xref: /titanic_41/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 6f3f1c6855bcfa92946d94b694d1851218c514a7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/kstat.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <sys/dtrace.h>
84 #include <vm/vm_dep.h>
85 #include <vm/xhat_sfmmu.h>
86 #include <sys/fpu/fpusystm.h>
87 #include <vm/mach_kpm.h>
88 
89 #if defined(SF_ERRATA_57)
90 extern caddr_t errata57_limit;
91 #endif
92 
93 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
94 				(sizeof (int64_t)))
95 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
96 
97 #define	HBLK_RESERVE_CNT	128
98 #define	HBLK_RESERVE_MIN	20
99 
100 static struct hme_blk		*freehblkp;
101 static kmutex_t			freehblkp_lock;
102 static int			freehblkcnt;
103 
104 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
105 static kmutex_t			hblk_reserve_lock;
106 static kthread_t		*hblk_reserve_thread;
107 
108 static nucleus_hblk8_info_t	nucleus_hblk8;
109 static nucleus_hblk1_info_t	nucleus_hblk1;
110 
111 /*
112  * SFMMU specific hat functions
113  */
114 void	hat_pagecachectl(struct page *, int);
115 
116 /* flags for hat_pagecachectl */
117 #define	HAT_CACHE	0x1
118 #define	HAT_UNCACHE	0x2
119 #define	HAT_TMPNC	0x4
120 
121 /*
122  * Flag to allow the creation of non-cacheable translations
123  * to system memory. It is off by default. At the moment this
124  * flag is used by the ecache error injector. The error injector
125  * will turn it on when creating such a translation then shut it
126  * off when it's finished.
127  */
128 
129 int	sfmmu_allow_nc_trans = 0;
130 
131 /*
132  * Flag to disable large page support.
133  * 	value of 1 => disable all large pages.
134  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
135  *
136  * For example, use the value 0x4 to disable 512K pages.
137  *
138  */
139 #define	LARGE_PAGES_OFF		0x1
140 
141 /*
142  * WARNING: 512K pages MUST be disabled for ISM/DISM. If not
143  * a process would page fault indefinitely if it tried to
144  * access a 512K page.
145  */
146 int	disable_ism_large_pages = (1 << TTE512K);
147 int	disable_large_pages = 0;
148 int	disable_auto_large_pages = 0;
149 int	disable_shm_large_pages = 0;
150 
151 /*
152  * Private sfmmu data structures for hat management
153  */
154 static struct kmem_cache *sfmmuid_cache;
155 static struct kmem_cache *mmuctxdom_cache;
156 
157 /*
158  * Private sfmmu data structures for tsb management
159  */
160 static struct kmem_cache *sfmmu_tsbinfo_cache;
161 static struct kmem_cache *sfmmu_tsb8k_cache;
162 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
163 static vmem_t *kmem_tsb_arena;
164 
165 /*
166  * sfmmu static variables for hmeblk resource management.
167  */
168 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
169 static struct kmem_cache *sfmmu8_cache;
170 static struct kmem_cache *sfmmu1_cache;
171 static struct kmem_cache *pa_hment_cache;
172 
173 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
174 /*
175  * private data for ism
176  */
177 static struct kmem_cache *ism_blk_cache;
178 static struct kmem_cache *ism_ment_cache;
179 #define	ISMID_STARTADDR	NULL
180 
181 /*
182  * Whether to delay TLB flushes and use Cheetah's flush-all support
183  * when removing contexts from the dirty list.
184  */
185 int delay_tlb_flush;
186 int disable_delay_tlb_flush;
187 
188 /*
189  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
190  * HAT flags, synchronizing TLB/TSB coherency, and context management.
191  * The lock is hashed on the sfmmup since the case where we need to lock
192  * all processes is rare but does occur (e.g. we need to unload a shared
193  * mapping from all processes using the mapping).  We have a lot of buckets,
194  * and each slab of sfmmu_t's can use about a quarter of them, giving us
195  * a fairly good distribution without wasting too much space and overhead
196  * when we have to grab them all.
197  */
198 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
199 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
200 
201 /*
202  * Hash algorithm optimized for a small number of slabs.
203  *  7 is (highbit((sizeof sfmmu_t)) - 1)
204  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
205  * kmem_cache, and thus they will be sequential within that cache.  In
206  * addition, each new slab will have a different "color" up to cache_maxcolor
207  * which will skew the hashing for each successive slab which is allocated.
208  * If the size of sfmmu_t changed to a larger size, this algorithm may need
209  * to be revisited.
210  */
211 #define	TSB_HASH_SHIFT_BITS (7)
212 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
213 
214 #ifdef DEBUG
215 int tsb_hash_debug = 0;
216 #define	TSB_HASH(sfmmup)	\
217 	(tsb_hash_debug ? &hat_lock[0] : \
218 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
219 #else	/* DEBUG */
220 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
221 #endif	/* DEBUG */
222 
223 
224 /* sfmmu_replace_tsb() return codes. */
225 typedef enum tsb_replace_rc {
226 	TSB_SUCCESS,
227 	TSB_ALLOCFAIL,
228 	TSB_LOSTRACE,
229 	TSB_ALREADY_SWAPPED,
230 	TSB_CANTGROW
231 } tsb_replace_rc_t;
232 
233 /*
234  * Flags for TSB allocation routines.
235  */
236 #define	TSB_ALLOC	0x01
237 #define	TSB_FORCEALLOC	0x02
238 #define	TSB_GROW	0x04
239 #define	TSB_SHRINK	0x08
240 #define	TSB_SWAPIN	0x10
241 
242 /*
243  * Support for HAT callbacks.
244  */
245 #define	SFMMU_MAX_RELOC_CALLBACKS	10
246 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
247 static id_t sfmmu_cb_nextid = 0;
248 static id_t sfmmu_tsb_cb_id;
249 struct sfmmu_callback *sfmmu_cb_table;
250 
251 /*
252  * Kernel page relocation is enabled by default for non-caged
253  * kernel pages.  This has little effect unless segkmem_reloc is
254  * set, since by default kernel memory comes from inside the
255  * kernel cage.
256  */
257 int hat_kpr_enabled = 1;
258 
259 kmutex_t	kpr_mutex;
260 kmutex_t	kpr_suspendlock;
261 kthread_t	*kreloc_thread;
262 
263 /*
264  * Enable VA->PA translation sanity checking on DEBUG kernels.
265  * Disabled by default.  This is incompatible with some
266  * drivers (error injector, RSM) so if it breaks you get
267  * to keep both pieces.
268  */
269 int hat_check_vtop = 0;
270 
271 /*
272  * Private sfmmu routines (prototypes)
273  */
274 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
275 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
276 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
277 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
278 			caddr_t, demap_range_t *, uint_t);
279 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
280 			caddr_t, int);
281 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
282 			uint64_t, struct hme_blk **);
283 static void	sfmmu_hblks_list_purge(struct hme_blk **);
284 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
285 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
286 static struct hme_blk *sfmmu_hblk_steal(int);
287 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
288 			struct hme_blk *, uint64_t, uint64_t,
289 			struct hme_blk *);
290 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
291 
292 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
293 		    uint_t, uint_t, pgcnt_t);
294 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
295 			uint_t);
296 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
297 			uint_t);
298 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
299 					caddr_t, int);
300 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
301 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
302 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
303 			caddr_t, page_t **, uint_t);
304 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
305 
306 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
307 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
308 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
309 #ifdef VAC
310 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
311 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
312 int	tst_tnc(page_t *pp, pgcnt_t);
313 void	conv_tnc(page_t *pp, int);
314 #endif
315 
316 static void	sfmmu_get_ctx(sfmmu_t *);
317 static void	sfmmu_free_sfmmu(sfmmu_t *);
318 
319 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
320 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
321 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
322 
323 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
324 static void	hat_pagereload(struct page *, struct page *);
325 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
326 #ifdef VAC
327 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
328 static void	sfmmu_page_cache(page_t *, int, int, int);
329 #endif
330 
331 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
332 			pfn_t, int, int, int, int);
333 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
334 			pfn_t, int);
335 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
336 static void	sfmmu_tlb_range_demap(demap_range_t *);
337 static void	sfmmu_invalidate_ctx(sfmmu_t *);
338 static void	sfmmu_sync_mmustate(sfmmu_t *);
339 
340 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
341 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
342 			sfmmu_t *);
343 static void	sfmmu_tsb_free(struct tsb_info *);
344 static void	sfmmu_tsbinfo_free(struct tsb_info *);
345 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
346 			sfmmu_t *);
347 
348 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
349 static int	sfmmu_select_tsb_szc(pgcnt_t);
350 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
351 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
352 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
353 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
354 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
355 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
356 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
357     hatlock_t *, uint_t);
358 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
359 
360 #ifdef VAC
361 void	sfmmu_cache_flush(pfn_t, int);
362 void	sfmmu_cache_flushcolor(int, pfn_t);
363 #endif
364 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
365 			caddr_t, demap_range_t *, uint_t, int);
366 
367 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
368 static uint_t	sfmmu_ptov_attr(tte_t *);
369 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
370 			caddr_t, demap_range_t *, uint_t);
371 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
372 static int	sfmmu_idcache_constructor(void *, void *, int);
373 static void	sfmmu_idcache_destructor(void *, void *);
374 static int	sfmmu_hblkcache_constructor(void *, void *, int);
375 static void	sfmmu_hblkcache_destructor(void *, void *);
376 static void	sfmmu_hblkcache_reclaim(void *);
377 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
378 			struct hmehash_bucket *);
379 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
380 static void	sfmmu_rm_large_mappings(page_t *, int);
381 
382 static void	hat_lock_init(void);
383 static void	hat_kstat_init(void);
384 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
385 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
386 int	fnd_mapping_sz(page_t *);
387 static void	iment_add(struct ism_ment *,  struct hat *);
388 static void	iment_sub(struct ism_ment *, struct hat *);
389 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
390 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
391 #ifdef sun4v
392 extern void	sfmmu_invalidate_tsbinfo(sfmmu_t *);
393 #endif	/* sun4v */
394 extern void	sfmmu_clear_utsbinfo(void);
395 
396 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
397 
398 /* kpm globals */
399 #ifdef	DEBUG
400 /*
401  * Enable trap level tsbmiss handling
402  */
403 int	kpm_tsbmtl = 1;
404 
405 /*
406  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
407  * required TLB shootdowns in this case, so handle w/ care. Off by default.
408  */
409 int	kpm_tlb_flush;
410 #endif	/* DEBUG */
411 
412 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
413 
414 #ifdef DEBUG
415 static void	sfmmu_check_hblk_flist();
416 #endif
417 
418 /*
419  * Semi-private sfmmu data structures.  Some of them are initialize in
420  * startup or in hat_init. Some of them are private but accessed by
421  * assembly code or mach_sfmmu.c
422  */
423 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
424 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
425 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
426 uint64_t	khme_hash_pa;		/* PA of khme_hash */
427 int 		uhmehash_num;		/* # of buckets in user hash table */
428 int 		khmehash_num;		/* # of buckets in kernel hash table */
429 
430 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
431 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
432 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
433 
434 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
435 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
436 
437 int		cache;			/* describes system cache */
438 
439 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
440 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
441 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
442 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
443 
444 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
445 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
446 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
447 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
448 
449 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
450 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
451 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
452 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
453 
454 #ifndef sun4v
455 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
456 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
457 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
458 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
459 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
460 #endif /* sun4v */
461 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
462 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
463 
464 /*
465  * Size to use for TSB slabs.  Future platforms that support page sizes
466  * larger than 4M may wish to change these values, and provide their own
467  * assembly macros for building and decoding the TSB base register contents.
468  * Note disable_large_pages will override the value set here.
469  */
470 uint_t	tsb_slab_ttesz = TTE4M;
471 uint_t	tsb_slab_size;
472 uint_t	tsb_slab_shift;
473 uint_t	tsb_slab_mask;	/* PFN mask for TTE */
474 
475 /* largest TSB size to grow to, will be smaller on smaller memory systems */
476 int	tsb_max_growsize = UTSB_MAX_SZCODE;
477 
478 /*
479  * Tunable parameters dealing with TSB policies.
480  */
481 
482 /*
483  * This undocumented tunable forces all 8K TSBs to be allocated from
484  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
485  */
486 #ifdef	DEBUG
487 int	tsb_forceheap = 0;
488 #endif	/* DEBUG */
489 
490 /*
491  * Decide whether to use per-lgroup arenas, or one global set of
492  * TSB arenas.  The default is not to break up per-lgroup, since
493  * most platforms don't recognize any tangible benefit from it.
494  */
495 int	tsb_lgrp_affinity = 0;
496 
497 /*
498  * Used for growing the TSB based on the process RSS.
499  * tsb_rss_factor is based on the smallest TSB, and is
500  * shifted by the TSB size to determine if we need to grow.
501  * The default will grow the TSB if the number of TTEs for
502  * this page size exceeds 75% of the number of TSB entries,
503  * which should _almost_ eliminate all conflict misses
504  * (at the expense of using up lots and lots of memory).
505  */
506 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
507 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
508 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
509 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
510 	default_tsb_size)
511 #define	TSB_OK_SHRINK()	\
512 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
513 #define	TSB_OK_GROW()	\
514 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
515 
516 int	enable_tsb_rss_sizing = 1;
517 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
518 
519 /* which TSB size code to use for new address spaces or if rss sizing off */
520 int default_tsb_size = TSB_8K_SZCODE;
521 
522 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
523 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
524 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
525 
526 #ifdef DEBUG
527 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
528 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
529 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
530 static int tsb_alloc_fail_mtbf = 0;
531 static int tsb_alloc_count = 0;
532 #endif /* DEBUG */
533 
534 /* if set to 1, will remap valid TTEs when growing TSB. */
535 int tsb_remap_ttes = 1;
536 
537 /*
538  * If we have more than this many mappings, allocate a second TSB.
539  * This default is chosen because the I/D fully associative TLBs are
540  * assumed to have at least 8 available entries. Platforms with a
541  * larger fully-associative TLB could probably override the default.
542  */
543 int tsb_sectsb_threshold = 8;
544 
545 /*
546  * kstat data
547  */
548 struct sfmmu_global_stat sfmmu_global_stat;
549 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
550 
551 /*
552  * Global data
553  */
554 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
555 
556 #ifdef DEBUG
557 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
558 #endif
559 
560 /* sfmmu locking operations */
561 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
562 static int	sfmmu_mlspl_held(struct page *, int);
563 
564 kmutex_t *sfmmu_page_enter(page_t *);
565 void	sfmmu_page_exit(kmutex_t *);
566 int	sfmmu_page_spl_held(struct page *);
567 
568 /* sfmmu internal locking operations - accessed directly */
569 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
570 				kmutex_t **, kmutex_t **);
571 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
572 static hatlock_t *
573 		sfmmu_hat_enter(sfmmu_t *);
574 static hatlock_t *
575 		sfmmu_hat_tryenter(sfmmu_t *);
576 static void	sfmmu_hat_exit(hatlock_t *);
577 static void	sfmmu_hat_lock_all(void);
578 static void	sfmmu_hat_unlock_all(void);
579 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
580 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
581 
582 /*
583  * Array of mutexes protecting a page's mapping list and p_nrm field.
584  *
585  * The hash function looks complicated, but is made up so that:
586  *
587  * "pp" not shifted, so adjacent pp values will hash to different cache lines
588  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
589  *
590  * "pp" >> mml_shift, incorporates more source bits into the hash result
591  *
592  *  "& (mml_table_size - 1), should be faster than using remainder "%"
593  *
594  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
595  * cacheline, since they get declared next to each other below. We'll trust
596  * ld not to do something random.
597  */
598 #ifdef	DEBUG
599 int mlist_hash_debug = 0;
600 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
601 	&mml_table[((uintptr_t)(pp) + \
602 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
603 #else	/* !DEBUG */
604 #define	MLIST_HASH(pp)   &mml_table[ \
605 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
606 #endif	/* !DEBUG */
607 
608 kmutex_t		*mml_table;
609 uint_t			mml_table_sz;	/* must be a power of 2 */
610 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
611 
612 kpm_hlk_t	*kpmp_table;
613 uint_t		kpmp_table_sz;	/* must be a power of 2 */
614 uchar_t		kpmp_shift;
615 
616 kpm_shlk_t	*kpmp_stable;
617 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
618 
619 /*
620  * SPL_HASH was improved to avoid false cache line sharing
621  */
622 #define	SPL_TABLE_SIZE	128
623 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
624 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
625 
626 #define	SPL_INDEX(pp) \
627 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
628 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
629 	(SPL_TABLE_SIZE - 1))
630 
631 #define	SPL_HASH(pp)    \
632 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
633 
634 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
635 
636 
637 /*
638  * hat_unload_callback() will group together callbacks in order
639  * to avoid xt_sync() calls.  This is the maximum size of the group.
640  */
641 #define	MAX_CB_ADDR	32
642 
643 tte_t	hw_tte;
644 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
645 
646 static char	*mmu_ctx_kstat_names[] = {
647 	"mmu_ctx_tsb_exceptions",
648 	"mmu_ctx_tsb_raise_exception",
649 	"mmu_ctx_wrap_around",
650 };
651 
652 /*
653  * Wrapper for vmem_xalloc since vmem_create only allows limited
654  * parameters for vm_source_alloc functions.  This function allows us
655  * to specify alignment consistent with the size of the object being
656  * allocated.
657  */
658 static void *
659 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
660 {
661 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
662 }
663 
664 /* Common code for setting tsb_alloc_hiwater. */
665 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
666 		ptob(pages) / tsb_alloc_hiwater_factor
667 
668 /*
669  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
670  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
671  * TTEs to represent all those physical pages.  We round this up by using
672  * 1<<highbit().  To figure out which size code to use, remember that the size
673  * code is just an amount to shift the smallest TSB size to get the size of
674  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
675  * highbit() - 1) to get the size code for the smallest TSB that can represent
676  * all of physical memory, while erring on the side of too much.
677  *
678  * If the computed size code is less than the current tsb_max_growsize, we set
679  * tsb_max_growsize to the computed size code.  In the case where the computed
680  * size code is greater than tsb_max_growsize, we have these restrictions that
681  * apply to increasing tsb_max_growsize:
682  *	1) TSBs can't grow larger than the TSB slab size
683  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
684  */
685 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
686 	int	i, szc;							\
687 									\
688 	i = highbit(pages);						\
689 	if ((1 << (i - 1)) == (pages))					\
690 		i--;		/* 2^n case, round down */		\
691 	szc = i - TSB_START_SIZE;					\
692 	if (szc < tsb_max_growsize)					\
693 		tsb_max_growsize = szc;					\
694 	else if ((szc > tsb_max_growsize) &&				\
695 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
696 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
697 }
698 
699 /*
700  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
701  * tsb_info which handles that TTE size.
702  */
703 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
704 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
705 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
706 	if ((tte_szc) >= TTE4M)						\
707 		(tsbinfop) = (tsbinfop)->tsb_next;
708 
709 /*
710  * Return the number of mappings present in the HAT
711  * for a particular process and page size.
712  */
713 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
714 	(sfmmup)->sfmmu_iblk?						\
715 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
716 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
717 	    (sfmmup)->sfmmu_ttecnt[(szc)];
718 
719 /*
720  * Macro to use to unload entries from the TSB.
721  * It has knowledge of which page sizes get replicated in the TSB
722  * and will call the appropriate unload routine for the appropriate size.
723  */
724 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
725 {									\
726 	int ttesz = get_hblk_ttesz(hmeblkp);				\
727 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
728 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
729 	} else {							\
730 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
731 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
732 		ASSERT(addr >= sva && addr < eva);			\
733 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
734 	}								\
735 }
736 
737 
738 /* Update tsb_alloc_hiwater after memory is configured. */
739 /*ARGSUSED*/
740 static void
741 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
742 {
743 	/* Assumes physmem has already been updated. */
744 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
745 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
746 }
747 
748 /*
749  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
750  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
751  * deleted.
752  */
753 /*ARGSUSED*/
754 static int
755 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
756 {
757 	return (0);
758 }
759 
760 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
761 /*ARGSUSED*/
762 static void
763 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
764 {
765 	/*
766 	 * Whether the delete was cancelled or not, just go ahead and update
767 	 * tsb_alloc_hiwater and tsb_max_growsize.
768 	 */
769 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
770 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
771 }
772 
773 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
774 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
775 	sfmmu_update_tsb_post_add,	/* post_add */
776 	sfmmu_update_tsb_pre_del,	/* pre_del */
777 	sfmmu_update_tsb_post_del	/* post_del */
778 };
779 
780 
781 /*
782  * HME_BLK HASH PRIMITIVES
783  */
784 
785 /*
786  * Enter a hme on the mapping list for page pp.
787  * When large pages are more prevalent in the system we might want to
788  * keep the mapping list in ascending order by the hment size. For now,
789  * small pages are more frequent, so don't slow it down.
790  */
791 #define	HME_ADD(hme, pp)					\
792 {								\
793 	ASSERT(sfmmu_mlist_held(pp));				\
794 								\
795 	hme->hme_prev = NULL;					\
796 	hme->hme_next = pp->p_mapping;				\
797 	hme->hme_page = pp;					\
798 	if (pp->p_mapping) {					\
799 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
800 		ASSERT(pp->p_share > 0);			\
801 	} else  {						\
802 		/* EMPTY */					\
803 		ASSERT(pp->p_share == 0);			\
804 	}							\
805 	pp->p_mapping = hme;					\
806 	pp->p_share++;						\
807 }
808 
809 /*
810  * Enter a hme on the mapping list for page pp.
811  * If we are unmapping a large translation, we need to make sure that the
812  * change is reflect in the corresponding bit of the p_index field.
813  */
814 #define	HME_SUB(hme, pp)					\
815 {								\
816 	ASSERT(sfmmu_mlist_held(pp));				\
817 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
818 								\
819 	if (pp->p_mapping == NULL) {				\
820 		panic("hme_remove - no mappings");		\
821 	}							\
822 								\
823 	membar_stst();	/* ensure previous stores finish */	\
824 								\
825 	ASSERT(pp->p_share > 0);				\
826 	pp->p_share--;						\
827 								\
828 	if (hme->hme_prev) {					\
829 		ASSERT(pp->p_mapping != hme);			\
830 		ASSERT(hme->hme_prev->hme_page == pp ||		\
831 			IS_PAHME(hme->hme_prev));		\
832 		hme->hme_prev->hme_next = hme->hme_next;	\
833 	} else {						\
834 		ASSERT(pp->p_mapping == hme);			\
835 		pp->p_mapping = hme->hme_next;			\
836 		ASSERT((pp->p_mapping == NULL) ?		\
837 			(pp->p_share == 0) : 1);		\
838 	}							\
839 								\
840 	if (hme->hme_next) {					\
841 		ASSERT(hme->hme_next->hme_page == pp ||		\
842 			IS_PAHME(hme->hme_next));		\
843 		hme->hme_next->hme_prev = hme->hme_prev;	\
844 	}							\
845 								\
846 	/* zero out the entry */				\
847 	hme->hme_next = NULL;					\
848 	hme->hme_prev = NULL;					\
849 	hme->hme_page = NULL;					\
850 								\
851 	if (hme_size(hme) > TTE8K) {				\
852 		/* remove mappings for remainder of large pg */	\
853 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
854 	}							\
855 }
856 
857 /*
858  * This function returns the hment given the hme_blk and a vaddr.
859  * It assumes addr has already been checked to belong to hme_blk's
860  * range.
861  */
862 #define	HBLKTOHME(hment, hmeblkp, addr)					\
863 {									\
864 	int index;							\
865 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
866 }
867 
868 /*
869  * Version of HBLKTOHME that also returns the index in hmeblkp
870  * of the hment.
871  */
872 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
873 {									\
874 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
875 									\
876 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
877 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
878 	} else								\
879 		idx = 0;						\
880 									\
881 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
882 }
883 
884 /*
885  * Disable any page sizes not supported by the CPU
886  */
887 void
888 hat_init_pagesizes()
889 {
890 	int 		i;
891 
892 	mmu_exported_page_sizes = 0;
893 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
894 		extern int	disable_text_largepages;
895 		extern int	disable_initdata_largepages;
896 
897 		szc_2_userszc[i] = (uint_t)-1;
898 		userszc_2_szc[i] = (uint_t)-1;
899 
900 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
901 			disable_large_pages |= (1 << i);
902 			disable_ism_large_pages |= (1 << i);
903 			disable_text_largepages |= (1 << i);
904 			disable_initdata_largepages |= (1 << i);
905 		} else {
906 			szc_2_userszc[i] = mmu_exported_page_sizes;
907 			userszc_2_szc[mmu_exported_page_sizes] = i;
908 			mmu_exported_page_sizes++;
909 		}
910 	}
911 
912 	disable_auto_large_pages = disable_large_pages;
913 
914 	/*
915 	 * Initialize mmu-specific large page sizes.
916 	 */
917 	if (&mmu_large_pages_disabled) {
918 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
919 		disable_ism_large_pages |=
920 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
921 		disable_auto_large_pages |=
922 		    mmu_large_pages_disabled(HAT_LOAD_AUTOLPG);
923 	}
924 
925 	disable_shm_large_pages = disable_auto_large_pages;
926 }
927 
928 /*
929  * Initialize the hardware address translation structures.
930  */
931 void
932 hat_init(void)
933 {
934 	int 		i;
935 	uint_t		sz;
936 	uint_t		maxtsb;
937 	size_t		size;
938 
939 	hat_lock_init();
940 	hat_kstat_init();
941 
942 	/*
943 	 * Hardware-only bits in a TTE
944 	 */
945 	MAKE_TTE_MASK(&hw_tte);
946 
947 	hat_init_pagesizes();
948 
949 	/* Initialize the hash locks */
950 	for (i = 0; i < khmehash_num; i++) {
951 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
952 		    MUTEX_DEFAULT, NULL);
953 	}
954 	for (i = 0; i < uhmehash_num; i++) {
955 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
956 		    MUTEX_DEFAULT, NULL);
957 	}
958 	khmehash_num--;		/* make sure counter starts from 0 */
959 	uhmehash_num--;		/* make sure counter starts from 0 */
960 
961 	/*
962 	 * Allocate context domain structures.
963 	 *
964 	 * A platform may choose to modify max_mmu_ctxdoms in
965 	 * set_platform_defaults(). If a platform does not define
966 	 * a set_platform_defaults() or does not choose to modify
967 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
968 	 *
969 	 * For sun4v, there will be one global context domain, this is to
970 	 * avoid the ldom cpu substitution problem.
971 	 *
972 	 * For all platforms that have CPUs sharing MMUs, this
973 	 * value must be defined.
974 	 */
975 	if (max_mmu_ctxdoms == 0) {
976 #ifndef sun4v
977 		max_mmu_ctxdoms = max_ncpus;
978 #else /* sun4v */
979 		max_mmu_ctxdoms = 1;
980 #endif /* sun4v */
981 	}
982 
983 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
984 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
985 
986 	/* mmu_ctx_t is 64 bytes aligned */
987 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
988 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
989 	/*
990 	 * MMU context domain initialization for the Boot CPU.
991 	 * This needs the context domains array allocated above.
992 	 */
993 	mutex_enter(&cpu_lock);
994 	sfmmu_cpu_init(CPU);
995 	mutex_exit(&cpu_lock);
996 
997 	/*
998 	 * Intialize ism mapping list lock.
