; 2490 } 2491 2492 if (hat->sfmmu_rmstat) 2493 hat_resvstat(len, hat->sfmmu_as, addr); 2494 2495 #if defined(SF_ERRATA_57) 2496 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 2497 (addr < errata57_limit) && (attr & PROT_EXEC) && 2498 !(flags & HAT_LOAD_SHARE)) { 2499 cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make " 2500 "user page executable"); 2501 attr &= ~PROT_EXEC; 2502 } 2503 #endif 2504 2505 /* Get number of pages */ 2506 npgs = len >> MMU_PAGESHIFT; 2507 2508 if (flags & HAT_LOAD_SHARE) { 2509 large_pages_disable = disable_ism_large_pages; 2510 } else { 2511 large_pages_disable = disable_large_pages; 2512 } 2513 2514 if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) { 2515 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs, 2516 rid); 2517 return; 2518 } 2519 2520 while (npgs >= NHMENTS) { 2521 pp = *pps; 2522 for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) { 2523 /* 2524 * Check if this page size is disabled. 2525 */ 2526 if (large_pages_disable & (1 << ttesz)) 2527 continue; 2528 2529 numpg = TTEPAGES(ttesz); 2530 mapsz = numpg << MMU_PAGESHIFT; 2531 if ((npgs >= numpg) && 2532 IS_P2ALIGNED(addr, mapsz) && 2533 IS_P2ALIGNED(pp->p_pagenum, numpg)) { 2534 /* 2535 * At this point we have enough pages and 2536 * we know the virtual address and the pfn 2537 * are properly aligned. We still need 2538 * to check for physical contiguity but since 2539 * it is very likely that this is the case 2540 * we will assume they are so and undo 2541 * the request if necessary. It would 2542 * be great if we could get a hint flag 2543 * like HAT_CONTIG which would tell us 2544 * the pages are contigous for sure. 2545 */ 2546 sfmmu_memtte(&tte, (*pps)->p_pagenum, 2547 attr, ttesz); 2548 if (!sfmmu_tteload_array(hat, &tte, addr, 2549 pps, flags, rid)) { 2550 break; 2551 } 2552 } 2553 } 2554 if (ttesz == TTE8K) { 2555 /* 2556 * We were not able to map array using a large page 2557 * batch a hmeblk or fraction at a time. 2558 */ 2559 numpg = ((uintptr_t)addr >> MMU_PAGESHIFT) 2560 & (NHMENTS-1); 2561 numpg = NHMENTS - numpg; 2562 ASSERT(numpg <= npgs); 2563 mapsz = numpg * MMU_PAGESIZE; 2564 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, 2565 numpg, rid); 2566 } 2567 addr += mapsz; 2568 npgs -= numpg; 2569 pps += numpg; 2570 } 2571 2572 if (npgs) { 2573 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs, 2574 rid); 2575 } 2576 2577 /* 2578 * Check TSB and TLB page sizes. 2579 */ 2580 if ((flags & HAT_LOAD_SHARE) == 0) { 2581 sfmmu_check_page_sizes(hat, 1); 2582 } 2583 } 2584 2585 /* 2586 * Function tries to batch 8K pages into the same hme blk. 2587 */ 2588 static void 2589 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps, 2590 uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid) 2591 { 2592 tte_t tte; 2593 page_t *pp; 2594 struct hmehash_bucket *hmebp; 2595 struct hme_blk *hmeblkp; 2596 int index; 2597 2598 while (npgs) { 2599 /* 2600 * Acquire the hash bucket. 2601 */ 2602 hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K, 2603 rid); 2604 ASSERT(hmebp); 2605 2606 /* 2607 * Find the hment block. 2608 */ 2609 hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr, 2610 TTE8K, flags, rid); 2611 ASSERT(hmeblkp); 2612 2613 do { 2614 /* 2615 * Make the tte. 2616 */ 2617 pp = *pps; 2618 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K); 2619 2620 /* 2621 * Add the translation. 2622 */ 2623 (void) sfmmu_tteload_addentry(hat, hmeblkp, &tte, 2624 vaddr, pps, flags, rid); 2625 2626 /* 2627 * Goto next page. 2628 */ 2629 pps++; 2630 npgs--; 2631 2632 /* 2633 * Goto next address. 2634 */ 2635 vaddr += MMU_PAGESIZE; 2636 2637 /* 2638 * Don't crossover into a different hmentblk. 2639 */ 2640 index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) & 2641 (NHMENTS-1)); 2642 2643 } while (index != 0 && npgs != 0); 2644 2645 /* 2646 * Release the hash bucket. 2647 */ 2648 2649 sfmmu_tteload_release_hashbucket(hmebp); 2650 } 2651 } 2652 2653 /* 2654 * Construct a tte for a page: 2655 * 2656 * tte_valid = 1 2657 * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only) 2658 * tte_size = size 2659 * tte_nfo = attr & HAT_NOFAULT 2660 * tte_ie = attr & HAT_STRUCTURE_LE 2661 * tte_hmenum = hmenum 2662 * tte_pahi = pp->p_pagenum >> TTE_PASHIFT; 2663 * tte_palo = pp->p_pagenum & TTE_PALOMASK; 2664 * tte_ref = 1 (optimization) 2665 * tte_wr_perm = attr & PROT_WRITE; 2666 * tte_no_sync = attr & HAT_NOSYNC 2667 * tte_lock = attr & SFMMU_LOCKTTE 2668 * tte_cp = !(attr & SFMMU_UNCACHEPTTE) 2669 * tte_cv = !(attr & SFMMU_UNCACHEVTTE) 2670 * tte_e = attr & SFMMU_SIDEFFECT 2671 * tte_priv = !(attr & PROT_USER) 2672 * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt) 2673 * tte_glb = 0 2674 */ 2675 void 2676 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz) 2677 { 2678 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 2679 2680 ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */); 2681 ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */); 2682 2683 if (TTE_IS_NOSYNC(ttep)) { 2684 TTE_SET_REF(ttep); 2685 if (TTE_IS_WRITABLE(ttep)) { 2686 TTE_SET_MOD(ttep); 2687 } 2688 } 2689 if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) { 2690 panic("sfmmu_memtte: can't set both NFO and EXEC bits"); 2691 } 2692 } 2693 2694 /* 2695 * This function will add a translation to the hme_blk and allocate the 2696 * hme_blk if one does not exist. 2697 * If a page structure is specified then it will add the 2698 * corresponding hment to the mapping list. 2699 * It will also update the hmenum field for the tte. 2700 * 2701 * Currently this function is only used for kernel mappings. 2702 * So pass invalid region to sfmmu_tteload_array(). 2703 */ 2704 void 2705 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp, 2706 uint_t flags) 2707 { 2708 ASSERT(sfmmup == ksfmmup); 2709 (void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags, 2710 SFMMU_INVALID_SHMERID); 2711 } 2712 2713 /* 2714 * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB. 2715 * Assumes that a particular page size may only be resident in one TSB. 2716 */ 2717 static void 2718 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz) 2719 { 2720 struct tsb_info *tsbinfop = NULL; 2721 uint64_t tag; 2722 struct tsbe *tsbe_addr; 2723 uint64_t tsb_base; 2724 uint_t tsb_size; 2725 int vpshift = MMU_PAGESHIFT; 2726 int phys = 0; 2727 2728 if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */ 2729 phys = ktsb_phys; 2730 if (ttesz >= TTE4M) { 2731 #ifndef sun4v 2732 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M)); 2733 #endif 2734 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base; 2735 tsb_size = ktsb4m_szcode; 2736 } else { 2737 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base; 2738 tsb_size = ktsb_szcode; 2739 } 2740 } else { 2741 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz); 2742 2743 /* 2744 * If there isn't a TSB for this page size, or the TSB is 2745 * swapped out, there is nothing to do. Note that the latter 2746 * case seems impossible but can occur if hat_pageunload() 2747 * is called on an ISM mapping while the process is swapped 2748 * out. 2749 */ 2750 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED)) 2751 return; 2752 2753 /* 2754 * If another thread is in the middle of relocating a TSB 2755 * we can't unload the entry so set a flag so that the 2756 * TSB will be flushed before it can be accessed by the 2757 * process. 2758 */ 2759 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) { 2760 if (ttep == NULL) 2761 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED; 2762 return; 2763 } 2764 #if defined(UTSB_PHYS) 2765 phys = 1; 2766 tsb_base = (uint64_t)tsbinfop->tsb_pa; 2767 #else 2768 tsb_base = (uint64_t)tsbinfop->tsb_va; 2769 #endif 2770 tsb_size = tsbinfop->tsb_szc; 2771 } 2772 if (ttesz >= TTE4M) 2773 vpshift = MMU_PAGESHIFT4M; 2774 2775 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size); 2776 tag = sfmmu_make_tsbtag(vaddr); 2777 2778 if (ttep == NULL) { 2779 sfmmu_unload_tsbe(tsbe_addr, tag, phys); 2780 } else { 2781 if (ttesz >= TTE4M) { 2782 SFMMU_STAT(sf_tsb_load4m); 2783 } else { 2784 SFMMU_STAT(sf_tsb_load8k); 2785 } 2786 2787 sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys); 2788 } 2789 } 2790 2791 /* 2792 * Unmap all entries from [start, end) matching the given page size. 2793 * 2794 * This function is used primarily to unmap replicated 64K or 512K entries 2795 * from the TSB that are inserted using the base page size TSB pointer, but 2796 * it may also be called to unmap a range of addresses from the TSB. 2797 */ 2798 void 2799 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz) 2800 { 2801 struct tsb_info *tsbinfop; 2802 uint64_t tag; 2803 struct tsbe *tsbe_addr; 2804 caddr_t vaddr; 2805 uint64_t tsb_base; 2806 int vpshift, vpgsz; 2807 uint_t tsb_size; 2808 int phys = 0; 2809 2810 /* 2811 * Assumptions: 2812 * If ttesz == 8K, 64K or 512K, we walk through the range 8K 2813 * at a time shooting down any valid entries we encounter. 2814 * 2815 * If ttesz >= 4M we walk the range 4M at a time shooting 2816 * down any valid mappings we find. 2817 */ 2818 if (sfmmup == ksfmmup) { 2819 phys = ktsb_phys; 2820 if (ttesz >= TTE4M) { 2821 #ifndef sun4v 2822 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M)); 2823 #endif 2824 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base; 2825 tsb_size = ktsb4m_szcode; 2826 } else { 2827 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base; 2828 tsb_size = ktsb_szcode; 2829 } 2830 } else { 2831 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz); 2832 2833 /* 2834 * If there isn't a TSB for this page size, or the TSB is 2835 * swapped out, there is nothing to do. Note that the latter 2836 * case seems impossible but can occur if hat_pageunload() 2837 * is called on an ISM mapping while the process is swapped 2838 * out. 2839 */ 2840 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED)) 2841 return; 2842 2843 /* 2844 * If another thread is in the middle of relocating a TSB 2845 * we can't unload the entry so set a flag so that the 2846 * TSB will be flushed before it can be accessed by the 2847 * process. 2848 */ 2849 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) { 2850 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED; 2851 return; 2852 } 2853 #if defined(UTSB_PHYS) 2854 phys = 1; 2855 tsb_base = (uint64_t)tsbinfop->tsb_pa; 2856 #else 2857 tsb_base = (uint64_t)tsbinfop->tsb_va; 2858 #endif 2859 tsb_size = tsbinfop->tsb_szc; 2860 } 2861 if (ttesz >= TTE4M) { 2862 vpshift = MMU_PAGESHIFT4M; 2863 vpgsz = MMU_PAGESIZE4M; 2864 } else { 2865 vpshift = MMU_PAGESHIFT; 2866 vpgsz = MMU_PAGESIZE; 2867 } 2868 2869 for (vaddr = start; vaddr < end; vaddr += vpgsz) { 2870 tag = sfmmu_make_tsbtag(vaddr); 2871 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size); 2872 sfmmu_unload_tsbe(tsbe_addr, tag, phys); 2873 } 2874 } 2875 2876 /* 2877 * Select the optimum TSB size given the number of mappings 2878 * that need to be cached. 2879 */ 2880 static int 2881 sfmmu_select_tsb_szc(pgcnt_t pgcnt) 2882 { 2883 int szc = 0; 2884 2885 #ifdef DEBUG 2886 if (tsb_grow_stress) { 2887 uint32_t randval = (uint32_t)gettick() >> 4; 2888 return (randval % (tsb_max_growsize + 1)); 2889 } 2890 #endif /* DEBUG */ 2891 2892 while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc))) 2893 szc++; 2894 return (szc); 2895 } 2896 2897 /* 2898 * This function will add a translation to the hme_blk and allocate the 2899 * hme_blk if one does not exist. 2900 * If a page structure is specified then it will add the 2901 * corresponding hment to the mapping list. 2902 * It will also update the hmenum field for the tte. 2903 * Furthermore, it attempts to create a large page translation 2904 * for <addr,hat> at page array pps. It assumes addr and first 2905 * pp is correctly aligned. It returns 0 if successful and 1 otherwise. 2906 */ 2907 static int 2908 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr, 2909 page_t **pps, uint_t flags, uint_t rid) 2910 { 2911 struct hmehash_bucket *hmebp; 2912 struct hme_blk *hmeblkp; 2913 int ret; 2914 uint_t size; 2915 2916 /* 2917 * Get mapping size. 2918 */ 2919 size = TTE_CSZ(ttep); 2920 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size))); 2921 2922 /* 2923 * Acquire the hash bucket. 2924 */ 2925 hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid); 2926 ASSERT(hmebp); 2927 2928 /* 2929 * Find the hment block. 2930 */ 2931 hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags, 2932 rid); 2933 ASSERT(hmeblkp); 2934 2935 /* 2936 * Add the translation. 2937 */ 2938 ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags, 2939 rid); 2940 2941 /* 2942 * Release the hash bucket. 2943 */ 2944 sfmmu_tteload_release_hashbucket(hmebp); 2945 2946 return (ret); 2947 } 2948 2949 /* 2950 * Function locks and returns a pointer to the hash bucket for vaddr and size. 2951 */ 2952 static struct hmehash_bucket * 2953 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size, 2954 uint_t rid) 2955 { 2956 struct hmehash_bucket *hmebp; 2957 int hmeshift; 2958 void *htagid = sfmmutohtagid(sfmmup, rid); 2959 2960 ASSERT(htagid != NULL); 2961 2962 hmeshift = HME_HASH_SHIFT(size); 2963 2964 hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift); 2965 2966 SFMMU_HASH_LOCK(hmebp); 2967 2968 return (hmebp); 2969 } 2970 2971 /* 2972 * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the 2973 * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is 2974 * allocated. 2975 */ 2976 static struct hme_blk * 2977 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp, 2978 caddr_t vaddr, uint_t size, uint_t flags, uint_t rid) 2979 { 2980 hmeblk_tag hblktag; 2981 int hmeshift; 2982 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL; 2983 2984 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size)); 2985 2986 hblktag.htag_id = sfmmutohtagid(sfmmup, rid); 2987 ASSERT(hblktag.htag_id != NULL); 2988 hmeshift = HME_HASH_SHIFT(size); 2989 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 2990 hblktag.htag_rehash = HME_HASH_REHASH(size); 2991 hblktag.htag_rid = rid; 2992 2993 ttearray_realloc: 2994 2995 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list); 2996 2997 /* 2998 * We block until hblk_reserve_lock is released; it's held by 2999 * the thread, temporarily using hblk_reserve, until hblk_reserve is 3000 * replaced by a hblk from sfmmu8_cache. 3001 */ 3002 if (hmeblkp == (struct hme_blk *)hblk_reserve && 3003 hblk_reserve_thread != curthread) { 3004 SFMMU_HASH_UNLOCK(hmebp); 3005 mutex_enter(&hblk_reserve_lock); 3006 mutex_exit(&hblk_reserve_lock); 3007 SFMMU_STAT(sf_hblk_reserve_hit); 3008 SFMMU_HASH_LOCK(hmebp); 3009 goto ttearray_realloc; 3010 } 3011 3012 if (hmeblkp == NULL) { 3013 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size, 3014 hblktag, flags, rid); 3015 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared); 3016 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared); 3017 } else { 3018 /* 3019 * It is possible for 8k and 64k hblks to collide since they 3020 * have the same rehash value. This is because we 3021 * lazily free hblks and 8K/64K blks could be lingering. 3022 * If we find size mismatch we free the block and & try again. 3023 */ 3024 if (get_hblk_ttesz(hmeblkp) != size) { 3025 ASSERT(!hmeblkp->hblk_vcnt); 3026 ASSERT(!hmeblkp->hblk_hmecnt); 3027 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 3028 &list, 0); 3029 goto ttearray_realloc; 3030 } 3031 if (hmeblkp->hblk_shw_bit) { 3032 /* 3033 * if the hblk was previously used as a shadow hblk then 3034 * we will change it to a normal hblk 3035 */ 3036 ASSERT(!hmeblkp->hblk_shared); 3037 if (hmeblkp->hblk_shw_mask) { 3038 sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp); 3039 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 3040 goto ttearray_realloc; 3041 } else { 3042 hmeblkp->hblk_shw_bit = 0; 3043 } 3044 } 3045 SFMMU_STAT(sf_hblk_hit); 3046 } 3047 3048 /* 3049 * hat_memload() should never call kmem_cache_free() for kernel hmeblks; 3050 * see block comment showing the stacktrace in sfmmu_hblk_alloc(); 3051 * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will 3052 * just add these hmeblks to the per-cpu pending queue. 3053 */ 3054 sfmmu_hblks_list_purge(&list, 1); 3055 3056 ASSERT(get_hblk_ttesz(hmeblkp) == size); 3057 ASSERT(!hmeblkp->hblk_shw_bit); 3058 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared); 3059 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared); 3060 ASSERT(hmeblkp->hblk_tag.htag_rid == rid); 3061 3062 return (hmeblkp); 3063 } 3064 3065 /* 3066 * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1 3067 * otherwise. 3068 */ 3069 static int 3070 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep, 3071 caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid) 3072 { 3073 page_t *pp = *pps; 3074 int hmenum, size, remap; 3075 tte_t tteold, flush_tte; 3076 #ifdef DEBUG 3077 tte_t orig_old; 3078 #endif /* DEBUG */ 3079 struct sf_hment *sfhme; 3080 kmutex_t *pml, *pmtx; 3081 hatlock_t *hatlockp; 3082 int myflt; 3083 3084 /* 3085 * remove this panic when we decide to let user virtual address 3086 * space be >= USERLIMIT. 3087 */ 3088 if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT) 3089 panic("user addr %p in kernel space", (void *)vaddr); 3090 #if defined(TTE_IS_GLOBAL) 3091 if (TTE_IS_GLOBAL(ttep)) 3092 panic("sfmmu_tteload: creating global tte"); 3093 #endif 3094 3095 #ifdef DEBUG 3096 if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) && 3097 !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans) 3098 panic("sfmmu_tteload: non cacheable memory tte"); 3099 #endif /* DEBUG */ 3100 3101 /* don't simulate dirty bit for writeable ISM/DISM mappings */ 3102 if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) { 3103 TTE_SET_REF(ttep); 3104 TTE_SET_MOD(ttep); 3105 } 3106 3107 if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) || 3108 !TTE_IS_MOD(ttep)) { 3109 /* 3110 * Don't load TSB for dummy as in ISM. Also don't preload 3111 * the TSB if the TTE isn't writable since we're likely to 3112 * fault on it again -- preloading can be fairly expensive. 3113 */ 3114 flags |= SFMMU_NO_TSBLOAD; 3115 } 3116 3117 size = TTE_CSZ(ttep); 3118 switch (size) { 3119 case TTE8K: 3120 SFMMU_STAT(sf_tteload8k); 3121 break; 3122 case TTE64K: 3123 SFMMU_STAT(sf_tteload64k); 3124 break; 3125 case TTE512K: 3126 SFMMU_STAT(sf_tteload512k); 3127 break; 3128 case TTE4M: 3129 SFMMU_STAT(sf_tteload4m); 3130 break; 3131 case (TTE32M): 3132 SFMMU_STAT(sf_tteload32m); 3133 ASSERT(mmu_page_sizes == max_mmu_page_sizes); 3134 break; 3135 case (TTE256M): 3136 SFMMU_STAT(sf_tteload256m); 3137 ASSERT(mmu_page_sizes == max_mmu_page_sizes); 3138 break; 3139 } 3140 3141 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size))); 3142 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size)); 3143 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared); 3144 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared); 3145 3146 HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum); 3147 3148 /* 3149 * Need to grab mlist lock here so that pageunload 3150 * will not change tte behind us. 3151 */ 3152 if (pp) { 3153 pml = sfmmu_mlist_enter(pp); 3154 } 3155 3156 sfmmu_copytte(&sfhme->hme_tte, &tteold); 3157 /* 3158 * Look for corresponding hment and if valid verify 3159 * pfns are equal. 3160 */ 3161 remap = TTE_IS_VALID(&tteold); 3162 if (remap) { 3163 pfn_t new_pfn, old_pfn; 3164 3165 old_pfn = TTE_TO_PFN(vaddr, &tteold); 3166 new_pfn = TTE_TO_PFN(vaddr, ttep); 3167 3168 if (flags & HAT_LOAD_REMAP) { 3169 /* make sure we are remapping same type of pages */ 3170 if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) { 3171 panic("sfmmu_tteload - tte remap io<->memory"); 3172 } 3173 if (old_pfn != new_pfn && 3174 (pp != NULL || sfhme->hme_page != NULL)) { 3175 panic("sfmmu_tteload - tte remap pp != NULL"); 3176 } 3177 } else if (old_pfn != new_pfn) { 3178 panic("sfmmu_tteload - tte remap, hmeblkp 0x%p", 3179 (void *)hmeblkp); 3180 } 3181 ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep)); 3182 } 3183 3184 if (pp) { 3185 if (size == TTE8K) { 3186 #ifdef VAC 3187 /* 3188 * Handle VAC consistency 3189 */ 3190 if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) { 3191 sfmmu_vac_conflict(sfmmup, vaddr, pp); 3192 } 3193 #endif 3194 3195 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) { 3196 pmtx = sfmmu_page_enter(pp); 3197 PP_CLRRO(pp); 3198 sfmmu_page_exit(pmtx); 3199 } else if (!PP_ISMAPPED(pp) && 3200 (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) { 3201 pmtx = sfmmu_page_enter(pp); 3202 if (!(PP_ISMOD(pp))) { 3203 PP_SETRO(pp); 3204 } 3205 sfmmu_page_exit(pmtx); 3206 } 3207 3208 } else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) { 3209 /* 3210 * sfmmu_pagearray_setup failed so return 3211 */ 3212 sfmmu_mlist_exit(pml); 3213 return (1); 3214 } 3215 } 3216 3217 /* 3218 * Make sure hment is not on a mapping list. 3219 */ 3220 ASSERT(remap || (sfhme->hme_page == NULL)); 3221 3222 /* if it is not a remap then hme->next better be NULL */ 3223 ASSERT((!remap) ? sfhme->hme_next == NULL : 1); 3224 3225 if (flags & HAT_LOAD_LOCK) { 3226 if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) { 3227 panic("too high lckcnt-hmeblk %p", 3228 (void *)hmeblkp); 3229 } 3230 atomic_inc_32(&hmeblkp->hblk_lckcnt); 3231 3232 HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK); 3233 } 3234 3235 #ifdef VAC 3236 if (pp && PP_ISNC(pp)) { 3237 /* 3238 * If the physical page is marked to be uncacheable, like 3239 * by a vac conflict, make sure the new mapping is also 3240 * uncacheable. 3241 */ 3242 TTE_CLR_VCACHEABLE(ttep); 3243 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR); 3244 } 3245 #endif 3246 ttep->tte_hmenum = hmenum; 3247 3248 #ifdef DEBUG 3249 orig_old = tteold; 3250 #endif /* DEBUG */ 3251 3252 while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) { 3253 if ((sfmmup == KHATID) && 3254 (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) { 3255 sfmmu_copytte(&sfhme->hme_tte, &tteold); 3256 } 3257 #ifdef DEBUG 3258 chk_tte(&orig_old, &tteold, ttep, hmeblkp); 3259 #endif /* DEBUG */ 3260 } 3261 ASSERT(TTE_IS_VALID(&sfhme->hme_tte)); 3262 3263 if (!TTE_IS_VALID(&tteold)) { 3264 3265 atomic_inc_16(&hmeblkp->hblk_vcnt); 3266 if (rid == SFMMU_INVALID_SHMERID) { 3267 atomic_inc_ulong(&sfmmup->sfmmu_ttecnt[size]); 3268 } else { 3269 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 3270 sf_region_t *rgnp = srdp->srd_hmergnp[rid]; 3271 /* 3272 * We already accounted for region ttecnt's in sfmmu 3273 * during hat_join_region() processing. Here we 3274 * only update ttecnt's in region struture. 3275 */ 3276 atomic_inc_ulong(&rgnp->rgn_ttecnt[size]); 3277 } 3278 } 3279 3280 myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup); 3281 if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 && 3282 sfmmup != ksfmmup) { 3283 uchar_t tteflag = 1 << size; 3284 if (rid == SFMMU_INVALID_SHMERID) { 3285 if (!(sfmmup->sfmmu_tteflags & tteflag)) { 3286 hatlockp = sfmmu_hat_enter(sfmmup); 3287 sfmmup->sfmmu_tteflags |= tteflag; 3288 sfmmu_hat_exit(hatlockp); 3289 } 3290 } else if (!(sfmmup->sfmmu_rtteflags & tteflag)) { 3291 hatlockp = sfmmu_hat_enter(sfmmup); 3292 sfmmup->sfmmu_rtteflags |= tteflag; 3293 sfmmu_hat_exit(hatlockp); 3294 } 3295 /* 3296 * Update the current CPU tsbmiss area, so the current thread 3297 * won't need to take the tsbmiss for the new pagesize. 3298 * The other threads in the process will update their tsb 3299 * miss area lazily in sfmmu_tsbmiss_exception() when they 3300 * fail to find the translation for a newly added pagesize. 3301 */ 3302 if (size > TTE64K && myflt) { 3303 struct tsbmiss *tsbmp; 3304 kpreempt_disable(); 3305 tsbmp = &tsbmiss_area[CPU->cpu_id]; 3306 if (rid == SFMMU_INVALID_SHMERID) { 3307 if (!(tsbmp->uhat_tteflags & tteflag)) { 3308 tsbmp->uhat_tteflags |= tteflag; 3309 } 3310 } else { 3311 if (!(tsbmp->uhat_rtteflags & tteflag)) { 3312 tsbmp->uhat_rtteflags |= tteflag; 3313 } 3314 } 3315 kpreempt_enable(); 3316 } 3317 } 3318 3319 if (size >= TTE4M && (flags & HAT_LOAD_TEXT) && 3320 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) { 3321 hatlockp = sfmmu_hat_enter(sfmmup); 3322 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG); 3323 sfmmu_hat_exit(hatlockp); 3324 } 3325 3326 flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) & 3327 hw_tte.tte_intlo; 3328 flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) & 3329 hw_tte.tte_inthi; 3330 3331 if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) { 3332 /* 3333 * If remap and new tte differs from old tte we need 3334 * to sync the mod bit and flush TLB/TSB. We don't 3335 * need to sync ref bit because we currently always set 3336 * ref bit in tteload. 3337 */ 3338 ASSERT(TTE_IS_REF(ttep)); 3339 if (TTE_IS_MOD(&tteold)) { 3340 sfmmu_ttesync(sfmmup, vaddr, &tteold, pp); 3341 } 3342 /* 3343 * hwtte bits shouldn't change for SRD hmeblks as long as SRD 3344 * hmes are only used for read only text. Adding this code for 3345 * completeness and future use of shared hmeblks with writable 3346 * mappings of VMODSORT vnodes. 3347 */ 3348 if (hmeblkp->hblk_shared) { 3349 cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr, 3350 sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1); 3351 xt_sync(cpuset); 3352 SFMMU_STAT_ADD(sf_region_remap_demap, 1); 3353 } else { 3354 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0); 3355 xt_sync(sfmmup->sfmmu_cpusran); 3356 } 3357 } 3358 3359 if ((flags & SFMMU_NO_TSBLOAD) == 0) { 3360 /* 3361 * We only preload 8K and 4M mappings into the TSB, since 3362 * 64K and 512K mappings are replicated and hence don't 3363 * have a single, unique TSB entry. Ditto for 32M/256M. 3364 */ 3365 if (size == TTE8K || size == TTE4M) { 3366 sf_scd_t *scdp; 3367 hatlockp = sfmmu_hat_enter(sfmmup); 3368 /* 3369 * Don't preload private TSB if the mapping is used 3370 * by the shctx in the SCD. 3371 */ 3372 scdp = sfmmup->sfmmu_scdp; 3373 if (rid == SFMMU_INVALID_SHMERID || scdp == NULL || 3374 !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) { 3375 sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, 3376 size); 3377 } 3378 sfmmu_hat_exit(hatlockp); 3379 } 3380 } 3381 if (pp) { 3382 if (!remap) { 3383 HME_ADD(sfhme, pp); 3384 atomic_inc_16(&hmeblkp->hblk_hmecnt); 3385 ASSERT(hmeblkp->hblk_hmecnt > 0); 3386 3387 /* 3388 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS) 3389 * see pageunload() for comment. 3390 */ 3391 } 3392 sfmmu_mlist_exit(pml); 3393 } 3394 3395 return (0); 3396 } 3397 /* 3398 * Function unlocks hash bucket. 3399 */ 3400 static void 3401 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp) 3402 { 3403 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 3404 SFMMU_HASH_UNLOCK(hmebp); 3405 } 3406 3407 /* 3408 * function which checks and sets up page array for a large 3409 * translation. Will set p_vcolor, p_index, p_ro fields. 3410 * Assumes addr and pfnum of first page are properly aligned. 3411 * Will check for physical contiguity. If check fails it return 3412 * non null. 3413 */ 3414 static int 3415 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap) 3416 { 3417 int i, index, ttesz; 3418 pfn_t pfnum; 3419 pgcnt_t npgs; 3420 page_t *pp, *pp1; 3421 kmutex_t *pmtx; 3422 #ifdef VAC 3423 int osz; 3424 int cflags = 0; 3425 int vac_err = 0; 3426 #endif 3427 int newidx = 0; 3428 3429 ttesz = TTE_CSZ(ttep); 3430 3431 ASSERT(ttesz > TTE8K); 3432 3433 npgs = TTEPAGES(ttesz); 3434 index = PAGESZ_TO_INDEX(ttesz); 3435 3436 pfnum = (*pps)->p_pagenum; 3437 ASSERT(IS_P2ALIGNED(pfnum, npgs)); 3438 3439 /* 3440 * Save the first pp so we can do HAT_TMPNC at the end. 3441 */ 3442 pp1 = *pps; 3443 #ifdef VAC 3444 osz = fnd_mapping_sz(pp1); 3445 #endif 3446 3447 for (i = 0; i < npgs; i++, pps++) { 3448 pp = *pps; 3449 ASSERT(PAGE_LOCKED(pp)); 3450 ASSERT(pp->p_szc >= ttesz); 3451 ASSERT(pp->p_szc == pp1->p_szc); 3452 ASSERT(sfmmu_mlist_held(pp)); 3453 3454 /* 3455 * XXX is it possible to maintain P_RO on the root only? 3456 */ 3457 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) { 3458 pmtx = sfmmu_page_enter(pp); 3459 PP_CLRRO(pp); 3460 sfmmu_page_exit(pmtx); 3461 } else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) && 3462 !PP_ISMOD(pp)) { 3463 pmtx = sfmmu_page_enter(pp); 3464 if (!(PP_ISMOD(pp))) { 3465 PP_SETRO(pp); 3466 } 3467 sfmmu_page_exit(pmtx); 3468 } 3469 3470 /* 3471 * If this is a remap we skip vac & contiguity checks. 3472 */ 3473 if (remap) 3474 continue; 3475 3476 /* 3477 * set p_vcolor and detect any vac conflicts. 3478 */ 3479 #ifdef VAC 3480 if (vac_err == 0) { 3481 vac_err = sfmmu_vacconflict_array(addr, pp, &cflags); 3482 3483 } 3484 #endif 3485 3486 /* 3487 * Save current index in case we need to undo it. 3488 * Note: "PAGESZ_TO_INDEX(sz) (1 << (sz))" 3489 * "SFMMU_INDEX_SHIFT 6" 3490 * "SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1)" 3491 * "PP_MAPINDEX(p_index) (p_index & SFMMU_INDEX_MASK)" 3492 * 3493 * So: index = PAGESZ_TO_INDEX(ttesz); 3494 * if ttesz == 1 then index = 0x2 3495 * 2 then index = 0x4 3496 * 3 then index = 0x8 3497 * 4 then index = 0x10 3498 * 5 then index = 0x20 3499 * The code below checks if it's a new pagesize (ie, newidx) 3500 * in case we need to take it back out of p_index, 3501 * and then or's the new index into the existing index. 3502 */ 3503 if ((PP_MAPINDEX(pp) & index) == 0) 3504 newidx = 1; 3505 pp->p_index = (PP_MAPINDEX(pp) | index); 3506 3507 /* 3508 * contiguity check 3509 */ 3510 if (pp->p_pagenum != pfnum) { 3511 /* 3512 * If we fail the contiguity test then 3513 * the only thing we need to fix is the p_index field. 3514 * We might get a few extra flushes but since this 3515 * path is rare that is ok. The p_ro field will 3516 * get automatically fixed on the next tteload to 3517 * the page. NO TNC bit is set yet. 3518 */ 3519 while (i >= 0) { 3520 pp = *pps; 3521 if (newidx) 3522 pp->p_index = (PP_MAPINDEX(pp) & 3523 ~index); 3524 pps--; 3525 i--; 3526 } 3527 return (1); 3528 } 3529 pfnum++; 3530 addr += MMU_PAGESIZE; 3531 } 3532 3533 #ifdef VAC 3534 if (vac_err) { 3535 if (ttesz > osz) { 3536 /* 3537 * There are some smaller mappings that causes vac 3538 * conflicts. Convert all existing small mappings to 3539 * TNC. 3540 */ 3541 SFMMU_STAT_ADD(sf_uncache_conflict, npgs); 3542 sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH, 3543 npgs); 3544 } else { 3545 /* EMPTY */ 3546 /* 3547 * If there exists an big page mapping, 3548 * that means the whole existing big page 3549 * has TNC setting already. No need to covert to 3550 * TNC again. 3551 */ 3552 ASSERT(PP_ISTNC(pp1)); 3553 } 3554 } 3555 #endif /* VAC */ 3556 3557 return (0); 3558 } 3559 3560 #ifdef VAC 3561 /* 3562 * Routine that detects vac consistency for a large page. It also 3563 * sets virtual color for all pp's for this big mapping. 3564 */ 3565 static int 3566 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags) 3567 { 3568 int vcolor, ocolor; 3569 3570 ASSERT(sfmmu_mlist_held(pp)); 3571 3572 if (PP_ISNC(pp)) { 3573 return (HAT_TMPNC); 3574 } 3575 3576 vcolor = addr_to_vcolor(addr); 3577 if (PP_NEWPAGE(pp)) { 3578 PP_SET_VCOLOR(pp, vcolor); 3579 return (0); 3580 } 3581 3582 ocolor = PP_GET_VCOLOR(pp); 3583 if (ocolor == vcolor) { 3584 return (0); 3585 } 3586 3587 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) { 3588 /* 3589 * Previous user of page had a differnet color 3590 * but since there are no current users 3591 * we just flush the cache and change the color. 3592 * As an optimization for large pages we flush the 3593 * entire cache of that color and set a flag. 3594 */ 3595 SFMMU_STAT(sf_pgcolor_conflict); 3596 if (!CacheColor_IsFlushed(*cflags, ocolor)) { 3597 CacheColor_SetFlushed(*cflags, ocolor); 3598 sfmmu_cache_flushcolor(ocolor, pp->p_pagenum); 3599 } 3600 PP_SET_VCOLOR(pp, vcolor); 3601 return (0); 3602 } 3603 3604 /* 3605 * We got a real conflict with a current mapping. 3606 * set flags to start unencaching all mappings 3607 * and return failure so we restart looping 3608 * the pp array from the beginning. 3609 */ 3610 return (HAT_TMPNC); 3611 } 3612 #endif /* VAC */ 3613 3614 /* 3615 * creates a large page shadow hmeblk for a tte. 3616 * The purpose of this routine is to allow us to do quick unloads because 3617 * the vm layer can easily pass a very large but sparsely populated range. 3618 */ 3619 static struct hme_blk * 3620 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags) 3621 { 3622 struct hmehash_bucket *hmebp; 3623 hmeblk_tag hblktag; 3624 int hmeshift, size, vshift; 3625 uint_t shw_mask, newshw_mask; 3626 struct hme_blk *hmeblkp; 3627 3628 ASSERT(sfmmup != KHATID); 3629 if (mmu_page_sizes == max_mmu_page_sizes) { 3630 ASSERT(ttesz < TTE256M); 3631 } else { 3632 ASSERT(ttesz < TTE4M); 3633 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 3634 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 3635 } 3636 3637 if (ttesz == TTE8K) { 3638 size = TTE512K; 3639 } else { 3640 size = ++ttesz; 3641 } 3642 3643 hblktag.htag_id = sfmmup; 3644 hmeshift = HME_HASH_SHIFT(size); 3645 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 3646 hblktag.htag_rehash = HME_HASH_REHASH(size); 3647 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 3648 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 3649 3650 SFMMU_HASH_LOCK(hmebp); 3651 3652 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 3653 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve); 3654 if (hmeblkp == NULL) { 3655 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size, 3656 hblktag, flags, SFMMU_INVALID_SHMERID); 3657 } 3658 ASSERT(hmeblkp); 3659 if (!hmeblkp->hblk_shw_mask) { 3660 /* 3661 * if this is a unused hblk it was just allocated or could 3662 * potentially be a previous large page hblk so we need to 3663 * set the shadow bit. 3664 */ 3665 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt); 3666 hmeblkp->hblk_shw_bit = 1; 3667 } else if (hmeblkp->hblk_shw_bit == 0) { 3668 panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p", 3669 (void *)hmeblkp); 3670 } 3671 ASSERT(hmeblkp->hblk_shw_bit == 1); 3672 ASSERT(!hmeblkp->hblk_shared); 3673 vshift = vaddr_to_vshift(hblktag, vaddr, size); 3674 ASSERT(vshift < 8); 3675 /* 3676 * Atomically set shw mask bit 3677 */ 3678 do { 3679 shw_mask = hmeblkp->hblk_shw_mask; 3680 newshw_mask = shw_mask | (1 << vshift); 3681 newshw_mask = atomic_cas_32(&hmeblkp->hblk_shw_mask, shw_mask, 3682 newshw_mask); 3683 } while (newshw_mask != shw_mask); 3684 3685 SFMMU_HASH_UNLOCK(hmebp); 3686 3687 return (hmeblkp); 3688 } 3689 3690 /* 3691 * This routine cleanup a previous shadow hmeblk and changes it to 3692 * a regular hblk. This happens rarely but it is possible 3693 * when a process wants to use large pages and there are hblks still 3694 * lying around from the previous as that used these hmeblks. 3695 * The alternative was to cleanup the shadow hblks at unload time 3696 * but since so few user processes actually use large pages, it is 3697 * better to be lazy and cleanup at this time. 3698 */ 3699 static void 3700 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 3701 struct hmehash_bucket *hmebp) 3702 { 3703 caddr_t addr, endaddr; 3704 int hashno, size; 3705 3706 ASSERT(hmeblkp->hblk_shw_bit); 3707 ASSERT(!hmeblkp->hblk_shared); 3708 3709 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 3710 3711 if (!hmeblkp->hblk_shw_mask) { 3712 hmeblkp->hblk_shw_bit = 0; 3713 return; 3714 } 3715 addr = (caddr_t)get_hblk_base(hmeblkp); 3716 endaddr = get_hblk_endaddr(hmeblkp); 3717 size = get_hblk_ttesz(hmeblkp); 3718 hashno = size - 1; 3719 ASSERT(hashno > 0); 3720 SFMMU_HASH_UNLOCK(hmebp); 3721 3722 sfmmu_free_hblks(sfmmup, addr, endaddr, hashno); 3723 3724 SFMMU_HASH_LOCK(hmebp); 3725 } 3726 3727 static void 3728 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr, 3729 int hashno) 3730 { 3731 int hmeshift, shadow = 0; 3732 hmeblk_tag hblktag; 3733 struct hmehash_bucket *hmebp; 3734 struct hme_blk *hmeblkp; 3735 struct hme_blk *nx_hblk, *pr_hblk, *list = NULL; 3736 3737 ASSERT(hashno > 0); 3738 hblktag.htag_id = sfmmup; 3739 hblktag.htag_rehash = hashno; 3740 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 3741 3742 hmeshift = HME_HASH_SHIFT(hashno); 3743 3744 while (addr < endaddr) { 3745 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3746 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 3747 SFMMU_HASH_LOCK(hmebp); 3748 /* inline HME_HASH_SEARCH */ 3749 hmeblkp = hmebp->hmeblkp; 3750 pr_hblk = NULL; 3751 while (hmeblkp) { 3752 if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) { 3753 /* found hme_blk */ 3754 ASSERT(!hmeblkp->hblk_shared); 3755 if (hmeblkp->hblk_shw_bit) { 3756 if (hmeblkp->hblk_shw_mask) { 3757 shadow = 1; 3758 sfmmu_shadow_hcleanup(sfmmup, 3759 hmeblkp, hmebp); 3760 break; 3761 } else { 3762 hmeblkp->hblk_shw_bit = 0; 3763 } 3764 } 3765 3766 /* 3767 * Hblk_hmecnt and hblk_vcnt could be non zero 3768 * since hblk_unload() does not gurantee that. 3769 * 3770 * XXX - this could cause tteload() to spin 3771 * where sfmmu_shadow_hcleanup() is called. 3772 */ 3773 } 3774 3775 nx_hblk = hmeblkp->hblk_next; 3776 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 3777 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 3778 &list, 0); 3779 } else { 3780 pr_hblk = hmeblkp; 3781 } 3782 hmeblkp = nx_hblk; 3783 } 3784 3785 SFMMU_HASH_UNLOCK(hmebp); 3786 3787 if (shadow) { 3788 /* 3789 * We found another shadow hblk so cleaned its 3790 * children. We need to go back and cleanup 3791 * the original hblk so we don't change the 3792 * addr. 3793 */ 3794 shadow = 0; 3795 } else { 3796 addr = (caddr_t)roundup((uintptr_t)addr + 1, 3797 (1 << hmeshift)); 3798 } 3799 } 3800 sfmmu_hblks_list_purge(&list, 0); 3801 } 3802 3803 /* 3804 * This routine's job is to delete stale invalid shared hmeregions hmeblks that 3805 * may still linger on after pageunload. 3806 */ 3807 static void 3808 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz) 3809 { 3810 int hmeshift; 3811 hmeblk_tag hblktag; 3812 struct hmehash_bucket *hmebp; 3813 struct hme_blk *hmeblkp; 3814 struct hme_blk *pr_hblk; 3815 struct hme_blk *list = NULL; 3816 3817 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 3818 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 3819 3820 hmeshift = HME_HASH_SHIFT(ttesz); 3821 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3822 hblktag.htag_rehash = ttesz; 3823 hblktag.htag_rid = rid; 3824 hblktag.htag_id = srdp; 3825 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift); 3826 3827 SFMMU_HASH_LOCK(hmebp); 3828 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list); 3829 if (hmeblkp != NULL) { 3830 ASSERT(hmeblkp->hblk_shared); 3831 ASSERT(!hmeblkp->hblk_shw_bit); 3832 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 3833 panic("sfmmu_cleanup_rhblk: valid hmeblk"); 3834 } 3835 ASSERT(!hmeblkp->hblk_lckcnt); 3836 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 3837 &list, 0); 3838 } 3839 SFMMU_HASH_UNLOCK(hmebp); 3840 sfmmu_hblks_list_purge(&list, 0); 3841 } 3842 3843 /* ARGSUSED */ 3844 static void 3845 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr, 3846 size_t r_size, void *r_obj, u_offset_t r_objoff) 3847 { 3848 } 3849 3850 /* 3851 * Searches for an hmeblk which maps addr, then unloads this mapping 3852 * and updates *eaddrp, if the hmeblk is found. 3853 */ 3854 static void 3855 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr, 3856 caddr_t eaddr, int ttesz, caddr_t *eaddrp) 3857 { 3858 int hmeshift; 3859 hmeblk_tag hblktag; 3860 struct hmehash_bucket *hmebp; 3861 struct hme_blk *hmeblkp; 3862 struct hme_blk *pr_hblk; 3863 struct hme_blk *list = NULL; 3864 3865 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 3866 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 3867 ASSERT(ttesz >= HBLK_MIN_TTESZ); 3868 3869 hmeshift = HME_HASH_SHIFT(ttesz); 3870 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3871 hblktag.htag_rehash = ttesz; 3872 hblktag.htag_rid = rid; 3873 hblktag.htag_id = srdp; 3874 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift); 3875 3876 SFMMU_HASH_LOCK(hmebp); 3877 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list); 3878 if (hmeblkp != NULL) { 3879 ASSERT(hmeblkp->hblk_shared); 3880 ASSERT(!hmeblkp->hblk_lckcnt); 3881 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 3882 *eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr, 3883 eaddr, NULL, HAT_UNLOAD); 3884 ASSERT(*eaddrp > addr); 3885 } 3886 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt); 3887 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 3888 &list, 0); 3889 } 3890 SFMMU_HASH_UNLOCK(hmebp); 3891 sfmmu_hblks_list_purge(&list, 0); 3892 } 3893 3894 static void 3895 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp) 3896 { 3897 int ttesz = rgnp->rgn_pgszc; 3898 size_t rsz = rgnp->rgn_size; 3899 caddr_t rsaddr = rgnp->rgn_saddr; 3900 caddr_t readdr = rsaddr + rsz; 3901 caddr_t rhsaddr; 3902 caddr_t va; 3903 uint_t rid = rgnp->rgn_id; 3904 caddr_t cbsaddr; 3905 caddr_t cbeaddr; 3906 hat_rgn_cb_func_t rcbfunc; 3907 ulong_t cnt; 3908 3909 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 3910 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 3911 3912 ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz))); 3913 ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz))); 3914 if (ttesz < HBLK_MIN_TTESZ) { 3915 ttesz = HBLK_MIN_TTESZ; 3916 rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES); 3917 } else { 3918 rhsaddr = rsaddr; 3919 } 3920 3921 if ((rcbfunc = rgnp->rgn_cb_function) == NULL) { 3922 rcbfunc = sfmmu_rgn_cb_noop; 3923 } 3924 3925 while (ttesz >= HBLK_MIN_TTESZ) { 3926 cbsaddr = rsaddr; 3927 cbeaddr = rsaddr; 3928 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) { 3929 ttesz--; 3930 continue; 3931 } 3932 cnt = 0; 3933 va = rsaddr; 3934 while (va < readdr) { 3935 ASSERT(va >= rhsaddr); 3936 if (va != cbeaddr) { 3937 if (cbeaddr != cbsaddr) { 3938 ASSERT(cbeaddr > cbsaddr); 3939 (*rcbfunc)(cbsaddr, cbeaddr, 3940 rsaddr, rsz, rgnp->rgn_obj, 3941 rgnp->rgn_objoff); 3942 } 3943 cbsaddr = va; 3944 cbeaddr = va; 3945 } 3946 sfmmu_unload_hmeregion_va(srdp, rid, va, readdr, 3947 ttesz, &cbeaddr); 3948 cnt++; 3949 va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz)); 3950 } 3951 if (cbeaddr != cbsaddr) { 3952 ASSERT(cbeaddr > cbsaddr); 3953 (*rcbfunc)(cbsaddr, cbeaddr, rsaddr, 3954 rsz, rgnp->rgn_obj, 3955 rgnp->rgn_objoff); 3956 } 3957 ttesz--; 3958 } 3959 } 3960 3961 /* 3962 * Release one hardware address translation lock on the given address range. 3963 */ 3964 void 3965 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len) 3966 { 3967 struct hmehash_bucket *hmebp; 3968 hmeblk_tag hblktag; 3969 int hmeshift, hashno = 1; 3970 struct hme_blk *hmeblkp, *list = NULL; 3971 caddr_t endaddr; 3972 3973 ASSERT(sfmmup != NULL); 3974 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 3975 3976 ASSERT((sfmmup == ksfmmup) || 3977 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 3978 ASSERT((len & MMU_PAGEOFFSET) == 0); 3979 endaddr = addr + len; 3980 hblktag.htag_id = sfmmup; 3981 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 3982 3983 /* 3984 * Spitfire supports 4 page sizes. 3985 * Most pages are expected to be of the smallest page size (8K) and 3986 * these will not need to be rehashed. 64K pages also don't need to be 3987 * rehashed because an hmeblk spans 64K of address space. 512K pages 3988 * might need 1 rehash and and 4M pages might need 2 rehashes. 3989 */ 3990 while (addr < endaddr) { 3991 hmeshift = HME_HASH_SHIFT(hashno); 3992 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3993 hblktag.htag_rehash = hashno; 3994 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 3995 3996 SFMMU_HASH_LOCK(hmebp); 3997 3998 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 3999 if (hmeblkp != NULL) { 4000 ASSERT(!hmeblkp->hblk_shared); 4001 /* 4002 * If we encounter a shadow hmeblk then 4003 * we know there are no valid hmeblks mapping 4004 * this address at this size or larger. 4005 * Just increment address by the smallest 4006 * page size. 4007 */ 4008 if (hmeblkp->hblk_shw_bit) { 4009 addr += MMU_PAGESIZE; 4010 } else { 4011 addr = sfmmu_hblk_unlock(hmeblkp, addr, 4012 endaddr); 4013 } 4014 SFMMU_HASH_UNLOCK(hmebp); 4015 hashno = 1; 4016 continue; 4017 } 4018 SFMMU_HASH_UNLOCK(hmebp); 4019 4020 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 4021 /* 4022 * We have traversed the whole list and rehashed 4023 * if necessary without finding the address to unlock 4024 * which should never happen. 4025 */ 4026 panic("sfmmu_unlock: addr not found. " 4027 "addr %p hat %p", (void *)addr, (void *)sfmmup); 4028 } else { 4029 hashno++; 4030 } 4031 } 4032 4033 sfmmu_hblks_list_purge(&list, 0); 4034 } 4035 4036 void 4037 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len, 4038 hat_region_cookie_t rcookie) 4039 { 4040 sf_srd_t *srdp; 4041 sf_region_t *rgnp; 4042 int ttesz; 4043 uint_t rid; 4044 caddr_t eaddr; 4045 caddr_t va; 4046 int hmeshift; 4047 hmeblk_tag hblktag; 4048 struct hmehash_bucket *hmebp; 4049 struct hme_blk *hmeblkp; 4050 struct hme_blk *pr_hblk; 4051 struct hme_blk *list; 4052 4053 if (rcookie == HAT_INVALID_REGION_COOKIE) { 4054 hat_unlock(sfmmup, addr, len); 4055 return; 4056 } 4057 4058 ASSERT(sfmmup != NULL); 4059 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4060 ASSERT(sfmmup != ksfmmup); 4061 4062 srdp = sfmmup->sfmmu_srdp; 4063 rid = (uint_t)((uint64_t)rcookie); 4064 VERIFY3U(rid, <, SFMMU_MAX_HME_REGIONS); 4065 eaddr = addr + len; 4066 va = addr; 4067 list = NULL; 4068 rgnp = srdp->srd_hmergnp[rid]; 4069 SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len); 4070 4071 ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc))); 4072 ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc))); 4073 if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) { 4074 ttesz = HBLK_MIN_TTESZ; 4075 } else { 4076 ttesz = rgnp->rgn_pgszc; 4077 } 4078 while (va < eaddr) { 4079 while (ttesz < rgnp->rgn_pgszc && 4080 IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) { 4081 ttesz++; 4082 } 4083 while (ttesz >= HBLK_MIN_TTESZ) { 4084 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) { 4085 ttesz--; 4086 continue; 4087 } 4088 hmeshift = HME_HASH_SHIFT(ttesz); 4089 hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift); 4090 hblktag.htag_rehash = ttesz; 4091 hblktag.htag_rid = rid; 4092 hblktag.htag_id = srdp; 4093 hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift); 4094 SFMMU_HASH_LOCK(hmebp); 4095 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, 4096 &list); 4097 if (hmeblkp == NULL) { 4098 SFMMU_HASH_UNLOCK(hmebp); 4099 ttesz--; 4100 continue; 4101 } 4102 ASSERT(hmeblkp->hblk_shared); 4103 va = sfmmu_hblk_unlock(hmeblkp, va, eaddr); 4104 ASSERT(va >= eaddr || 4105 IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz))); 4106 SFMMU_HASH_UNLOCK(hmebp); 4107 break; 4108 } 4109 if (ttesz < HBLK_MIN_TTESZ) { 4110 panic("hat_unlock_region: addr not found " 4111 "addr %p hat %p", (void *)va, (void *)sfmmup); 4112 } 4113 } 4114 sfmmu_hblks_list_purge(&list, 0); 4115 } 4116 4117 /* 4118 * Function to unlock a range of addresses in an hmeblk. It returns the 4119 * next address that needs to be unlocked. 4120 * Should be called with the hash lock held. 4121 */ 4122 static caddr_t 4123 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr) 4124 { 4125 struct sf_hment *sfhme; 4126 tte_t tteold, ttemod; 4127 int ttesz, ret; 4128 4129 ASSERT(in_hblk_range(hmeblkp, addr)); 4130 ASSERT(hmeblkp->hblk_shw_bit == 0); 4131 4132 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 4133 ttesz = get_hblk_ttesz(hmeblkp); 4134 4135 HBLKTOHME(sfhme, hmeblkp, addr); 4136 while (addr < endaddr) { 4137 readtte: 4138 sfmmu_copytte(&sfhme->hme_tte, &tteold); 4139 if (TTE_IS_VALID(&tteold)) { 4140 4141 ttemod = tteold; 4142 4143 ret = sfmmu_modifytte_try(&tteold, &ttemod, 4144 &sfhme->hme_tte); 4145 4146 if (ret < 0) 4147 goto readtte; 4148 4149 if (hmeblkp->hblk_lckcnt == 0) 4150 panic("zero hblk lckcnt"); 4151 4152 if (((uintptr_t)addr + TTEBYTES(ttesz)) > 4153 (uintptr_t)endaddr) 4154 panic("can't unlock large tte"); 4155 4156 ASSERT(hmeblkp->hblk_lckcnt > 0); 4157 atomic_dec_32(&hmeblkp->hblk_lckcnt); 4158 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK); 4159 } else { 4160 panic("sfmmu_hblk_unlock: invalid tte"); 4161 } 4162 addr += TTEBYTES(ttesz); 4163 sfhme++; 4164 } 4165 return (addr); 4166 } 4167 4168 /* 4169 * Physical Address Mapping Framework 4170 * 4171 * General rules: 4172 * 4173 * (1) Applies only to seg_kmem memory pages. To make things easier, 4174 * seg_kpm addresses are also accepted by the routines, but nothing 4175 * is done with them since by definition their PA mappings are static. 4176 * (2) hat_add_callback() may only be called while holding the page lock 4177 * SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()), 4178 * or passing HAC_PAGELOCK flag. 4179 * (3) prehandler() and posthandler() may not call hat_add_callback() or 4180 * hat_delete_callback(), nor should they allocate memory. Post quiesce 4181 * callbacks may not sleep or acquire adaptive mutex locks. 4182 * (4) Either prehandler() or posthandler() (but not both) may be specified 4183 * as being NULL. Specifying an errhandler() is optional. 4184 * 4185 * Details of using the framework: 4186 * 4187 * registering a callback (hat_register_callback()) 4188 * 4189 * Pass prehandler, posthandler, errhandler addresses 4190 * as described below. If capture_cpus argument is nonzero, 4191 * suspend callback to the prehandler will occur with CPUs 4192 * captured and executing xc_loop() and CPUs will remain 4193 * captured until after the posthandler suspend callback 4194 * occurs. 