999 	 */
1000 
1001 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1002 
1003 	/*
1004 	 * Each sfmmu structure carries an array of MMU context info
1005 	 * structures, one per context domain. The size of this array depends
1006 	 * on the maximum number of context domains. So, the size of the
1007 	 * sfmmu structure varies per platform.
1008 	 *
1009 	 * sfmmu is allocated from static arena, because trap
1010 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1011 	 * memory. sfmmu's alignment is changed to 64 bytes from
1012 	 * default 8 bytes, as the lower 6 bits will be used to pass
1013 	 * pgcnt to vtag_flush_pgcnt_tl1.
1014 	 */
1015 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1016 
1017 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1018 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1019 	    NULL, NULL, static_arena, 0);
1020 
1021 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1022 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1023 
1024 	/*
1025 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1026 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1027 	 * specified, don't use magazines to cache them--we want to return
1028 	 * them to the system as quickly as possible.
1029 	 */
1030 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1031 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1032 	    static_arena, KMC_NOMAGAZINE);
1033 
1034 	/*
1035 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1036 	 * memory, which corresponds to the old static reserve for TSBs.
1037 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1038 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1039 	 * allocations will be taken from the kernel heap (via
1040 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1041 	 * consumer.
1042 	 */
1043 	if (tsb_alloc_hiwater_factor == 0) {
1044 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1045 	}
1046 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1047 
1048 	/* Set tsb_max_growsize. */
1049 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1050 
1051 	/*
1052 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1053 	 * than the default 4M slab size. We also honor disable_large_pages
1054 	 * here.
1055 	 *
1056 	 * The trap handlers need to be patched with the final slab shift,
1057 	 * since they need to be able to construct the TSB pointer at runtime.
1058 	 */
1059 	if (tsb_max_growsize <= TSB_512K_SZCODE)
1060 		tsb_slab_ttesz = TTE512K;
1061 
1062 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1063 		if (!(disable_large_pages & (1 << sz)))
1064 			break;
1065 	}
1066 
1067 	tsb_slab_ttesz = sz;
1068 	tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1069 	tsb_slab_size = 1 << tsb_slab_shift;
1070 	tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1071 
1072 	maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT);
1073 	if (tsb_max_growsize > maxtsb)
1074 		tsb_max_growsize = maxtsb;
1075 
1076 	/*
1077 	 * Set up memory callback to update tsb_alloc_hiwater and
1078 	 * tsb_max_growsize.
1079 	 */
1080 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1081 	ASSERT(i == 0);
1082 
1083 	/*
1084 	 * kmem_tsb_arena is the source from which large TSB slabs are
1085 	 * drawn.  The quantum of this arena corresponds to the largest
1086 	 * TSB size we can dynamically allocate for user processes.
1087 	 * Currently it must also be a supported page size since we
1088 	 * use exactly one translation entry to map each slab page.
1089 	 *
1090 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1091 	 * which most TSBs are allocated.  Since most TSB allocations are
1092 	 * typically 8K we have a kmem cache we stack on top of each
1093 	 * kmem_tsb_default_arena to speed up those allocations.
1094 	 *
1095 	 * Note the two-level scheme of arenas is required only
1096 	 * because vmem_create doesn't allow us to specify alignment
1097 	 * requirements.  If this ever changes the code could be
1098 	 * simplified to use only one level of arenas.
1099 	 */
1100 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1101 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1102 	    0, VM_SLEEP);
1103 
1104 	if (tsb_lgrp_affinity) {
1105 		char s[50];
1106 		for (i = 0; i < NLGRPS_MAX; i++) {
1107 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1108 			kmem_tsb_default_arena[i] =
1109 			    vmem_create(s, NULL, 0, PAGESIZE,
1110 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1111 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1112 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1113 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1114 			    PAGESIZE, NULL, NULL, NULL, NULL,
1115 			    kmem_tsb_default_arena[i], 0);
1116 		}
1117 	} else {
1118 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1119 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1120 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1121 		    VM_SLEEP | VM_BESTFIT);
1122 
1123 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1124 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1125 		    kmem_tsb_default_arena[0], 0);
1126 	}
1127 
1128 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1129 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1130 		sfmmu_hblkcache_destructor,
1131 		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1132 		hat_memload_arena, KMC_NOHASH);
1133 
1134 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1135 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1136 
1137 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1138 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1139 		sfmmu_hblkcache_destructor,
1140 		NULL, (void *)HME1BLK_SZ,
1141 		hat_memload1_arena, KMC_NOHASH);
1142 
1143 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1144 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1145 
1146 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1147 		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1148 		NULL, NULL, static_arena, KMC_NOHASH);
1149 
1150 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1151 		sizeof (ism_ment_t), 0, NULL, NULL,
1152 		NULL, NULL, NULL, 0);
1153 
1154 	/*
1155 	 * We grab the first hat for the kernel,
1156 	 */
1157 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1158 	kas.a_hat = hat_alloc(&kas);
1159 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1160 
1161 	/*
1162 	 * Initialize hblk_reserve.
1163 	 */
1164 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1165 				va_to_pa((caddr_t)hblk_reserve);
1166 
1167 #ifndef UTSB_PHYS
1168 	/*
1169 	 * Reserve some kernel virtual address space for the locked TTEs
1170 	 * that allow us to probe the TSB from TL>0.
1171 	 */
1172 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1173 		0, 0, NULL, NULL, VM_SLEEP);
1174 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1175 		0, 0, NULL, NULL, VM_SLEEP);
1176 #endif
1177 
1178 #ifdef VAC
1179 	/*
1180 	 * The big page VAC handling code assumes VAC
1181 	 * will not be bigger than the smallest big
1182 	 * page- which is 64K.
1183 	 */
1184 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1185 		cmn_err(CE_PANIC, "VAC too big!");
1186 	}
1187 #endif
1188 
1189 	(void) xhat_init();
1190 
1191 	uhme_hash_pa = va_to_pa(uhme_hash);
1192 	khme_hash_pa = va_to_pa(khme_hash);
1193 
1194 	/*
1195 	 * Initialize relocation locks. kpr_suspendlock is held
1196 	 * at PIL_MAX to prevent interrupts from pinning the holder
1197 	 * of a suspended TTE which may access it leading to a
1198 	 * deadlock condition.
1199 	 */
1200 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1201 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1202 }
1203 
1204 /*
1205  * Initialize locking for the hat layer, called early during boot.
1206  */
1207 static void
1208 hat_lock_init()
1209 {
1210 	int i;
1211 
1212 	/*
1213 	 * initialize the array of mutexes protecting a page's mapping
1214 	 * list and p_nrm field.
1215 	 */
1216 	for (i = 0; i < mml_table_sz; i++)
1217 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1218 
1219 	if (kpm_enable) {
1220 		for (i = 0; i < kpmp_table_sz; i++) {
1221 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1222 			    MUTEX_DEFAULT, NULL);
1223 		}
1224 	}
1225 
1226 	/*
1227 	 * Initialize array of mutex locks that protects sfmmu fields and
1228 	 * TSB lists.
1229 	 */
1230 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1231 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1232 		    NULL);
1233 }
1234 
1235 extern caddr_t kmem64_base, kmem64_end;
1236 
1237 #define	SFMMU_KERNEL_MAXVA \
1238 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1239 
1240 /*
1241  * Allocate a hat structure.
1242  * Called when an address space first uses a hat.
1243  */
1244 struct hat *
1245 hat_alloc(struct as *as)
1246 {
1247 	sfmmu_t *sfmmup;
1248 	int i;
1249 	uint64_t cnum;
1250 	extern uint_t get_color_start(struct as *);
1251 
1252 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1253 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1254 	sfmmup->sfmmu_as = as;
1255 	sfmmup->sfmmu_flags = 0;
1256 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1257 
1258 	if (as == &kas) {
1259 		ksfmmup = sfmmup;
1260 		sfmmup->sfmmu_cext = 0;
1261 		cnum = KCONTEXT;
1262 
1263 		sfmmup->sfmmu_clrstart = 0;
1264 		sfmmup->sfmmu_tsb = NULL;
1265 		/*
1266 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1267 		 * to setup tsb_info for ksfmmup.
1268 		 */
1269 	} else {
1270 
1271 		/*
1272 		 * Just set to invalid ctx. When it faults, it will
1273 		 * get a valid ctx. This would avoid the situation
1274 		 * where we get a ctx, but it gets stolen and then
1275 		 * we fault when we try to run and so have to get
1276 		 * another ctx.
1277 		 */
1278 		sfmmup->sfmmu_cext = 0;
1279 		cnum = INVALID_CONTEXT;
1280 
1281 		/* initialize original physical page coloring bin */
1282 		sfmmup->sfmmu_clrstart = get_color_start(as);
1283 #ifdef DEBUG
1284 		if (tsb_random_size) {
1285 			uint32_t randval = (uint32_t)gettick() >> 4;
1286 			int size = randval % (tsb_max_growsize + 1);
1287 
1288 			/* chose a random tsb size for stress testing */
1289 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1290 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1291 		} else
1292 #endif /* DEBUG */
1293 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1294 			    default_tsb_size,
1295 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1296 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1297 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1298 	}
1299 
1300 	ASSERT(max_mmu_ctxdoms > 0);
1301 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1302 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1303 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1304 	}
1305 
1306 	sfmmu_setup_tsbinfo(sfmmup);
1307 	for (i = 0; i < max_mmu_page_sizes; i++) {
1308 		sfmmup->sfmmu_ttecnt[i] = 0;
1309 		sfmmup->sfmmu_ismttecnt[i] = 0;
1310 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1311 	}
1312 
1313 	sfmmup->sfmmu_iblk = NULL;
1314 	sfmmup->sfmmu_ismhat = 0;
1315 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1316 	if (sfmmup == ksfmmup) {
1317 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1318 	} else {
1319 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1320 	}
1321 	sfmmup->sfmmu_free = 0;
1322 	sfmmup->sfmmu_rmstat = 0;
1323 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1324 	sfmmup->sfmmu_xhat_provider = NULL;
1325 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1326 	return (sfmmup);
1327 }
1328 
1329 /*
1330  * Create per-MMU context domain kstats for a given MMU ctx.
1331  */
1332 static void
1333 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1334 {
1335 	mmu_ctx_stat_t	stat;
1336 	kstat_t		*mmu_kstat;
1337 
1338 	ASSERT(MUTEX_HELD(&cpu_lock));
1339 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1340 
1341 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1342 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1343 
1344 	if (mmu_kstat == NULL) {
1345 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1346 		    mmu_ctxp->mmu_idx);
1347 	} else {
1348 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1349 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1350 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1351 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1352 		mmu_ctxp->mmu_kstat = mmu_kstat;
1353 		kstat_install(mmu_kstat);
1354 	}
1355 }
1356 
1357 /*
1358  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1359  * context domain information for a given CPU. If a platform does not
1360  * specify that interface, then the function below is used instead to return
1361  * default information. The defaults are as follows:
1362  *
1363  *	- For sun4u systems there's one MMU context domain per CPU.
1364  *	  This default is used by all sun4u systems except OPL. OPL systems
1365  *	  provide platform specific interface to map CPU ids to MMU ids
1366  *	  because on OPL more than 1 CPU shares a single MMU.
1367  *        Note that on sun4v, there is one global context domain for
1368  *	  the entire system. This is to avoid running into potential problem
1369  *	  with ldom physical cpu substitution feature.
1370  *	- The number of MMU context IDs supported on any CPU in the
1371  *	  system is 8K.
1372  */
1373 /*ARGSUSED*/
1374 static void
1375 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1376 {
1377 	infop->mmu_nctxs = nctxs;
1378 #ifndef sun4v
1379 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1380 #else /* sun4v */
1381 	infop->mmu_idx = 0;
1382 #endif /* sun4v */
1383 }
1384 
1385 /*
1386  * Called during CPU initialization to set the MMU context-related information
1387  * for a CPU.
1388  *
1389  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1390  */
1391 void
1392 sfmmu_cpu_init(cpu_t *cp)
1393 {
1394 	mmu_ctx_info_t	info;
1395 	mmu_ctx_t	*mmu_ctxp;
1396 
1397 	ASSERT(MUTEX_HELD(&cpu_lock));
1398 
1399 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1400 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1401 	else
1402 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1403 
1404 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1405 
1406 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1407 		/* Each mmu_ctx is cacheline aligned. */
1408 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1409 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1410 
1411 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1412 		    (void *)ipltospl(DISP_LEVEL));
1413 		mmu_ctxp->mmu_idx = info.mmu_idx;
1414 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1415 		/*
1416 		 * Globally for lifetime of a system,
1417 		 * gnum must always increase.
1418 		 * mmu_saved_gnum is protected by the cpu_lock.
1419 		 */
1420 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1421 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1422 
1423 		sfmmu_mmu_kstat_create(mmu_ctxp);
1424 
1425 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1426 	} else {
1427 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1428 	}
1429 
1430 	/*
1431 	 * The mmu_lock is acquired here to prevent races with
1432 	 * the wrap-around code.
1433 	 */
1434 	mutex_enter(&mmu_ctxp->mmu_lock);
1435 
1436 
1437 	mmu_ctxp->mmu_ncpus++;
1438 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1439 	CPU_MMU_IDX(cp) = info.mmu_idx;
1440 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1441 
1442 	mutex_exit(&mmu_ctxp->mmu_lock);
1443 }
1444 
1445 /*
1446  * Called to perform MMU context-related cleanup for a CPU.
1447  */
1448 void
1449 sfmmu_cpu_cleanup(cpu_t *cp)
1450 {
1451 	mmu_ctx_t	*mmu_ctxp;
1452 
1453 	ASSERT(MUTEX_HELD(&cpu_lock));
1454 
1455 	mmu_ctxp = CPU_MMU_CTXP(cp);
1456 	ASSERT(mmu_ctxp != NULL);
1457 
1458 	/*
1459 	 * The mmu_lock is acquired here to prevent races with
1460 	 * the wrap-around code.
1461 	 */
1462 	mutex_enter(&mmu_ctxp->mmu_lock);
1463 
1464 	CPU_MMU_CTXP(cp) = NULL;
1465 
1466 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1467 	if (--mmu_ctxp->mmu_ncpus == 0) {
1468 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1469 		mutex_exit(&mmu_ctxp->mmu_lock);
1470 		mutex_destroy(&mmu_ctxp->mmu_lock);
1471 
1472 		if (mmu_ctxp->mmu_kstat)
1473 			kstat_delete(mmu_ctxp->mmu_kstat);
1474 
1475 		/* mmu_saved_gnum is protected by the cpu_lock. */
1476 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1477 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1478 
1479 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1480 
1481 		return;
1482 	}
1483 
1484 	mutex_exit(&mmu_ctxp->mmu_lock);
1485 }
1486 
1487 /*
1488  * Hat_setup, makes an address space context the current active one.
1489  * In sfmmu this translates to setting the secondary context with the
1490  * corresponding context.
1491  */
1492 void
1493 hat_setup(struct hat *sfmmup, int allocflag)
1494 {
1495 	hatlock_t *hatlockp;
1496 
1497 	/* Init needs some special treatment. */
1498 	if (allocflag == HAT_INIT) {
1499 		/*
1500 		 * Make sure that we have
1501 		 * 1. a TSB
1502 		 * 2. a valid ctx that doesn't get stolen after this point.
1503 		 */
1504 		hatlockp = sfmmu_hat_enter(sfmmup);
1505 
1506 		/*
1507 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1508 		 * TSBs, but we need one for init, since the kernel does some
1509 		 * special things to set up its stack and needs the TSB to
1510 		 * resolve page faults.
1511 		 */
1512 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1513 
1514 		sfmmu_get_ctx(sfmmup);
1515 
1516 		sfmmu_hat_exit(hatlockp);
1517 	} else {
1518 		ASSERT(allocflag == HAT_ALLOC);
1519 
1520 		hatlockp = sfmmu_hat_enter(sfmmup);
1521 		kpreempt_disable();
1522 
1523 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1524 
1525 		/*
1526 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1527 		 * pagesize bits don't matter in this case since we are passing
1528 		 * INVALID_CONTEXT to it.
1529 		 */
1530 		sfmmu_setctx_sec(INVALID_CONTEXT);
1531 		sfmmu_clear_utsbinfo();
1532 
1533 		kpreempt_enable();
1534 		sfmmu_hat_exit(hatlockp);
1535 	}
1536 }
1537 
1538 /*
1539  * Free all the translation resources for the specified address space.
1540  * Called from as_free when an address space is being destroyed.
1541  */
1542 void
1543 hat_free_start(struct hat *sfmmup)
1544 {
1545 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1546 	ASSERT(sfmmup != ksfmmup);
1547 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1548 
1549 	sfmmup->sfmmu_free = 1;
1550 }
1551 
1552 void
1553 hat_free_end(struct hat *sfmmup)
1554 {
1555 	int i;
1556 
1557 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1558 	if (sfmmup->sfmmu_ismhat) {
1559 		for (i = 0; i < mmu_page_sizes; i++) {
1560 			sfmmup->sfmmu_ttecnt[i] = 0;
1561 			sfmmup->sfmmu_ismttecnt[i] = 0;
1562 		}
1563 	} else {
1564 		/* EMPTY */
1565 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1566 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1567 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1568 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1569 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1570 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1571 	}
1572 
1573 	if (sfmmup->sfmmu_rmstat) {
1574 		hat_freestat(sfmmup->sfmmu_as, NULL);
1575 	}
1576 
1577 	while (sfmmup->sfmmu_tsb != NULL) {
1578 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1579 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1580 		sfmmup->sfmmu_tsb = next;
1581 	}
1582 	sfmmu_free_sfmmu(sfmmup);
1583 
1584 	kmem_cache_free(sfmmuid_cache, sfmmup);
1585 }
1586 
1587 /*
1588  * Set up any translation structures, for the specified address space,
1589  * that are needed or preferred when the process is being swapped in.
1590  */
1591 /* ARGSUSED */
1592 void
1593 hat_swapin(struct hat *hat)
1594 {
1595 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1596 }
1597 
1598 /*
1599  * Free all of the translation resources, for the specified address space,
1600  * that can be freed while the process is swapped out. Called from as_swapout.
1601  * Also, free up the ctx that this process was using.
1602  */
1603 void
1604 hat_swapout(struct hat *sfmmup)
1605 {
1606 	struct hmehash_bucket *hmebp;
1607 	struct hme_blk *hmeblkp;
1608 	struct hme_blk *pr_hblk = NULL;
1609 	struct hme_blk *nx_hblk;
1610 	int i;
1611 	uint64_t hblkpa, prevpa, nx_pa;
1612 	struct hme_blk *list = NULL;
1613 	hatlock_t *hatlockp;
1614 	struct tsb_info *tsbinfop;
1615 	struct free_tsb {
1616 		struct free_tsb *next;
1617 		struct tsb_info *tsbinfop;
1618 	};			/* free list of TSBs */
1619 	struct free_tsb *freelist, *last, *next;
1620 
1621 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1622 	SFMMU_STAT(sf_swapout);
1623 
1624 	/*
1625 	 * There is no way to go from an as to all its translations in sfmmu.
1626 	 * Here is one of the times when we take the big hit and traverse
1627 	 * the hash looking for hme_blks to free up.  Not only do we free up
1628 	 * this as hme_blks but all those that are free.  We are obviously
1629 	 * swapping because we need memory so let's free up as much
1630 	 * as we can.
1631 	 *
1632 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1633 	 * because:
1634 	 *  1) we free the ctx we're using and throw away the TSB(s);
1635 	 *  2) processes aren't runnable while being swapped out.
1636 	 */
1637 	ASSERT(sfmmup != KHATID);
1638 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1639 		hmebp = &uhme_hash[i];
1640 		SFMMU_HASH_LOCK(hmebp);
1641 		hmeblkp = hmebp->hmeblkp;
1642 		hblkpa = hmebp->hmeh_nextpa;
1643 		prevpa = 0;
1644 		pr_hblk = NULL;
1645 		while (hmeblkp) {
1646 
1647 			ASSERT(!hmeblkp->hblk_xhat_bit);
1648 
1649 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1650 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1651 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1652 					(caddr_t)get_hblk_base(hmeblkp),
1653 					get_hblk_endaddr(hmeblkp),
1654 					NULL, HAT_UNLOAD);
1655 			}
1656 			nx_hblk = hmeblkp->hblk_next;
1657 			nx_pa = hmeblkp->hblk_nextpa;
1658 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1659 				ASSERT(!hmeblkp->hblk_lckcnt);
1660 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1661 					prevpa, pr_hblk);
1662 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1663 			} else {
1664 				pr_hblk = hmeblkp;
1665 				prevpa = hblkpa;
1666 			}
1667 			hmeblkp = nx_hblk;
1668 			hblkpa = nx_pa;
1669 		}
1670 		SFMMU_HASH_UNLOCK(hmebp);
1671 	}
1672 
1673 	sfmmu_hblks_list_purge(&list);
1674 
1675 	/*
1676 	 * Now free up the ctx so that others can reuse it.
1677 	 */
1678 	hatlockp = sfmmu_hat_enter(sfmmup);
1679 
1680 	sfmmu_invalidate_ctx(sfmmup);
1681 
1682 	/*
1683 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1684 	 * If TSBs were never swapped in, just return.
1685 	 * This implies that we don't support partial swapping
1686 	 * of TSBs -- either all are swapped out, or none are.
1687 	 *
1688 	 * We must hold the HAT lock here to prevent racing with another
1689 	 * thread trying to unmap TTEs from the TSB or running the post-
1690 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1691 	 * can't free memory while holding the HAT lock or we could
1692 	 * deadlock, so we build a list of TSBs to be freed after marking
1693 	 * the tsbinfos as swapped out and free them after dropping the
1694 	 * lock.
1695 	 */
1696 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1697 		sfmmu_hat_exit(hatlockp);
1698 		return;
1699 	}
1700 
1701 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1702 	last = freelist = NULL;
1703 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1704 	    tsbinfop = tsbinfop->tsb_next) {
1705 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1706 
1707 		/*
1708 		 * Cast the TSB into a struct free_tsb and put it on the free
1709 		 * list.
1710 		 */
1711 		if (freelist == NULL) {
1712 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1713 		} else {
1714 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1715 			last = last->next;
1716 		}
1717 		last->next = NULL;
1718 		last->tsbinfop = tsbinfop;
1719 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1720 		/*
1721 		 * Zero out the TTE to clear the valid bit.
1722 		 * Note we can't use a value like 0xbad because we want to
1723 		 * ensure diagnostic bits are NEVER set on TTEs that might
1724 		 * be loaded.  The intent is to catch any invalid access
1725 		 * to the swapped TSB, such as a thread running with a valid
1726 		 * context without first calling sfmmu_tsb_swapin() to
1727 		 * allocate TSB memory.
1728 		 */
1729 		tsbinfop->tsb_tte.ll = 0;
1730 	}
1731 
1732 #ifdef sun4v
1733 	if (freelist)
1734 		sfmmu_invalidate_tsbinfo(sfmmup);
1735 #endif	/* sun4v */
1736 
1737 	/* Now we can drop the lock and free the TSB memory. */
1738 	sfmmu_hat_exit(hatlockp);
1739 	for (; freelist != NULL; freelist = next) {
1740 		next = freelist->next;
1741 		sfmmu_tsb_free(freelist->tsbinfop);
1742 	}
1743 }
1744 
1745 /*
1746  * Duplicate the translations of an as into another newas
1747  */
1748 /* ARGSUSED */
1749 int
1750 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1751 	uint_t flag)
1752 {
1753 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1754 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1755 
1756 	if (flag == HAT_DUP_COW) {
1757 		panic("hat_dup: HAT_DUP_COW not supported");
1758 	}
1759 	return (0);
1760 }
1761 
1762 /*
1763  * Set up addr to map to page pp with protection prot.
1764  * As an optimization we also load the TSB with the
1765  * corresponding tte but it is no big deal if  the tte gets kicked out.
1766  */
1767 void
1768 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1769 	uint_t attr, uint_t flags)
1770 {
1771 	tte_t tte;
1772 
1773 
1774 	ASSERT(hat != NULL);
1775 	ASSERT(PAGE_LOCKED(pp));
1776 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1777 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1778 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1779 
1780 	if (PP_ISFREE(pp)) {
1781 		panic("hat_memload: loading a mapping to free page %p",
1782 		    (void *)pp);
1783 	}
1784 
1785 	if (hat->sfmmu_xhat_provider) {
1786 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1787 		return;
1788 	}
1789 
1790 	ASSERT((hat == ksfmmup) ||
1791 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1792 
1793 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1794 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1795 		    flags & ~SFMMU_LOAD_ALLFLAG);
1796 
1797 	if (hat->sfmmu_rmstat)
1798 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1799 
1800 #if defined(SF_ERRATA_57)
1801 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1802 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1803 	    !(flags & HAT_LOAD_SHARE)) {
1804 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1805 		    " page executable");
1806 		attr &= ~PROT_EXEC;
1807 	}
1808 #endif
1809 
1810 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1811 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1812 
1813 	/*
1814 	 * Check TSB and TLB page sizes.
1815 	 */
1816 	if ((flags & HAT_LOAD_SHARE) == 0) {
1817 		sfmmu_check_page_sizes(hat, 1);
1818 	}
1819 }
1820 
1821 /*
1822  * hat_devload can be called to map real memory (e.g.
1823  * /dev/kmem) and even though hat_devload will determine pf is
1824  * for memory, it will be unable to get a shared lock on the
1825  * page (because someone else has it exclusively) and will
1826  * pass dp = NULL.  If tteload doesn't get a non-NULL
1827  * page pointer it can't cache memory.
1828  */
1829 void
1830 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1831 	uint_t attr, int flags)
1832 {
1833 	tte_t tte;
1834 	struct page *pp = NULL;
1835 	int use_lgpg = 0;
1836 
1837 	ASSERT(hat != NULL);
1838 
1839 	if (hat->sfmmu_xhat_provider) {
1840 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1841 		return;
1842 	}
1843 
1844 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1845 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1846 	ASSERT((hat == ksfmmup) ||
1847 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1848 	if (len == 0)
1849 		panic("hat_devload: zero len");
1850 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1851 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1852 		    flags & ~SFMMU_LOAD_ALLFLAG);
1853 
1854 #if defined(SF_ERRATA_57)
1855 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1856 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1857 	    !(flags & HAT_LOAD_SHARE)) {
1858 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1859 		    " page executable");
1860 		attr &= ~PROT_EXEC;
1861 	}
1862 #endif
1863 
1864 	/*
1865 	 * If it's a memory page find its pp
1866 	 */
1867 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1868 		pp = page_numtopp_nolock(pfn);
1869 		if (pp == NULL) {
1870 			flags |= HAT_LOAD_NOCONSIST;
1871 		} else {
1872 			if (PP_ISFREE(pp)) {
1873 				panic("hat_memload: loading "
1874 				    "a mapping to free page %p",
1875 				    (void *)pp);
1876 			}
1877 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1878 				panic("hat_memload: loading a mapping "
1879 				    "to unlocked relocatable page %p",
1880 				    (void *)pp);
1881 			}
1882 			ASSERT(len == MMU_PAGESIZE);
1883 		}
1884 	}
1885 
1886 	if (hat->sfmmu_rmstat)
1887 		hat_resvstat(len, hat->sfmmu_as, addr);
1888 
1889 	if (flags & HAT_LOAD_NOCONSIST) {
1890 		attr |= SFMMU_UNCACHEVTTE;
1891 		use_lgpg = 1;
1892 	}
1893 	if (!pf_is_memory(pfn)) {
1894 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1895 		use_lgpg = 1;
1896 		switch (attr & HAT_ORDER_MASK) {
1897 			case HAT_STRICTORDER:
1898 			case HAT_UNORDERED_OK:
1899 				/*
1900 				 * we set the side effect bit for all non
1901 				 * memory mappings unless merging is ok
1902 				 */
1903 				attr |= SFMMU_SIDEFFECT;
1904 				break;
1905 			case HAT_MERGING_OK:
1906 			case HAT_LOADCACHING_OK:
1907 			case HAT_STORECACHING_OK:
1908 				break;
1909 			default:
1910 				panic("hat_devload: bad attr");
1911 				break;
1912 		}
1913 	}
1914 	while (len) {
1915 		if (!use_lgpg) {
1916 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1917 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1918 			    flags);
1919 			len -= MMU_PAGESIZE;
1920 			addr += MMU_PAGESIZE;
1921 			pfn++;
1922 			continue;
1923 		}
1924 		/*
1925 		 *  try to use large pages, check va/pa alignments
1926 		 *  Note that 32M/256M page sizes are not (yet) supported.