4195 * 4196 * adding a callback (hat_add_callback()) 4197 * 4198 * as_pagelock(); 4199 * hat_add_callback(); 4200 * save returned pfn in private data structures or program registers; 4201 * as_pageunlock(); 4202 * 4203 * prehandler() 4204 * 4205 * Stop all accesses by physical address to this memory page. 4206 * Called twice: the first, PRESUSPEND, is a context safe to acquire 4207 * adaptive locks. The second, SUSPEND, is called at high PIL with 4208 * CPUs captured so adaptive locks may NOT be acquired (and all spin 4209 * locks must be XCALL_PIL or higher locks). 4210 * 4211 * May return the following errors: 4212 * EIO: A fatal error has occurred. This will result in panic. 4213 * EAGAIN: The page cannot be suspended. This will fail the 4214 * relocation. 4215 * 0: Success. 4216 * 4217 * posthandler() 4218 * 4219 * Save new pfn in private data structures or program registers; 4220 * not allowed to fail (non-zero return values will result in panic). 4221 * 4222 * errhandler() 4223 * 4224 * called when an error occurs related to the callback. Currently 4225 * the only such error is HAT_CB_ERR_LEAKED which indicates that 4226 * a page is being freed, but there are still outstanding callback(s) 4227 * registered on the page. 4228 * 4229 * removing a callback (hat_delete_callback(); e.g., prior to freeing memory) 4230 * 4231 * stop using physical address 4232 * hat_delete_callback(); 4233 * 4234 */ 4235 4236 /* 4237 * Register a callback class. Each subsystem should do this once and 4238 * cache the id_t returned for use in setting up and tearing down callbacks. 4239 * 4240 * There is no facility for removing callback IDs once they are created; 4241 * the "key" should be unique for each module, so in case a module is unloaded 4242 * and subsequently re-loaded, we can recycle the module's previous entry. 4243 */ 4244 id_t 4245 hat_register_callback(int key, 4246 int (*prehandler)(caddr_t, uint_t, uint_t, void *), 4247 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t), 4248 int (*errhandler)(caddr_t, uint_t, uint_t, void *), 4249 int capture_cpus) 4250 { 4251 id_t id; 4252 4253 /* 4254 * Search the table for a pre-existing callback associated with 4255 * the identifier "key". If one exists, we re-use that entry in 4256 * the table for this instance, otherwise we assign the next 4257 * available table slot. 4258 */ 4259 for (id = 0; id < sfmmu_max_cb_id; id++) { 4260 if (sfmmu_cb_table[id].key == key) 4261 break; 4262 } 4263 4264 if (id == sfmmu_max_cb_id) { 4265 id = sfmmu_cb_nextid++; 4266 if (id >= sfmmu_max_cb_id) 4267 panic("hat_register_callback: out of callback IDs"); 4268 } 4269 4270 ASSERT(prehandler != NULL || posthandler != NULL); 4271 4272 sfmmu_cb_table[id].key = key; 4273 sfmmu_cb_table[id].prehandler = prehandler; 4274 sfmmu_cb_table[id].posthandler = posthandler; 4275 sfmmu_cb_table[id].errhandler = errhandler; 4276 sfmmu_cb_table[id].capture_cpus = capture_cpus; 4277 4278 return (id); 4279 } 4280 4281 #define HAC_COOKIE_NONE (void *)-1 4282 4283 /* 4284 * Add relocation callbacks to the specified addr/len which will be called 4285 * when relocating the associated page. See the description of pre and 4286 * posthandler above for more details. 4287 * 4288 * If HAC_PAGELOCK is included in flags, the underlying memory page is 4289 * locked internally so the caller must be able to deal with the callback 4290 * running even before this function has returned. If HAC_PAGELOCK is not 4291 * set, it is assumed that the underlying memory pages are locked. 4292 * 4293 * Since the caller must track the individual page boundaries anyway, 4294 * we only allow a callback to be added to a single page (large 4295 * or small). Thus [addr, addr + len) MUST be contained within a single 4296 * page. 4297 * 4298 * Registering multiple callbacks on the same [addr, addr+len) is supported, 4299 * _provided_that_ a unique parameter is specified for each callback. 4300 * If multiple callbacks are registered on the same range the callback will 4301 * be invoked with each unique parameter. Registering the same callback with 4302 * the same argument more than once will result in corrupted kernel state. 4303 * 4304 * Returns the pfn of the underlying kernel page in *rpfn 4305 * on success, or PFN_INVALID on failure. 4306 * 4307 * cookiep (if passed) provides storage space for an opaque cookie 4308 * to return later to hat_delete_callback(). This cookie makes the callback 4309 * deletion significantly quicker by avoiding a potentially lengthy hash 4310 * search. 4311 * 4312 * Returns values: 4313 * 0: success 4314 * ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP) 4315 * EINVAL: callback ID is not valid 4316 * ENXIO: ["vaddr", "vaddr" + len) is not mapped in the kernel's address 4317 * space 4318 * ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary 4319 */ 4320 int 4321 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags, 4322 void *pvt, pfn_t *rpfn, void **cookiep) 4323 { 4324 struct hmehash_bucket *hmebp; 4325 hmeblk_tag hblktag; 4326 struct hme_blk *hmeblkp; 4327 int hmeshift, hashno; 4328 caddr_t saddr, eaddr, baseaddr; 4329 struct pa_hment *pahmep; 4330 struct sf_hment *sfhmep, *osfhmep; 4331 kmutex_t *pml; 4332 tte_t tte; 4333 page_t *pp; 4334 vnode_t *vp; 4335 u_offset_t off; 4336 pfn_t pfn; 4337 int kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP; 4338 int locked = 0; 4339 4340 /* 4341 * For KPM mappings, just return the physical address since we 4342 * don't need to register any callbacks. 4343 */ 4344 if (IS_KPM_ADDR(vaddr)) { 4345 uint64_t paddr; 4346 SFMMU_KPM_VTOP(vaddr, paddr); 4347 *rpfn = btop(paddr); 4348 if (cookiep != NULL) 4349 *cookiep = HAC_COOKIE_NONE; 4350 return (0); 4351 } 4352 4353 if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) { 4354 *rpfn = PFN_INVALID; 4355 return (EINVAL); 4356 } 4357 4358 if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) { 4359 *rpfn = PFN_INVALID; 4360 return (ENOMEM); 4361 } 4362 4363 sfhmep = &pahmep->sfment; 4364 4365 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK); 4366 eaddr = saddr + len; 4367 4368 rehash: 4369 /* Find the mapping(s) for this page */ 4370 for (hashno = TTE64K, hmeblkp = NULL; 4371 hmeblkp == NULL && hashno <= mmu_hashcnt; 4372 hashno++) { 4373 hmeshift = HME_HASH_SHIFT(hashno); 4374 hblktag.htag_id = ksfmmup; 4375 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 4376 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift); 4377 hblktag.htag_rehash = hashno; 4378 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift); 4379 4380 SFMMU_HASH_LOCK(hmebp); 4381 4382 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 4383 4384 if (hmeblkp == NULL) 4385 SFMMU_HASH_UNLOCK(hmebp); 4386 } 4387 4388 if (hmeblkp == NULL) { 4389 kmem_cache_free(pa_hment_cache, pahmep); 4390 *rpfn = PFN_INVALID; 4391 return (ENXIO); 4392 } 4393 4394 ASSERT(!hmeblkp->hblk_shared); 4395 4396 HBLKTOHME(osfhmep, hmeblkp, saddr); 4397 sfmmu_copytte(&osfhmep->hme_tte, &tte); 4398 4399 if (!TTE_IS_VALID(&tte)) { 4400 SFMMU_HASH_UNLOCK(hmebp); 4401 kmem_cache_free(pa_hment_cache, pahmep); 4402 *rpfn = PFN_INVALID; 4403 return (ENXIO); 4404 } 4405 4406 /* 4407 * Make sure the boundaries for the callback fall within this 4408 * single mapping. 4409 */ 4410 baseaddr = (caddr_t)get_hblk_base(hmeblkp); 4411 ASSERT(saddr >= baseaddr); 4412 if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) { 4413 SFMMU_HASH_UNLOCK(hmebp); 4414 kmem_cache_free(pa_hment_cache, pahmep); 4415 *rpfn = PFN_INVALID; 4416 return (ERANGE); 4417 } 4418 4419 pfn = sfmmu_ttetopfn(&tte, vaddr); 4420 4421 /* 4422 * The pfn may not have a page_t underneath in which case we 4423 * just return it. This can happen if we are doing I/O to a 4424 * static portion of the kernel's address space, for instance. 4425 */ 4426 pp = osfhmep->hme_page; 4427 if (pp == NULL) { 4428 SFMMU_HASH_UNLOCK(hmebp); 4429 kmem_cache_free(pa_hment_cache, pahmep); 4430 *rpfn = pfn; 4431 if (cookiep) 4432 *cookiep = HAC_COOKIE_NONE; 4433 return (0); 4434 } 4435 ASSERT(pp == PP_PAGEROOT(pp)); 4436 4437 vp = pp->p_vnode; 4438 off = pp->p_offset; 4439 4440 pml = sfmmu_mlist_enter(pp); 4441 4442 if (flags & HAC_PAGELOCK) { 4443 if (!page_trylock(pp, SE_SHARED)) { 4444 /* 4445 * Somebody is holding SE_EXCL lock. Might 4446 * even be hat_page_relocate(). Drop all 4447 * our locks, lookup the page in &kvp, and 4448 * retry. If it doesn't exist in &kvp and &zvp, 4449 * then we must be dealing with a kernel mapped 4450 * page which doesn't actually belong to 4451 * segkmem so we punt. 4452 */ 4453 sfmmu_mlist_exit(pml); 4454 SFMMU_HASH_UNLOCK(hmebp); 4455 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED); 4456 4457 /* check zvp before giving up */ 4458 if (pp == NULL) 4459 pp = page_lookup(&zvp, (u_offset_t)saddr, 4460 SE_SHARED); 4461 4462 /* Okay, we didn't find it, give up */ 4463 if (pp == NULL) { 4464 kmem_cache_free(pa_hment_cache, pahmep); 4465 *rpfn = pfn; 4466 if (cookiep) 4467 *cookiep = HAC_COOKIE_NONE; 4468 return (0); 4469 } 4470 page_unlock(pp); 4471 goto rehash; 4472 } 4473 locked = 1; 4474 } 4475 4476 if (!PAGE_LOCKED(pp) && !panicstr) 4477 panic("hat_add_callback: page 0x%p not locked", (void *)pp); 4478 4479 if (osfhmep->hme_page != pp || pp->p_vnode != vp || 4480 pp->p_offset != off) { 4481 /* 4482 * The page moved before we got our hands on it. Drop 4483 * all the locks and try again. 4484 */ 4485 ASSERT((flags & HAC_PAGELOCK) != 0); 4486 sfmmu_mlist_exit(pml); 4487 SFMMU_HASH_UNLOCK(hmebp); 4488 page_unlock(pp); 4489 locked = 0; 4490 goto rehash; 4491 } 4492 4493 if (!VN_ISKAS(vp)) { 4494 /* 4495 * This is not a segkmem page but another page which 4496 * has been kernel mapped. It had better have at least 4497 * a share lock on it. Return the pfn. 4498 */ 4499 sfmmu_mlist_exit(pml); 4500 SFMMU_HASH_UNLOCK(hmebp); 4501 if (locked) 4502 page_unlock(pp); 4503 kmem_cache_free(pa_hment_cache, pahmep); 4504 ASSERT(PAGE_LOCKED(pp)); 4505 *rpfn = pfn; 4506 if (cookiep) 4507 *cookiep = HAC_COOKIE_NONE; 4508 return (0); 4509 } 4510 4511 /* 4512 * Setup this pa_hment and link its embedded dummy sf_hment into 4513 * the mapping list. 4514 */ 4515 pp->p_share++; 4516 pahmep->cb_id = callback_id; 4517 pahmep->addr = vaddr; 4518 pahmep->len = len; 4519 pahmep->refcnt = 1; 4520 pahmep->flags = 0; 4521 pahmep->pvt = pvt; 4522 4523 sfhmep->hme_tte.ll = 0; 4524 sfhmep->hme_data = pahmep; 4525 sfhmep->hme_prev = osfhmep; 4526 sfhmep->hme_next = osfhmep->hme_next; 4527 4528 if (osfhmep->hme_next) 4529 osfhmep->hme_next->hme_prev = sfhmep; 4530 4531 osfhmep->hme_next = sfhmep; 4532 4533 sfmmu_mlist_exit(pml); 4534 SFMMU_HASH_UNLOCK(hmebp); 4535 4536 if (locked) 4537 page_unlock(pp); 4538 4539 *rpfn = pfn; 4540 if (cookiep) 4541 *cookiep = (void *)pahmep; 4542 4543 return (0); 4544 } 4545 4546 /* 4547 * Remove the relocation callbacks from the specified addr/len. 4548 */ 4549 void 4550 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags, 4551 void *cookie) 4552 { 4553 struct hmehash_bucket *hmebp; 4554 hmeblk_tag hblktag; 4555 struct hme_blk *hmeblkp; 4556 int hmeshift, hashno; 4557 caddr_t saddr; 4558 struct pa_hment *pahmep; 4559 struct sf_hment *sfhmep, *osfhmep; 4560 kmutex_t *pml; 4561 tte_t tte; 4562 page_t *pp; 4563 vnode_t *vp; 4564 u_offset_t off; 4565 int locked = 0; 4566 4567 /* 4568 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to 4569 * remove so just return. 4570 */ 4571 if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr)) 4572 return; 4573 4574 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK); 4575 4576 rehash: 4577 /* Find the mapping(s) for this page */ 4578 for (hashno = TTE64K, hmeblkp = NULL; 4579 hmeblkp == NULL && hashno <= mmu_hashcnt; 4580 hashno++) { 4581 hmeshift = HME_HASH_SHIFT(hashno); 4582 hblktag.htag_id = ksfmmup; 4583 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 4584 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift); 4585 hblktag.htag_rehash = hashno; 4586 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift); 4587 4588 SFMMU_HASH_LOCK(hmebp); 4589 4590 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 4591 4592 if (hmeblkp == NULL) 4593 SFMMU_HASH_UNLOCK(hmebp); 4594 } 4595 4596 if (hmeblkp == NULL) 4597 return; 4598 4599 ASSERT(!hmeblkp->hblk_shared); 4600 4601 HBLKTOHME(osfhmep, hmeblkp, saddr); 4602 4603 sfmmu_copytte(&osfhmep->hme_tte, &tte); 4604 if (!TTE_IS_VALID(&tte)) { 4605 SFMMU_HASH_UNLOCK(hmebp); 4606 return; 4607 } 4608 4609 pp = osfhmep->hme_page; 4610 if (pp == NULL) { 4611 SFMMU_HASH_UNLOCK(hmebp); 4612 ASSERT(cookie == NULL); 4613 return; 4614 } 4615 4616 vp = pp->p_vnode; 4617 off = pp->p_offset; 4618 4619 pml = sfmmu_mlist_enter(pp); 4620 4621 if (flags & HAC_PAGELOCK) { 4622 if (!page_trylock(pp, SE_SHARED)) { 4623 /* 4624 * Somebody is holding SE_EXCL lock. Might 4625 * even be hat_page_relocate(). Drop all 4626 * our locks, lookup the page in &kvp, and 4627 * retry. If it doesn't exist in &kvp and &zvp, 4628 * then we must be dealing with a kernel mapped 4629 * page which doesn't actually belong to 4630 * segkmem so we punt. 4631 */ 4632 sfmmu_mlist_exit(pml); 4633 SFMMU_HASH_UNLOCK(hmebp); 4634 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED); 4635 /* check zvp before giving up */ 4636 if (pp == NULL) 4637 pp = page_lookup(&zvp, (u_offset_t)saddr, 4638 SE_SHARED); 4639 4640 if (pp == NULL) { 4641 ASSERT(cookie == NULL); 4642 return; 4643 } 4644 page_unlock(pp); 4645 goto rehash; 4646 } 4647 locked = 1; 4648 } 4649 4650 ASSERT(PAGE_LOCKED(pp)); 4651 4652 if (osfhmep->hme_page != pp || pp->p_vnode != vp || 4653 pp->p_offset != off) { 4654 /* 4655 * The page moved before we got our hands on it. Drop 4656 * all the locks and try again. 4657 */ 4658 ASSERT((flags & HAC_PAGELOCK) != 0); 4659 sfmmu_mlist_exit(pml); 4660 SFMMU_HASH_UNLOCK(hmebp); 4661 page_unlock(pp); 4662 locked = 0; 4663 goto rehash; 4664 } 4665 4666 if (!VN_ISKAS(vp)) { 4667 /* 4668 * This is not a segkmem page but another page which 4669 * has been kernel mapped. 4670 */ 4671 sfmmu_mlist_exit(pml); 4672 SFMMU_HASH_UNLOCK(hmebp); 4673 if (locked) 4674 page_unlock(pp); 4675 ASSERT(cookie == NULL); 4676 return; 4677 } 4678 4679 if (cookie != NULL) { 4680 pahmep = (struct pa_hment *)cookie; 4681 sfhmep = &pahmep->sfment; 4682 } else { 4683 for (sfhmep = pp->p_mapping; sfhmep != NULL; 4684 sfhmep = sfhmep->hme_next) { 4685 4686 /* 4687 * skip va<->pa mappings 4688 */ 4689 if (!IS_PAHME(sfhmep)) 4690 continue; 4691 4692 pahmep = sfhmep->hme_data; 4693 ASSERT(pahmep != NULL); 4694 4695 /* 4696 * if pa_hment matches, remove it 4697 */ 4698 if ((pahmep->pvt == pvt) && 4699 (pahmep->addr == vaddr) && 4700 (pahmep->len == len)) { 4701 break; 4702 } 4703 } 4704 } 4705 4706 if (sfhmep == NULL) { 4707 if (!panicstr) { 4708 panic("hat_delete_callback: pa_hment not found, pp %p", 4709 (void *)pp); 4710 } 4711 return; 4712 } 4713 4714 /* 4715 * Note: at this point a valid kernel mapping must still be 4716 * present on this page. 4717 */ 4718 pp->p_share--; 4719 if (pp->p_share <= 0) 4720 panic("hat_delete_callback: zero p_share"); 4721 4722 if (--pahmep->refcnt == 0) { 4723 if (pahmep->flags != 0) 4724 panic("hat_delete_callback: pa_hment is busy"); 4725 4726 /* 4727 * Remove sfhmep from the mapping list for the page. 4728 */ 4729 if (sfhmep->hme_prev) { 4730 sfhmep->hme_prev->hme_next = sfhmep->hme_next; 4731 } else { 4732 pp->p_mapping = sfhmep->hme_next; 4733 } 4734 4735 if (sfhmep->hme_next) 4736 sfhmep->hme_next->hme_prev = sfhmep->hme_prev; 4737 4738 sfmmu_mlist_exit(pml); 4739 SFMMU_HASH_UNLOCK(hmebp); 4740 4741 if (locked) 4742 page_unlock(pp); 4743 4744 kmem_cache_free(pa_hment_cache, pahmep); 4745 return; 4746 } 4747 4748 sfmmu_mlist_exit(pml); 4749 SFMMU_HASH_UNLOCK(hmebp); 4750 if (locked) 4751 page_unlock(pp); 4752 } 4753 4754 /* 4755 * hat_probe returns 1 if the translation for the address 'addr' is 4756 * loaded, zero otherwise. 4757 * 4758 * hat_probe should be used only for advisorary purposes because it may 4759 * occasionally return the wrong value. The implementation must guarantee that 4760 * returning the wrong value is a very rare event. hat_probe is used 4761 * to implement optimizations in the segment drivers. 4762 * 4763 */ 4764 int 4765 hat_probe(struct hat *sfmmup, caddr_t addr) 4766 { 4767 pfn_t pfn; 4768 tte_t tte; 4769 4770 ASSERT(sfmmup != NULL); 4771 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4772 4773 ASSERT((sfmmup == ksfmmup) || 4774 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 4775 4776 if (sfmmup == ksfmmup) { 4777 while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte)) 4778 == PFN_SUSPENDED) { 4779 sfmmu_vatopfn_suspended(addr, sfmmup, &tte); 4780 } 4781 } else { 4782 pfn = sfmmu_uvatopfn(addr, sfmmup, NULL); 4783 } 4784 4785 if (pfn != PFN_INVALID) 4786 return (1); 4787 else 4788 return (0); 4789 } 4790 4791 ssize_t 4792 hat_getpagesize(struct hat *sfmmup, caddr_t addr) 4793 { 4794 tte_t tte; 4795 4796 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4797 4798 if (sfmmup == ksfmmup) { 4799 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) { 4800 return (-1); 4801 } 4802 } else { 4803 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) { 4804 return (-1); 4805 } 4806 } 4807 4808 ASSERT(TTE_IS_VALID(&tte)); 4809 return (TTEBYTES(TTE_CSZ(&tte))); 4810 } 4811 4812 uint_t 4813 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr) 4814 { 4815 tte_t tte; 4816 4817 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4818 4819 if (sfmmup == ksfmmup) { 4820 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) { 4821 tte.ll = 0; 4822 } 4823 } else { 4824 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) { 4825 tte.ll = 0; 4826 } 4827 } 4828 if (TTE_IS_VALID(&tte)) { 4829 *attr = sfmmu_ptov_attr(&tte); 4830 return (0); 4831 } 4832 *attr = 0; 4833 return ((uint_t)0xffffffff); 4834 } 4835 4836 /* 4837 * Enables more attributes on specified address range (ie. logical OR) 4838 */ 4839 void 4840 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4841 { 4842 if (hat->sfmmu_xhat_provider) { 4843 XHAT_SETATTR(hat, addr, len, attr); 4844 return; 4845 } else { 4846 /* 4847 * This must be a CPU HAT. If the address space has 4848 * XHATs attached, change attributes for all of them, 4849 * just in case 4850 */ 4851 ASSERT(hat->sfmmu_as != NULL); 4852 if (hat->sfmmu_as->a_xhat != NULL) 4853 xhat_setattr_all(hat->sfmmu_as, addr, len, attr); 4854 } 4855 4856 sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR); 4857 } 4858 4859 /* 4860 * Assigns attributes to the specified address range. All the attributes 4861 * are specified. 4862 */ 4863 void 4864 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4865 { 4866 if (hat->sfmmu_xhat_provider) { 4867 XHAT_CHGATTR(hat, addr, len, attr); 4868 return; 4869 } else { 4870 /* 4871 * This must be a CPU HAT. If the address space has 4872 * XHATs attached, change attributes for all of them, 4873 * just in case 4874 */ 4875 ASSERT(hat->sfmmu_as != NULL); 4876 if (hat->sfmmu_as->a_xhat != NULL) 4877 xhat_chgattr_all(hat->sfmmu_as, addr, len, attr); 4878 } 4879 4880 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR); 4881 } 4882 4883 /* 4884 * Remove attributes on the specified address range (ie. loginal NAND) 4885 */ 4886 void 4887 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4888 { 4889 if (hat->sfmmu_xhat_provider) { 4890 XHAT_CLRATTR(hat, addr, len, attr); 4891 return; 4892 } else { 4893 /* 4894 * This must be a CPU HAT. If the address space has 4895 * XHATs attached, change attributes for all of them, 4896 * just in case 4897 */ 4898 ASSERT(hat->sfmmu_as != NULL); 4899 if (hat->sfmmu_as->a_xhat != NULL) 4900 xhat_clrattr_all(hat->sfmmu_as, addr, len, attr); 4901 } 4902 4903 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR); 4904 } 4905 4906 /* 4907 * Change attributes on an address range to that specified by attr and mode. 4908 */ 4909 static void 4910 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr, 4911 int mode) 4912 { 4913 struct hmehash_bucket *hmebp; 4914 hmeblk_tag hblktag; 4915 int hmeshift, hashno = 1; 4916 struct hme_blk *hmeblkp, *list = NULL; 4917 caddr_t endaddr; 4918 cpuset_t cpuset; 4919 demap_range_t dmr; 4920 4921 CPUSET_ZERO(cpuset); 4922 4923 ASSERT((sfmmup == ksfmmup) || 4924 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 4925 ASSERT((len & MMU_PAGEOFFSET) == 0); 4926 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0); 4927 4928 if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) && 4929 ((addr + len) > (caddr_t)USERLIMIT)) { 4930 panic("user addr %p in kernel space", 4931 (void *)addr); 4932 } 4933 4934 endaddr = addr + len; 4935 hblktag.htag_id = sfmmup; 4936 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 4937 DEMAP_RANGE_INIT(sfmmup, &dmr); 4938 4939 while (addr < endaddr) { 4940 hmeshift = HME_HASH_SHIFT(hashno); 4941 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 4942 hblktag.htag_rehash = hashno; 4943 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 4944 4945 SFMMU_HASH_LOCK(hmebp); 4946 4947 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 4948 if (hmeblkp != NULL) { 4949 ASSERT(!hmeblkp->hblk_shared); 4950 /* 4951 * We've encountered a shadow hmeblk so skip the range 4952 * of the next smaller mapping size. 4953 */ 4954 if (hmeblkp->hblk_shw_bit) { 4955 ASSERT(sfmmup != ksfmmup); 4956 ASSERT(hashno > 1); 4957 addr = (caddr_t)P2END((uintptr_t)addr, 4958 TTEBYTES(hashno - 1)); 4959 } else { 4960 addr = sfmmu_hblk_chgattr(sfmmup, 4961 hmeblkp, addr, endaddr, &dmr, attr, mode); 4962 } 4963 SFMMU_HASH_UNLOCK(hmebp); 4964 hashno = 1; 4965 continue; 4966 } 4967 SFMMU_HASH_UNLOCK(hmebp); 4968 4969 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 4970 /* 4971 * We have traversed the whole list and rehashed 4972 * if necessary without finding the address to chgattr. 4973 * This is ok, so we increment the address by the 4974 * smallest hmeblk range for kernel mappings or for 4975 * user mappings with no large pages, and the largest 4976 * hmeblk range, to account for shadow hmeblks, for 4977 * user mappings with large pages and continue. 4978 */ 4979 if (sfmmup == ksfmmup) 4980 addr = (caddr_t)P2END((uintptr_t)addr, 4981 TTEBYTES(1)); 4982 else 4983 addr = (caddr_t)P2END((uintptr_t)addr, 4984 TTEBYTES(hashno)); 4985 hashno = 1; 4986 } else { 4987 hashno++; 4988 } 4989 } 4990 4991 sfmmu_hblks_list_purge(&list, 0); 4992 DEMAP_RANGE_FLUSH(&dmr); 4993 cpuset = sfmmup->sfmmu_cpusran; 4994 xt_sync(cpuset); 4995 } 4996 4997 /* 4998 * This function chgattr on a range of addresses in an hmeblk. It returns the 4999 * next addres that needs to be chgattr. 5000 * It should be called with the hash lock held. 5001 * XXX It should be possible to optimize chgattr by not flushing every time but 5002 * on the other hand: 5003 * 1. do one flush crosscall. 5004 * 2. only flush if we are increasing permissions (make sure this will work) 5005 */ 5006 static caddr_t 5007 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 5008 caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode) 5009 { 5010 tte_t tte, tteattr, tteflags, ttemod; 5011 struct sf_hment *sfhmep; 5012 int ttesz; 5013 struct page *pp = NULL; 5014 kmutex_t *pml, *pmtx; 5015 int ret; 5016 int use_demap_range; 5017 #if defined(SF_ERRATA_57) 5018 int check_exec; 5019 #endif 5020 5021 ASSERT(in_hblk_range(hmeblkp, addr)); 5022 ASSERT(hmeblkp->hblk_shw_bit == 0); 5023 ASSERT(!hmeblkp->hblk_shared); 5024 5025 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 5026 ttesz = get_hblk_ttesz(hmeblkp); 5027 5028 /* 5029 * Flush the current demap region if addresses have been 5030 * skipped or the page size doesn't match. 5031 */ 5032 use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)); 5033 if (use_demap_range) { 5034 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 5035 } else if (dmrp != NULL) { 5036 DEMAP_RANGE_FLUSH(dmrp); 5037 } 5038 5039 tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags); 5040 #if defined(SF_ERRATA_57) 5041 check_exec = (sfmmup != ksfmmup) && 5042 AS_TYPE_64BIT(sfmmup->sfmmu_as) && 5043 TTE_IS_EXECUTABLE(&tteattr); 5044 #endif 5045 HBLKTOHME(sfhmep, hmeblkp, addr); 5046 while (addr < endaddr) { 5047 sfmmu_copytte(&sfhmep->hme_tte, &tte); 5048 if (TTE_IS_VALID(&tte)) { 5049 if ((tte.ll & tteflags.ll) == tteattr.ll) { 5050 /* 5051 * if the new attr is the same as old 5052 * continue 5053 */ 5054 goto next_addr; 5055 } 5056 if (!TTE_IS_WRITABLE(&tteattr)) { 5057 /* 5058 * make sure we clear hw modify bit if we 5059 * removing write protections 5060 */ 5061 tteflags.tte_intlo |= TTE_HWWR_INT; 5062 } 5063 5064 pml = NULL; 5065 pp = sfhmep->hme_page; 5066 if (pp) { 5067 pml = sfmmu_mlist_enter(pp); 5068 } 5069 5070 if (pp != sfhmep->hme_page) { 5071 /* 5072 * tte must have been unloaded. 5073 */ 5074 ASSERT(pml); 5075 sfmmu_mlist_exit(pml); 5076 continue; 5077 } 5078 5079 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 5080 5081 ttemod = tte; 5082 ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll; 5083 ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte)); 5084 5085 #if defined(SF_ERRATA_57) 5086 if (check_exec && addr < errata57_limit) 5087 ttemod.tte_exec_perm = 0; 5088 #endif 5089 ret = sfmmu_modifytte_try(&tte, &ttemod, 5090 &sfhmep->hme_tte); 5091 5092 if (ret < 0) { 5093 /* tte changed underneath us */ 5094 if (pml) { 5095 sfmmu_mlist_exit(pml); 5096 } 5097 continue; 5098 } 5099 5100 if (tteflags.tte_intlo & TTE_HWWR_INT) { 5101 /* 5102 * need to sync if we are clearing modify bit. 5103 */ 5104 sfmmu_ttesync(sfmmup, addr, &tte, pp); 5105 } 5106 5107 if (pp && PP_ISRO(pp)) { 5108 if (tteattr.tte_intlo & TTE_WRPRM_INT) { 5109 pmtx = sfmmu_page_enter(pp); 5110 PP_CLRRO(pp); 5111 sfmmu_page_exit(pmtx); 5112 } 5113 } 5114 5115 if (ret > 0 && use_demap_range) { 5116 DEMAP_RANGE_MARKPG(dmrp, addr); 5117 } else if (ret > 0) { 5118 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 5119 } 5120 5121 if (pml) { 5122 sfmmu_mlist_exit(pml); 5123 } 5124 } 5125 next_addr: 5126 addr += TTEBYTES(ttesz); 5127 sfhmep++; 5128 DEMAP_RANGE_NEXTPG(dmrp); 5129 } 5130 return (addr); 5131 } 5132 5133 /* 5134 * This routine converts virtual attributes to physical ones. It will 5135 * update the tteflags field with the tte mask corresponding to the attributes 5136 * affected and it returns the new attributes. It will also clear the modify 5137 * bit if we are taking away write permission. This is necessary since the 5138 * modify bit is the hardware permission bit and we need to clear it in order 5139 * to detect write faults. 5140 */ 5141 static uint64_t 5142 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp) 5143 { 5144 tte_t ttevalue; 5145 5146 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 5147 5148 switch (mode) { 5149 case SFMMU_CHGATTR: 5150 /* all attributes specified */ 5151 ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr); 5152 ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr); 5153 ttemaskp->tte_inthi = TTEINTHI_ATTR; 5154 ttemaskp->tte_intlo = TTEINTLO_ATTR; 5155 break; 5156 case SFMMU_SETATTR: 5157 ASSERT(!(attr & ~HAT_PROT_MASK)); 5158 ttemaskp->ll = 0; 5159 ttevalue.ll = 0; 5160 /* 5161 * a valid tte implies exec and read for sfmmu 5162 * so no need to do anything about them. 5163 * since priviledged access implies user access 5164 * PROT_USER doesn't make sense either. 5165 */ 5166 if (attr & PROT_WRITE) { 5167 ttemaskp->tte_intlo |= TTE_WRPRM_INT; 5168 ttevalue.tte_intlo |= TTE_WRPRM_INT; 5169 } 5170 break; 5171 case SFMMU_CLRATTR: 5172 /* attributes will be nand with current ones */ 5173 if (attr & ~(PROT_WRITE | PROT_USER)) { 5174 panic("sfmmu: attr %x not supported", attr); 5175 } 5176 ttemaskp->ll = 0; 5177 ttevalue.ll = 0; 5178 if (attr & PROT_WRITE) { 5179 /* clear both writable and modify bit */ 5180 ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT; 5181 } 5182 if (attr & PROT_USER) { 5183 ttemaskp->tte_intlo |= TTE_PRIV_INT; 5184 ttevalue.tte_intlo |= TTE_PRIV_INT; 5185 } 5186 break; 5187 default: 5188 panic("sfmmu_vtop_attr: bad mode %x", mode); 5189 } 5190 ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0); 5191 return (ttevalue.ll); 5192 } 5193 5194 static uint_t 5195 sfmmu_ptov_attr(tte_t *ttep) 5196 { 5197 uint_t attr; 5198 5199 ASSERT(TTE_IS_VALID(ttep)); 5200 5201 attr = PROT_READ; 5202 5203 if (TTE_IS_WRITABLE(ttep)) { 5204 attr |= PROT_WRITE; 5205 } 5206 if (TTE_IS_EXECUTABLE(ttep)) { 5207 attr |= PROT_EXEC; 5208 } 5209 if (!TTE_IS_PRIVILEGED(ttep)) { 5210 attr |= PROT_USER; 5211 } 5212 if (TTE_IS_NFO(ttep)) { 5213 attr |= HAT_NOFAULT; 5214 } 5215 if (TTE_IS_NOSYNC(ttep)) { 5216 attr |= HAT_NOSYNC; 5217 } 5218 if (TTE_IS_SIDEFFECT(ttep)) { 5219 attr |= SFMMU_SIDEFFECT; 5220 } 5221 if (!TTE_IS_VCACHEABLE(ttep)) { 5222 attr |= SFMMU_UNCACHEVTTE; 5223 } 5224 if (!TTE_IS_PCACHEABLE(ttep)) { 5225 attr |= SFMMU_UNCACHEPTTE; 5226 } 5227 return (attr); 5228 } 5229 5230 /* 5231 * hat_chgprot is a deprecated hat call. New segment drivers 5232 * should store all attributes and use hat_*attr calls. 5233 * 5234 * Change the protections in the virtual address range 5235 * given to the specified virtual protection. If vprot is ~PROT_WRITE, 5236 * then remove write permission, leaving the other 5237 * permissions unchanged. If vprot is ~PROT_USER, remove user permissions. 5238 * 5239 */ 5240 void 5241 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot) 5242 { 5243 struct hmehash_bucket *hmebp; 5244 hmeblk_tag hblktag; 5245 int hmeshift, hashno = 1; 5246 struct hme_blk *hmeblkp, *list = NULL; 5247 caddr_t endaddr; 5248 cpuset_t cpuset; 5249 demap_range_t dmr; 5250 5251 ASSERT((len & MMU_PAGEOFFSET) == 0); 5252 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0); 5253 5254 if (sfmmup->sfmmu_xhat_provider) { 5255 XHAT_CHGPROT(sfmmup, addr, len, vprot); 5256 return; 5257 } else { 5258 /* 5259 * This must be a CPU HAT. If the address space has 5260 * XHATs attached, change attributes for all of them, 5261 * just in case 5262 */ 5263 ASSERT(sfmmup->sfmmu_as != NULL); 5264 if (sfmmup->sfmmu_as->a_xhat != NULL) 5265 xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot); 5266 } 5267 5268 CPUSET_ZERO(cpuset); 5269 5270 if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) && 5271 ((addr + len) > (caddr_t)USERLIMIT)) { 5272 panic("user addr %p vprot %x in kernel space", 5273 (void *)addr, vprot); 5274 } 5275 endaddr = addr + len; 5276 hblktag.htag_id = sfmmup; 5277 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 5278 DEMAP_RANGE_INIT(sfmmup, &dmr); 5279 5280 while (addr < endaddr) { 5281 hmeshift = HME_HASH_SHIFT(hashno); 5282 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 5283 hblktag.htag_rehash = hashno; 5284 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 5285 5286 SFMMU_HASH_LOCK(hmebp); 5287 5288 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 5289 if (hmeblkp != NULL) { 5290 ASSERT(!hmeblkp->hblk_shared); 5291 /* 5292 * We've encountered a shadow hmeblk so skip the range 5293 * of the next smaller mapping size. 5294 */ 5295 if (hmeblkp->hblk_shw_bit) { 5296 ASSERT(sfmmup != ksfmmup); 5297 ASSERT(hashno > 1); 5298 addr = (caddr_t)P2END((uintptr_t)addr, 5299 TTEBYTES(hashno - 1)); 5300 } else { 5301 addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp, 5302 addr, endaddr, &dmr, vprot); 5303 } 5304 SFMMU_HASH_UNLOCK(hmebp); 5305 hashno = 1; 5306 continue; 5307 } 5308 SFMMU_HASH_UNLOCK(hmebp); 5309 5310 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 5311 /* 5312 * We have traversed the whole list and rehashed 5313 * if necessary without finding the address to chgprot. 5314 * This is ok so we increment the address by the 5315 * smallest hmeblk range for kernel mappings and the 5316 * largest hmeblk range, to account for shadow hmeblks, 5317 * for user mappings and continue. 5318 */ 5319 if (sfmmup == ksfmmup) 5320 addr = (caddr_t)P2END((uintptr_t)addr, 5321 TTEBYTES(1)); 5322 else 5323 addr = (caddr_t)P2END((uintptr_t)addr, 5324 TTEBYTES(hashno)); 5325 hashno = 1; 5326 } else { 5327 hashno++; 5328 } 5329 } 5330 5331 sfmmu_hblks_list_purge(&list, 0); 5332 DEMAP_RANGE_FLUSH(&dmr); 5333 cpuset = sfmmup->sfmmu_cpusran; 5334 xt_sync(cpuset); 5335 } 5336 5337 /* 5338 * This function chgprots a range of addresses in an hmeblk. It returns the 5339 * next addres that needs to be chgprot. 5340 * It should be called with the hash lock held. 5341 * XXX It shold be possible to optimize chgprot by not flushing every time but 5342 * on the other hand: 5343 * 1. do one flush crosscall. 5344 * 2. only flush if we are increasing permissions (make sure this will work) 5345 */ 5346 static caddr_t 5347 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 5348 caddr_t endaddr, demap_range_t *dmrp, uint_t vprot) 5349 { 5350 uint_t pprot; 5351 tte_t tte, ttemod; 5352 struct sf_hment *sfhmep; 5353 uint_t tteflags; 5354 int ttesz; 5355 struct page *pp = NULL; 5356 kmutex_t *pml, *pmtx; 5357 int ret; 5358 int use_demap_range; 5359 #if defined(SF_ERRATA_57) 5360 int check_exec; 5361 #endif 5362 5363 ASSERT(in_hblk_range(hmeblkp, addr)); 5364 ASSERT(hmeblkp->hblk_shw_bit == 0); 5365 ASSERT(!hmeblkp->hblk_shared); 5366 5367 #ifdef DEBUG 5368 if (get_hblk_ttesz(hmeblkp) != TTE8K && 5369 (endaddr < get_hblk_endaddr(hmeblkp))) { 5370 panic("sfmmu_hblk_chgprot: partial chgprot of large page"); 5371 } 5372 #endif /* DEBUG */ 5373 5374 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 5375 ttesz = get_hblk_ttesz(hmeblkp); 5376 5377 pprot = sfmmu_vtop_prot(vprot, &tteflags); 5378 #if defined(SF_ERRATA_57) 5379 check_exec = (sfmmup != ksfmmup) && 5380 AS_TYPE_64BIT(sfmmup->sfmmu_as) && 5381 ((vprot & PROT_EXEC) == PROT_EXEC); 5382 #endif 5383 HBLKTOHME(sfhmep, hmeblkp, addr); 5384 5385 /* 5386 * Flush the current demap region if addresses have been 5387 * skipped or the page size doesn't match. 5388 */ 5389 use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE); 5390 if (use_demap_range) { 5391 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 5392 } else if (dmrp != NULL) { 5393 DEMAP_RANGE_FLUSH(dmrp); 5394 } 5395 5396 while (addr < endaddr) { 5397 sfmmu_copytte(&sfhmep->hme_tte, &tte); 5398 if (TTE_IS_VALID(&tte)) { 5399 if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) { 5400 /* 5401 * if the new protection is the same as old 5402 * continue 5403 */ 5404 goto next_addr; 5405 } 5406 pml = NULL; 5407 pp = sfhmep->hme_page; 5408 if (pp) { 5409 pml = sfmmu_mlist_enter(pp); 5410 } 5411 if (pp != sfhmep->hme_page) { 5412 /* 5413 * tte most have been unloaded 5414 * underneath us. Recheck 5415 */ 5416 ASSERT(pml); 5417 sfmmu_mlist_exit(pml); 5418 continue; 5419 } 5420 5421 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 5422 5423 ttemod = tte; 5424 TTE_SET_LOFLAGS(&ttemod, tteflags, pprot); 5425 #if defined(SF_ERRATA_57) 5426 if (check_exec && addr < errata57_limit) 5427 ttemod.tte_exec_perm = 0; 5428 #endif 5429 ret = sfmmu_modifytte_try(&tte, &ttemod, 5430 &sfhmep->hme_tte); 5431 5432 if (ret < 0) { 5433 /* tte changed underneath us */ 5434 if (pml) { 5435 sfmmu_mlist_exit(pml); 5436 } 5437 continue; 5438 } 5439 5440 if (tteflags & TTE_HWWR_INT) { 5441 /* 5442 * need to sync if we are clearing modify bit. 5443 */ 5444 sfmmu_ttesync(sfmmup, addr, &tte, pp); 5445 } 5446 5447 if (pp && PP_ISRO(pp)) { 5448 if (pprot & TTE_WRPRM_INT) { 5449 pmtx = sfmmu_page_enter(pp); 5450 PP_CLRRO(pp); 5451 sfmmu_page_exit(pmtx); 5452 } 5453 } 5454 5455 if (ret > 0 && use_demap_range) { 5456 DEMAP_RANGE_MARKPG(dmrp, addr); 5457 } else if (ret > 0) { 5458 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 5459 } 5460 5461 if (pml) { 5462 sfmmu_mlist_exit(pml); 5463 } 5464 } 5465 next_addr: 5466 addr += TTEBYTES(ttesz); 5467 sfhmep++; 5468 DEMAP_RANGE_NEXTPG(dmrp); 5469 } 5470 return (addr); 5471 } 5472 5473 /* 5474 * This routine is deprecated and should only be used by hat_chgprot. 5475 * The correct routine is sfmmu_vtop_attr. 5476 * This routine converts virtual page protections to physical ones. It will 5477 * update the tteflags field with the tte mask corresponding to the protections 5478 * affected and it returns the new protections. It will also clear the modify 5479 * bit if we are taking away write permission. This is necessary since the 5480 * modify bit is the hardware permission bit and we need to clear it in order 5481 * to detect write faults. 5482 * It accepts the following special protections: 5483 * ~PROT_WRITE = remove write permissions. 5484 * ~PROT_USER = remove user permissions. 5485 */ 5486 static uint_t 5487 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp) 5488 { 5489 if (vprot == (uint_t)~PROT_WRITE) { 5490 *tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT; 5491 return (0); /* will cause wrprm to be cleared */ 5492 } 5493 if (vprot == (uint_t)~PROT_USER) { 5494 *tteflagsp = TTE_PRIV_INT; 5495 return (0); /* will cause privprm to be cleared */ 5496 } 5497 if ((vprot == 0) || (vprot == PROT_USER) || 5498 ((vprot & PROT_ALL) != vprot)) { 5499 panic("sfmmu_vtop_prot -- bad prot %x", vprot); 5500 } 5501 5502 switch (vprot) { 5503 case (PROT_READ): 5504 case (PROT_EXEC): 5505 case (PROT_EXEC | PROT_READ): 5506 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT; 5507 return (TTE_PRIV_INT); /* set prv and clr wrt */ 5508 case (PROT_WRITE): 5509 case (PROT_WRITE | PROT_READ): 5510 case (PROT_EXEC | PROT_WRITE): 5511 case (PROT_EXEC | PROT_WRITE | PROT_READ): 5512 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT; 5513 return (TTE_PRIV_INT | TTE_WRPRM_INT); /* set prv and wrt */ 5514 case (PROT_USER | PROT_READ): 5515 case (PROT_USER | PROT_EXEC): 5516 case (PROT_USER | PROT_EXEC | PROT_READ): 5517 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT; 5518 return (0); /* clr prv and wrt */ 5519 case (PROT_USER | PROT_WRITE): 5520 case (PROT_USER | PROT_WRITE | PROT_READ): 5521 case (PROT_USER | PROT_EXEC | PROT_WRITE): 5522 case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ): 5523 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT; 5524 return (TTE_WRPRM_INT); /* clr prv and set wrt */ 5525 default: 5526 panic("sfmmu_vtop_prot -- bad prot %x", vprot); 5527 } 5528 return (0); 5529 } 5530 5531 /* 5532 * Alternate unload for very large virtual ranges. With a true 64 bit VA, 5533 * the normal algorithm would take too long for a very large VA range with 5534 * few real mappings. This routine just walks thru all HMEs in the global 5535 * hash table to find and remove mappings. 5536 */ 5537 static void 5538 hat_unload_large_virtual( 5539 struct hat *sfmmup, 5540 caddr_t startaddr, 5541 size_t len, 5542 uint_t flags, 5543 hat_callback_t *callback) 5544 { 5545 struct hmehash_bucket *hmebp; 5546 struct hme_blk *hmeblkp; 5547 struct hme_blk *pr_hblk = NULL; 5548 struct hme_blk *nx_hblk; 5549 struct hme_blk *list = NULL; 5550 int i; 5551 demap_range_t dmr, *dmrp; 5552 cpuset_t cpuset; 5553 caddr_t endaddr = startaddr + len; 5554 caddr_t sa; 5555 caddr_t ea; 5556 caddr_t cb_sa[MAX_CB_ADDR]; 5557 caddr_t cb_ea[MAX_CB_ADDR]; 5558 int addr_cnt = 0; 5559 int a = 0; 5560 5561 if (sfmmup->sfmmu_free) { 5562 dmrp = NULL; 5563 } else { 5564 dmrp = &dmr; 5565 DEMAP_RANGE_INIT(sfmmup, dmrp); 5566 } 5567 5568 /* 5569 * Loop through all the hash buckets of HME blocks looking for matches. 5570 */ 5571 for (i = 0; i <= UHMEHASH_SZ; i++) { 5572 hmebp = &uhme_hash[i]; 5573 SFMMU_HASH_LOCK(hmebp); 5574 hmeblkp = hmebp->hmeblkp; 5575 pr_hblk = NULL; 5576 while (hmeblkp) { 5577 nx_hblk = hmeblkp->hblk_next; 5578 5579 /* 5580 * skip if not this context, if a shadow block or 5581 * if the mapping is not in the requested range 5582 */ 5583 if (hmeblkp->hblk_tag.htag_id != sfmmup || 5584 hmeblkp->hblk_shw_bit || 5585 (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr || 5586 (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) { 5587 pr_hblk = hmeblkp; 5588 goto next_block; 5589 } 5590 5591 ASSERT(!hmeblkp->hblk_shared); 5592 /* 5593 * unload if there are any current valid mappings 5594 */ 5595 if (hmeblkp->hblk_vcnt != 0 || 5596 hmeblkp->hblk_hmecnt != 0) 5597 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 5598 sa, ea, dmrp, flags); 5599 5600 /* 5601 * on unmap we also release the HME block itself, once 5602 * all mappings are gone. 5603 */ 5604 if ((flags & HAT_UNLOAD_UNMAP) != 0 && 5605 !hmeblkp->hblk_vcnt && 5606 !hmeblkp->hblk_hmecnt) { 5607 ASSERT(!hmeblkp->hblk_lckcnt); 5608 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 5609 &list, 0); 5610 } else { 5611 pr_hblk = hmeblkp; 5612 } 5613 5614 if (callback == NULL) 5615 goto next_block; 5616 5617 /* 5618 * HME blocks may span more than one page, but we may be 5619 * unmapping only one page, so check for a smaller range 5620 * for the callback 5621 */ 5622 if (sa < startaddr) 5623 sa = startaddr; 5624 if (--ea > endaddr) 5625 ea = endaddr - 1; 5626 5627 cb_sa[addr_cnt] = sa; 5628 cb_ea[addr_cnt] = ea; 5629 if (++addr_cnt == MAX_CB_ADDR) { 5630 if (dmrp != NULL) { 5631 DEMAP_RANGE_FLUSH(dmrp); 5632 cpuset = sfmmup->sfmmu_cpusran; 5633 xt_sync(cpuset); 5634 } 5635 5636 for (a = 0; a < MAX_CB_ADDR; ++a) { 5637 callback->hcb_start_addr = cb_sa[a]; 5638 callback->hcb_end_addr = cb_ea[a]; 5639 callback->hcb_function(callback); 5640 } 5641 addr_cnt = 0; 5642 } 5643 5644 next_block: 5645 hmeblkp = nx_hblk; 5646 } 5647 SFMMU_HASH_UNLOCK(hmebp); 5648 } 5649 5650 sfmmu_hblks_list_purge(&list, 0); 5651 if (dmrp != NULL) { 5652 DEMAP_RANGE_FLUSH(dmrp); 5653 cpuset = sfmmup->sfmmu_cpusran; 5654 xt_sync(cpuset); 5655 } 5656 5657 for (a = 0; a < addr_cnt; ++a) { 5658 callback->hcb_start_addr = cb_sa[a]; 5659 callback->hcb_end_addr = cb_ea[a]; 5660 callback->hcb_function(callback); 5661 } 5662 5663 /* 5664 * Check TSB and TLB page sizes if the process isn't exiting. 5665 */ 5666 if (!sfmmup->sfmmu_free) 5667 sfmmu_check_page_sizes(sfmmup, 0); 5668 } 5669 5670 /* 5671 * Unload all the mappings in the range [addr..addr+len). addr and len must 5672 * be MMU_PAGESIZE aligned. 5673 */ 5674 5675 extern struct seg *segkmap; 5676 #define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \ 5677 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size)) 5678 5679 5680 void 5681 hat_unload_callback( 5682 struct hat *sfmmup, 5683 caddr_t addr, 5684 size_t len, 5685 uint_t flags, 5686 hat_callback_t *callback) 5687 { 5688 struct hmehash_bucket *hmebp; 5689 hmeblk_tag hblktag; 5690 int hmeshift, hashno, iskernel; 5691 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL; 5692 caddr_t endaddr; 5693 cpuset_t cpuset; 5694 int addr_count = 0; 5695 int a; 5696 caddr_t cb_start_addr[MAX_CB_ADDR]; 5697 caddr_t cb_end_addr[MAX_CB_ADDR]; 5698 int issegkmap = ISSEGKMAP(sfmmup, addr); 5699 demap_range_t dmr, *dmrp; 5700 5701 if (sfmmup->sfmmu_xhat_provider) { 5702 XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback); 5703 return; 5704 } else { 5705 /* 5706 * This must be a CPU HAT. If the address space has 5707 * XHATs attached, unload the mappings for all of them, 5708 * just in case 5709 */ 5710 ASSERT(sfmmup->sfmmu_as != NULL); 5711 if (sfmmup->sfmmu_as->a_xhat != NULL) 5712 xhat_unload_callback_all(sfmmup->sfmmu_as, addr, 5713 len, flags, callback); 5714 } 5715 5716 ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \ 5717 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 5718 5719 ASSERT(sfmmup != NULL); 5720 ASSERT((len & MMU_PAGEOFFSET) == 0); 5721 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 5722 5723 /* 5724 * Probing through a large VA range (say 63 bits) will be slow, even 5725 * at 4 Meg steps between the probes. So, when the virtual address range 5726 * is very large, search the HME entries for what to unload. 5727 * 5728 * len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need 5729 * 5730 * UHMEHASH_SZ is number of hash buckets to examine 5731 * 5732 */ 5733 if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) { 5734 hat_unload_large_virtual(sfmmup, addr, len, flags, callback); 5735 return; 5736 } 5737 5738 CPUSET_ZERO(cpuset); 5739 5740 /* 5741 * If the process is exiting, we can save a lot of fuss since 5742 * we'll flush the TLB when we free the ctx anyway. 5743 */ 5744 if (sfmmup->sfmmu_free) { 5745 dmrp = NULL; 5746 } else { 5747 dmrp = &dmr; 5748 DEMAP_RANGE_INIT(sfmmup, dmrp); 5749 } 5750 5751 endaddr = addr + len; 5752 hblktag.htag_id = sfmmup; 5753 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 5754 5755 /* 5756 * It is likely for the vm to call unload over a wide range of 5757 * addresses that are actually very sparsely populated by 5758 * translations. In order to speed this up the sfmmu hat supports 5759 * the concept of shadow hmeblks. Dummy large page hmeblks that 5760 * correspond to actual small translations are allocated at tteload 5761 * time and are referred to as shadow hmeblks. Now, during unload 5762 * time, we first check if we have a shadow hmeblk for that 5763 * translation. The absence of one means the corresponding address 5764 * range is empty and can be skipped. 5765 * 5766 * The kernel is an exception to above statement and that is why 5767 * we don't use shadow hmeblks and hash starting from the smallest 5768 * page size. 5769 */ 5770 if (sfmmup == KHATID) { 5771 iskernel = 1; 5772 hashno = TTE64K; 5773 } else { 5774 iskernel = 0; 5775 if (mmu_page_sizes == max_mmu_page_sizes) { 5776 hashno = TTE256M; 5777 } else { 5778 hashno = TTE4M; 5779 } 5780 } 5781 while (addr < endaddr) { 5782 hmeshift = HME_HASH_SHIFT(hashno); 5783 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 5784 hblktag.htag_rehash = hashno; 5785 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 5786 5787 SFMMU_HASH_LOCK(hmebp); 5788 5789 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list); 5790 if (hmeblkp == NULL) { 5791 /* 5792 * didn't find an hmeblk. skip the appropiate 5793 * address range. 5794 */ 5795 SFMMU_HASH_UNLOCK(hmebp); 5796 if (iskernel) { 5797 if (hashno < mmu_hashcnt) { 5798 hashno++; 5799 continue; 5800 } else { 5801 hashno = TTE64K; 5802 addr = (caddr_t)roundup((uintptr_t)addr 5803 + 1, MMU_PAGESIZE64K); 5804 continue; 5805 } 5806 } 5807 addr = (caddr_t)roundup((uintptr_t)addr + 1, 5808 (1 << hmeshift)); 5809 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5810 ASSERT(hashno == TTE64K); 5811 continue; 5812 } 5813 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5814 hashno = TTE512K; 5815 continue; 5816 } 5817 if (mmu_page_sizes == max_mmu_page_sizes) { 5818 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5819 hashno = TTE4M; 5820 continue; 5821 } 5822 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5823 hashno = TTE32M; 5824 continue; 5825 } 5826 hashno = TTE256M; 5827 continue; 5828 } else { 5829 hashno = TTE4M; 5830 continue; 5831 } 5832 } 5833 ASSERT(hmeblkp); 5834 ASSERT(!hmeblkp->hblk_shared); 5835 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 5836 /* 5837 * If the valid count is zero we can skip the range 5838 * mapped by this hmeblk. 5839 * We free hblks in the case of HAT_UNMAP. HAT_UNMAP 5840 * is used by segment drivers as a hint 5841 * that the mapping resource won't be used any longer. 5842 * The best example of this is during exit(). 5843 */ 5844 addr = (caddr_t)roundup((uintptr_t)addr + 1, 5845 get_hblk_span(hmeblkp)); 5846 if ((flags & HAT_UNLOAD_UNMAP) || 5847 (iskernel && !issegkmap)) { 5848 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 5849 &list, 0); 5850 } 5851 SFMMU_HASH_UNLOCK(hmebp); 5852 5853 if (iskernel) { 5854 hashno = TTE64K; 5855 continue; 5856 } 5857 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5858 ASSERT(hashno == TTE64K); 5859 continue; 5860 } 5861 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5862 hashno = TTE512K; 5863 continue; 5864 } 5865 if (mmu_page_sizes == max_mmu_page_sizes) { 5866 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5867 hashno = TTE4M; 5868 continue; 5869 } 5870 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5871 hashno = TTE32M; 5872 continue; 5873 } 5874 hashno = TTE256M; 5875 continue; 5876 } else { 5877 hashno = TTE4M; 5878 continue; 5879 } 5880 } 5881 if (hmeblkp->hblk_shw_bit) { 5882 /* 5883 * If we encounter a shadow hmeblk we know there is 5884 * smaller sized hmeblks mapping the same address space. 5885 * Decrement the hash size and rehash. 5886 */ 5887 ASSERT(sfmmup != KHATID); 5888 hashno--; 5889 SFMMU_HASH_UNLOCK(hmebp); 5890 continue; 5891 } 5892 5893 /* 5894 * track callback address ranges. 5895 * only start a new range when it's not contiguous 5896 */ 5897 if (callback != NULL) { 5898 if (addr_count > 0 && 5899 addr == cb_end_addr[addr_count - 1]) 5900 --addr_count; 5901 else 5902 cb_start_addr[addr_count] = addr; 5903 } 5904 5905 addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr, 5906 dmrp, flags); 5907 5908 if (callback != NULL) 5909 cb_end_addr[addr_count++] = addr; 5910 5911 if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) && 5912 !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 5913 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0); 5914 } 5915 SFMMU_HASH_UNLOCK(hmebp); 5916 5917 /* 5918 * Notify our caller as to exactly which pages 5919 * have been unloaded. We do these in clumps, 5920 * to minimize the number of xt_sync()s that need to occur. 