1927 		 */
1928 		if ((len >= MMU_PAGESIZE4M) &&
1929 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1930 		    !(disable_large_pages & (1 << TTE4M)) &&
1931 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1932 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1933 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1934 			    flags);
1935 			len -= MMU_PAGESIZE4M;
1936 			addr += MMU_PAGESIZE4M;
1937 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1938 		} else if ((len >= MMU_PAGESIZE512K) &&
1939 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1940 		    !(disable_large_pages & (1 << TTE512K)) &&
1941 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1942 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1943 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1944 			    flags);
1945 			len -= MMU_PAGESIZE512K;
1946 			addr += MMU_PAGESIZE512K;
1947 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1948 		} else if ((len >= MMU_PAGESIZE64K) &&
1949 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1950 		    !(disable_large_pages & (1 << TTE64K)) &&
1951 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1952 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1953 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1954 			    flags);
1955 			len -= MMU_PAGESIZE64K;
1956 			addr += MMU_PAGESIZE64K;
1957 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1958 		} else {
1959 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1960 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1961 			    flags);
1962 			len -= MMU_PAGESIZE;
1963 			addr += MMU_PAGESIZE;
1964 			pfn++;
1965 		}
1966 	}
1967 
1968 	/*
1969 	 * Check TSB and TLB page sizes.
1970 	 */
1971 	if ((flags & HAT_LOAD_SHARE) == 0) {
1972 		sfmmu_check_page_sizes(hat, 1);
1973 	}
1974 }
1975 
1976 /*
1977  * Map the largest extend possible out of the page array. The array may NOT
1978  * be in order.  The largest possible mapping a page can have
1979  * is specified in the p_szc field.  The p_szc field
1980  * cannot change as long as there any mappings (large or small)
1981  * to any of the pages that make up the large page. (ie. any
1982  * promotion/demotion of page size is not up to the hat but up to
1983  * the page free list manager).  The array
1984  * should consist of properly aligned contigous pages that are
1985  * part of a big page for a large mapping to be created.
1986  */
1987 void
1988 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
1989 	struct page **pps, uint_t attr, uint_t flags)
1990 {
1991 	int  ttesz;
1992 	size_t mapsz;
1993 	pgcnt_t	numpg, npgs;
1994 	tte_t tte;
1995 	page_t *pp;
1996 	int large_pages_disable;
1997 
1998 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1999 
2000 	if (hat->sfmmu_xhat_provider) {
2001 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2002 		return;
2003 	}
2004 
2005 	if (hat->sfmmu_rmstat)
2006 		hat_resvstat(len, hat->sfmmu_as, addr);
2007 
2008 #if defined(SF_ERRATA_57)
2009 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2010 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2011 	    !(flags & HAT_LOAD_SHARE)) {
2012 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2013 		    "user page executable");
2014 		attr &= ~PROT_EXEC;
2015 	}
2016 #endif
2017 
2018 	/* Get number of pages */
2019 	npgs = len >> MMU_PAGESHIFT;
2020 
2021 	if (flags & HAT_LOAD_SHARE) {
2022 		large_pages_disable = disable_ism_large_pages;
2023 	} else {
2024 		large_pages_disable = disable_large_pages;
2025 	}
2026 
2027 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2028 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2029 		return;
2030 	}
2031 
2032 	while (npgs >= NHMENTS) {
2033 		pp = *pps;
2034 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2035 			/*
2036 			 * Check if this page size is disabled.
2037 			 */
2038 			if (large_pages_disable & (1 << ttesz))
2039 				continue;
2040 
2041 			numpg = TTEPAGES(ttesz);
2042 			mapsz = numpg << MMU_PAGESHIFT;
2043 			if ((npgs >= numpg) &&
2044 			    IS_P2ALIGNED(addr, mapsz) &&
2045 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2046 				/*
2047 				 * At this point we have enough pages and
2048 				 * we know the virtual address and the pfn
2049 				 * are properly aligned.  We still need
2050 				 * to check for physical contiguity but since
2051 				 * it is very likely that this is the case
2052 				 * we will assume they are so and undo
2053 				 * the request if necessary.  It would
2054 				 * be great if we could get a hint flag
2055 				 * like HAT_CONTIG which would tell us
2056 				 * the pages are contigous for sure.
2057 				 */
2058 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2059 					attr, ttesz);
2060 				if (!sfmmu_tteload_array(hat, &tte, addr,
2061 				    pps, flags)) {
2062 					break;
2063 				}
2064 			}
2065 		}
2066 		if (ttesz == TTE8K) {
2067 			/*
2068 			 * We were not able to map array using a large page
2069 			 * batch a hmeblk or fraction at a time.
2070 			 */
2071 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2072 				& (NHMENTS-1);
2073 			numpg = NHMENTS - numpg;
2074 			ASSERT(numpg <= npgs);
2075 			mapsz = numpg * MMU_PAGESIZE;
2076 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2077 							numpg);
2078 		}
2079 		addr += mapsz;
2080 		npgs -= numpg;
2081 		pps += numpg;
2082 	}
2083 
2084 	if (npgs) {
2085 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2086 	}
2087 
2088 	/*
2089 	 * Check TSB and TLB page sizes.
2090 	 */
2091 	if ((flags & HAT_LOAD_SHARE) == 0) {
2092 		sfmmu_check_page_sizes(hat, 1);
2093 	}
2094 }
2095 
2096 /*
2097  * Function tries to batch 8K pages into the same hme blk.
2098  */
2099 static void
2100 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2101 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2102 {
2103 	tte_t	tte;
2104 	page_t *pp;
2105 	struct hmehash_bucket *hmebp;
2106 	struct hme_blk *hmeblkp;
2107 	int	index;
2108 
2109 	while (npgs) {
2110 		/*
2111 		 * Acquire the hash bucket.
2112 		 */
2113 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2114 		ASSERT(hmebp);
2115 
2116 		/*
2117 		 * Find the hment block.
2118 		 */
2119 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2120 				TTE8K, flags);
2121 		ASSERT(hmeblkp);
2122 
2123 		do {
2124 			/*
2125 			 * Make the tte.
2126 			 */
2127 			pp = *pps;
2128 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2129 
2130 			/*
2131 			 * Add the translation.
2132 			 */
2133 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2134 					vaddr, pps, flags);
2135 
2136 			/*
2137 			 * Goto next page.
2138 			 */
2139 			pps++;
2140 			npgs--;
2141 
2142 			/*
2143 			 * Goto next address.
2144 			 */
2145 			vaddr += MMU_PAGESIZE;
2146 
2147 			/*
2148 			 * Don't crossover into a different hmentblk.
2149 			 */
2150 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2151 			    (NHMENTS-1));
2152 
2153 		} while (index != 0 && npgs != 0);
2154 
2155 		/*
2156 		 * Release the hash bucket.
2157 		 */
2158 
2159 		sfmmu_tteload_release_hashbucket(hmebp);
2160 	}
2161 }
2162 
2163 /*
2164  * Construct a tte for a page:
2165  *
2166  * tte_valid = 1
2167  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2168  * tte_size = size
2169  * tte_nfo = attr & HAT_NOFAULT
2170  * tte_ie = attr & HAT_STRUCTURE_LE
2171  * tte_hmenum = hmenum
2172  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2173  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2174  * tte_ref = 1 (optimization)
2175  * tte_wr_perm = attr & PROT_WRITE;
2176  * tte_no_sync = attr & HAT_NOSYNC
2177  * tte_lock = attr & SFMMU_LOCKTTE
2178  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2179  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2180  * tte_e = attr & SFMMU_SIDEFFECT
2181  * tte_priv = !(attr & PROT_USER)
2182  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2183  * tte_glb = 0
2184  */
2185 void
2186 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2187 {
2188 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2189 
2190 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2191 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2192 
2193 	if (TTE_IS_NOSYNC(ttep)) {
2194 		TTE_SET_REF(ttep);
2195 		if (TTE_IS_WRITABLE(ttep)) {
2196 			TTE_SET_MOD(ttep);
2197 		}
2198 	}
2199 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2200 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2201 	}
2202 }
2203 
2204 /*
2205  * This function will add a translation to the hme_blk and allocate the
2206  * hme_blk if one does not exist.
2207  * If a page structure is specified then it will add the
2208  * corresponding hment to the mapping list.
2209  * It will also update the hmenum field for the tte.
2210  */
2211 void
2212 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2213 	uint_t flags)
2214 {
2215 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2216 }
2217 
2218 /*
2219  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2220  * Assumes that a particular page size may only be resident in one TSB.
2221  */
2222 static void
2223 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2224 {
2225 	struct tsb_info *tsbinfop = NULL;
2226 	uint64_t tag;
2227 	struct tsbe *tsbe_addr;
2228 	uint64_t tsb_base;
2229 	uint_t tsb_size;
2230 	int vpshift = MMU_PAGESHIFT;
2231 	int phys = 0;
2232 
2233 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2234 		phys = ktsb_phys;
2235 		if (ttesz >= TTE4M) {
2236 #ifndef sun4v
2237 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2238 #endif
2239 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2240 			tsb_size = ktsb4m_szcode;
2241 		} else {
2242 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2243 			tsb_size = ktsb_szcode;
2244 		}
2245 	} else {
2246 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2247 
2248 		/*
2249 		 * If there isn't a TSB for this page size, or the TSB is
2250 		 * swapped out, there is nothing to do.  Note that the latter
2251 		 * case seems impossible but can occur if hat_pageunload()
2252 		 * is called on an ISM mapping while the process is swapped
2253 		 * out.
2254 		 */
2255 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2256 			return;
2257 
2258 		/*
2259 		 * If another thread is in the middle of relocating a TSB
2260 		 * we can't unload the entry so set a flag so that the
2261 		 * TSB will be flushed before it can be accessed by the
2262 		 * process.
2263 		 */
2264 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2265 			if (ttep == NULL)
2266 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2267 			return;
2268 		}
2269 #if defined(UTSB_PHYS)
2270 		phys = 1;
2271 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2272 #else
2273 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2274 #endif
2275 		tsb_size = tsbinfop->tsb_szc;
2276 	}
2277 	if (ttesz >= TTE4M)
2278 		vpshift = MMU_PAGESHIFT4M;
2279 
2280 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2281 	tag = sfmmu_make_tsbtag(vaddr);
2282 
2283 	if (ttep == NULL) {
2284 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2285 	} else {
2286 		if (ttesz >= TTE4M) {
2287 			SFMMU_STAT(sf_tsb_load4m);
2288 		} else {
2289 			SFMMU_STAT(sf_tsb_load8k);
2290 		}
2291 
2292 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2293 	}
2294 }
2295 
2296 /*
2297  * Unmap all entries from [start, end) matching the given page size.
2298  *
2299  * This function is used primarily to unmap replicated 64K or 512K entries
2300  * from the TSB that are inserted using the base page size TSB pointer, but
2301  * it may also be called to unmap a range of addresses from the TSB.
2302  */
2303 void
2304 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2305 {
2306 	struct tsb_info *tsbinfop;
2307 	uint64_t tag;
2308 	struct tsbe *tsbe_addr;
2309 	caddr_t vaddr;
2310 	uint64_t tsb_base;
2311 	int vpshift, vpgsz;
2312 	uint_t tsb_size;
2313 	int phys = 0;
2314 
2315 	/*
2316 	 * Assumptions:
2317 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2318 	 *  at a time shooting down any valid entries we encounter.
2319 	 *
2320 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2321 	 *  down any valid mappings we find.
2322 	 */
2323 	if (sfmmup == ksfmmup) {
2324 		phys = ktsb_phys;
2325 		if (ttesz >= TTE4M) {
2326 #ifndef sun4v
2327 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2328 #endif
2329 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2330 			tsb_size = ktsb4m_szcode;
2331 		} else {
2332 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2333 			tsb_size = ktsb_szcode;
2334 		}
2335 	} else {
2336 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2337 
2338 		/*
2339 		 * If there isn't a TSB for this page size, or the TSB is
2340 		 * swapped out, there is nothing to do.  Note that the latter
2341 		 * case seems impossible but can occur if hat_pageunload()
2342 		 * is called on an ISM mapping while the process is swapped
2343 		 * out.
2344 		 */
2345 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2346 			return;
2347 
2348 		/*
2349 		 * If another thread is in the middle of relocating a TSB
2350 		 * we can't unload the entry so set a flag so that the
2351 		 * TSB will be flushed before it can be accessed by the
2352 		 * process.
2353 		 */
2354 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2355 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2356 			return;
2357 		}
2358 #if defined(UTSB_PHYS)
2359 		phys = 1;
2360 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2361 #else
2362 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2363 #endif
2364 		tsb_size = tsbinfop->tsb_szc;
2365 	}
2366 	if (ttesz >= TTE4M) {
2367 		vpshift = MMU_PAGESHIFT4M;
2368 		vpgsz = MMU_PAGESIZE4M;
2369 	} else {
2370 		vpshift = MMU_PAGESHIFT;
2371 		vpgsz = MMU_PAGESIZE;
2372 	}
2373 
2374 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2375 		tag = sfmmu_make_tsbtag(vaddr);
2376 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2377 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2378 	}
2379 }
2380 
2381 /*
2382  * Select the optimum TSB size given the number of mappings
2383  * that need to be cached.
2384  */
2385 static int
2386 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2387 {
2388 	int szc = 0;
2389 
2390 #ifdef DEBUG
2391 	if (tsb_grow_stress) {
2392 		uint32_t randval = (uint32_t)gettick() >> 4;
2393 		return (randval % (tsb_max_growsize + 1));
2394 	}
2395 #endif	/* DEBUG */
2396 
2397 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2398 		szc++;
2399 	return (szc);
2400 }
2401 
2402 /*
2403  * This function will add a translation to the hme_blk and allocate the
2404  * hme_blk if one does not exist.
2405  * If a page structure is specified then it will add the
2406  * corresponding hment to the mapping list.
2407  * It will also update the hmenum field for the tte.
2408  * Furthermore, it attempts to create a large page translation
2409  * for <addr,hat> at page array pps.  It assumes addr and first
2410  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2411  */
2412 static int
2413 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2414 	page_t **pps, uint_t flags)
2415 {
2416 	struct hmehash_bucket *hmebp;
2417 	struct hme_blk *hmeblkp;
2418 	int 	ret;
2419 	uint_t	size;
2420 
2421 	/*
2422 	 * Get mapping size.
2423 	 */
2424 	size = TTE_CSZ(ttep);
2425 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2426 
2427 	/*
2428 	 * Acquire the hash bucket.
2429 	 */
2430 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2431 	ASSERT(hmebp);
2432 
2433 	/*
2434 	 * Find the hment block.
2435 	 */
2436 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2437 	ASSERT(hmeblkp);
2438 
2439 	/*
2440 	 * Add the translation.
2441 	 */
2442 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2443 
2444 	/*
2445 	 * Release the hash bucket.
2446 	 */
2447 	sfmmu_tteload_release_hashbucket(hmebp);
2448 
2449 	return (ret);
2450 }
2451 
2452 /*
2453  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2454  */
2455 static struct hmehash_bucket *
2456 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2457 {
2458 	struct hmehash_bucket *hmebp;
2459 	int hmeshift;
2460 
2461 	hmeshift = HME_HASH_SHIFT(size);
2462 
2463 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2464 
2465 	SFMMU_HASH_LOCK(hmebp);
2466 
2467 	return (hmebp);
2468 }
2469 
2470 /*
2471  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2472  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2473  * allocated.
2474  */
2475 static struct hme_blk *
2476 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2477 	caddr_t vaddr, uint_t size, uint_t flags)
2478 {
2479 	hmeblk_tag hblktag;
2480 	int hmeshift;
2481 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2482 	uint64_t hblkpa, prevpa;
2483 	struct kmem_cache *sfmmu_cache;
2484 	uint_t forcefree;
2485 
2486 	hblktag.htag_id = sfmmup;
2487 	hmeshift = HME_HASH_SHIFT(size);
2488 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2489 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2490 
2491 ttearray_realloc:
2492 
2493 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2494 	    pr_hblk, prevpa, &list);
2495 
2496 	/*
2497 	 * We block until hblk_reserve_lock is released; it's held by
2498 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2499 	 * replaced by a hblk from sfmmu8_cache.
2500 	 */
2501 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2502 	    hblk_reserve_thread != curthread) {
2503 		SFMMU_HASH_UNLOCK(hmebp);
2504 		mutex_enter(&hblk_reserve_lock);
2505 		mutex_exit(&hblk_reserve_lock);
2506 		SFMMU_STAT(sf_hblk_reserve_hit);
2507 		SFMMU_HASH_LOCK(hmebp);
2508 		goto ttearray_realloc;
2509 	}
2510 
2511 	if (hmeblkp == NULL) {
2512 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2513 		    hblktag, flags);
2514 	} else {
2515 		/*
2516 		 * It is possible for 8k and 64k hblks to collide since they
2517 		 * have the same rehash value. This is because we
2518 		 * lazily free hblks and 8K/64K blks could be lingering.
2519 		 * If we find size mismatch we free the block and & try again.
2520 		 */
2521 		if (get_hblk_ttesz(hmeblkp) != size) {
2522 			ASSERT(!hmeblkp->hblk_vcnt);
2523 			ASSERT(!hmeblkp->hblk_hmecnt);
2524 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2525 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2526 			goto ttearray_realloc;
2527 		}
2528 		if (hmeblkp->hblk_shw_bit) {
2529 			/*
2530 			 * if the hblk was previously used as a shadow hblk then
2531 			 * we will change it to a normal hblk
2532 			 */
2533 			if (hmeblkp->hblk_shw_mask) {
2534 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2535 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2536 				goto ttearray_realloc;
2537 			} else {
2538 				hmeblkp->hblk_shw_bit = 0;
2539 			}
2540 		}
2541 		SFMMU_STAT(sf_hblk_hit);
2542 	}
2543 
2544 	/*
2545 	 * hat_memload() should never call kmem_cache_free(); see block
2546 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2547 	 * enqueue each hblk in the list to reserve list if it's created
2548 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2549 	 */
2550 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2551 	while ((pr_hblk = list) != NULL) {
2552 		list = pr_hblk->hblk_next;
2553 		sfmmu_cache = get_hblk_cache(pr_hblk);
2554 		if ((sfmmu_cache == sfmmu8_cache) &&
2555 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2556 			continue;
2557 
2558 		ASSERT(sfmmup != KHATID);
2559 		kmem_cache_free(sfmmu_cache, pr_hblk);
2560 	}
2561 
2562 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2563 	ASSERT(!hmeblkp->hblk_shw_bit);
2564 
2565 	return (hmeblkp);
2566 }
2567 
2568 /*
2569  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2570  * otherwise.
2571  */
2572 static int
2573 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2574 	caddr_t vaddr, page_t **pps, uint_t flags)
2575 {
2576 	page_t *pp = *pps;
2577 	int hmenum, size, remap;
2578 	tte_t tteold, flush_tte;
2579 #ifdef DEBUG
2580 	tte_t orig_old;
2581 #endif /* DEBUG */
2582 	struct sf_hment *sfhme;
2583 	kmutex_t *pml, *pmtx;
2584 	hatlock_t *hatlockp;
2585 
2586 	/*
2587 	 * remove this panic when we decide to let user virtual address
2588 	 * space be >= USERLIMIT.
2589 	 */
2590 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2591 		panic("user addr %p in kernel space", vaddr);
2592 #if defined(TTE_IS_GLOBAL)
2593 	if (TTE_IS_GLOBAL(ttep))
2594 		panic("sfmmu_tteload: creating global tte");
2595 #endif
2596 
2597 #ifdef DEBUG
2598 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2599 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2600 		panic("sfmmu_tteload: non cacheable memory tte");
2601 #endif /* DEBUG */
2602 
2603 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2604 	    !TTE_IS_MOD(ttep)) {
2605 		/*
2606 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2607 		 * the TSB if the TTE isn't writable since we're likely to
2608 		 * fault on it again -- preloading can be fairly expensive.
2609 		 */
2610 		flags |= SFMMU_NO_TSBLOAD;
2611 	}
2612 
2613 	size = TTE_CSZ(ttep);
2614 	switch (size) {
2615 	case TTE8K:
2616 		SFMMU_STAT(sf_tteload8k);
2617 		break;
2618 	case TTE64K:
2619 		SFMMU_STAT(sf_tteload64k);
2620 		break;
2621 	case TTE512K:
2622 		SFMMU_STAT(sf_tteload512k);
2623 		break;
2624 	case TTE4M:
2625 		SFMMU_STAT(sf_tteload4m);
2626 		break;
2627 	case (TTE32M):
2628 		SFMMU_STAT(sf_tteload32m);
2629 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2630 		break;
2631 	case (TTE256M):
2632 		SFMMU_STAT(sf_tteload256m);
2633 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2634 		break;
2635 	}
2636 
2637 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2638 
2639 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2640 
2641 	/*
2642 	 * Need to grab mlist lock here so that pageunload
2643 	 * will not change tte behind us.
2644 	 */
2645 	if (pp) {
2646 		pml = sfmmu_mlist_enter(pp);
2647 	}
2648 
2649 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2650 	/*
2651 	 * Look for corresponding hment and if valid verify
2652 	 * pfns are equal.
2653 	 */
2654 	remap = TTE_IS_VALID(&tteold);
2655 	if (remap) {
2656 		pfn_t	new_pfn, old_pfn;
2657 
2658 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2659 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2660 
2661 		if (flags & HAT_LOAD_REMAP) {
2662 			/* make sure we are remapping same type of pages */
2663 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2664 				panic("sfmmu_tteload - tte remap io<->memory");
2665 			}
2666 			if (old_pfn != new_pfn &&
2667 			    (pp != NULL || sfhme->hme_page != NULL)) {
2668 				panic("sfmmu_tteload - tte remap pp != NULL");
2669 			}
2670 		} else if (old_pfn != new_pfn) {
2671 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2672 			    (void *)hmeblkp);
2673 		}
2674 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2675 	}
2676 
2677 	if (pp) {
2678 		if (size == TTE8K) {
2679 #ifdef VAC
2680 			/*
2681 			 * Handle VAC consistency
2682 			 */
2683 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2684 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2685 			}
2686 #endif
2687 
2688 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2689 				pmtx = sfmmu_page_enter(pp);
2690 				PP_CLRRO(pp);
2691 				sfmmu_page_exit(pmtx);
2692 			} else if (!PP_ISMAPPED(pp) &&
2693 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2694 				pmtx = sfmmu_page_enter(pp);
2695 				if (!(PP_ISMOD(pp))) {
2696 					PP_SETRO(pp);
2697 				}
2698 				sfmmu_page_exit(pmtx);
2699 			}
2700 
2701 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2702 			/*
2703 			 * sfmmu_pagearray_setup failed so return
2704 			 */
2705 			sfmmu_mlist_exit(pml);
2706 			return (1);
2707 		}
2708 	}
2709 
2710 	/*
2711 	 * Make sure hment is not on a mapping list.
2712 	 */
2713 	ASSERT(remap || (sfhme->hme_page == NULL));
2714 
2715 	/* if it is not a remap then hme->next better be NULL */
2716 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2717 
2718 	if (flags & HAT_LOAD_LOCK) {
2719 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2720 			panic("too high lckcnt-hmeblk %p",
2721 			    (void *)hmeblkp);
2722 		}
2723 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2724 
2725 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2726 	}
2727 
2728 #ifdef VAC
2729 	if (pp && PP_ISNC(pp)) {
2730 		/*
2731 		 * If the physical page is marked to be uncacheable, like
2732 		 * by a vac conflict, make sure the new mapping is also
2733 		 * uncacheable.
2734 		 */
2735 		TTE_CLR_VCACHEABLE(ttep);
2736 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2737 	}
2738 #endif
2739 	ttep->tte_hmenum = hmenum;
2740 
2741 #ifdef DEBUG
2742 	orig_old = tteold;
2743 #endif /* DEBUG */
2744 
2745 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2746 		if ((sfmmup == KHATID) &&
2747 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2748 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2749 		}
2750 #ifdef DEBUG
2751 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2752 #endif /* DEBUG */
2753 	}
2754 
2755 	if (!TTE_IS_VALID(&tteold)) {
2756 
2757 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2758 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2759 
2760 		/*
2761 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2762 		 */
2763 
2764 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2765 		    sfmmup != ksfmmup) {
2766 			/*
2767 			 * If this is the first large mapping for the process
2768 			 * we must force any CPUs running this process to TL=0
2769 			 * where they will reload the HAT flags from the
2770 			 * tsbmiss area.  This is necessary to make the large
2771 			 * mappings we are about to load visible to those CPUs;
2772 			 * otherwise they'll loop forever calling pagefault()
2773 			 * since we don't search large hash chains by default.
2774 			 */
2775 			hatlockp = sfmmu_hat_enter(sfmmup);
2776 			if (size == TTE512K &&
2777 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2778 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2779 				sfmmu_sync_mmustate(sfmmup);
2780 			} else if (size == TTE4M &&
2781 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2782 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2783 				sfmmu_sync_mmustate(sfmmup);
2784 			} else if (size == TTE64K &&
2785 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2786 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2787 				/* no sync mmustate; 64K shares 8K hashes */
2788 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2789 			    if (size == TTE32M &&
2790 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2791 				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2792 				sfmmu_sync_mmustate(sfmmup);
2793 			    } else if (size == TTE256M &&
2794 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2795 				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2796 				sfmmu_sync_mmustate(sfmmup);
2797 			    }
2798 			}
2799 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2800 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2801 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2802 			}
2803 			sfmmu_hat_exit(hatlockp);
2804 		}
2805 	}
2806 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2807 
2808 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2809 	    hw_tte.tte_intlo;
2810 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2811 	    hw_tte.tte_inthi;
2812 
2813 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2814 		/*
2815 		 * If remap and new tte differs from old tte we need
2816 		 * to sync the mod bit and flush TLB/TSB.  We don't
2817 		 * need to sync ref bit because we currently always set
2818 		 * ref bit in tteload.