5921 */ 5922 if (callback != NULL && addr_count == MAX_CB_ADDR) { 5923 if (dmrp != NULL) { 5924 DEMAP_RANGE_FLUSH(dmrp); 5925 cpuset = sfmmup->sfmmu_cpusran; 5926 xt_sync(cpuset); 5927 } 5928 5929 for (a = 0; a < MAX_CB_ADDR; ++a) { 5930 callback->hcb_start_addr = cb_start_addr[a]; 5931 callback->hcb_end_addr = cb_end_addr[a]; 5932 callback->hcb_function(callback); 5933 } 5934 addr_count = 0; 5935 } 5936 if (iskernel) { 5937 hashno = TTE64K; 5938 continue; 5939 } 5940 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5941 ASSERT(hashno == TTE64K); 5942 continue; 5943 } 5944 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5945 hashno = TTE512K; 5946 continue; 5947 } 5948 if (mmu_page_sizes == max_mmu_page_sizes) { 5949 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5950 hashno = TTE4M; 5951 continue; 5952 } 5953 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5954 hashno = TTE32M; 5955 continue; 5956 } 5957 hashno = TTE256M; 5958 } else { 5959 hashno = TTE4M; 5960 } 5961 } 5962 5963 sfmmu_hblks_list_purge(&list, 0); 5964 if (dmrp != NULL) { 5965 DEMAP_RANGE_FLUSH(dmrp); 5966 cpuset = sfmmup->sfmmu_cpusran; 5967 xt_sync(cpuset); 5968 } 5969 if (callback && addr_count != 0) { 5970 for (a = 0; a < addr_count; ++a) { 5971 callback->hcb_start_addr = cb_start_addr[a]; 5972 callback->hcb_end_addr = cb_end_addr[a]; 5973 callback->hcb_function(callback); 5974 } 5975 } 5976 5977 /* 5978 * Check TSB and TLB page sizes if the process isn't exiting. 5979 */ 5980 if (!sfmmup->sfmmu_free) 5981 sfmmu_check_page_sizes(sfmmup, 0); 5982 } 5983 5984 /* 5985 * Unload all the mappings in the range [addr..addr+len). addr and len must 5986 * be MMU_PAGESIZE aligned. 5987 */ 5988 void 5989 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags) 5990 { 5991 if (sfmmup->sfmmu_xhat_provider) { 5992 XHAT_UNLOAD(sfmmup, addr, len, flags); 5993 return; 5994 } 5995 hat_unload_callback(sfmmup, addr, len, flags, NULL); 5996 } 5997 5998 5999 /* 6000 * Find the largest mapping size for this page. 6001 */ 6002 int 6003 fnd_mapping_sz(page_t *pp) 6004 { 6005 int sz; 6006 int p_index; 6007 6008 p_index = PP_MAPINDEX(pp); 6009 6010 sz = 0; 6011 p_index >>= 1; /* don't care about 8K bit */ 6012 for (; p_index; p_index >>= 1) { 6013 sz++; 6014 } 6015 6016 return (sz); 6017 } 6018 6019 /* 6020 * This function unloads a range of addresses for an hmeblk. 6021 * It returns the next address to be unloaded. 6022 * It should be called with the hash lock held. 6023 */ 6024 static caddr_t 6025 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 6026 caddr_t endaddr, demap_range_t *dmrp, uint_t flags) 6027 { 6028 tte_t tte, ttemod; 6029 struct sf_hment *sfhmep; 6030 int ttesz; 6031 long ttecnt; 6032 page_t *pp; 6033 kmutex_t *pml; 6034 int ret; 6035 int use_demap_range; 6036 6037 ASSERT(in_hblk_range(hmeblkp, addr)); 6038 ASSERT(!hmeblkp->hblk_shw_bit); 6039 ASSERT(sfmmup != NULL || hmeblkp->hblk_shared); 6040 ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared); 6041 ASSERT(dmrp == NULL || !hmeblkp->hblk_shared); 6042 6043 #ifdef DEBUG 6044 if (get_hblk_ttesz(hmeblkp) != TTE8K && 6045 (endaddr < get_hblk_endaddr(hmeblkp))) { 6046 panic("sfmmu_hblk_unload: partial unload of large page"); 6047 } 6048 #endif /* DEBUG */ 6049 6050 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 6051 ttesz = get_hblk_ttesz(hmeblkp); 6052 6053 use_demap_range = ((dmrp == NULL) || 6054 (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp))); 6055 6056 if (use_demap_range) { 6057 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 6058 } else if (dmrp != NULL) { 6059 DEMAP_RANGE_FLUSH(dmrp); 6060 } 6061 ttecnt = 0; 6062 HBLKTOHME(sfhmep, hmeblkp, addr); 6063 6064 while (addr < endaddr) { 6065 pml = NULL; 6066 sfmmu_copytte(&sfhmep->hme_tte, &tte); 6067 if (TTE_IS_VALID(&tte)) { 6068 pp = sfhmep->hme_page; 6069 if (pp != NULL) { 6070 pml = sfmmu_mlist_enter(pp); 6071 } 6072 6073 /* 6074 * Verify if hme still points to 'pp' now that 6075 * we have p_mapping lock. 6076 */ 6077 if (sfhmep->hme_page != pp) { 6078 if (pp != NULL && sfhmep->hme_page != NULL) { 6079 ASSERT(pml != NULL); 6080 sfmmu_mlist_exit(pml); 6081 /* Re-start this iteration. */ 6082 continue; 6083 } 6084 ASSERT((pp != NULL) && 6085 (sfhmep->hme_page == NULL)); 6086 goto tte_unloaded; 6087 } 6088 6089 /* 6090 * This point on we have both HASH and p_mapping 6091 * lock. 6092 */ 6093 ASSERT(pp == sfhmep->hme_page); 6094 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 6095 6096 /* 6097 * We need to loop on modify tte because it is 6098 * possible for pagesync to come along and 6099 * change the software bits beneath us. 6100 * 6101 * Page_unload can also invalidate the tte after 6102 * we read tte outside of p_mapping lock. 6103 */ 6104 again: 6105 ttemod = tte; 6106 6107 TTE_SET_INVALID(&ttemod); 6108 ret = sfmmu_modifytte_try(&tte, &ttemod, 6109 &sfhmep->hme_tte); 6110 6111 if (ret <= 0) { 6112 if (TTE_IS_VALID(&tte)) { 6113 ASSERT(ret < 0); 6114 goto again; 6115 } 6116 if (pp != NULL) { 6117 panic("sfmmu_hblk_unload: pp = 0x%p " 6118 "tte became invalid under mlist" 6119 " lock = 0x%p", (void *)pp, 6120 (void *)pml); 6121 } 6122 continue; 6123 } 6124 6125 if (!(flags & HAT_UNLOAD_NOSYNC)) { 6126 sfmmu_ttesync(sfmmup, addr, &tte, pp); 6127 } 6128 6129 /* 6130 * Ok- we invalidated the tte. Do the rest of the job. 6131 */ 6132 ttecnt++; 6133 6134 if (flags & HAT_UNLOAD_UNLOCK) { 6135 ASSERT(hmeblkp->hblk_lckcnt > 0); 6136 atomic_dec_32(&hmeblkp->hblk_lckcnt); 6137 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK); 6138 } 6139 6140 /* 6141 * Normally we would need to flush the page 6142 * from the virtual cache at this point in 6143 * order to prevent a potential cache alias 6144 * inconsistency. 6145 * The particular scenario we need to worry 6146 * about is: 6147 * Given: va1 and va2 are two virtual address 6148 * that alias and map the same physical 6149 * address. 6150 * 1. mapping exists from va1 to pa and data 6151 * has been read into the cache. 6152 * 2. unload va1. 6153 * 3. load va2 and modify data using va2. 6154 * 4 unload va2. 6155 * 5. load va1 and reference data. Unless we 6156 * flush the data cache when we unload we will 6157 * get stale data. 6158 * Fortunately, page coloring eliminates the 6159 * above scenario by remembering the color a 6160 * physical page was last or is currently 6161 * mapped to. Now, we delay the flush until 6162 * the loading of translations. Only when the 6163 * new translation is of a different color 6164 * are we forced to flush. 6165 */ 6166 if (use_demap_range) { 6167 /* 6168 * Mark this page as needing a demap. 6169 */ 6170 DEMAP_RANGE_MARKPG(dmrp, addr); 6171 } else { 6172 ASSERT(sfmmup != NULL); 6173 ASSERT(!hmeblkp->hblk_shared); 6174 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 6175 sfmmup->sfmmu_free, 0); 6176 } 6177 6178 if (pp) { 6179 /* 6180 * Remove the hment from the mapping list 6181 */ 6182 ASSERT(hmeblkp->hblk_hmecnt > 0); 6183 6184 /* 6185 * Again, we cannot 6186 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS); 6187 */ 6188 HME_SUB(sfhmep, pp); 6189 membar_stst(); 6190 atomic_dec_16(&hmeblkp->hblk_hmecnt); 6191 } 6192 6193 ASSERT(hmeblkp->hblk_vcnt > 0); 6194 atomic_dec_16(&hmeblkp->hblk_vcnt); 6195 6196 ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt || 6197 !hmeblkp->hblk_lckcnt); 6198 6199 #ifdef VAC 6200 if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) { 6201 if (PP_ISTNC(pp)) { 6202 /* 6203 * If page was temporary 6204 * uncached, try to recache 6205 * it. Note that HME_SUB() was 6206 * called above so p_index and 6207 * mlist had been updated. 6208 */ 6209 conv_tnc(pp, ttesz); 6210 } else if (pp->p_mapping == NULL) { 6211 ASSERT(kpm_enable); 6212 /* 6213 * Page is marked to be in VAC conflict 6214 * to an existing kpm mapping and/or is 6215 * kpm mapped using only the regular 6216 * pagesize. 6217 */ 6218 sfmmu_kpm_hme_unload(pp); 6219 } 6220 } 6221 #endif /* VAC */ 6222 } else if ((pp = sfhmep->hme_page) != NULL) { 6223 /* 6224 * TTE is invalid but the hme 6225 * still exists. let pageunload 6226 * complete its job. 6227 */ 6228 ASSERT(pml == NULL); 6229 pml = sfmmu_mlist_enter(pp); 6230 if (sfhmep->hme_page != NULL) { 6231 sfmmu_mlist_exit(pml); 6232 continue; 6233 } 6234 ASSERT(sfhmep->hme_page == NULL); 6235 } else if (hmeblkp->hblk_hmecnt != 0) { 6236 /* 6237 * pageunload may have not finished decrementing 6238 * hblk_vcnt and hblk_hmecnt. Find page_t if any and 6239 * wait for pageunload to finish. Rely on pageunload 6240 * to decrement hblk_hmecnt after hblk_vcnt. 6241 */ 6242 pfn_t pfn = TTE_TO_TTEPFN(&tte); 6243 ASSERT(pml == NULL); 6244 if (pf_is_memory(pfn)) { 6245 pp = page_numtopp_nolock(pfn); 6246 if (pp != NULL) { 6247 pml = sfmmu_mlist_enter(pp); 6248 sfmmu_mlist_exit(pml); 6249 pml = NULL; 6250 } 6251 } 6252 } 6253 6254 tte_unloaded: 6255 /* 6256 * At this point, the tte we are looking at 6257 * should be unloaded, and hme has been unlinked 6258 * from page too. This is important because in 6259 * pageunload, it does ttesync() then HME_SUB. 6260 * We need to make sure HME_SUB has been completed 6261 * so we know ttesync() has been completed. Otherwise, 6262 * at exit time, after return from hat layer, VM will 6263 * release as structure which hat_setstat() (called 6264 * by ttesync()) needs. 6265 */ 6266 #ifdef DEBUG 6267 { 6268 tte_t dtte; 6269 6270 ASSERT(sfhmep->hme_page == NULL); 6271 6272 sfmmu_copytte(&sfhmep->hme_tte, &dtte); 6273 ASSERT(!TTE_IS_VALID(&dtte)); 6274 } 6275 #endif 6276 6277 if (pml) { 6278 sfmmu_mlist_exit(pml); 6279 } 6280 6281 addr += TTEBYTES(ttesz); 6282 sfhmep++; 6283 DEMAP_RANGE_NEXTPG(dmrp); 6284 } 6285 /* 6286 * For shared hmeblks this routine is only called when region is freed 6287 * and no longer referenced. So no need to decrement ttecnt 6288 * in the region structure here. 6289 */ 6290 if (ttecnt > 0 && sfmmup != NULL) { 6291 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt); 6292 } 6293 return (addr); 6294 } 6295 6296 /* 6297 * Invalidate a virtual address range for the local CPU. 6298 * For best performance ensure that the va range is completely 6299 * mapped, otherwise the entire TLB will be flushed. 6300 */ 6301 void 6302 hat_flush_range(struct hat *sfmmup, caddr_t va, size_t size) 6303 { 6304 ssize_t sz; 6305 caddr_t endva = va + size; 6306 6307 while (va < endva) { 6308 sz = hat_getpagesize(sfmmup, va); 6309 if (sz < 0) { 6310 vtag_flushall(); 6311 break; 6312 } 6313 vtag_flushpage(va, (uint64_t)sfmmup); 6314 va += sz; 6315 } 6316 } 6317 6318 /* 6319 * Synchronize all the mappings in the range [addr..addr+len). 6320 * Can be called with clearflag having two states: 6321 * HAT_SYNC_DONTZERO means just return the rm stats 6322 * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats 6323 */ 6324 void 6325 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag) 6326 { 6327 struct hmehash_bucket *hmebp; 6328 hmeblk_tag hblktag; 6329 int hmeshift, hashno = 1; 6330 struct hme_blk *hmeblkp, *list = NULL; 6331 caddr_t endaddr; 6332 cpuset_t cpuset; 6333 6334 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 6335 ASSERT((sfmmup == ksfmmup) || 6336 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 6337 ASSERT((len & MMU_PAGEOFFSET) == 0); 6338 ASSERT((clearflag == HAT_SYNC_DONTZERO) || 6339 (clearflag == HAT_SYNC_ZERORM)); 6340 6341 CPUSET_ZERO(cpuset); 6342 6343 endaddr = addr + len; 6344 hblktag.htag_id = sfmmup; 6345 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 6346 6347 /* 6348 * Spitfire supports 4 page sizes. 6349 * Most pages are expected to be of the smallest page 6350 * size (8K) and these will not need to be rehashed. 64K 6351 * pages also don't need to be rehashed because the an hmeblk 6352 * spans 64K of address space. 512K pages might need 1 rehash and 6353 * and 4M pages 2 rehashes. 6354 */ 6355 while (addr < endaddr) { 6356 hmeshift = HME_HASH_SHIFT(hashno); 6357 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 6358 hblktag.htag_rehash = hashno; 6359 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 6360 6361 SFMMU_HASH_LOCK(hmebp); 6362 6363 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 6364 if (hmeblkp != NULL) { 6365 ASSERT(!hmeblkp->hblk_shared); 6366 /* 6367 * We've encountered a shadow hmeblk so skip the range 6368 * of the next smaller mapping size. 6369 */ 6370 if (hmeblkp->hblk_shw_bit) { 6371 ASSERT(sfmmup != ksfmmup); 6372 ASSERT(hashno > 1); 6373 addr = (caddr_t)P2END((uintptr_t)addr, 6374 TTEBYTES(hashno - 1)); 6375 } else { 6376 addr = sfmmu_hblk_sync(sfmmup, hmeblkp, 6377 addr, endaddr, clearflag); 6378 } 6379 SFMMU_HASH_UNLOCK(hmebp); 6380 hashno = 1; 6381 continue; 6382 } 6383 SFMMU_HASH_UNLOCK(hmebp); 6384 6385 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 6386 /* 6387 * We have traversed the whole list and rehashed 6388 * if necessary without finding the address to sync. 6389 * This is ok so we increment the address by the 6390 * smallest hmeblk range for kernel mappings and the 6391 * largest hmeblk range, to account for shadow hmeblks, 6392 * for user mappings and continue. 6393 */ 6394 if (sfmmup == ksfmmup) 6395 addr = (caddr_t)P2END((uintptr_t)addr, 6396 TTEBYTES(1)); 6397 else 6398 addr = (caddr_t)P2END((uintptr_t)addr, 6399 TTEBYTES(hashno)); 6400 hashno = 1; 6401 } else { 6402 hashno++; 6403 } 6404 } 6405 sfmmu_hblks_list_purge(&list, 0); 6406 cpuset = sfmmup->sfmmu_cpusran; 6407 xt_sync(cpuset); 6408 } 6409 6410 static caddr_t 6411 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 6412 caddr_t endaddr, int clearflag) 6413 { 6414 tte_t tte, ttemod; 6415 struct sf_hment *sfhmep; 6416 int ttesz; 6417 struct page *pp; 6418 kmutex_t *pml; 6419 int ret; 6420 6421 ASSERT(hmeblkp->hblk_shw_bit == 0); 6422 ASSERT(!hmeblkp->hblk_shared); 6423 6424 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 6425 6426 ttesz = get_hblk_ttesz(hmeblkp); 6427 HBLKTOHME(sfhmep, hmeblkp, addr); 6428 6429 while (addr < endaddr) { 6430 sfmmu_copytte(&sfhmep->hme_tte, &tte); 6431 if (TTE_IS_VALID(&tte)) { 6432 pml = NULL; 6433 pp = sfhmep->hme_page; 6434 if (pp) { 6435 pml = sfmmu_mlist_enter(pp); 6436 } 6437 if (pp != sfhmep->hme_page) { 6438 /* 6439 * tte most have been unloaded 6440 * underneath us. Recheck 6441 */ 6442 ASSERT(pml); 6443 sfmmu_mlist_exit(pml); 6444 continue; 6445 } 6446 6447 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 6448 6449 if (clearflag == HAT_SYNC_ZERORM) { 6450 ttemod = tte; 6451 TTE_CLR_RM(&ttemod); 6452 ret = sfmmu_modifytte_try(&tte, &ttemod, 6453 &sfhmep->hme_tte); 6454 if (ret < 0) { 6455 if (pml) { 6456 sfmmu_mlist_exit(pml); 6457 } 6458 continue; 6459 } 6460 6461 if (ret > 0) { 6462 sfmmu_tlb_demap(addr, sfmmup, 6463 hmeblkp, 0, 0); 6464 } 6465 } 6466 sfmmu_ttesync(sfmmup, addr, &tte, pp); 6467 if (pml) { 6468 sfmmu_mlist_exit(pml); 6469 } 6470 } 6471 addr += TTEBYTES(ttesz); 6472 sfhmep++; 6473 } 6474 return (addr); 6475 } 6476 6477 /* 6478 * This function will sync a tte to the page struct and it will 6479 * update the hat stats. Currently it allows us to pass a NULL pp 6480 * and we will simply update the stats. We may want to change this 6481 * so we only keep stats for pages backed by pp's. 6482 */ 6483 static void 6484 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp) 6485 { 6486 uint_t rm = 0; 6487 int sz; 6488 pgcnt_t npgs; 6489 6490 ASSERT(TTE_IS_VALID(ttep)); 6491 6492 if (TTE_IS_NOSYNC(ttep)) { 6493 return; 6494 } 6495 6496 if (TTE_IS_REF(ttep)) { 6497 rm = P_REF; 6498 } 6499 if (TTE_IS_MOD(ttep)) { 6500 rm |= P_MOD; 6501 } 6502 6503 if (rm == 0) { 6504 return; 6505 } 6506 6507 sz = TTE_CSZ(ttep); 6508 if (sfmmup != NULL && sfmmup->sfmmu_rmstat) { 6509 int i; 6510 caddr_t vaddr = addr; 6511 6512 for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) { 6513 hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm); 6514 } 6515 6516 } 6517 6518 /* 6519 * XXX I want to use cas to update nrm bits but they 6520 * currently belong in common/vm and not in hat where 6521 * they should be. 6522 * The nrm bits are protected by the same mutex as 6523 * the one that protects the page's mapping list. 6524 */ 6525 if (!pp) 6526 return; 6527 ASSERT(sfmmu_mlist_held(pp)); 6528 /* 6529 * If the tte is for a large page, we need to sync all the 6530 * pages covered by the tte. 6531 */ 6532 if (sz != TTE8K) { 6533 ASSERT(pp->p_szc != 0); 6534 pp = PP_GROUPLEADER(pp, sz); 6535 ASSERT(sfmmu_mlist_held(pp)); 6536 } 6537 6538 /* Get number of pages from tte size. */ 6539 npgs = TTEPAGES(sz); 6540 6541 do { 6542 ASSERT(pp); 6543 ASSERT(sfmmu_mlist_held(pp)); 6544 if (((rm & P_REF) != 0 && !PP_ISREF(pp)) || 6545 ((rm & P_MOD) != 0 && !PP_ISMOD(pp))) 6546 hat_page_setattr(pp, rm); 6547 6548 /* 6549 * Are we done? If not, we must have a large mapping. 6550 * For large mappings we need to sync the rest of the pages 6551 * covered by this tte; goto the next page. 6552 */ 6553 } while (--npgs > 0 && (pp = PP_PAGENEXT(pp))); 6554 } 6555 6556 /* 6557 * Execute pre-callback handler of each pa_hment linked to pp 6558 * 6559 * Inputs: 6560 * flag: either HAT_PRESUSPEND or HAT_SUSPEND. 6561 * capture_cpus: pointer to return value (below) 6562 * 6563 * Returns: 6564 * Propagates the subsystem callback return values back to the caller; 6565 * returns 0 on success. If capture_cpus is non-NULL, the value returned 6566 * is zero if all of the pa_hments are of a type that do not require 6567 * capturing CPUs prior to suspending the mapping, else it is 1. 6568 */ 6569 static int 6570 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus) 6571 { 6572 struct sf_hment *sfhmep; 6573 struct pa_hment *pahmep; 6574 int (*f)(caddr_t, uint_t, uint_t, void *); 6575 int ret; 6576 id_t id; 6577 int locked = 0; 6578 kmutex_t *pml; 6579 6580 ASSERT(PAGE_EXCL(pp)); 6581 if (!sfmmu_mlist_held(pp)) { 6582 pml = sfmmu_mlist_enter(pp); 6583 locked = 1; 6584 } 6585 6586 if (capture_cpus) 6587 *capture_cpus = 0; 6588 6589 top: 6590 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 6591 /* 6592 * skip sf_hments corresponding to VA<->PA mappings; 6593 * for pa_hment's, hme_tte.ll is zero 6594 */ 6595 if (!IS_PAHME(sfhmep)) 6596 continue; 6597 6598 pahmep = sfhmep->hme_data; 6599 ASSERT(pahmep != NULL); 6600 6601 /* 6602 * skip if pre-handler has been called earlier in this loop 6603 */ 6604 if (pahmep->flags & flag) 6605 continue; 6606 6607 id = pahmep->cb_id; 6608 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid); 6609 if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0) 6610 *capture_cpus = 1; 6611 if ((f = sfmmu_cb_table[id].prehandler) == NULL) { 6612 pahmep->flags |= flag; 6613 continue; 6614 } 6615 6616 /* 6617 * Drop the mapping list lock to avoid locking order issues. 6618 */ 6619 if (locked) 6620 sfmmu_mlist_exit(pml); 6621 6622 ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt); 6623 if (ret != 0) 6624 return (ret); /* caller must do the cleanup */ 6625 6626 if (locked) { 6627 pml = sfmmu_mlist_enter(pp); 6628 pahmep->flags |= flag; 6629 goto top; 6630 } 6631 6632 pahmep->flags |= flag; 6633 } 6634 6635 if (locked) 6636 sfmmu_mlist_exit(pml); 6637 6638 return (0); 6639 } 6640 6641 /* 6642 * Execute post-callback handler of each pa_hment linked to pp 6643 * 6644 * Same overall assumptions and restrictions apply as for 6645 * hat_pageprocess_precallbacks(). 6646 */ 6647 static void 6648 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag) 6649 { 6650 pfn_t pgpfn = pp->p_pagenum; 6651 pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1; 6652 pfn_t newpfn; 6653 struct sf_hment *sfhmep; 6654 struct pa_hment *pahmep; 6655 int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t); 6656 id_t id; 6657 int locked = 0; 6658 kmutex_t *pml; 6659 6660 ASSERT(PAGE_EXCL(pp)); 6661 if (!sfmmu_mlist_held(pp)) { 6662 pml = sfmmu_mlist_enter(pp); 6663 locked = 1; 6664 } 6665 6666 top: 6667 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 6668 /* 6669 * skip sf_hments corresponding to VA<->PA mappings; 6670 * for pa_hment's, hme_tte.ll is zero 6671 */ 6672 if (!IS_PAHME(sfhmep)) 6673 continue; 6674 6675 pahmep = sfhmep->hme_data; 6676 ASSERT(pahmep != NULL); 6677 6678 if ((pahmep->flags & flag) == 0) 6679 continue; 6680 6681 pahmep->flags &= ~flag; 6682 6683 id = pahmep->cb_id; 6684 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid); 6685 if ((f = sfmmu_cb_table[id].posthandler) == NULL) 6686 continue; 6687 6688 /* 6689 * Convert the base page PFN into the constituent PFN 6690 * which is needed by the callback handler. 6691 */ 6692 newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask); 6693 6694 /* 6695 * Drop the mapping list lock to avoid locking order issues. 6696 */ 6697 if (locked) 6698 sfmmu_mlist_exit(pml); 6699 6700 if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn) 6701 != 0) 6702 panic("sfmmu: posthandler failed"); 6703 6704 if (locked) { 6705 pml = sfmmu_mlist_enter(pp); 6706 goto top; 6707 } 6708 } 6709 6710 if (locked) 6711 sfmmu_mlist_exit(pml); 6712 } 6713 6714 /* 6715 * Suspend locked kernel mapping 6716 */ 6717 void 6718 hat_pagesuspend(struct page *pp) 6719 { 6720 struct sf_hment *sfhmep; 6721 sfmmu_t *sfmmup; 6722 tte_t tte, ttemod; 6723 struct hme_blk *hmeblkp; 6724 caddr_t addr; 6725 int index, cons; 6726 cpuset_t cpuset; 6727 6728 ASSERT(PAGE_EXCL(pp)); 6729 ASSERT(sfmmu_mlist_held(pp)); 6730 6731 mutex_enter(&kpr_suspendlock); 6732 6733 /* 6734 * We're about to suspend a kernel mapping so mark this thread as 6735 * non-traceable by DTrace. This prevents us from running into issues 6736 * with probe context trying to touch a suspended page 6737 * in the relocation codepath itself. 6738 */ 6739 curthread->t_flag |= T_DONTDTRACE; 6740 6741 index = PP_MAPINDEX(pp); 6742 cons = TTE8K; 6743 6744 retry: 6745 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 6746 6747 if (IS_PAHME(sfhmep)) 6748 continue; 6749 6750 if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons) 6751 continue; 6752 6753 /* 6754 * Loop until we successfully set the suspend bit in 6755 * the TTE. 6756 */ 6757 again: 6758 sfmmu_copytte(&sfhmep->hme_tte, &tte); 6759 ASSERT(TTE_IS_VALID(&tte)); 6760 6761 ttemod = tte; 6762 TTE_SET_SUSPEND(&ttemod); 6763 if (sfmmu_modifytte_try(&tte, &ttemod, 6764 &sfhmep->hme_tte) < 0) 6765 goto again; 6766 6767 /* 6768 * Invalidate TSB entry 6769 */ 6770 hmeblkp = sfmmu_hmetohblk(sfhmep); 6771 6772 sfmmup = hblktosfmmu(hmeblkp); 6773 ASSERT(sfmmup == ksfmmup); 6774 ASSERT(!hmeblkp->hblk_shared); 6775 6776 addr = tte_to_vaddr(hmeblkp, tte); 6777 6778 /* 6779 * No need to make sure that the TSB for this sfmmu is 6780 * not being relocated since it is ksfmmup and thus it 6781 * will never be relocated. 6782 */ 6783 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0); 6784 6785 /* 6786 * Update xcall stats 6787 */ 6788 cpuset = cpu_ready_set; 6789 CPUSET_DEL(cpuset, CPU->cpu_id); 6790 6791 /* LINTED: constant in conditional context */ 6792 SFMMU_XCALL_STATS(ksfmmup); 6793 6794 /* 6795 * Flush TLB entry on remote CPU's 6796 */ 6797 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, 6798 (uint64_t)ksfmmup); 6799 xt_sync(cpuset); 6800 6801 /* 6802 * Flush TLB entry on local CPU 6803 */ 6804 vtag_flushpage(addr, (uint64_t)ksfmmup); 6805 } 6806 6807 while (index != 0) { 6808 index = index >> 1; 6809 if (index != 0) 6810 cons++; 6811 if (index & 0x1) { 6812 pp = PP_GROUPLEADER(pp, cons); 6813 goto retry; 6814 } 6815 } 6816 } 6817 6818 #ifdef DEBUG 6819 6820 #define N_PRLE 1024 6821 struct prle { 6822 page_t *targ; 6823 page_t *repl; 6824 int status; 6825 int pausecpus; 6826 hrtime_t whence; 6827 }; 6828 6829 static struct prle page_relocate_log[N_PRLE]; 6830 static int prl_entry; 6831 static kmutex_t prl_mutex; 6832 6833 #define PAGE_RELOCATE_LOG(t, r, s, p) \ 6834 mutex_enter(&prl_mutex); \ 6835 page_relocate_log[prl_entry].targ = *(t); \ 6836 page_relocate_log[prl_entry].repl = *(r); \ 6837 page_relocate_log[prl_entry].status = (s); \ 6838 page_relocate_log[prl_entry].pausecpus = (p); \ 6839 page_relocate_log[prl_entry].whence = gethrtime(); \ 6840 prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1; \ 6841 mutex_exit(&prl_mutex); 6842 6843 #else /* !DEBUG */ 6844 #define PAGE_RELOCATE_LOG(t, r, s, p) 6845 #endif 6846 6847 /* 6848 * Core Kernel Page Relocation Algorithm 6849 * 6850 * Input: 6851 * 6852 * target : constituent pages are SE_EXCL locked. 6853 * replacement: constituent pages are SE_EXCL locked. 6854 * 6855 * Output: 6856 * 6857 * nrelocp: number of pages relocated 6858 */ 6859 int 6860 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp) 6861 { 6862 page_t *targ, *repl; 6863 page_t *tpp, *rpp; 6864 kmutex_t *low, *high; 6865 spgcnt_t npages, i; 6866 page_t *pl = NULL; 6867 int old_pil; 6868 cpuset_t cpuset; 6869 int cap_cpus; 6870 int ret; 6871 #ifdef VAC 6872 int cflags = 0; 6873 #endif 6874 6875 if (!kcage_on || PP_ISNORELOC(*target)) { 6876 PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1); 6877 return (EAGAIN); 6878 } 6879 6880 mutex_enter(&kpr_mutex); 6881 kreloc_thread = curthread; 6882 6883 targ = *target; 6884 repl = *replacement; 6885 ASSERT(repl != NULL); 6886 ASSERT(targ->p_szc == repl->p_szc); 6887 6888 npages = page_get_pagecnt(targ->p_szc); 6889 6890 /* 6891 * unload VA<->PA mappings that are not locked 6892 */ 6893 tpp = targ; 6894 for (i = 0; i < npages; i++) { 6895 (void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC); 6896 tpp++; 6897 } 6898 6899 /* 6900 * Do "presuspend" callbacks, in a context from which we can still 6901 * block as needed. Note that we don't hold the mapping list lock 6902 * of "targ" at this point due to potential locking order issues; 6903 * we assume that between the hat_pageunload() above and holding 6904 * the SE_EXCL lock that the mapping list *cannot* change at this 6905 * point. 6906 */ 6907 ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus); 6908 if (ret != 0) { 6909 /* 6910 * EIO translates to fatal error, for all others cleanup 6911 * and return EAGAIN. 6912 */ 6913 ASSERT(ret != EIO); 6914 hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND); 6915 PAGE_RELOCATE_LOG(target, replacement, ret, -1); 6916 kreloc_thread = NULL; 6917 mutex_exit(&kpr_mutex); 6918 return (EAGAIN); 6919 } 6920 6921 /* 6922 * acquire p_mapping list lock for both the target and replacement 6923 * root pages. 6924 * 6925 * low and high refer to the need to grab the mlist locks in a 6926 * specific order in order to prevent race conditions. Thus the 6927 * lower lock must be grabbed before the higher lock. 6928 * 6929 * This will block hat_unload's accessing p_mapping list. Since 6930 * we have SE_EXCL lock, hat_memload and hat_pageunload will be 6931 * blocked. Thus, no one else will be accessing the p_mapping list 6932 * while we suspend and reload the locked mapping below. 6933 */ 6934 tpp = targ; 6935 rpp = repl; 6936 sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high); 6937 6938 kpreempt_disable(); 6939 6940 /* 6941 * We raise our PIL to 13 so that we don't get captured by 6942 * another CPU or pinned by an interrupt thread. We can't go to 6943 * PIL 14 since the nexus driver(s) may need to interrupt at 6944 * that level in the case of IOMMU pseudo mappings. 6945 */ 6946 cpuset = cpu_ready_set; 6947 CPUSET_DEL(cpuset, CPU->cpu_id); 6948 if (!cap_cpus || CPUSET_ISNULL(cpuset)) { 6949 old_pil = splr(XCALL_PIL); 6950 } else { 6951 old_pil = -1; 6952 xc_attention(cpuset); 6953 } 6954 ASSERT(getpil() == XCALL_PIL); 6955 6956 /* 6957 * Now do suspend callbacks. In the case of an IOMMU mapping 6958 * this will suspend all DMA activity to the page while it is 6959 * being relocated. Since we are well above LOCK_LEVEL and CPUs 6960 * may be captured at this point we should have acquired any needed 6961 * locks in the presuspend callback. 6962 */ 6963 ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL); 6964 if (ret != 0) { 6965 repl = targ; 6966 goto suspend_fail; 6967 } 6968 6969 /* 6970 * Raise the PIL yet again, this time to block all high-level 6971 * interrupts on this CPU. This is necessary to prevent an 6972 * interrupt routine from pinning the thread which holds the 6973 * mapping suspended and then touching the suspended page. 6974 * 6975 * Once the page is suspended we also need to be careful to 6976 * avoid calling any functions which touch any seg_kmem memory 6977 * since that memory may be backed by the very page we are 6978 * relocating in here! 6979 */ 6980 hat_pagesuspend(targ); 6981 6982 /* 6983 * Now that we are confident everybody has stopped using this page, 6984 * copy the page contents. Note we use a physical copy to prevent 6985 * locking issues and to avoid fpRAS because we can't handle it in 6986 * this context. 6987 */ 6988 for (i = 0; i < npages; i++, tpp++, rpp++) { 6989 #ifdef VAC 6990 /* 6991 * If the replacement has a different vcolor than 6992 * the one being replacd, we need to handle VAC 6993 * consistency for it just as we were setting up 6994 * a new mapping to it. 6995 */ 6996 if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) && 6997 (tpp->p_vcolor != rpp->p_vcolor) && 6998 !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) { 6999 CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp)); 7000 sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp), 7001 rpp->p_pagenum); 7002 } 7003 #endif 7004 /* 7005 * Copy the contents of the page. 7006 */ 7007 ppcopy_kernel(tpp, rpp); 7008 } 7009 7010 tpp = targ; 7011 rpp = repl; 7012 for (i = 0; i < npages; i++, tpp++, rpp++) { 7013 /* 7014 * Copy attributes. VAC consistency was handled above, 7015 * if required. 7016 */ 7017 rpp->p_nrm = tpp->p_nrm; 7018 tpp->p_nrm = 0; 7019 rpp->p_index = tpp->p_index; 7020 tpp->p_index = 0; 7021 #ifdef VAC 7022 rpp->p_vcolor = tpp->p_vcolor; 7023 #endif 7024 } 7025 7026 /* 7027 * First, unsuspend the page, if we set the suspend bit, and transfer 7028 * the mapping list from the target page to the replacement page. 7029 * Next process postcallbacks; since pa_hment's are linked only to the 7030 * p_mapping list of root page, we don't iterate over the constituent 7031 * pages. 7032 */ 7033 hat_pagereload(targ, repl); 7034 7035 suspend_fail: 7036 hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND); 7037 7038 /* 7039 * Now lower our PIL and release any captured CPUs since we 7040 * are out of the "danger zone". After this it will again be 7041 * safe to acquire adaptive mutex locks, or to drop them... 7042 */ 7043 if (old_pil != -1) { 7044 splx(old_pil); 7045 } else { 7046 xc_dismissed(cpuset); 7047 } 7048 7049 kpreempt_enable(); 7050 7051 sfmmu_mlist_reloc_exit(low, high); 7052 7053 /* 7054 * Postsuspend callbacks should drop any locks held across 7055 * the suspend callbacks. As before, we don't hold the mapping 7056 * list lock at this point.. our assumption is that the mapping 7057 * list still can't change due to our holding SE_EXCL lock and 7058 * there being no unlocked mappings left. Hence the restriction 7059 * on calling context to hat_delete_callback() 7060 */ 7061 hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND); 7062 if (ret != 0) { 7063 /* 7064 * The second presuspend call failed: we got here through 7065 * the suspend_fail label above. 7066 */ 7067 ASSERT(ret != EIO); 7068 PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus); 7069 kreloc_thread = NULL; 7070 mutex_exit(&kpr_mutex); 7071 return (EAGAIN); 7072 } 7073 7074 /* 7075 * Now that we're out of the performance critical section we can 7076 * take care of updating the hash table, since we still 7077 * hold all the pages locked SE_EXCL at this point we 7078 * needn't worry about things changing out from under us. 7079 */ 7080 tpp = targ; 7081 rpp = repl; 7082 for (i = 0; i < npages; i++, tpp++, rpp++) { 7083 7084 /* 7085 * replace targ with replacement in page_hash table 7086 */ 7087 targ = tpp; 7088 page_relocate_hash(rpp, targ); 7089 7090 /* 7091 * concatenate target; caller of platform_page_relocate() 7092 * expects target to be concatenated after returning. 7093 */ 7094 ASSERT(targ->p_next == targ); 7095 ASSERT(targ->p_prev == targ); 7096 page_list_concat(&pl, &targ); 7097 } 7098 7099 ASSERT(*target == pl); 7100 *nrelocp = npages; 7101 PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus); 7102 kreloc_thread = NULL; 7103 mutex_exit(&kpr_mutex); 7104 return (0); 7105 } 7106 7107 /* 7108 * Called when stray pa_hments are found attached to a page which is 7109 * being freed. Notify the subsystem which attached the pa_hment of 7110 * the error if it registered a suitable handler, else panic. 7111 */ 7112 static void 7113 sfmmu_pahment_leaked(struct pa_hment *pahmep) 7114 { 7115 id_t cb_id = pahmep->cb_id; 7116 7117 ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid); 7118 if (sfmmu_cb_table[cb_id].errhandler != NULL) { 7119 if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len, 7120 HAT_CB_ERR_LEAKED, pahmep->pvt) == 0) 7121 return; /* non-fatal */ 7122 } 7123 panic("pa_hment leaked: 0x%p", (void *)pahmep); 7124 } 7125 7126 /* 7127 * Remove all mappings to page 'pp'. 7128 */ 7129 int 7130 hat_pageunload(struct page *pp, uint_t forceflag) 7131 { 7132 struct page *origpp = pp; 7133 struct sf_hment *sfhme, *tmphme; 7134 struct hme_blk *hmeblkp; 7135 kmutex_t *pml; 7136 #ifdef VAC 7137 kmutex_t *pmtx; 7138 #endif 7139 cpuset_t cpuset, tset; 7140 int index, cons; 7141 int xhme_blks; 7142 int pa_hments; 7143 7144 ASSERT(PAGE_EXCL(pp)); 7145 7146 retry_xhat: 7147 tmphme = NULL; 7148 xhme_blks = 0; 7149 pa_hments = 0; 7150 CPUSET_ZERO(cpuset); 7151 7152 pml = sfmmu_mlist_enter(pp); 7153 7154 #ifdef VAC 7155 if (pp->p_kpmref) 7156 sfmmu_kpm_pageunload(pp); 7157 ASSERT(!PP_ISMAPPED_KPM(pp)); 7158 #endif 7159 /* 7160 * Clear vpm reference. Since the page is exclusively locked 7161 * vpm cannot be referencing it. 7162 */ 7163 if (vpm_enable) { 7164 pp->p_vpmref = 0; 7165 } 7166 7167 index = PP_MAPINDEX(pp); 7168 cons = TTE8K; 7169 retry: 7170 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 7171 tmphme = sfhme->hme_next; 7172 7173 if (IS_PAHME(sfhme)) { 7174 ASSERT(sfhme->hme_data != NULL); 7175 pa_hments++; 7176 continue; 7177 } 7178 7179 hmeblkp = sfmmu_hmetohblk(sfhme); 7180 if (hmeblkp->hblk_xhat_bit) { 7181 struct xhat_hme_blk *xblk = 7182 (struct xhat_hme_blk *)hmeblkp; 7183 7184 (void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat, 7185 pp, forceflag, XBLK2PROVBLK(xblk)); 7186 7187 xhme_blks = 1; 7188 continue; 7189 } 7190 7191 /* 7192 * If there are kernel mappings don't unload them, they will 7193 * be suspended. 7194 */ 7195 if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt && 7196 hmeblkp->hblk_tag.htag_id == ksfmmup) 7197 continue; 7198 7199 tset = sfmmu_pageunload(pp, sfhme, cons); 7200 CPUSET_OR(cpuset, tset); 7201 } 7202 7203 while (index != 0) { 7204 index = index >> 1; 7205 if (index != 0) 7206 cons++; 7207 if (index & 0x1) { 7208 /* Go to leading page */ 7209 pp = PP_GROUPLEADER(pp, cons); 7210 ASSERT(sfmmu_mlist_held(pp)); 7211 goto retry; 7212 } 7213 } 7214 7215 /* 7216 * cpuset may be empty if the page was only mapped by segkpm, 7217 * in which case we won't actually cross-trap. 7218 */ 7219 xt_sync(cpuset); 7220 7221 /* 7222 * The page should have no mappings at this point, unless 7223 * we were called from hat_page_relocate() in which case we 7224 * leave the locked mappings which will be suspended later. 7225 */ 7226 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments || 7227 (forceflag == SFMMU_KERNEL_RELOC)); 7228 7229 #ifdef VAC 7230 if (PP_ISTNC(pp)) { 7231 if (cons == TTE8K) { 7232 pmtx = sfmmu_page_enter(pp); 7233 PP_CLRTNC(pp); 7234 sfmmu_page_exit(pmtx); 7235 } else { 7236 conv_tnc(pp, cons); 7237 } 7238 } 7239 #endif /* VAC */ 7240 7241 if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) { 7242 /* 7243 * Unlink any pa_hments and free them, calling back 7244 * the responsible subsystem to notify it of the error. 7245 * This can occur in situations such as drivers leaking 7246 * DMA handles: naughty, but common enough that we'd like 7247 * to keep the system running rather than bringing it 7248 * down with an obscure error like "pa_hment leaked" 7249 * which doesn't aid the user in debugging their driver. 7250 */ 7251 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 7252 tmphme = sfhme->hme_next; 7253 if (IS_PAHME(sfhme)) { 7254 struct pa_hment *pahmep = sfhme->hme_data; 7255 sfmmu_pahment_leaked(pahmep); 7256 HME_SUB(sfhme, pp); 7257 kmem_cache_free(pa_hment_cache, pahmep); 7258 } 7259 } 7260 7261 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks); 7262 } 7263 7264 sfmmu_mlist_exit(pml); 7265 7266 /* 7267 * XHAT may not have finished unloading pages 7268 * because some other thread was waiting for 7269 * mlist lock and XHAT_PAGEUNLOAD let it do 7270 * the job. 7271 */ 7272 if (xhme_blks) { 7273 pp = origpp; 7274 goto retry_xhat; 7275 } 7276 7277 return (0); 7278 } 7279 7280 cpuset_t 7281 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons) 7282 { 7283 struct hme_blk *hmeblkp; 7284 sfmmu_t *sfmmup; 7285 tte_t tte, ttemod; 7286 #ifdef DEBUG 7287 tte_t orig_old; 7288 #endif /* DEBUG */ 7289 caddr_t addr; 7290 int ttesz; 7291 int ret; 7292 cpuset_t cpuset; 7293 7294 ASSERT(pp != NULL); 7295 ASSERT(sfmmu_mlist_held(pp)); 7296 ASSERT(!PP_ISKAS(pp)); 7297 7298 CPUSET_ZERO(cpuset); 7299 7300 hmeblkp = sfmmu_hmetohblk(sfhme); 7301 7302 readtte: 7303 sfmmu_copytte(&sfhme->hme_tte, &tte); 7304 if (TTE_IS_VALID(&tte)) { 7305 sfmmup = hblktosfmmu(hmeblkp); 7306 ttesz = get_hblk_ttesz(hmeblkp); 7307 /* 7308 * Only unload mappings of 'cons' size. 7309 */ 7310 if (ttesz != cons) 7311 return (cpuset); 7312 7313 /* 7314 * Note that we have p_mapping lock, but no hash lock here. 7315 * hblk_unload() has to have both hash lock AND p_mapping 7316 * lock before it tries to modify tte. So, the tte could 7317 * not become invalid in the sfmmu_modifytte_try() below. 7318 */ 7319 ttemod = tte; 7320 #ifdef DEBUG 7321 orig_old = tte; 7322 #endif /* DEBUG */ 7323 7324 TTE_SET_INVALID(&ttemod); 7325 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 7326 if (ret < 0) { 7327 #ifdef DEBUG 7328 /* only R/M bits can change. */ 7329 chk_tte(&orig_old, &tte, &ttemod, hmeblkp); 7330 #endif /* DEBUG */ 7331 goto readtte; 7332 } 7333 7334 if (ret == 0) { 7335 panic("pageunload: cas failed?"); 7336 } 7337 7338 addr = tte_to_vaddr(hmeblkp, tte); 7339 7340 if (hmeblkp->hblk_shared) { 7341 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 7342 uint_t rid = hmeblkp->hblk_tag.htag_rid; 7343 sf_region_t *rgnp; 7344 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 7345 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 7346 ASSERT(srdp != NULL); 7347 rgnp = srdp->srd_hmergnp[rid]; 7348 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid); 7349 cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1); 7350 sfmmu_ttesync(NULL, addr, &tte, pp); 7351 ASSERT(rgnp->rgn_ttecnt[ttesz] > 0); 7352 atomic_dec_ulong(&rgnp->rgn_ttecnt[ttesz]); 7353 } else { 7354 sfmmu_ttesync(sfmmup, addr, &tte, pp); 7355 atomic_dec_ulong(&sfmmup->sfmmu_ttecnt[ttesz]); 7356 7357 /* 7358 * We need to flush the page from the virtual cache 7359 * in order to prevent a virtual cache alias 7360 * inconsistency. The particular scenario we need 7361 * to worry about is: 7362 * Given: va1 and va2 are two virtual address that 7363 * alias and will map the same physical address. 7364 * 1. mapping exists from va1 to pa and data has 7365 * been read into the cache. 7366 * 2. unload va1. 7367 * 3. load va2 and modify data using va2. 7368 * 4 unload va2. 7369 * 5. load va1 and reference data. Unless we flush 7370 * the data cache when we unload we will get 7371 * stale data. 7372 * This scenario is taken care of by using virtual 7373 * page coloring. 7374 */ 7375 if (sfmmup->sfmmu_ismhat) { 7376 /* 7377 * Flush TSBs, TLBs and caches 7378 * of every process 7379 * sharing this ism segment. 7380 */ 7381 sfmmu_hat_lock_all(); 7382 mutex_enter(&ism_mlist_lock); 7383 kpreempt_disable(); 7384 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp, 7385 pp->p_pagenum, CACHE_NO_FLUSH); 7386 kpreempt_enable(); 7387 mutex_exit(&ism_mlist_lock); 7388 sfmmu_hat_unlock_all(); 7389 cpuset = cpu_ready_set; 7390 } else { 7391 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 7392 cpuset = sfmmup->sfmmu_cpusran; 7393 } 7394 } 7395 7396 /* 7397 * Hme_sub has to run after ttesync() and a_rss update. 7398 * See hblk_unload(). 7399 */ 7400 HME_SUB(sfhme, pp); 7401 membar_stst(); 7402 7403 /* 7404 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS) 7405 * since pteload may have done a HME_ADD() right after 7406 * we did the HME_SUB() above. Hmecnt is now maintained 7407 * by cas only. no lock guranteed its value. The only 7408 * gurantee we have is the hmecnt should not be less than 7409 * what it should be so the hblk will not be taken away. 7410 * It's also important that we decremented the hmecnt after 7411 * we are done with hmeblkp so that this hmeblk won't be 7412 * stolen. 7413 */ 7414 ASSERT(hmeblkp->hblk_hmecnt > 0); 7415 ASSERT(hmeblkp->hblk_vcnt > 0); 7416 atomic_dec_16(&hmeblkp->hblk_vcnt); 7417 atomic_dec_16(&hmeblkp->hblk_hmecnt); 7418 /* 7419 * This is bug 4063182. 7420 * XXX: fixme 7421 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt || 7422 * !hmeblkp->hblk_lckcnt); 7423 */ 7424 } else { 7425 panic("invalid tte? pp %p &tte %p", 7426 (void *)pp, (void *)&tte); 7427 } 7428 7429 return (cpuset); 7430 } 7431 7432 /* 7433 * While relocating a kernel page, this function will move the mappings 7434 * from tpp to dpp and modify any associated data with these mappings. 7435 * It also unsuspends the suspended kernel mapping. 7436 */ 7437 static void 7438 hat_pagereload(struct page *tpp, struct page *dpp) 7439 { 7440 struct sf_hment *sfhme; 7441 tte_t tte, ttemod; 7442 int index, cons; 7443 7444 ASSERT(getpil() == PIL_MAX); 7445 ASSERT(sfmmu_mlist_held(tpp)); 7446 ASSERT(sfmmu_mlist_held(dpp)); 7447 7448 index = PP_MAPINDEX(tpp); 7449 cons = TTE8K; 7450 7451 /* Update real mappings to the page */ 7452 retry: 7453 for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) { 7454 if (IS_PAHME(sfhme)) 7455 continue; 7456 sfmmu_copytte(&sfhme->hme_tte, &tte); 7457 ttemod = tte; 7458 7459 /* 7460 * replace old pfn with new pfn in TTE 7461 */ 7462 PFN_TO_TTE(ttemod, dpp->p_pagenum); 7463 7464 /* 7465 * clear suspend bit 7466 */ 7467 ASSERT(TTE_IS_SUSPEND(&ttemod)); 7468 TTE_CLR_SUSPEND(&ttemod); 7469 7470 if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0) 7471 panic("hat_pagereload(): sfmmu_modifytte_try() failed"); 7472 7473 /* 7474 * set hme_page point to new page 7475 */ 7476 sfhme->hme_page = dpp; 7477 } 7478 7479 /* 7480 * move p_mapping list from old page to new page 7481 */ 7482 dpp->p_mapping = tpp->p_mapping; 7483 tpp->p_mapping = NULL; 7484 dpp->p_share = tpp->p_share; 7485 tpp->p_share = 0; 7486 7487 while (index != 0) { 7488 index = index >> 1; 7489 if (index != 0) 7490 cons++; 7491 if (index & 0x1) { 7492 tpp = PP_GROUPLEADER(tpp, cons); 7493 dpp = PP_GROUPLEADER(dpp, cons); 7494 goto retry; 7495 } 7496 } 7497 7498 curthread->t_flag &= ~T_DONTDTRACE; 7499 mutex_exit(&kpr_suspendlock); 7500 } 7501 7502 uint_t 7503 hat_pagesync(struct page *pp, uint_t clearflag) 7504 { 7505 struct sf_hment *sfhme, *tmphme = NULL; 7506 struct hme_blk *hmeblkp; 7507 kmutex_t *pml; 7508 cpuset_t cpuset, tset; 7509 int index, cons; 7510 extern ulong_t po_share; 7511 page_t *save_pp = pp; 7512 int stop_on_sh = 0; 7513 uint_t shcnt; 7514 7515 CPUSET_ZERO(cpuset); 7516 7517 if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) { 7518 return (PP_GENERIC_ATTR(pp)); 7519 } 7520 7521 if ((clearflag & HAT_SYNC_ZERORM) == 0) { 7522 if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) { 7523 return (PP_GENERIC_ATTR(pp)); 7524 } 7525 if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) { 7526 return (PP_GENERIC_ATTR(pp)); 7527 } 7528 if (clearflag & HAT_SYNC_STOPON_SHARED) { 7529 if (pp->p_share > po_share) { 7530 hat_page_setattr(pp, P_REF); 7531 return (PP_GENERIC_ATTR(pp)); 7532 } 7533 stop_on_sh = 1; 7534 shcnt = 0; 7535 } 7536 } 7537 7538 clearflag &= ~HAT_SYNC_STOPON_SHARED; 7539 pml = sfmmu_mlist_enter(pp); 7540 index = PP_MAPINDEX(pp); 7541 cons = TTE8K; 7542 retry: 7543 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 7544 /* 7545 * We need to save the next hment on the list since 7546 * it is possible for pagesync to remove an invalid hment 7547 * from the list. 7548 */ 7549 tmphme = sfhme->hme_next; 7550 if (IS_PAHME(sfhme)) 7551 continue; 7552 /* 7553 * If we are looking for large mappings and this hme doesn't 7554 * reach the range we are seeking, just ignore it. 7555 */ 7556 hmeblkp = sfmmu_hmetohblk(sfhme); 7557 if (hmeblkp->hblk_xhat_bit) 7558 continue; 7559 7560 if (hme_size(sfhme) < cons) 7561 continue; 7562 7563 if (stop_on_sh) { 7564 if (hmeblkp->hblk_shared) { 7565 sf_srd_t *srdp = hblktosrd(hmeblkp); 7566 uint_t rid = hmeblkp->hblk_tag.htag_rid; 7567 sf_region_t *rgnp; 7568 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 7569 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 7570 ASSERT(srdp != NULL); 7571 rgnp = srdp->srd_hmergnp[rid]; 7572 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, 7573 rgnp, rid); 7574 shcnt += rgnp->rgn_refcnt; 7575 } else { 7576 shcnt++; 7577 } 7578 if (shcnt > po_share) { 7579 /* 7580 * tell the pager to spare the page this time 7581 * around. 7582 */ 7583 hat_page_setattr(save_pp, P_REF); 7584 index = 0; 7585 break; 7586 } 7587 } 7588 tset = sfmmu_pagesync(pp, sfhme, 7589 clearflag & ~HAT_SYNC_STOPON_RM); 7590 CPUSET_OR(cpuset, tset); 7591 7592 /* 7593 * If clearflag is HAT_SYNC_DONTZERO, break out as soon 7594 * as the "ref" or "mod" is set or share cnt exceeds po_share. 7595 */ 7596 if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO && 7597 (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) || 7598 ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) { 7599 index = 0; 7600 break; 7601 } 7602 } 7603 7604 while (index) { 7605 index = index >> 1; 7606 cons++; 7607 if (index & 0x1) { 7608 /* Go to leading page */ 7609 pp = PP_GROUPLEADER(pp, cons); 7610 goto retry; 7611 } 7612 } 7613 7614 xt_sync(cpuset); 7615 sfmmu_mlist_exit(pml); 7616 return (PP_GENERIC_ATTR(save_pp)); 7617 } 7618 7619 /* 7620 * Get all the hardware dependent attributes for a page struct 7621 */ 7622 static cpuset_t 7623 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme, 7624 uint_t clearflag) 7625 { 7626 caddr_t addr; 7627 tte_t tte, ttemod; 7628 struct hme_blk *hmeblkp; 7629 int ret; 7630 sfmmu_t *sfmmup; 7631 cpuset_t cpuset; 7632 7633 ASSERT(pp != NULL); 7634 ASSERT(sfmmu_mlist_held(pp)); 7635 ASSERT((clearflag == HAT_SYNC_DONTZERO) || 7636 (clearflag == HAT_SYNC_ZERORM)); 7637 7638 SFMMU_STAT(sf_pagesync); 7639 7640 CPUSET_ZERO(cpuset); 7641 7642 sfmmu_pagesync_retry: 7643 7644 sfmmu_copytte(&sfhme->hme_tte, &tte); 7645 if (TTE_IS_VALID(&tte)) { 7646 hmeblkp = sfmmu_hmetohblk(sfhme); 7647 sfmmup = hblktosfmmu(hmeblkp); 7648 addr = tte_to_vaddr(hmeblkp, tte); 7649 if (clearflag == HAT_SYNC_ZERORM) { 7650 ttemod = tte; 7651 TTE_CLR_RM(&ttemod); 7652 ret = sfmmu_modifytte_try(&tte, &ttemod, 7653 &sfhme->hme_tte); 7654 if (ret < 0) { 7655 /* 7656 * cas failed and the new value is not what 7657 * we want. 7658 */ 7659 goto sfmmu_pagesync_retry; 7660 } 7661 7662 if (ret > 0) { 7663 /* we win the cas */ 7664 if (hmeblkp->hblk_shared) { 7665 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 7666 uint_t rid = 7667 hmeblkp->hblk_tag.htag_rid; 7668 sf_region_t *rgnp; 7669 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 7670 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 7671 ASSERT(srdp != NULL); 7672 rgnp = srdp->srd_hmergnp[rid]; 7673 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, 7674 srdp, rgnp, rid); 7675 cpuset = sfmmu_rgntlb_demap(addr, 7676 rgnp, hmeblkp, 1); 7677 } else { 7678 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 7679 0, 0); 7680 cpuset = sfmmup->sfmmu_cpusran; 7681 } 7682 } 7683 } 7684 sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr, 7685 &tte, pp); 7686 } 7687 return (cpuset); 7688 } 7689 7690 /* 7691 * Remove write permission from a mappings to a page, so that 7692 * we can detect the next modification of it. This requires modifying 7693 * the TTE then invalidating (demap) any TLB entry using that TTE. 7694 * This code is similar to sfmmu_pagesync(). 7695 */ 7696 static cpuset_t 7697 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme) 7698 { 7699 caddr_t addr; 7700 tte_t tte; 7701 tte_t ttemod; 7702 struct hme_blk *hmeblkp; 7703 int ret; 7704 sfmmu_t *sfmmup; 7705 cpuset_t cpuset; 7706 7707 ASSERT(pp != NULL); 7708 ASSERT(sfmmu_mlist_held(pp)); 7709 7710 CPUSET_ZERO(cpuset); 7711 SFMMU_STAT(sf_clrwrt); 7712 7713 retry: 7714 7715 sfmmu_copytte(&sfhme->hme_tte, &tte); 7716 if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) { 7717 hmeblkp = sfmmu_hmetohblk(sfhme); 7718 7719 /* 7720 * xhat mappings should never be to a VMODSORT page. 7721 */ 7722 ASSERT(hmeblkp->hblk_xhat_bit == 0); 7723 7724 sfmmup = hblktosfmmu(hmeblkp); 7725 addr = tte_to_vaddr(hmeblkp, tte); 7726 7727 ttemod = tte; 7728 TTE_CLR_WRT(&ttemod); 7729 TTE_CLR_MOD(&ttemod); 7730 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 7731 7732 /* 7733 * if cas failed and the new value is not what 7734 * we want retry 7735 */ 7736 if (ret < 0) 7737 goto retry; 7738 7739 /* we win the cas */ 7740 if (ret > 0) { 7741 if (hmeblkp->hblk_shared) { 7742 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 7743 uint_t rid = hmeblkp->hblk_tag.htag_rid; 7744 sf_region_t *rgnp; 7745 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 7746 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 7747 ASSERT(srdp != NULL); 7748 rgnp = srdp->srd_hmergnp[rid]; 7749 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, 7750 srdp, rgnp, rid); 7751 cpuset = sfmmu_rgntlb_demap(addr, 7752 rgnp, hmeblkp, 1); 7753 } else { 7754 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 7755 cpuset = sfmmup->sfmmu_cpusran; 7756 } 7757 } 7758 } 7759 7760 return (cpuset); 7761 } 7762 7763 /* 7764 * Walk all mappings of a page, removing write permission and clearing the 7765 * ref/mod bits. This code is similar to hat_pagesync() 7766 */ 7767 static void 7768 hat_page_clrwrt(page_t *pp) 7769 { 7770 struct sf_hment *sfhme; 7771 struct sf_hment *tmphme = NULL; 7772 kmutex_t *pml; 7773 cpuset_t cpuset; 7774 cpuset_t tset; 7775 int index; 7776 int cons; 7777 7778 CPUSET_ZERO(cpuset); 7779 7780 pml = sfmmu_mlist_enter(pp); 7781 index = PP_MAPINDEX(pp); 7782 cons = TTE8K; 7783 retry: 7784 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 7785 tmphme = sfhme->hme_next; 7786 7787 /* 7788 * If we are looking for large mappings and this hme doesn't 7789 * reach the range we are seeking, just ignore its. 7790 */ 7791 7792 if (hme_size(sfhme) < cons) 7793 continue; 7794 7795 tset = sfmmu_pageclrwrt(pp, sfhme); 7796 CPUSET_OR(cpuset, tset); 7797 } 7798 7799 while (index) { 7800 index = index >> 1; 7801 cons++; 7802 if (index & 0x1) { 7803 /* Go to leading page */ 7804 pp = PP_GROUPLEADER(pp, cons); 7805 goto retry; 7806 } 7807 } 7808 7809 xt_sync(cpuset); 7810 sfmmu_mlist_exit(pml); 7811 } 7812 7813 /* 7814 * Set the given REF/MOD/RO bits for the given page. 7815 * For a vnode with a sorted v_pages list, we need to change 7816 * the attributes and the v_pages list together under page_vnode_mutex. 