2819 		 */
2820 		ASSERT(TTE_IS_REF(ttep));
2821 		if (TTE_IS_MOD(&tteold)) {
2822 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2823 		}
2824 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2825 		xt_sync(sfmmup->sfmmu_cpusran);
2826 	}
2827 
2828 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2829 		/*
2830 		 * We only preload 8K and 4M mappings into the TSB, since
2831 		 * 64K and 512K mappings are replicated and hence don't
2832 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2833 		 */
2834 		if (size == TTE8K || size == TTE4M) {
2835 			hatlockp = sfmmu_hat_enter(sfmmup);
2836 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2837 			sfmmu_hat_exit(hatlockp);
2838 		}
2839 	}
2840 	if (pp) {
2841 		if (!remap) {
2842 			HME_ADD(sfhme, pp);
2843 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2844 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2845 
2846 			/*
2847 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2848 			 * see pageunload() for comment.
2849 			 */
2850 		}
2851 		sfmmu_mlist_exit(pml);
2852 	}
2853 
2854 	return (0);
2855 }
2856 /*
2857  * Function unlocks hash bucket.
2858  */
2859 static void
2860 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2861 {
2862 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2863 	SFMMU_HASH_UNLOCK(hmebp);
2864 }
2865 
2866 /*
2867  * function which checks and sets up page array for a large
2868  * translation.  Will set p_vcolor, p_index, p_ro fields.
2869  * Assumes addr and pfnum of first page are properly aligned.
2870  * Will check for physical contiguity. If check fails it return
2871  * non null.
2872  */
2873 static int
2874 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2875 {
2876 	int 	i, index, ttesz;
2877 	pfn_t	pfnum;
2878 	pgcnt_t	npgs;
2879 	page_t *pp, *pp1;
2880 	kmutex_t *pmtx;
2881 #ifdef VAC
2882 	int osz;
2883 	int cflags = 0;
2884 	int vac_err = 0;
2885 #endif
2886 	int newidx = 0;
2887 
2888 	ttesz = TTE_CSZ(ttep);
2889 
2890 	ASSERT(ttesz > TTE8K);
2891 
2892 	npgs = TTEPAGES(ttesz);
2893 	index = PAGESZ_TO_INDEX(ttesz);
2894 
2895 	pfnum = (*pps)->p_pagenum;
2896 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2897 
2898 	/*
2899 	 * Save the first pp so we can do HAT_TMPNC at the end.
2900 	 */
2901 	pp1 = *pps;
2902 #ifdef VAC
2903 	osz = fnd_mapping_sz(pp1);
2904 #endif
2905 
2906 	for (i = 0; i < npgs; i++, pps++) {
2907 		pp = *pps;
2908 		ASSERT(PAGE_LOCKED(pp));
2909 		ASSERT(pp->p_szc >= ttesz);
2910 		ASSERT(pp->p_szc == pp1->p_szc);
2911 		ASSERT(sfmmu_mlist_held(pp));
2912 
2913 		/*
2914 		 * XXX is it possible to maintain P_RO on the root only?
2915 		 */
2916 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2917 			pmtx = sfmmu_page_enter(pp);
2918 			PP_CLRRO(pp);
2919 			sfmmu_page_exit(pmtx);
2920 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2921 		    !PP_ISMOD(pp)) {
2922 			pmtx = sfmmu_page_enter(pp);
2923 			if (!(PP_ISMOD(pp))) {
2924 				PP_SETRO(pp);
2925 			}
2926 			sfmmu_page_exit(pmtx);
2927 		}
2928 
2929 		/*
2930 		 * If this is a remap we skip vac & contiguity checks.
2931 		 */
2932 		if (remap)
2933 			continue;
2934 
2935 		/*
2936 		 * set p_vcolor and detect any vac conflicts.
2937 		 */
2938 #ifdef VAC
2939 		if (vac_err == 0) {
2940 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2941 
2942 		}
2943 #endif
2944 
2945 		/*
2946 		 * Save current index in case we need to undo it.
2947 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2948 		 *	"SFMMU_INDEX_SHIFT	6"
2949 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2950 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2951 		 *
2952 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2953 		 *	if ttesz == 1 then index = 0x2
2954 		 *		    2 then index = 0x4
2955 		 *		    3 then index = 0x8
2956 		 *		    4 then index = 0x10
2957 		 *		    5 then index = 0x20
2958 		 * The code below checks if it's a new pagesize (ie, newidx)
2959 		 * in case we need to take it back out of p_index,
2960 		 * and then or's the new index into the existing index.
2961 		 */
2962 		if ((PP_MAPINDEX(pp) & index) == 0)
2963 			newidx = 1;
2964 		pp->p_index = (PP_MAPINDEX(pp) | index);
2965 
2966 		/*
2967 		 * contiguity check
2968 		 */
2969 		if (pp->p_pagenum != pfnum) {
2970 			/*
2971 			 * If we fail the contiguity test then
2972 			 * the only thing we need to fix is the p_index field.
2973 			 * We might get a few extra flushes but since this
2974 			 * path is rare that is ok.  The p_ro field will
2975 			 * get automatically fixed on the next tteload to
2976 			 * the page.  NO TNC bit is set yet.
2977 			 */
2978 			while (i >= 0) {
2979 				pp = *pps;
2980 				if (newidx)
2981 					pp->p_index = (PP_MAPINDEX(pp) &
2982 					    ~index);
2983 				pps--;
2984 				i--;
2985 			}
2986 			return (1);
2987 		}
2988 		pfnum++;
2989 		addr += MMU_PAGESIZE;
2990 	}
2991 
2992 #ifdef VAC
2993 	if (vac_err) {
2994 		if (ttesz > osz) {
2995 			/*
2996 			 * There are some smaller mappings that causes vac
2997 			 * conflicts. Convert all existing small mappings to
2998 			 * TNC.
2999 			 */
3000 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3001 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3002 				npgs);
3003 		} else {
3004 			/* EMPTY */
3005 			/*
3006 			 * If there exists an big page mapping,
3007 			 * that means the whole existing big page
3008 			 * has TNC setting already. No need to covert to
3009 			 * TNC again.
3010 			 */
3011 			ASSERT(PP_ISTNC(pp1));
3012 		}
3013 	}
3014 #endif	/* VAC */
3015 
3016 	return (0);
3017 }
3018 
3019 #ifdef VAC
3020 /*
3021  * Routine that detects vac consistency for a large page. It also
3022  * sets virtual color for all pp's for this big mapping.
3023  */
3024 static int
3025 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3026 {
3027 	int vcolor, ocolor;
3028 
3029 	ASSERT(sfmmu_mlist_held(pp));
3030 
3031 	if (PP_ISNC(pp)) {
3032 		return (HAT_TMPNC);
3033 	}
3034 
3035 	vcolor = addr_to_vcolor(addr);
3036 	if (PP_NEWPAGE(pp)) {
3037 		PP_SET_VCOLOR(pp, vcolor);
3038 		return (0);
3039 	}
3040 
3041 	ocolor = PP_GET_VCOLOR(pp);
3042 	if (ocolor == vcolor) {
3043 		return (0);
3044 	}
3045 
3046 	if (!PP_ISMAPPED(pp)) {
3047 		/*
3048 		 * Previous user of page had a differnet color
3049 		 * but since there are no current users
3050 		 * we just flush the cache and change the color.
3051 		 * As an optimization for large pages we flush the
3052 		 * entire cache of that color and set a flag.
3053 		 */
3054 		SFMMU_STAT(sf_pgcolor_conflict);
3055 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3056 			CacheColor_SetFlushed(*cflags, ocolor);
3057 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3058 		}
3059 		PP_SET_VCOLOR(pp, vcolor);
3060 		return (0);
3061 	}
3062 
3063 	/*
3064 	 * We got a real conflict with a current mapping.
3065 	 * set flags to start unencaching all mappings
3066 	 * and return failure so we restart looping
3067 	 * the pp array from the beginning.
3068 	 */
3069 	return (HAT_TMPNC);
3070 }
3071 #endif	/* VAC */
3072 
3073 /*
3074  * creates a large page shadow hmeblk for a tte.
3075  * The purpose of this routine is to allow us to do quick unloads because
3076  * the vm layer can easily pass a very large but sparsely populated range.
3077  */
3078 static struct hme_blk *
3079 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3080 {
3081 	struct hmehash_bucket *hmebp;
3082 	hmeblk_tag hblktag;
3083 	int hmeshift, size, vshift;
3084 	uint_t shw_mask, newshw_mask;
3085 	struct hme_blk *hmeblkp;
3086 
3087 	ASSERT(sfmmup != KHATID);
3088 	if (mmu_page_sizes == max_mmu_page_sizes) {
3089 		ASSERT(ttesz < TTE256M);
3090 	} else {
3091 		ASSERT(ttesz < TTE4M);
3092 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3093 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3094 	}
3095 
3096 	if (ttesz == TTE8K) {
3097 		size = TTE512K;
3098 	} else {
3099 		size = ++ttesz;
3100 	}
3101 
3102 	hblktag.htag_id = sfmmup;
3103 	hmeshift = HME_HASH_SHIFT(size);
3104 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3105 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3106 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3107 
3108 	SFMMU_HASH_LOCK(hmebp);
3109 
3110 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3111 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3112 	if (hmeblkp == NULL) {
3113 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3114 			hblktag, flags);
3115 	}
3116 	ASSERT(hmeblkp);
3117 	if (!hmeblkp->hblk_shw_mask) {
3118 		/*
3119 		 * if this is a unused hblk it was just allocated or could
3120 		 * potentially be a previous large page hblk so we need to
3121 		 * set the shadow bit.
3122 		 */
3123 		hmeblkp->hblk_shw_bit = 1;
3124 	}
3125 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3126 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3127 	ASSERT(vshift < 8);
3128 	/*
3129 	 * Atomically set shw mask bit
3130 	 */
3131 	do {
3132 		shw_mask = hmeblkp->hblk_shw_mask;
3133 		newshw_mask = shw_mask | (1 << vshift);
3134 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3135 		    newshw_mask);
3136 	} while (newshw_mask != shw_mask);
3137 
3138 	SFMMU_HASH_UNLOCK(hmebp);
3139 
3140 	return (hmeblkp);
3141 }
3142 
3143 /*
3144  * This routine cleanup a previous shadow hmeblk and changes it to
3145  * a regular hblk.  This happens rarely but it is possible
3146  * when a process wants to use large pages and there are hblks still
3147  * lying around from the previous as that used these hmeblks.
3148  * The alternative was to cleanup the shadow hblks at unload time
3149  * but since so few user processes actually use large pages, it is
3150  * better to be lazy and cleanup at this time.
3151  */
3152 static void
3153 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3154 	struct hmehash_bucket *hmebp)
3155 {
3156 	caddr_t addr, endaddr;
3157 	int hashno, size;
3158 
3159 	ASSERT(hmeblkp->hblk_shw_bit);
3160 
3161 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3162 
3163 	if (!hmeblkp->hblk_shw_mask) {
3164 		hmeblkp->hblk_shw_bit = 0;
3165 		return;
3166 	}
3167 	addr = (caddr_t)get_hblk_base(hmeblkp);
3168 	endaddr = get_hblk_endaddr(hmeblkp);
3169 	size = get_hblk_ttesz(hmeblkp);
3170 	hashno = size - 1;
3171 	ASSERT(hashno > 0);
3172 	SFMMU_HASH_UNLOCK(hmebp);
3173 
3174 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3175 
3176 	SFMMU_HASH_LOCK(hmebp);
3177 }
3178 
3179 static void
3180 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3181 	int hashno)
3182 {
3183 	int hmeshift, shadow = 0;
3184 	hmeblk_tag hblktag;
3185 	struct hmehash_bucket *hmebp;
3186 	struct hme_blk *hmeblkp;
3187 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3188 	uint64_t hblkpa, prevpa, nx_pa;
3189 
3190 	ASSERT(hashno > 0);
3191 	hblktag.htag_id = sfmmup;
3192 	hblktag.htag_rehash = hashno;
3193 
3194 	hmeshift = HME_HASH_SHIFT(hashno);
3195 
3196 	while (addr < endaddr) {
3197 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3198 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3199 		SFMMU_HASH_LOCK(hmebp);
3200 		/* inline HME_HASH_SEARCH */
3201 		hmeblkp = hmebp->hmeblkp;
3202 		hblkpa = hmebp->hmeh_nextpa;
3203 		prevpa = 0;
3204 		pr_hblk = NULL;
3205 		while (hmeblkp) {
3206 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3207 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3208 				/* found hme_blk */
3209 				if (hmeblkp->hblk_shw_bit) {
3210 					if (hmeblkp->hblk_shw_mask) {
3211 						shadow = 1;
3212 						sfmmu_shadow_hcleanup(sfmmup,
3213 						    hmeblkp, hmebp);
3214 						break;
3215 					} else {
3216 						hmeblkp->hblk_shw_bit = 0;
3217 					}
3218 				}
3219 
3220 				/*
3221 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3222 				 * since hblk_unload() does not gurantee that.
3223 				 *
3224 				 * XXX - this could cause tteload() to spin
3225 				 * where sfmmu_shadow_hcleanup() is called.
3226 				 */
3227 			}
3228 
3229 			nx_hblk = hmeblkp->hblk_next;
3230 			nx_pa = hmeblkp->hblk_nextpa;
3231 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3232 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3233 					pr_hblk);
3234 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3235 			} else {
3236 				pr_hblk = hmeblkp;
3237 				prevpa = hblkpa;
3238 			}
3239 			hmeblkp = nx_hblk;
3240 			hblkpa = nx_pa;
3241 		}
3242 
3243 		SFMMU_HASH_UNLOCK(hmebp);
3244 
3245 		if (shadow) {
3246 			/*
3247 			 * We found another shadow hblk so cleaned its
3248 			 * children.  We need to go back and cleanup
3249 			 * the original hblk so we don't change the
3250 			 * addr.
3251 			 */
3252 			shadow = 0;
3253 		} else {
3254 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3255 				(1 << hmeshift));
3256 		}
3257 	}
3258 	sfmmu_hblks_list_purge(&list);
3259 }
3260 
3261 /*
3262  * Release one hardware address translation lock on the given address range.
3263  */
3264 void
3265 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3266 {
3267 	struct hmehash_bucket *hmebp;
3268 	hmeblk_tag hblktag;
3269 	int hmeshift, hashno = 1;
3270 	struct hme_blk *hmeblkp, *list = NULL;
3271 	caddr_t endaddr;
3272 
3273 	ASSERT(sfmmup != NULL);
3274 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3275 
3276 	ASSERT((sfmmup == ksfmmup) ||
3277 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3278 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3279 	endaddr = addr + len;
3280 	hblktag.htag_id = sfmmup;
3281 
3282 	/*
3283 	 * Spitfire supports 4 page sizes.
3284 	 * Most pages are expected to be of the smallest page size (8K) and
3285 	 * these will not need to be rehashed. 64K pages also don't need to be
3286 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3287 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3288 	 */
3289 	while (addr < endaddr) {
3290 		hmeshift = HME_HASH_SHIFT(hashno);
3291 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3292 		hblktag.htag_rehash = hashno;
3293 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3294 
3295 		SFMMU_HASH_LOCK(hmebp);
3296 
3297 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3298 		if (hmeblkp != NULL) {
3299 			/*
3300 			 * If we encounter a shadow hmeblk then
3301 			 * we know there are no valid hmeblks mapping
3302 			 * this address at this size or larger.
3303 			 * Just increment address by the smallest
3304 			 * page size.
3305 			 */
3306 			if (hmeblkp->hblk_shw_bit) {
3307 				addr += MMU_PAGESIZE;
3308 			} else {
3309 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3310 				    endaddr);
3311 			}
3312 			SFMMU_HASH_UNLOCK(hmebp);
3313 			hashno = 1;
3314 			continue;
3315 		}
3316 		SFMMU_HASH_UNLOCK(hmebp);
3317 
3318 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3319 			/*
3320 			 * We have traversed the whole list and rehashed
3321 			 * if necessary without finding the address to unlock
3322 			 * which should never happen.
3323 			 */
3324 			panic("sfmmu_unlock: addr not found. "
3325 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3326 		} else {
3327 			hashno++;
3328 		}
3329 	}
3330 
3331 	sfmmu_hblks_list_purge(&list);
3332 }
3333 
3334 /*
3335  * Function to unlock a range of addresses in an hmeblk.  It returns the
3336  * next address that needs to be unlocked.
3337  * Should be called with the hash lock held.
3338  */
3339 static caddr_t
3340 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3341 {
3342 	struct sf_hment *sfhme;
3343 	tte_t tteold, ttemod;
3344 	int ttesz, ret;
3345 
3346 	ASSERT(in_hblk_range(hmeblkp, addr));
3347 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3348 
3349 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3350 	ttesz = get_hblk_ttesz(hmeblkp);
3351 
3352 	HBLKTOHME(sfhme, hmeblkp, addr);
3353 	while (addr < endaddr) {
3354 readtte:
3355 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3356 		if (TTE_IS_VALID(&tteold)) {
3357 
3358 			ttemod = tteold;
3359 
3360 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3361 			    &sfhme->hme_tte);
3362 
3363 			if (ret < 0)
3364 				goto readtte;
3365 
3366 			if (hmeblkp->hblk_lckcnt == 0)
3367 				panic("zero hblk lckcnt");
3368 
3369 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3370 			    (uintptr_t)endaddr)
3371 				panic("can't unlock large tte");
3372 
3373 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3374 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3375 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3376 		} else {
3377 			panic("sfmmu_hblk_unlock: invalid tte");
3378 		}
3379 		addr += TTEBYTES(ttesz);
3380 		sfhme++;
3381 	}
3382 	return (addr);
3383 }
3384 
3385 /*
3386  * Physical Address Mapping Framework
3387  *
3388  * General rules:
3389  *
3390  * (1) Applies only to seg_kmem memory pages. To make things easier,
3391  *     seg_kpm addresses are also accepted by the routines, but nothing
3392  *     is done with them since by definition their PA mappings are static.
3393  * (2) hat_add_callback() may only be called while holding the page lock
3394  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
3395  *     or passing HAC_PAGELOCK flag.
3396  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3397  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3398  *     callbacks may not sleep or acquire adaptive mutex locks.
3399  * (4) Either prehandler() or posthandler() (but not both) may be specified
3400  *     as being NULL.  Specifying an errhandler() is optional.
3401  *
3402  * Details of using the framework:
3403  *
3404  * registering a callback (hat_register_callback())
3405  *
3406  *	Pass prehandler, posthandler, errhandler addresses
3407  *	as described below. If capture_cpus argument is nonzero,
3408  *	suspend callback to the prehandler will occur with CPUs
3409  *	captured and executing xc_loop() and CPUs will remain
3410  *	captured until after the posthandler suspend callback
3411  *	occurs.
3412  *
3413  * adding a callback (hat_add_callback())
3414  *
3415  *      as_pagelock();
3416  *	hat_add_callback();
3417  *      save returned pfn in private data structures or program registers;
3418  *      as_pageunlock();
3419  *
3420  * prehandler()
3421  *
3422  *	Stop all accesses by physical address to this memory page.
3423  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3424  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3425  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3426  *	locks must be XCALL_PIL or higher locks).
3427  *
3428  *	May return the following errors:
3429  *		EIO:	A fatal error has occurred. This will result in panic.
3430  *		EAGAIN:	The page cannot be suspended. This will fail the
3431  *			relocation.
3432  *		0:	Success.
3433  *
3434  * posthandler()
3435  *
3436  *      Save new pfn in private data structures or program registers;
3437  *	not allowed to fail (non-zero return values will result in panic).
3438  *
3439  * errhandler()
3440  *
3441  *	called when an error occurs related to the callback.  Currently
3442  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3443  *	a page is being freed, but there are still outstanding callback(s)
3444  *	registered on the page.
3445  *
3446  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3447  *
3448  *	stop using physical address
3449  *	hat_delete_callback();
3450  *
3451  */
3452 
3453 /*
3454  * Register a callback class.  Each subsystem should do this once and
3455  * cache the id_t returned for use in setting up and tearing down callbacks.
3456  *
3457  * There is no facility for removing callback IDs once they are created;
3458  * the "key" should be unique for each module, so in case a module is unloaded
3459  * and subsequently re-loaded, we can recycle the module's previous entry.
3460  */
3461 id_t
3462 hat_register_callback(int key,
3463 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3464 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3465 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3466 	int capture_cpus)
3467 {
3468 	id_t id;
3469 
3470 	/*
3471 	 * Search the table for a pre-existing callback associated with
3472 	 * the identifier "key".  If one exists, we re-use that entry in
3473 	 * the table for this instance, otherwise we assign the next
3474 	 * available table slot.
3475 	 */
3476 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3477 		if (sfmmu_cb_table[id].key == key)
3478 			break;
3479 	}
3480 
3481 	if (id == sfmmu_max_cb_id) {
3482 		id = sfmmu_cb_nextid++;
3483 		if (id >= sfmmu_max_cb_id)
3484 			panic("hat_register_callback: out of callback IDs");
3485 	}
3486 
3487 	ASSERT(prehandler != NULL || posthandler != NULL);
3488 
3489 	sfmmu_cb_table[id].key = key;
3490 	sfmmu_cb_table[id].prehandler = prehandler;
3491 	sfmmu_cb_table[id].posthandler = posthandler;
3492 	sfmmu_cb_table[id].errhandler = errhandler;
3493 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3494 
3495 	return (id);
3496 }
3497 
3498 #define	HAC_COOKIE_NONE	(void *)-1
3499 
3500 /*
3501  * Add relocation callbacks to the specified addr/len which will be called
3502  * when relocating the associated page. See the description of pre and
3503  * posthandler above for more details.
3504  *
3505  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3506  * locked internally so the caller must be able to deal with the callback
3507  * running even before this function has returned.  If HAC_PAGELOCK is not
3508  * set, it is assumed that the underlying memory pages are locked.
3509  *
3510  * Since the caller must track the individual page boundaries anyway,
3511  * we only allow a callback to be added to a single page (large
3512  * or small).  Thus [addr, addr + len) MUST be contained within a single
3513  * page.
3514  *
3515  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3516  * _provided_that_ a unique parameter is specified for each callback.
3517  * If multiple callbacks are registered on the same range the callback will
3518  * be invoked with each unique parameter. Registering the same callback with
3519  * the same argument more than once will result in corrupted kernel state.
3520  *
3521  * Returns the pfn of the underlying kernel page in *rpfn
3522  * on success, or PFN_INVALID on failure.
3523  *
3524  * cookiep (if passed) provides storage space for an opaque cookie
3525  * to return later to hat_delete_callback(). This cookie makes the callback
3526  * deletion significantly quicker by avoiding a potentially lengthy hash
3527  * search.
3528  *
3529  * Returns values:
3530  *    0:      success
3531  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3532  *    EINVAL: callback ID is not valid
3533  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3534  *            space
3535  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
3536  */
3537 int
3538 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3539 	void *pvt, pfn_t *rpfn, void **cookiep)
3540 {
3541 	struct 		hmehash_bucket *hmebp;
3542 	hmeblk_tag 	hblktag;
3543 	struct hme_blk	*hmeblkp;
3544 	int 		hmeshift, hashno;
3545 	caddr_t 	saddr, eaddr, baseaddr;
3546 	struct pa_hment *pahmep;
3547 	struct sf_hment *sfhmep, *osfhmep;
3548 	kmutex_t	*pml;
3549 	tte_t   	tte;
3550 	page_t		*pp;
3551 	vnode_t		*vp;
3552 	u_offset_t	off;
3553 	pfn_t		pfn;
3554 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3555 	int		locked = 0;
3556 
3557 	/*
3558 	 * For KPM mappings, just return the physical address since we
3559 	 * don't need to register any callbacks.
3560 	 */
3561 	if (IS_KPM_ADDR(vaddr)) {
3562 		uint64_t paddr;
3563 		SFMMU_KPM_VTOP(vaddr, paddr);
3564 		*rpfn = btop(paddr);
3565 		if (cookiep != NULL)
3566 			*cookiep = HAC_COOKIE_NONE;
3567 		return (0);
3568 	}
3569 
3570 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3571 		*rpfn = PFN_INVALID;
3572 		return (EINVAL);
3573 	}
3574 
3575 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3576 		*rpfn = PFN_INVALID;
3577 		return (ENOMEM);
3578 	}
3579 
3580 	sfhmep = &pahmep->sfment;
3581 
3582 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3583 	eaddr = saddr + len;
3584 
3585 rehash:
3586 	/* Find the mapping(s) for this page */
3587 	for (hashno = TTE64K, hmeblkp = NULL;
3588 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3589 	    hashno++) {
3590 		hmeshift = HME_HASH_SHIFT(hashno);
3591 		hblktag.htag_id = ksfmmup;
3592 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3593 		hblktag.htag_rehash = hashno;
3594 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3595 
3596 		SFMMU_HASH_LOCK(hmebp);
3597 
3598 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3599 
3600 		if (hmeblkp == NULL)
3601 			SFMMU_HASH_UNLOCK(hmebp);
3602 	}
3603 
3604 	if (hmeblkp == NULL) {
3605 		kmem_cache_free(pa_hment_cache, pahmep);
3606 		*rpfn = PFN_INVALID;
3607 		return (ENXIO);
3608 	}
3609 
3610 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3611 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3612 
3613 	if (!TTE_IS_VALID(&tte)) {
3614 		SFMMU_HASH_UNLOCK(hmebp);
3615 		kmem_cache_free(pa_hment_cache, pahmep);
3616 		*rpfn = PFN_INVALID;
3617 		return (ENXIO);
3618 	}
3619 
3620 	/*
3621 	 * Make sure the boundaries for the callback fall within this
3622 	 * single mapping.
3623 	 */
3624 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3625 	ASSERT(saddr >= baseaddr);
3626 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
3627 		SFMMU_HASH_UNLOCK(hmebp);
3628 		kmem_cache_free(pa_hment_cache, pahmep);
3629 		*rpfn = PFN_INVALID;
3630 		return (ERANGE);
3631 	}
3632 
3633 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3634 
3635 	/*
3636 	 * The pfn may not have a page_t underneath in which case we
3637 	 * just return it. This can happen if we are doing I/O to a
3638 	 * static portion of the kernel's address space, for instance.
3639 	 */
3640 	pp = osfhmep->hme_page;
3641 	if (pp == NULL) {
3642 		SFMMU_HASH_UNLOCK(hmebp);
3643 		kmem_cache_free(pa_hment_cache, pahmep);
3644 		*rpfn = pfn;
3645 		if (cookiep)
3646 			*cookiep = HAC_COOKIE_NONE;
3647 		return (0);
3648 	}
3649 	ASSERT(pp == PP_PAGEROOT(pp));
3650 
3651 	vp = pp->p_vnode;
3652 	off = pp->p_offset;
3653 
3654 	pml = sfmmu_mlist_enter(pp);
3655 
3656 	if (flags & HAC_PAGELOCK) {
3657 		if (!page_trylock(pp, SE_SHARED)) {
3658 			/*
3659 			 * Somebody is holding SE_EXCL lock. Might
3660 			 * even be hat_page_relocate(). Drop all
3661 			 * our locks, lookup the page in &kvp, and
3662 			 * retry. If it doesn't exist in &kvp, then
3663 			 * we must be dealing with a kernel mapped
3664 			 * page which doesn't actually belong to
3665 			 * segkmem so we punt.
3666 			 */
3667 			sfmmu_mlist_exit(pml);
3668 			SFMMU_HASH_UNLOCK(hmebp);
3669 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3670 			if (pp == NULL) {
3671 				kmem_cache_free(pa_hment_cache, pahmep);
3672 				*rpfn = pfn;
3673 				if (cookiep)
3674 					*cookiep = HAC_COOKIE_NONE;
3675 				return (0);
3676 			}
3677 			page_unlock(pp);
3678 			goto rehash;
3679 		}
3680 		locked = 1;
3681 	}
3682 
3683 	if (!PAGE_LOCKED(pp) && !panicstr)
3684 		panic("hat_add_callback: page 0x%p not locked", pp);
3685 
3686 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3687 	    pp->p_offset != off) {
3688 		/*
3689 		 * The page moved before we got our hands on it.  Drop
3690 		 * all the locks and try again.
3691 		 */
3692 		ASSERT((flags & HAC_PAGELOCK) != 0);
3693 		sfmmu_mlist_exit(pml);
3694 		SFMMU_HASH_UNLOCK(hmebp);
3695 		page_unlock(pp);
3696 		locked = 0;
3697 		goto rehash;
3698 	}
3699 
3700 	if (vp != &kvp) {
3701 		/*
3702 		 * This is not a segkmem page but another page which
3703 		 * has been kernel mapped. It had better have at least
3704 		 * a share lock on it. Return the pfn.
3705 		 */
3706 		sfmmu_mlist_exit(pml);
3707 		SFMMU_HASH_UNLOCK(hmebp);
3708 		if (locked)
3709 			page_unlock(pp);
3710 		kmem_cache_free(pa_hment_cache, pahmep);
3711 		ASSERT(PAGE_LOCKED(pp));
3712 		*rpfn = pfn;
3713 		if (cookiep)
3714 			*cookiep = HAC_COOKIE_NONE;
3715 		return (0);
3716 	}
3717 
3718 	/*
3719 	 * Setup this pa_hment and link its embedded dummy sf_hment into
3720 	 * the mapping list.
3721 	 */
3722 	pp->p_share++;
3723 	pahmep->cb_id = callback_id;
3724 	pahmep->addr = vaddr;
3725 	pahmep->len = len;
3726 	pahmep->refcnt = 1;
3727 	pahmep->flags = 0;
3728 	pahmep->pvt = pvt;
3729 
3730 	sfhmep->hme_tte.ll = 0;
3731 	sfhmep->hme_data = pahmep;
3732 	sfhmep->hme_prev = osfhmep;
3733 	sfhmep->hme_next = osfhmep->hme_next;
3734 
3735 	if (osfhmep->hme_next)
3736 		osfhmep->hme_next->hme_prev = sfhmep;
3737 
3738 	osfhmep->hme_next = sfhmep;
3739 
3740 	sfmmu_mlist_exit(pml);
3741 	SFMMU_HASH_UNLOCK(hmebp);
3742 
3743 	if (locked)
3744 		page_unlock(pp);
3745 
3746 	*rpfn = pfn;
3747 	if (cookiep)
3748 		*cookiep = (void *)pahmep;
3749 
3750 	return (0);
3751 }
3752 
3753 /*
3754  * Remove the relocation callbacks from the specified addr/len.
3755  */
3756 void
3757 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
3758 	void *cookie)
3759 {
3760 	struct		hmehash_bucket *hmebp;
3761 	hmeblk_tag	hblktag;
3762 	struct hme_blk	*hmeblkp;
3763 	int		hmeshift, hashno;
3764 	caddr_t		saddr;
3765 	struct pa_hment	*pahmep;
3766 	struct sf_hment	*sfhmep, *osfhmep;
3767 	kmutex_t	*pml;
3768 	tte_t		tte;
3769 	page_t		*pp;
3770 	vnode_t		*vp;
3771 	u_offset_t	off;
3772 	int		locked = 0;
3773 
3774 	/*
3775 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
3776 	 * remove so just return.
3777 	 */
3778 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
3779 		return;
3780 
3781 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3782 
3783 rehash:
3784 	/* Find the mapping(s) for this page */
3785 	for (hashno = TTE64K, hmeblkp = NULL;
3786 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3787 	    hashno++) {
3788 		hmeshift = HME_HASH_SHIFT(hashno);
3789 		hblktag.htag_id = ksfmmup;
3790 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3791 		hblktag.htag_rehash = hashno;
3792 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3793 
3794 		SFMMU_HASH_LOCK(hmebp);
3795 
3796 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3797 
3798 		if (hmeblkp == NULL)
3799 			SFMMU_HASH_UNLOCK(hmebp);
3800 	}
3801 
3802 	if (hmeblkp == NULL)
3803 		return;
3804 
3805 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3806 
3807 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3808 	if (!TTE_IS_VALID(&tte)) {
3809 		SFMMU_HASH_UNLOCK(hmebp);
3810 		return;
3811 	}
3812 
3813 	pp = osfhmep->hme_page;
3814 	if (pp == NULL) {
3815 		SFMMU_HASH_UNLOCK(hmebp);
3816 		ASSERT(cookie == NULL);
3817 		return;
3818 	}
3819 
3820 	vp = pp->p_vnode;
3821 	off = pp->p_offset;
3822 
3823 	pml = sfmmu_mlist_enter(pp);
3824 
3825 	if (flags & HAC_PAGELOCK) {
3826 		if (!page_trylock(pp, SE_SHARED)) {
3827 			/*
3828 			 * Somebody is holding SE_EXCL lock. Might
3829 			 * even be hat_page_relocate(). Drop all
3830 			 * our locks, lookup the page in &kvp, and
3831 			 * retry. If it doesn't exist in &kvp, then
3832 			 * we must be dealing with a kernel mapped
3833 			 * page which doesn't actually belong to
3834 			 * segkmem so we punt.
3835 			 */
3836 			sfmmu_mlist_exit(pml);
3837 			SFMMU_HASH_UNLOCK(hmebp);
3838 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3839 			if (pp == NULL) {
3840 				ASSERT(cookie == NULL);
3841 				return;
3842 			}
3843 			page_unlock(pp);
3844 			goto rehash;
3845 		}
3846 		locked = 1;
3847 	}
3848 
3849 	ASSERT(PAGE_LOCKED(pp));
3850 
3851 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3852 	    pp->p_offset != off) {
3853 		/*
3854 		 * The page moved before we got our hands on it.  Drop
3855 		 * all the locks and try again.
3856 		 */
3857 		ASSERT((flags & HAC_PAGELOCK) != 0);
3858 		sfmmu_mlist_exit(pml);
3859 		SFMMU_HASH_UNLOCK(hmebp);
3860 		page_unlock(pp);
3861 		locked = 0;
3862 		goto rehash;
3863 	}
3864 
3865 	if (vp != &kvp) {
3866 		/*
3867 		 * This is not a segkmem page but another page which
3868 		 * has been kernel mapped.
3869 		 */
3870 		sfmmu_mlist_exit(pml);
3871 		SFMMU_HASH_UNLOCK(hmebp);
3872 		if (locked)
3873 			page_unlock(pp);
3874 		ASSERT(cookie == NULL);
3875 		return;
3876 	}
3877 
3878 	if (cookie != NULL) {
3879 		pahmep = (struct pa_hment *)cookie;
3880 		sfhmep = &pahmep->sfment;
3881 	} else {
3882 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
3883 		    sfhmep = sfhmep->hme_next) {
3884 
3885 			/*
3886 			 * skip va<->pa mappings
3887 			 */
3888 			if (!IS_PAHME(sfhmep))
3889 				continue;
3890 
3891 			pahmep = sfhmep->hme_data;
3892 			ASSERT(pahmep != NULL);
3893 
3894 			/*
3895 			 * if pa_hment matches, remove it
3896 			 */
3897 			if ((pahmep->pvt == pvt) &&
3898 			    (pahmep->addr == vaddr) &&
3899 			    (pahmep->len == len)) {
3900 				break;
3901 			}
3902 		}
3903 	}
3904 
3905 	if (sfhmep == NULL) {
3906 		if (!panicstr) {
3907 			panic("hat_delete_callback: pa_hment not found, pp %p",
3908 			    (void *)pp);
3909 		}
3910 		return;
3911 	}
3912 
3913 	/*
3914 	 * Note: at this point a valid kernel mapping must still be
3915 	 * present on this page.
3916 	 */
3917 	pp->p_share--;
3918 	if (pp->p_share <= 0)
3919 		panic("hat_delete_callback: zero p_share");
3920 
3921 	if (--pahmep->refcnt == 0) {
3922 		if (pahmep->flags != 0)
3923 			panic("hat_delete_callback: pa_hment is busy");
3924 
3925 		/*
3926 		 * Remove sfhmep from the mapping list for the page.
3927 		 */
3928 		if (sfhmep->hme_prev) {
3929 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3930 		} else {
3931 			pp->p_mapping = sfhmep->hme_next;
3932 		}
3933 
3934 		if (sfhmep->hme_next)
3935 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3936 
3937 		sfmmu_mlist_exit(pml);
3938 		SFMMU_HASH_UNLOCK(hmebp);
3939 
3940 		if (locked)
3941 			page_unlock(pp);
3942 
3943 		kmem_cache_free(pa_hment_cache, pahmep);
3944 		return;
3945 	}
3946 
3947 	sfmmu_mlist_exit(pml);
3948 	SFMMU_HASH_UNLOCK(hmebp);
3949 	if (locked)
3950 		page_unlock(pp);
3951 }
3952 
3953 /*
3954  * hat_probe returns 1 if the translation for the address 'addr' is
3955  * loaded, zero otherwise.
3956  *
3957  * hat_probe should be used only for advisorary purposes because it may
3958  * occasionally return the wrong value. The implementation must guarantee that
3959  * returning the wrong value is a very rare event. hat_probe is used
3960  * to implement optimizations in the segment drivers.
3961  *
3962  */
3963 int
3964 hat_probe(struct hat *sfmmup, caddr_t addr)
3965 {
3966 	pfn_t pfn;
3967 	tte_t tte;
3968 
3969 	ASSERT(sfmmup != NULL);
3970 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3971 
3972 	ASSERT((sfmmup == ksfmmup) ||
3973 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3974 
3975 	if (sfmmup == ksfmmup) {
3976 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
3977 		    == PFN_SUSPENDED) {
3978 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
3979 		}
3980 	} else {
3981 		pfn = sfmmu_uvatopfn(addr, sfmmup);
3982 	}
3983 
3984 	if (pfn != PFN_INVALID)
3985 		return (1);
3986 	else
3987 		return (0);
3988 }
3989 
3990 ssize_t
3991 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
3992 {
3993 	tte_t tte;
3994 
3995 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3996 
3997 	sfmmu_gettte(sfmmup, addr, &tte);
3998 	if (TTE_IS_VALID(&tte)) {
3999 		return (TTEBYTES(TTE_CSZ(&tte)));
4000 	}
4001 	return (-1);
4002 }
4003 
4004 static void
4005 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
4006 {
4007 	struct hmehash_bucket *hmebp;
4008 	hmeblk_tag hblktag;
4009 	int hmeshift, hashno = 1;
4010 	struct hme_blk *hmeblkp, *list = NULL;
4011 	struct sf_hment *sfhmep;
4012 
4013 	/* support for ISM */
4014 	ism_map_t	*ism_map;
4015 	ism_blk_t	*ism_blkp;
4016 	int		i;
4017 	sfmmu_t		*ism_hatid = NULL;
4018 	sfmmu_t		*locked_hatid = NULL;
4019 
4020 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4021 
4022 	ism_blkp = sfmmup->sfmmu_iblk;
4023 	if (ism_blkp) {
4024 		sfmmu_ismhat_enter(sfmmup, 0);
4025 		locked_hatid = sfmmup;
4026 	}
4027 	while (ism_blkp && ism_hatid == NULL) {
4028 		ism_map = ism_blkp->iblk_maps;
4029 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
4030 			if (addr >= ism_start(ism_map[i]) &&
4031 			    addr < ism_end(ism_map[i])) {
4032 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
4033 				addr = (caddr_t)(addr -
4034 					ism_start(ism_map[i]));
4035 				break;
4036 			}
4037 		}
4038 		ism_blkp = ism_blkp->iblk_next;
4039 	}
4040 	if (locked_hatid) {
4041 		sfmmu_ismhat_exit(locked_hatid, 0);
4042 	}
4043 
4044 	hblktag.htag_id = sfmmup;
4045 	ttep->ll = 0;
4046 
4047 	do {
4048 		hmeshift = HME_HASH_SHIFT(hashno);
4049 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4050 		hblktag.htag_rehash = hashno;
4051 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4052 
4053 		SFMMU_HASH_LOCK(hmebp);
4054 
4055 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4056 		if (hmeblkp != NULL) {
4057 			HBLKTOHME(sfhmep, hmeblkp, addr);
4058 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
4059 			SFMMU_HASH_UNLOCK(hmebp);
4060 			break;
4061 		}
4062 		SFMMU_HASH_UNLOCK(hmebp);
4063 		hashno++;
4064 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
4065 
4066 	sfmmu_hblks_list_purge(&list);
4067 }
4068 
4069 uint_t
4070 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4071 {
4072 	tte_t tte;
4073 
4074 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4075 
4076 	sfmmu_gettte(sfmmup, addr, &tte);
4077 	if (TTE_IS_VALID(&tte)) {
4078 		*attr = sfmmu_ptov_attr(&tte);
4079 		return (0);
4080 	}
4081 	*attr = 0;
4082 	return ((uint_t)0xffffffff);
4083 }
4084 
4085 /*
4086  * Enables more attributes on specified address range (ie. logical OR)
4087  */
4088 void
4089 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4090 {
4091 	if (hat->sfmmu_xhat_provider) {
4092 		XHAT_SETATTR(hat, addr, len, attr);
4093 		return;
4094 	} else {
4095 		/*
4096 		 * This must be a CPU HAT. If the address space has
4097 		 * XHATs attached, change attributes for all of them,
4098 		 * just in case
4099 		 */
4100 		ASSERT(hat->sfmmu_as != NULL);
4101 		if (hat->sfmmu_as->a_xhat != NULL)
4102 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4103 	}
4104 
4105 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4106 }
4107 
4108 /*
4109  * Assigns attributes to the specified address range.  All the attributes
4110  * are specified.
4111  */
4112 void
4113 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4114 {
4115 	if (hat->sfmmu_xhat_provider) {
4116 		XHAT_CHGATTR(hat, addr, len, attr);
4117 		return;
4118 	} else {
4119 		/*
4120 		 * This must be a CPU HAT. If the address space has
4121 		 * XHATs attached, change attributes for all of them,
4122 		 * just in case
4123 		 */
4124 		ASSERT(hat->sfmmu_as != NULL);
4125 		if (hat->sfmmu_as->a_xhat != NULL)
4126 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4127 	}
4128 
4129 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4130 }
4131 
4132 /*
4133  * Remove attributes on the specified address range (ie. loginal NAND)
4134  */
4135 void
4136 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4137 {
4138 	if (hat->sfmmu_xhat_provider) {
4139 		XHAT_CLRATTR(hat, addr, len, attr);
4140 		return;
4141 	} else {
4142 		/*
4143 		 * This must be a CPU HAT. If the address space has
4144 		 * XHATs attached, change attributes for all of them,
4145 		 * just in case
4146 		 */
4147 		ASSERT(hat->sfmmu_as != NULL);
4148 		if (hat->sfmmu_as->a_xhat != NULL)
4149 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4150 	}
4151 
4152 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4153 }
4154 
4155 /*
4156  * Change attributes on an address range to that specified by attr and mode.
4157  */
4158 static void
4159 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4160 	int mode)
4161 {
4162 	struct hmehash_bucket *hmebp;
4163 	hmeblk_tag hblktag;
4164 	int hmeshift, hashno = 1;
4165 	struct hme_blk *hmeblkp, *list = NULL;
4166 	caddr_t endaddr;
4167 	cpuset_t cpuset;
4168 	demap_range_t dmr;
4169 
4170 	CPUSET_ZERO(cpuset);
4171 
4172 	ASSERT((sfmmup == ksfmmup) ||
4173 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4174 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4175 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4176 
4177 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4178 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4179 		panic("user addr %p in kernel space",
4180 		    (void *)addr);
4181 	}
4182 
4183 	endaddr = addr + len;
4184 	hblktag.htag_id = sfmmup;
4185 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4186 
4187 	while (addr < endaddr) {
4188 		hmeshift = HME_HASH_SHIFT(hashno);
4189 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4190 		hblktag.htag_rehash = hashno;
4191 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4192 
4193 		SFMMU_HASH_LOCK(hmebp);
4194 
4195 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4196 		if (hmeblkp != NULL) {
4197 			/*
4198 			 * We've encountered a shadow hmeblk so skip the range
4199 			 * of the next smaller mapping size.
4200 			 */
4201 			if (hmeblkp->hblk_shw_bit) {
4202 				ASSERT(sfmmup != ksfmmup);
4203 				ASSERT(hashno > 1);
4204 				addr = (caddr_t)P2END((uintptr_t)addr,
4205 					    TTEBYTES(hashno - 1));
4206 			} else {
4207 				addr = sfmmu_hblk_chgattr(sfmmup,
4208 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4209 			}
4210 			SFMMU_HASH_UNLOCK(hmebp);
4211 			hashno = 1;
4212 			continue;
4213 		}
4214 		SFMMU_HASH_UNLOCK(hmebp);
4215 
4216 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4217 			/*
4218 			 * We have traversed the whole list and rehashed
4219 			 * if necessary without finding the address to chgattr.
4220 			 * This is ok, so we increment the address by the
4221 			 * smallest hmeblk range for kernel mappings or for
4222 			 * user mappings with no large pages, and the largest
4223 			 * hmeblk range, to account for shadow hmeblks, for
4224 			 * user mappings with large pages and continue.
4225 			 */
4226 			if (sfmmup == ksfmmup)
4227 				addr = (caddr_t)P2END((uintptr_t)addr,
4228 					    TTEBYTES(1));
4229 			else
4230 				addr = (caddr_t)P2END((uintptr_t)addr,
4231 					    TTEBYTES(hashno));
4232 			hashno = 1;
4233 		} else {
4234 			hashno++;
4235 		}
4236 	}
4237 
4238 	sfmmu_hblks_list_purge(&list);
4239 	DEMAP_RANGE_FLUSH(&dmr);
4240 	cpuset = sfmmup->sfmmu_cpusran;
4241 	xt_sync(cpuset);
4242 }
4243 
4244 /*
4245  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4246  * next addres that needs to be chgattr.
4247  * It should be called with the hash lock held.
4248  * XXX It should be possible to optimize chgattr by not flushing every time but
4249  * on the other hand:
4250  * 1. do one flush crosscall.
4251  * 2. only flush if we are increasing permissions (make sure this will work)
4252  */
4253 static caddr_t
4254 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4255 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4256 {
4257 	tte_t tte, tteattr, tteflags, ttemod;
4258 	struct sf_hment *sfhmep;
4259 	int ttesz;
4260 	struct page *pp = NULL;
4261 	kmutex_t *pml, *pmtx;
4262 	int ret;
4263 	int use_demap_range;
4264 #if defined(SF_ERRATA_57)
4265 	int check_exec;
4266 #endif
4267 
4268 	ASSERT(in_hblk_range(hmeblkp, addr));
4269 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4270 
4271 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4272 	ttesz = get_hblk_ttesz(hmeblkp);
4273 
4274 	/*
4275 	 * Flush the current demap region if addresses have been
4276 	 * skipped or the page size doesn't match.
4277 	 */
4278 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4279 	if (use_demap_range) {
4280 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4281 	} else {
4282 		DEMAP_RANGE_FLUSH(dmrp);
4283 	}
4284 
4285 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4286 #if defined(SF_ERRATA_57)
4287 	check_exec = (sfmmup != ksfmmup) &&
4288 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4289 	    TTE_IS_EXECUTABLE(&tteattr);
4290 #endif
4291 	HBLKTOHME(sfhmep, hmeblkp, addr);
4292 	while (addr < endaddr) {
4293 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4294 		if (TTE_IS_VALID(&tte)) {
4295 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4296 				/*
4297 				 * if the new attr is the same as old
4298 				 * continue
4299 				 */
4300 				goto next_addr;
4301 			}
4302 			if (!TTE_IS_WRITABLE(&tteattr)) {
4303 				/*
4304 				 * make sure we clear hw modify bit if we
4305 				 * removing write protections
4306 				 */
4307 				tteflags.tte_intlo |= TTE_HWWR_INT;
4308 			}
4309 
4310 			pml = NULL;
4311 			pp = sfhmep->hme_page;
4312 			if (pp) {
4313 				pml = sfmmu_mlist_enter(pp);
4314 			}
4315 
4316 			if (pp != sfhmep->hme_page) {
4317 				/*
4318 				 * tte must have been unloaded.
4319 				 */
4320 				ASSERT(pml);
4321 				sfmmu_mlist_exit(pml);
4322 				continue;
4323 			}
4324 
4325 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4326 
4327 			ttemod = tte;
4328 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4329 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4330 
4331 #if defined(SF_ERRATA_57)
4332 			if (check_exec && addr < errata57_limit)
4333 				ttemod.tte_exec_perm = 0;
4334 #endif
4335 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4336 			    &sfhmep->hme_tte);
4337 
4338 			if (ret < 0) {
4339 				/* tte changed underneath us */
4340 				if (pml) {
4341 					sfmmu_mlist_exit(pml);
4342 				}
4343 				continue;
4344 			}
4345 
4346 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4347 				/*
4348 				 * need to sync if we are clearing modify bit.
4349 				 */
4350 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4351 			}
4352 
4353 			if (pp && PP_ISRO(pp)) {
4354 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4355 					pmtx = sfmmu_page_enter(pp);
4356 					PP_CLRRO(pp);
4357 					sfmmu_page_exit(pmtx);
4358 				}
4359 			}
4360 
4361 			if (ret > 0 && use_demap_range) {
4362 				DEMAP_RANGE_MARKPG(dmrp, addr);
4363 			} else if (ret > 0) {
4364 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4365 			}
4366 
4367 			if (pml) {
4368 				sfmmu_mlist_exit(pml);
4369 			}
4370 		}
4371 next_addr:
4372 		addr += TTEBYTES(ttesz);
4373 		sfhmep++;
4374 		DEMAP_RANGE_NEXTPG(dmrp);
4375 	}
4376 	return (addr);
4377 }
4378 
4379 /*
4380  * This routine converts virtual attributes to physical ones.  It will
4381  * update the tteflags field with the tte mask corresponding to the attributes
4382  * affected and it returns the new attributes.  It will also clear the modify
4383  * bit if we are taking away write permission.  This is necessary since the
4384  * modify bit is the hardware permission bit and we need to clear it in order
4385  * to detect write faults.
4386  */
4387 static uint64_t
4388 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4389 {
4390 	tte_t ttevalue;
4391 
4392 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4393 
4394 	switch (mode) {
4395 	case SFMMU_CHGATTR:
4396 		/* all attributes specified */
4397 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4398 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4399 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4400 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4401 		break;
4402 	case SFMMU_SETATTR:
4403 		ASSERT(!(attr & ~HAT_PROT_MASK));
4404 		ttemaskp->ll = 0;
4405 		ttevalue.ll = 0;
4406 		/*
4407 		 * a valid tte implies exec and read for sfmmu
4408 		 * so no need to do anything about them.
4409 		 * since priviledged access implies user access
4410 		 * PROT_USER doesn't make sense either.
4411 		 */
4412 		if (attr & PROT_WRITE) {
4413 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4414 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4415 		}
4416 		break;
4417 	case SFMMU_CLRATTR:
4418 		/* attributes will be nand with current ones */
4419 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4420 			panic("sfmmu: attr %x not supported", attr);
4421 		}
4422 		ttemaskp->ll = 0;
4423 		ttevalue.ll = 0;
4424 		if (attr & PROT_WRITE) {
4425 			/* clear both writable and modify bit */
4426 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4427 		}
4428 		if (attr & PROT_USER) {
4429 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4430 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4431 		}
4432 		break;
4433 	default:
4434 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4435 	}
4436 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4437 	return (ttevalue.ll);
4438 }
4439 
4440 static uint_t
4441 sfmmu_ptov_attr(tte_t *ttep)
4442 {
4443 	uint_t attr;
4444 
4445 	ASSERT(TTE_IS_VALID(ttep));
4446 
4447 	attr = PROT_READ;
4448 
4449 	if (TTE_IS_WRITABLE(ttep)) {
4450 		attr |= PROT_WRITE;
4451 	}
4452 	if (TTE_IS_EXECUTABLE(ttep)) {
4453 		attr |= PROT_EXEC;
4454 	}
4455 	if (!TTE_IS_PRIVILEGED(ttep)) {
4456 		attr |= PROT_USER;
4457 	}
4458 	if (TTE_IS_NFO(ttep)) {
4459 		attr |= HAT_NOFAULT;
4460 	}
4461 	if (TTE_IS_NOSYNC(ttep)) {
4462 		attr |= HAT_NOSYNC;
4463 	}
4464 	if (TTE_IS_SIDEFFECT(ttep)) {
4465 		attr |= SFMMU_SIDEFFECT;
4466 	}
4467 	if (!TTE_IS_VCACHEABLE(ttep)) {
4468 		attr |= SFMMU_UNCACHEVTTE;
4469 	}
4470 	if (!TTE_IS_PCACHEABLE(ttep)) {
4471 		attr |= SFMMU_UNCACHEPTTE;
4472 	}
4473 	return (attr);
4474 }
4475 
4476 /*
4477  * hat_chgprot is a deprecated hat call.  New segment drivers
4478  * should store all attributes and use hat_*attr calls.
4479  *
4480  * Change the protections in the virtual address range
4481  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4482  * then remove write permission, leaving the other
4483  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4484  *
4485  */
4486 void
4487 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4488 {
4489 	struct hmehash_bucket *hmebp;
4490 	hmeblk_tag hblktag;
4491 	int hmeshift, hashno = 1;
4492 	struct hme_blk *hmeblkp, *list = NULL;
4493 	caddr_t endaddr;
4494 	cpuset_t cpuset;
4495 	demap_range_t dmr;
4496 
4497 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4498 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4499 
4500 	if (sfmmup->sfmmu_xhat_provider) {
4501 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4502 		return;
4503 	} else {
4504 		/*
4505 		 * This must be a CPU HAT. If the address space has
4506 		 * XHATs attached, change attributes for all of them,
4507 		 * just in case
4508 		 */
4509 		ASSERT(sfmmup->sfmmu_as != NULL);
4510 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4511 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4512 	}
4513 
4514 	CPUSET_ZERO(cpuset);
4515 
4516 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4517 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4518 		panic("user addr %p vprot %x in kernel space",
4519 		    (void *)addr, vprot);
4520 	}
4521 	endaddr = addr + len;
4522 	hblktag.htag_id = sfmmup;
4523 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4524 
4525 	while (addr < endaddr) {
4526 		hmeshift = HME_HASH_SHIFT(hashno);
4527 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4528 		hblktag.htag_rehash = hashno;
4529 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4530 
4531 		SFMMU_HASH_LOCK(hmebp);
4532 
4533 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4534 		if (hmeblkp != NULL) {
4535 			/*
4536 			 * We've encountered a shadow hmeblk so skip the range
4537 			 * of the next smaller mapping size.
4538 			 */
4539 			if (hmeblkp->hblk_shw_bit) {
4540 				ASSERT(sfmmup != ksfmmup);
4541 				ASSERT(hashno > 1);
4542 				addr = (caddr_t)P2END((uintptr_t)addr,
4543 					    TTEBYTES(hashno - 1));
4544 			} else {
4545 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4546 					addr, endaddr, &dmr, vprot);
4547 			}
4548 			SFMMU_HASH_UNLOCK(hmebp);
4549 			hashno = 1;
4550 			continue;
4551 		}
4552 		SFMMU_HASH_UNLOCK(hmebp);
4553 
4554 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4555 			/*
4556 			 * We have traversed the whole list and rehashed
4557 			 * if necessary without finding the address to chgprot.