7817 */ 7818 void 7819 hat_page_setattr(page_t *pp, uint_t flag) 7820 { 7821 vnode_t *vp = pp->p_vnode; 7822 page_t **listp; 7823 kmutex_t *pmtx; 7824 kmutex_t *vphm = NULL; 7825 int noshuffle; 7826 7827 noshuffle = flag & P_NSH; 7828 flag &= ~P_NSH; 7829 7830 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7831 7832 /* 7833 * nothing to do if attribute already set 7834 */ 7835 if ((pp->p_nrm & flag) == flag) 7836 return; 7837 7838 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 7839 !noshuffle) { 7840 vphm = page_vnode_mutex(vp); 7841 mutex_enter(vphm); 7842 } 7843 7844 pmtx = sfmmu_page_enter(pp); 7845 pp->p_nrm |= flag; 7846 sfmmu_page_exit(pmtx); 7847 7848 if (vphm != NULL) { 7849 /* 7850 * Some File Systems examine v_pages for NULL w/o 7851 * grabbing the vphm mutex. Must not let it become NULL when 7852 * pp is the only page on the list. 7853 */ 7854 if (pp->p_vpnext != pp) { 7855 page_vpsub(&vp->v_pages, pp); 7856 if (vp->v_pages != NULL) 7857 listp = &vp->v_pages->p_vpprev->p_vpnext; 7858 else 7859 listp = &vp->v_pages; 7860 page_vpadd(listp, pp); 7861 } 7862 mutex_exit(vphm); 7863 } 7864 } 7865 7866 void 7867 hat_page_clrattr(page_t *pp, uint_t flag) 7868 { 7869 vnode_t *vp = pp->p_vnode; 7870 kmutex_t *pmtx; 7871 7872 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7873 7874 pmtx = sfmmu_page_enter(pp); 7875 7876 /* 7877 * Caller is expected to hold page's io lock for VMODSORT to work 7878 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 7879 * bit is cleared. 7880 * We don't have assert to avoid tripping some existing third party 7881 * code. The dirty page is moved back to top of the v_page list 7882 * after IO is done in pvn_write_done(). 7883 */ 7884 pp->p_nrm &= ~flag; 7885 sfmmu_page_exit(pmtx); 7886 7887 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 7888 7889 /* 7890 * VMODSORT works by removing write permissions and getting 7891 * a fault when a page is made dirty. At this point 7892 * we need to remove write permission from all mappings 7893 * to this page. 7894 */ 7895 hat_page_clrwrt(pp); 7896 } 7897 } 7898 7899 uint_t 7900 hat_page_getattr(page_t *pp, uint_t flag) 7901 { 7902 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7903 return ((uint_t)(pp->p_nrm & flag)); 7904 } 7905 7906 /* 7907 * DEBUG kernels: verify that a kernel va<->pa translation 7908 * is safe by checking the underlying page_t is in a page 7909 * relocation-safe state. 7910 */ 7911 #ifdef DEBUG 7912 void 7913 sfmmu_check_kpfn(pfn_t pfn) 7914 { 7915 page_t *pp; 7916 int index, cons; 7917 7918 if (hat_check_vtop == 0) 7919 return; 7920 7921 if (kvseg.s_base == NULL || panicstr) 7922 return; 7923 7924 pp = page_numtopp_nolock(pfn); 7925 if (!pp) 7926 return; 7927 7928 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp)) 7929 return; 7930 7931 /* 7932 * Handed a large kernel page, we dig up the root page since we 7933 * know the root page might have the lock also. 7934 */ 7935 if (pp->p_szc != 0) { 7936 index = PP_MAPINDEX(pp); 7937 cons = TTE8K; 7938 again: 7939 while (index != 0) { 7940 index >>= 1; 7941 if (index != 0) 7942 cons++; 7943 if (index & 0x1) { 7944 pp = PP_GROUPLEADER(pp, cons); 7945 goto again; 7946 } 7947 } 7948 } 7949 7950 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp)) 7951 return; 7952 7953 /* 7954 * Pages need to be locked or allocated "permanent" (either from 7955 * static_arena arena or explicitly setting PG_NORELOC when calling 7956 * page_create_va()) for VA->PA translations to be valid. 7957 */ 7958 if (!PP_ISNORELOC(pp)) 7959 panic("Illegal VA->PA translation, pp 0x%p not permanent", 7960 (void *)pp); 7961 else 7962 panic("Illegal VA->PA translation, pp 0x%p not locked", 7963 (void *)pp); 7964 } 7965 #endif /* DEBUG */ 7966 7967 /* 7968 * Returns a page frame number for a given virtual address. 7969 * Returns PFN_INVALID to indicate an invalid mapping 7970 */ 7971 pfn_t 7972 hat_getpfnum(struct hat *hat, caddr_t addr) 7973 { 7974 pfn_t pfn; 7975 tte_t tte; 7976 7977 /* 7978 * We would like to 7979 * ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 7980 * but we can't because the iommu driver will call this 7981 * routine at interrupt time and it can't grab the as lock 7982 * or it will deadlock: A thread could have the as lock 7983 * and be waiting for io. The io can't complete 7984 * because the interrupt thread is blocked trying to grab 7985 * the as lock. 7986 */ 7987 7988 ASSERT(hat->sfmmu_xhat_provider == NULL); 7989 7990 if (hat == ksfmmup) { 7991 if (IS_KMEM_VA_LARGEPAGE(addr)) { 7992 ASSERT(segkmem_lpszc > 0); 7993 pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc); 7994 if (pfn != PFN_INVALID) { 7995 sfmmu_check_kpfn(pfn); 7996 return (pfn); 7997 } 7998 } else if (segkpm && IS_KPM_ADDR(addr)) { 7999 return (sfmmu_kpm_vatopfn(addr)); 8000 } 8001 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte)) 8002 == PFN_SUSPENDED) { 8003 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte); 8004 } 8005 sfmmu_check_kpfn(pfn); 8006 return (pfn); 8007 } else { 8008 return (sfmmu_uvatopfn(addr, hat, NULL)); 8009 } 8010 } 8011 8012 /* 8013 * This routine will return both pfn and tte for the vaddr. 8014 */ 8015 static pfn_t 8016 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep) 8017 { 8018 struct hmehash_bucket *hmebp; 8019 hmeblk_tag hblktag; 8020 int hmeshift, hashno = 1; 8021 struct hme_blk *hmeblkp = NULL; 8022 tte_t tte; 8023 8024 struct sf_hment *sfhmep; 8025 pfn_t pfn; 8026 8027 /* support for ISM */ 8028 ism_map_t *ism_map; 8029 ism_blk_t *ism_blkp; 8030 int i; 8031 sfmmu_t *ism_hatid = NULL; 8032 sfmmu_t *locked_hatid = NULL; 8033 sfmmu_t *sv_sfmmup = sfmmup; 8034 caddr_t sv_vaddr = vaddr; 8035 sf_srd_t *srdp; 8036 8037 if (ttep == NULL) { 8038 ttep = &tte; 8039 } else { 8040 ttep->ll = 0; 8041 } 8042 8043 ASSERT(sfmmup != ksfmmup); 8044 SFMMU_STAT(sf_user_vtop); 8045 /* 8046 * Set ism_hatid if vaddr falls in a ISM segment. 8047 */ 8048 ism_blkp = sfmmup->sfmmu_iblk; 8049 if (ism_blkp != NULL) { 8050 sfmmu_ismhat_enter(sfmmup, 0); 8051 locked_hatid = sfmmup; 8052 } 8053 while (ism_blkp != NULL && ism_hatid == NULL) { 8054 ism_map = ism_blkp->iblk_maps; 8055 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) { 8056 if (vaddr >= ism_start(ism_map[i]) && 8057 vaddr < ism_end(ism_map[i])) { 8058 sfmmup = ism_hatid = ism_map[i].imap_ismhat; 8059 vaddr = (caddr_t)(vaddr - 8060 ism_start(ism_map[i])); 8061 break; 8062 } 8063 } 8064 ism_blkp = ism_blkp->iblk_next; 8065 } 8066 if (locked_hatid) { 8067 sfmmu_ismhat_exit(locked_hatid, 0); 8068 } 8069 8070 hblktag.htag_id = sfmmup; 8071 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 8072 do { 8073 hmeshift = HME_HASH_SHIFT(hashno); 8074 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 8075 hblktag.htag_rehash = hashno; 8076 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 8077 8078 SFMMU_HASH_LOCK(hmebp); 8079 8080 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 8081 if (hmeblkp != NULL) { 8082 ASSERT(!hmeblkp->hblk_shared); 8083 HBLKTOHME(sfhmep, hmeblkp, vaddr); 8084 sfmmu_copytte(&sfhmep->hme_tte, ttep); 8085 SFMMU_HASH_UNLOCK(hmebp); 8086 if (TTE_IS_VALID(ttep)) { 8087 pfn = TTE_TO_PFN(vaddr, ttep); 8088 return (pfn); 8089 } 8090 break; 8091 } 8092 SFMMU_HASH_UNLOCK(hmebp); 8093 hashno++; 8094 } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt)); 8095 8096 if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) { 8097 return (PFN_INVALID); 8098 } 8099 srdp = sv_sfmmup->sfmmu_srdp; 8100 ASSERT(srdp != NULL); 8101 ASSERT(srdp->srd_refcnt != 0); 8102 hblktag.htag_id = srdp; 8103 hashno = 1; 8104 do { 8105 hmeshift = HME_HASH_SHIFT(hashno); 8106 hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift); 8107 hblktag.htag_rehash = hashno; 8108 hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift); 8109 8110 SFMMU_HASH_LOCK(hmebp); 8111 for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL; 8112 hmeblkp = hmeblkp->hblk_next) { 8113 uint_t rid; 8114 sf_region_t *rgnp; 8115 caddr_t rsaddr; 8116 caddr_t readdr; 8117 8118 if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag, 8119 sv_sfmmup->sfmmu_hmeregion_map)) { 8120 continue; 8121 } 8122 ASSERT(hmeblkp->hblk_shared); 8123 rid = hmeblkp->hblk_tag.htag_rid; 8124 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 8125 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 8126 rgnp = srdp->srd_hmergnp[rid]; 8127 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid); 8128 HBLKTOHME(sfhmep, hmeblkp, sv_vaddr); 8129 sfmmu_copytte(&sfhmep->hme_tte, ttep); 8130 rsaddr = rgnp->rgn_saddr; 8131 readdr = rsaddr + rgnp->rgn_size; 8132 #ifdef DEBUG 8133 if (TTE_IS_VALID(ttep) || 8134 get_hblk_ttesz(hmeblkp) > TTE8K) { 8135 caddr_t eva = tte_to_evaddr(hmeblkp, ttep); 8136 ASSERT(eva > sv_vaddr); 8137 ASSERT(sv_vaddr >= rsaddr); 8138 ASSERT(sv_vaddr < readdr); 8139 ASSERT(eva <= readdr); 8140 } 8141 #endif /* DEBUG */ 8142 /* 8143 * Continue the search if we 8144 * found an invalid 8K tte outside of the area 8145 * covered by this hmeblk's region. 8146 */ 8147 if (TTE_IS_VALID(ttep)) { 8148 SFMMU_HASH_UNLOCK(hmebp); 8149 pfn = TTE_TO_PFN(sv_vaddr, ttep); 8150 return (pfn); 8151 } else if (get_hblk_ttesz(hmeblkp) > TTE8K || 8152 (sv_vaddr >= rsaddr && sv_vaddr < readdr)) { 8153 SFMMU_HASH_UNLOCK(hmebp); 8154 pfn = PFN_INVALID; 8155 return (pfn); 8156 } 8157 } 8158 SFMMU_HASH_UNLOCK(hmebp); 8159 hashno++; 8160 } while (hashno <= mmu_hashcnt); 8161 return (PFN_INVALID); 8162 } 8163 8164 8165 /* 8166 * For compatability with AT&T and later optimizations 8167 */ 8168 /* ARGSUSED */ 8169 void 8170 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags) 8171 { 8172 ASSERT(hat != NULL); 8173 ASSERT(hat->sfmmu_xhat_provider == NULL); 8174 } 8175 8176 /* 8177 * Return the number of mappings to a particular page. This number is an 8178 * approximation of the number of people sharing the page. 8179 * 8180 * shared hmeblks or ism hmeblks are counted as 1 mapping here. 8181 * hat_page_checkshare() can be used to compare threshold to share 8182 * count that reflects the number of region sharers albeit at higher cost. 8183 */ 8184 ulong_t 8185 hat_page_getshare(page_t *pp) 8186 { 8187 page_t *spp = pp; /* start page */ 8188 kmutex_t *pml; 8189 ulong_t cnt; 8190 int index, sz = TTE64K; 8191 8192 /* 8193 * We need to grab the mlist lock to make sure any outstanding 8194 * load/unloads complete. Otherwise we could return zero 8195 * even though the unload(s) hasn't finished yet. 8196 */ 8197 pml = sfmmu_mlist_enter(spp); 8198 cnt = spp->p_share; 8199 8200 #ifdef VAC 8201 if (kpm_enable) 8202 cnt += spp->p_kpmref; 8203 #endif 8204 if (vpm_enable && pp->p_vpmref) { 8205 cnt += 1; 8206 } 8207 8208 /* 8209 * If we have any large mappings, we count the number of 8210 * mappings that this large page is part of. 8211 */ 8212 index = PP_MAPINDEX(spp); 8213 index >>= 1; 8214 while (index) { 8215 pp = PP_GROUPLEADER(spp, sz); 8216 if ((index & 0x1) && pp != spp) { 8217 cnt += pp->p_share; 8218 spp = pp; 8219 } 8220 index >>= 1; 8221 sz++; 8222 } 8223 sfmmu_mlist_exit(pml); 8224 return (cnt); 8225 } 8226 8227 /* 8228 * Return 1 if the number of mappings exceeds sh_thresh. Return 0 8229 * otherwise. Count shared hmeblks by region's refcnt. 8230 */ 8231 int 8232 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 8233 { 8234 kmutex_t *pml; 8235 ulong_t cnt = 0; 8236 int index, sz = TTE8K; 8237 struct sf_hment *sfhme, *tmphme = NULL; 8238 struct hme_blk *hmeblkp; 8239 8240 pml = sfmmu_mlist_enter(pp); 8241 8242 #ifdef VAC 8243 if (kpm_enable) 8244 cnt = pp->p_kpmref; 8245 #endif 8246 8247 if (vpm_enable && pp->p_vpmref) { 8248 cnt += 1; 8249 } 8250 8251 if (pp->p_share + cnt > sh_thresh) { 8252 sfmmu_mlist_exit(pml); 8253 return (1); 8254 } 8255 8256 index = PP_MAPINDEX(pp); 8257 8258 again: 8259 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 8260 tmphme = sfhme->hme_next; 8261 if (IS_PAHME(sfhme)) { 8262 continue; 8263 } 8264 8265 hmeblkp = sfmmu_hmetohblk(sfhme); 8266 if (hmeblkp->hblk_xhat_bit) { 8267 cnt++; 8268 if (cnt > sh_thresh) { 8269 sfmmu_mlist_exit(pml); 8270 return (1); 8271 } 8272 continue; 8273 } 8274 if (hme_size(sfhme) != sz) { 8275 continue; 8276 } 8277 8278 if (hmeblkp->hblk_shared) { 8279 sf_srd_t *srdp = hblktosrd(hmeblkp); 8280 uint_t rid = hmeblkp->hblk_tag.htag_rid; 8281 sf_region_t *rgnp; 8282 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 8283 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 8284 ASSERT(srdp != NULL); 8285 rgnp = srdp->srd_hmergnp[rid]; 8286 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, 8287 rgnp, rid); 8288 cnt += rgnp->rgn_refcnt; 8289 } else { 8290 cnt++; 8291 } 8292 if (cnt > sh_thresh) { 8293 sfmmu_mlist_exit(pml); 8294 return (1); 8295 } 8296 } 8297 8298 index >>= 1; 8299 sz++; 8300 while (index) { 8301 pp = PP_GROUPLEADER(pp, sz); 8302 ASSERT(sfmmu_mlist_held(pp)); 8303 if (index & 0x1) { 8304 goto again; 8305 } 8306 index >>= 1; 8307 sz++; 8308 } 8309 sfmmu_mlist_exit(pml); 8310 return (0); 8311 } 8312 8313 /* 8314 * Unload all large mappings to the pp and reset the p_szc field of every 8315 * constituent page according to the remaining mappings. 8316 * 8317 * pp must be locked SE_EXCL. Even though no other constituent pages are 8318 * locked it's legal to unload the large mappings to the pp because all 8319 * constituent pages of large locked mappings have to be locked SE_SHARED. 8320 * This means if we have SE_EXCL lock on one of constituent pages none of the 8321 * large mappings to pp are locked. 8322 * 8323 * Decrease p_szc field starting from the last constituent page and ending 8324 * with the root page. This method is used because other threads rely on the 8325 * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc 8326 * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This 8327 * ensures that p_szc changes of the constituent pages appears atomic for all 8328 * threads that use sfmmu_mlspl_enter() to examine p_szc field. 8329 * 8330 * This mechanism is only used for file system pages where it's not always 8331 * possible to get SE_EXCL locks on all constituent pages to demote the size 8332 * code (as is done for anonymous or kernel large pages). 8333 * 8334 * See more comments in front of sfmmu_mlspl_enter(). 8335 */ 8336 void 8337 hat_page_demote(page_t *pp) 8338 { 8339 int index; 8340 int sz; 8341 cpuset_t cpuset; 8342 int sync = 0; 8343 page_t *rootpp; 8344 struct sf_hment *sfhme; 8345 struct sf_hment *tmphme = NULL; 8346 struct hme_blk *hmeblkp; 8347 uint_t pszc; 8348 page_t *lastpp; 8349 cpuset_t tset; 8350 pgcnt_t npgs; 8351 kmutex_t *pml; 8352 kmutex_t *pmtx = NULL; 8353 8354 ASSERT(PAGE_EXCL(pp)); 8355 ASSERT(!PP_ISFREE(pp)); 8356 ASSERT(!PP_ISKAS(pp)); 8357 ASSERT(page_szc_lock_assert(pp)); 8358 pml = sfmmu_mlist_enter(pp); 8359 8360 pszc = pp->p_szc; 8361 if (pszc == 0) { 8362 goto out; 8363 } 8364 8365 index = PP_MAPINDEX(pp) >> 1; 8366 8367 if (index) { 8368 CPUSET_ZERO(cpuset); 8369 sz = TTE64K; 8370 sync = 1; 8371 } 8372 8373 while (index) { 8374 if (!(index & 0x1)) { 8375 index >>= 1; 8376 sz++; 8377 continue; 8378 } 8379 ASSERT(sz <= pszc); 8380 rootpp = PP_GROUPLEADER(pp, sz); 8381 for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) { 8382 tmphme = sfhme->hme_next; 8383 ASSERT(!IS_PAHME(sfhme)); 8384 hmeblkp = sfmmu_hmetohblk(sfhme); 8385 if (hme_size(sfhme) != sz) { 8386 continue; 8387 } 8388 if (hmeblkp->hblk_xhat_bit) { 8389 cmn_err(CE_PANIC, 8390 "hat_page_demote: xhat hmeblk"); 8391 } 8392 tset = sfmmu_pageunload(rootpp, sfhme, sz); 8393 CPUSET_OR(cpuset, tset); 8394 } 8395 if (index >>= 1) { 8396 sz++; 8397 } 8398 } 8399 8400 ASSERT(!PP_ISMAPPED_LARGE(pp)); 8401 8402 if (sync) { 8403 xt_sync(cpuset); 8404 #ifdef VAC 8405 if (PP_ISTNC(pp)) { 8406 conv_tnc(rootpp, sz); 8407 } 8408 #endif /* VAC */ 8409 } 8410 8411 pmtx = sfmmu_page_enter(pp); 8412 8413 ASSERT(pp->p_szc == pszc); 8414 rootpp = PP_PAGEROOT(pp); 8415 ASSERT(rootpp->p_szc == pszc); 8416 lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1); 8417 8418 while (lastpp != rootpp) { 8419 sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0; 8420 ASSERT(sz < pszc); 8421 npgs = (sz == 0) ? 1 : TTEPAGES(sz); 8422 ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1); 8423 while (--npgs > 0) { 8424 lastpp->p_szc = (uchar_t)sz; 8425 lastpp = PP_PAGEPREV(lastpp); 8426 } 8427 if (sz) { 8428 /* 8429 * make sure before current root's pszc 8430 * is updated all updates to constituent pages pszc 8431 * fields are globally visible. 8432 */ 8433 membar_producer(); 8434 } 8435 lastpp->p_szc = sz; 8436 ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz))); 8437 if (lastpp != rootpp) { 8438 lastpp = PP_PAGEPREV(lastpp); 8439 } 8440 } 8441 if (sz == 0) { 8442 /* the loop above doesn't cover this case */ 8443 rootpp->p_szc = 0; 8444 } 8445 out: 8446 ASSERT(pp->p_szc == 0); 8447 if (pmtx != NULL) { 8448 sfmmu_page_exit(pmtx); 8449 } 8450 sfmmu_mlist_exit(pml); 8451 } 8452 8453 /* 8454 * Refresh the HAT ismttecnt[] element for size szc. 8455 * Caller must have set ISM busy flag to prevent mapping 8456 * lists from changing while we're traversing them. 8457 */ 8458 pgcnt_t 8459 ism_tsb_entries(sfmmu_t *sfmmup, int szc) 8460 { 8461 ism_blk_t *ism_blkp = sfmmup->sfmmu_iblk; 8462 ism_map_t *ism_map; 8463 pgcnt_t npgs = 0; 8464 pgcnt_t npgs_scd = 0; 8465 int j; 8466 sf_scd_t *scdp; 8467 uchar_t rid; 8468 8469 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 8470 scdp = sfmmup->sfmmu_scdp; 8471 8472 for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) { 8473 ism_map = ism_blkp->iblk_maps; 8474 for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) { 8475 rid = ism_map[j].imap_rid; 8476 ASSERT(rid == SFMMU_INVALID_ISMRID || 8477 rid < sfmmup->sfmmu_srdp->srd_next_ismrid); 8478 8479 if (scdp != NULL && rid != SFMMU_INVALID_ISMRID && 8480 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) { 8481 /* ISM is in sfmmup's SCD */ 8482 npgs_scd += 8483 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc]; 8484 } else { 8485 /* ISMs is not in SCD */ 8486 npgs += 8487 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc]; 8488 } 8489 } 8490 } 8491 sfmmup->sfmmu_ismttecnt[szc] = npgs; 8492 sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd; 8493 return (npgs); 8494 } 8495 8496 /* 8497 * Yield the memory claim requirement for an address space. 8498 * 8499 * This is currently implemented as the number of bytes that have active 8500 * hardware translations that have page structures. Therefore, it can 8501 * underestimate the traditional resident set size, eg, if the 8502 * physical page is present and the hardware translation is missing; 8503 * and it can overestimate the rss, eg, if there are active 8504 * translations to a frame buffer with page structs. 8505 * Also, it does not take sharing into account. 8506 * 8507 * Note that we don't acquire locks here since this function is most often 8508 * called from the clock thread. 8509 */ 8510 size_t 8511 hat_get_mapped_size(struct hat *hat) 8512 { 8513 size_t assize = 0; 8514 int i; 8515 8516 if (hat == NULL) 8517 return (0); 8518 8519 ASSERT(hat->sfmmu_xhat_provider == NULL); 8520 8521 for (i = 0; i < mmu_page_sizes; i++) 8522 assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] + 8523 (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i); 8524 8525 if (hat->sfmmu_iblk == NULL) 8526 return (assize); 8527 8528 for (i = 0; i < mmu_page_sizes; i++) 8529 assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] + 8530 (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i); 8531 8532 return (assize); 8533 } 8534 8535 int 8536 hat_stats_enable(struct hat *hat) 8537 { 8538 hatlock_t *hatlockp; 8539 8540 ASSERT(hat->sfmmu_xhat_provider == NULL); 8541 8542 hatlockp = sfmmu_hat_enter(hat); 8543 hat->sfmmu_rmstat++; 8544 sfmmu_hat_exit(hatlockp); 8545 return (1); 8546 } 8547 8548 void 8549 hat_stats_disable(struct hat *hat) 8550 { 8551 hatlock_t *hatlockp; 8552 8553 ASSERT(hat->sfmmu_xhat_provider == NULL); 8554 8555 hatlockp = sfmmu_hat_enter(hat); 8556 hat->sfmmu_rmstat--; 8557 sfmmu_hat_exit(hatlockp); 8558 } 8559 8560 /* 8561 * Routines for entering or removing ourselves from the 8562 * ism_hat's mapping list. This is used for both private and 8563 * SCD hats. 8564 */ 8565 static void 8566 iment_add(struct ism_ment *iment, struct hat *ism_hat) 8567 { 8568 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 8569 8570 iment->iment_prev = NULL; 8571 iment->iment_next = ism_hat->sfmmu_iment; 8572 if (ism_hat->sfmmu_iment) { 8573 ism_hat->sfmmu_iment->iment_prev = iment; 8574 } 8575 ism_hat->sfmmu_iment = iment; 8576 } 8577 8578 static void 8579 iment_sub(struct ism_ment *iment, struct hat *ism_hat) 8580 { 8581 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 8582 8583 if (ism_hat->sfmmu_iment == NULL) { 8584 panic("ism map entry remove - no entries"); 8585 } 8586 8587 if (iment->iment_prev) { 8588 ASSERT(ism_hat->sfmmu_iment != iment); 8589 iment->iment_prev->iment_next = iment->iment_next; 8590 } else { 8591 ASSERT(ism_hat->sfmmu_iment == iment); 8592 ism_hat->sfmmu_iment = iment->iment_next; 8593 } 8594 8595 if (iment->iment_next) { 8596 iment->iment_next->iment_prev = iment->iment_prev; 8597 } 8598 8599 /* 8600 * zero out the entry 8601 */ 8602 iment->iment_next = NULL; 8603 iment->iment_prev = NULL; 8604 iment->iment_hat = NULL; 8605 iment->iment_base_va = 0; 8606 } 8607 8608 /* 8609 * Hat_share()/unshare() return an (non-zero) error 8610 * when saddr and daddr are not properly aligned. 8611 * 8612 * The top level mapping element determines the alignment 8613 * requirement for saddr and daddr, depending on different 8614 * architectures. 8615 * 8616 * When hat_share()/unshare() are not supported, 8617 * HATOP_SHARE()/UNSHARE() return 0 8618 */ 8619 int 8620 hat_share(struct hat *sfmmup, caddr_t addr, 8621 struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc) 8622 { 8623 ism_blk_t *ism_blkp; 8624 ism_blk_t *new_iblk; 8625 ism_map_t *ism_map; 8626 ism_ment_t *ism_ment; 8627 int i, added; 8628 hatlock_t *hatlockp; 8629 int reload_mmu = 0; 8630 uint_t ismshift = page_get_shift(ismszc); 8631 size_t ismpgsz = page_get_pagesize(ismszc); 8632 uint_t ismmask = (uint_t)ismpgsz - 1; 8633 size_t sh_size = ISM_SHIFT(ismshift, len); 8634 ushort_t ismhatflag; 8635 hat_region_cookie_t rcookie; 8636 sf_scd_t *old_scdp; 8637 8638 #ifdef DEBUG 8639 caddr_t eaddr = addr + len; 8640 #endif /* DEBUG */ 8641 8642 ASSERT(ism_hatid != NULL && sfmmup != NULL); 8643 ASSERT(sptaddr == ISMID_STARTADDR); 8644 /* 8645 * Check the alignment. 8646 */ 8647 if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr)) 8648 return (EINVAL); 8649 8650 /* 8651 * Check size alignment. 8652 */ 8653 if (!ISM_ALIGNED(ismshift, len)) 8654 return (EINVAL); 8655 8656 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 8657 8658 /* 8659 * Allocate ism_ment for the ism_hat's mapping list, and an 8660 * ism map blk in case we need one. We must do our 8661 * allocations before acquiring locks to prevent a deadlock 8662 * in the kmem allocator on the mapping list lock. 8663 */ 8664 new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP); 8665 ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP); 8666 8667 /* 8668 * Serialize ISM mappings with the ISM busy flag, and also the 8669 * trap handlers. 8670 */ 8671 sfmmu_ismhat_enter(sfmmup, 0); 8672 8673 /* 8674 * Allocate an ism map blk if necessary. 8675 */ 8676 if (sfmmup->sfmmu_iblk == NULL) { 8677 sfmmup->sfmmu_iblk = new_iblk; 8678 bzero(new_iblk, sizeof (*new_iblk)); 8679 new_iblk->iblk_nextpa = (uint64_t)-1; 8680 membar_stst(); /* make sure next ptr visible to all CPUs */ 8681 sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk); 8682 reload_mmu = 1; 8683 new_iblk = NULL; 8684 } 8685 8686 #ifdef DEBUG 8687 /* 8688 * Make sure mapping does not already exist. 8689 */ 8690 ism_blkp = sfmmup->sfmmu_iblk; 8691 while (ism_blkp != NULL) { 8692 ism_map = ism_blkp->iblk_maps; 8693 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) { 8694 if ((addr >= ism_start(ism_map[i]) && 8695 addr < ism_end(ism_map[i])) || 8696 eaddr > ism_start(ism_map[i]) && 8697 eaddr <= ism_end(ism_map[i])) { 8698 panic("sfmmu_share: Already mapped!"); 8699 } 8700 } 8701 ism_blkp = ism_blkp->iblk_next; 8702 } 8703 #endif /* DEBUG */ 8704 8705 ASSERT(ismszc >= TTE4M); 8706 if (ismszc == TTE4M) { 8707 ismhatflag = HAT_4M_FLAG; 8708 } else if (ismszc == TTE32M) { 8709 ismhatflag = HAT_32M_FLAG; 8710 } else if (ismszc == TTE256M) { 8711 ismhatflag = HAT_256M_FLAG; 8712 } 8713 /* 8714 * Add mapping to first available mapping slot. 8715 */ 8716 ism_blkp = sfmmup->sfmmu_iblk; 8717 added = 0; 8718 while (!added) { 8719 ism_map = ism_blkp->iblk_maps; 8720 for (i = 0; i < ISM_MAP_SLOTS; i++) { 8721 if (ism_map[i].imap_ismhat == NULL) { 8722 8723 ism_map[i].imap_ismhat = ism_hatid; 8724 ism_map[i].imap_vb_shift = (uchar_t)ismshift; 8725 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID; 8726 ism_map[i].imap_hatflags = ismhatflag; 8727 ism_map[i].imap_sz_mask = ismmask; 8728 /* 8729 * imap_seg is checked in ISM_CHECK to see if 8730 * non-NULL, then other info assumed valid. 8731 */ 8732 membar_stst(); 8733 ism_map[i].imap_seg = (uintptr_t)addr | sh_size; 8734 ism_map[i].imap_ment = ism_ment; 8735 8736 /* 8737 * Now add ourselves to the ism_hat's 8738 * mapping list. 8739 */ 8740 ism_ment->iment_hat = sfmmup; 8741 ism_ment->iment_base_va = addr; 8742 ism_hatid->sfmmu_ismhat = 1; 8743 mutex_enter(&ism_mlist_lock); 8744 iment_add(ism_ment, ism_hatid); 8745 mutex_exit(&ism_mlist_lock); 8746 added = 1; 8747 break; 8748 } 8749 } 8750 if (!added && ism_blkp->iblk_next == NULL) { 8751 ism_blkp->iblk_next = new_iblk; 8752 new_iblk = NULL; 8753 bzero(ism_blkp->iblk_next, 8754 sizeof (*ism_blkp->iblk_next)); 8755 ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1; 8756 membar_stst(); 8757 ism_blkp->iblk_nextpa = 8758 va_to_pa((caddr_t)ism_blkp->iblk_next); 8759 } 8760 ism_blkp = ism_blkp->iblk_next; 8761 } 8762 8763 /* 8764 * After calling hat_join_region, sfmmup may join a new SCD or 8765 * move from the old scd to a new scd, in which case, we want to 8766 * shrink the sfmmup's private tsb size, i.e., pass shrink to 8767 * sfmmu_check_page_sizes at the end of this routine. 8768 */ 8769 old_scdp = sfmmup->sfmmu_scdp; 8770 8771 rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0, 8772 PROT_ALL, ismszc, NULL, HAT_REGION_ISM); 8773 if (rcookie != HAT_INVALID_REGION_COOKIE) { 8774 ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie); 8775 } 8776 /* 8777 * Update our counters for this sfmmup's ism mappings. 8778 */ 8779 for (i = 0; i <= ismszc; i++) { 8780 if (!(disable_ism_large_pages & (1 << i))) 8781 (void) ism_tsb_entries(sfmmup, i); 8782 } 8783 8784 /* 8785 * For ISM and DISM we do not support 512K pages, so we only only 8786 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the 8787 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus. 8788 * 8789 * Need to set 32M/256M ISM flags to make sure 8790 * sfmmu_check_page_sizes() enables them on Panther. 8791 */ 8792 ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0); 8793 8794 switch (ismszc) { 8795 case TTE256M: 8796 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) { 8797 hatlockp = sfmmu_hat_enter(sfmmup); 8798 SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM); 8799 sfmmu_hat_exit(hatlockp); 8800 } 8801 break; 8802 case TTE32M: 8803 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) { 8804 hatlockp = sfmmu_hat_enter(sfmmup); 8805 SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM); 8806 sfmmu_hat_exit(hatlockp); 8807 } 8808 break; 8809 default: 8810 break; 8811 } 8812 8813 /* 8814 * If we updated the ismblkpa for this HAT we must make 8815 * sure all CPUs running this process reload their tsbmiss area. 8816 * Otherwise they will fail to load the mappings in the tsbmiss 8817 * handler and will loop calling pagefault(). 8818 */ 8819 if (reload_mmu) { 8820 hatlockp = sfmmu_hat_enter(sfmmup); 8821 sfmmu_sync_mmustate(sfmmup); 8822 sfmmu_hat_exit(hatlockp); 8823 } 8824 8825 sfmmu_ismhat_exit(sfmmup, 0); 8826 8827 /* 8828 * Free up ismblk if we didn't use it. 8829 */ 8830 if (new_iblk != NULL) 8831 kmem_cache_free(ism_blk_cache, new_iblk); 8832 8833 /* 8834 * Check TSB and TLB page sizes. 8835 */ 8836 if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) { 8837 sfmmu_check_page_sizes(sfmmup, 0); 8838 } else { 8839 sfmmu_check_page_sizes(sfmmup, 1); 8840 } 8841 return (0); 8842 } 8843 8844 /* 8845 * hat_unshare removes exactly one ism_map from 8846 * this process's as. It expects multiple calls 8847 * to hat_unshare for multiple shm segments. 8848 */ 8849 void 8850 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc) 8851 { 8852 ism_map_t *ism_map; 8853 ism_ment_t *free_ment = NULL; 8854 ism_blk_t *ism_blkp; 8855 struct hat *ism_hatid; 8856 int found, i; 8857 hatlock_t *hatlockp; 8858 struct tsb_info *tsbinfo; 8859 uint_t ismshift = page_get_shift(ismszc); 8860 size_t sh_size = ISM_SHIFT(ismshift, len); 8861 uchar_t ism_rid; 8862 sf_scd_t *old_scdp; 8863 8864 ASSERT(ISM_ALIGNED(ismshift, addr)); 8865 ASSERT(ISM_ALIGNED(ismshift, len)); 8866 ASSERT(sfmmup != NULL); 8867 ASSERT(sfmmup != ksfmmup); 8868 8869 if (sfmmup->sfmmu_xhat_provider) { 8870 XHAT_UNSHARE(sfmmup, addr, len); 8871 return; 8872 } else { 8873 /* 8874 * This must be a CPU HAT. If the address space has 8875 * XHATs attached, inform all XHATs that ISM segment 8876 * is going away 8877 */ 8878 ASSERT(sfmmup->sfmmu_as != NULL); 8879 if (sfmmup->sfmmu_as->a_xhat != NULL) 8880 xhat_unshare_all(sfmmup->sfmmu_as, addr, len); 8881 } 8882 8883 /* 8884 * Make sure that during the entire time ISM mappings are removed, 8885 * the trap handlers serialize behind us, and that no one else 8886 * can be mucking with ISM mappings. This also lets us get away 8887 * with not doing expensive cross calls to flush the TLB -- we 8888 * just discard the context, flush the entire TSB, and call it 8889 * a day. 8890 */ 8891 sfmmu_ismhat_enter(sfmmup, 0); 8892 8893 /* 8894 * Remove the mapping. 8895 * 8896 * We can't have any holes in the ism map. 8897 * The tsb miss code while searching the ism map will 8898 * stop on an empty map slot. So we must move 8899 * everyone past the hole up 1 if any. 8900 * 8901 * Also empty ism map blks are not freed until the 8902 * process exits. This is to prevent a MT race condition 8903 * between sfmmu_unshare() and sfmmu_tsbmiss_exception(). 8904 */ 8905 found = 0; 8906 ism_blkp = sfmmup->sfmmu_iblk; 8907 while (!found && ism_blkp != NULL) { 8908 ism_map = ism_blkp->iblk_maps; 8909 for (i = 0; i < ISM_MAP_SLOTS; i++) { 8910 if (addr == ism_start(ism_map[i]) && 8911 sh_size == (size_t)(ism_size(ism_map[i]))) { 8912 found = 1; 8913 break; 8914 } 8915 } 8916 if (!found) 8917 ism_blkp = ism_blkp->iblk_next; 8918 } 8919 8920 if (found) { 8921 ism_hatid = ism_map[i].imap_ismhat; 8922 ism_rid = ism_map[i].imap_rid; 8923 ASSERT(ism_hatid != NULL); 8924 ASSERT(ism_hatid->sfmmu_ismhat == 1); 8925 8926 /* 8927 * After hat_leave_region, the sfmmup may leave SCD, 8928 * in which case, we want to grow the private tsb size when 8929 * calling sfmmu_check_page_sizes at the end of the routine. 8930 */ 8931 old_scdp = sfmmup->sfmmu_scdp; 8932 /* 8933 * Then remove ourselves from the region. 8934 */ 8935 if (ism_rid != SFMMU_INVALID_ISMRID) { 8936 hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid), 8937 HAT_REGION_ISM); 8938 } 8939 8940 /* 8941 * And now guarantee that any other cpu 8942 * that tries to process an ISM miss 8943 * will go to tl=0. 8944 */ 8945 hatlockp = sfmmu_hat_enter(sfmmup); 8946 sfmmu_invalidate_ctx(sfmmup); 8947 sfmmu_hat_exit(hatlockp); 8948 8949 /* 8950 * Remove ourselves from the ism mapping list. 8951 */ 8952 mutex_enter(&ism_mlist_lock); 8953 iment_sub(ism_map[i].imap_ment, ism_hatid); 8954 mutex_exit(&ism_mlist_lock); 8955 free_ment = ism_map[i].imap_ment; 8956 8957 /* 8958 * We delete the ism map by copying 8959 * the next map over the current one. 8960 * We will take the next one in the maps 8961 * array or from the next ism_blk. 8962 */ 8963 while (ism_blkp != NULL) { 8964 ism_map = ism_blkp->iblk_maps; 8965 while (i < (ISM_MAP_SLOTS - 1)) { 8966 ism_map[i] = ism_map[i + 1]; 8967 i++; 8968 } 8969 /* i == (ISM_MAP_SLOTS - 1) */ 8970 ism_blkp = ism_blkp->iblk_next; 8971 if (ism_blkp != NULL) { 8972 ism_map[i] = ism_blkp->iblk_maps[0]; 8973 i = 0; 8974 } else { 8975 ism_map[i].imap_seg = 0; 8976 ism_map[i].imap_vb_shift = 0; 8977 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID; 8978 ism_map[i].imap_hatflags = 0; 8979 ism_map[i].imap_sz_mask = 0; 8980 ism_map[i].imap_ismhat = NULL; 8981 ism_map[i].imap_ment = NULL; 8982 } 8983 } 8984 8985 /* 8986 * Now flush entire TSB for the process, since 8987 * demapping page by page can be too expensive. 8988 * We don't have to flush the TLB here anymore 8989 * since we switch to a new TLB ctx instead. 8990 * Also, there is no need to flush if the process 8991 * is exiting since the TSB will be freed later. 8992 */ 8993 if (!sfmmup->sfmmu_free) { 8994 hatlockp = sfmmu_hat_enter(sfmmup); 8995 for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL; 8996 tsbinfo = tsbinfo->tsb_next) { 8997 if (tsbinfo->tsb_flags & TSB_SWAPPED) 8998 continue; 8999 if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) { 9000 tsbinfo->tsb_flags |= 9001 TSB_FLUSH_NEEDED; 9002 continue; 9003 } 9004 9005 sfmmu_inv_tsb(tsbinfo->tsb_va, 9006 TSB_BYTES(tsbinfo->tsb_szc)); 9007 } 9008 sfmmu_hat_exit(hatlockp); 9009 } 9010 } 9011 9012 /* 9013 * Update our counters for this sfmmup's ism mappings. 9014 */ 9015 for (i = 0; i <= ismszc; i++) { 9016 if (!(disable_ism_large_pages & (1 << i))) 9017 (void) ism_tsb_entries(sfmmup, i); 9018 } 9019 9020 sfmmu_ismhat_exit(sfmmup, 0); 9021 9022 /* 9023 * We must do our freeing here after dropping locks 9024 * to prevent a deadlock in the kmem allocator on the 9025 * mapping list lock. 9026 */ 9027 if (free_ment != NULL) 9028 kmem_cache_free(ism_ment_cache, free_ment); 9029 9030 /* 9031 * Check TSB and TLB page sizes if the process isn't exiting. 9032 */ 9033 if (!sfmmup->sfmmu_free) { 9034 if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) { 9035 sfmmu_check_page_sizes(sfmmup, 1); 9036 } else { 9037 sfmmu_check_page_sizes(sfmmup, 0); 9038 } 9039 } 9040 } 9041 9042 /* ARGSUSED */ 9043 static int 9044 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags) 9045 { 9046 /* void *buf is sfmmu_t pointer */ 9047 bzero(buf, sizeof (sfmmu_t)); 9048 9049 return (0); 9050 } 9051 9052 /* ARGSUSED */ 9053 static void 9054 sfmmu_idcache_destructor(void *buf, void *cdrarg) 9055 { 9056 /* void *buf is sfmmu_t pointer */ 9057 } 9058 9059 /* 9060 * setup kmem hmeblks by bzeroing all members and initializing the nextpa 9061 * field to be the pa of this hmeblk 9062 */ 9063 /* ARGSUSED */ 9064 static int 9065 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags) 9066 { 9067 struct hme_blk *hmeblkp; 9068 9069 bzero(buf, (size_t)cdrarg); 9070 hmeblkp = (struct hme_blk *)buf; 9071 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp); 9072 9073 #ifdef HBLK_TRACE 9074 mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL); 9075 #endif /* HBLK_TRACE */ 9076 9077 return (0); 9078 } 9079 9080 /* ARGSUSED */ 9081 static void 9082 sfmmu_hblkcache_destructor(void *buf, void *cdrarg) 9083 { 9084 9085 #ifdef HBLK_TRACE 9086 9087 struct hme_blk *hmeblkp; 9088 9089 hmeblkp = (struct hme_blk *)buf; 9090 mutex_destroy(&hmeblkp->hblk_audit_lock); 9091 9092 #endif /* HBLK_TRACE */ 9093 } 9094 9095 #define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8 9096 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO; 9097 /* 9098 * The kmem allocator will callback into our reclaim routine when the system 9099 * is running low in memory. We traverse the hash and free up all unused but 9100 * still cached hme_blks. We also traverse the free list and free them up 9101 * as well. 9102 */ 9103 /*ARGSUSED*/ 9104 static void 9105 sfmmu_hblkcache_reclaim(void *cdrarg) 9106 { 9107 int i; 9108 struct hmehash_bucket *hmebp; 9109 struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL; 9110 static struct hmehash_bucket *uhmehash_reclaim_hand; 9111 static struct hmehash_bucket *khmehash_reclaim_hand; 9112 struct hme_blk *list = NULL, *last_hmeblkp; 9113 cpuset_t cpuset = cpu_ready_set; 9114 cpu_hme_pend_t *cpuhp; 9115 9116 /* Free up hmeblks on the cpu pending lists */ 9117 for (i = 0; i < NCPU; i++) { 9118 cpuhp = &cpu_hme_pend[i]; 9119 if (cpuhp->chp_listp != NULL) { 9120 mutex_enter(&cpuhp->chp_mutex); 9121 if (cpuhp->chp_listp == NULL) { 9122 mutex_exit(&cpuhp->chp_mutex); 9123 continue; 9124 } 9125 for (last_hmeblkp = cpuhp->chp_listp; 9126 last_hmeblkp->hblk_next != NULL; 9127 last_hmeblkp = last_hmeblkp->hblk_next) 9128 ; 9129 last_hmeblkp->hblk_next = list; 9130 list = cpuhp->chp_listp; 9131 cpuhp->chp_listp = NULL; 9132 cpuhp->chp_count = 0; 9133 mutex_exit(&cpuhp->chp_mutex); 9134 } 9135 9136 } 9137 9138 if (list != NULL) { 9139 kpreempt_disable(); 9140 CPUSET_DEL(cpuset, CPU->cpu_id); 9141 xt_sync(cpuset); 9142 xt_sync(cpuset); 9143 kpreempt_enable(); 9144 sfmmu_hblk_free(&list); 9145 list = NULL; 9146 } 9147 9148 hmebp = uhmehash_reclaim_hand; 9149 if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ]) 9150 uhmehash_reclaim_hand = hmebp = uhme_hash; 9151 uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; 9152 9153 for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) { 9154 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) { 9155 hmeblkp = hmebp->hmeblkp; 9156 pr_hblk = NULL; 9157 while (hmeblkp) { 9158 nx_hblk = hmeblkp->hblk_next; 9159 if (!hmeblkp->hblk_vcnt && 9160 !hmeblkp->hblk_hmecnt) { 9161 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 9162 pr_hblk, &list, 0); 9163 } else { 9164 pr_hblk = hmeblkp; 9165 } 9166 hmeblkp = nx_hblk; 9167 } 9168 SFMMU_HASH_UNLOCK(hmebp); 9169 } 9170 if (hmebp++ == &uhme_hash[UHMEHASH_SZ]) 9171 hmebp = uhme_hash; 9172 } 9173 9174 hmebp = khmehash_reclaim_hand; 9175 if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ]) 9176 khmehash_reclaim_hand = hmebp = khme_hash; 9177 khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; 9178 9179 for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) { 9180 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) { 9181 hmeblkp = hmebp->hmeblkp; 9182 pr_hblk = NULL; 9183 while (hmeblkp) { 9184 nx_hblk = hmeblkp->hblk_next; 9185 if (!hmeblkp->hblk_vcnt && 9186 !hmeblkp->hblk_hmecnt) { 9187 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 9188 pr_hblk, &list, 0); 9189 } else { 9190 pr_hblk = hmeblkp; 9191 } 9192 hmeblkp = nx_hblk; 9193 } 9194 SFMMU_HASH_UNLOCK(hmebp); 9195 } 9196 if (hmebp++ == &khme_hash[KHMEHASH_SZ]) 9197 hmebp = khme_hash; 9198 } 9199 sfmmu_hblks_list_purge(&list, 0); 9200 } 9201 9202 /* 9203 * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface. 9204 * same goes for sfmmu_get_addrvcolor(). 9205 * 9206 * This function will return the virtual color for the specified page. The 9207 * virtual color corresponds to this page current mapping or its last mapping. 9208 * It is used by memory allocators to choose addresses with the correct 9209 * alignment so vac consistency is automatically maintained. If the page 9210 * has no color it returns -1. 9211 */ 9212 /*ARGSUSED*/ 9213 int 9214 sfmmu_get_ppvcolor(struct page *pp) 9215 { 9216 #ifdef VAC 9217 int color; 9218 9219 if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) { 9220 return (-1); 9221 } 9222 color = PP_GET_VCOLOR(pp); 9223 ASSERT(color < mmu_btop(shm_alignment)); 9224 return (color); 9225 #else 9226 return (-1); 9227 #endif /* VAC */ 9228 } 9229 9230 /* 9231 * This function will return the desired alignment for vac consistency 9232 * (vac color) given a virtual address. If no vac is present it returns -1. 9233 */ 9234 /*ARGSUSED*/ 9235 int 9236 sfmmu_get_addrvcolor(caddr_t vaddr) 9237 { 9238 #ifdef VAC 9239 if (cache & CACHE_VAC) { 9240 return (addr_to_vcolor(vaddr)); 9241 } else { 9242 return (-1); 9243 } 9244 #else 9245 return (-1); 9246 #endif /* VAC */ 9247 } 9248 9249 #ifdef VAC 9250 /* 9251 * Check for conflicts. 9252 * A conflict exists if the new and existent mappings do not match in 9253 * their "shm_alignment fields. If conflicts exist, the existant mappings 9254 * are flushed unless one of them is locked. If one of them is locked, then 9255 * the mappings are flushed and converted to non-cacheable mappings. 9256 */ 9257 static void 9258 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp) 9259 { 9260 struct hat *tmphat; 9261 struct sf_hment *sfhmep, *tmphme = NULL; 9262 struct hme_blk *hmeblkp; 9263 int vcolor; 9264 tte_t tte; 9265 9266 ASSERT(sfmmu_mlist_held(pp)); 9267 ASSERT(!PP_ISNC(pp)); /* page better be cacheable */ 9268 9269 vcolor = addr_to_vcolor(addr); 9270 if (PP_NEWPAGE(pp)) { 9271 PP_SET_VCOLOR(pp, vcolor); 9272 return; 9273 } 9274 9275 if (PP_GET_VCOLOR(pp) == vcolor) { 9276 return; 9277 } 9278 9279 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) { 9280 /* 9281 * Previous user of page had a different color 9282 * but since there are no current users 9283 * we just flush the cache and change the color. 9284 */ 9285 SFMMU_STAT(sf_pgcolor_conflict); 9286 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 9287 PP_SET_VCOLOR(pp, vcolor); 9288 return; 9289 } 9290 9291 /* 9292 * If we get here we have a vac conflict with a current 9293 * mapping. VAC conflict policy is as follows. 9294 * - The default is to unload the other mappings unless: 9295 * - If we have a large mapping we uncache the page. 9296 * We need to uncache the rest of the large page too. 9297 * - If any of the mappings are locked we uncache the page. 9298 * - If the requested mapping is inconsistent 9299 * with another mapping and that mapping 9300 * is in the same address space we have to 9301 * make it non-cached. The default thing 9302 * to do is unload the inconsistent mapping 9303 * but if they are in the same address space 9304 * we run the risk of unmapping the pc or the 9305 * stack which we will use as we return to the user, 9306 * in which case we can then fault on the thing 9307 * we just unloaded and get into an infinite loop. 9308 */ 9309 if (PP_ISMAPPED_LARGE(pp)) { 9310 int sz; 9311 9312 /* 9313 * Existing mapping is for big pages. We don't unload 9314 * existing big mappings to satisfy new mappings. 9315 * Always convert all mappings to TNC. 9316 */ 9317 sz = fnd_mapping_sz(pp); 9318 pp = PP_GROUPLEADER(pp, sz); 9319 SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz)); 9320 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 9321 TTEPAGES(sz)); 9322 9323 return; 9324 } 9325 9326 /* 9327 * check if any mapping is in same as or if it is locked 9328 * since in that case we need to uncache. 9329 */ 9330 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 9331 tmphme = sfhmep->hme_next; 9332 if (IS_PAHME(sfhmep)) 9333 continue; 9334 hmeblkp = sfmmu_hmetohblk(sfhmep); 9335 if (hmeblkp->hblk_xhat_bit) 9336 continue; 9337 tmphat = hblktosfmmu(hmeblkp); 9338 sfmmu_copytte(&sfhmep->hme_tte, &tte); 9339 ASSERT(TTE_IS_VALID(&tte)); 9340 if (hmeblkp->hblk_shared || tmphat == hat || 9341 hmeblkp->hblk_lckcnt) { 9342 /* 9343 * We have an uncache conflict 9344 */ 9345 SFMMU_STAT(sf_uncache_conflict); 9346 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1); 9347 return; 9348 } 9349 } 9350 9351 /* 9352 * We have an unload conflict 9353 * We have already checked for LARGE mappings, therefore 9354 * the remaining mapping(s) must be TTE8K. 9355 */ 9356 SFMMU_STAT(sf_unload_conflict); 9357 9358 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 9359 tmphme = sfhmep->hme_next; 9360 if (IS_PAHME(sfhmep)) 9361 continue; 9362 hmeblkp = sfmmu_hmetohblk(sfhmep); 9363 if (hmeblkp->hblk_xhat_bit) 9364 continue; 9365 ASSERT(!hmeblkp->hblk_shared); 9366 (void) sfmmu_pageunload(pp, sfhmep, TTE8K); 9367 } 9368 9369 if (PP_ISMAPPED_KPM(pp)) 9370 sfmmu_kpm_vac_unload(pp, addr); 9371 9372 /* 9373 * Unloads only do TLB flushes so we need to flush the 9374 * cache here. 9375 */ 9376 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 9377 PP_SET_VCOLOR(pp, vcolor); 9378 } 9379 9380 /* 9381 * Whenever a mapping is unloaded and the page is in TNC state, 9382 * we see if the page can be made cacheable again. 'pp' is 9383 * the page that we just unloaded a mapping from, the size 9384 * of mapping that was unloaded is 'ottesz'. 9385 * Remark: 9386 * The recache policy for mpss pages can leave a performance problem 9387 * under the following circumstances: 9388 * . A large page in uncached mode has just been unmapped. 9389 * . All constituent pages are TNC due to a conflicting small mapping. 9390 * . There are many other, non conflicting, small mappings around for 9391 * a lot of the constituent pages. 9392 * . We're called w/ the "old" groupleader page and the old ottesz, 9393 * but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so 9394 * we end up w/ TTE8K or npages == 1. 9395 * . We call tst_tnc w/ the old groupleader only, and if there is no 9396 * conflict, we re-cache only this page. 9397 * . All other small mappings are not checked and will be left in TNC mode. 9398 * The problem is not very serious because: 9399 * . mpss is actually only defined for heap and stack, so the probability 9400 * is not very high that a large page mapping exists in parallel to a small 9401 * one (this is possible, but seems to be bad programming style in the 9402 * appl). 9403 * . The problem gets a little bit more serious, when those TNC pages 9404 * have to be mapped into kernel space, e.g. for networking. 9405 * . When VAC alias conflicts occur in applications, this is regarded 9406 * as an application bug. So if kstat's show them, the appl should 9407 * be changed anyway. 9408 */ 9409 void 9410 conv_tnc(page_t *pp, int ottesz) 9411 { 9412 int cursz, dosz; 9413 pgcnt_t curnpgs, dopgs; 9414 pgcnt_t pg64k; 9415 page_t *pp2; 9416 9417 /* 9418 * Determine how big a range we check for TNC and find 9419 * leader page. cursz is the size of the biggest 9420 * mapping that still exist on 'pp'. 9421 */ 9422 if (PP_ISMAPPED_LARGE(pp)) { 9423 cursz = fnd_mapping_sz(pp); 9424 } else { 9425 cursz = TTE8K; 9426 } 9427 9428 if (ottesz >= cursz) { 9429 dosz = ottesz; 9430 pp2 = pp; 9431 } else { 9432 dosz = cursz; 9433 pp2 = PP_GROUPLEADER(pp, dosz); 9434 } 9435 9436 pg64k = TTEPAGES(TTE64K); 9437 dopgs = TTEPAGES(dosz); 9438 9439 ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0)); 9440 9441 while (dopgs != 0) { 9442 curnpgs = TTEPAGES(cursz); 9443 if (tst_tnc(pp2, curnpgs)) { 9444 SFMMU_STAT_ADD(sf_recache, curnpgs); 9445 sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH, 9446 curnpgs); 9447 } 9448 9449 ASSERT(dopgs >= curnpgs); 9450 dopgs -= curnpgs; 9451 9452 if (dopgs == 0) { 9453 break; 9454 } 9455 9456 pp2 = PP_PAGENEXT_N(pp2, curnpgs); 9457 if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) { 9458 cursz = fnd_mapping_sz(pp2); 9459 } else { 9460 cursz = TTE8K; 9461 } 9462 } 9463 } 9464 9465 /* 9466 * Returns 1 if page(s) can be converted from TNC to cacheable setting, 9467 * returns 0 otherwise. Note that oaddr argument is valid for only 9468 * 8k pages. 9469 */ 9470 int 9471 tst_tnc(page_t *pp, pgcnt_t npages) 9472 { 9473 struct sf_hment *sfhme; 9474 struct hme_blk *hmeblkp; 9475 tte_t tte; 9476 caddr_t vaddr; 9477 int clr_valid = 0; 9478 int color, color1, bcolor; 9479 int i, ncolors; 9480 9481 ASSERT(pp != NULL); 9482 ASSERT(!(cache & CACHE_WRITEBACK)); 9483 9484 if (npages > 1) { 9485 ncolors = CACHE_NUM_COLOR; 9486 } 9487 9488 for (i = 0; i < npages; i++) { 9489 ASSERT(sfmmu_mlist_held(pp)); 9490 ASSERT(PP_ISTNC(pp)); 9491 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR); 9492 9493 if (PP_ISPNC(pp)) { 9494 return (0); 9495 } 9496 9497 clr_valid = 0; 9498 if (PP_ISMAPPED_KPM(pp)) { 9499 caddr_t kpmvaddr; 9500 9501 ASSERT(kpm_enable); 9502 kpmvaddr = hat_kpm_page2va(pp, 1); 9503 ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr))); 9504 color1 = addr_to_vcolor(kpmvaddr); 9505 clr_valid = 1; 9506 } 9507 9508 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) { 9509 if (IS_PAHME(sfhme)) 9510 continue; 9511 hmeblkp = sfmmu_hmetohblk(sfhme); 9512 if (hmeblkp->hblk_xhat_bit) 9513 continue; 9514 9515 sfmmu_copytte(&sfhme->hme_tte, &tte); 9516 ASSERT(TTE_IS_VALID(&tte)); 9517 9518 vaddr = tte_to_vaddr(hmeblkp, tte); 9519 color = addr_to_vcolor(vaddr); 9520 9521 if (npages > 1) { 9522 /* 9523 * If there is a big mapping, make sure 9524 * 8K mapping is consistent with the big 9525 * mapping. 9526 */ 9527 bcolor = i % ncolors; 9528 if (color != bcolor) { 9529 return (0); 9530 } 9531 } 9532 if (!clr_valid) { 9533 clr_valid = 1; 9534 color1 = color; 9535 } 9536 9537 if (color1 != color) { 9538 return (0); 9539 } 9540 } 9541 9542 pp = PP_PAGENEXT(pp); 9543 } 9544 9545 return (1); 9546 } 9547 9548 void 9549 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag, 9550 pgcnt_t npages) 9551 { 9552 kmutex_t *pmtx; 9553 int i, ncolors, bcolor; 9554 kpm_hlk_t *kpmp; 9555 cpuset_t cpuset; 9556 9557 ASSERT(pp != NULL); 9558 ASSERT(!(cache & CACHE_WRITEBACK)); 9559 9560 kpmp = sfmmu_kpm_kpmp_enter(pp, npages); 9561 pmtx = sfmmu_page_enter(pp); 9562 9563 /* 9564 * Fast path caching single unmapped page 9565 */ 9566 if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) && 9567 flags == HAT_CACHE) { 9568 PP_CLRTNC(pp); 9569 PP_CLRPNC(pp); 9570 sfmmu_page_exit(pmtx); 9571 sfmmu_kpm_kpmp_exit(kpmp); 9572 return; 9573 } 9574 9575 /* 9576 * We need to capture all cpus in order to change cacheability 9577 * because we can't allow one cpu to access the same physical 9578 * page using a cacheable and a non-cachebale mapping at the same 9579 * time. Since we may end up walking the ism mapping list 9580 * have to grab it's lock now since we can't after all the 9581 * cpus have been captured. 9582 */ 9583 sfmmu_hat_lock_all(); 9584 mutex_enter(&ism_mlist_lock); 9585 kpreempt_disable(); 9586 cpuset = cpu_ready_set; 9587 xc_attention(cpuset); 9588 9589 if (npages > 1) { 9590 /* 9591 * Make sure all colors are flushed since the 9592 * sfmmu_page_cache() only flushes one color- 9593 * it does not know big pages. 9594 */ 9595 ncolors = CACHE_NUM_COLOR; 9596 if (flags & HAT_TMPNC) { 9597 for (i = 0; i < ncolors; i++) { 9598 sfmmu_cache_flushcolor(i, pp->p_pagenum); 9599 } 9600 cache_flush_flag = CACHE_NO_FLUSH; 9601 } 9602 } 9603 9604 for (i = 0; i < npages; i++) { 9605 9606 ASSERT(sfmmu_mlist_held(pp)); 9607 9608 if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) { 9609 9610 if (npages > 1) { 9611 bcolor = i % ncolors; 9612 } else { 9613 bcolor = NO_VCOLOR; 9614 } 9615 9616 sfmmu_page_cache(pp, flags, cache_flush_flag, 9617 bcolor); 9618 } 9619 9620 pp = PP_PAGENEXT(pp); 9621 } 9622 9623 xt_sync(cpuset); 9624 xc_dismissed(cpuset); 9625 mutex_exit(&ism_mlist_lock); 9626 sfmmu_hat_unlock_all(); 9627 sfmmu_page_exit(pmtx); 9628 sfmmu_kpm_kpmp_exit(kpmp); 9629 kpreempt_enable(); 9630 } 9631 9632 /* 9633 * This function changes the virtual cacheability of all mappings to a 9634 * particular page. When changing from uncache to cacheable the mappings will 9635 * only be changed if all of them have the same virtual color. 9636 * We need to flush the cache in all cpus. It is possible that 9637 * a process referenced a page as cacheable but has sinced exited 9638 * and cleared the mapping list. We still to flush it but have no 9639 * state so all cpus is the only alternative. 9640 */ 9641 static void 9642 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor) 9643 { 9644 struct sf_hment *sfhme; 9645 struct hme_blk *hmeblkp; 9646 sfmmu_t *sfmmup; 9647 tte_t tte, ttemod; 9648 caddr_t vaddr; 9649 int ret, color; 9650 pfn_t pfn; 9651 9652 color = bcolor; 9653 pfn = pp->p_pagenum; 9654 9655 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) { 9656 9657 if (IS_PAHME(sfhme)) 9658 continue; 9659 hmeblkp = sfmmu_hmetohblk(sfhme); 9660 9661 if (hmeblkp->hblk_xhat_bit) 9662 continue; 9663 9664 sfmmu_copytte(&sfhme->hme_tte, &tte); 9665 ASSERT(TTE_IS_VALID(&tte)); 9666 vaddr = tte_to_vaddr(hmeblkp, tte); 9667 color = addr_to_vcolor(vaddr); 9668 9669 #ifdef DEBUG 9670 if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) { 9671 ASSERT(color == bcolor); 9672 } 9673 #endif 9674 9675 ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp)); 9676 9677 ttemod = tte; 9678 if (flags & (HAT_UNCACHE | HAT_TMPNC)) { 9679 TTE_CLR_VCACHEABLE(&ttemod); 9680 } else { /* flags & HAT_CACHE */ 9681 TTE_SET_VCACHEABLE(&ttemod); 9682 } 9683 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 9684 if (ret < 0) { 9685 /* 9686 * Since all cpus are captured modifytte should not 9687 * fail. 9688 */ 9689 panic("sfmmu_page_cache: write to tte failed"); 9690 } 9691 9692 sfmmup = hblktosfmmu(hmeblkp); 9693 if (cache_flush_flag == CACHE_FLUSH) { 9694 /* 9695 * Flush TSBs, TLBs and caches 9696 */ 9697 if (hmeblkp->hblk_shared) { 9698 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 9699 uint_t rid = hmeblkp->hblk_tag.htag_rid; 9700 sf_region_t *rgnp; 9701 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 9702 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 9703 ASSERT(srdp != NULL); 9704 rgnp = srdp->srd_hmergnp[rid]; 9705 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, 9706 srdp, rgnp, rid); 9707 (void) sfmmu_rgntlb_demap(vaddr, rgnp, 9708 hmeblkp, 0); 9709 sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr)); 9710 } else if (sfmmup->sfmmu_ismhat) { 9711 if (flags & HAT_CACHE) { 9712 SFMMU_STAT(sf_ism_recache); 9713 } else { 9714 SFMMU_STAT(sf_ism_uncache); 9715 } 9716 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp, 9717 pfn, CACHE_FLUSH); 9718 } else { 9719 sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp, 9720 pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1); 9721 } 9722 9723 /* 9724 * all cache entries belonging to this pfn are 9725 * now flushed. 9726 */ 9727 cache_flush_flag = CACHE_NO_FLUSH; 9728 } else { 9729 /* 9730 * Flush only TSBs and TLBs. 9731 */ 9732 if (hmeblkp->hblk_shared) { 9733 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 9734 uint_t rid = hmeblkp->hblk_tag.htag_rid; 9735 sf_region_t *rgnp; 9736 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 9737 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 9738 ASSERT(srdp != NULL); 9739 rgnp = srdp->srd_hmergnp[rid]; 9740 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, 9741 srdp, rgnp, rid); 9742 (void) sfmmu_rgntlb_demap(vaddr, rgnp, 9743 hmeblkp, 0); 9744 } else if (sfmmup->sfmmu_ismhat) { 9745 if (flags & HAT_CACHE) { 9746 SFMMU_STAT(sf_ism_recache); 9747 } else { 9748 SFMMU_STAT(sf_ism_uncache); 9749 } 9750 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp, 9751 pfn, CACHE_NO_FLUSH); 9752 } else { 9753 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1); 9754 } 9755 } 9756 } 9757 9758 if (PP_ISMAPPED_KPM(pp)) 9759 sfmmu_kpm_page_cache(pp, flags, cache_flush_flag); 9760 9761 switch (flags) { 9762 9763 default: 9764 panic("sfmmu_pagecache: unknown flags"); 9765 break; 9766 9767 case HAT_CACHE: 9768 PP_CLRTNC(pp); 9769 PP_CLRPNC(pp); 9770 PP_SET_VCOLOR(pp, color); 9771 break; 9772 9773 case HAT_TMPNC: 9774 PP_SETTNC(pp); 9775 PP_SET_VCOLOR(pp, NO_VCOLOR); 9776 break; 9777 9778 case HAT_UNCACHE: 9779 PP_SETPNC(pp); 9780 PP_CLRTNC(pp); 9781 PP_SET_VCOLOR(pp, NO_VCOLOR); 9782 break; 9783 } 9784 } 9785 #endif /* VAC */ 9786 9787 9788 /* 9789 * Wrapper routine used to return a context. 9790 * 9791 * It's the responsibility of the caller to guarantee that the 9792 * process serializes on calls here by taking the HAT lock for 9793 * the hat. 9794 * 9795 */ 9796 static void 9797 sfmmu_get_ctx(sfmmu_t *sfmmup) 9798 { 9799 mmu_ctx_t *mmu_ctxp; 9800 uint_t pstate_save; 9801 int ret; 9802 9803 ASSERT(sfmmu_hat_lock_held(sfmmup)); 9804 ASSERT(sfmmup != ksfmmup); 9805 9806 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) { 9807 sfmmu_setup_tsbinfo(sfmmup); 9808 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID); 9809 } 9810 9811 kpreempt_disable(); 9812 9813 mmu_ctxp = CPU_MMU_CTXP(CPU); 9814 ASSERT(mmu_ctxp); 9815 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms); 9816 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]); 9817 9818 /* 9819 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU. 9820 */ 9821 if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs) 9822 sfmmu_ctx_wrap_around(mmu_ctxp, B_TRUE); 9823 9824 /* 9825 * Let the MMU set up the page sizes to use for 9826 * this context in the TLB. Don't program 2nd dtlb for ism hat. 9827 */ 9828 if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) { 9829 mmu_set_ctx_page_sizes(sfmmup); 9830 } 9831 9832 /* 9833 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with 9834 * interrupts disabled to prevent race condition with wrap-around 9835 * ctx invalidatation. In sun4v, ctx invalidation also involves 9836 * a HV call to set the number of TSBs to 0. If interrupts are not 9837 * disabled until after sfmmu_load_mmustate is complete TSBs may 9838 * become assigned to INVALID_CONTEXT. This is not allowed. 9839 */ 9840 pstate_save = sfmmu_disable_intrs(); 9841 9842 if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) && 9843 sfmmup->sfmmu_scdp != NULL) { 9844 sf_scd_t *scdp = sfmmup->sfmmu_scdp; 9845 sfmmu_t *scsfmmup = scdp->scd_sfmmup; 9846 ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED); 9847 /* debug purpose only */ 9848 ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum 9849 != INVALID_CONTEXT); 9850 } 9851 sfmmu_load_mmustate(sfmmup); 9852 9853 sfmmu_enable_intrs(pstate_save); 9854 9855 kpreempt_enable(); 9856 } 9857 9858 /* 9859 * When all cnums are used up in a MMU, cnum will wrap around to the 9860 * next generation and start from 2. 9861 */ 9862 static void 9863 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp, boolean_t reset_cnum) 9864 { 9865 9866 /* caller must have disabled the preemption */ 9867 ASSERT(curthread->t_preempt >= 1); 9868 ASSERT(mmu_ctxp != NULL); 9869 9870 /* acquire Per-MMU (PM) spin lock */ 9871 mutex_enter(&mmu_ctxp->mmu_lock); 9872 9873 /* re-check to see if wrap-around is needed */ 9874 if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs) 9875 goto done; 9876 9877 SFMMU_MMU_STAT(mmu_wrap_around); 9878 9879 /* update gnum */ 9880 ASSERT(mmu_ctxp->mmu_gnum != 0); 9881 mmu_ctxp->mmu_gnum++; 9882 if (mmu_ctxp->mmu_gnum == 0 || 9883 mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) { 9884 cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.", 9885 (void *)mmu_ctxp); 9886 } 9887 9888 if (mmu_ctxp->mmu_ncpus > 1) { 9889 cpuset_t cpuset; 9890 9891 membar_enter(); /* make sure updated gnum visible */ 9892 9893 SFMMU_XCALL_STATS(NULL); 9894 9895 /* xcall to others on the same MMU to invalidate ctx */ 9896 cpuset = mmu_ctxp->mmu_cpuset; 9897 ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id) || !reset_cnum); 9898 CPUSET_DEL(cpuset, CPU->cpu_id); 9899 CPUSET_AND(cpuset, cpu_ready_set); 9900 9901 /* 9902 * Pass in INVALID_CONTEXT as the first parameter to 9903 * sfmmu_raise_tsb_exception, which invalidates the context 9904 * of any process running on the CPUs in the MMU. 9905 */ 9906 xt_some(cpuset, sfmmu_raise_tsb_exception, 9907 INVALID_CONTEXT, INVALID_CONTEXT); 9908 xt_sync(cpuset); 9909 9910 SFMMU_MMU_STAT(mmu_tsb_raise_exception); 9911 } 9912 9913 if (sfmmu_getctx_sec() != INVALID_CONTEXT) { 9914 sfmmu_setctx_sec(INVALID_CONTEXT); 9915 sfmmu_clear_utsbinfo(); 9916 } 9917 9918 /* 9919 * No xcall is needed here. For sun4u systems all CPUs in context 9920 * domain share a single physical MMU therefore it's enough to flush 9921 * TLB on local CPU. On sun4v systems we use 1 global context 9922 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception 9923 * handler. Note that vtag_flushall_uctxs() is called 9924 * for Ultra II machine, where the equivalent flushall functionality 9925 * is implemented in SW, and only user ctx TLB entries are flushed. 9926 */ 9927 if (&vtag_flushall_uctxs != NULL) { 9928 vtag_flushall_uctxs(); 9929 } else { 9930 vtag_flushall(); 9931 } 9932 9933 /* reset mmu cnum, skips cnum 0 and 1 */ 9934 if (reset_cnum == B_TRUE) 9935 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS; 9936 9937 done: 9938 mutex_exit(&mmu_ctxp->mmu_lock); 9939 } 9940 9941 9942 /* 9943 * For multi-threaded process, set the process context to INVALID_CONTEXT 9944 * so that it faults and reloads the MMU state from TL=0. For single-threaded 9945 * process, we can just load the MMU state directly without having to 9946 * set context invalid. Caller must hold the hat lock since we don't 9947 * acquire it here. 9948 */ 9949 static void 9950 sfmmu_sync_mmustate(sfmmu_t *sfmmup) 9951 { 9952 uint_t cnum; 9953 uint_t pstate_save; 9954 9955 ASSERT(sfmmup != ksfmmup); 9956 ASSERT(sfmmu_hat_lock_held(sfmmup)); 9957 9958 kpreempt_disable(); 9959 9960 /* 9961 * We check whether the pass'ed-in sfmmup is the same as the 9962 * current running proc. This is to makes sure the current proc 9963 * stays single-threaded if it already is. 9964 */ 9965 if ((sfmmup == curthread->t_procp->p_as->a_hat) && 9966 (curthread->t_procp->p_lwpcnt == 1)) { 9967 /* single-thread */ 9968 cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum; 9969 if (cnum != INVALID_CONTEXT) { 9970 uint_t curcnum; 9971 /* 9972 * Disable interrupts to prevent race condition 9973 * with sfmmu_ctx_wrap_around ctx invalidation. 9974 * In sun4v, ctx invalidation involves setting 9975 * TSB to NULL, hence, interrupts should be disabled 9976 * untill after sfmmu_load_mmustate is completed. 9977 */ 9978 pstate_save = sfmmu_disable_intrs(); 9979 curcnum = sfmmu_getctx_sec(); 9980 if (curcnum == cnum) 9981 sfmmu_load_mmustate(sfmmup); 9982 sfmmu_enable_intrs(pstate_save); 9983 ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT); 9984 } 9985 } else { 9986 /* 9987 * multi-thread 9988 * or when sfmmup is not the same as the curproc. 9989 */ 9990 sfmmu_invalidate_ctx(sfmmup); 9991 } 9992 9993 kpreempt_enable(); 9994 } 9995 9996 9997 /* 9998 * Replace the specified TSB with a new TSB. This function gets called when 9999 * we grow, shrink or swapin a TSB. When swapping in a TSB (TSB_SWAPIN), the 10000 * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB 10001 * (8K). 10002 * 10003 * Caller must hold the HAT lock, but should assume any tsb_info 10004 * pointers it has are no longer valid after calling this function. 10005 * 10006 * Return values: 10007 * TSB_ALLOCFAIL Failed to allocate a TSB, due to memory constraints 10008 * TSB_LOSTRACE HAT is busy, i.e. another thread is already doing 10009 * something to this tsbinfo/TSB 10010 * TSB_SUCCESS Operation succeeded 10011 */ 10012 static tsb_replace_rc_t 10013 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc, 10014 hatlock_t *hatlockp, uint_t flags) 10015 { 10016 struct tsb_info *new_tsbinfo = NULL; 10017 struct tsb_info *curtsb, *prevtsb; 10018 uint_t tte_sz_mask; 10019 int i; 10020 10021 ASSERT(sfmmup != ksfmmup); 10022 ASSERT(sfmmup->sfmmu_ismhat == 0); 10023 ASSERT(sfmmu_hat_lock_held(sfmmup)); 10024 ASSERT(szc <= tsb_max_growsize); 10025 10026 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY)) 10027 return (TSB_LOSTRACE); 10028 10029 /* 10030 * Find the tsb_info ahead of this one in the list, and 10031 * also make sure that the tsb_info passed in really 10032 * exists! 10033 */ 10034 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb; 10035 curtsb != old_tsbinfo && curtsb != NULL; 10036 prevtsb = curtsb, curtsb = curtsb->tsb_next) 10037 ; 10038 ASSERT(curtsb != NULL); 10039 10040 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 10041 /* 10042 * The process is swapped out, so just set the new size 10043 * code. When it swaps back in, we'll allocate a new one 10044 * of the new chosen size. 10045 */ 10046 curtsb->tsb_szc = szc; 10047 return (TSB_SUCCESS); 10048 } 10049 SFMMU_FLAGS_SET(sfmmup, HAT_BUSY); 10050 10051 tte_sz_mask = old_tsbinfo->tsb_ttesz_mask; 10052 10053 /* 10054 * All initialization is done inside of sfmmu_tsbinfo_alloc(). 10055 * If we fail to allocate a TSB, exit. 10056 * 10057 * If tsb grows with new tsb size > 4M and old tsb size < 4M, 10058 * then try 4M slab after the initial alloc fails. 10059 * 10060 * If tsb swapin with tsb size > 4M, then try 4M after the 10061 * initial alloc fails. 10062 */ 10063 sfmmu_hat_exit(hatlockp); 10064 if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, 10065 tte_sz_mask, flags, sfmmup) && 10066 (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) || 10067 (!(flags & TSB_SWAPIN) && 10068 (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) || 10069 sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE, 10070 tte_sz_mask, flags, sfmmup))) { 10071 (void) sfmmu_hat_enter(sfmmup); 10072 if (!(flags & TSB_SWAPIN)) 10073 SFMMU_STAT(sf_tsb_resize_failures); 10074 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 10075 return (TSB_ALLOCFAIL); 10076 } 10077 (void) sfmmu_hat_enter(sfmmup); 10078 10079 /* 10080 * Re-check to make sure somebody else didn't muck with us while we 10081 * didn't hold the HAT lock. If the process swapped out, fine, just 10082 * exit; this can happen if we try to shrink the TSB from the context 10083 * of another process (such as on an ISM unmap), though it is rare. 10084 */ 10085 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 10086 SFMMU_STAT(sf_tsb_resize_failures); 10087 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 10088 sfmmu_hat_exit(hatlockp); 10089 sfmmu_tsbinfo_free(new_tsbinfo); 10090 (void) sfmmu_hat_enter(sfmmup); 10091 return (TSB_LOSTRACE); 10092 } 10093 10094 #ifdef DEBUG 10095 /* Reverify that the tsb_info still exists.. for debugging only */ 10096 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb; 10097 curtsb != old_tsbinfo && curtsb != NULL; 10098 prevtsb = curtsb, curtsb = curtsb->tsb_next) 10099 ; 10100 ASSERT(curtsb != NULL); 10101 #endif /* DEBUG */ 10102 10103 /* 10104 * Quiesce any CPUs running this process on their next TLB miss 10105 * so they atomically see the new tsb_info. We temporarily set the 10106 * context to invalid context so new threads that come on processor 10107 * after we do the xcall to cpusran will also serialize behind the 10108 * HAT lock on TLB miss and will see the new TSB. Since this short 10109 * race with a new thread coming on processor is relatively rare, 10110 * this synchronization mechanism should be cheaper than always 10111 * pausing all CPUs for the duration of the setup, which is what 10112 * the old implementation did. This is particuarly true if we are 10113 * copying a huge chunk of memory around during that window. 10114 * 10115 * The memory barriers are to make sure things stay consistent 10116 * with resume() since it does not hold the HAT lock while 10117 * walking the list of tsb_info structures. 10118 */ 10119 if ((flags & TSB_SWAPIN) != TSB_SWAPIN) { 10120 /* The TSB is either growing or shrinking. */ 10121 sfmmu_invalidate_ctx(sfmmup); 10122 } else { 10123 /* 10124 * It is illegal to swap in TSBs from a process other 10125 * than a process being swapped in. This in turn 10126 * implies we do not have a valid MMU context here 10127 * since a process needs one to resolve translation 10128 * misses. 10129 */ 10130 ASSERT(curthread->t_procp->p_as->a_hat == sfmmup); 10131 } 10132 10133 #ifdef DEBUG 10134 ASSERT(max_mmu_ctxdoms > 0); 10135 10136 /* 10137 * Process should have INVALID_CONTEXT on all MMUs 10138 */ 10139 for (i = 0; i < max_mmu_ctxdoms; i++) { 10140 10141 ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT); 10142 } 10143 #endif 10144 10145 new_tsbinfo->tsb_next = old_tsbinfo->tsb_next; 10146 membar_stst(); /* strict ordering required */ 10147 if (prevtsb) 10148 prevtsb->tsb_next = new_tsbinfo; 10149 else 10150 sfmmup->sfmmu_tsb = new_tsbinfo; 10151 membar_enter(); /* make sure new TSB globally visible */ 10152 10153 /* 10154 * We need to migrate TSB entries from the old TSB to the new TSB 10155 * if tsb_remap_ttes is set and the TSB is growing. 10156 */ 10157 if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW)) 10158 sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo); 10159 10160 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 10161 10162 /* 10163 * Drop the HAT lock to free our old tsb_info. 10164 */ 10165 sfmmu_hat_exit(hatlockp); 10166 10167 if ((flags & TSB_GROW) == TSB_GROW) { 10168 SFMMU_STAT(sf_tsb_grow); 10169 } else if ((flags & TSB_SHRINK) == TSB_SHRINK) { 10170 SFMMU_STAT(sf_tsb_shrink); 10171 } 10172 10173 sfmmu_tsbinfo_free(old_tsbinfo); 10174 10175 (void) sfmmu_hat_enter(sfmmup); 10176 return (TSB_SUCCESS); 10177 } 10178 10179 /* 10180 * This function will re-program hat pgsz array, and invalidate the 10181 * process' context, forcing the process to switch to another 10182 * context on the next TLB miss, and therefore start using the 10183 * TLB that is reprogrammed for the new page sizes. 10184 */ 10185 void 10186 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz) 10187 { 10188 int i; 10189 hatlock_t *hatlockp = NULL; 10190 10191 hatlockp = sfmmu_hat_enter(sfmmup); 10192 /* USIII+-IV+ optimization, requires hat lock */ 10193 if (tmp_pgsz) { 10194 for (i = 0; i < mmu_page_sizes; i++) 10195 sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i]; 10196 } 10197 SFMMU_STAT(sf_tlb_reprog_pgsz); 10198 10199 sfmmu_invalidate_ctx(sfmmup); 10200 10201 sfmmu_hat_exit(hatlockp); 10202 } 10203 10204 /* 10205 * The scd_rttecnt field in the SCD must be updated to take account of the 10206 * regions which it contains. 10207 */ 10208 static void 10209 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp) 10210 { 10211 uint_t rid; 10212 uint_t i, j; 10213 ulong_t w; 10214 sf_region_t *rgnp; 10215 10216 ASSERT(srdp != NULL); 10217 10218 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) { 10219 if ((w = scdp->scd_region_map.bitmap[i]) == 0) { 10220 continue; 10221 } 10222 10223 j = 0; 10224 while (w) { 10225 if (!(w & 0x1)) { 10226 j++; 10227 w >>= 1; 10228 continue; 10229 } 10230 rid = (i << BT_ULSHIFT) | j; 10231 j++; 10232 w >>= 1; 10233 10234 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 10235 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 10236 rgnp = srdp->srd_hmergnp[rid]; 10237 ASSERT(rgnp->rgn_refcnt > 0); 10238 ASSERT(rgnp->rgn_id == rid); 10239 10240 scdp->scd_rttecnt[rgnp->rgn_pgszc] += 10241 rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc); 10242 10243 /* 10244 * Maintain the tsb0 inflation cnt for the regions 10245 * in the SCD. 10246 */ 10247 if (rgnp->rgn_pgszc >= TTE4M) { 10248 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt += 10249 rgnp->rgn_size >> 10250 (TTE_PAGE_SHIFT(TTE8K) + 2); 10251 } 10252 } 10253 } 10254 } 10255 10256 /* 10257 * This function assumes that there are either four or six supported page 10258 * sizes and at most two programmable TLBs, so we need to decide which 10259 * page sizes are most important and then tell the MMU layer so it 10260 * can adjust the TLB page sizes accordingly (if supported). 10261 * 10262 * If these assumptions change, this function will need to be 10263 * updated to support whatever the new limits are. 10264 * 10265 * The growing flag is nonzero if we are growing the address space, 10266 * and zero if it is shrinking. This allows us to decide whether 10267 * to grow or shrink our TSB, depending upon available memory 10268 * conditions. 10269 */ 10270 static void 10271 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing) 10272 { 10273 uint64_t ttecnt[MMU_PAGE_SIZES]; 10274 uint64_t tte8k_cnt, tte4m_cnt; 10275 uint8_t i; 10276 int sectsb_thresh; 10277 10278 /* 10279 * Kernel threads, processes with small address spaces not using 10280 * large pages, and dummy ISM HATs need not apply. 10281 */ 10282 if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL) 10283 return; 10284 10285 if (!SFMMU_LGPGS_INUSE(sfmmup) && 10286 sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor) 10287 return; 10288 10289 for (i = 0; i < mmu_page_sizes; i++) { 10290 ttecnt[i] = sfmmup->sfmmu_ttecnt[i] + 10291 sfmmup->sfmmu_ismttecnt[i]; 10292 } 10293 10294 /* Check pagesizes in use, and possibly reprogram DTLB. */ 10295 if (&mmu_check_page_sizes) 10296 mmu_check_page_sizes(sfmmup, ttecnt); 10297 10298 /* 10299 * Calculate the number of 8k ttes to represent the span of these 10300 * pages. 10301 */ 10302 tte8k_cnt = ttecnt[TTE8K] + 10303 (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) + 10304 (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT)); 10305 if (mmu_page_sizes == max_mmu_page_sizes) { 10306 tte4m_cnt = ttecnt[TTE4M] + 10307 (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) + 10308 (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M)); 10309 } else { 10310 tte4m_cnt = ttecnt[TTE4M]; 10311 } 10312 10313 /* 10314 * Inflate tte8k_cnt to allow for region large page allocation failure. 10315 */ 10316 tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt; 10317 10318 /* 10319 * Inflate TSB sizes by a factor of 2 if this process 10320 * uses 4M text pages to minimize extra conflict misses 10321 * in the first TSB since without counting text pages 10322 * 8K TSB may become too small. 10323 * 10324 * Also double the size of the second TSB to minimize 10325 * extra conflict misses due to competition between 4M text pages 10326 * and data pages. 10327 * 10328 * We need to adjust the second TSB allocation threshold by the 10329 * inflation factor, since there is no point in creating a second 10330 * TSB when we know all the mappings can fit in the I/D TLBs. 10331 */ 10332 sectsb_thresh = tsb_sectsb_threshold; 10333 if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) { 10334 tte8k_cnt <<= 1; 10335 tte4m_cnt <<= 1; 10336 sectsb_thresh <<= 1; 10337 } 10338 10339 /* 10340 * Check to see if our TSB is the right size; we may need to 10341 * grow or shrink it. If the process is small, our work is 10342 * finished at this point. 10343 */ 10344 if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) { 10345 return; 10346 } 10347 sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh); 10348 } 10349 10350 static void 10351 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt, 10352 uint64_t tte4m_cnt, int sectsb_thresh) 10353 { 10354 int tsb_bits; 10355 uint_t tsb_szc; 10356 struct tsb_info *tsbinfop; 10357 hatlock_t *hatlockp = NULL; 10358 10359 hatlockp = sfmmu_hat_enter(sfmmup); 10360 ASSERT(hatlockp != NULL); 10361 tsbinfop = sfmmup->sfmmu_tsb; 10362 ASSERT(tsbinfop != NULL); 10363 10364 /* 10365 * If we're growing, select the size based on RSS. If we're 10366 * shrinking, leave some room so we don't have to turn around and 10367 * grow again immediately. 10368 */ 10369 if (growing) 10370 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt); 10371 else 10372 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1); 10373 10374 if (!growing && (tsb_szc < tsbinfop->tsb_szc) && 10375 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) { 10376 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc, 10377 hatlockp, TSB_SHRINK); 10378 } else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) { 10379 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc, 10380 hatlockp, TSB_GROW); 10381 } 10382 tsbinfop = sfmmup->sfmmu_tsb; 10383 10384 /* 10385 * With the TLB and first TSB out of the way, we need to see if 10386 * we need a second TSB for 4M pages. If we managed to reprogram 10387 * the TLB page sizes above, the process will start using this new 10388 * TSB right away; otherwise, it will start using it on the next 10389 * context switch. Either way, it's no big deal so there's no 10390 * synchronization with the trap handlers here unless we grow the 10391 * TSB (in which case it's required to prevent using the old one 10392 * after it's freed). Note: second tsb is required for 32M/256M 10393 * page sizes. 10394 */ 10395 if (tte4m_cnt > sectsb_thresh) { 10396 /* 10397 * If we're growing, select the size based on RSS. If we're 10398 * shrinking, leave some room so we don't have to turn 10399 * around and grow again immediately. 10400 */ 10401 if (growing) 10402 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt); 10403 else 10404 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1); 10405 if (tsbinfop->tsb_next == NULL) { 10406 struct tsb_info *newtsb; 10407 int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)? 10408 0 : TSB_ALLOC; 10409 10410 sfmmu_hat_exit(hatlockp); 10411 10412 /* 10413 * Try to allocate a TSB for 4[32|256]M pages. If we 10414 * can't get the size we want, retry w/a minimum sized 10415 * TSB. If that still didn't work, give up; we can 10416 * still run without one. 10417 */ 10418 tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)? 10419 TSB4M|TSB32M|TSB256M:TSB4M; 10420 if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits, 10421 allocflags, sfmmup)) && 10422 (tsb_szc <= TSB_4M_SZCODE || 10423 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE, 10424 tsb_bits, allocflags, sfmmup)) && 10425 sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE, 10426 tsb_bits, allocflags, sfmmup)) { 10427 return; 10428 } 10429 10430 hatlockp = sfmmu_hat_enter(sfmmup); 10431 10432 sfmmu_invalidate_ctx(sfmmup); 10433 10434 if (sfmmup->sfmmu_tsb->tsb_next == NULL) { 10435 sfmmup->sfmmu_tsb->tsb_next = newtsb; 10436 SFMMU_STAT(sf_tsb_sectsb_create); 10437 sfmmu_hat_exit(hatlockp); 10438 return; 10439 } else { 10440 /* 10441 * It's annoying, but possible for us 10442 * to get here.. we dropped the HAT lock 10443 * because of locking order in the kmem 10444 * allocator, and while we were off getting 10445 * our memory, some other thread decided to 10446 * do us a favor and won the race to get a 10447 * second TSB for this process. Sigh. 10448 */ 10449 sfmmu_hat_exit(hatlockp); 10450 sfmmu_tsbinfo_free(newtsb); 10451 return; 10452 } 10453 } 10454 10455 /* 10456 * We have a second TSB, see if it's big enough. 10457 */ 10458 tsbinfop = tsbinfop->tsb_next; 10459 10460 /* 10461 * Check to see if our second TSB is the right size; 10462 * we may need to grow or shrink it. 10463 * To prevent thrashing (e.g. growing the TSB on a 10464 * subsequent map operation), only try to shrink if 10465 * the TSB reach exceeds twice the virtual address 10466 * space size. 10467 */ 10468 if (!growing && (tsb_szc < tsbinfop->tsb_szc) && 10469 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) { 10470 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, 10471 tsb_szc, hatlockp, TSB_SHRINK); 10472 } else if (growing && tsb_szc > tsbinfop->tsb_szc && 10473 TSB_OK_GROW()) { 10474 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, 10475 tsb_szc, hatlockp, TSB_GROW); 10476 } 10477 } 10478 10479 sfmmu_hat_exit(hatlockp); 10480 } 10481 10482 /* 10483 * Free up a sfmmu 10484 * Since the sfmmu is currently embedded in the hat struct we simply zero 10485 * out our fields and free up the ism map blk list if any. 10486 */ 10487 static void 10488 sfmmu_free_sfmmu(sfmmu_t *sfmmup) 10489 { 10490 ism_blk_t *blkp, *nx_blkp; 10491 #ifdef DEBUG 10492 ism_map_t *map; 10493 int i; 10494 #endif 10495 10496 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0); 10497 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0); 10498 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0); 10499 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0); 10500 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 10501 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 10502 ASSERT(SF_RGNMAP_ISNULL(sfmmup)); 10503 10504 sfmmup->sfmmu_free = 0; 10505 sfmmup->sfmmu_ismhat = 0; 10506 10507 blkp = sfmmup->sfmmu_iblk; 10508 sfmmup->sfmmu_iblk = NULL; 10509 10510 while (blkp) { 10511 #ifdef DEBUG 10512 map = blkp->iblk_maps; 10513 for (i = 0; i < ISM_MAP_SLOTS; i++) { 10514 ASSERT(map[i].imap_seg == 0); 10515 ASSERT(map[i].imap_ismhat == NULL); 10516 ASSERT(map[i].imap_ment == NULL); 10517 } 10518 #endif 10519 nx_blkp = blkp->iblk_next; 10520 blkp->iblk_next = NULL; 10521 blkp->iblk_nextpa = (uint64_t)-1; 10522 kmem_cache_free(ism_blk_cache, blkp); 10523 blkp = nx_blkp; 10524 } 10525 } 10526 10527 /* 10528 * Locking primitves accessed by HATLOCK macros 10529 */ 10530 10531 #define SFMMU_SPL_MTX (0x0) 10532 #define SFMMU_ML_MTX (0x1) 10533 10534 #define SFMMU_MLSPL_MTX(type, pg) (((type) == SFMMU_SPL_MTX) ? \ 10535 SPL_HASH(pg) : MLIST_HASH(pg)) 10536 10537 kmutex_t * 10538 sfmmu_page_enter(struct page *pp) 10539 { 10540 return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX)); 10541 } 10542 10543 void 10544 sfmmu_page_exit(kmutex_t *spl) 10545 { 10546 mutex_exit(spl); 10547 } 10548 10549 int 10550 sfmmu_page_spl_held(struct page *pp) 10551 { 10552 return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX)); 10553 } 10554 10555 kmutex_t * 10556 sfmmu_mlist_enter(struct page *pp) 10557 { 10558 return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX)); 10559 } 10560 10561 void 10562 sfmmu_mlist_exit(kmutex_t *mml) 10563 { 10564 mutex_exit(mml); 10565 } 10566 10567 int 10568 sfmmu_mlist_held(struct page *pp) 10569 { 10570 10571 return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX)); 10572 } 10573 10574 /* 10575 * Common code for sfmmu_mlist_enter() and sfmmu_page_enter(). For 10576 * sfmmu_mlist_enter() case mml_table lock array is used and for 10577 * sfmmu_page_enter() sfmmu_page_lock lock array is used. 10578 * 10579 * The lock is taken on a root page so that it protects an operation on all 10580 * constituent pages of a large page pp belongs to. 10581 * 10582 * The routine takes a lock from the appropriate array. The lock is determined 10583 * by hashing the root page. After taking the lock this routine checks if the 10584 * root page has the same size code that was used to determine the root (i.e 10585 * that root hasn't changed). If root page has the expected p_szc field we 10586 * have the right lock and it's returned to the caller. If root's p_szc 10587 * decreased we release the lock and retry from the beginning. This case can 10588 * happen due to hat_page_demote() decreasing p_szc between our load of p_szc 10589 * value and taking the lock. The number of retries due to p_szc decrease is 10590 * limited by the maximum p_szc value. If p_szc is 0 we return the lock 10591 * determined by hashing pp itself. 10592 * 10593 * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also 10594 * possible that p_szc can increase. To increase p_szc a thread has to lock 10595 * all constituent pages EXCL and do hat_pageunload() on all of them. All the 10596 * callers that don't hold a page locked recheck if hmeblk through which pp 10597 * was found still maps this pp. If it doesn't map it anymore returned lock 10598 * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of 10599 * p_szc increase after taking the lock it returns this lock without further 10600 * retries because in this case the caller doesn't care about which lock was 10601 * taken. The caller will drop it right away. 10602 * 10603 * After the routine returns it's guaranteed that hat_page_demote() can't 10604 * change p_szc field of any of constituent pages of a large page pp belongs 10605 * to as long as pp was either locked at least SHARED prior to this call or 10606 * the caller finds that hment that pointed to this pp still references this 10607 * pp (this also assumes that the caller holds hme hash bucket lock so that 10608 * the same pp can't be remapped into the same hmeblk after it was unmapped by 10609 * hat_pageunload()). 10610 */ 10611 static kmutex_t * 10612 sfmmu_mlspl_enter(struct page *pp, int type) 10613 { 10614 kmutex_t *mtx; 10615 uint_t prev_rszc = UINT_MAX; 10616 page_t *rootpp; 10617 uint_t szc; 10618 uint_t rszc; 10619 uint_t pszc = pp->p_szc; 10620 10621 ASSERT(pp != NULL); 10622 10623 again: 10624 if (pszc == 0) { 10625 mtx = SFMMU_MLSPL_MTX(type, pp); 10626 mutex_enter(mtx); 10627 return (mtx); 10628 } 10629 10630 /* The lock lives in the root page */ 10631 rootpp = PP_GROUPLEADER(pp, pszc); 10632 mtx = SFMMU_MLSPL_MTX(type, rootpp); 10633 mutex_enter(mtx); 10634 10635 /* 10636 * Return mml in the following 3 cases: 10637 * 10638 * 1) If pp itself is root since if its p_szc decreased before we took 10639 * the lock pp is still the root of smaller szc page. And if its p_szc 10640 * increased it doesn't matter what lock we return (see comment in 10641 * front of this routine). 10642 * 10643 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size 10644 * large page we have the right lock since any previous potential 10645 * hat_page_demote() is done demoting from greater than current root's 10646 * p_szc because hat_page_demote() changes root's p_szc last. No 10647 * further hat_page_demote() can start or be in progress since it 10648 * would need the same lock we currently hold. 10649 * 10650 * 3) If rootpp's p_szc increased since previous iteration it doesn't 10651 * matter what lock we return (see comment in front of this routine). 10652 */ 10653 if (pp == rootpp || (rszc = rootpp->p_szc) == pszc || 10654 rszc >= prev_rszc) { 10655 return (mtx); 10656 } 10657 10658 /* 10659 * hat_page_demote() could have decreased root's p_szc. 10660 * In this case pp's p_szc must also be smaller than pszc. 10661 * Retry. 10662 */ 10663 if (rszc < pszc) { 10664 szc = pp->p_szc; 10665 if (szc < pszc) { 10666 mutex_exit(mtx); 10667 pszc = szc; 10668 goto again; 10669 } 10670 /* 10671 * pp's p_szc increased after it was decreased. 10672 * page cannot be mapped. Return current lock. The caller 10673 * will drop it right away. 10674 */ 10675 return (mtx); 10676 } 10677 10678 /* 10679 * root's p_szc is greater than pp's p_szc. 10680 * hat_page_demote() is not done with all pages 10681 * yet. Wait for it to complete. 10682 */ 10683 mutex_exit(mtx); 10684 rootpp = PP_GROUPLEADER(rootpp, rszc); 10685 mtx = SFMMU_MLSPL_MTX(type, rootpp); 10686 mutex_enter(mtx); 10687 mutex_exit(mtx); 10688 prev_rszc = rszc; 10689 goto again; 10690 } 10691 10692 static int 10693 sfmmu_mlspl_held(struct page *pp, int type) 10694 { 10695 kmutex_t *mtx; 10696 10697 ASSERT(pp != NULL); 10698 /* The lock lives in the root page */ 10699 pp = PP_PAGEROOT(pp); 10700 ASSERT(pp != NULL); 10701 10702 mtx = SFMMU_MLSPL_MTX(type, pp); 10703 return (MUTEX_HELD(mtx)); 10704 } 10705 10706 static uint_t 10707 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical) 10708 { 10709 struct hme_blk *hblkp; 10710 10711 10712 if (freehblkp != NULL) { 10713 mutex_enter(&freehblkp_lock); 10714 if (freehblkp != NULL) { 10715 /* 10716 * If the current thread is owning hblk_reserve OR 10717 * critical request from sfmmu_hblk_steal() 10718 * let it succeed even if freehblkcnt is really low. 10719 */ 10720 if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) { 10721 SFMMU_STAT(sf_get_free_throttle); 10722 mutex_exit(&freehblkp_lock); 10723 return (0); 10724 } 10725 freehblkcnt--; 10726 *hmeblkpp = freehblkp; 10727 hblkp = *hmeblkpp; 10728 freehblkp = hblkp->hblk_next; 10729 mutex_exit(&freehblkp_lock); 10730 hblkp->hblk_next = NULL; 10731 SFMMU_STAT(sf_get_free_success); 10732 10733 ASSERT(hblkp->hblk_hmecnt == 0); 10734 ASSERT(hblkp->hblk_vcnt == 0); 10735 ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp)); 10736 10737 return (1); 10738 } 10739 mutex_exit(&freehblkp_lock); 10740 } 10741 10742 /* Check cpu hblk pending queues */ 10743 if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) { 10744 hblkp = *hmeblkpp; 10745 hblkp->hblk_next = NULL; 10746 hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp); 10747 10748 ASSERT(hblkp->hblk_hmecnt == 0); 10749 ASSERT(hblkp->hblk_vcnt == 0); 10750 10751 return (1); 10752 } 10753 10754 SFMMU_STAT(sf_get_free_fail); 10755 return (0); 10756 } 10757 10758 static uint_t 10759 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical) 10760 { 10761 struct hme_blk *hblkp; 10762 10763 ASSERT(hmeblkp->hblk_hmecnt == 0); 10764 ASSERT(hmeblkp->hblk_vcnt == 0); 10765 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp)); 10766 10767 /* 10768 * If the current thread is mapping into kernel space, 10769 * let it succede even if freehblkcnt is max 10770 * so that it will avoid freeing it to kmem. 10771 * This will prevent stack overflow due to 10772 * possible recursion since kmem_cache_free() 10773 * might require creation of a slab which 10774 * in turn needs an hmeblk to map that slab; 10775 * let's break this vicious chain at the first 10776 * opportunity. 10777 */ 10778 if (freehblkcnt < HBLK_RESERVE_CNT || critical) { 10779 mutex_enter(&freehblkp_lock); 10780 if (freehblkcnt < HBLK_RESERVE_CNT || critical) { 10781 SFMMU_STAT(sf_put_free_success); 10782 freehblkcnt++; 10783 hmeblkp->hblk_next = freehblkp; 10784 freehblkp = hmeblkp; 10785 mutex_exit(&freehblkp_lock); 10786 return (1); 10787 } 10788 mutex_exit(&freehblkp_lock); 10789 } 10790 10791 /* 10792 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here 10793 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and* 10794 * we are not in the process of mapping into kernel space. 10795 */ 10796 ASSERT(!critical); 10797 while (freehblkcnt > HBLK_RESERVE_CNT) { 10798 mutex_enter(&freehblkp_lock); 10799 if (freehblkcnt > HBLK_RESERVE_CNT) { 10800 freehblkcnt--; 10801 hblkp = freehblkp; 10802 freehblkp = hblkp->hblk_next; 10803 mutex_exit(&freehblkp_lock); 10804 ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache); 10805 kmem_cache_free(sfmmu8_cache, hblkp); 10806 continue; 10807 } 10808 mutex_exit(&freehblkp_lock); 10809 } 10810 SFMMU_STAT(sf_put_free_fail); 10811 return (0); 10812 } 10813 10814 static void 10815 sfmmu_hblk_swap(struct hme_blk *new) 10816 { 10817 struct hme_blk *old, *hblkp, *prev; 10818 uint64_t newpa; 10819 caddr_t base, vaddr, endaddr; 10820 struct hmehash_bucket *hmebp; 10821 struct sf_hment *osfhme, *nsfhme; 10822 page_t *pp; 10823 kmutex_t *pml; 10824 tte_t tte; 10825 struct hme_blk *list = NULL; 10826 10827 #ifdef DEBUG 10828 hmeblk_tag hblktag; 10829 struct hme_blk *found; 10830 #endif 10831 old = HBLK_RESERVE; 10832 ASSERT(!old->hblk_shared); 10833 10834 /* 10835 * save pa before bcopy clobbers it 10836 */ 10837 newpa = new->hblk_nextpa; 10838 10839 base = (caddr_t)get_hblk_base(old); 10840 endaddr = base + get_hblk_span(old); 10841 10842 /* 10843 * acquire hash bucket lock. 10844 */ 10845 hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K, 10846 SFMMU_INVALID_SHMERID); 10847 10848 /* 10849 * copy contents from old to new 10850 */ 10851 bcopy((void *)old, (void *)new, HME8BLK_SZ); 10852 10853 /* 10854 * add new to hash chain 10855 */ 10856 sfmmu_hblk_hash_add(hmebp, new, newpa); 10857 10858 /* 10859 * search hash chain for hblk_reserve; this needs to be performed 10860 * after adding new, otherwise prev won't correspond to the hblk which 10861 * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to 10862 * remove old later. 10863 */ 10864 for (prev = NULL, 10865 hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old; 10866 prev = hblkp, hblkp = hblkp->hblk_next) 10867 ; 10868 10869 if (hblkp != old) 10870 panic("sfmmu_hblk_swap: hblk_reserve not found"); 10871 10872 /* 10873 * p_mapping list is still pointing to hments in hblk_reserve; 10874 * fix up p_mapping list so that they point to hments in new. 10875 * 10876 * Since all these mappings are created by hblk_reserve_thread 10877 * on the way and it's using at least one of the buffers from each of 10878 * the newly minted slabs, there is no danger of any of these 10879 * mappings getting unloaded by another thread. 10880 * 10881 * tsbmiss could only modify ref/mod bits of hments in old/new. 10882 * Since all of these hments hold mappings established by segkmem 10883 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits 10884 * have no meaning for the mappings in hblk_reserve. hments in 10885 * old and new are identical except for ref/mod bits. 10886 */ 10887 for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) { 10888 10889 HBLKTOHME(osfhme, old, vaddr); 10890 sfmmu_copytte(&osfhme->hme_tte, &tte); 10891 10892 if (TTE_IS_VALID(&tte)) { 10893 if ((pp = osfhme->hme_page) == NULL) 10894 panic("sfmmu_hblk_swap: page not mapped"); 10895 10896 pml = sfmmu_mlist_enter(pp); 10897 10898 if (pp != osfhme->hme_page) 10899 panic("sfmmu_hblk_swap: mapping changed"); 10900 10901 HBLKTOHME(nsfhme, new, vaddr); 10902 10903 HME_ADD(nsfhme, pp); 10904 HME_SUB(osfhme, pp); 10905 10906 sfmmu_mlist_exit(pml); 10907 } 10908 } 10909 10910 /* 10911 * remove old from hash chain 10912 */ 10913 sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1); 10914 10915 #ifdef DEBUG 10916 10917 hblktag.htag_id = ksfmmup; 10918 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 10919 hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K)); 10920 hblktag.htag_rehash = HME_HASH_REHASH(TTE8K); 10921 HME_HASH_FAST_SEARCH(hmebp, hblktag, found); 10922 10923 if (found != new) 10924 panic("sfmmu_hblk_swap: new hblk not found"); 10925 #endif 10926 10927 SFMMU_HASH_UNLOCK(hmebp); 10928 10929 /* 10930 * Reset hblk_reserve 10931 */ 10932 bzero((void *)old, HME8BLK_SZ); 10933 old->hblk_nextpa = va_to_pa((caddr_t)old); 10934 } 10935 10936 /* 10937 * Grab the mlist mutex for both pages passed in. 10938 * 10939 * low and high will be returned as pointers to the mutexes for these pages. 10940 * low refers to the mutex residing in the lower bin of the mlist hash, while 10941 * high refers to the mutex residing in the higher bin of the mlist hash. This 10942 * is due to the locking order restrictions on the same thread grabbing 10943 * multiple mlist mutexes. The low lock must be acquired before the high lock. 10944 * 10945 * If both pages hash to the same mutex, only grab that single mutex, and 10946 * high will be returned as NULL 10947 * If the pages hash to different bins in the hash, grab the lower addressed 10948 * lock first and then the higher addressed lock in order to follow the locking 10949 * rules involved with the same thread grabbing multiple mlist mutexes. 10950 * low and high will both have non-NULL values. 10951 */ 10952 static void 10953 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl, 10954 kmutex_t **low, kmutex_t **high) 10955 { 10956 kmutex_t *mml_targ, *mml_repl; 10957 10958 /* 10959 * no need to do the dance around szc as in sfmmu_mlist_enter() 10960 * because this routine is only called by hat_page_relocate() and all 10961 * targ and repl pages are already locked EXCL so szc can't change. 10962 */ 10963 10964 mml_targ = MLIST_HASH(PP_PAGEROOT(targ)); 10965 mml_repl = MLIST_HASH(PP_PAGEROOT(repl)); 10966 10967 if (mml_targ == mml_repl) { 10968 *low = mml_targ; 10969 *high = NULL; 10970 } else { 10971 if (mml_targ < mml_repl) { 10972 *low = mml_targ; 10973 *high = mml_repl; 10974 } else { 10975 *low = mml_repl; 10976 *high = mml_targ; 10977 } 10978 } 10979 10980 mutex_enter(*low); 10981 if (*high) 10982 mutex_enter(*high); 10983 } 10984 10985 static void 10986 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high) 10987 { 10988 if (high) 10989 mutex_exit(high); 10990 mutex_exit(low); 10991 } 10992 10993 static hatlock_t * 10994 sfmmu_hat_enter(sfmmu_t *sfmmup) 10995 { 10996 hatlock_t *hatlockp; 10997 10998 if (sfmmup != ksfmmup) { 10999 hatlockp = TSB_HASH(sfmmup); 11000 mutex_enter(HATLOCK_MUTEXP(hatlockp)); 11001 return (hatlockp); 11002 } 11003 return (NULL); 11004 } 11005 11006 static hatlock_t * 11007 sfmmu_hat_tryenter(sfmmu_t *sfmmup) 11008 { 11009 hatlock_t *hatlockp; 11010 11011 if (sfmmup != ksfmmup) { 11012 hatlockp = TSB_HASH(sfmmup); 11013 if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0) 11014 return (NULL); 11015 return (hatlockp); 11016 } 11017 return (NULL); 11018 } 11019 11020 static void 11021 sfmmu_hat_exit(hatlock_t *hatlockp) 11022 { 11023 if (hatlockp != NULL) 11024 mutex_exit(HATLOCK_MUTEXP(hatlockp)); 11025 } 11026 11027 static void 11028 sfmmu_hat_lock_all(void) 11029 { 11030 int i; 11031 for (i = 0; i < SFMMU_NUM_LOCK; i++) 11032 mutex_enter(HATLOCK_MUTEXP(&hat_lock[i])); 11033 } 11034 11035 static void 11036 sfmmu_hat_unlock_all(void) 11037 { 11038 int i; 11039 for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--) 11040 mutex_exit(HATLOCK_MUTEXP(&hat_lock[i])); 11041 } 11042 11043 int 11044 sfmmu_hat_lock_held(sfmmu_t *sfmmup) 11045 { 11046 ASSERT(sfmmup != ksfmmup); 11047 return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup)))); 11048 } 11049 11050 /* 11051 * Locking primitives to provide consistency between ISM unmap 11052 * and other operations. Since ISM unmap can take a long time, we 11053 * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating 11054 * contention on the hatlock buckets while ISM segments are being 11055 * unmapped. The tradeoff is that the flags don't prevent priority 11056 * inversion from occurring, so we must request kernel priority in 11057 * case we have to sleep to keep from getting buried while holding 11058 * the HAT_ISMBUSY flag set, which in turn could block other kernel 11059 * threads from running (for example, in sfmmu_uvatopfn()). 11060 */ 11061 static void 11062 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held) 11063 { 11064 hatlock_t *hatlockp; 11065 11066 THREAD_KPRI_REQUEST(); 11067 if (!hatlock_held) 11068 hatlockp = sfmmu_hat_enter(sfmmup); 11069 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) 11070 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp)); 11071 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY); 11072 if (!hatlock_held) 11073 sfmmu_hat_exit(hatlockp); 11074 } 11075 11076 static void 11077 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held) 11078 { 11079 hatlock_t *hatlockp; 11080 11081 if (!hatlock_held) 11082 hatlockp = sfmmu_hat_enter(sfmmup); 11083 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 11084 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY); 11085 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 11086 if (!hatlock_held) 11087 sfmmu_hat_exit(hatlockp); 11088 THREAD_KPRI_RELEASE(); 11089 } 11090 11091 /* 11092 * 11093 * Algorithm: 11094 * 11095 * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed 11096 * hblks. 