4558 			 * This is ok so we increment the address by the
4559 			 * smallest hmeblk range for kernel mappings and the
4560 			 * largest hmeblk range, to account for shadow hmeblks,
4561 			 * for user mappings and continue.
4562 			 */
4563 			if (sfmmup == ksfmmup)
4564 				addr = (caddr_t)P2END((uintptr_t)addr,
4565 					    TTEBYTES(1));
4566 			else
4567 				addr = (caddr_t)P2END((uintptr_t)addr,
4568 					    TTEBYTES(hashno));
4569 			hashno = 1;
4570 		} else {
4571 			hashno++;
4572 		}
4573 	}
4574 
4575 	sfmmu_hblks_list_purge(&list);
4576 	DEMAP_RANGE_FLUSH(&dmr);
4577 	cpuset = sfmmup->sfmmu_cpusran;
4578 	xt_sync(cpuset);
4579 }
4580 
4581 /*
4582  * This function chgprots a range of addresses in an hmeblk.  It returns the
4583  * next addres that needs to be chgprot.
4584  * It should be called with the hash lock held.
4585  * XXX It shold be possible to optimize chgprot by not flushing every time but
4586  * on the other hand:
4587  * 1. do one flush crosscall.
4588  * 2. only flush if we are increasing permissions (make sure this will work)
4589  */
4590 static caddr_t
4591 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4592 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4593 {
4594 	uint_t pprot;
4595 	tte_t tte, ttemod;
4596 	struct sf_hment *sfhmep;
4597 	uint_t tteflags;
4598 	int ttesz;
4599 	struct page *pp = NULL;
4600 	kmutex_t *pml, *pmtx;
4601 	int ret;
4602 	int use_demap_range;
4603 #if defined(SF_ERRATA_57)
4604 	int check_exec;
4605 #endif
4606 
4607 	ASSERT(in_hblk_range(hmeblkp, addr));
4608 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4609 
4610 #ifdef DEBUG
4611 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4612 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4613 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4614 	}
4615 #endif /* DEBUG */
4616 
4617 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4618 	ttesz = get_hblk_ttesz(hmeblkp);
4619 
4620 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4621 #if defined(SF_ERRATA_57)
4622 	check_exec = (sfmmup != ksfmmup) &&
4623 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4624 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4625 #endif
4626 	HBLKTOHME(sfhmep, hmeblkp, addr);
4627 
4628 	/*
4629 	 * Flush the current demap region if addresses have been
4630 	 * skipped or the page size doesn't match.
4631 	 */
4632 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4633 	if (use_demap_range) {
4634 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4635 	} else {
4636 		DEMAP_RANGE_FLUSH(dmrp);
4637 	}
4638 
4639 	while (addr < endaddr) {
4640 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4641 		if (TTE_IS_VALID(&tte)) {
4642 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4643 				/*
4644 				 * if the new protection is the same as old
4645 				 * continue
4646 				 */
4647 				goto next_addr;
4648 			}
4649 			pml = NULL;
4650 			pp = sfhmep->hme_page;
4651 			if (pp) {
4652 				pml = sfmmu_mlist_enter(pp);
4653 			}
4654 			if (pp != sfhmep->hme_page) {
4655 				/*
4656 				 * tte most have been unloaded
4657 				 * underneath us.  Recheck
4658 				 */
4659 				ASSERT(pml);
4660 				sfmmu_mlist_exit(pml);
4661 				continue;
4662 			}
4663 
4664 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4665 
4666 			ttemod = tte;
4667 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4668 #if defined(SF_ERRATA_57)
4669 			if (check_exec && addr < errata57_limit)
4670 				ttemod.tte_exec_perm = 0;
4671 #endif
4672 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4673 			    &sfhmep->hme_tte);
4674 
4675 			if (ret < 0) {
4676 				/* tte changed underneath us */
4677 				if (pml) {
4678 					sfmmu_mlist_exit(pml);
4679 				}
4680 				continue;
4681 			}
4682 
4683 			if (tteflags & TTE_HWWR_INT) {
4684 				/*
4685 				 * need to sync if we are clearing modify bit.
4686 				 */
4687 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4688 			}
4689 
4690 			if (pp && PP_ISRO(pp)) {
4691 				if (pprot & TTE_WRPRM_INT) {
4692 					pmtx = sfmmu_page_enter(pp);
4693 					PP_CLRRO(pp);
4694 					sfmmu_page_exit(pmtx);
4695 				}
4696 			}
4697 
4698 			if (ret > 0 && use_demap_range) {
4699 				DEMAP_RANGE_MARKPG(dmrp, addr);
4700 			} else if (ret > 0) {
4701 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4702 			}
4703 
4704 			if (pml) {
4705 				sfmmu_mlist_exit(pml);
4706 			}
4707 		}
4708 next_addr:
4709 		addr += TTEBYTES(ttesz);
4710 		sfhmep++;
4711 		DEMAP_RANGE_NEXTPG(dmrp);
4712 	}
4713 	return (addr);
4714 }
4715 
4716 /*
4717  * This routine is deprecated and should only be used by hat_chgprot.
4718  * The correct routine is sfmmu_vtop_attr.
4719  * This routine converts virtual page protections to physical ones.  It will
4720  * update the tteflags field with the tte mask corresponding to the protections
4721  * affected and it returns the new protections.  It will also clear the modify
4722  * bit if we are taking away write permission.  This is necessary since the
4723  * modify bit is the hardware permission bit and we need to clear it in order
4724  * to detect write faults.
4725  * It accepts the following special protections:
4726  * ~PROT_WRITE = remove write permissions.
4727  * ~PROT_USER = remove user permissions.
4728  */
4729 static uint_t
4730 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4731 {
4732 	if (vprot == (uint_t)~PROT_WRITE) {
4733 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4734 		return (0);		/* will cause wrprm to be cleared */
4735 	}
4736 	if (vprot == (uint_t)~PROT_USER) {
4737 		*tteflagsp = TTE_PRIV_INT;
4738 		return (0);		/* will cause privprm to be cleared */
4739 	}
4740 	if ((vprot == 0) || (vprot == PROT_USER) ||
4741 		((vprot & PROT_ALL) != vprot)) {
4742 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4743 	}
4744 
4745 	switch (vprot) {
4746 	case (PROT_READ):
4747 	case (PROT_EXEC):
4748 	case (PROT_EXEC | PROT_READ):
4749 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4750 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4751 	case (PROT_WRITE):
4752 	case (PROT_WRITE | PROT_READ):
4753 	case (PROT_EXEC | PROT_WRITE):
4754 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4755 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4756 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4757 	case (PROT_USER | PROT_READ):
4758 	case (PROT_USER | PROT_EXEC):
4759 	case (PROT_USER | PROT_EXEC | PROT_READ):
4760 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4761 		return (0); 			/* clr prv and wrt */
4762 	case (PROT_USER | PROT_WRITE):
4763 	case (PROT_USER | PROT_WRITE | PROT_READ):
4764 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4765 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4766 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4767 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4768 	default:
4769 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4770 	}
4771 	return (0);
4772 }
4773 
4774 /*
4775  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4776  * the normal algorithm would take too long for a very large VA range with
4777  * few real mappings. This routine just walks thru all HMEs in the global
4778  * hash table to find and remove mappings.
4779  */
4780 static void
4781 hat_unload_large_virtual(
4782 	struct hat		*sfmmup,
4783 	caddr_t			startaddr,
4784 	size_t			len,
4785 	uint_t			flags,
4786 	hat_callback_t		*callback)
4787 {
4788 	struct hmehash_bucket *hmebp;
4789 	struct hme_blk *hmeblkp;
4790 	struct hme_blk *pr_hblk = NULL;
4791 	struct hme_blk *nx_hblk;
4792 	struct hme_blk *list = NULL;
4793 	int i;
4794 	uint64_t hblkpa, prevpa, nx_pa;
4795 	demap_range_t dmr, *dmrp;
4796 	cpuset_t cpuset;
4797 	caddr_t	endaddr = startaddr + len;
4798 	caddr_t	sa;
4799 	caddr_t	ea;
4800 	caddr_t	cb_sa[MAX_CB_ADDR];
4801 	caddr_t	cb_ea[MAX_CB_ADDR];
4802 	int	addr_cnt = 0;
4803 	int	a = 0;
4804 
4805 	if (sfmmup->sfmmu_free) {
4806 		dmrp = NULL;
4807 	} else {
4808 		dmrp = &dmr;
4809 		DEMAP_RANGE_INIT(sfmmup, dmrp);
4810 	}
4811 
4812 	/*
4813 	 * Loop through all the hash buckets of HME blocks looking for matches.
4814 	 */
4815 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4816 		hmebp = &uhme_hash[i];
4817 		SFMMU_HASH_LOCK(hmebp);
4818 		hmeblkp = hmebp->hmeblkp;
4819 		hblkpa = hmebp->hmeh_nextpa;
4820 		prevpa = 0;
4821 		pr_hblk = NULL;
4822 		while (hmeblkp) {
4823 			nx_hblk = hmeblkp->hblk_next;
4824 			nx_pa = hmeblkp->hblk_nextpa;
4825 
4826 			/*
4827 			 * skip if not this context, if a shadow block or
4828 			 * if the mapping is not in the requested range
4829 			 */
4830 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4831 			    hmeblkp->hblk_shw_bit ||
4832 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4833 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4834 				pr_hblk = hmeblkp;
4835 				prevpa = hblkpa;
4836 				goto next_block;
4837 			}
4838 
4839 			/*
4840 			 * unload if there are any current valid mappings
4841 			 */
4842 			if (hmeblkp->hblk_vcnt != 0 ||
4843 			    hmeblkp->hblk_hmecnt != 0)
4844 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4845 				    sa, ea, dmrp, flags);
4846 
4847 			/*
4848 			 * on unmap we also release the HME block itself, once
4849 			 * all mappings are gone.
4850 			 */
4851 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4852 			    !hmeblkp->hblk_vcnt &&
4853 			    !hmeblkp->hblk_hmecnt) {
4854 				ASSERT(!hmeblkp->hblk_lckcnt);
4855 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4856 					prevpa, pr_hblk);
4857 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4858 			} else {
4859 				pr_hblk = hmeblkp;
4860 				prevpa = hblkpa;
4861 			}
4862 
4863 			if (callback == NULL)
4864 				goto next_block;
4865 
4866 			/*
4867 			 * HME blocks may span more than one page, but we may be
4868 			 * unmapping only one page, so check for a smaller range
4869 			 * for the callback
4870 			 */
4871 			if (sa < startaddr)
4872 				sa = startaddr;
4873 			if (--ea > endaddr)
4874 				ea = endaddr - 1;
4875 
4876 			cb_sa[addr_cnt] = sa;
4877 			cb_ea[addr_cnt] = ea;
4878 			if (++addr_cnt == MAX_CB_ADDR) {
4879 				if (dmrp != NULL) {
4880 					DEMAP_RANGE_FLUSH(dmrp);
4881 					cpuset = sfmmup->sfmmu_cpusran;
4882 					xt_sync(cpuset);
4883 				}
4884 
4885 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4886 					callback->hcb_start_addr = cb_sa[a];
4887 					callback->hcb_end_addr = cb_ea[a];
4888 					callback->hcb_function(callback);
4889 				}
4890 				addr_cnt = 0;
4891 			}
4892 
4893 next_block:
4894 			hmeblkp = nx_hblk;
4895 			hblkpa = nx_pa;
4896 		}
4897 		SFMMU_HASH_UNLOCK(hmebp);
4898 	}
4899 
4900 	sfmmu_hblks_list_purge(&list);
4901 	if (dmrp != NULL) {
4902 		DEMAP_RANGE_FLUSH(dmrp);
4903 		cpuset = sfmmup->sfmmu_cpusran;
4904 		xt_sync(cpuset);
4905 	}
4906 
4907 	for (a = 0; a < addr_cnt; ++a) {
4908 		callback->hcb_start_addr = cb_sa[a];
4909 		callback->hcb_end_addr = cb_ea[a];
4910 		callback->hcb_function(callback);
4911 	}
4912 
4913 	/*
4914 	 * Check TSB and TLB page sizes if the process isn't exiting.
4915 	 */
4916 	if (!sfmmup->sfmmu_free)
4917 		sfmmu_check_page_sizes(sfmmup, 0);
4918 }
4919 
4920 /*
4921  * Unload all the mappings in the range [addr..addr+len). addr and len must
4922  * be MMU_PAGESIZE aligned.
4923  */
4924 
4925 extern struct seg *segkmap;
4926 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4927 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4928 
4929 
4930 void
4931 hat_unload_callback(
4932 	struct hat *sfmmup,
4933 	caddr_t addr,
4934 	size_t len,
4935 	uint_t flags,
4936 	hat_callback_t *callback)
4937 {
4938 	struct hmehash_bucket *hmebp;
4939 	hmeblk_tag hblktag;
4940 	int hmeshift, hashno, iskernel;
4941 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4942 	caddr_t endaddr;
4943 	cpuset_t cpuset;
4944 	uint64_t hblkpa, prevpa;
4945 	int addr_count = 0;
4946 	int a;
4947 	caddr_t cb_start_addr[MAX_CB_ADDR];
4948 	caddr_t cb_end_addr[MAX_CB_ADDR];
4949 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4950 	demap_range_t dmr, *dmrp;
4951 
4952 	if (sfmmup->sfmmu_xhat_provider) {
4953 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4954 		return;
4955 	} else {
4956 		/*
4957 		 * This must be a CPU HAT. If the address space has
4958 		 * XHATs attached, unload the mappings for all of them,
4959 		 * just in case
4960 		 */
4961 		ASSERT(sfmmup->sfmmu_as != NULL);
4962 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4963 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4964 			    len, flags, callback);
4965 	}
4966 
4967 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
4968 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4969 
4970 	ASSERT(sfmmup != NULL);
4971 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4972 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4973 
4974 	/*
4975 	 * Probing through a large VA range (say 63 bits) will be slow, even
4976 	 * at 4 Meg steps between the probes. So, when the virtual address range
4977 	 * is very large, search the HME entries for what to unload.
4978 	 *
4979 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
4980 	 *
4981 	 *	UHMEHASH_SZ is number of hash buckets to examine
4982 	 *
4983 	 */
4984 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
4985 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
4986 		return;
4987 	}
4988 
4989 	CPUSET_ZERO(cpuset);
4990 
4991 	/*
4992 	 * If the process is exiting, we can save a lot of fuss since
4993 	 * we'll flush the TLB when we free the ctx anyway.
4994 	 */
4995 	if (sfmmup->sfmmu_free)
4996 		dmrp = NULL;
4997 	else
4998 		dmrp = &dmr;
4999 
5000 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5001 	endaddr = addr + len;
5002 	hblktag.htag_id = sfmmup;
5003 
5004 	/*
5005 	 * It is likely for the vm to call unload over a wide range of
5006 	 * addresses that are actually very sparsely populated by
5007 	 * translations.  In order to speed this up the sfmmu hat supports
5008 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5009 	 * correspond to actual small translations are allocated at tteload
5010 	 * time and are referred to as shadow hmeblks.  Now, during unload
5011 	 * time, we first check if we have a shadow hmeblk for that
5012 	 * translation.  The absence of one means the corresponding address
5013 	 * range is empty and can be skipped.
5014 	 *
5015 	 * The kernel is an exception to above statement and that is why
5016 	 * we don't use shadow hmeblks and hash starting from the smallest
5017 	 * page size.
5018 	 */
5019 	if (sfmmup == KHATID) {
5020 		iskernel = 1;
5021 		hashno = TTE64K;
5022 	} else {
5023 		iskernel = 0;
5024 		if (mmu_page_sizes == max_mmu_page_sizes) {
5025 			hashno = TTE256M;
5026 		} else {
5027 			hashno = TTE4M;
5028 		}
5029 	}
5030 	while (addr < endaddr) {
5031 		hmeshift = HME_HASH_SHIFT(hashno);
5032 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5033 		hblktag.htag_rehash = hashno;
5034 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5035 
5036 		SFMMU_HASH_LOCK(hmebp);
5037 
5038 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5039 			prevpa, &list);
5040 		if (hmeblkp == NULL) {
5041 			/*
5042 			 * didn't find an hmeblk. skip the appropiate
5043 			 * address range.
5044 			 */
5045 			SFMMU_HASH_UNLOCK(hmebp);
5046 			if (iskernel) {
5047 				if (hashno < mmu_hashcnt) {
5048 					hashno++;
5049 					continue;
5050 				} else {
5051 					hashno = TTE64K;
5052 					addr = (caddr_t)roundup((uintptr_t)addr
5053 						+ 1, MMU_PAGESIZE64K);
5054 					continue;
5055 				}
5056 			}
5057 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5058 				(1 << hmeshift));
5059 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5060 				ASSERT(hashno == TTE64K);
5061 				continue;
5062 			}
5063 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5064 				hashno = TTE512K;
5065 				continue;
5066 			}
5067 			if (mmu_page_sizes == max_mmu_page_sizes) {
5068 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5069 					hashno = TTE4M;
5070 					continue;
5071 				}
5072 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5073 					hashno = TTE32M;
5074 					continue;
5075 				}
5076 				hashno = TTE256M;
5077 				continue;
5078 			} else {
5079 				hashno = TTE4M;
5080 				continue;
5081 			}
5082 		}
5083 		ASSERT(hmeblkp);
5084 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5085 			/*
5086 			 * If the valid count is zero we can skip the range
5087 			 * mapped by this hmeblk.
5088 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5089 			 * is used by segment drivers as a hint
5090 			 * that the mapping resource won't be used any longer.
5091 			 * The best example of this is during exit().
5092 			 */
5093 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5094 				get_hblk_span(hmeblkp));
5095 			if ((flags & HAT_UNLOAD_UNMAP) ||
5096 			    (iskernel && !issegkmap)) {
5097 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5098 				    pr_hblk);
5099 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5100 			}
5101 			SFMMU_HASH_UNLOCK(hmebp);
5102 
5103 			if (iskernel) {
5104 				hashno = TTE64K;
5105 				continue;
5106 			}
5107 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5108 				ASSERT(hashno == TTE64K);
5109 				continue;
5110 			}
5111 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5112 				hashno = TTE512K;
5113 				continue;
5114 			}
5115 			if (mmu_page_sizes == max_mmu_page_sizes) {
5116 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5117 					hashno = TTE4M;
5118 					continue;
5119 				}
5120 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5121 					hashno = TTE32M;
5122 					continue;
5123 				}
5124 				hashno = TTE256M;
5125 				continue;
5126 			} else {
5127 				hashno = TTE4M;
5128 				continue;
5129 			}
5130 		}
5131 		if (hmeblkp->hblk_shw_bit) {
5132 			/*
5133 			 * If we encounter a shadow hmeblk we know there is
5134 			 * smaller sized hmeblks mapping the same address space.
5135 			 * Decrement the hash size and rehash.
5136 			 */
5137 			ASSERT(sfmmup != KHATID);
5138 			hashno--;
5139 			SFMMU_HASH_UNLOCK(hmebp);
5140 			continue;
5141 		}
5142 
5143 		/*
5144 		 * track callback address ranges.
5145 		 * only start a new range when it's not contiguous
5146 		 */
5147 		if (callback != NULL) {
5148 			if (addr_count > 0 &&
5149 			    addr == cb_end_addr[addr_count - 1])
5150 				--addr_count;
5151 			else
5152 				cb_start_addr[addr_count] = addr;
5153 		}
5154 
5155 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5156 				dmrp, flags);
5157 
5158 		if (callback != NULL)
5159 			cb_end_addr[addr_count++] = addr;
5160 
5161 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5162 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5163 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5164 			    pr_hblk);
5165 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5166 		}
5167 		SFMMU_HASH_UNLOCK(hmebp);
5168 
5169 		/*
5170 		 * Notify our caller as to exactly which pages
5171 		 * have been unloaded. We do these in clumps,
5172 		 * to minimize the number of xt_sync()s that need to occur.
5173 		 */
5174 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5175 			DEMAP_RANGE_FLUSH(dmrp);
5176 			if (dmrp != NULL) {
5177 				cpuset = sfmmup->sfmmu_cpusran;
5178 				xt_sync(cpuset);
5179 			}
5180 
5181 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5182 				callback->hcb_start_addr = cb_start_addr[a];
5183 				callback->hcb_end_addr = cb_end_addr[a];
5184 				callback->hcb_function(callback);
5185 			}
5186 			addr_count = 0;
5187 		}
5188 		if (iskernel) {
5189 			hashno = TTE64K;
5190 			continue;
5191 		}
5192 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5193 			ASSERT(hashno == TTE64K);
5194 			continue;
5195 		}
5196 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5197 			hashno = TTE512K;
5198 			continue;
5199 		}
5200 		if (mmu_page_sizes == max_mmu_page_sizes) {
5201 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5202 				hashno = TTE4M;
5203 				continue;
5204 			}
5205 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5206 				hashno = TTE32M;
5207 				continue;
5208 			}
5209 			hashno = TTE256M;
5210 		} else {
5211 			hashno = TTE4M;
5212 		}
5213 	}
5214 
5215 	sfmmu_hblks_list_purge(&list);
5216 	DEMAP_RANGE_FLUSH(dmrp);
5217 	if (dmrp != NULL) {
5218 		cpuset = sfmmup->sfmmu_cpusran;
5219 		xt_sync(cpuset);
5220 	}
5221 	if (callback && addr_count != 0) {
5222 		for (a = 0; a < addr_count; ++a) {
5223 			callback->hcb_start_addr = cb_start_addr[a];
5224 			callback->hcb_end_addr = cb_end_addr[a];
5225 			callback->hcb_function(callback);
5226 		}
5227 	}
5228 
5229 	/*
5230 	 * Check TSB and TLB page sizes if the process isn't exiting.
5231 	 */
5232 	if (!sfmmup->sfmmu_free)
5233 		sfmmu_check_page_sizes(sfmmup, 0);
5234 }
5235 
5236 /*
5237  * Unload all the mappings in the range [addr..addr+len). addr and len must
5238  * be MMU_PAGESIZE aligned.
5239  */
5240 void
5241 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5242 {
5243 	if (sfmmup->sfmmu_xhat_provider) {
5244 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5245 		return;
5246 	}
5247 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5248 }
5249 
5250 
5251 /*
5252  * Find the largest mapping size for this page.
5253  */
5254 int
5255 fnd_mapping_sz(page_t *pp)
5256 {
5257 	int sz;
5258 	int p_index;
5259 
5260 	p_index = PP_MAPINDEX(pp);
5261 
5262 	sz = 0;
5263 	p_index >>= 1;	/* don't care about 8K bit */
5264 	for (; p_index; p_index >>= 1) {
5265 		sz++;
5266 	}
5267 
5268 	return (sz);
5269 }
5270 
5271 /*
5272  * This function unloads a range of addresses for an hmeblk.
5273  * It returns the next address to be unloaded.
5274  * It should be called with the hash lock held.
5275  */
5276 static caddr_t
5277 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5278 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5279 {
5280 	tte_t	tte, ttemod;
5281 	struct	sf_hment *sfhmep;
5282 	int	ttesz;
5283 	long	ttecnt;
5284 	page_t *pp;
5285 	kmutex_t *pml;
5286 	int ret;
5287 	int use_demap_range;
5288 
5289 	ASSERT(in_hblk_range(hmeblkp, addr));
5290 	ASSERT(!hmeblkp->hblk_shw_bit);
5291 #ifdef DEBUG
5292 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5293 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5294 		panic("sfmmu_hblk_unload: partial unload of large page");
5295 	}
5296 #endif /* DEBUG */
5297 
5298 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5299 	ttesz = get_hblk_ttesz(hmeblkp);
5300 
5301 	use_demap_range = (do_virtual_coloring &&
5302 	    ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5303 	if (use_demap_range) {
5304 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5305 	} else {
5306 		DEMAP_RANGE_FLUSH(dmrp);
5307 	}
5308 	ttecnt = 0;
5309 	HBLKTOHME(sfhmep, hmeblkp, addr);
5310 
5311 	while (addr < endaddr) {
5312 		pml = NULL;
5313 again:
5314 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5315 		if (TTE_IS_VALID(&tte)) {
5316 			pp = sfhmep->hme_page;
5317 			if (pp && pml == NULL) {
5318 				pml = sfmmu_mlist_enter(pp);
5319 			}
5320 
5321 			/*
5322 			 * Verify if hme still points to 'pp' now that
5323 			 * we have p_mapping lock.
5324 			 */
5325 			if (sfhmep->hme_page != pp) {
5326 				if (pp != NULL && sfhmep->hme_page != NULL) {
5327 					if (pml) {
5328 						sfmmu_mlist_exit(pml);
5329 					}
5330 					/* Re-start this iteration. */
5331 					continue;
5332 				}
5333 				ASSERT((pp != NULL) &&
5334 				    (sfhmep->hme_page == NULL));
5335 				goto tte_unloaded;
5336 			}
5337 
5338 			/*
5339 			 * This point on we have both HASH and p_mapping
5340 			 * lock.
5341 			 */
5342 			ASSERT(pp == sfhmep->hme_page);
5343 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5344 
5345 			/*
5346 			 * We need to loop on modify tte because it is
5347 			 * possible for pagesync to come along and
5348 			 * change the software bits beneath us.
5349 			 *
5350 			 * Page_unload can also invalidate the tte after
5351 			 * we read tte outside of p_mapping lock.
5352 			 */
5353 			ttemod = tte;
5354 
5355 			TTE_SET_INVALID(&ttemod);
5356 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5357 			    &sfhmep->hme_tte);
5358 
5359 			if (ret <= 0) {
5360 				if (TTE_IS_VALID(&tte)) {
5361 					goto again;
5362 				} else {
5363 					/*
5364 					 * We read in a valid pte, but it
5365 					 * is unloaded by page_unload.
5366 					 * hme_page has become NULL and
5367 					 * we hold no p_mapping lock.
5368 					 */
5369 					ASSERT(pp == NULL && pml == NULL);
5370 					goto tte_unloaded;
5371 				}
5372 			}
5373 
5374 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5375 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5376 			}
5377 
5378 			/*
5379 			 * Ok- we invalidated the tte. Do the rest of the job.
5380 			 */
5381 			ttecnt++;
5382 
5383 			if (flags & HAT_UNLOAD_UNLOCK) {
5384 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5385 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5386 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5387 			}
5388 
5389 			/*
5390 			 * Normally we would need to flush the page
5391 			 * from the virtual cache at this point in
5392 			 * order to prevent a potential cache alias
5393 			 * inconsistency.
5394 			 * The particular scenario we need to worry
5395 			 * about is:
5396 			 * Given:  va1 and va2 are two virtual address
5397 			 * that alias and map the same physical
5398 			 * address.
5399 			 * 1.	mapping exists from va1 to pa and data
5400 			 * has been read into the cache.
5401 			 * 2.	unload va1.
5402 			 * 3.	load va2 and modify data using va2.
5403 			 * 4	unload va2.
5404 			 * 5.	load va1 and reference data.  Unless we
5405 			 * flush the data cache when we unload we will
5406 			 * get stale data.
5407 			 * Fortunately, page coloring eliminates the
5408 			 * above scenario by remembering the color a
5409 			 * physical page was last or is currently
5410 			 * mapped to.  Now, we delay the flush until
5411 			 * the loading of translations.  Only when the
5412 			 * new translation is of a different color
5413 			 * are we forced to flush.