11097 * 11098 * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache, 11099 * 11100 * (a) try to return an hblk from reserve pool of free hblks; 11101 * (b) if the reserve pool is empty, acquire hblk_reserve_lock 11102 * and return hblk_reserve. 11103 * 11104 * (3) call kmem_cache_alloc() to allocate hblk; 11105 * 11106 * (a) if hblk_reserve_lock is held by the current thread, 11107 * atomically replace hblk_reserve by the hblk that is 11108 * returned by kmem_cache_alloc; release hblk_reserve_lock 11109 * and call kmem_cache_alloc() again. 11110 * (b) if reserve pool is not full, add the hblk that is 11111 * returned by kmem_cache_alloc to reserve pool and 11112 * call kmem_cache_alloc again. 11113 * 11114 */ 11115 static struct hme_blk * 11116 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr, 11117 struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag, 11118 uint_t flags, uint_t rid) 11119 { 11120 struct hme_blk *hmeblkp = NULL; 11121 struct hme_blk *newhblkp; 11122 struct hme_blk *shw_hblkp = NULL; 11123 struct kmem_cache *sfmmu_cache = NULL; 11124 uint64_t hblkpa; 11125 ulong_t index; 11126 uint_t owner; /* set to 1 if using hblk_reserve */ 11127 uint_t forcefree; 11128 int sleep; 11129 sf_srd_t *srdp; 11130 sf_region_t *rgnp; 11131 11132 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 11133 ASSERT(hblktag.htag_rid == rid); 11134 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size)); 11135 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || 11136 IS_P2ALIGNED(vaddr, TTEBYTES(size))); 11137 11138 /* 11139 * If segkmem is not created yet, allocate from static hmeblks 11140 * created at the end of startup_modules(). See the block comment 11141 * in startup_modules() describing how we estimate the number of 11142 * static hmeblks that will be needed during re-map. 11143 */ 11144 if (!hblk_alloc_dynamic) { 11145 11146 ASSERT(!SFMMU_IS_SHMERID_VALID(rid)); 11147 11148 if (size == TTE8K) { 11149 index = nucleus_hblk8.index; 11150 if (index >= nucleus_hblk8.len) { 11151 /* 11152 * If we panic here, see startup_modules() to 11153 * make sure that we are calculating the 11154 * number of hblk8's that we need correctly. 11155 */ 11156 prom_panic("no nucleus hblk8 to allocate"); 11157 } 11158 hmeblkp = 11159 (struct hme_blk *)&nucleus_hblk8.list[index]; 11160 nucleus_hblk8.index++; 11161 SFMMU_STAT(sf_hblk8_nalloc); 11162 } else { 11163 index = nucleus_hblk1.index; 11164 if (nucleus_hblk1.index >= nucleus_hblk1.len) { 11165 /* 11166 * If we panic here, see startup_modules(). 11167 * Most likely you need to update the 11168 * calculation of the number of hblk1 elements 11169 * that the kernel needs to boot. 11170 */ 11171 prom_panic("no nucleus hblk1 to allocate"); 11172 } 11173 hmeblkp = 11174 (struct hme_blk *)&nucleus_hblk1.list[index]; 11175 nucleus_hblk1.index++; 11176 SFMMU_STAT(sf_hblk1_nalloc); 11177 } 11178 11179 goto hblk_init; 11180 } 11181 11182 SFMMU_HASH_UNLOCK(hmebp); 11183 11184 if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) { 11185 if (mmu_page_sizes == max_mmu_page_sizes) { 11186 if (size < TTE256M) 11187 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr, 11188 size, flags); 11189 } else { 11190 if (size < TTE4M) 11191 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr, 11192 size, flags); 11193 } 11194 } else if (SFMMU_IS_SHMERID_VALID(rid)) { 11195 /* 11196 * Shared hmes use per region bitmaps in rgn_hmeflag 11197 * rather than shadow hmeblks to keep track of the 11198 * mapping sizes which have been allocated for the region. 11199 * Here we cleanup old invalid hmeblks with this rid, 11200 * which may be left around by pageunload(). 11201 */ 11202 int ttesz; 11203 caddr_t va; 11204 caddr_t eva = vaddr + TTEBYTES(size); 11205 11206 ASSERT(sfmmup != KHATID); 11207 11208 srdp = sfmmup->sfmmu_srdp; 11209 ASSERT(srdp != NULL && srdp->srd_refcnt != 0); 11210 rgnp = srdp->srd_hmergnp[rid]; 11211 ASSERT(rgnp != NULL && rgnp->rgn_id == rid); 11212 ASSERT(rgnp->rgn_refcnt != 0); 11213 ASSERT(size <= rgnp->rgn_pgszc); 11214 11215 ttesz = HBLK_MIN_TTESZ; 11216 do { 11217 if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) { 11218 continue; 11219 } 11220 11221 if (ttesz > size && ttesz != HBLK_MIN_TTESZ) { 11222 sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz); 11223 } else if (ttesz < size) { 11224 for (va = vaddr; va < eva; 11225 va += TTEBYTES(ttesz)) { 11226 sfmmu_cleanup_rhblk(srdp, va, rid, 11227 ttesz); 11228 } 11229 } 11230 } while (++ttesz <= rgnp->rgn_pgszc); 11231 } 11232 11233 fill_hblk: 11234 owner = (hblk_reserve_thread == curthread) ? 1 : 0; 11235 11236 if (owner && size == TTE8K) { 11237 11238 ASSERT(!SFMMU_IS_SHMERID_VALID(rid)); 11239 /* 11240 * We are really in a tight spot. We already own 11241 * hblk_reserve and we need another hblk. In anticipation 11242 * of this kind of scenario, we specifically set aside 11243 * HBLK_RESERVE_MIN number of hblks to be used exclusively 11244 * by owner of hblk_reserve. 11245 */ 11246 SFMMU_STAT(sf_hblk_recurse_cnt); 11247 11248 if (!sfmmu_get_free_hblk(&hmeblkp, 1)) 11249 panic("sfmmu_hblk_alloc: reserve list is empty"); 11250 11251 goto hblk_verify; 11252 } 11253 11254 ASSERT(!owner); 11255 11256 if ((flags & HAT_NO_KALLOC) == 0) { 11257 11258 sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache); 11259 sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP); 11260 11261 if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) { 11262 hmeblkp = sfmmu_hblk_steal(size); 11263 } else { 11264 /* 11265 * if we are the owner of hblk_reserve, 11266 * swap hblk_reserve with hmeblkp and 11267 * start a fresh life. Hope things go 11268 * better this time. 11269 */ 11270 if (hblk_reserve_thread == curthread) { 11271 ASSERT(sfmmu_cache == sfmmu8_cache); 11272 sfmmu_hblk_swap(hmeblkp); 11273 hblk_reserve_thread = NULL; 11274 mutex_exit(&hblk_reserve_lock); 11275 goto fill_hblk; 11276 } 11277 /* 11278 * let's donate this hblk to our reserve list if 11279 * we are not mapping kernel range 11280 */ 11281 if (size == TTE8K && sfmmup != KHATID) { 11282 if (sfmmu_put_free_hblk(hmeblkp, 0)) 11283 goto fill_hblk; 11284 } 11285 } 11286 } else { 11287 /* 11288 * We are here to map the slab in sfmmu8_cache; let's 11289 * check if we could tap our reserve list; if successful, 11290 * this will avoid the pain of going thru sfmmu_hblk_swap 11291 */ 11292 SFMMU_STAT(sf_hblk_slab_cnt); 11293 if (!sfmmu_get_free_hblk(&hmeblkp, 0)) { 11294 /* 11295 * let's start hblk_reserve dance 11296 */ 11297 SFMMU_STAT(sf_hblk_reserve_cnt); 11298 owner = 1; 11299 mutex_enter(&hblk_reserve_lock); 11300 hmeblkp = HBLK_RESERVE; 11301 hblk_reserve_thread = curthread; 11302 } 11303 } 11304 11305 hblk_verify: 11306 ASSERT(hmeblkp != NULL); 11307 set_hblk_sz(hmeblkp, size); 11308 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp)); 11309 SFMMU_HASH_LOCK(hmebp); 11310 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp); 11311 if (newhblkp != NULL) { 11312 SFMMU_HASH_UNLOCK(hmebp); 11313 if (hmeblkp != HBLK_RESERVE) { 11314 /* 11315 * This is really tricky! 11316 * 11317 * vmem_alloc(vmem_seg_arena) 11318 * vmem_alloc(vmem_internal_arena) 11319 * segkmem_alloc(heap_arena) 11320 * vmem_alloc(heap_arena) 11321 * page_create() 11322 * hat_memload() 11323 * kmem_cache_free() 11324 * kmem_cache_alloc() 11325 * kmem_slab_create() 11326 * vmem_alloc(kmem_internal_arena) 11327 * segkmem_alloc(heap_arena) 11328 * vmem_alloc(heap_arena) 11329 * page_create() 11330 * hat_memload() 11331 * kmem_cache_free() 11332 * ... 11333 * 11334 * Thus, hat_memload() could call kmem_cache_free 11335 * for enough number of times that we could easily 11336 * hit the bottom of the stack or run out of reserve 11337 * list of vmem_seg structs. So, we must donate 11338 * this hblk to reserve list if it's allocated 11339 * from sfmmu8_cache *and* mapping kernel range. 11340 * We don't need to worry about freeing hmeblk1's 11341 * to kmem since they don't map any kmem slabs. 11342 * 11343 * Note: When segkmem supports largepages, we must 11344 * free hmeblk1's to reserve list as well. 11345 */ 11346 forcefree = (sfmmup == KHATID) ? 1 : 0; 11347 if (size == TTE8K && 11348 sfmmu_put_free_hblk(hmeblkp, forcefree)) { 11349 goto re_verify; 11350 } 11351 ASSERT(sfmmup != KHATID); 11352 kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp); 11353 } else { 11354 /* 11355 * Hey! we don't need hblk_reserve any more. 11356 */ 11357 ASSERT(owner); 11358 hblk_reserve_thread = NULL; 11359 mutex_exit(&hblk_reserve_lock); 11360 owner = 0; 11361 } 11362 re_verify: 11363 /* 11364 * let's check if the goodies are still present 11365 */ 11366 SFMMU_HASH_LOCK(hmebp); 11367 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp); 11368 if (newhblkp != NULL) { 11369 /* 11370 * return newhblkp if it's not hblk_reserve; 11371 * if newhblkp is hblk_reserve, return it 11372 * _only if_ we are the owner of hblk_reserve. 11373 */ 11374 if (newhblkp != HBLK_RESERVE || owner) { 11375 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || 11376 newhblkp->hblk_shared); 11377 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || 11378 !newhblkp->hblk_shared); 11379 return (newhblkp); 11380 } else { 11381 /* 11382 * we just hit hblk_reserve in the hash and 11383 * we are not the owner of that; 11384 * 11385 * block until hblk_reserve_thread completes 11386 * swapping hblk_reserve and try the dance 11387 * once again. 11388 */ 11389 SFMMU_HASH_UNLOCK(hmebp); 11390 mutex_enter(&hblk_reserve_lock); 11391 mutex_exit(&hblk_reserve_lock); 11392 SFMMU_STAT(sf_hblk_reserve_hit); 11393 goto fill_hblk; 11394 } 11395 } else { 11396 /* 11397 * it's no more! try the dance once again. 11398 */ 11399 SFMMU_HASH_UNLOCK(hmebp); 11400 goto fill_hblk; 11401 } 11402 } 11403 11404 hblk_init: 11405 if (SFMMU_IS_SHMERID_VALID(rid)) { 11406 uint16_t tteflag = 0x1 << 11407 ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size); 11408 11409 if (!(rgnp->rgn_hmeflags & tteflag)) { 11410 atomic_or_16(&rgnp->rgn_hmeflags, tteflag); 11411 } 11412 hmeblkp->hblk_shared = 1; 11413 } else { 11414 hmeblkp->hblk_shared = 0; 11415 } 11416 set_hblk_sz(hmeblkp, size); 11417 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 11418 hmeblkp->hblk_next = (struct hme_blk *)NULL; 11419 hmeblkp->hblk_tag = hblktag; 11420 hmeblkp->hblk_shadow = shw_hblkp; 11421 hblkpa = hmeblkp->hblk_nextpa; 11422 hmeblkp->hblk_nextpa = HMEBLK_ENDPA; 11423 11424 ASSERT(get_hblk_ttesz(hmeblkp) == size); 11425 ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size)); 11426 ASSERT(hmeblkp->hblk_hmecnt == 0); 11427 ASSERT(hmeblkp->hblk_vcnt == 0); 11428 ASSERT(hmeblkp->hblk_lckcnt == 0); 11429 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp)); 11430 sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa); 11431 return (hmeblkp); 11432 } 11433 11434 /* 11435 * This function cleans up the hme_blk and returns it to the free list. 11436 */ 11437 /* ARGSUSED */ 11438 static void 11439 sfmmu_hblk_free(struct hme_blk **listp) 11440 { 11441 struct hme_blk *hmeblkp, *next_hmeblkp; 11442 int size; 11443 uint_t critical; 11444 uint64_t hblkpa; 11445 11446 ASSERT(*listp != NULL); 11447 11448 hmeblkp = *listp; 11449 while (hmeblkp != NULL) { 11450 next_hmeblkp = hmeblkp->hblk_next; 11451 ASSERT(!hmeblkp->hblk_hmecnt); 11452 ASSERT(!hmeblkp->hblk_vcnt); 11453 ASSERT(!hmeblkp->hblk_lckcnt); 11454 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve); 11455 ASSERT(hmeblkp->hblk_shared == 0); 11456 ASSERT(hmeblkp->hblk_shw_bit == 0); 11457 ASSERT(hmeblkp->hblk_shadow == NULL); 11458 11459 hblkpa = va_to_pa((caddr_t)hmeblkp); 11460 ASSERT(hblkpa != (uint64_t)-1); 11461 critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0; 11462 11463 size = get_hblk_ttesz(hmeblkp); 11464 hmeblkp->hblk_next = NULL; 11465 hmeblkp->hblk_nextpa = hblkpa; 11466 11467 if (hmeblkp->hblk_nuc_bit == 0) { 11468 11469 if (size != TTE8K || 11470 !sfmmu_put_free_hblk(hmeblkp, critical)) 11471 kmem_cache_free(get_hblk_cache(hmeblkp), 11472 hmeblkp); 11473 } 11474 hmeblkp = next_hmeblkp; 11475 } 11476 } 11477 11478 #define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30 11479 #define SFMMU_HBLK_STEAL_THRESHOLD 5 11480 11481 static uint_t sfmmu_hblk_steal_twice; 11482 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count; 11483 11484 /* 11485 * Steal a hmeblk from user or kernel hme hash lists. 11486 * For 8K tte grab one from reserve pool (freehblkp) before proceeding to 11487 * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts 11488 * tap into critical reserve of freehblkp. 11489 * Note: We remain looping in this routine until we find one. 11490 */ 11491 static struct hme_blk * 11492 sfmmu_hblk_steal(int size) 11493 { 11494 static struct hmehash_bucket *uhmehash_steal_hand = NULL; 11495 struct hmehash_bucket *hmebp; 11496 struct hme_blk *hmeblkp = NULL, *pr_hblk; 11497 uint64_t hblkpa; 11498 int i; 11499 uint_t loop_cnt = 0, critical; 11500 11501 for (;;) { 11502 /* Check cpu hblk pending queues */ 11503 if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) { 11504 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp); 11505 ASSERT(hmeblkp->hblk_hmecnt == 0); 11506 ASSERT(hmeblkp->hblk_vcnt == 0); 11507 return (hmeblkp); 11508 } 11509 11510 if (size == TTE8K) { 11511 critical = 11512 (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0; 11513 if (sfmmu_get_free_hblk(&hmeblkp, critical)) 11514 return (hmeblkp); 11515 } 11516 11517 hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash : 11518 uhmehash_steal_hand; 11519 ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]); 11520 11521 for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ + 11522 BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) { 11523 SFMMU_HASH_LOCK(hmebp); 11524 hmeblkp = hmebp->hmeblkp; 11525 hblkpa = hmebp->hmeh_nextpa; 11526 pr_hblk = NULL; 11527 while (hmeblkp) { 11528 /* 11529 * check if it is a hmeblk that is not locked 11530 * and not shared. skip shadow hmeblks with 11531 * shadow_mask set i.e valid count non zero. 11532 */ 11533 if ((get_hblk_ttesz(hmeblkp) == size) && 11534 (hmeblkp->hblk_shw_bit == 0 || 11535 hmeblkp->hblk_vcnt == 0) && 11536 (hmeblkp->hblk_lckcnt == 0)) { 11537 /* 11538 * there is a high probability that we 11539 * will find a free one. search some 11540 * buckets for a free hmeblk initially 11541 * before unloading a valid hmeblk. 11542 */ 11543 if ((hmeblkp->hblk_vcnt == 0 && 11544 hmeblkp->hblk_hmecnt == 0) || (i >= 11545 BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) { 11546 if (sfmmu_steal_this_hblk(hmebp, 11547 hmeblkp, hblkpa, pr_hblk)) { 11548 /* 11549 * Hblk is unloaded 11550 * successfully 11551 */ 11552 break; 11553 } 11554 } 11555 } 11556 pr_hblk = hmeblkp; 11557 hblkpa = hmeblkp->hblk_nextpa; 11558 hmeblkp = hmeblkp->hblk_next; 11559 } 11560 11561 SFMMU_HASH_UNLOCK(hmebp); 11562 if (hmebp++ == &uhme_hash[UHMEHASH_SZ]) 11563 hmebp = uhme_hash; 11564 } 11565 uhmehash_steal_hand = hmebp; 11566 11567 if (hmeblkp != NULL) 11568 break; 11569 11570 /* 11571 * in the worst case, look for a free one in the kernel 11572 * hash table. 11573 */ 11574 for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) { 11575 SFMMU_HASH_LOCK(hmebp); 11576 hmeblkp = hmebp->hmeblkp; 11577 hblkpa = hmebp->hmeh_nextpa; 11578 pr_hblk = NULL; 11579 while (hmeblkp) { 11580 /* 11581 * check if it is free hmeblk 11582 */ 11583 if ((get_hblk_ttesz(hmeblkp) == size) && 11584 (hmeblkp->hblk_lckcnt == 0) && 11585 (hmeblkp->hblk_vcnt == 0) && 11586 (hmeblkp->hblk_hmecnt == 0)) { 11587 if (sfmmu_steal_this_hblk(hmebp, 11588 hmeblkp, hblkpa, pr_hblk)) { 11589 break; 11590 } else { 11591 /* 11592 * Cannot fail since we have 11593 * hash lock. 11594 */ 11595 panic("fail to steal?"); 11596 } 11597 } 11598 11599 pr_hblk = hmeblkp; 11600 hblkpa = hmeblkp->hblk_nextpa; 11601 hmeblkp = hmeblkp->hblk_next; 11602 } 11603 11604 SFMMU_HASH_UNLOCK(hmebp); 11605 if (hmebp++ == &khme_hash[KHMEHASH_SZ]) 11606 hmebp = khme_hash; 11607 } 11608 11609 if (hmeblkp != NULL) 11610 break; 11611 sfmmu_hblk_steal_twice++; 11612 } 11613 return (hmeblkp); 11614 } 11615 11616 /* 11617 * This routine does real work to prepare a hblk to be "stolen" by 11618 * unloading the mappings, updating shadow counts .... 11619 * It returns 1 if the block is ready to be reused (stolen), or 0 11620 * means the block cannot be stolen yet- pageunload is still working 11621 * on this hblk. 11622 */ 11623 static int 11624 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 11625 uint64_t hblkpa, struct hme_blk *pr_hblk) 11626 { 11627 int shw_size, vshift; 11628 struct hme_blk *shw_hblkp; 11629 caddr_t vaddr; 11630 uint_t shw_mask, newshw_mask; 11631 struct hme_blk *list = NULL; 11632 11633 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 11634 11635 /* 11636 * check if the hmeblk is free, unload if necessary 11637 */ 11638 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 11639 sfmmu_t *sfmmup; 11640 demap_range_t dmr; 11641 11642 sfmmup = hblktosfmmu(hmeblkp); 11643 if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) { 11644 return (0); 11645 } 11646 DEMAP_RANGE_INIT(sfmmup, &dmr); 11647 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 11648 (caddr_t)get_hblk_base(hmeblkp), 11649 get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD); 11650 DEMAP_RANGE_FLUSH(&dmr); 11651 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 11652 /* 11653 * Pageunload is working on the same hblk. 11654 */ 11655 return (0); 11656 } 11657 11658 sfmmu_hblk_steal_unload_count++; 11659 } 11660 11661 ASSERT(hmeblkp->hblk_lckcnt == 0); 11662 ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0); 11663 11664 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1); 11665 hmeblkp->hblk_nextpa = hblkpa; 11666 11667 shw_hblkp = hmeblkp->hblk_shadow; 11668 if (shw_hblkp) { 11669 ASSERT(!hmeblkp->hblk_shared); 11670 shw_size = get_hblk_ttesz(shw_hblkp); 11671 vaddr = (caddr_t)get_hblk_base(hmeblkp); 11672 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size); 11673 ASSERT(vshift < 8); 11674 /* 11675 * Atomically clear shadow mask bit 11676 */ 11677 do { 11678 shw_mask = shw_hblkp->hblk_shw_mask; 11679 ASSERT(shw_mask & (1 << vshift)); 11680 newshw_mask = shw_mask & ~(1 << vshift); 11681 newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask, 11682 shw_mask, newshw_mask); 11683 } while (newshw_mask != shw_mask); 11684 hmeblkp->hblk_shadow = NULL; 11685 } 11686 11687 /* 11688 * remove shadow bit if we are stealing an unused shadow hmeblk. 11689 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if 11690 * we are indeed allocating a shadow hmeblk. 11691 */ 11692 hmeblkp->hblk_shw_bit = 0; 11693 11694 if (hmeblkp->hblk_shared) { 11695 sf_srd_t *srdp; 11696 sf_region_t *rgnp; 11697 uint_t rid; 11698 11699 srdp = hblktosrd(hmeblkp); 11700 ASSERT(srdp != NULL && srdp->srd_refcnt != 0); 11701 rid = hmeblkp->hblk_tag.htag_rid; 11702 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 11703 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 11704 rgnp = srdp->srd_hmergnp[rid]; 11705 ASSERT(rgnp != NULL); 11706 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid); 11707 hmeblkp->hblk_shared = 0; 11708 } 11709 11710 sfmmu_hblk_steal_count++; 11711 SFMMU_STAT(sf_steal_count); 11712 11713 return (1); 11714 } 11715 11716 struct hme_blk * 11717 sfmmu_hmetohblk(struct sf_hment *sfhme) 11718 { 11719 struct hme_blk *hmeblkp; 11720 struct sf_hment *sfhme0; 11721 struct hme_blk *hblk_dummy = 0; 11722 11723 /* 11724 * No dummy sf_hments, please. 11725 */ 11726 ASSERT(sfhme->hme_tte.ll != 0); 11727 11728 sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum; 11729 hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 - 11730 (uintptr_t)&hblk_dummy->hblk_hme[0]); 11731 11732 return (hmeblkp); 11733 } 11734 11735 /* 11736 * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag. 11737 * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using 11738 * KM_SLEEP allocation. 11739 * 11740 * Return 0 on success, -1 otherwise. 11741 */ 11742 static void 11743 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp) 11744 { 11745 struct tsb_info *tsbinfop, *next; 11746 tsb_replace_rc_t rc; 11747 boolean_t gotfirst = B_FALSE; 11748 11749 ASSERT(sfmmup != ksfmmup); 11750 ASSERT(sfmmu_hat_lock_held(sfmmup)); 11751 11752 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) { 11753 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp)); 11754 } 11755 11756 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 11757 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN); 11758 } else { 11759 return; 11760 } 11761 11762 ASSERT(sfmmup->sfmmu_tsb != NULL); 11763 11764 /* 11765 * Loop over all tsbinfo's replacing them with ones that actually have 11766 * a TSB. If any of the replacements ever fail, bail out of the loop. 11767 */ 11768 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) { 11769 ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED); 11770 next = tsbinfop->tsb_next; 11771 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc, 11772 hatlockp, TSB_SWAPIN); 11773 if (rc != TSB_SUCCESS) { 11774 break; 11775 } 11776 gotfirst = B_TRUE; 11777 } 11778 11779 switch (rc) { 11780 case TSB_SUCCESS: 11781 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN); 11782 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 11783 return; 11784 case TSB_LOSTRACE: 11785 break; 11786 case TSB_ALLOCFAIL: 11787 break; 11788 default: 11789 panic("sfmmu_replace_tsb returned unrecognized failure code " 11790 "%d", rc); 11791 } 11792 11793 /* 11794 * In this case, we failed to get one of our TSBs. If we failed to 11795 * get the first TSB, get one of minimum size (8KB). Walk the list 11796 * and throw away the tsbinfos, starting where the allocation failed; 11797 * we can get by with just one TSB as long as we don't leave the 11798 * SWAPPED tsbinfo structures lying around. 11799 */ 11800 tsbinfop = sfmmup->sfmmu_tsb; 11801 next = tsbinfop->tsb_next; 11802 tsbinfop->tsb_next = NULL; 11803 11804 sfmmu_hat_exit(hatlockp); 11805 for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) { 11806 next = tsbinfop->tsb_next; 11807 sfmmu_tsbinfo_free(tsbinfop); 11808 } 11809 hatlockp = sfmmu_hat_enter(sfmmup); 11810 11811 /* 11812 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K 11813 * pages. 11814 */ 11815 if (!gotfirst) { 11816 tsbinfop = sfmmup->sfmmu_tsb; 11817 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE, 11818 hatlockp, TSB_SWAPIN | TSB_FORCEALLOC); 11819 ASSERT(rc == TSB_SUCCESS); 11820 } 11821 11822 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN); 11823 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 11824 } 11825 11826 static int 11827 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw) 11828 { 11829 ulong_t bix = 0; 11830 uint_t rid; 11831 sf_region_t *rgnp; 11832 11833 ASSERT(srdp != NULL); 11834 ASSERT(srdp->srd_refcnt != 0); 11835 11836 w <<= BT_ULSHIFT; 11837 while (bmw) { 11838 if (!(bmw & 0x1)) { 11839 bix++; 11840 bmw >>= 1; 11841 continue; 11842 } 11843 rid = w | bix; 11844 rgnp = srdp->srd_hmergnp[rid]; 11845 ASSERT(rgnp->rgn_refcnt > 0); 11846 ASSERT(rgnp->rgn_id == rid); 11847 if (addr < rgnp->rgn_saddr || 11848 addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) { 11849 bix++; 11850 bmw >>= 1; 11851 } else { 11852 return (1); 11853 } 11854 } 11855 return (0); 11856 } 11857 11858 /* 11859 * Handle exceptions for low level tsb_handler. 11860 * 11861 * There are many scenarios that could land us here: 11862 * 11863 * If the context is invalid we land here. The context can be invalid 11864 * for 3 reasons: 1) we couldn't allocate a new context and now need to 11865 * perform a wrap around operation in order to allocate a new context. 11866 * 2) Context was invalidated to change pagesize programming 3) ISMs or 11867 * TSBs configuration is changeing for this process and we are forced into 11868 * here to do a syncronization operation. If the context is valid we can 11869 * be here from window trap hanlder. In this case just call trap to handle 11870 * the fault. 11871 * 11872 * Note that the process will run in INVALID_CONTEXT before 11873 * faulting into here and subsequently loading the MMU registers 11874 * (including the TSB base register) associated with this process. 11875 * For this reason, the trap handlers must all test for 11876 * INVALID_CONTEXT before attempting to access any registers other 11877 * than the context registers. 11878 */ 11879 void 11880 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype) 11881 { 11882 sfmmu_t *sfmmup, *shsfmmup; 11883 uint_t ctxtype; 11884 klwp_id_t lwp; 11885 char lwp_save_state; 11886 hatlock_t *hatlockp, *shatlockp; 11887 struct tsb_info *tsbinfop; 11888 struct tsbmiss *tsbmp; 11889 sf_scd_t *scdp; 11890 11891 SFMMU_STAT(sf_tsb_exceptions); 11892 SFMMU_MMU_STAT(mmu_tsb_exceptions); 11893 sfmmup = astosfmmu(curthread->t_procp->p_as); 11894 /* 11895 * note that in sun4u, tagacces register contains ctxnum 11896 * while sun4v passes ctxtype in the tagaccess register. 11897 */ 11898 ctxtype = tagaccess & TAGACC_CTX_MASK; 11899 11900 ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT); 11901 ASSERT(sfmmup->sfmmu_ismhat == 0); 11902 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) || 11903 ctxtype == INVALID_CONTEXT); 11904 11905 if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) { 11906 /* 11907 * We may land here because shme bitmap and pagesize 11908 * flags are updated lazily in tsbmiss area on other cpus. 11909 * If we detect here that tsbmiss area is out of sync with 11910 * sfmmu update it and retry the trapped instruction. 11911 * Otherwise call trap(). 11912 */ 11913 int ret = 0; 11914 uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K); 11915 caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK); 11916 11917 /* 11918 * Must set lwp state to LWP_SYS before 11919 * trying to acquire any adaptive lock 11920 */ 11921 lwp = ttolwp(curthread); 11922 ASSERT(lwp); 11923 lwp_save_state = lwp->lwp_state; 11924 lwp->lwp_state = LWP_SYS; 11925 11926 hatlockp = sfmmu_hat_enter(sfmmup); 11927 kpreempt_disable(); 11928 tsbmp = &tsbmiss_area[CPU->cpu_id]; 11929 ASSERT(sfmmup == tsbmp->usfmmup); 11930 if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) & 11931 ~tteflag_mask) || 11932 ((tsbmp->uhat_rtteflags ^ sfmmup->sfmmu_rtteflags) & 11933 ~tteflag_mask)) { 11934 tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags; 11935 tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags; 11936 ret = 1; 11937 } 11938 if (sfmmup->sfmmu_srdp != NULL) { 11939 ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap; 11940 ulong_t *tm = tsbmp->shmermap; 11941 ulong_t i; 11942 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) { 11943 ulong_t d = tm[i] ^ sm[i]; 11944 if (d) { 11945 if (d & sm[i]) { 11946 if (!ret && sfmmu_is_rgnva( 11947 sfmmup->sfmmu_srdp, 11948 addr, i, d & sm[i])) { 11949 ret = 1; 11950 } 11951 } 11952 tm[i] = sm[i]; 11953 } 11954 } 11955 } 11956 kpreempt_enable(); 11957 sfmmu_hat_exit(hatlockp); 11958 lwp->lwp_state = lwp_save_state; 11959 if (ret) { 11960 return; 11961 } 11962 } else if (ctxtype == INVALID_CONTEXT) { 11963 /* 11964 * First, make sure we come out of here with a valid ctx, 11965 * since if we don't get one we'll simply loop on the 11966 * faulting instruction. 11967 * 11968 * If the ISM mappings are changing, the TSB is relocated, 11969 * the process is swapped, the process is joining SCD or 11970 * leaving SCD or shared regions we serialize behind the 11971 * controlling thread with hat lock, sfmmu_flags and 11972 * sfmmu_tsb_cv condition variable. 11973 */ 11974 11975 /* 11976 * Must set lwp state to LWP_SYS before 11977 * trying to acquire any adaptive lock 11978 */ 11979 lwp = ttolwp(curthread); 11980 ASSERT(lwp); 11981 lwp_save_state = lwp->lwp_state; 11982 lwp->lwp_state = LWP_SYS; 11983 11984 hatlockp = sfmmu_hat_enter(sfmmup); 11985 retry: 11986 if ((scdp = sfmmup->sfmmu_scdp) != NULL) { 11987 shsfmmup = scdp->scd_sfmmup; 11988 ASSERT(shsfmmup != NULL); 11989 11990 for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL; 11991 tsbinfop = tsbinfop->tsb_next) { 11992 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) { 11993 /* drop the private hat lock */ 11994 sfmmu_hat_exit(hatlockp); 11995 /* acquire the shared hat lock */ 11996 shatlockp = sfmmu_hat_enter(shsfmmup); 11997 /* 11998 * recheck to see if anything changed 11999 * after we drop the private hat lock. 12000 */ 12001 if (sfmmup->sfmmu_scdp == scdp && 12002 shsfmmup == scdp->scd_sfmmup) { 12003 sfmmu_tsb_chk_reloc(shsfmmup, 12004 shatlockp); 12005 } 12006 sfmmu_hat_exit(shatlockp); 12007 hatlockp = sfmmu_hat_enter(sfmmup); 12008 goto retry; 12009 } 12010 } 12011 } 12012 12013 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 12014 tsbinfop = tsbinfop->tsb_next) { 12015 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) { 12016 cv_wait(&sfmmup->sfmmu_tsb_cv, 12017 HATLOCK_MUTEXP(hatlockp)); 12018 goto retry; 12019 } 12020 } 12021 12022 /* 12023 * Wait for ISM maps to be updated. 12024 */ 12025 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) { 12026 cv_wait(&sfmmup->sfmmu_tsb_cv, 12027 HATLOCK_MUTEXP(hatlockp)); 12028 goto retry; 12029 } 12030 12031 /* Is this process joining an SCD? */ 12032 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) { 12033 /* 12034 * Flush private TSB and setup shared TSB. 12035 * sfmmu_finish_join_scd() does not drop the 12036 * hat lock. 12037 */ 12038 sfmmu_finish_join_scd(sfmmup); 12039 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD); 12040 } 12041 12042 /* 12043 * If we're swapping in, get TSB(s). Note that we must do 12044 * this before we get a ctx or load the MMU state. Once 12045 * we swap in we have to recheck to make sure the TSB(s) and 12046 * ISM mappings didn't change while we slept. 12047 */ 12048 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 12049 sfmmu_tsb_swapin(sfmmup, hatlockp); 12050 goto retry; 12051 } 12052 12053 sfmmu_get_ctx(sfmmup); 12054 12055 sfmmu_hat_exit(hatlockp); 12056 /* 12057 * Must restore lwp_state if not calling 12058 * trap() for further processing. Restore 12059 * it anyway. 12060 */ 12061 lwp->lwp_state = lwp_save_state; 12062 return; 12063 } 12064 trap(rp, (caddr_t)tagaccess, traptype, 0); 12065 } 12066 12067 static void 12068 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp) 12069 { 12070 struct tsb_info *tp; 12071 12072 ASSERT(sfmmu_hat_lock_held(sfmmup)); 12073 12074 for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) { 12075 if (tp->tsb_flags & TSB_RELOC_FLAG) { 12076 cv_wait(&sfmmup->sfmmu_tsb_cv, 12077 HATLOCK_MUTEXP(hatlockp)); 12078 break; 12079 } 12080 } 12081 } 12082 12083 /* 12084 * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and 12085 * TTE_SUSPENDED bit set in tte we block on aquiring a page lock 12086 * rather than spinning to avoid send mondo timeouts with 12087 * interrupts enabled. When the lock is acquired it is immediately 12088 * released and we return back to sfmmu_vatopfn just after 12089 * the GET_TTE call. 12090 */ 12091 void 12092 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep) 12093 { 12094 struct page **pp; 12095 12096 (void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE); 12097 as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE); 12098 } 12099 12100 /* 12101 * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and 12102 * TTE_SUSPENDED bit set in tte. We do this so that we can handle 12103 * cross traps which cannot be handled while spinning in the 12104 * trap handlers. Simply enter and exit the kpr_suspendlock spin 12105 * mutex, which is held by the holder of the suspend bit, and then 12106 * retry the trapped instruction after unwinding. 12107 */ 12108 /*ARGSUSED*/ 12109 void 12110 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype) 12111 { 12112 ASSERT(curthread != kreloc_thread); 12113 mutex_enter(&kpr_suspendlock); 12114 mutex_exit(&kpr_suspendlock); 12115 } 12116 12117 /* 12118 * This routine could be optimized to reduce the number of xcalls by flushing 12119 * the entire TLBs if region reference count is above some threshold but the 12120 * tradeoff will depend on the size of the TLB. So for now flush the specific 12121 * page a context at a time. 12122 * 12123 * If uselocks is 0 then it's called after all cpus were captured and all the 12124 * hat locks were taken. In this case don't take the region lock by relying on 12125 * the order of list region update operations in hat_join_region(), 12126 * hat_leave_region() and hat_dup_region(). The ordering in those routines 12127 * guarantees that list is always forward walkable and reaches active sfmmus 12128 * regardless of where xc_attention() captures a cpu. 12129 */ 12130 cpuset_t 12131 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp, 12132 struct hme_blk *hmeblkp, int uselocks) 12133 { 12134 sfmmu_t *sfmmup; 12135 cpuset_t cpuset; 12136 cpuset_t rcpuset; 12137 hatlock_t *hatlockp; 12138 uint_t rid = rgnp->rgn_id; 12139 sf_rgn_link_t *rlink; 12140 sf_scd_t *scdp; 12141 12142 ASSERT(hmeblkp->hblk_shared); 12143 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 12144 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 12145 12146 CPUSET_ZERO(rcpuset); 12147 if (uselocks) { 12148 mutex_enter(&rgnp->rgn_mutex); 12149 } 12150 sfmmup = rgnp->rgn_sfmmu_head; 12151 while (sfmmup != NULL) { 12152 if (uselocks) { 12153 hatlockp = sfmmu_hat_enter(sfmmup); 12154 } 12155 12156 /* 12157 * When an SCD is created the SCD hat is linked on the sfmmu 12158 * region lists for each hme region which is part of the 12159 * SCD. If we find an SCD hat, when walking these lists, 12160 * then we flush the shared TSBs, if we find a private hat, 12161 * which is part of an SCD, but where the region 12162 * is not part of the SCD then we flush the private TSBs. 12163 */ 12164 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL && 12165 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) { 12166 scdp = sfmmup->sfmmu_scdp; 12167 if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) { 12168 if (uselocks) { 12169 sfmmu_hat_exit(hatlockp); 12170 } 12171 goto next; 12172 } 12173 } 12174 12175 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0); 12176 12177 kpreempt_disable(); 12178 cpuset = sfmmup->sfmmu_cpusran; 12179 CPUSET_AND(cpuset, cpu_ready_set); 12180 CPUSET_DEL(cpuset, CPU->cpu_id); 12181 SFMMU_XCALL_STATS(sfmmup); 12182 xt_some(cpuset, vtag_flushpage_tl1, 12183 (uint64_t)addr, (uint64_t)sfmmup); 12184 vtag_flushpage(addr, (uint64_t)sfmmup); 12185 if (uselocks) { 12186 sfmmu_hat_exit(hatlockp); 12187 } 12188 kpreempt_enable(); 12189 CPUSET_OR(rcpuset, cpuset); 12190 12191 next: 12192 /* LINTED: constant in conditional context */ 12193 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0); 12194 ASSERT(rlink != NULL); 12195 sfmmup = rlink->next; 12196 } 12197 if (uselocks) { 12198 mutex_exit(&rgnp->rgn_mutex); 12199 } 12200 return (rcpuset); 12201 } 12202 12203 /* 12204 * This routine takes an sfmmu pointer and the va for an adddress in an 12205 * ISM region as input and returns the corresponding region id in ism_rid. 12206 * The return value of 1 indicates that a region has been found and ism_rid 12207 * is valid, otherwise 0 is returned. 12208 */ 12209 static int 12210 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid) 12211 { 12212 ism_blk_t *ism_blkp; 12213 int i; 12214 ism_map_t *ism_map; 12215 #ifdef DEBUG 12216 struct hat *ism_hatid; 12217 #endif 12218 ASSERT(sfmmu_hat_lock_held(sfmmup)); 12219 12220 ism_blkp = sfmmup->sfmmu_iblk; 12221 while (ism_blkp != NULL) { 12222 ism_map = ism_blkp->iblk_maps; 12223 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) { 12224 if ((va >= ism_start(ism_map[i])) && 12225 (va < ism_end(ism_map[i]))) { 12226 12227 *ism_rid = ism_map[i].imap_rid; 12228 #ifdef DEBUG 12229 ism_hatid = ism_map[i].imap_ismhat; 12230 ASSERT(ism_hatid == ism_sfmmup); 12231 ASSERT(ism_hatid->sfmmu_ismhat); 12232 #endif 12233 return (1); 12234 } 12235 } 12236 ism_blkp = ism_blkp->iblk_next; 12237 } 12238 return (0); 12239 } 12240 12241 /* 12242 * Special routine to flush out ism mappings- TSBs, TLBs and D-caches. 12243 * This routine may be called with all cpu's captured. Therefore, the 12244 * caller is responsible for holding all locks and disabling kernel 12245 * preemption. 12246 */ 12247 /* ARGSUSED */ 12248 static void 12249 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup, 12250 struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag) 12251 { 12252 cpuset_t cpuset; 12253 caddr_t va; 12254 ism_ment_t *ment; 12255 sfmmu_t *sfmmup; 12256 #ifdef VAC 12257 int vcolor; 12258 #endif 12259 12260 sf_scd_t *scdp; 12261 uint_t ism_rid; 12262 12263 ASSERT(!hmeblkp->hblk_shared); 12264 /* 12265 * Walk the ism_hat's mapping list and flush the page 12266 * from every hat sharing this ism_hat. This routine 12267 * may be called while all cpu's have been captured. 12268 * Therefore we can't attempt to grab any locks. For now 12269 * this means we will protect the ism mapping list under 12270 * a single lock which will be grabbed by the caller. 12271 * If hat_share/unshare scalibility becomes a performance 12272 * problem then we may need to re-think ism mapping list locking. 12273 */ 12274 ASSERT(ism_sfmmup->sfmmu_ismhat); 12275 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 12276 addr = addr - ISMID_STARTADDR; 12277 12278 for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) { 12279 12280 sfmmup = ment->iment_hat; 12281 12282 va = ment->iment_base_va; 12283 va = (caddr_t)((uintptr_t)va + (uintptr_t)addr); 12284 12285 /* 12286 * When an SCD is created the SCD hat is linked on the ism 12287 * mapping lists for each ISM segment which is part of the 12288 * SCD. If we find an SCD hat, when walking these lists, 12289 * then we flush the shared TSBs, if we find a private hat, 12290 * which is part of an SCD, but where the region 12291 * corresponding to this va is not part of the SCD then we 12292 * flush the private TSBs. 12293 */ 12294 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL && 12295 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) && 12296 !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) { 12297 if (!find_ism_rid(sfmmup, ism_sfmmup, va, 12298 &ism_rid)) { 12299 cmn_err(CE_PANIC, 12300 "can't find matching ISM rid!"); 12301 } 12302 12303 scdp = sfmmup->sfmmu_scdp; 12304 if (SFMMU_IS_ISMRID_VALID(ism_rid) && 12305 SF_RGNMAP_TEST(scdp->scd_ismregion_map, 12306 ism_rid)) { 12307 continue; 12308 } 12309 } 12310 SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1); 12311 12312 cpuset = sfmmup->sfmmu_cpusran; 12313 CPUSET_AND(cpuset, cpu_ready_set); 12314 CPUSET_DEL(cpuset, CPU->cpu_id); 12315 SFMMU_XCALL_STATS(sfmmup); 12316 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va, 12317 (uint64_t)sfmmup); 12318 vtag_flushpage(va, (uint64_t)sfmmup); 12319 12320 #ifdef VAC 12321 /* 12322 * Flush D$ 12323 * When flushing D$ we must flush all 12324 * cpu's. See sfmmu_cache_flush(). 12325 */ 12326 if (cache_flush_flag == CACHE_FLUSH) { 12327 cpuset = cpu_ready_set; 12328 CPUSET_DEL(cpuset, CPU->cpu_id); 12329 12330 SFMMU_XCALL_STATS(sfmmup); 12331 vcolor = addr_to_vcolor(va); 12332 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 12333 vac_flushpage(pfnum, vcolor); 12334 } 12335 #endif /* VAC */ 12336 } 12337 } 12338 12339 /* 12340 * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of 12341 * a particular virtual address and ctx. If noflush is set we do not 12342 * flush the TLB/TSB. This function may or may not be called with the 12343 * HAT lock held. 12344 */ 12345 static void 12346 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 12347 pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag, 12348 int hat_lock_held) 12349 { 12350 #ifdef VAC 12351 int vcolor; 12352 #endif 12353 cpuset_t cpuset; 12354 hatlock_t *hatlockp; 12355 12356 ASSERT(!hmeblkp->hblk_shared); 12357 12358 #if defined(lint) && !defined(VAC) 12359 pfnum = pfnum; 12360 cpu_flag = cpu_flag; 12361 cache_flush_flag = cache_flush_flag; 12362 #endif 12363 12364 /* 12365 * There is no longer a need to protect against ctx being 12366 * stolen here since we don't store the ctx in the TSB anymore. 12367 */ 12368 #ifdef VAC 12369 vcolor = addr_to_vcolor(addr); 12370 #endif 12371 12372 /* 12373 * We must hold the hat lock during the flush of TLB, 12374 * to avoid a race with sfmmu_invalidate_ctx(), where 12375 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT, 12376 * causing TLB demap routine to skip flush on that MMU. 12377 * If the context on a MMU has already been set to 12378 * INVALID_CONTEXT, we just get an extra flush on 12379 * that MMU. 12380 */ 12381 if (!hat_lock_held && !tlb_noflush) 12382 hatlockp = sfmmu_hat_enter(sfmmup); 12383 12384 kpreempt_disable(); 12385 if (!tlb_noflush) { 12386 /* 12387 * Flush the TSB and TLB. 12388 */ 12389 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0); 12390 12391 cpuset = sfmmup->sfmmu_cpusran; 12392 CPUSET_AND(cpuset, cpu_ready_set); 12393 CPUSET_DEL(cpuset, CPU->cpu_id); 12394 12395 SFMMU_XCALL_STATS(sfmmup); 12396 12397 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, 12398 (uint64_t)sfmmup); 12399 12400 vtag_flushpage(addr, (uint64_t)sfmmup); 12401 } 12402 12403 if (!hat_lock_held && !tlb_noflush) 12404 sfmmu_hat_exit(hatlockp); 12405 12406 #ifdef VAC 12407 /* 12408 * Flush the D$ 12409 * 12410 * Even if the ctx is stolen, we need to flush the 12411 * cache. Our ctx stealer only flushes the TLBs. 12412 */ 12413 if (cache_flush_flag == CACHE_FLUSH) { 12414 if (cpu_flag & FLUSH_ALL_CPUS) { 12415 cpuset = cpu_ready_set; 12416 } else { 12417 cpuset = sfmmup->sfmmu_cpusran; 12418 CPUSET_AND(cpuset, cpu_ready_set); 12419 } 12420 CPUSET_DEL(cpuset, CPU->cpu_id); 12421 SFMMU_XCALL_STATS(sfmmup); 12422 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 12423 vac_flushpage(pfnum, vcolor); 12424 } 12425 #endif /* VAC */ 12426 kpreempt_enable(); 12427 } 12428 12429 /* 12430 * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual 12431 * address and ctx. If noflush is set we do not currently do anything. 12432 * This function may or may not be called with the HAT lock held. 12433 */ 12434 static void 12435 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 12436 int tlb_noflush, int hat_lock_held) 12437 { 12438 cpuset_t cpuset; 12439 hatlock_t *hatlockp; 12440 12441 ASSERT(!hmeblkp->hblk_shared); 12442 12443 /* 12444 * If the process is exiting we have nothing to do. 12445 */ 12446 if (tlb_noflush) 12447 return; 12448 12449 /* 12450 * Flush TSB. 12451 */ 12452 if (!hat_lock_held) 12453 hatlockp = sfmmu_hat_enter(sfmmup); 12454 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0); 12455 12456 kpreempt_disable(); 12457 12458 cpuset = sfmmup->sfmmu_cpusran; 12459 CPUSET_AND(cpuset, cpu_ready_set); 12460 CPUSET_DEL(cpuset, CPU->cpu_id); 12461 12462 SFMMU_XCALL_STATS(sfmmup); 12463 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup); 12464 12465 vtag_flushpage(addr, (uint64_t)sfmmup); 12466 12467 if (!hat_lock_held) 12468 sfmmu_hat_exit(hatlockp); 12469 12470 kpreempt_enable(); 12471 12472 } 12473 12474 /* 12475 * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall 12476 * call handler that can flush a range of pages to save on xcalls. 12477 */ 12478 static int sfmmu_xcall_save; 12479 12480 /* 12481 * this routine is never used for demaping addresses backed by SRD hmeblks. 12482 */ 12483 static void 12484 sfmmu_tlb_range_demap(demap_range_t *dmrp) 12485 { 12486 sfmmu_t *sfmmup = dmrp->dmr_sfmmup; 12487 hatlock_t *hatlockp; 12488 cpuset_t cpuset; 12489 uint64_t sfmmu_pgcnt; 12490 pgcnt_t pgcnt = 0; 12491 int pgunload = 0; 12492 int dirtypg = 0; 12493 caddr_t addr = dmrp->dmr_addr; 12494 caddr_t eaddr; 12495 uint64_t bitvec = dmrp->dmr_bitvec; 12496 12497 ASSERT(bitvec & 1); 12498 12499 /* 12500 * Flush TSB and calculate number of pages to flush. 12501 */ 12502 while (bitvec != 0) { 12503 dirtypg = 0; 12504 /* 12505 * Find the first page to flush and then count how many 12506 * pages there are after it that also need to be flushed. 12507 * This way the number of TSB flushes is minimized. 12508 */ 12509 while ((bitvec & 1) == 0) { 12510 pgcnt++; 12511 addr += MMU_PAGESIZE; 12512 bitvec >>= 1; 12513 } 12514 while (bitvec & 1) { 12515 dirtypg++; 12516 bitvec >>= 1; 12517 } 12518 eaddr = addr + ptob(dirtypg); 12519 hatlockp = sfmmu_hat_enter(sfmmup); 12520 sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K); 12521 sfmmu_hat_exit(hatlockp); 12522 pgunload += dirtypg; 12523 addr = eaddr; 12524 pgcnt += dirtypg; 12525 } 12526 12527 ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr); 12528 if (sfmmup->sfmmu_free == 0) { 12529 addr = dmrp->dmr_addr; 12530 bitvec = dmrp->dmr_bitvec; 12531 12532 /* 12533 * make sure it has SFMMU_PGCNT_SHIFT bits only, 12534 * as it will be used to pack argument for xt_some 12535 */ 12536 ASSERT((pgcnt > 0) && 12537 (pgcnt <= (1 << SFMMU_PGCNT_SHIFT))); 12538 12539 /* 12540 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in 12541 * the low 6 bits of sfmmup. This is doable since pgcnt 12542 * always >= 1. 12543 */ 12544 ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK)); 12545 sfmmu_pgcnt = (uint64_t)sfmmup | 12546 ((pgcnt - 1) & SFMMU_PGCNT_MASK); 12547 12548 /* 12549 * We must hold the hat lock during the flush of TLB, 12550 * to avoid a race with sfmmu_invalidate_ctx(), where 12551 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT, 12552 * causing TLB demap routine to skip flush on that MMU. 12553 * If the context on a MMU has already been set to 12554 * INVALID_CONTEXT, we just get an extra flush on 12555 * that MMU. 12556 */ 12557 hatlockp = sfmmu_hat_enter(sfmmup); 12558 kpreempt_disable(); 12559 12560 cpuset = sfmmup->sfmmu_cpusran; 12561 CPUSET_AND(cpuset, cpu_ready_set); 12562 CPUSET_DEL(cpuset, CPU->cpu_id); 12563 12564 SFMMU_XCALL_STATS(sfmmup); 12565 xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr, 12566 sfmmu_pgcnt); 12567 12568 for (; bitvec != 0; bitvec >>= 1) { 12569 if (bitvec & 1) 12570 vtag_flushpage(addr, (uint64_t)sfmmup); 12571 addr += MMU_PAGESIZE; 12572 } 12573 kpreempt_enable(); 12574 sfmmu_hat_exit(hatlockp); 12575 12576 sfmmu_xcall_save += (pgunload-1); 12577 } 12578 dmrp->dmr_bitvec = 0; 12579 } 12580 12581 /* 12582 * In cases where we need to synchronize with TLB/TSB miss trap 12583 * handlers, _and_ need to flush the TLB, it's a lot easier to 12584 * throw away the context from the process than to do a 12585 * special song and dance to keep things consistent for the 12586 * handlers. 12587 * 12588 * Since the process suddenly ends up without a context and our caller 12589 * holds the hat lock, threads that fault after this function is called 12590 * will pile up on the lock. We can then do whatever we need to 12591 * atomically from the context of the caller. The first blocked thread 12592 * to resume executing will get the process a new context, and the 12593 * process will resume executing. 12594 * 12595 * One added advantage of this approach is that on MMUs that 12596 * support a "flush all" operation, we will delay the flush until 12597 * cnum wrap-around, and then flush the TLB one time. This 12598 * is rather rare, so it's a lot less expensive than making 8000 12599 * x-calls to flush the TLB 8000 times. 12600 * 12601 * A per-process (PP) lock is used to synchronize ctx allocations in 12602 * resume() and ctx invalidations here. 12603 */ 12604 static void 12605 sfmmu_invalidate_ctx(sfmmu_t *sfmmup) 12606 { 12607 cpuset_t cpuset; 12608 int cnum, currcnum; 12609 mmu_ctx_t *mmu_ctxp; 12610 int i; 12611 uint_t pstate_save; 12612 12613 SFMMU_STAT(sf_ctx_inv); 12614 12615 ASSERT(sfmmu_hat_lock_held(sfmmup)); 12616 ASSERT(sfmmup != ksfmmup); 12617 12618 kpreempt_disable(); 12619 12620 mmu_ctxp = CPU_MMU_CTXP(CPU); 12621 ASSERT(mmu_ctxp); 12622 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms); 12623 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]); 12624 12625 currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum; 12626 12627 pstate_save = sfmmu_disable_intrs(); 12628 12629 lock_set(&sfmmup->sfmmu_ctx_lock); /* acquire PP lock */ 12630 /* set HAT cnum invalid across all context domains. */ 12631 for (i = 0; i < max_mmu_ctxdoms; i++) { 12632 12633 cnum = sfmmup->sfmmu_ctxs[i].cnum; 12634 if (cnum == INVALID_CONTEXT) { 12635 continue; 12636 } 12637 12638 sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT; 12639 } 12640 membar_enter(); /* make sure globally visible to all CPUs */ 12641 lock_clear(&sfmmup->sfmmu_ctx_lock); /* release PP lock */ 12642 12643 sfmmu_enable_intrs(pstate_save); 12644 12645 cpuset = sfmmup->sfmmu_cpusran; 12646 CPUSET_DEL(cpuset, CPU->cpu_id); 12647 CPUSET_AND(cpuset, cpu_ready_set); 12648 if (!CPUSET_ISNULL(cpuset)) { 12649 SFMMU_XCALL_STATS(sfmmup); 12650 xt_some(cpuset, sfmmu_raise_tsb_exception, 12651 (uint64_t)sfmmup, INVALID_CONTEXT); 12652 xt_sync(cpuset); 12653 SFMMU_STAT(sf_tsb_raise_exception); 12654 SFMMU_MMU_STAT(mmu_tsb_raise_exception); 12655 } 12656 12657 /* 12658 * If the hat to-be-invalidated is the same as the current 12659 * process on local CPU we need to invalidate 12660 * this CPU context as well. 12661 */ 12662 if ((sfmmu_getctx_sec() == currcnum) && 12663 (currcnum != INVALID_CONTEXT)) { 12664 /* sets shared context to INVALID too */ 12665 sfmmu_setctx_sec(INVALID_CONTEXT); 12666 sfmmu_clear_utsbinfo(); 12667 } 12668 12669 SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID); 12670 12671 kpreempt_enable(); 12672 12673 /* 12674 * we hold the hat lock, so nobody should allocate a context 12675 * for us yet 12676 */ 12677 ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT); 12678 } 12679 12680 #ifdef VAC 12681 /* 12682 * We need to flush the cache in all cpus. It is possible that 12683 * a process referenced a page as cacheable but has sinced exited 12684 * and cleared the mapping list. We still to flush it but have no 12685 * state so all cpus is the only alternative. 12686 */ 12687 void 12688 sfmmu_cache_flush(pfn_t pfnum, int vcolor) 12689 { 12690 cpuset_t cpuset; 12691 12692 kpreempt_disable(); 12693 cpuset = cpu_ready_set; 12694 CPUSET_DEL(cpuset, CPU->cpu_id); 12695 SFMMU_XCALL_STATS(NULL); /* account to any ctx */ 12696 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 12697 xt_sync(cpuset); 12698 vac_flushpage(pfnum, vcolor); 12699 kpreempt_enable(); 12700 } 12701 12702 void 12703 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum) 12704 { 12705 cpuset_t cpuset; 12706 12707 ASSERT(vcolor >= 0); 12708 12709 kpreempt_disable(); 12710 cpuset = cpu_ready_set; 12711 CPUSET_DEL(cpuset, CPU->cpu_id); 12712 SFMMU_XCALL_STATS(NULL); /* account to any ctx */ 12713 xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum); 12714 xt_sync(cpuset); 12715 vac_flushcolor(vcolor, pfnum); 12716 kpreempt_enable(); 12717 } 12718 #endif /* VAC */ 12719 12720 /* 12721 * We need to prevent processes from accessing the TSB using a cached physical 12722 * address. It's alright if they try to access the TSB via virtual address 12723 * since they will just fault on that virtual address once the mapping has 12724 * been suspended. 12725 */ 12726 #pragma weak sendmondo_in_recover 12727 12728 /* ARGSUSED */ 12729 static int 12730 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo) 12731 { 12732 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo; 12733 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu; 12734 hatlock_t *hatlockp; 12735 sf_scd_t *scdp; 12736 12737 if (flags != HAT_PRESUSPEND) 12738 return (0); 12739 12740 /* 12741 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must 12742 * be a shared hat, then set SCD's tsbinfo's flag. 12743 * If tsb is not shared, sfmmup is a private hat, then set 12744 * its private tsbinfo's flag. 12745 */ 12746 hatlockp = sfmmu_hat_enter(sfmmup); 12747 tsbinfop->tsb_flags |= TSB_RELOC_FLAG; 12748 12749 if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) { 12750 sfmmu_tsb_inv_ctx(sfmmup); 12751 sfmmu_hat_exit(hatlockp); 12752 } else { 12753 /* release lock on the shared hat */ 12754 sfmmu_hat_exit(hatlockp); 12755 /* sfmmup is a shared hat */ 12756 ASSERT(sfmmup->sfmmu_scdhat); 12757 scdp = sfmmup->sfmmu_scdp; 12758 ASSERT(scdp != NULL); 12759 /* get private hat from the scd list */ 12760 mutex_enter(&scdp->scd_mutex); 12761 sfmmup = scdp->scd_sf_list; 12762 while (sfmmup != NULL) { 12763 hatlockp = sfmmu_hat_enter(sfmmup); 12764 /* 12765 * We do not call sfmmu_tsb_inv_ctx here because 12766 * sendmondo_in_recover check is only needed for 12767 * sun4u. 12768 */ 12769 sfmmu_invalidate_ctx(sfmmup); 12770 sfmmu_hat_exit(hatlockp); 12771 sfmmup = sfmmup->sfmmu_scd_link.next; 12772 12773 } 12774 mutex_exit(&scdp->scd_mutex); 12775 } 12776 return (0); 12777 } 12778 12779 static void 12780 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup) 12781 { 12782 extern uint32_t sendmondo_in_recover; 12783 12784 ASSERT(sfmmu_hat_lock_held(sfmmup)); 12785 12786 /* 12787 * For Cheetah+ Erratum 25: 12788 * Wait for any active recovery to finish. We can't risk 12789 * relocating the TSB of the thread running mondo_recover_proc() 12790 * since, if we did that, we would deadlock. The scenario we are 12791 * trying to avoid is as follows: 12792 * 12793 * THIS CPU RECOVER CPU 12794 * -------- ----------- 12795 * Begins recovery, walking through TSB 12796 * hat_pagesuspend() TSB TTE 12797 * TLB miss on TSB TTE, spins at TL1 12798 * xt_sync() 12799 * send_mondo_timeout() 12800 * mondo_recover_proc() 12801 * ((deadlocked)) 12802 * 12803 * The second half of the workaround is that mondo_recover_proc() 12804 * checks to see if the tsb_info has the RELOC flag set, and if it 12805 * does, it skips over that TSB without ever touching tsbinfop->tsb_va 12806 * and hence avoiding the TLB miss that could result in a deadlock. 12807 */ 12808 if (&sendmondo_in_recover) { 12809 membar_enter(); /* make sure RELOC flag visible */ 12810 while (sendmondo_in_recover) { 12811 drv_usecwait(1); 12812 membar_consumer(); 12813 } 12814 } 12815 12816 sfmmu_invalidate_ctx(sfmmup); 12817 } 12818 12819 /* ARGSUSED */ 12820 static int 12821 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags, 12822 void *tsbinfo, pfn_t newpfn) 12823 { 12824 hatlock_t *hatlockp; 12825 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo; 12826 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu; 12827 12828 if (flags != HAT_POSTUNSUSPEND) 12829 return (0); 12830 12831 hatlockp = sfmmu_hat_enter(sfmmup); 12832 12833 SFMMU_STAT(sf_tsb_reloc); 12834 12835 /* 12836 * The process may have swapped out while we were relocating one 12837 * of its TSBs. If so, don't bother doing the setup since the 12838 * process can't be using the memory anymore. 12839 */ 12840 if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) { 12841 ASSERT(va == tsbinfop->tsb_va); 12842 sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn); 12843 12844 if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) { 12845 sfmmu_inv_tsb(tsbinfop->tsb_va, 12846 TSB_BYTES(tsbinfop->tsb_szc)); 12847 tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED; 12848 } 12849 } 12850 12851 membar_exit(); 12852 tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG; 12853 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 12854 12855 sfmmu_hat_exit(hatlockp); 12856 12857 return (0); 12858 } 12859 12860 /* 12861 * Allocate and initialize a tsb_info structure. Note that we may or may not 12862 * allocate a TSB here, depending on the flags passed in. 12863 */ 12864 static int 12865 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask, 12866 uint_t flags, sfmmu_t *sfmmup) 12867 { 12868 int err; 12869 12870 *tsbinfopp = (struct tsb_info *)kmem_cache_alloc( 12871 sfmmu_tsbinfo_cache, KM_SLEEP); 12872 12873 if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask, 12874 tsb_szc, flags, sfmmup)) != 0) { 12875 kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp); 12876 SFMMU_STAT(sf_tsb_allocfail); 12877 *tsbinfopp = NULL; 12878 return (err); 12879 } 12880 SFMMU_STAT(sf_tsb_alloc); 12881 12882 /* 12883 * Bump the TSB size counters for this TSB size. 12884 */ 12885 (*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++; 12886 return (0); 12887 } 12888 12889 static void 12890 sfmmu_tsb_free(struct tsb_info *tsbinfo) 12891 { 12892 caddr_t tsbva = tsbinfo->tsb_va; 12893 uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc); 12894 struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache; 12895 vmem_t *vmp = tsbinfo->tsb_vmp; 12896 12897 /* 12898 * If we allocated this TSB from relocatable kernel memory, then we 12899 * need to uninstall the callback handler. 12900 */ 12901 if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) { 12902 uintptr_t slab_mask; 12903 caddr_t slab_vaddr; 12904 page_t **ppl; 12905 int ret; 12906 12907 ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena); 12908 if (tsb_size > MMU_PAGESIZE4M) 12909 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT; 12910 else 12911 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT; 12912 slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask); 12913 12914 ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE); 12915 ASSERT(ret == 0); 12916 hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo, 12917 0, NULL); 12918 as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE); 12919 } 12920 12921 if (kmem_cachep != NULL) { 12922 kmem_cache_free(kmem_cachep, tsbva); 12923 } else { 12924 vmem_xfree(vmp, (void *)tsbva, tsb_size); 12925 } 12926 tsbinfo->tsb_va = (caddr_t)0xbad00bad; 12927 atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size); 12928 } 12929 12930 static void 12931 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo) 12932 { 12933 if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) { 12934 sfmmu_tsb_free(tsbinfo); 12935 } 12936 kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo); 12937 12938 } 12939 12940 /* 12941 * Setup all the references to physical memory for this tsbinfo. 12942 * The underlying page(s) must be locked. 12943 */ 12944 static void 12945 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn) 12946 { 12947 ASSERT(pfn != PFN_INVALID); 12948 ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va)); 12949 12950 #ifndef sun4v 12951 if (tsbinfo->tsb_szc == 0) { 12952 sfmmu_memtte(&tsbinfo->tsb_tte, pfn, 12953 PROT_WRITE|PROT_READ, TTE8K); 12954 } else { 12955 /* 12956 * Round down PA and use a large mapping; the handlers will 12957 * compute the TSB pointer at the correct offset into the 12958 * big virtual page. NOTE: this assumes all TSBs larger 12959 * than 8K must come from physically contiguous slabs of 12960 * size tsb_slab_size. 12961 */ 12962 sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask, 12963 PROT_WRITE|PROT_READ, tsb_slab_ttesz); 12964 } 12965 tsbinfo->tsb_pa = ptob(pfn); 12966 12967 TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */ 12968 TTE_SET_MOD(&tsbinfo->tsb_tte); /* enable writes */ 12969 12970 ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte)); 12971 ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte)); 12972 #else /* sun4v */ 12973 tsbinfo->tsb_pa = ptob(pfn); 12974 #endif /* sun4v */ 12975 } 12976 12977 12978 /* 12979 * Returns zero on success, ENOMEM if over the high water mark, 12980 * or EAGAIN if the caller needs to retry with a smaller TSB 12981 * size (or specify TSB_FORCEALLOC if the allocation can't fail). 12982 * 12983 * This call cannot fail to allocate a TSB if TSB_FORCEALLOC 12984 * is specified and the TSB requested is PAGESIZE, though it 12985 * may sleep waiting for memory if sufficient memory is not 12986 * available. 12987 */ 12988 static int 12989 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask, 12990 int tsbcode, uint_t flags, sfmmu_t *sfmmup) 12991 { 12992 caddr_t vaddr = NULL; 12993 caddr_t slab_vaddr; 12994 uintptr_t slab_mask; 12995 int tsbbytes = TSB_BYTES(tsbcode); 12996 int lowmem = 0; 12997 struct kmem_cache *kmem_cachep = NULL; 12998 vmem_t *vmp = NULL; 12999 lgrp_id_t lgrpid = LGRP_NONE; 13000 pfn_t pfn; 13001 uint_t cbflags = HAC_SLEEP; 13002 page_t **pplist; 13003 int ret; 13004 13005 ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena); 13006 if (tsbbytes > MMU_PAGESIZE4M) 13007 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT; 13008 else 13009 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT; 13010 13011 if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK)) 13012 flags |= TSB_ALLOC; 13013 13014 ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE); 13015 13016 tsbinfo->tsb_sfmmu = sfmmup; 13017 13018 /* 13019 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and 13020 * return. 13021 */ 13022 if ((flags & TSB_ALLOC) == 0) { 13023 tsbinfo->tsb_szc = tsbcode; 13024 tsbinfo->tsb_ttesz_mask = tteszmask; 13025 tsbinfo->tsb_va = (caddr_t)0xbadbadbeef; 13026 tsbinfo->tsb_pa = -1; 13027 tsbinfo->tsb_tte.ll = 0; 13028 tsbinfo->tsb_next = NULL; 13029 tsbinfo->tsb_flags = TSB_SWAPPED; 13030 tsbinfo->tsb_cache = NULL; 13031 tsbinfo->tsb_vmp = NULL; 13032 return (0); 13033 } 13034 13035 #ifdef DEBUG 13036 /* 13037 * For debugging: 13038 * Randomly force allocation failures every tsb_alloc_mtbf 13039 * tries if TSB_FORCEALLOC is not specified. This will 13040 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if 13041 * it is even, to allow testing of both failure paths... 13042 */ 13043 if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) && 13044 (tsb_alloc_count++ == tsb_alloc_mtbf)) { 13045 tsb_alloc_count = 0; 13046 tsb_alloc_fail_mtbf++; 13047 return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN); 13048 } 13049 #endif /* DEBUG */ 13050 13051 /* 13052 * Enforce high water mark if we are not doing a forced allocation 13053 * and are not shrinking a process' TSB. 13054 */ 13055 if ((flags & TSB_SHRINK) == 0 && 13056 (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) { 13057 if ((flags & TSB_FORCEALLOC) == 0) 13058 return (ENOMEM); 13059 lowmem = 1; 13060 } 13061 13062 /* 13063 * Allocate from the correct location based upon the size of the TSB 13064 * compared to the base page size, and what memory conditions dictate. 13065 * Note we always do nonblocking allocations from the TSB arena since 13066 * we don't want memory fragmentation to cause processes to block 13067 * indefinitely waiting for memory; until the kernel algorithms that 13068 * coalesce large pages are improved this is our best option. 13069 * 13070 * Algorithm: 13071 * If allocating a "large" TSB (>8K), allocate from the 13072 * appropriate kmem_tsb_default_arena vmem arena 13073 * else if low on memory or the TSB_FORCEALLOC flag is set or 13074 * tsb_forceheap is set 13075 * Allocate from kernel heap via sfmmu_tsb8k_cache with 13076 * KM_SLEEP (never fails) 13077 * else 13078 * Allocate from appropriate sfmmu_tsb_cache with 13079 * KM_NOSLEEP 13080 * endif 13081 */ 13082 if (tsb_lgrp_affinity) 13083 lgrpid = lgrp_home_id(curthread); 13084 if (lgrpid == LGRP_NONE) 13085 lgrpid = 0; /* use lgrp of boot CPU */ 13086 13087 if (tsbbytes > MMU_PAGESIZE) { 13088 if (tsbbytes > MMU_PAGESIZE4M) { 13089 vmp = kmem_bigtsb_default_arena[lgrpid]; 13090 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 13091 0, 0, NULL, NULL, VM_NOSLEEP); 13092 } else { 13093 vmp = kmem_tsb_default_arena[lgrpid]; 13094 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 13095 0, 0, NULL, NULL, VM_NOSLEEP); 13096 } 13097 #ifdef DEBUG 13098 } else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) { 13099 #else /* !DEBUG */ 13100 } else if (lowmem || (flags & TSB_FORCEALLOC)) { 13101 #endif /* DEBUG */ 13102 kmem_cachep = sfmmu_tsb8k_cache; 13103 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP); 13104 ASSERT(vaddr != NULL); 13105 } else { 13106 kmem_cachep = sfmmu_tsb_cache[lgrpid]; 13107 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP); 13108 } 13109 13110 tsbinfo->tsb_cache = kmem_cachep; 13111 tsbinfo->tsb_vmp = vmp; 13112 13113 if (vaddr == NULL) { 13114 return (EAGAIN); 13115 } 13116 13117 atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes); 13118 kmem_cachep = tsbinfo->tsb_cache; 13119 13120 /* 13121 * If we are allocating from outside the cage, then we need to 13122 * register a relocation callback handler. Note that for now 13123 * since pseudo mappings always hang off of the slab's root page, 13124 * we need only lock the first 8K of the TSB slab. This is a bit 13125 * hacky but it is good for performance. 13126 */ 13127 if (kmem_cachep != sfmmu_tsb8k_cache) { 13128 slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask); 13129 ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE); 13130 ASSERT(ret == 0); 13131 ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes, 13132 cbflags, (void *)tsbinfo, &pfn, NULL); 13133 13134 /* 13135 * Need to free up resources if we could not successfully 13136 * add the callback function and return an error condition. 13137 */ 13138 if (ret != 0) { 13139 if (kmem_cachep) { 13140 kmem_cache_free(kmem_cachep, vaddr); 13141 } else { 13142 vmem_xfree(vmp, (void *)vaddr, tsbbytes); 13143 } 13144 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, 13145 S_WRITE); 13146 return (EAGAIN); 13147 } 13148 } else { 13149 /* 13150 * Since allocation of 8K TSBs from heap is rare and occurs 13151 * during memory pressure we allocate them from permanent 13152 * memory rather than using callbacks to get the PFN. 13153 */ 13154 pfn = hat_getpfnum(kas.a_hat, vaddr); 13155 } 13156 13157 tsbinfo->tsb_va = vaddr; 13158 tsbinfo->tsb_szc = tsbcode; 13159 tsbinfo->tsb_ttesz_mask = tteszmask; 13160 tsbinfo->tsb_next = NULL; 13161 tsbinfo->tsb_flags = 0; 13162 13163 sfmmu_tsbinfo_setup_phys(tsbinfo, pfn); 13164 13165 sfmmu_inv_tsb(vaddr, tsbbytes); 13166 13167 if (kmem_cachep != sfmmu_tsb8k_cache) { 13168 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE); 13169 } 13170 13171 return (0); 13172 } 13173 13174 /* 13175 * Initialize per cpu tsb and per cpu tsbmiss_area 13176 */ 13177 void 13178 sfmmu_init_tsbs(void) 13179 { 13180 int i; 13181 struct tsbmiss *tsbmissp; 13182 struct kpmtsbm *kpmtsbmp; 13183 #ifndef sun4v 13184 extern int dcache_line_mask; 13185 #endif /* sun4v */ 13186 extern uint_t vac_colors; 13187 13188 /* 13189 * Init. tsb miss area. 13190 */ 13191 tsbmissp = tsbmiss_area; 13192 13193 for (i = 0; i < NCPU; tsbmissp++, i++) { 13194 /* 13195 * initialize the tsbmiss area. 13196 * Do this for all possible CPUs as some may be added 13197 * while the system is running. There is no cost to this. 13198 */ 13199 tsbmissp->ksfmmup = ksfmmup; 13200 #ifndef sun4v 13201 tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask; 13202 #endif /* sun4v */ 13203 tsbmissp->khashstart = 13204 (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash); 13205 tsbmissp->uhashstart = 13206 (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash); 13207 tsbmissp->khashsz = khmehash_num; 13208 tsbmissp->uhashsz = uhmehash_num; 13209 } 13210 13211 sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B', 13212 sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0); 13213 13214 if (kpm_enable == 0) 13215 return; 13216 13217 /* -- Begin KPM specific init -- */ 13218 13219 if (kpm_smallpages) { 13220 /* 13221 * If we're using base pagesize pages for seg_kpm 13222 * mappings, we use the kernel TSB since we can't afford 13223 * to allocate a second huge TSB for these mappings. 13224 */ 13225 kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base; 13226 kpm_tsbsz = ktsb_szcode; 13227 kpmsm_tsbbase = kpm_tsbbase; 13228 kpmsm_tsbsz = kpm_tsbsz; 13229 } else { 13230 /* 13231 * In VAC conflict case, just put the entries in the 13232 * kernel 8K indexed TSB for now so we can find them. 13233 * This could really be changed in the future if we feel 13234 * the need... 13235 */ 13236 kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base; 13237 kpmsm_tsbsz = ktsb_szcode; 13238 kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base; 13239 kpm_tsbsz = ktsb4m_szcode; 13240 } 13241 13242 kpmtsbmp = kpmtsbm_area; 13243 for (i = 0; i < NCPU; kpmtsbmp++, i++) { 13244 /* 13245 * Initialize the kpmtsbm area. 13246 * Do this for all possible CPUs as some may be added 13247 * while the system is running. There is no cost to this. 13248 */ 13249 kpmtsbmp->vbase = kpm_vbase; 13250 kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors; 13251 kpmtsbmp->sz_shift = kpm_size_shift; 13252 kpmtsbmp->kpmp_shift = kpmp_shift; 13253 kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft; 13254 if (kpm_smallpages == 0) { 13255 kpmtsbmp->kpmp_table_sz = kpmp_table_sz; 13256 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table); 13257 } else { 13258 kpmtsbmp->kpmp_table_sz = kpmp_stable_sz; 13259 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable); 13260 } 13261 kpmtsbmp->msegphashpa = va_to_pa(memseg_phash); 13262 kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG; 13263 #ifdef DEBUG 13264 kpmtsbmp->flags |= (kpm_tsbmtl) ? KPMTSBM_TLTSBM_FLAG : 0; 13265 #endif /* DEBUG */ 13266 if (ktsb_phys) 13267 kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG; 13268 } 13269 13270 /* -- End KPM specific init -- */ 13271 } 13272 13273 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */ 13274 struct tsb_info ktsb_info[2]; 13275 13276 /* 13277 * Called from hat_kern_setup() to setup the tsb_info for ksfmmup. 13278 */ 13279 void 13280 sfmmu_init_ktsbinfo() 13281 { 13282 ASSERT(ksfmmup != NULL); 13283 ASSERT(ksfmmup->sfmmu_tsb == NULL); 13284 /* 13285 * Allocate tsbinfos for kernel and copy in data 13286 * to make debug easier and sun4v setup easier. 13287 */ 13288 ktsb_info[0].tsb_sfmmu = ksfmmup; 13289 ktsb_info[0].tsb_szc = ktsb_szcode; 13290 ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K; 13291 ktsb_info[0].tsb_va = ktsb_base; 13292 ktsb_info[0].tsb_pa = ktsb_pbase; 13293 ktsb_info[0].tsb_flags = 0; 13294 ktsb_info[0].tsb_tte.ll = 0; 13295 ktsb_info[0].tsb_cache = NULL; 13296 13297 ktsb_info[1].tsb_sfmmu = ksfmmup; 13298 ktsb_info[1].tsb_szc = ktsb4m_szcode; 13299 ktsb_info[1].tsb_ttesz_mask = TSB4M; 13300 ktsb_info[1].tsb_va = ktsb4m_base; 13301 ktsb_info[1].tsb_pa = ktsb4m_pbase; 13302 ktsb_info[1].tsb_flags = 0; 13303 ktsb_info[1].tsb_tte.ll = 0; 13304 ktsb_info[1].tsb_cache = NULL; 13305 13306 /* Link them into ksfmmup. */ 13307 ktsb_info[0].tsb_next = &ktsb_info[1]; 13308 ktsb_info[1].tsb_next = NULL; 13309 ksfmmup->sfmmu_tsb = &ktsb_info[0]; 13310 13311 sfmmu_setup_tsbinfo(ksfmmup); 13312 } 13313 13314 /* 13315 * Cache the last value returned from va_to_pa(). If the VA specified 13316 * in the current call to cached_va_to_pa() maps to the same Page (as the 13317 * previous call to cached_va_to_pa()), then compute the PA using 13318 * cached info, else call va_to_pa(). 13319 * 13320 * Note: this function is neither MT-safe nor consistent in the presence 13321 * of multiple, interleaved threads. This function was created to enable 13322 * an optimization used during boot (at a point when there's only one thread 13323 * executing on the "boot CPU", and before startup_vm() has been called). 13324 */ 13325 static uint64_t 13326 cached_va_to_pa(void *vaddr) 13327 { 13328 static uint64_t prev_vaddr_base = 0; 13329 static uint64_t prev_pfn = 0; 13330 13331 if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) { 13332 return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET)); 13333 } else { 13334 uint64_t pa = va_to_pa(vaddr); 13335 13336 if (pa != ((uint64_t)-1)) { 13337 /* 13338 * Computed physical address is valid. Cache its 13339 * related info for the next cached_va_to_pa() call. 13340 */ 13341 prev_pfn = pa & MMU_PAGEMASK; 13342 prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK; 13343 } 13344 13345 return (pa); 13346 } 13347 } 13348 13349 /* 13350 * Carve up our nucleus hblk region. We may allocate more hblks than 13351 * asked due to rounding errors but we are guaranteed to have at least 13352 * enough space to allocate the requested number of hblk8's and hblk1's. 13353 */ 13354 void 13355 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1) 13356 { 13357 struct hme_blk *hmeblkp; 13358 size_t hme8blk_sz, hme1blk_sz; 13359 size_t i; 13360 size_t hblk8_bound; 13361 ulong_t j = 0, k = 0; 13362 13363 ASSERT(addr != NULL && size != 0); 13364 13365 /* Need to use proper structure alignment */ 13366 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 13367 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 13368 13369 nucleus_hblk8.list = (void *)addr; 13370 nucleus_hblk8.index = 0; 13371 13372 /* 13373 * Use as much memory as possible for hblk8's since we 13374 * expect all bop_alloc'ed memory to be allocated in 8k chunks. 13375 * We need to hold back enough space for the hblk1's which 13376 * we'll allocate next. 13377 */ 13378 hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz; 13379 for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) { 13380 hmeblkp = (struct hme_blk *)addr; 13381 addr += hme8blk_sz; 13382 hmeblkp->hblk_nuc_bit = 1; 13383 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp); 13384 } 13385 nucleus_hblk8.len = j; 13386 ASSERT(j >= nhblk8); 13387 SFMMU_STAT_ADD(sf_hblk8_ncreate, j); 13388 13389 nucleus_hblk1.list = (void *)addr; 13390 nucleus_hblk1.index = 0; 13391 for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) { 13392 hmeblkp = (struct hme_blk *)addr; 13393 addr += hme1blk_sz; 13394 hmeblkp->hblk_nuc_bit = 1; 13395 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp); 13396 } 13397 ASSERT(k >= nhblk1); 13398 nucleus_hblk1.len = k; 13399 SFMMU_STAT_ADD(sf_hblk1_ncreate, k); 13400 } 13401 13402 /* 13403 * This function is currently not supported on this platform. For what 13404 * it's supposed to do, see hat.c and hat_srmmu.c 13405 */ 13406 /* ARGSUSED */ 13407 faultcode_t 13408 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp, 13409 uint_t flags) 13410 { 13411 ASSERT(hat->sfmmu_xhat_provider == NULL); 13412 return (FC_NOSUPPORT); 13413 } 13414 13415 /* 13416 * Searchs the mapping list of the page for a mapping of the same size. If not 13417 * found the corresponding bit is cleared in the p_index field. When large 13418 * pages are more prevalent in the system, we can maintain the mapping list 13419 * in order and we don't have to traverse the list each time. Just check the 13420 * next and prev entries, and if both are of different size, we clear the bit. 13421 */ 13422 static void 13423 sfmmu_rm_large_mappings(page_t *pp, int ttesz) 13424 { 13425 struct sf_hment *sfhmep; 13426 struct hme_blk *hmeblkp; 13427 int index; 13428 pgcnt_t npgs; 13429 13430 ASSERT(ttesz > TTE8K); 13431 13432 ASSERT(sfmmu_mlist_held(pp)); 13433 13434 ASSERT(PP_ISMAPPED_LARGE(pp)); 13435 13436 /* 13437 * Traverse mapping list looking for another mapping of same size. 13438 * since we only want to clear index field if all mappings of 13439 * that size are gone. 13440 */ 13441 13442 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 13443 if (IS_PAHME(sfhmep)) 13444 continue; 13445 hmeblkp = sfmmu_hmetohblk(sfhmep); 13446 if (hmeblkp->hblk_xhat_bit) 13447 continue; 13448 if (hme_size(sfhmep) == ttesz) { 13449 /* 13450 * another mapping of the same size. don't clear index. 13451 */ 13452 return; 13453 } 13454 } 13455 13456 /* 13457 * Clear the p_index bit for large page. 13458 */ 13459 index = PAGESZ_TO_INDEX(ttesz); 13460 npgs = TTEPAGES(ttesz); 13461 while (npgs-- > 0) { 13462 ASSERT(pp->p_index & index); 13463 pp->p_index &= ~index; 13464 pp = PP_PAGENEXT(pp); 13465 } 13466 } 13467 13468 /* 13469 * return supported features 13470 */ 13471 /* ARGSUSED */ 13472 int 13473 hat_supported(enum hat_features feature, void *arg) 13474 { 13475 switch (feature) { 13476 case HAT_SHARED_PT: 13477 case HAT_DYNAMIC_ISM_UNMAP: 13478 case HAT_VMODSORT: 13479 return (1); 13480 case HAT_SHARED_REGIONS: 13481 if (shctx_on) 13482 return (1); 13483 else 13484 return (0); 13485 default: 13486 return (0); 13487 } 13488 } 13489 13490 void 13491 hat_enter(struct hat *hat) 13492 { 13493 hatlock_t *hatlockp; 13494 13495 if (hat != ksfmmup) { 13496 hatlockp = TSB_HASH(hat); 13497 mutex_enter(HATLOCK_MUTEXP(hatlockp)); 13498 } 13499 } 13500 13501 void 13502 hat_exit(struct hat *hat) 13503 { 13504 hatlock_t *hatlockp; 13505 13506 if (hat != ksfmmup) { 13507 hatlockp = TSB_HASH(hat); 13508 mutex_exit(HATLOCK_MUTEXP(hatlockp)); 13509 } 13510 } 13511 13512 /*ARGSUSED*/ 13513 void 13514 hat_reserve(struct as *as, caddr_t addr, size_t len) 13515 { 13516 } 13517 13518 static void 13519 hat_kstat_init(void) 13520 { 13521 kstat_t *ksp; 13522 13523 ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat", 13524 KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat), 13525 KSTAT_FLAG_VIRTUAL); 13526 if (ksp) { 13527 ksp->ks_data = (void *) &sfmmu_global_stat; 13528 kstat_install(ksp); 13529 } 13530 ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat", 13531 KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat), 13532 KSTAT_FLAG_VIRTUAL); 13533 if (ksp) { 13534 ksp->ks_data = (void *) &sfmmu_tsbsize_stat; 13535 kstat_install(ksp); 13536 } 13537 ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat", 13538 KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU, 13539 KSTAT_FLAG_WRITABLE); 13540 if (ksp) { 13541 ksp->ks_update = sfmmu_kstat_percpu_update; 13542 kstat_install(ksp); 13543 } 13544 } 13545 13546 /* ARGSUSED */ 13547 static int 13548 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw) 13549 { 13550 struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data; 13551 struct tsbmiss *tsbm = tsbmiss_area; 13552 struct kpmtsbm *kpmtsbm = kpmtsbm_area; 13553 int i; 13554 13555 ASSERT(cpu_kstat); 13556 if (rw == KSTAT_READ) { 13557 for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) { 13558 cpu_kstat->sf_itlb_misses = 0; 13559 cpu_kstat->sf_dtlb_misses = 0; 13560 cpu_kstat->sf_utsb_misses = tsbm->utsb_misses - 13561 tsbm->uprot_traps; 13562 cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses + 13563 kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps; 13564 cpu_kstat->sf_tsb_hits = 0; 13565 cpu_kstat->sf_umod_faults = tsbm->uprot_traps; 13566 cpu_kstat->sf_kmod_faults = tsbm->kprot_traps; 13567 } 13568 } else { 13569 /* KSTAT_WRITE is used to clear stats */ 13570 for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) { 13571 tsbm->utsb_misses = 0; 13572 tsbm->ktsb_misses = 0; 13573 tsbm->uprot_traps = 0; 13574 tsbm->kprot_traps = 0; 13575 kpmtsbm->kpm_dtlb_misses = 0; 13576 kpmtsbm->kpm_tsb_misses = 0; 13577 } 13578 } 13579 return (0); 13580 } 13581 13582 #ifdef DEBUG 13583 13584 tte_t *gorig[NCPU], *gcur[NCPU], *gnew[NCPU]; 13585 13586 /* 13587 * A tte checker. *orig_old is the value we read before cas. 13588 * *cur is the value returned by cas. 13589 * *new is the desired value when we do the cas. 13590 * 13591 * *hmeblkp is currently unused. 13592 */ 13593 13594 /* ARGSUSED */ 13595 void 13596 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp) 13597 { 13598 pfn_t i, j, k; 13599 int cpuid = CPU->cpu_id; 13600 13601 gorig[cpuid] = orig_old; 13602 gcur[cpuid] = cur; 13603 gnew[cpuid] = new; 13604 13605 #ifdef lint 13606 hmeblkp = hmeblkp; 13607 #endif 13608 13609 if (TTE_IS_VALID(orig_old)) { 13610 if (TTE_IS_VALID(cur)) { 13611 i = TTE_TO_TTEPFN(orig_old); 13612 j = TTE_TO_TTEPFN(cur); 13613 k = TTE_TO_TTEPFN(new); 13614 if (i != j) { 13615 /* remap error? */ 13616 panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j); 13617 } 13618 13619 if (i != k) { 13620 /* remap error? */ 13621 panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k); 13622 } 13623 } else { 13624 if (TTE_IS_VALID(new)) { 13625 panic("chk_tte: invalid cur? "); 13626 } 13627 13628 i = TTE_TO_TTEPFN(orig_old); 13629 k = TTE_TO_TTEPFN(new); 13630 if (i != k) { 13631 panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k); 13632 } 13633 } 13634 } else { 13635 if (TTE_IS_VALID(cur)) { 13636 j = TTE_TO_TTEPFN(cur); 13637 if (TTE_IS_VALID(new)) { 13638 k = TTE_TO_TTEPFN(new); 13639 if (j != k) { 13640 panic("chk_tte: bad pfn4, 0x%lx, 0x%lx", 13641 j, k); 13642 } 13643 } else { 13644 panic("chk_tte: why here?"); 13645 } 13646 } else { 13647 if (!TTE_IS_VALID(new)) { 13648 panic("chk_tte: why here2 ?"); 13649 } 13650 } 13651 } 13652 } 13653 13654 #endif /* DEBUG */ 13655 13656 extern void prefetch_tsbe_read(struct tsbe *); 13657 extern void prefetch_tsbe_write(struct tsbe *); 13658 13659 13660 /* 13661 * We want to prefetch 7 cache lines ahead for our read prefetch. This gives 13662 * us optimal performance on Cheetah+. You can only have 8 outstanding 13663 * prefetches at any one time, so we opted for 7 read prefetches and 1 write 13664 * prefetch to make the most utilization of the prefetch capability. 13665 */ 13666 #define TSBE_PREFETCH_STRIDE (7) 13667 13668 void 13669 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo) 13670 { 13671 int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc); 13672 int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc); 13673 int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc); 13674 int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc); 13675 struct tsbe *old; 13676 struct tsbe *new; 13677 struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va; 13678 uint64_t va; 13679 int new_offset; 13680 int i; 13681 int vpshift; 13682 int last_prefetch; 13683 13684 if (old_bytes == new_bytes) { 13685 bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes); 13686 } else { 13687 13688 /* 13689 * A TSBE is 16 bytes which means there are four TSBE's per 13690 * P$ line (64 bytes), thus every 4 TSBE's we prefetch. 13691 */ 13692 old = (struct tsbe *)old_tsbinfo->tsb_va; 13693 last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1)); 13694 for (i = 0; i < old_entries; i++, old++) { 13695 if (((i & (4-1)) == 0) && (i < last_prefetch)) 13696 prefetch_tsbe_read(old); 13697 if (!old->tte_tag.tag_invalid) { 13698 /* 13699 * We have a valid TTE to remap. Check the 13700 * size. We won't remap 64K or 512K TTEs 13701 * because they span more than one TSB entry 13702 * and are indexed using an 8K virt. page. 13703 * Ditto for 32M and 256M TTEs. 13704 */ 13705 if (TTE_CSZ(&old->tte_data) == TTE64K || 13706 TTE_CSZ(&old->tte_data) == TTE512K) 13707 continue; 13708 if (mmu_page_sizes == max_mmu_page_sizes) { 13709 if (TTE_CSZ(&old->tte_data) == TTE32M || 13710 TTE_CSZ(&old->tte_data) == TTE256M) 13711 continue; 13712 } 13713 13714 /* clear the lower 22 bits of the va */ 13715 va = *(uint64_t *)old << 22; 13716 /* turn va into a virtual pfn */ 13717 va >>= 22 - TSB_START_SIZE; 13718 /* 13719 * or in bits from the offset in the tsb 13720 * to get the real virtual pfn. These 13721 * correspond to bits [21:13] in the va 13722 */ 13723 vpshift = 13724 TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) & 13725 0x1ff; 13726 va |= (i << vpshift); 13727 va >>= vpshift; 13728 new_offset = va & (new_entries - 1); 13729 new = new_base + new_offset; 13730 prefetch_tsbe_write(new); 13731 *new = *old; 13732 } 13733 } 13734 } 13735 } 13736 13737 /* 13738 * unused in sfmmu 13739 */ 13740 void 13741 hat_dump(void) 13742 { 13743 } 13744 13745 /* 13746 * Called when a thread is exiting and we have switched to the kernel address 13747 * space. Perform the same VM initialization resume() uses when switching 13748 * processes. 13749 * 13750 * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but 13751 * we call it anyway in case the semantics change in the future. 13752 */ 13753 /*ARGSUSED*/ 13754 void 13755 hat_thread_exit(kthread_t *thd) 13756 { 13757 uint_t pgsz_cnum; 13758 uint_t pstate_save; 13759 13760 ASSERT(thd->t_procp->p_as == &kas); 13761 13762 pgsz_cnum = KCONTEXT; 13763 #ifdef sun4u 13764 pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT); 13765 #endif 13766 13767 /* 13768 * Note that sfmmu_load_mmustate() is currently a no-op for 13769 * kernel threads. We need to disable interrupts here, 13770 * simply because otherwise sfmmu_load_mmustate() would panic 13771 * if the caller does not disable interrupts. 13772 */ 13773 pstate_save = sfmmu_disable_intrs(); 13774 13775 /* Compatibility Note: hw takes care of MMU_SCONTEXT1 */ 13776 sfmmu_setctx_sec(pgsz_cnum); 13777 sfmmu_load_mmustate(ksfmmup); 13778 sfmmu_enable_intrs(pstate_save); 13779 } 13780 13781 13782 /* 13783 * SRD support 13784 */ 13785 #define SRD_HASH_FUNCTION(vp) (((((uintptr_t)(vp)) >> 4) ^ \ 13786 (((uintptr_t)(vp)) >> 11)) & \ 13787 srd_hashmask) 13788 13789 /* 13790 * Attach the process to the srd struct associated with the exec vnode 13791 * from which the process is started. 13792 */ 13793 void 13794 hat_join_srd(struct hat *sfmmup, vnode_t *evp) 13795 { 13796 uint_t hash = SRD_HASH_FUNCTION(evp); 13797 sf_srd_t *srdp; 13798 sf_srd_t *newsrdp; 13799 13800 ASSERT(sfmmup != ksfmmup); 13801 ASSERT(sfmmup->sfmmu_srdp == NULL); 13802 13803 if (!shctx_on) { 13804 return; 13805 } 13806 13807 VN_HOLD(evp); 13808 13809 if (srd_buckets[hash].srdb_srdp != NULL) { 13810 mutex_enter(&srd_buckets[hash].srdb_lock); 13811 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL; 13812 srdp = srdp->srd_hash) { 13813 if (srdp->srd_evp == evp) { 13814 ASSERT(srdp->srd_refcnt >= 0); 13815 sfmmup->sfmmu_srdp = srdp; 13816 atomic_inc_32( 13817 (volatile uint_t *)&srdp->srd_refcnt); 13818 mutex_exit(&srd_buckets[hash].srdb_lock); 13819 return; 13820 } 13821 } 13822 mutex_exit(&srd_buckets[hash].srdb_lock); 13823 } 13824 newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP); 13825 ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0); 13826 13827 newsrdp->srd_evp = evp; 13828 newsrdp->srd_refcnt = 1; 13829 newsrdp->srd_hmergnfree = NULL; 13830 newsrdp->srd_ismrgnfree = NULL; 13831 13832 mutex_enter(&srd_buckets[hash].srdb_lock); 13833 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL; 13834 srdp = srdp->srd_hash) { 13835 if (srdp->srd_evp == evp) { 13836 ASSERT(srdp->srd_refcnt >= 0); 13837 sfmmup->sfmmu_srdp = srdp; 13838 atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt); 13839 mutex_exit(&srd_buckets[hash].srdb_lock); 13840 kmem_cache_free(srd_cache, newsrdp); 13841 return; 13842 } 13843 } 13844 newsrdp->srd_hash = srd_buckets[hash].srdb_srdp; 13845 srd_buckets[hash].srdb_srdp = newsrdp; 13846 sfmmup->sfmmu_srdp = newsrdp; 13847 13848 mutex_exit(&srd_buckets[hash].srdb_lock); 13849 13850 } 13851 13852 static void 13853 sfmmu_leave_srd(sfmmu_t *sfmmup) 13854 { 13855 vnode_t *evp; 13856 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 13857 uint_t hash; 13858 sf_srd_t **prev_srdpp; 13859 sf_region_t *rgnp; 13860 sf_region_t *nrgnp; 13861 #ifdef DEBUG 13862 int rgns = 0; 13863 #endif 13864 int i; 13865 13866 ASSERT(sfmmup != ksfmmup); 13867 ASSERT(srdp != NULL); 13868 ASSERT(srdp->srd_refcnt > 0); 13869 ASSERT(sfmmup->sfmmu_scdp == NULL); 13870 ASSERT(sfmmup->sfmmu_free == 1); 13871 13872 sfmmup->sfmmu_srdp = NULL; 13873 evp = srdp->srd_evp; 13874 ASSERT(evp != NULL); 13875 if (atomic_dec_32_nv((volatile uint_t *)&srdp->srd_refcnt)) { 13876 VN_RELE(evp); 13877 return; 13878 } 13879 13880 hash = SRD_HASH_FUNCTION(evp); 13881 mutex_enter(&srd_buckets[hash].srdb_lock); 13882 for (prev_srdpp = &srd_buckets[hash].srdb_srdp; 13883 (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) { 13884 if (srdp->srd_evp == evp) { 13885 break; 13886 } 13887 } 13888 if (srdp == NULL || srdp->srd_refcnt) { 13889 mutex_exit(&srd_buckets[hash].srdb_lock); 13890 VN_RELE(evp); 13891 return; 13892 } 13893 *prev_srdpp = srdp->srd_hash; 13894 mutex_exit(&srd_buckets[hash].srdb_lock); 13895 13896 ASSERT(srdp->srd_refcnt == 0); 13897 VN_RELE(evp); 13898 13899 #ifdef DEBUG 13900 for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) { 13901 ASSERT(srdp->srd_rgnhash[i] == NULL); 13902 } 13903 #endif /* DEBUG */ 13904 13905 /* free each hme regions in the srd */ 13906 for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) { 13907 nrgnp = rgnp->rgn_next; 13908 ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid); 13909 ASSERT(rgnp->rgn_refcnt == 0); 13910 ASSERT(rgnp->rgn_sfmmu_head == NULL); 13911 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE); 13912 ASSERT(rgnp->rgn_hmeflags == 0); 13913 ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp); 13914 #ifdef DEBUG 13915 for (i = 0; i < MMU_PAGE_SIZES; i++) { 13916 ASSERT(rgnp->rgn_ttecnt[i] == 0); 13917 } 13918 rgns++; 13919 #endif /* DEBUG */ 13920 kmem_cache_free(region_cache, rgnp); 13921 } 13922 ASSERT(rgns == srdp->srd_next_hmerid); 13923 13924 #ifdef DEBUG 13925 rgns = 0; 13926 #endif 13927 /* free each ism rgns in the srd */ 13928 for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) { 13929 nrgnp = rgnp->rgn_next; 13930 ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid); 13931 ASSERT(rgnp->rgn_refcnt == 0); 13932 ASSERT(rgnp->rgn_sfmmu_head == NULL); 13933 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE); 13934 ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp); 13935 #ifdef DEBUG 13936 for (i = 0; i < MMU_PAGE_SIZES; i++) { 13937 ASSERT(rgnp->rgn_ttecnt[i] == 0); 13938 } 13939 rgns++; 13940 #endif /* DEBUG */ 13941 kmem_cache_free(region_cache, rgnp); 13942 } 13943 ASSERT(rgns == srdp->srd_next_ismrid); 13944 ASSERT(srdp->srd_ismbusyrgns == 0); 13945 ASSERT(srdp->srd_hmebusyrgns == 0); 13946 13947 srdp->srd_next_ismrid = 0; 13948 srdp->srd_next_hmerid = 0; 13949 13950 bzero((void *)srdp->srd_ismrgnp, 13951 sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS); 13952 bzero((void *)srdp->srd_hmergnp, 13953 sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS); 13954 13955 ASSERT(srdp->srd_scdp == NULL); 13956 kmem_cache_free(srd_cache, srdp); 13957 } 13958 13959 /* ARGSUSED */ 13960 static int 13961 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags) 13962 { 13963 sf_srd_t *srdp = (sf_srd_t *)buf; 13964 bzero(buf, sizeof (*srdp)); 13965 13966 mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL); 13967 mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL); 13968 return (0); 13969 } 13970 13971 /* ARGSUSED */ 13972 static void 13973 sfmmu_srdcache_destructor(void *buf, void *cdrarg) 13974 { 13975 sf_srd_t *srdp = (sf_srd_t *)buf; 13976 13977 mutex_destroy(&srdp->srd_mutex); 13978 mutex_destroy(&srdp->srd_scd_mutex); 13979 } 13980 13981 /* 13982 * The caller makes sure hat_join_region()/hat_leave_region() can't be called 13983 * at the same time for the same process and address range. This is ensured by 13984 * the fact that address space is locked as writer when a process joins the 13985 * regions. Therefore there's no need to hold an srd lock during the entire 13986 * execution of hat_join_region()/hat_leave_region(). 13987 */ 13988 13989 #define RGN_HASH_FUNCTION(obj) (((((uintptr_t)(obj)) >> 4) ^ \ 13990 (((uintptr_t)(obj)) >> 11)) & \ 13991 srd_rgn_hashmask) 13992 /* 13993 * This routine implements the shared context functionality required when 13994 * attaching a segment to an address space. It must be called from 13995 * hat_share() for D(ISM) segments and from segvn_create() for segments 13996 * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie 13997 * which is saved in the private segment data for hme segments and 13998 * the ism_map structure for ism segments. 13999 */ 14000 hat_region_cookie_t 14001 hat_join_region(struct hat *sfmmup, 14002 caddr_t r_saddr, 14003 size_t r_size, 14004 void *r_obj, 14005 u_offset_t r_objoff, 14006 uchar_t r_perm, 14007 uchar_t r_pgszc, 14008 hat_rgn_cb_func_t r_cb_function, 14009 uint_t flags) 14010 { 14011 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 14012 uint_t rhash; 14013 uint_t rid; 14014 hatlock_t *hatlockp; 14015 sf_region_t *rgnp; 14016 sf_region_t *new_rgnp = NULL; 14017 int i; 14018 uint16_t *nextidp; 14019 sf_region_t **freelistp; 14020 int maxids; 14021 sf_region_t **rarrp; 14022 uint16_t *busyrgnsp; 14023 ulong_t rttecnt; 14024 uchar_t tteflag; 14025 uchar_t r_type = flags & HAT_REGION_TYPE_MASK; 14026 int text = (r_type == HAT_REGION_TEXT); 14027 14028 if (srdp == NULL || r_size == 0) { 14029 return (HAT_INVALID_REGION_COOKIE); 14030 } 14031 14032 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 14033 ASSERT(sfmmup != ksfmmup); 14034 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 14035 ASSERT(srdp->srd_refcnt > 0); 14036 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK)); 14037 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM); 14038 ASSERT(r_pgszc < mmu_page_sizes); 14039 if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) || 14040 !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) { 14041 panic("hat_join_region: region addr or size is not aligned\n"); 14042 } 14043 14044 14045 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM : 14046 SFMMU_REGION_HME; 14047 /* 14048 * Currently only support shared hmes for the read only main text 14049 * region. 14050 */ 14051 if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) || 14052 (r_perm & PROT_WRITE))) { 14053 return (HAT_INVALID_REGION_COOKIE); 14054 } 14055 14056 rhash = RGN_HASH_FUNCTION(r_obj); 14057 14058 if (r_type == SFMMU_REGION_ISM) { 14059 nextidp = &srdp->srd_next_ismrid; 14060 freelistp = &srdp->srd_ismrgnfree; 14061 maxids = SFMMU_MAX_ISM_REGIONS; 14062 rarrp = srdp->srd_ismrgnp; 14063 busyrgnsp = &srdp->srd_ismbusyrgns; 14064 } else { 14065 nextidp = &srdp->srd_next_hmerid; 14066 freelistp = &srdp->srd_hmergnfree; 14067 maxids = SFMMU_MAX_HME_REGIONS; 14068 rarrp = srdp->srd_hmergnp; 14069 busyrgnsp = &srdp->srd_hmebusyrgns; 14070 } 14071 14072 mutex_enter(&srdp->srd_mutex); 14073 14074 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL; 14075 rgnp = rgnp->rgn_hash) { 14076 if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size && 14077 rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff && 14078 rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) { 14079 break; 14080 } 14081 } 14082 14083 rfound: 14084 if (rgnp != NULL) { 14085 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type); 14086 ASSERT(rgnp->rgn_cb_function == r_cb_function); 14087 ASSERT(rgnp->rgn_refcnt >= 0); 14088 rid = rgnp->rgn_id; 14089 ASSERT(rid < maxids); 14090 ASSERT(rarrp[rid] == rgnp); 14091 ASSERT(rid < *nextidp); 14092 atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt); 14093 mutex_exit(&srdp->srd_mutex); 14094 if (new_rgnp != NULL) { 14095 kmem_cache_free(region_cache, new_rgnp); 14096 } 14097 if (r_type == SFMMU_REGION_HME) { 14098 int myjoin = 14099 (sfmmup == astosfmmu(curthread->t_procp->p_as)); 14100 14101 sfmmu_link_to_hmeregion(sfmmup, rgnp); 14102 /* 14103 * bitmap should be updated after linking sfmmu on 14104 * region list so that pageunload() doesn't skip 14105 * TSB/TLB flush. As soon as bitmap is updated another 14106 * thread in this process can already start accessing 14107 * this region. 14108 */ 14109 /* 14110 * Normally ttecnt accounting is done as part of 14111 * pagefault handling. But a process may not take any 14112 * pagefaults on shared hmeblks created by some other 14113 * process. To compensate for this assume that the 14114 * entire region will end up faulted in using 14115 * the region's pagesize. 14116 * 14117 */ 14118 if (r_pgszc > TTE8K) { 14119 tteflag = 1 << r_pgszc; 14120 if (disable_large_pages & tteflag) { 14121 tteflag = 0; 14122 } 14123 } else { 14124 tteflag = 0; 14125 } 14126 if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) { 14127 hatlockp = sfmmu_hat_enter(sfmmup); 14128 sfmmup->sfmmu_rtteflags |= tteflag; 14129 sfmmu_hat_exit(hatlockp); 14130 } 14131 hatlockp = sfmmu_hat_enter(sfmmup); 14132 14133 /* 14134 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M 14135 * region to allow for large page allocation failure. 14136 */ 14137 if (r_pgszc >= TTE4M) { 14138 sfmmup->sfmmu_tsb0_4minflcnt += 14139 r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2); 14140 } 14141 14142 /* update sfmmu_ttecnt with the shme rgn ttecnt */ 14143 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc); 14144 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], 14145 rttecnt); 14146 14147 if (text && r_pgszc >= TTE4M && 14148 (tteflag || ((disable_large_pages >> TTE4M) & 14149 ((1 << (r_pgszc - TTE4M + 1)) - 1))) && 14150 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) { 14151 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG); 14152 } 14153 14154 sfmmu_hat_exit(hatlockp); 14155 /* 14156 * On Panther we need to make sure TLB is programmed 14157 * to accept 32M/256M pages. Call 14158 * sfmmu_check_page_sizes() now to make sure TLB is 14159 * setup before making hmeregions visible to other 14160 * threads. 14161 */ 14162 sfmmu_check_page_sizes(sfmmup, 1); 14163 hatlockp = sfmmu_hat_enter(sfmmup); 14164 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid); 14165 14166 /* 14167 * if context is invalid tsb miss exception code will 14168 * call sfmmu_check_page_sizes() and update tsbmiss 14169 * area later. 14170 */ 14171 kpreempt_disable(); 14172 if (myjoin && 14173 (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum 14174 != INVALID_CONTEXT)) { 14175 struct tsbmiss *tsbmp; 14176 14177 tsbmp = &tsbmiss_area[CPU->cpu_id]; 14178 ASSERT(sfmmup == tsbmp->usfmmup); 14179 BT_SET(tsbmp->shmermap, rid); 14180 if (r_pgszc > TTE64K) { 14181 tsbmp->uhat_rtteflags |= tteflag; 14182 } 14183 14184 } 14185 kpreempt_enable(); 14186 14187 sfmmu_hat_exit(hatlockp); 14188 ASSERT((hat_region_cookie_t)((uint64_t)rid) != 14189 HAT_INVALID_REGION_COOKIE); 14190 } else { 14191 hatlockp = sfmmu_hat_enter(sfmmup); 14192 SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid); 14193 sfmmu_hat_exit(hatlockp); 14194 } 14195 ASSERT(rid < maxids); 14196 14197 if (r_type == SFMMU_REGION_ISM) { 14198 sfmmu_find_scd(sfmmup); 14199 } 14200 return ((hat_region_cookie_t)((uint64_t)rid)); 14201 } 14202 14203 ASSERT(new_rgnp == NULL); 14204 14205 if (*busyrgnsp >= maxids) { 14206 mutex_exit(&srdp->srd_mutex); 14207 return (HAT_INVALID_REGION_COOKIE); 14208 } 14209 14210 ASSERT(MUTEX_HELD(&srdp->srd_mutex)); 14211 if (*freelistp != NULL) { 14212 rgnp = *freelistp; 14213 *freelistp = rgnp->rgn_next; 14214 ASSERT(rgnp->rgn_id < *nextidp); 14215 ASSERT(rgnp->rgn_id < maxids); 14216 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE); 14217 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) 14218 == r_type); 14219 ASSERT(rarrp[rgnp->rgn_id] == rgnp); 14220 ASSERT(rgnp->rgn_hmeflags == 0); 14221 } else { 14222 /* 14223 * release local locks before memory allocation. 