5414 			 */
5415 			if (use_demap_range) {
5416 				/*
5417 				 * Mark this page as needing a demap.
5418 				 */
5419 				DEMAP_RANGE_MARKPG(dmrp, addr);
5420 			} else {
5421 				if (do_virtual_coloring) {
5422 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5423 					    sfmmup->sfmmu_free, 0);
5424 				} else {
5425 					pfn_t pfnum;
5426 
5427 					pfnum = TTE_TO_PFN(addr, &tte);
5428 					sfmmu_tlbcache_demap(addr, sfmmup,
5429 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5430 					    FLUSH_NECESSARY_CPUS,
5431 					    CACHE_FLUSH, 0);
5432 				}
5433 			}
5434 
5435 			if (pp) {
5436 				/*
5437 				 * Remove the hment from the mapping list
5438 				 */
5439 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5440 
5441 				/*
5442 				 * Again, we cannot
5443 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5444 				 */
5445 				HME_SUB(sfhmep, pp);
5446 				membar_stst();
5447 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5448 			}
5449 
5450 			ASSERT(hmeblkp->hblk_vcnt > 0);
5451 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5452 
5453 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5454 			    !hmeblkp->hblk_lckcnt);
5455 
5456 #ifdef VAC
5457 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5458 				if (PP_ISTNC(pp)) {
5459 					/*
5460 					 * If page was temporary
5461 					 * uncached, try to recache
5462 					 * it. Note that HME_SUB() was
5463 					 * called above so p_index and
5464 					 * mlist had been updated.
5465 					 */
5466 					conv_tnc(pp, ttesz);
5467 				} else if (pp->p_mapping == NULL) {
5468 					ASSERT(kpm_enable);
5469 					/*
5470 					 * Page is marked to be in VAC conflict
5471 					 * to an existing kpm mapping and/or is
5472 					 * kpm mapped using only the regular
5473 					 * pagesize.
5474 					 */
5475 					sfmmu_kpm_hme_unload(pp);
5476 				}
5477 			}
5478 #endif	/* VAC */
5479 		} else if ((pp = sfhmep->hme_page) != NULL) {
5480 				/*
5481 				 * TTE is invalid but the hme
5482 				 * still exists. let pageunload
5483 				 * complete its job.
5484 				 */
5485 				ASSERT(pml == NULL);
5486 				pml = sfmmu_mlist_enter(pp);
5487 				if (sfhmep->hme_page != NULL) {
5488 					sfmmu_mlist_exit(pml);
5489 					pml = NULL;
5490 					goto again;
5491 				}
5492 				ASSERT(sfhmep->hme_page == NULL);
5493 		} else if (hmeblkp->hblk_hmecnt != 0) {
5494 			/*
5495 			 * pageunload may have not finished decrementing
5496 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5497 			 * wait for pageunload to finish. Rely on pageunload
5498 			 * to decrement hblk_hmecnt after hblk_vcnt.
5499 			 */
5500 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5501 			ASSERT(pml == NULL);
5502 			if (pf_is_memory(pfn)) {
5503 				pp = page_numtopp_nolock(pfn);
5504 				if (pp != NULL) {
5505 					pml = sfmmu_mlist_enter(pp);
5506 					sfmmu_mlist_exit(pml);
5507 					pml = NULL;
5508 				}
5509 			}
5510 		}
5511 
5512 tte_unloaded:
5513 		/*
5514 		 * At this point, the tte we are looking at
5515 		 * should be unloaded, and hme has been unlinked
5516 		 * from page too. This is important because in
5517 		 * pageunload, it does ttesync() then HME_SUB.
5518 		 * We need to make sure HME_SUB has been completed
5519 		 * so we know ttesync() has been completed. Otherwise,
5520 		 * at exit time, after return from hat layer, VM will
5521 		 * release as structure which hat_setstat() (called
5522 		 * by ttesync()) needs.
5523 		 */
5524 #ifdef DEBUG
5525 		{
5526 			tte_t	dtte;
5527 
5528 			ASSERT(sfhmep->hme_page == NULL);
5529 
5530 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5531 			ASSERT(!TTE_IS_VALID(&dtte));
5532 		}
5533 #endif
5534 
5535 		if (pml) {
5536 			sfmmu_mlist_exit(pml);
5537 		}
5538 
5539 		addr += TTEBYTES(ttesz);
5540 		sfhmep++;
5541 		DEMAP_RANGE_NEXTPG(dmrp);
5542 	}
5543 	if (ttecnt > 0)
5544 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5545 	return (addr);
5546 }
5547 
5548 /*
5549  * Synchronize all the mappings in the range [addr..addr+len).
5550  * Can be called with clearflag having two states:
5551  * HAT_SYNC_DONTZERO means just return the rm stats
5552  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5553  */
5554 void
5555 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5556 {
5557 	struct hmehash_bucket *hmebp;
5558 	hmeblk_tag hblktag;
5559 	int hmeshift, hashno = 1;
5560 	struct hme_blk *hmeblkp, *list = NULL;
5561 	caddr_t endaddr;
5562 	cpuset_t cpuset;
5563 
5564 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5565 	ASSERT((sfmmup == ksfmmup) ||
5566 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5567 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5568 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5569 		(clearflag == HAT_SYNC_ZERORM));
5570 
5571 	CPUSET_ZERO(cpuset);
5572 
5573 	endaddr = addr + len;
5574 	hblktag.htag_id = sfmmup;
5575 	/*
5576 	 * Spitfire supports 4 page sizes.
5577 	 * Most pages are expected to be of the smallest page
5578 	 * size (8K) and these will not need to be rehashed. 64K
5579 	 * pages also don't need to be rehashed because the an hmeblk
5580 	 * spans 64K of address space. 512K pages might need 1 rehash and
5581 	 * and 4M pages 2 rehashes.
5582 	 */
5583 	while (addr < endaddr) {
5584 		hmeshift = HME_HASH_SHIFT(hashno);
5585 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5586 		hblktag.htag_rehash = hashno;
5587 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5588 
5589 		SFMMU_HASH_LOCK(hmebp);
5590 
5591 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5592 		if (hmeblkp != NULL) {
5593 			/*
5594 			 * We've encountered a shadow hmeblk so skip the range
5595 			 * of the next smaller mapping size.
5596 			 */
5597 			if (hmeblkp->hblk_shw_bit) {
5598 				ASSERT(sfmmup != ksfmmup);
5599 				ASSERT(hashno > 1);
5600 				addr = (caddr_t)P2END((uintptr_t)addr,
5601 					    TTEBYTES(hashno - 1));
5602 			} else {
5603 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5604 				    addr, endaddr, clearflag);
5605 			}
5606 			SFMMU_HASH_UNLOCK(hmebp);
5607 			hashno = 1;
5608 			continue;
5609 		}
5610 		SFMMU_HASH_UNLOCK(hmebp);
5611 
5612 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5613 			/*
5614 			 * We have traversed the whole list and rehashed
5615 			 * if necessary without finding the address to sync.
5616 			 * This is ok so we increment the address by the
5617 			 * smallest hmeblk range for kernel mappings and the
5618 			 * largest hmeblk range, to account for shadow hmeblks,
5619 			 * for user mappings and continue.
5620 			 */
5621 			if (sfmmup == ksfmmup)
5622 				addr = (caddr_t)P2END((uintptr_t)addr,
5623 					    TTEBYTES(1));
5624 			else
5625 				addr = (caddr_t)P2END((uintptr_t)addr,
5626 					    TTEBYTES(hashno));
5627 			hashno = 1;
5628 		} else {
5629 			hashno++;
5630 		}
5631 	}
5632 	sfmmu_hblks_list_purge(&list);
5633 	cpuset = sfmmup->sfmmu_cpusran;
5634 	xt_sync(cpuset);
5635 }
5636 
5637 static caddr_t
5638 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5639 	caddr_t endaddr, int clearflag)
5640 {
5641 	tte_t	tte, ttemod;
5642 	struct sf_hment *sfhmep;
5643 	int ttesz;
5644 	struct page *pp;
5645 	kmutex_t *pml;
5646 	int ret;
5647 
5648 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5649 
5650 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5651 
5652 	ttesz = get_hblk_ttesz(hmeblkp);
5653 	HBLKTOHME(sfhmep, hmeblkp, addr);
5654 
5655 	while (addr < endaddr) {
5656 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5657 		if (TTE_IS_VALID(&tte)) {
5658 			pml = NULL;
5659 			pp = sfhmep->hme_page;
5660 			if (pp) {
5661 				pml = sfmmu_mlist_enter(pp);
5662 			}
5663 			if (pp != sfhmep->hme_page) {
5664 				/*
5665 				 * tte most have been unloaded
5666 				 * underneath us.  Recheck
5667 				 */
5668 				ASSERT(pml);
5669 				sfmmu_mlist_exit(pml);
5670 				continue;
5671 			}
5672 
5673 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5674 
5675 			if (clearflag == HAT_SYNC_ZERORM) {
5676 				ttemod = tte;
5677 				TTE_CLR_RM(&ttemod);
5678 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5679 				    &sfhmep->hme_tte);
5680 				if (ret < 0) {
5681 					if (pml) {
5682 						sfmmu_mlist_exit(pml);
5683 					}
5684 					continue;
5685 				}
5686 
5687 				if (ret > 0) {
5688 					sfmmu_tlb_demap(addr, sfmmup,
5689 						hmeblkp, 0, 0);
5690 				}
5691 			}
5692 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5693 			if (pml) {
5694 				sfmmu_mlist_exit(pml);
5695 			}
5696 		}
5697 		addr += TTEBYTES(ttesz);
5698 		sfhmep++;
5699 	}
5700 	return (addr);
5701 }
5702 
5703 /*
5704  * This function will sync a tte to the page struct and it will
5705  * update the hat stats. Currently it allows us to pass a NULL pp
5706  * and we will simply update the stats.  We may want to change this
5707  * so we only keep stats for pages backed by pp's.
5708  */
5709 static void
5710 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5711 {
5712 	uint_t rm = 0;
5713 	int   	sz;
5714 	pgcnt_t	npgs;
5715 
5716 	ASSERT(TTE_IS_VALID(ttep));
5717 
5718 	if (TTE_IS_NOSYNC(ttep)) {
5719 		return;
5720 	}
5721 
5722 	if (TTE_IS_REF(ttep))  {
5723 		rm = P_REF;
5724 	}
5725 	if (TTE_IS_MOD(ttep))  {
5726 		rm |= P_MOD;
5727 	}
5728 
5729 	if (rm == 0) {
5730 		return;
5731 	}
5732 
5733 	sz = TTE_CSZ(ttep);
5734 	if (sfmmup->sfmmu_rmstat) {
5735 		int i;
5736 		caddr_t	vaddr = addr;
5737 
5738 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5739 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5740 		}
5741 
5742 	}
5743 
5744 	/*
5745 	 * XXX I want to use cas to update nrm bits but they
5746 	 * currently belong in common/vm and not in hat where
5747 	 * they should be.
5748 	 * The nrm bits are protected by the same mutex as
5749 	 * the one that protects the page's mapping list.
5750 	 */
5751 	if (!pp)
5752 		return;
5753 	ASSERT(sfmmu_mlist_held(pp));
5754 	/*
5755 	 * If the tte is for a large page, we need to sync all the
5756 	 * pages covered by the tte.
5757 	 */
5758 	if (sz != TTE8K) {
5759 		ASSERT(pp->p_szc != 0);
5760 		pp = PP_GROUPLEADER(pp, sz);
5761 		ASSERT(sfmmu_mlist_held(pp));
5762 	}
5763 
5764 	/* Get number of pages from tte size. */
5765 	npgs = TTEPAGES(sz);
5766 
5767 	do {
5768 		ASSERT(pp);
5769 		ASSERT(sfmmu_mlist_held(pp));
5770 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5771 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5772 			hat_page_setattr(pp, rm);
5773 
5774 		/*
5775 		 * Are we done? If not, we must have a large mapping.
5776 		 * For large mappings we need to sync the rest of the pages
5777 		 * covered by this tte; goto the next page.
5778 		 */
5779 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5780 }
5781 
5782 /*
5783  * Execute pre-callback handler of each pa_hment linked to pp
5784  *
5785  * Inputs:
5786  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5787  *   capture_cpus: pointer to return value (below)
5788  *
5789  * Returns:
5790  *   Propagates the subsystem callback return values back to the caller;
5791  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5792  *   is zero if all of the pa_hments are of a type that do not require
5793  *   capturing CPUs prior to suspending the mapping, else it is 1.
5794  */
5795 static int
5796 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5797 {
5798 	struct sf_hment	*sfhmep;
5799 	struct pa_hment *pahmep;
5800 	int (*f)(caddr_t, uint_t, uint_t, void *);
5801 	int		ret;
5802 	id_t		id;
5803 	int		locked = 0;
5804 	kmutex_t	*pml;
5805 
5806 	ASSERT(PAGE_EXCL(pp));
5807 	if (!sfmmu_mlist_held(pp)) {
5808 		pml = sfmmu_mlist_enter(pp);
5809 		locked = 1;
5810 	}
5811 
5812 	if (capture_cpus)
5813 		*capture_cpus = 0;
5814 
5815 top:
5816 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5817 		/*
5818 		 * skip sf_hments corresponding to VA<->PA mappings;
5819 		 * for pa_hment's, hme_tte.ll is zero
5820 		 */
5821 		if (!IS_PAHME(sfhmep))
5822 			continue;
5823 
5824 		pahmep = sfhmep->hme_data;
5825 		ASSERT(pahmep != NULL);
5826 
5827 		/*
5828 		 * skip if pre-handler has been called earlier in this loop
5829 		 */
5830 		if (pahmep->flags & flag)
5831 			continue;
5832 
5833 		id = pahmep->cb_id;
5834 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5835 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5836 			*capture_cpus = 1;
5837 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5838 			pahmep->flags |= flag;
5839 			continue;
5840 		}
5841 
5842 		/*
5843 		 * Drop the mapping list lock to avoid locking order issues.
5844 		 */
5845 		if (locked)
5846 			sfmmu_mlist_exit(pml);
5847 
5848 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5849 		if (ret != 0)
5850 			return (ret);	/* caller must do the cleanup */
5851 
5852 		if (locked) {
5853 			pml = sfmmu_mlist_enter(pp);
5854 			pahmep->flags |= flag;
5855 			goto top;
5856 		}
5857 
5858 		pahmep->flags |= flag;
5859 	}
5860 
5861 	if (locked)
5862 		sfmmu_mlist_exit(pml);
5863 
5864 	return (0);
5865 }
5866 
5867 /*
5868  * Execute post-callback handler of each pa_hment linked to pp
5869  *
5870  * Same overall assumptions and restrictions apply as for
5871  * hat_pageprocess_precallbacks().
5872  */
5873 static void
5874 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5875 {
5876 	pfn_t pgpfn = pp->p_pagenum;
5877 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5878 	pfn_t newpfn;
5879 	struct sf_hment *sfhmep;
5880 	struct pa_hment *pahmep;
5881 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5882 	id_t	id;
5883 	int	locked = 0;
5884 	kmutex_t *pml;
5885 
5886 	ASSERT(PAGE_EXCL(pp));
5887 	if (!sfmmu_mlist_held(pp)) {
5888 		pml = sfmmu_mlist_enter(pp);
5889 		locked = 1;
5890 	}
5891 
5892 top:
5893 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5894 		/*
5895 		 * skip sf_hments corresponding to VA<->PA mappings;
5896 		 * for pa_hment's, hme_tte.ll is zero
5897 		 */
5898 		if (!IS_PAHME(sfhmep))
5899 			continue;
5900 
5901 		pahmep = sfhmep->hme_data;
5902 		ASSERT(pahmep != NULL);
5903 
5904 		if ((pahmep->flags & flag) == 0)
5905 			continue;
5906 
5907 		pahmep->flags &= ~flag;
5908 
5909 		id = pahmep->cb_id;
5910 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5911 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5912 			continue;
5913 
5914 		/*
5915 		 * Convert the base page PFN into the constituent PFN
5916 		 * which is needed by the callback handler.
5917 		 */
5918 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5919 
5920 		/*
5921 		 * Drop the mapping list lock to avoid locking order issues.
5922 		 */
5923 		if (locked)
5924 			sfmmu_mlist_exit(pml);
5925 
5926 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5927 		    != 0)
5928 			panic("sfmmu: posthandler failed");
5929 
5930 		if (locked) {
5931 			pml = sfmmu_mlist_enter(pp);
5932 			goto top;
5933 		}
5934 	}
5935 
5936 	if (locked)
5937 		sfmmu_mlist_exit(pml);
5938 }
5939 
5940 /*
5941  * Suspend locked kernel mapping
5942  */
5943 void
5944 hat_pagesuspend(struct page *pp)
5945 {
5946 	struct sf_hment *sfhmep;
5947 	sfmmu_t *sfmmup;
5948 	tte_t tte, ttemod;
5949 	struct hme_blk *hmeblkp;
5950 	caddr_t addr;
5951 	int index, cons;
5952 	cpuset_t cpuset;
5953 
5954 	ASSERT(PAGE_EXCL(pp));
5955 	ASSERT(sfmmu_mlist_held(pp));
5956 
5957 	mutex_enter(&kpr_suspendlock);
5958 
5959 	/*
5960 	 * Call into dtrace to tell it we're about to suspend a
5961 	 * kernel mapping. This prevents us from running into issues
5962 	 * with probe context trying to touch a suspended page
5963 	 * in the relocation codepath itself.
5964 	 */
5965 	if (dtrace_kreloc_init)
5966 		(*dtrace_kreloc_init)();
5967 
5968 	index = PP_MAPINDEX(pp);
5969 	cons = TTE8K;
5970 
5971 retry:
5972 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5973 
5974 		if (IS_PAHME(sfhmep))
5975 			continue;
5976 
5977 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
5978 			continue;
5979 
5980 		/*
5981 		 * Loop until we successfully set the suspend bit in
5982 		 * the TTE.
5983 		 */
5984 again:
5985 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5986 		ASSERT(TTE_IS_VALID(&tte));
5987 
5988 		ttemod = tte;
5989 		TTE_SET_SUSPEND(&ttemod);
5990 		if (sfmmu_modifytte_try(&tte, &ttemod,
5991 		    &sfhmep->hme_tte) < 0)
5992 			goto again;
5993 
5994 		/*
5995 		 * Invalidate TSB entry
5996 		 */
5997 		hmeblkp = sfmmu_hmetohblk(sfhmep);
5998 
5999 		sfmmup = hblktosfmmu(hmeblkp);
6000 		ASSERT(sfmmup == ksfmmup);
6001 
6002 		addr = tte_to_vaddr(hmeblkp, tte);
6003 
6004 		/*
6005 		 * No need to make sure that the TSB for this sfmmu is
6006 		 * not being relocated since it is ksfmmup and thus it
6007 		 * will never be relocated.
6008 		 */
6009 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
6010 
6011 		/*
6012 		 * Update xcall stats
6013 		 */
6014 		cpuset = cpu_ready_set;
6015 		CPUSET_DEL(cpuset, CPU->cpu_id);
6016 
6017 		/* LINTED: constant in conditional context */
6018 		SFMMU_XCALL_STATS(ksfmmup);
6019 
6020 		/*
6021 		 * Flush TLB entry on remote CPU's
6022 		 */
6023 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6024 		    (uint64_t)ksfmmup);
6025 		xt_sync(cpuset);
6026 
6027 		/*
6028 		 * Flush TLB entry on local CPU
6029 		 */
6030 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6031 	}
6032 
6033 	while (index != 0) {
6034 		index = index >> 1;
6035 		if (index != 0)
6036 			cons++;
6037 		if (index & 0x1) {
6038 			pp = PP_GROUPLEADER(pp, cons);
6039 			goto retry;
6040 		}
6041 	}
6042 }
6043 
6044 #ifdef	DEBUG
6045 
6046 #define	N_PRLE	1024
6047 struct prle {
6048 	page_t *targ;
6049 	page_t *repl;
6050 	int status;
6051 	int pausecpus;
6052 	hrtime_t whence;
6053 };
6054 
6055 static struct prle page_relocate_log[N_PRLE];
6056 static int prl_entry;
6057 static kmutex_t prl_mutex;
6058 
6059 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6060 	mutex_enter(&prl_mutex);					\
6061 	page_relocate_log[prl_entry].targ = *(t);			\
6062 	page_relocate_log[prl_entry].repl = *(r);			\
6063 	page_relocate_log[prl_entry].status = (s);			\
6064 	page_relocate_log[prl_entry].pausecpus = (p);			\
6065 	page_relocate_log[prl_entry].whence = gethrtime();		\
6066 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6067 	mutex_exit(&prl_mutex);
6068 
6069 #else	/* !DEBUG */
6070 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6071 #endif
6072 
6073 /*
6074  * Core Kernel Page Relocation Algorithm
6075  *
6076  * Input:
6077  *
6078  * target : 	constituent pages are SE_EXCL locked.
6079  * replacement:	constituent pages are SE_EXCL locked.
6080  *
6081  * Output:
6082  *
6083  * nrelocp:	number of pages relocated
6084  */
6085 int
6086 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6087 {
6088 	page_t		*targ, *repl;
6089 	page_t		*tpp, *rpp;
6090 	kmutex_t	*low, *high;
6091 	spgcnt_t	npages, i;
6092 	page_t		*pl = NULL;
6093 	int		old_pil;
6094 	cpuset_t	cpuset;
6095 	int		cap_cpus;
6096 	int		ret;
6097 
6098 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6099 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6100 		return (EAGAIN);
6101 	}
6102 
6103 	mutex_enter(&kpr_mutex);
6104 	kreloc_thread = curthread;
6105 
6106 	targ = *target;
6107 	repl = *replacement;
6108 	ASSERT(repl != NULL);
6109 	ASSERT(targ->p_szc == repl->p_szc);
6110 
6111 	npages = page_get_pagecnt(targ->p_szc);
6112 
6113 	/*
6114 	 * unload VA<->PA mappings that are not locked
6115 	 */
6116 	tpp = targ;
6117 	for (i = 0; i < npages; i++) {
6118 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6119 		tpp++;
6120 	}
6121 
6122 	/*
6123 	 * Do "presuspend" callbacks, in a context from which we can still
6124 	 * block as needed. Note that we don't hold the mapping list lock
6125 	 * of "targ" at this point due to potential locking order issues;
6126 	 * we assume that between the hat_pageunload() above and holding
6127 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6128 	 * point.
6129 	 */
6130 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6131 	if (ret != 0) {
6132 		/*
6133 		 * EIO translates to fatal error, for all others cleanup
6134 		 * and return EAGAIN.
6135 		 */
6136 		ASSERT(ret != EIO);
6137 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6138 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6139 		kreloc_thread = NULL;
6140 		mutex_exit(&kpr_mutex);
6141 		return (EAGAIN);
6142 	}
6143 
6144 	/*
6145 	 * acquire p_mapping list lock for both the target and replacement
6146 	 * root pages.
6147 	 *
6148 	 * low and high refer to the need to grab the mlist locks in a
6149 	 * specific order in order to prevent race conditions.  Thus the
6150 	 * lower lock must be grabbed before the higher lock.
6151 	 *
6152 	 * This will block hat_unload's accessing p_mapping list.  Since
6153 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6154 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6155 	 * while we suspend and reload the locked mapping below.
6156 	 */
6157 	tpp = targ;
6158 	rpp = repl;
6159 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6160 
6161 	kpreempt_disable();
6162 
6163 #ifdef VAC
6164 	/*
6165 	 * If the replacement page is of a different virtual color
6166 	 * than the page it is replacing, we need to handle the VAC
6167 	 * consistency for it just as we would if we were setting up
6168 	 * a new mapping to a page.
6169 	 */
6170 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6171 		if (tpp->p_vcolor != rpp->p_vcolor) {
6172 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6173 			    rpp->p_pagenum);
6174 		}
6175 	}
6176 #endif
6177 
6178 	/*
6179 	 * We raise our PIL to 13 so that we don't get captured by
6180 	 * another CPU or pinned by an interrupt thread.  We can't go to
6181 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6182 	 * that level in the case of IOMMU pseudo mappings.
6183 	 */
6184 	cpuset = cpu_ready_set;
6185 	CPUSET_DEL(cpuset, CPU->cpu_id);
6186 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6187 		old_pil = splr(XCALL_PIL);
6188 	} else {
6189 		old_pil = -1;
6190 		xc_attention(cpuset);
6191 	}
6192 	ASSERT(getpil() == XCALL_PIL);
6193 
6194 	/*
6195 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6196 	 * this will suspend all DMA activity to the page while it is
6197 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6198 	 * may be captured at this point we should have acquired any needed
6199 	 * locks in the presuspend callback.
6200 	 */
6201 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6202 	if (ret != 0) {
6203 		repl = targ;
6204 		goto suspend_fail;
6205 	}
6206 
6207 	/*
6208 	 * Raise the PIL yet again, this time to block all high-level
6209 	 * interrupts on this CPU. This is necessary to prevent an
6210 	 * interrupt routine from pinning the thread which holds the
6211 	 * mapping suspended and then touching the suspended page.
6212 	 *
6213 	 * Once the page is suspended we also need to be careful to
6214 	 * avoid calling any functions which touch any seg_kmem memory
6215 	 * since that memory may be backed by the very page we are
6216 	 * relocating in here!
6217 	 */
6218 	hat_pagesuspend(targ);
6219 
6220 	/*
6221 	 * Now that we are confident everybody has stopped using this page,
6222 	 * copy the page contents.  Note we use a physical copy to prevent
6223 	 * locking issues and to avoid fpRAS because we can't handle it in
6224 	 * this context.
6225 	 */
6226 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6227 		/*
6228 		 * Copy the contents of the page.
6229 		 */
6230 		ppcopy_kernel(tpp, rpp);
6231 	}
6232 
6233 	tpp = targ;
6234 	rpp = repl;
6235 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6236 		/*
6237 		 * Copy attributes.  VAC consistency was handled above,
6238 		 * if required.
6239 		 */
6240 		rpp->p_nrm = tpp->p_nrm;
6241 		tpp->p_nrm = 0;
6242 		rpp->p_index = tpp->p_index;
6243 		tpp->p_index = 0;
6244 #ifdef VAC
6245 		rpp->p_vcolor = tpp->p_vcolor;
6246 #endif
6247 	}
6248 
6249 	/*
6250 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6251 	 * the mapping list from the target page to the replacement page.
6252 	 * Next process postcallbacks; since pa_hment's are linked only to the
6253 	 * p_mapping list of root page, we don't iterate over the constituent
6254 	 * pages.
6255 	 */
6256 	hat_pagereload(targ, repl);
6257 
6258 suspend_fail:
6259 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6260 
6261 	/*
6262 	 * Now lower our PIL and release any captured CPUs since we
6263 	 * are out of the "danger zone".  After this it will again be
6264 	 * safe to acquire adaptive mutex locks, or to drop them...
6265 	 */
6266 	if (old_pil != -1) {
6267 		splx(old_pil);
6268 	} else {
6269 		xc_dismissed(cpuset);
6270 	}
6271 
6272 	kpreempt_enable();
6273 
6274 	sfmmu_mlist_reloc_exit(low, high);
6275 
6276 	/*
6277 	 * Postsuspend callbacks should drop any locks held across
6278 	 * the suspend callbacks.  As before, we don't hold the mapping
6279 	 * list lock at this point.. our assumption is that the mapping
6280 	 * list still can't change due to our holding SE_EXCL lock and
6281 	 * there being no unlocked mappings left. Hence the restriction
6282 	 * on calling context to hat_delete_callback()
6283 	 */
6284 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6285 	if (ret != 0) {
6286 		/*
6287 		 * The second presuspend call failed: we got here through
6288 		 * the suspend_fail label above.