14224 */ 14225 mutex_exit(&srdp->srd_mutex); 14226 14227 new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP); 14228 14229 mutex_enter(&srdp->srd_mutex); 14230 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL; 14231 rgnp = rgnp->rgn_hash) { 14232 if (rgnp->rgn_saddr == r_saddr && 14233 rgnp->rgn_size == r_size && 14234 rgnp->rgn_obj == r_obj && 14235 rgnp->rgn_objoff == r_objoff && 14236 rgnp->rgn_perm == r_perm && 14237 rgnp->rgn_pgszc == r_pgszc) { 14238 break; 14239 } 14240 } 14241 if (rgnp != NULL) { 14242 goto rfound; 14243 } 14244 14245 if (*nextidp >= maxids) { 14246 mutex_exit(&srdp->srd_mutex); 14247 goto fail; 14248 } 14249 rgnp = new_rgnp; 14250 new_rgnp = NULL; 14251 rgnp->rgn_id = (*nextidp)++; 14252 ASSERT(rgnp->rgn_id < maxids); 14253 ASSERT(rarrp[rgnp->rgn_id] == NULL); 14254 rarrp[rgnp->rgn_id] = rgnp; 14255 } 14256 14257 ASSERT(rgnp->rgn_sfmmu_head == NULL); 14258 ASSERT(rgnp->rgn_hmeflags == 0); 14259 #ifdef DEBUG 14260 for (i = 0; i < MMU_PAGE_SIZES; i++) { 14261 ASSERT(rgnp->rgn_ttecnt[i] == 0); 14262 } 14263 #endif 14264 rgnp->rgn_saddr = r_saddr; 14265 rgnp->rgn_size = r_size; 14266 rgnp->rgn_obj = r_obj; 14267 rgnp->rgn_objoff = r_objoff; 14268 rgnp->rgn_perm = r_perm; 14269 rgnp->rgn_pgszc = r_pgszc; 14270 rgnp->rgn_flags = r_type; 14271 rgnp->rgn_refcnt = 0; 14272 rgnp->rgn_cb_function = r_cb_function; 14273 rgnp->rgn_hash = srdp->srd_rgnhash[rhash]; 14274 srdp->srd_rgnhash[rhash] = rgnp; 14275 (*busyrgnsp)++; 14276 ASSERT(*busyrgnsp <= maxids); 14277 goto rfound; 14278 14279 fail: 14280 ASSERT(new_rgnp != NULL); 14281 kmem_cache_free(region_cache, new_rgnp); 14282 return (HAT_INVALID_REGION_COOKIE); 14283 } 14284 14285 /* 14286 * This function implements the shared context functionality required 14287 * when detaching a segment from an address space. It must be called 14288 * from hat_unshare() for all D(ISM) segments and from segvn_unmap(), 14289 * for segments with a valid region_cookie. 14290 * It will also be called from all seg_vn routines which change a 14291 * segment's attributes such as segvn_setprot(), segvn_setpagesize(), 14292 * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault 14293 * from segvn_fault(). 14294 */ 14295 void 14296 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags) 14297 { 14298 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 14299 sf_scd_t *scdp; 14300 uint_t rhash; 14301 uint_t rid = (uint_t)((uint64_t)rcookie); 14302 hatlock_t *hatlockp = NULL; 14303 sf_region_t *rgnp; 14304 sf_region_t **prev_rgnpp; 14305 sf_region_t *cur_rgnp; 14306 void *r_obj; 14307 int i; 14308 caddr_t r_saddr; 14309 caddr_t r_eaddr; 14310 size_t r_size; 14311 uchar_t r_pgszc; 14312 uchar_t r_type = flags & HAT_REGION_TYPE_MASK; 14313 14314 ASSERT(sfmmup != ksfmmup); 14315 ASSERT(srdp != NULL); 14316 ASSERT(srdp->srd_refcnt > 0); 14317 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK)); 14318 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM); 14319 ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL); 14320 14321 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM : 14322 SFMMU_REGION_HME; 14323 14324 if (r_type == SFMMU_REGION_ISM) { 14325 ASSERT(SFMMU_IS_ISMRID_VALID(rid)); 14326 ASSERT(rid < SFMMU_MAX_ISM_REGIONS); 14327 rgnp = srdp->srd_ismrgnp[rid]; 14328 } else { 14329 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 14330 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 14331 rgnp = srdp->srd_hmergnp[rid]; 14332 } 14333 ASSERT(rgnp != NULL); 14334 ASSERT(rgnp->rgn_id == rid); 14335 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type); 14336 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE)); 14337 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 14338 14339 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 14340 if (r_type == SFMMU_REGION_HME && sfmmup->sfmmu_as->a_xhat != NULL) { 14341 xhat_unload_callback_all(sfmmup->sfmmu_as, rgnp->rgn_saddr, 14342 rgnp->rgn_size, 0, NULL); 14343 } 14344 14345 if (sfmmup->sfmmu_free) { 14346 ulong_t rttecnt; 14347 r_pgszc = rgnp->rgn_pgszc; 14348 r_size = rgnp->rgn_size; 14349 14350 ASSERT(sfmmup->sfmmu_scdp == NULL); 14351 if (r_type == SFMMU_REGION_ISM) { 14352 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid); 14353 } else { 14354 /* update shme rgns ttecnt in sfmmu_ttecnt */ 14355 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc); 14356 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt); 14357 14358 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], 14359 -rttecnt); 14360 14361 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid); 14362 } 14363 } else if (r_type == SFMMU_REGION_ISM) { 14364 hatlockp = sfmmu_hat_enter(sfmmup); 14365 ASSERT(rid < srdp->srd_next_ismrid); 14366 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid); 14367 scdp = sfmmup->sfmmu_scdp; 14368 if (scdp != NULL && 14369 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) { 14370 sfmmu_leave_scd(sfmmup, r_type); 14371 ASSERT(sfmmu_hat_lock_held(sfmmup)); 14372 } 14373 sfmmu_hat_exit(hatlockp); 14374 } else { 14375 ulong_t rttecnt; 14376 r_pgszc = rgnp->rgn_pgszc; 14377 r_saddr = rgnp->rgn_saddr; 14378 r_size = rgnp->rgn_size; 14379 r_eaddr = r_saddr + r_size; 14380 14381 ASSERT(r_type == SFMMU_REGION_HME); 14382 hatlockp = sfmmu_hat_enter(sfmmup); 14383 ASSERT(rid < srdp->srd_next_hmerid); 14384 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid); 14385 14386 /* 14387 * If region is part of an SCD call sfmmu_leave_scd(). 14388 * Otherwise if process is not exiting and has valid context 14389 * just drop the context on the floor to lose stale TLB 14390 * entries and force the update of tsb miss area to reflect 14391 * the new region map. After that clean our TSB entries. 14392 */ 14393 scdp = sfmmup->sfmmu_scdp; 14394 if (scdp != NULL && 14395 SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) { 14396 sfmmu_leave_scd(sfmmup, r_type); 14397 ASSERT(sfmmu_hat_lock_held(sfmmup)); 14398 } 14399 sfmmu_invalidate_ctx(sfmmup); 14400 14401 i = TTE8K; 14402 while (i < mmu_page_sizes) { 14403 if (rgnp->rgn_ttecnt[i] != 0) { 14404 sfmmu_unload_tsb_range(sfmmup, r_saddr, 14405 r_eaddr, i); 14406 if (i < TTE4M) { 14407 i = TTE4M; 14408 continue; 14409 } else { 14410 break; 14411 } 14412 } 14413 i++; 14414 } 14415 /* Remove the preallocated 1/4 8k ttecnt for 4M regions. */ 14416 if (r_pgszc >= TTE4M) { 14417 rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2); 14418 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >= 14419 rttecnt); 14420 sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt; 14421 } 14422 14423 /* update shme rgns ttecnt in sfmmu_ttecnt */ 14424 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc); 14425 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt); 14426 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt); 14427 14428 sfmmu_hat_exit(hatlockp); 14429 if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) { 14430 /* sfmmup left the scd, grow private tsb */ 14431 sfmmu_check_page_sizes(sfmmup, 1); 14432 } else { 14433 sfmmu_check_page_sizes(sfmmup, 0); 14434 } 14435 } 14436 14437 if (r_type == SFMMU_REGION_HME) { 14438 sfmmu_unlink_from_hmeregion(sfmmup, rgnp); 14439 } 14440 14441 r_obj = rgnp->rgn_obj; 14442 if (atomic_dec_32_nv((volatile uint_t *)&rgnp->rgn_refcnt)) { 14443 return; 14444 } 14445 14446 /* 14447 * looks like nobody uses this region anymore. Free it. 14448 */ 14449 rhash = RGN_HASH_FUNCTION(r_obj); 14450 mutex_enter(&srdp->srd_mutex); 14451 for (prev_rgnpp = &srdp->srd_rgnhash[rhash]; 14452 (cur_rgnp = *prev_rgnpp) != NULL; 14453 prev_rgnpp = &cur_rgnp->rgn_hash) { 14454 if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) { 14455 break; 14456 } 14457 } 14458 14459 if (cur_rgnp == NULL) { 14460 mutex_exit(&srdp->srd_mutex); 14461 return; 14462 } 14463 14464 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type); 14465 *prev_rgnpp = rgnp->rgn_hash; 14466 if (r_type == SFMMU_REGION_ISM) { 14467 rgnp->rgn_flags |= SFMMU_REGION_FREE; 14468 ASSERT(rid < srdp->srd_next_ismrid); 14469 rgnp->rgn_next = srdp->srd_ismrgnfree; 14470 srdp->srd_ismrgnfree = rgnp; 14471 ASSERT(srdp->srd_ismbusyrgns > 0); 14472 srdp->srd_ismbusyrgns--; 14473 mutex_exit(&srdp->srd_mutex); 14474 return; 14475 } 14476 mutex_exit(&srdp->srd_mutex); 14477 14478 /* 14479 * Destroy region's hmeblks. 14480 */ 14481 sfmmu_unload_hmeregion(srdp, rgnp); 14482 14483 rgnp->rgn_hmeflags = 0; 14484 14485 ASSERT(rgnp->rgn_sfmmu_head == NULL); 14486 ASSERT(rgnp->rgn_id == rid); 14487 for (i = 0; i < MMU_PAGE_SIZES; i++) { 14488 rgnp->rgn_ttecnt[i] = 0; 14489 } 14490 rgnp->rgn_flags |= SFMMU_REGION_FREE; 14491 mutex_enter(&srdp->srd_mutex); 14492 ASSERT(rid < srdp->srd_next_hmerid); 14493 rgnp->rgn_next = srdp->srd_hmergnfree; 14494 srdp->srd_hmergnfree = rgnp; 14495 ASSERT(srdp->srd_hmebusyrgns > 0); 14496 srdp->srd_hmebusyrgns--; 14497 mutex_exit(&srdp->srd_mutex); 14498 } 14499 14500 /* 14501 * For now only called for hmeblk regions and not for ISM regions. 14502 */ 14503 void 14504 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie) 14505 { 14506 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 14507 uint_t rid = (uint_t)((uint64_t)rcookie); 14508 sf_region_t *rgnp; 14509 sf_rgn_link_t *rlink; 14510 sf_rgn_link_t *hrlink; 14511 ulong_t rttecnt; 14512 14513 ASSERT(sfmmup != ksfmmup); 14514 ASSERT(srdp != NULL); 14515 ASSERT(srdp->srd_refcnt > 0); 14516 14517 ASSERT(rid < srdp->srd_next_hmerid); 14518 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 14519 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 14520 14521 rgnp = srdp->srd_hmergnp[rid]; 14522 ASSERT(rgnp->rgn_refcnt > 0); 14523 ASSERT(rgnp->rgn_id == rid); 14524 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME); 14525 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE)); 14526 14527 atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt); 14528 14529 /* LINTED: constant in conditional context */ 14530 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0); 14531 ASSERT(rlink != NULL); 14532 mutex_enter(&rgnp->rgn_mutex); 14533 ASSERT(rgnp->rgn_sfmmu_head != NULL); 14534 /* LINTED: constant in conditional context */ 14535 SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0); 14536 ASSERT(hrlink != NULL); 14537 ASSERT(hrlink->prev == NULL); 14538 rlink->next = rgnp->rgn_sfmmu_head; 14539 rlink->prev = NULL; 14540 hrlink->prev = sfmmup; 14541 /* 14542 * make sure rlink's next field is correct 14543 * before making this link visible. 14544 */ 14545 membar_stst(); 14546 rgnp->rgn_sfmmu_head = sfmmup; 14547 mutex_exit(&rgnp->rgn_mutex); 14548 14549 /* update sfmmu_ttecnt with the shme rgn ttecnt */ 14550 rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc); 14551 atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt); 14552 /* update tsb0 inflation count */ 14553 if (rgnp->rgn_pgszc >= TTE4M) { 14554 sfmmup->sfmmu_tsb0_4minflcnt += 14555 rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2); 14556 } 14557 /* 14558 * Update regionid bitmask without hat lock since no other thread 14559 * can update this region bitmask right now. 14560 */ 14561 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid); 14562 } 14563 14564 /* ARGSUSED */ 14565 static int 14566 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags) 14567 { 14568 sf_region_t *rgnp = (sf_region_t *)buf; 14569 bzero(buf, sizeof (*rgnp)); 14570 14571 mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL); 14572 14573 return (0); 14574 } 14575 14576 /* ARGSUSED */ 14577 static void 14578 sfmmu_rgncache_destructor(void *buf, void *cdrarg) 14579 { 14580 sf_region_t *rgnp = (sf_region_t *)buf; 14581 mutex_destroy(&rgnp->rgn_mutex); 14582 } 14583 14584 static int 14585 sfrgnmap_isnull(sf_region_map_t *map) 14586 { 14587 int i; 14588 14589 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) { 14590 if (map->bitmap[i] != 0) { 14591 return (0); 14592 } 14593 } 14594 return (1); 14595 } 14596 14597 static int 14598 sfhmergnmap_isnull(sf_hmeregion_map_t *map) 14599 { 14600 int i; 14601 14602 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) { 14603 if (map->bitmap[i] != 0) { 14604 return (0); 14605 } 14606 } 14607 return (1); 14608 } 14609 14610 #ifdef DEBUG 14611 static void 14612 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist) 14613 { 14614 sfmmu_t *sp; 14615 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 14616 14617 for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) { 14618 ASSERT(srdp == sp->sfmmu_srdp); 14619 if (sp == sfmmup) { 14620 if (onlist) { 14621 return; 14622 } else { 14623 panic("shctx: sfmmu 0x%p found on scd" 14624 "list 0x%p", (void *)sfmmup, 14625 (void *)*headp); 14626 } 14627 } 14628 } 14629 if (onlist) { 14630 panic("shctx: sfmmu 0x%p not found on scd list 0x%p", 14631 (void *)sfmmup, (void *)*headp); 14632 } else { 14633 return; 14634 } 14635 } 14636 #else /* DEBUG */ 14637 #define check_scd_sfmmu_list(headp, sfmmup, onlist) 14638 #endif /* DEBUG */ 14639 14640 /* 14641 * Removes an sfmmu from the SCD sfmmu list. 14642 */ 14643 static void 14644 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup) 14645 { 14646 ASSERT(sfmmup->sfmmu_srdp != NULL); 14647 check_scd_sfmmu_list(headp, sfmmup, 1); 14648 if (sfmmup->sfmmu_scd_link.prev != NULL) { 14649 ASSERT(*headp != sfmmup); 14650 sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next = 14651 sfmmup->sfmmu_scd_link.next; 14652 } else { 14653 ASSERT(*headp == sfmmup); 14654 *headp = sfmmup->sfmmu_scd_link.next; 14655 } 14656 if (sfmmup->sfmmu_scd_link.next != NULL) { 14657 sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev = 14658 sfmmup->sfmmu_scd_link.prev; 14659 } 14660 } 14661 14662 14663 /* 14664 * Adds an sfmmu to the start of the queue. 14665 */ 14666 static void 14667 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup) 14668 { 14669 check_scd_sfmmu_list(headp, sfmmup, 0); 14670 sfmmup->sfmmu_scd_link.prev = NULL; 14671 sfmmup->sfmmu_scd_link.next = *headp; 14672 if (*headp != NULL) 14673 (*headp)->sfmmu_scd_link.prev = sfmmup; 14674 *headp = sfmmup; 14675 } 14676 14677 /* 14678 * Remove an scd from the start of the queue. 14679 */ 14680 static void 14681 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp) 14682 { 14683 if (scdp->scd_prev != NULL) { 14684 ASSERT(*headp != scdp); 14685 scdp->scd_prev->scd_next = scdp->scd_next; 14686 } else { 14687 ASSERT(*headp == scdp); 14688 *headp = scdp->scd_next; 14689 } 14690 14691 if (scdp->scd_next != NULL) { 14692 scdp->scd_next->scd_prev = scdp->scd_prev; 14693 } 14694 } 14695 14696 /* 14697 * Add an scd to the start of the queue. 14698 */ 14699 static void 14700 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp) 14701 { 14702 scdp->scd_prev = NULL; 14703 scdp->scd_next = *headp; 14704 if (*headp != NULL) { 14705 (*headp)->scd_prev = scdp; 14706 } 14707 *headp = scdp; 14708 } 14709 14710 static int 14711 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp) 14712 { 14713 uint_t rid; 14714 uint_t i; 14715 uint_t j; 14716 ulong_t w; 14717 sf_region_t *rgnp; 14718 ulong_t tte8k_cnt = 0; 14719 ulong_t tte4m_cnt = 0; 14720 uint_t tsb_szc; 14721 sfmmu_t *scsfmmup = scdp->scd_sfmmup; 14722 sfmmu_t *ism_hatid; 14723 struct tsb_info *newtsb; 14724 int szc; 14725 14726 ASSERT(srdp != NULL); 14727 14728 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) { 14729 if ((w = scdp->scd_region_map.bitmap[i]) == 0) { 14730 continue; 14731 } 14732 j = 0; 14733 while (w) { 14734 if (!(w & 0x1)) { 14735 j++; 14736 w >>= 1; 14737 continue; 14738 } 14739 rid = (i << BT_ULSHIFT) | j; 14740 j++; 14741 w >>= 1; 14742 14743 if (rid < SFMMU_MAX_HME_REGIONS) { 14744 rgnp = srdp->srd_hmergnp[rid]; 14745 ASSERT(rgnp->rgn_id == rid); 14746 ASSERT(rgnp->rgn_refcnt > 0); 14747 14748 if (rgnp->rgn_pgszc < TTE4M) { 14749 tte8k_cnt += rgnp->rgn_size >> 14750 TTE_PAGE_SHIFT(TTE8K); 14751 } else { 14752 ASSERT(rgnp->rgn_pgszc >= TTE4M); 14753 tte4m_cnt += rgnp->rgn_size >> 14754 TTE_PAGE_SHIFT(TTE4M); 14755 /* 14756 * Inflate SCD tsb0 by preallocating 14757 * 1/4 8k ttecnt for 4M regions to 14758 * allow for lgpg alloc failure. 14759 */ 14760 tte8k_cnt += rgnp->rgn_size >> 14761 (TTE_PAGE_SHIFT(TTE8K) + 2); 14762 } 14763 } else { 14764 rid -= SFMMU_MAX_HME_REGIONS; 14765 rgnp = srdp->srd_ismrgnp[rid]; 14766 ASSERT(rgnp->rgn_id == rid); 14767 ASSERT(rgnp->rgn_refcnt > 0); 14768 14769 ism_hatid = (sfmmu_t *)rgnp->rgn_obj; 14770 ASSERT(ism_hatid->sfmmu_ismhat); 14771 14772 for (szc = 0; szc < TTE4M; szc++) { 14773 tte8k_cnt += 14774 ism_hatid->sfmmu_ttecnt[szc] << 14775 TTE_BSZS_SHIFT(szc); 14776 } 14777 14778 ASSERT(rgnp->rgn_pgszc >= TTE4M); 14779 if (rgnp->rgn_pgszc >= TTE4M) { 14780 tte4m_cnt += rgnp->rgn_size >> 14781 TTE_PAGE_SHIFT(TTE4M); 14782 } 14783 } 14784 } 14785 } 14786 14787 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt); 14788 14789 /* Allocate both the SCD TSBs here. */ 14790 if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb, 14791 tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) && 14792 (tsb_szc <= TSB_4M_SZCODE || 14793 sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb, 14794 TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K, 14795 TSB_ALLOC, scsfmmup))) { 14796 14797 SFMMU_STAT(sf_scd_1sttsb_allocfail); 14798 return (TSB_ALLOCFAIL); 14799 } else { 14800 scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX; 14801 14802 if (tte4m_cnt) { 14803 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt); 14804 if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, 14805 TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) && 14806 (tsb_szc <= TSB_4M_SZCODE || 14807 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE, 14808 TSB4M|TSB32M|TSB256M, 14809 TSB_ALLOC, scsfmmup))) { 14810 /* 14811 * If we fail to allocate the 2nd shared tsb, 14812 * just free the 1st tsb, return failure. 14813 */ 14814 sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb); 14815 SFMMU_STAT(sf_scd_2ndtsb_allocfail); 14816 return (TSB_ALLOCFAIL); 14817 } else { 14818 ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL); 14819 newtsb->tsb_flags |= TSB_SHAREDCTX; 14820 scsfmmup->sfmmu_tsb->tsb_next = newtsb; 14821 SFMMU_STAT(sf_scd_2ndtsb_alloc); 14822 } 14823 } 14824 SFMMU_STAT(sf_scd_1sttsb_alloc); 14825 } 14826 return (TSB_SUCCESS); 14827 } 14828 14829 static void 14830 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu) 14831 { 14832 while (scd_sfmmu->sfmmu_tsb != NULL) { 14833 struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next; 14834 sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb); 14835 scd_sfmmu->sfmmu_tsb = next; 14836 } 14837 } 14838 14839 /* 14840 * Link the sfmmu onto the hme region list. 14841 */ 14842 void 14843 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp) 14844 { 14845 uint_t rid; 14846 sf_rgn_link_t *rlink; 14847 sfmmu_t *head; 14848 sf_rgn_link_t *hrlink; 14849 14850 rid = rgnp->rgn_id; 14851 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 14852 14853 /* LINTED: constant in conditional context */ 14854 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1); 14855 ASSERT(rlink != NULL); 14856 mutex_enter(&rgnp->rgn_mutex); 14857 if ((head = rgnp->rgn_sfmmu_head) == NULL) { 14858 rlink->next = NULL; 14859 rlink->prev = NULL; 14860 /* 14861 * make sure rlink's next field is NULL 14862 * before making this link visible. 14863 */ 14864 membar_stst(); 14865 rgnp->rgn_sfmmu_head = sfmmup; 14866 } else { 14867 /* LINTED: constant in conditional context */ 14868 SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0); 14869 ASSERT(hrlink != NULL); 14870 ASSERT(hrlink->prev == NULL); 14871 rlink->next = head; 14872 rlink->prev = NULL; 14873 hrlink->prev = sfmmup; 14874 /* 14875 * make sure rlink's next field is correct 14876 * before making this link visible. 14877 */ 14878 membar_stst(); 14879 rgnp->rgn_sfmmu_head = sfmmup; 14880 } 14881 mutex_exit(&rgnp->rgn_mutex); 14882 } 14883 14884 /* 14885 * Unlink the sfmmu from the hme region list. 14886 */ 14887 void 14888 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp) 14889 { 14890 uint_t rid; 14891 sf_rgn_link_t *rlink; 14892 14893 rid = rgnp->rgn_id; 14894 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 14895 14896 /* LINTED: constant in conditional context */ 14897 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0); 14898 ASSERT(rlink != NULL); 14899 mutex_enter(&rgnp->rgn_mutex); 14900 if (rgnp->rgn_sfmmu_head == sfmmup) { 14901 sfmmu_t *next = rlink->next; 14902 rgnp->rgn_sfmmu_head = next; 14903 /* 14904 * if we are stopped by xc_attention() after this 14905 * point the forward link walking in 14906 * sfmmu_rgntlb_demap() will work correctly since the 14907 * head correctly points to the next element. 14908 */ 14909 membar_stst(); 14910 rlink->next = NULL; 14911 ASSERT(rlink->prev == NULL); 14912 if (next != NULL) { 14913 sf_rgn_link_t *nrlink; 14914 /* LINTED: constant in conditional context */ 14915 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0); 14916 ASSERT(nrlink != NULL); 14917 ASSERT(nrlink->prev == sfmmup); 14918 nrlink->prev = NULL; 14919 } 14920 } else { 14921 sfmmu_t *next = rlink->next; 14922 sfmmu_t *prev = rlink->prev; 14923 sf_rgn_link_t *prlink; 14924 14925 ASSERT(prev != NULL); 14926 /* LINTED: constant in conditional context */ 14927 SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0); 14928 ASSERT(prlink != NULL); 14929 ASSERT(prlink->next == sfmmup); 14930 prlink->next = next; 14931 /* 14932 * if we are stopped by xc_attention() 14933 * after this point the forward link walking 14934 * will work correctly since the prev element 14935 * correctly points to the next element. 14936 */ 14937 membar_stst(); 14938 rlink->next = NULL; 14939 rlink->prev = NULL; 14940 if (next != NULL) { 14941 sf_rgn_link_t *nrlink; 14942 /* LINTED: constant in conditional context */ 14943 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0); 14944 ASSERT(nrlink != NULL); 14945 ASSERT(nrlink->prev == sfmmup); 14946 nrlink->prev = prev; 14947 } 14948 } 14949 mutex_exit(&rgnp->rgn_mutex); 14950 } 14951 14952 /* 14953 * Link scd sfmmu onto ism or hme region list for each region in the 14954 * scd region map. 14955 */ 14956 void 14957 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp) 14958 { 14959 uint_t rid; 14960 uint_t i; 14961 uint_t j; 14962 ulong_t w; 14963 sf_region_t *rgnp; 14964 sfmmu_t *scsfmmup; 14965 14966 scsfmmup = scdp->scd_sfmmup; 14967 ASSERT(scsfmmup->sfmmu_scdhat); 14968 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) { 14969 if ((w = scdp->scd_region_map.bitmap[i]) == 0) { 14970 continue; 14971 } 14972 j = 0; 14973 while (w) { 14974 if (!(w & 0x1)) { 14975 j++; 14976 w >>= 1; 14977 continue; 14978 } 14979 rid = (i << BT_ULSHIFT) | j; 14980 j++; 14981 w >>= 1; 14982 14983 if (rid < SFMMU_MAX_HME_REGIONS) { 14984 rgnp = srdp->srd_hmergnp[rid]; 14985 ASSERT(rgnp->rgn_id == rid); 14986 ASSERT(rgnp->rgn_refcnt > 0); 14987 sfmmu_link_to_hmeregion(scsfmmup, rgnp); 14988 } else { 14989 sfmmu_t *ism_hatid = NULL; 14990 ism_ment_t *ism_ment; 14991 rid -= SFMMU_MAX_HME_REGIONS; 14992 rgnp = srdp->srd_ismrgnp[rid]; 14993 ASSERT(rgnp->rgn_id == rid); 14994 ASSERT(rgnp->rgn_refcnt > 0); 14995 14996 ism_hatid = (sfmmu_t *)rgnp->rgn_obj; 14997 ASSERT(ism_hatid->sfmmu_ismhat); 14998 ism_ment = &scdp->scd_ism_links[rid]; 14999 ism_ment->iment_hat = scsfmmup; 15000 ism_ment->iment_base_va = rgnp->rgn_saddr; 15001 mutex_enter(&ism_mlist_lock); 15002 iment_add(ism_ment, ism_hatid); 15003 mutex_exit(&ism_mlist_lock); 15004 15005 } 15006 } 15007 } 15008 } 15009 /* 15010 * Unlink scd sfmmu from ism or hme region list for each region in the 15011 * scd region map. 15012 */ 15013 void 15014 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp) 15015 { 15016 uint_t rid; 15017 uint_t i; 15018 uint_t j; 15019 ulong_t w; 15020 sf_region_t *rgnp; 15021 sfmmu_t *scsfmmup; 15022 15023 scsfmmup = scdp->scd_sfmmup; 15024 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) { 15025 if ((w = scdp->scd_region_map.bitmap[i]) == 0) { 15026 continue; 15027 } 15028 j = 0; 15029 while (w) { 15030 if (!(w & 0x1)) { 15031 j++; 15032 w >>= 1; 15033 continue; 15034 } 15035 rid = (i << BT_ULSHIFT) | j; 15036 j++; 15037 w >>= 1; 15038 15039 if (rid < SFMMU_MAX_HME_REGIONS) { 15040 rgnp = srdp->srd_hmergnp[rid]; 15041 ASSERT(rgnp->rgn_id == rid); 15042 ASSERT(rgnp->rgn_refcnt > 0); 15043 sfmmu_unlink_from_hmeregion(scsfmmup, 15044 rgnp); 15045 15046 } else { 15047 sfmmu_t *ism_hatid = NULL; 15048 ism_ment_t *ism_ment; 15049 rid -= SFMMU_MAX_HME_REGIONS; 15050 rgnp = srdp->srd_ismrgnp[rid]; 15051 ASSERT(rgnp->rgn_id == rid); 15052 ASSERT(rgnp->rgn_refcnt > 0); 15053 15054 ism_hatid = (sfmmu_t *)rgnp->rgn_obj; 15055 ASSERT(ism_hatid->sfmmu_ismhat); 15056 ism_ment = &scdp->scd_ism_links[rid]; 15057 ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup); 15058 ASSERT(ism_ment->iment_base_va == 15059 rgnp->rgn_saddr); 15060 mutex_enter(&ism_mlist_lock); 15061 iment_sub(ism_ment, ism_hatid); 15062 mutex_exit(&ism_mlist_lock); 15063 15064 } 15065 } 15066 } 15067 } 15068 /* 15069 * Allocates and initialises a new SCD structure, this is called with 15070 * the srd_scd_mutex held and returns with the reference count 15071 * initialised to 1. 15072 */ 15073 static sf_scd_t * 15074 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map) 15075 { 15076 sf_scd_t *new_scdp; 15077 sfmmu_t *scsfmmup; 15078 int i; 15079 15080 ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex)); 15081 new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP); 15082 15083 scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP); 15084 new_scdp->scd_sfmmup = scsfmmup; 15085 scsfmmup->sfmmu_srdp = srdp; 15086 scsfmmup->sfmmu_scdp = new_scdp; 15087 scsfmmup->sfmmu_tsb0_4minflcnt = 0; 15088 scsfmmup->sfmmu_scdhat = 1; 15089 CPUSET_ALL(scsfmmup->sfmmu_cpusran); 15090 bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE); 15091 15092 ASSERT(max_mmu_ctxdoms > 0); 15093 for (i = 0; i < max_mmu_ctxdoms; i++) { 15094 scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT; 15095 scsfmmup->sfmmu_ctxs[i].gnum = 0; 15096 } 15097 15098 for (i = 0; i < MMU_PAGE_SIZES; i++) { 15099 new_scdp->scd_rttecnt[i] = 0; 15100 } 15101 15102 new_scdp->scd_region_map = *new_map; 15103 new_scdp->scd_refcnt = 1; 15104 if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) { 15105 kmem_cache_free(scd_cache, new_scdp); 15106 kmem_cache_free(sfmmuid_cache, scsfmmup); 15107 return (NULL); 15108 } 15109 if (&mmu_init_scd) { 15110 mmu_init_scd(new_scdp); 15111 } 15112 return (new_scdp); 15113 } 15114 15115 /* 15116 * The first phase of a process joining an SCD. The hat structure is 15117 * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set 15118 * and a cross-call with context invalidation is used to cause the 15119 * remaining work to be carried out in the sfmmu_tsbmiss_exception() 15120 * routine. 15121 */ 15122 static void 15123 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup) 15124 { 15125 hatlock_t *hatlockp; 15126 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 15127 int i; 15128 sf_scd_t *old_scdp; 15129 15130 ASSERT(srdp != NULL); 15131 ASSERT(scdp != NULL); 15132 ASSERT(scdp->scd_refcnt > 0); 15133 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 15134 15135 if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) { 15136 ASSERT(old_scdp != scdp); 15137 15138 mutex_enter(&old_scdp->scd_mutex); 15139 sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup); 15140 mutex_exit(&old_scdp->scd_mutex); 15141 /* 15142 * sfmmup leaves the old scd. Update sfmmu_ttecnt to 15143 * include the shme rgn ttecnt for rgns that 15144 * were in the old SCD 15145 */ 15146 for (i = 0; i < mmu_page_sizes; i++) { 15147 ASSERT(sfmmup->sfmmu_scdrttecnt[i] == 15148 old_scdp->scd_rttecnt[i]); 15149 atomic_add_long(&sfmmup->sfmmu_ttecnt[i], 15150 sfmmup->sfmmu_scdrttecnt[i]); 15151 } 15152 } 15153 15154 /* 15155 * Move sfmmu to the scd lists. 15156 */ 15157 mutex_enter(&scdp->scd_mutex); 15158 sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup); 15159 mutex_exit(&scdp->scd_mutex); 15160 SF_SCD_INCR_REF(scdp); 15161 15162 hatlockp = sfmmu_hat_enter(sfmmup); 15163 /* 15164 * For a multi-thread process, we must stop 15165 * all the other threads before joining the scd. 15166 */ 15167 15168 SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD); 15169 15170 sfmmu_invalidate_ctx(sfmmup); 15171 sfmmup->sfmmu_scdp = scdp; 15172 15173 /* 15174 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update 15175 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD. 15176 */ 15177 for (i = 0; i < mmu_page_sizes; i++) { 15178 sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i]; 15179 ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]); 15180 atomic_add_long(&sfmmup->sfmmu_ttecnt[i], 15181 -sfmmup->sfmmu_scdrttecnt[i]); 15182 } 15183 /* update tsb0 inflation count */ 15184 if (old_scdp != NULL) { 15185 sfmmup->sfmmu_tsb0_4minflcnt += 15186 old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt; 15187 } 15188 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >= 15189 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt); 15190 sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt; 15191 15192 sfmmu_hat_exit(hatlockp); 15193 15194 if (old_scdp != NULL) { 15195 SF_SCD_DECR_REF(srdp, old_scdp); 15196 } 15197 15198 } 15199 15200 /* 15201 * This routine is called by a process to become part of an SCD. It is called 15202 * from sfmmu_tsbmiss_exception() once most of the initial work has been 15203 * done by sfmmu_join_scd(). This routine must not drop the hat lock. 15204 */ 15205 static void 15206 sfmmu_finish_join_scd(sfmmu_t *sfmmup) 15207 { 15208 struct tsb_info *tsbinfop; 15209 15210 ASSERT(sfmmu_hat_lock_held(sfmmup)); 15211 ASSERT(sfmmup->sfmmu_scdp != NULL); 15212 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)); 15213 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 15214 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)); 15215 15216 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 15217 tsbinfop = tsbinfop->tsb_next) { 15218 if (tsbinfop->tsb_flags & TSB_SWAPPED) { 15219 continue; 15220 } 15221 ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG)); 15222 15223 sfmmu_inv_tsb(tsbinfop->tsb_va, 15224 TSB_BYTES(tsbinfop->tsb_szc)); 15225 } 15226 15227 /* Set HAT_CTX1_FLAG for all SCD ISMs */ 15228 sfmmu_ism_hatflags(sfmmup, 1); 15229 15230 SFMMU_STAT(sf_join_scd); 15231 } 15232 15233 /* 15234 * This routine is called in order to check if there is an SCD which matches 15235 * the process's region map if not then a new SCD may be created. 15236 */ 15237 static void 15238 sfmmu_find_scd(sfmmu_t *sfmmup) 15239 { 15240 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 15241 sf_scd_t *scdp, *new_scdp; 15242 int ret; 15243 15244 ASSERT(srdp != NULL); 15245 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 15246 15247 mutex_enter(&srdp->srd_scd_mutex); 15248 for (scdp = srdp->srd_scdp; scdp != NULL; 15249 scdp = scdp->scd_next) { 15250 SF_RGNMAP_EQUAL(&scdp->scd_region_map, 15251 &sfmmup->sfmmu_region_map, ret); 15252 if (ret == 1) { 15253 SF_SCD_INCR_REF(scdp); 15254 mutex_exit(&srdp->srd_scd_mutex); 15255 sfmmu_join_scd(scdp, sfmmup); 15256 ASSERT(scdp->scd_refcnt >= 2); 15257 atomic_dec_32((volatile uint32_t *)&scdp->scd_refcnt); 15258 return; 15259 } else { 15260 /* 15261 * If the sfmmu region map is a subset of the scd 15262 * region map, then the assumption is that this process 15263 * will continue attaching to ISM segments until the 15264 * region maps are equal. 15265 */ 15266 SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map, 15267 &sfmmup->sfmmu_region_map, ret); 15268 if (ret == 1) { 15269 mutex_exit(&srdp->srd_scd_mutex); 15270 return; 15271 } 15272 } 15273 } 15274 15275 ASSERT(scdp == NULL); 15276 /* 15277 * No matching SCD has been found, create a new one. 15278 */ 15279 if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) == 15280 NULL) { 15281 mutex_exit(&srdp->srd_scd_mutex); 15282 return; 15283 } 15284 15285 /* 15286 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd. 15287 */ 15288 15289 /* Set scd_rttecnt for shme rgns in SCD */ 15290 sfmmu_set_scd_rttecnt(srdp, new_scdp); 15291 15292 /* 15293 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists. 15294 */ 15295 sfmmu_link_scd_to_regions(srdp, new_scdp); 15296 sfmmu_add_scd(&srdp->srd_scdp, new_scdp); 15297 SFMMU_STAT_ADD(sf_create_scd, 1); 15298 15299 mutex_exit(&srdp->srd_scd_mutex); 15300 sfmmu_join_scd(new_scdp, sfmmup); 15301 ASSERT(new_scdp->scd_refcnt >= 2); 15302 atomic_dec_32((volatile uint32_t *)&new_scdp->scd_refcnt); 15303 } 15304 15305 /* 15306 * This routine is called by a process to remove itself from an SCD. It is 15307 * either called when the processes has detached from a segment or from 15308 * hat_free_start() as a result of calling exit. 15309 */ 15310 static void 15311 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type) 15312 { 15313 sf_scd_t *scdp = sfmmup->sfmmu_scdp; 15314 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 15315 hatlock_t *hatlockp = TSB_HASH(sfmmup); 15316 int i; 15317 15318 ASSERT(scdp != NULL); 15319 ASSERT(srdp != NULL); 15320 15321 if (sfmmup->sfmmu_free) { 15322 /* 15323 * If the process is part of an SCD the sfmmu is unlinked 15324 * from scd_sf_list. 15325 */ 15326 mutex_enter(&scdp->scd_mutex); 15327 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup); 15328 mutex_exit(&scdp->scd_mutex); 15329 /* 15330 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that 15331 * are about to leave the SCD 15332 */ 15333 for (i = 0; i < mmu_page_sizes; i++) { 15334 ASSERT(sfmmup->sfmmu_scdrttecnt[i] == 15335 scdp->scd_rttecnt[i]); 15336 atomic_add_long(&sfmmup->sfmmu_ttecnt[i], 15337 sfmmup->sfmmu_scdrttecnt[i]); 15338 sfmmup->sfmmu_scdrttecnt[i] = 0; 15339 } 15340 sfmmup->sfmmu_scdp = NULL; 15341 15342 SF_SCD_DECR_REF(srdp, scdp); 15343 return; 15344 } 15345 15346 ASSERT(r_type != SFMMU_REGION_ISM || 15347 SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 15348 ASSERT(scdp->scd_refcnt); 15349 ASSERT(!sfmmup->sfmmu_free); 15350 ASSERT(sfmmu_hat_lock_held(sfmmup)); 15351 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 15352 15353 /* 15354 * Wait for ISM maps to be updated. 15355 */ 15356 if (r_type != SFMMU_REGION_ISM) { 15357 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) && 15358 sfmmup->sfmmu_scdp != NULL) { 15359 cv_wait(&sfmmup->sfmmu_tsb_cv, 15360 HATLOCK_MUTEXP(hatlockp)); 15361 } 15362 15363 if (sfmmup->sfmmu_scdp == NULL) { 15364 sfmmu_hat_exit(hatlockp); 15365 return; 15366 } 15367 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY); 15368 } 15369 15370 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) { 15371 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD); 15372 /* 15373 * Since HAT_JOIN_SCD was set our context 15374 * is still invalid. 15375 */ 15376 } else { 15377 /* 15378 * For a multi-thread process, we must stop 15379 * all the other threads before leaving the scd. 15380 */ 15381 15382 sfmmu_invalidate_ctx(sfmmup); 15383 } 15384 15385 /* Clear all the rid's for ISM, delete flags, etc */ 15386 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 15387 sfmmu_ism_hatflags(sfmmup, 0); 15388 15389 /* 15390 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that 15391 * are in SCD before this sfmmup leaves the SCD. 15392 */ 15393 for (i = 0; i < mmu_page_sizes; i++) { 15394 ASSERT(sfmmup->sfmmu_scdrttecnt[i] == 15395 scdp->scd_rttecnt[i]); 15396 atomic_add_long(&sfmmup->sfmmu_ttecnt[i], 15397 sfmmup->sfmmu_scdrttecnt[i]); 15398 sfmmup->sfmmu_scdrttecnt[i] = 0; 15399 /* update ismttecnt to include SCD ism before hat leaves SCD */ 15400 sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i]; 15401 sfmmup->sfmmu_scdismttecnt[i] = 0; 15402 } 15403 /* update tsb0 inflation count */ 15404 sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt; 15405 15406 if (r_type != SFMMU_REGION_ISM) { 15407 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY); 15408 } 15409 sfmmup->sfmmu_scdp = NULL; 15410 15411 sfmmu_hat_exit(hatlockp); 15412 15413 /* 15414 * Unlink sfmmu from scd_sf_list this can be done without holding 15415 * the hat lock as we hold the sfmmu_as lock which prevents 15416 * hat_join_region from adding this thread to the scd again. Other 15417 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL 15418 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp 15419 * while holding the hat lock. 15420 */ 15421 mutex_enter(&scdp->scd_mutex); 15422 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup); 15423 mutex_exit(&scdp->scd_mutex); 15424 SFMMU_STAT(sf_leave_scd); 15425 15426 SF_SCD_DECR_REF(srdp, scdp); 15427 hatlockp = sfmmu_hat_enter(sfmmup); 15428 15429 } 15430 15431 /* 15432 * Unlink and free up an SCD structure with a reference count of 0. 15433 */ 15434 static void 15435 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap) 15436 { 15437 sfmmu_t *scsfmmup; 15438 sf_scd_t *sp; 15439 hatlock_t *shatlockp; 15440 int i, ret; 15441 15442 mutex_enter(&srdp->srd_scd_mutex); 15443 for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) { 15444 if (sp == scdp) 15445 break; 15446 } 15447 if (sp == NULL || sp->scd_refcnt) { 15448 mutex_exit(&srdp->srd_scd_mutex); 15449 return; 15450 } 15451 15452 /* 15453 * It is possible that the scd has been freed and reallocated with a 15454 * different region map while we've been waiting for the srd_scd_mutex. 15455 */ 15456 SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret); 15457 if (ret != 1) { 15458 mutex_exit(&srdp->srd_scd_mutex); 15459 return; 15460 } 15461 15462 ASSERT(scdp->scd_sf_list == NULL); 15463 /* 15464 * Unlink scd from srd_scdp list. 15465 */ 15466 sfmmu_remove_scd(&srdp->srd_scdp, scdp); 15467 mutex_exit(&srdp->srd_scd_mutex); 15468 15469 sfmmu_unlink_scd_from_regions(srdp, scdp); 15470 15471 /* Clear shared context tsb and release ctx */ 15472 scsfmmup = scdp->scd_sfmmup; 15473 15474 /* 15475 * create a barrier so that scd will not be destroyed 15476 * if other thread still holds the same shared hat lock. 15477 * E.g., sfmmu_tsbmiss_exception() needs to acquire the 15478 * shared hat lock before checking the shared tsb reloc flag. 15479 */ 15480 shatlockp = sfmmu_hat_enter(scsfmmup); 15481 sfmmu_hat_exit(shatlockp); 15482 15483 sfmmu_free_scd_tsbs(scsfmmup); 15484 15485 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) { 15486 if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) { 15487 kmem_free(scsfmmup->sfmmu_hmeregion_links[i], 15488 SFMMU_L2_HMERLINKS_SIZE); 15489 scsfmmup->sfmmu_hmeregion_links[i] = NULL; 15490 } 15491 } 15492 kmem_cache_free(sfmmuid_cache, scsfmmup); 15493 kmem_cache_free(scd_cache, scdp); 15494 SFMMU_STAT(sf_destroy_scd); 15495 } 15496 15497 /* 15498 * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to 15499 * bits which are set in the ism_region_map parameter. This flag indicates to 15500 * the tsbmiss handler that mapping for these segments should be loaded using 15501 * the shared context. 15502 */ 15503 static void 15504 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag) 15505 { 15506 sf_scd_t *scdp = sfmmup->sfmmu_scdp; 15507 ism_blk_t *ism_blkp; 15508 ism_map_t *ism_map; 15509 int i, rid; 15510 15511 ASSERT(sfmmup->sfmmu_iblk != NULL); 15512 ASSERT(scdp != NULL); 15513 /* 15514 * Note that the caller either set HAT_ISMBUSY flag or checked 15515 * under hat lock that HAT_ISMBUSY was not set by another thread. 15516 */ 15517 ASSERT(sfmmu_hat_lock_held(sfmmup)); 15518 15519 ism_blkp = sfmmup->sfmmu_iblk; 15520 while (ism_blkp != NULL) { 15521 ism_map = ism_blkp->iblk_maps; 15522 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) { 15523 rid = ism_map[i].imap_rid; 15524 if (rid == SFMMU_INVALID_ISMRID) { 15525 continue; 15526 } 15527 ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS); 15528 if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) && 15529 addflag) { 15530 ism_map[i].imap_hatflags |= 15531 HAT_CTX1_FLAG; 15532 } else { 15533 ism_map[i].imap_hatflags &= 15534 ~HAT_CTX1_FLAG; 15535 } 15536 } 15537 ism_blkp = ism_blkp->iblk_next; 15538 } 15539 } 15540 15541 static int 15542 sfmmu_srd_lock_held(sf_srd_t *srdp) 15543 { 15544 return (MUTEX_HELD(&srdp->srd_mutex)); 15545 } 15546 15547 /* ARGSUSED */ 15548 static int 15549 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags) 15550 { 15551 sf_scd_t *scdp = (sf_scd_t *)buf; 15552 15553 bzero(buf, sizeof (sf_scd_t)); 15554 mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL); 15555 return (0); 15556 } 15557 15558 /* ARGSUSED */ 15559 static void 15560 sfmmu_scdcache_destructor(void *buf, void *cdrarg) 15561 { 15562 sf_scd_t *scdp = (sf_scd_t *)buf; 15563 15564 mutex_destroy(&scdp->scd_mutex); 15565 } 15566 15567 /* 15568 * The listp parameter is a pointer to a list of hmeblks which are partially 15569 * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the 15570 * freeing process is to cross-call all cpus to ensure that there are no 15571 * remaining cached references. 15572 * 15573 * If the local generation number is less than the global then we can free 15574 * hmeblks which are already on the pending queue as another cpu has completed 15575 * the cross-call. 15576 * 15577 * We cross-call to make sure that there are no threads on other cpus accessing 15578 * these hmblks and then complete the process of freeing them under the 15579 * following conditions: 15580 * The total number of pending hmeblks is greater than the threshold 15581 * The reserve list has fewer than HBLK_RESERVE_CNT hmeblks 15582 * It is at least 1 second since the last time we cross-called 15583 * 15584 * Otherwise, we add the hmeblks to the per-cpu pending queue. 15585 */ 15586 static void 15587 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree) 15588 { 15589 struct hme_blk *hblkp, *pr_hblkp = NULL; 15590 int count = 0; 15591 cpuset_t cpuset = cpu_ready_set; 15592 cpu_hme_pend_t *cpuhp; 15593 timestruc_t now; 15594 int one_second_expired = 0; 15595 15596 gethrestime_lasttick(&now); 15597 15598 for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) { 15599 ASSERT(hblkp->hblk_shw_bit == 0); 15600 ASSERT(hblkp->hblk_shared == 0); 15601 count++; 15602 pr_hblkp = hblkp; 15603 } 15604 15605 cpuhp = &cpu_hme_pend[CPU->cpu_seqid]; 15606 mutex_enter(&cpuhp->chp_mutex); 15607 15608 if ((cpuhp->chp_count + count) == 0) { 15609 mutex_exit(&cpuhp->chp_mutex); 15610 return; 15611 } 15612 15613 if ((now.tv_sec - cpuhp->chp_timestamp) > 1) { 15614 one_second_expired = 1; 15615 } 15616 15617 if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT || 15618 (cpuhp->chp_count + count) > cpu_hme_pend_thresh || 15619 one_second_expired)) { 15620 /* Append global list to local */ 15621 if (pr_hblkp == NULL) { 15622 *listp = cpuhp->chp_listp; 15623 } else { 15624 pr_hblkp->hblk_next = cpuhp->chp_listp; 15625 } 15626 cpuhp->chp_listp = NULL; 15627 cpuhp->chp_count = 0; 15628 cpuhp->chp_timestamp = now.tv_sec; 15629 mutex_exit(&cpuhp->chp_mutex); 15630 15631 kpreempt_disable(); 15632 CPUSET_DEL(cpuset, CPU->cpu_id); 15633 xt_sync(cpuset); 15634 xt_sync(cpuset); 15635 kpreempt_enable(); 15636 15637 /* 15638 * At this stage we know that no trap handlers on other 15639 * cpus can have references to hmeblks on the list. 15640 */ 15641 sfmmu_hblk_free(listp); 15642 } else if (*listp != NULL) { 15643 pr_hblkp->hblk_next = cpuhp->chp_listp; 15644 cpuhp->chp_listp = *listp; 15645 cpuhp->chp_count += count; 15646 *listp = NULL; 15647 mutex_exit(&cpuhp->chp_mutex); 15648 } else { 15649 mutex_exit(&cpuhp->chp_mutex); 15650 } 15651 } 15652 15653 /* 15654 * Add an hmeblk to the the hash list. 15655 */ 15656 void 15657 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 15658 uint64_t hblkpa) 15659 { 15660 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 15661 #ifdef DEBUG 15662 if (hmebp->hmeblkp == NULL) { 15663 ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA); 15664 } 15665 #endif /* DEBUG */ 15666 15667 hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa; 15668 /* 15669 * Since the TSB miss handler now does not lock the hash chain before 15670 * walking it, make sure that the hmeblks nextpa is globally visible 15671 * before we make the hmeblk globally visible by updating the chain root 15672 * pointer in the hash bucket. 15673 */ 15674 membar_producer(); 15675 hmebp->hmeh_nextpa = hblkpa; 15676 hmeblkp->hblk_next = hmebp->hmeblkp; 15677 hmebp->hmeblkp = hmeblkp; 15678 15679 } 15680 15681 /* 15682 * This function is the first part of a 2 part process to remove an hmeblk 15683 * from the hash chain. In this phase we unlink the hmeblk from the hash chain 15684 * but leave the next physical pointer unchanged. The hmeblk is then linked onto 15685 * a per-cpu pending list using the virtual address pointer. 15686 * 15687 * TSB miss trap handlers that start after this phase will no longer see 15688 * this hmeblk. TSB miss handlers that still cache this hmeblk in a register 15689 * can still use it for further chain traversal because we haven't yet modifed 15690 * the next physical pointer or freed it. 15691 * 15692 * In the second phase of hmeblk removal we'll issue a barrier xcall before 15693 * we reuse or free this hmeblk. This will make sure all lingering references to 15694 * the hmeblk after first phase disappear before we finally reclaim it. 15695 * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains 15696 * during their traversal. 15697 * 15698 * The hmehash_mutex must be held when calling this function. 15699 * 15700 * Input: 15701 * hmebp - hme hash bucket pointer 15702 * hmeblkp - address of hmeblk to be removed 15703 * pr_hblk - virtual address of previous hmeblkp 15704 * listp - pointer to list of hmeblks linked by virtual address 15705 * free_now flag - indicates that a complete removal from the hash chains 15706 * is necessary. 15707 * 15708 * It is inefficient to use the free_now flag as a cross-call is required to 15709 * remove a single hmeblk from the hash chain but is necessary when hmeblks are 15710 * in short supply. 15711 */ 15712 void 15713 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 15714 struct hme_blk *pr_hblk, struct hme_blk **listp, 15715 int free_now) 15716 { 15717 int shw_size, vshift; 15718 struct hme_blk *shw_hblkp; 15719 uint_t shw_mask, newshw_mask; 15720 caddr_t vaddr; 15721 int size; 15722 cpuset_t cpuset = cpu_ready_set; 15723 15724 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 15725 15726 if (hmebp->hmeblkp == hmeblkp) { 15727 hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa; 15728 hmebp->hmeblkp = hmeblkp->hblk_next; 15729 } else { 15730 pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa; 15731 pr_hblk->hblk_next = hmeblkp->hblk_next; 15732 } 15733 15734 size = get_hblk_ttesz(hmeblkp); 15735 shw_hblkp = hmeblkp->hblk_shadow; 15736 if (shw_hblkp) { 15737 ASSERT(hblktosfmmu(hmeblkp) != KHATID); 15738 ASSERT(!hmeblkp->hblk_shared); 15739 #ifdef DEBUG 15740 if (mmu_page_sizes == max_mmu_page_sizes) { 15741 ASSERT(size < TTE256M); 15742 } else { 15743 ASSERT(size < TTE4M); 15744 } 15745 #endif /* DEBUG */ 15746 15747 shw_size = get_hblk_ttesz(shw_hblkp); 15748 vaddr = (caddr_t)get_hblk_base(hmeblkp); 15749 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size); 15750 ASSERT(vshift < 8); 15751 /* 15752 * Atomically clear shadow mask bit 15753 */ 15754 do { 15755 shw_mask = shw_hblkp->hblk_shw_mask; 15756 ASSERT(shw_mask & (1 << vshift)); 15757 newshw_mask = shw_mask & ~(1 << vshift); 15758 newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask, 15759 shw_mask, newshw_mask); 15760 } while (newshw_mask != shw_mask); 15761 hmeblkp->hblk_shadow = NULL; 15762 } 15763 hmeblkp->hblk_shw_bit = 0; 15764 15765 if (hmeblkp->hblk_shared) { 15766 #ifdef DEBUG 15767 sf_srd_t *srdp; 15768 sf_region_t *rgnp; 15769 uint_t rid; 15770 15771 srdp = hblktosrd(hmeblkp); 15772 ASSERT(srdp != NULL && srdp->srd_refcnt != 0); 15773 rid = hmeblkp->hblk_tag.htag_rid; 15774 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 15775 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 15776 rgnp = srdp->srd_hmergnp[rid]; 15777 ASSERT(rgnp != NULL); 15778 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid); 15779 #endif /* DEBUG */ 15780 hmeblkp->hblk_shared = 0; 15781 } 15782 if (free_now) { 15783 kpreempt_disable(); 15784 CPUSET_DEL(cpuset, CPU->cpu_id); 15785 xt_sync(cpuset); 15786 xt_sync(cpuset); 15787 kpreempt_enable(); 15788 15789 hmeblkp->hblk_nextpa = HMEBLK_ENDPA; 15790 hmeblkp->hblk_next = NULL; 15791 } else { 15792 /* Append hmeblkp to listp for processing later. */ 15793 hmeblkp->hblk_next = *listp; 15794 *listp = hmeblkp; 15795 } 15796 } 15797 15798 /* 15799 * This routine is called when memory is in short supply and returns a free 15800 * hmeblk of the requested size from the cpu pending lists. 15801 */ 15802 static struct hme_blk * 15803 sfmmu_check_pending_hblks(int size) 15804 { 15805 int i; 15806 struct hme_blk *hmeblkp = NULL, *last_hmeblkp; 15807 int found_hmeblk; 15808 cpuset_t cpuset = cpu_ready_set; 15809 cpu_hme_pend_t *cpuhp; 15810 15811 /* Flush cpu hblk pending queues */ 15812 for (i = 0; i < NCPU; i++) { 15813 cpuhp = &cpu_hme_pend[i]; 15814 if (cpuhp->chp_listp != NULL) { 15815 mutex_enter(&cpuhp->chp_mutex); 15816 if (cpuhp->chp_listp == NULL) { 15817 mutex_exit(&cpuhp->chp_mutex); 15818 continue; 15819 } 15820 found_hmeblk = 0; 15821 last_hmeblkp = NULL; 15822 for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL; 15823 hmeblkp = hmeblkp->hblk_next) { 15824 if (get_hblk_ttesz(hmeblkp) == size) { 15825 if (last_hmeblkp == NULL) { 15826 cpuhp->chp_listp = 15827 hmeblkp->hblk_next; 15828 } else { 15829 last_hmeblkp->hblk_next = 15830 hmeblkp->hblk_next; 15831 } 15832 ASSERT(cpuhp->chp_count > 0); 15833 cpuhp->chp_count--; 15834 found_hmeblk = 1; 15835 break; 15836 } else { 15837 last_hmeblkp = hmeblkp; 15838 } 15839 } 15840 mutex_exit(&cpuhp->chp_mutex); 15841 15842 if (found_hmeblk) { 15843 kpreempt_disable(); 15844 CPUSET_DEL(cpuset, CPU->cpu_id); 15845 xt_sync(cpuset); 15846 xt_sync(cpuset); 15847 kpreempt_enable(); 15848 return (hmeblkp); 15849 } 15850 } 15851 } 15852 return (NULL); 15853 } 15854