6289 		 */
6290 		ASSERT(ret != EIO);
6291 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6292 		kreloc_thread = NULL;
6293 		mutex_exit(&kpr_mutex);
6294 		return (EAGAIN);
6295 	}
6296 
6297 	/*
6298 	 * Now that we're out of the performance critical section we can
6299 	 * take care of updating the hash table, since we still
6300 	 * hold all the pages locked SE_EXCL at this point we
6301 	 * needn't worry about things changing out from under us.
6302 	 */
6303 	tpp = targ;
6304 	rpp = repl;
6305 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6306 
6307 		/*
6308 		 * replace targ with replacement in page_hash table
6309 		 */
6310 		targ = tpp;
6311 		page_relocate_hash(rpp, targ);
6312 
6313 		/*
6314 		 * concatenate target; caller of platform_page_relocate()
6315 		 * expects target to be concatenated after returning.
6316 		 */
6317 		ASSERT(targ->p_next == targ);
6318 		ASSERT(targ->p_prev == targ);
6319 		page_list_concat(&pl, &targ);
6320 	}
6321 
6322 	ASSERT(*target == pl);
6323 	*nrelocp = npages;
6324 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6325 	kreloc_thread = NULL;
6326 	mutex_exit(&kpr_mutex);
6327 	return (0);
6328 }
6329 
6330 /*
6331  * Called when stray pa_hments are found attached to a page which is
6332  * being freed.  Notify the subsystem which attached the pa_hment of
6333  * the error if it registered a suitable handler, else panic.
6334  */
6335 static void
6336 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6337 {
6338 	id_t cb_id = pahmep->cb_id;
6339 
6340 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6341 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6342 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6343 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6344 			return;		/* non-fatal */
6345 	}
6346 	panic("pa_hment leaked: 0x%p", pahmep);
6347 }
6348 
6349 /*
6350  * Remove all mappings to page 'pp'.
6351  */
6352 int
6353 hat_pageunload(struct page *pp, uint_t forceflag)
6354 {
6355 	struct page *origpp = pp;
6356 	struct sf_hment *sfhme, *tmphme;
6357 	struct hme_blk *hmeblkp;
6358 	kmutex_t *pml;
6359 #ifdef VAC
6360 	kmutex_t *pmtx;
6361 #endif
6362 	cpuset_t cpuset, tset;
6363 	int index, cons;
6364 	int xhme_blks;
6365 	int pa_hments;
6366 
6367 	ASSERT(PAGE_EXCL(pp));
6368 
6369 retry_xhat:
6370 	tmphme = NULL;
6371 	xhme_blks = 0;
6372 	pa_hments = 0;
6373 	CPUSET_ZERO(cpuset);
6374 
6375 	pml = sfmmu_mlist_enter(pp);
6376 
6377 #ifdef VAC
6378 	if (pp->p_kpmref)
6379 		sfmmu_kpm_pageunload(pp);
6380 	ASSERT(!PP_ISMAPPED_KPM(pp));
6381 #endif
6382 
6383 	index = PP_MAPINDEX(pp);
6384 	cons = TTE8K;
6385 retry:
6386 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6387 		tmphme = sfhme->hme_next;
6388 
6389 		if (IS_PAHME(sfhme)) {
6390 			ASSERT(sfhme->hme_data != NULL);
6391 			pa_hments++;
6392 			continue;
6393 		}
6394 
6395 		hmeblkp = sfmmu_hmetohblk(sfhme);
6396 		if (hmeblkp->hblk_xhat_bit) {
6397 			struct xhat_hme_blk *xblk =
6398 			    (struct xhat_hme_blk *)hmeblkp;
6399 
6400 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6401 			    pp, forceflag, XBLK2PROVBLK(xblk));
6402 
6403 			xhme_blks = 1;
6404 			continue;
6405 		}
6406 
6407 		/*
6408 		 * If there are kernel mappings don't unload them, they will
6409 		 * be suspended.
6410 		 */
6411 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6412 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6413 			continue;
6414 
6415 		tset = sfmmu_pageunload(pp, sfhme, cons);
6416 		CPUSET_OR(cpuset, tset);
6417 	}
6418 
6419 	while (index != 0) {
6420 		index = index >> 1;
6421 		if (index != 0)
6422 			cons++;
6423 		if (index & 0x1) {
6424 			/* Go to leading page */
6425 			pp = PP_GROUPLEADER(pp, cons);
6426 			ASSERT(sfmmu_mlist_held(pp));
6427 			goto retry;
6428 		}
6429 	}
6430 
6431 	/*
6432 	 * cpuset may be empty if the page was only mapped by segkpm,
6433 	 * in which case we won't actually cross-trap.
6434 	 */
6435 	xt_sync(cpuset);
6436 
6437 	/*
6438 	 * The page should have no mappings at this point, unless
6439 	 * we were called from hat_page_relocate() in which case we
6440 	 * leave the locked mappings which will be suspended later.
6441 	 */
6442 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6443 	    (forceflag == SFMMU_KERNEL_RELOC));
6444 
6445 #ifdef VAC
6446 	if (PP_ISTNC(pp)) {
6447 		if (cons == TTE8K) {
6448 			pmtx = sfmmu_page_enter(pp);
6449 			PP_CLRTNC(pp);
6450 			sfmmu_page_exit(pmtx);
6451 		} else {
6452 			conv_tnc(pp, cons);
6453 		}
6454 	}
6455 #endif	/* VAC */
6456 
6457 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6458 		/*
6459 		 * Unlink any pa_hments and free them, calling back
6460 		 * the responsible subsystem to notify it of the error.
6461 		 * This can occur in situations such as drivers leaking
6462 		 * DMA handles: naughty, but common enough that we'd like
6463 		 * to keep the system running rather than bringing it
6464 		 * down with an obscure error like "pa_hment leaked"
6465 		 * which doesn't aid the user in debugging their driver.
6466 		 */
6467 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6468 			tmphme = sfhme->hme_next;
6469 			if (IS_PAHME(sfhme)) {
6470 				struct pa_hment *pahmep = sfhme->hme_data;
6471 				sfmmu_pahment_leaked(pahmep);
6472 				HME_SUB(sfhme, pp);
6473 				kmem_cache_free(pa_hment_cache, pahmep);
6474 			}
6475 		}
6476 
6477 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6478 	}
6479 
6480 	sfmmu_mlist_exit(pml);
6481 
6482 	/*
6483 	 * XHAT may not have finished unloading pages
6484 	 * because some other thread was waiting for
6485 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6486 	 * the job.
6487 	 */
6488 	if (xhme_blks) {
6489 		pp = origpp;
6490 		goto retry_xhat;
6491 	}
6492 
6493 	return (0);
6494 }
6495 
6496 cpuset_t
6497 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6498 {
6499 	struct hme_blk *hmeblkp;
6500 	sfmmu_t *sfmmup;
6501 	tte_t tte, ttemod;
6502 #ifdef DEBUG
6503 	tte_t orig_old;
6504 #endif /* DEBUG */
6505 	caddr_t addr;
6506 	int ttesz;
6507 	int ret;
6508 	cpuset_t cpuset;
6509 
6510 	ASSERT(pp != NULL);
6511 	ASSERT(sfmmu_mlist_held(pp));
6512 	ASSERT(pp->p_vnode != &kvp);
6513 
6514 	CPUSET_ZERO(cpuset);
6515 
6516 	hmeblkp = sfmmu_hmetohblk(sfhme);
6517 
6518 readtte:
6519 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6520 	if (TTE_IS_VALID(&tte)) {
6521 		sfmmup = hblktosfmmu(hmeblkp);
6522 		ttesz = get_hblk_ttesz(hmeblkp);
6523 		/*
6524 		 * Only unload mappings of 'cons' size.
6525 		 */
6526 		if (ttesz != cons)
6527 			return (cpuset);
6528 
6529 		/*
6530 		 * Note that we have p_mapping lock, but no hash lock here.
6531 		 * hblk_unload() has to have both hash lock AND p_mapping
6532 		 * lock before it tries to modify tte. So, the tte could
6533 		 * not become invalid in the sfmmu_modifytte_try() below.
6534 		 */
6535 		ttemod = tte;
6536 #ifdef DEBUG
6537 		orig_old = tte;
6538 #endif /* DEBUG */
6539 
6540 		TTE_SET_INVALID(&ttemod);
6541 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6542 		if (ret < 0) {
6543 #ifdef DEBUG
6544 			/* only R/M bits can change. */
6545 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6546 #endif /* DEBUG */
6547 			goto readtte;
6548 		}
6549 
6550 		if (ret == 0) {
6551 			panic("pageunload: cas failed?");
6552 		}
6553 
6554 		addr = tte_to_vaddr(hmeblkp, tte);
6555 
6556 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6557 
6558 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6559 
6560 		/*
6561 		 * We need to flush the page from the virtual cache
6562 		 * in order to prevent a virtual cache alias
6563 		 * inconsistency. The particular scenario we need
6564 		 * to worry about is:
6565 		 * Given:  va1 and va2 are two virtual address that
6566 		 * alias and will map the same physical address.
6567 		 * 1.	mapping exists from va1 to pa and data has
6568 		 *	been read into the cache.
6569 		 * 2.	unload va1.
6570 		 * 3.	load va2 and modify data using va2.
6571 		 * 4	unload va2.
6572 		 * 5.	load va1 and reference data.  Unless we flush
6573 		 *	the data cache when we unload we will get
6574 		 *	stale data.
6575 		 * This scenario is taken care of by using virtual
6576 		 * page coloring.
6577 		 */
6578 		if (sfmmup->sfmmu_ismhat) {
6579 			/*
6580 			 * Flush TSBs, TLBs and caches
6581 			 * of every process
6582 			 * sharing this ism segment.
6583 			 */
6584 			sfmmu_hat_lock_all();
6585 			mutex_enter(&ism_mlist_lock);
6586 			kpreempt_disable();
6587 			if (do_virtual_coloring)
6588 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6589 					pp->p_pagenum, CACHE_NO_FLUSH);
6590 			else
6591 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6592 					pp->p_pagenum, CACHE_FLUSH);
6593 			kpreempt_enable();
6594 			mutex_exit(&ism_mlist_lock);
6595 			sfmmu_hat_unlock_all();
6596 			cpuset = cpu_ready_set;
6597 		} else if (do_virtual_coloring) {
6598 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6599 			cpuset = sfmmup->sfmmu_cpusran;
6600 		} else {
6601 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6602 				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6603 				CACHE_FLUSH, 0);
6604 			cpuset = sfmmup->sfmmu_cpusran;
6605 		}
6606 
6607 		/*
6608 		 * Hme_sub has to run after ttesync() and a_rss update.
6609 		 * See hblk_unload().
6610 		 */
6611 		HME_SUB(sfhme, pp);
6612 		membar_stst();
6613 
6614 		/*
6615 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6616 		 * since pteload may have done a HME_ADD() right after
6617 		 * we did the HME_SUB() above. Hmecnt is now maintained
6618 		 * by cas only. no lock guranteed its value. The only
6619 		 * gurantee we have is the hmecnt should not be less than
6620 		 * what it should be so the hblk will not be taken away.
6621 		 * It's also important that we decremented the hmecnt after
6622 		 * we are done with hmeblkp so that this hmeblk won't be
6623 		 * stolen.
6624 		 */
6625 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6626 		ASSERT(hmeblkp->hblk_vcnt > 0);
6627 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6628 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6629 		/*
6630 		 * This is bug 4063182.
6631 		 * XXX: fixme
6632 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6633 		 *	!hmeblkp->hblk_lckcnt);
6634 		 */
6635 	} else {
6636 		panic("invalid tte? pp %p &tte %p",
6637 		    (void *)pp, (void *)&tte);
6638 	}
6639 
6640 	return (cpuset);
6641 }
6642 
6643 /*
6644  * While relocating a kernel page, this function will move the mappings
6645  * from tpp to dpp and modify any associated data with these mappings.
6646  * It also unsuspends the suspended kernel mapping.
6647  */
6648 static void
6649 hat_pagereload(struct page *tpp, struct page *dpp)
6650 {
6651 	struct sf_hment *sfhme;
6652 	tte_t tte, ttemod;
6653 	int index, cons;
6654 
6655 	ASSERT(getpil() == PIL_MAX);
6656 	ASSERT(sfmmu_mlist_held(tpp));
6657 	ASSERT(sfmmu_mlist_held(dpp));
6658 
6659 	index = PP_MAPINDEX(tpp);
6660 	cons = TTE8K;
6661 
6662 	/* Update real mappings to the page */
6663 retry:
6664 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6665 		if (IS_PAHME(sfhme))
6666 			continue;
6667 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6668 		ttemod = tte;
6669 
6670 		/*
6671 		 * replace old pfn with new pfn in TTE
6672 		 */
6673 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6674 
6675 		/*
6676 		 * clear suspend bit
6677 		 */
6678 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6679 		TTE_CLR_SUSPEND(&ttemod);
6680 
6681 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6682 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6683 
6684 		/*
6685 		 * set hme_page point to new page
6686 		 */
6687 		sfhme->hme_page = dpp;
6688 	}
6689 
6690 	/*
6691 	 * move p_mapping list from old page to new page
6692 	 */
6693 	dpp->p_mapping = tpp->p_mapping;
6694 	tpp->p_mapping = NULL;
6695 	dpp->p_share = tpp->p_share;
6696 	tpp->p_share = 0;
6697 
6698 	while (index != 0) {
6699 		index = index >> 1;
6700 		if (index != 0)
6701 			cons++;
6702 		if (index & 0x1) {
6703 			tpp = PP_GROUPLEADER(tpp, cons);
6704 			dpp = PP_GROUPLEADER(dpp, cons);
6705 			goto retry;
6706 		}
6707 	}
6708 
6709 	if (dtrace_kreloc_fini)
6710 		(*dtrace_kreloc_fini)();
6711 	mutex_exit(&kpr_suspendlock);
6712 }
6713 
6714 uint_t
6715 hat_pagesync(struct page *pp, uint_t clearflag)
6716 {
6717 	struct sf_hment *sfhme, *tmphme = NULL;
6718 	struct hme_blk *hmeblkp;
6719 	kmutex_t *pml;
6720 	cpuset_t cpuset, tset;
6721 	int	index, cons;
6722 	extern	ulong_t po_share;
6723 	page_t	*save_pp = pp;
6724 
6725 	CPUSET_ZERO(cpuset);
6726 
6727 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6728 		return (PP_GENERIC_ATTR(pp));
6729 	}
6730 
6731 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6732 	    PP_ISREF(pp)) {
6733 		return (PP_GENERIC_ATTR(pp));
6734 	}
6735 
6736 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6737 	    PP_ISMOD(pp)) {
6738 		return (PP_GENERIC_ATTR(pp));
6739 	}
6740 
6741 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6742 	    (pp->p_share > po_share) &&
6743 	    !(clearflag & HAT_SYNC_ZERORM)) {
6744 		if (PP_ISRO(pp))
6745 			hat_page_setattr(pp, P_REF);
6746 		return (PP_GENERIC_ATTR(pp));
6747 	}
6748 
6749 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6750 	pml = sfmmu_mlist_enter(pp);
6751 	index = PP_MAPINDEX(pp);
6752 	cons = TTE8K;
6753 retry:
6754 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6755 		/*
6756 		 * We need to save the next hment on the list since
6757 		 * it is possible for pagesync to remove an invalid hment
6758 		 * from the list.
6759 		 */
6760 		tmphme = sfhme->hme_next;
6761 		/*
6762 		 * If we are looking for large mappings and this hme doesn't
6763 		 * reach the range we are seeking, just ignore its.
6764 		 */
6765 		hmeblkp = sfmmu_hmetohblk(sfhme);
6766 		if (hmeblkp->hblk_xhat_bit)
6767 			continue;
6768 
6769 		if (hme_size(sfhme) < cons)
6770 			continue;
6771 		tset = sfmmu_pagesync(pp, sfhme,
6772 			clearflag & ~HAT_SYNC_STOPON_RM);
6773 		CPUSET_OR(cpuset, tset);
6774 		/*
6775 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6776 		 * as the "ref" or "mod" is set.
6777 		 */
6778 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6779 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6780 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6781 			index = 0;
6782 			break;
6783 		}
6784 	}
6785 
6786 	while (index) {
6787 		index = index >> 1;
6788 		cons++;
6789 		if (index & 0x1) {
6790 			/* Go to leading page */
6791 			pp = PP_GROUPLEADER(pp, cons);
6792 			goto retry;
6793 		}
6794 	}
6795 
6796 	xt_sync(cpuset);
6797 	sfmmu_mlist_exit(pml);
6798 	return (PP_GENERIC_ATTR(save_pp));
6799 }
6800 
6801 /*
6802  * Get all the hardware dependent attributes for a page struct
6803  */
6804 static cpuset_t
6805 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6806 	uint_t clearflag)
6807 {
6808 	caddr_t addr;
6809 	tte_t tte, ttemod;
6810 	struct hme_blk *hmeblkp;
6811 	int ret;
6812 	sfmmu_t *sfmmup;
6813 	cpuset_t cpuset;
6814 
6815 	ASSERT(pp != NULL);
6816 	ASSERT(sfmmu_mlist_held(pp));
6817 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6818 		(clearflag == HAT_SYNC_ZERORM));
6819 
6820 	SFMMU_STAT(sf_pagesync);
6821 
6822 	CPUSET_ZERO(cpuset);
6823 
6824 sfmmu_pagesync_retry:
6825 
6826 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6827 	if (TTE_IS_VALID(&tte)) {
6828 		hmeblkp = sfmmu_hmetohblk(sfhme);
6829 		sfmmup = hblktosfmmu(hmeblkp);
6830 		addr = tte_to_vaddr(hmeblkp, tte);
6831 		if (clearflag == HAT_SYNC_ZERORM) {
6832 			ttemod = tte;
6833 			TTE_CLR_RM(&ttemod);
6834 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6835 				&sfhme->hme_tte);
6836 			if (ret < 0) {
6837 				/*
6838 				 * cas failed and the new value is not what
6839 				 * we want.
6840 				 */
6841 				goto sfmmu_pagesync_retry;
6842 			}
6843 
6844 			if (ret > 0) {
6845 				/* we win the cas */
6846 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6847 				cpuset = sfmmup->sfmmu_cpusran;
6848 			}
6849 		}
6850 
6851 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6852 	}
6853 	return (cpuset);
6854 }
6855 
6856 /*
6857  * Remove write permission from a mappings to a page, so that
6858  * we can detect the next modification of it. This requires modifying
6859  * the TTE then invalidating (demap) any TLB entry using that TTE.
6860  * This code is similar to sfmmu_pagesync().
6861  */
6862 static cpuset_t
6863 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6864 {
6865 	caddr_t addr;
6866 	tte_t tte;
6867 	tte_t ttemod;
6868 	struct hme_blk *hmeblkp;
6869 	int ret;
6870 	sfmmu_t *sfmmup;
6871 	cpuset_t cpuset;
6872 
6873 	ASSERT(pp != NULL);
6874 	ASSERT(sfmmu_mlist_held(pp));
6875 
6876 	CPUSET_ZERO(cpuset);
6877 	SFMMU_STAT(sf_clrwrt);
6878 
6879 retry:
6880 
6881 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6882 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6883 		hmeblkp = sfmmu_hmetohblk(sfhme);
6884 
6885 		/*
6886 		 * xhat mappings should never be to a VMODSORT page.
6887 		 */
6888 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6889 
6890 		sfmmup = hblktosfmmu(hmeblkp);
6891 		addr = tte_to_vaddr(hmeblkp, tte);
6892 
6893 		ttemod = tte;
6894 		TTE_CLR_WRT(&ttemod);
6895 		TTE_CLR_MOD(&ttemod);
6896 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6897 
6898 		/*
6899 		 * if cas failed and the new value is not what
6900 		 * we want retry
6901 		 */
6902 		if (ret < 0)
6903 			goto retry;
6904 
6905 		/* we win the cas */
6906 		if (ret > 0) {
6907 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6908 			cpuset = sfmmup->sfmmu_cpusran;
6909 		}
6910 	}
6911 
6912 	return (cpuset);
6913 }
6914 
6915 /*
6916  * Walk all mappings of a page, removing write permission and clearing the
6917  * ref/mod bits. This code is similar to hat_pagesync()
6918  */
6919 static void
6920 hat_page_clrwrt(page_t *pp)
6921 {
6922 	struct sf_hment *sfhme;
6923 	struct sf_hment *tmphme = NULL;
6924 	kmutex_t *pml;
6925 	cpuset_t cpuset;
6926 	cpuset_t tset;
6927 	int	index;
6928 	int	 cons;
6929 
6930 	CPUSET_ZERO(cpuset);
6931 
6932 	pml = sfmmu_mlist_enter(pp);
6933 	index = PP_MAPINDEX(pp);
6934 	cons = TTE8K;
6935 retry:
6936 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6937 		tmphme = sfhme->hme_next;
6938 
6939 		/*
6940 		 * If we are looking for large mappings and this hme doesn't
6941 		 * reach the range we are seeking, just ignore its.
6942 		 */
6943 
6944 		if (hme_size(sfhme) < cons)
6945 			continue;
6946 
6947 		tset = sfmmu_pageclrwrt(pp, sfhme);
6948 		CPUSET_OR(cpuset, tset);
6949 	}
6950 
6951 	while (index) {
6952 		index = index >> 1;
6953 		cons++;
6954 		if (index & 0x1) {
6955 			/* Go to leading page */
6956 			pp = PP_GROUPLEADER(pp, cons);
6957 			goto retry;
6958 		}
6959 	}
6960 
6961 	xt_sync(cpuset);
6962 	sfmmu_mlist_exit(pml);
6963 }
6964 
6965 /*
6966  * Set the given REF/MOD/RO bits for the given page.
6967  * For a vnode with a sorted v_pages list, we need to change
6968  * the attributes and the v_pages list together under page_vnode_mutex.
6969  */
6970 void
6971 hat_page_setattr(page_t *pp, uint_t flag)
6972 {
6973 	vnode_t		*vp = pp->p_vnode;
6974 	page_t		**listp;
6975 	kmutex_t	*pmtx;
6976 	kmutex_t	*vphm = NULL;
6977 
6978 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6979 
6980 	/*
6981 	 * nothing to do if attribute already set
6982 	 */
6983 	if ((pp->p_nrm & flag) == flag)
6984 		return;
6985 
6986 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6987 		vphm = page_vnode_mutex(vp);
6988 		mutex_enter(vphm);
6989 	}
6990 
6991 	pmtx = sfmmu_page_enter(pp);
6992 	pp->p_nrm |= flag;
6993 	sfmmu_page_exit(pmtx);
6994 
6995 	if (vphm != NULL) {
6996 		/*
6997 		 * Some File Systems examine v_pages for NULL w/o
6998 		 * grabbing the vphm mutex. Must not let it become NULL when
6999 		 * pp is the only page on the list.
7000 		 */
7001 		if (pp->p_vpnext != pp) {
7002 			page_vpsub(&vp->v_pages, pp);
7003 			if (vp->v_pages != NULL)
7004 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7005 			else
7006 				listp = &vp->v_pages;
7007 			page_vpadd(listp, pp);
7008 		}
7009 		mutex_exit(vphm);
7010 	}
7011 }
7012 
7013 void
7014 hat_page_clrattr(page_t *pp, uint_t flag)
7015 {
7016 	vnode_t		*vp = pp->p_vnode;
7017 	kmutex_t	*vphm = NULL;
7018 	kmutex_t	*pmtx;
7019 
7020 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7021 
7022 	/*
7023 	 * For vnode with a sorted v_pages list, we need to change
7024 	 * the attributes and the v_pages list together under page_vnode_mutex.
7025 	 */
7026 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7027 		vphm = page_vnode_mutex(vp);
7028 		mutex_enter(vphm);
7029 	}
7030 
7031 	pmtx = sfmmu_page_enter(pp);
7032 	pp->p_nrm &= ~flag;
7033 	sfmmu_page_exit(pmtx);
7034 
7035 	if (vphm != NULL) {
7036 		/*
7037 		 * Some File Systems examine v_pages for NULL w/o
7038 		 * grabbing the vphm mutex. Must not let it become NULL when
7039 		 * pp is the only page on the list.
7040 		 */
7041 		if (pp->p_vpnext != pp) {
7042 			page_vpsub(&vp->v_pages, pp);
7043 			page_vpadd(&vp->v_pages, pp);
7044 		}
7045 		mutex_exit(vphm);
7046 
7047 		/*
7048 		 * VMODSORT works by removing write permissions and getting
7049 		 * a fault when a page is made dirty. At this point
7050 		 * we need to remove write permission from all mappings
7051 		 * to this page.
7052 		 */
7053 		hat_page_clrwrt(pp);
7054 	}
7055 }
7056 
7057 
7058 uint_t
7059 hat_page_getattr(page_t *pp, uint_t flag)
7060 {
7061 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7062 	return ((uint_t)(pp->p_nrm & flag));
7063 }
7064 
7065 /*
7066  * DEBUG kernels: verify that a kernel va<->pa translation
7067  * is safe by checking the underlying page_t is in a page
7068  * relocation-safe state.
7069  */
7070 #ifdef	DEBUG
7071 void
7072 sfmmu_check_kpfn(pfn_t pfn)
7073 {
7074 	page_t *pp;
7075 	int index, cons;
7076 
7077 	if (hat_check_vtop == 0)
7078 		return;
7079 
7080 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7081 		return;
7082 
7083 	pp = page_numtopp_nolock(pfn);
7084 	if (!pp)
7085 		return;
7086 
7087 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7088 		return;
7089 
7090 	/*
7091 	 * Handed a large kernel page, we dig up the root page since we
7092 	 * know the root page might have the lock also.
7093 	 */
7094 	if (pp->p_szc != 0) {
7095 		index = PP_MAPINDEX(pp);
7096 		cons = TTE8K;
7097 again:
7098 		while (index != 0) {
7099 			index >>= 1;
7100 			if (index != 0)
7101 				cons++;
7102 			if (index & 0x1) {
7103 				pp = PP_GROUPLEADER(pp, cons);
7104 				goto again;
7105 			}
7106 		}
7107 	}
7108 
7109 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7110 		return;
7111 
7112 	/*
7113 	 * Pages need to be locked or allocated "permanent" (either from
7114 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7115 	 * page_create_va()) for VA->PA translations to be valid.
7116 	 */
7117 	if (!PP_ISNORELOC(pp))
7118 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
7119 	else
7120 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
7121 }
7122 #endif	/* DEBUG */
7123 
7124 /*
7125  * Returns a page frame number for a given virtual address.
7126  * Returns PFN_INVALID to indicate an invalid mapping
7127  */
7128 pfn_t
7129 hat_getpfnum(struct hat *hat, caddr_t addr)
7130 {
7131 	pfn_t pfn;
7132 	tte_t tte;
7133 
7134 	/*
7135 	 * We would like to
7136 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7137 	 * but we can't because the iommu driver will call this
7138 	 * routine at interrupt time and it can't grab the as lock
7139 	 * or it will deadlock: A thread could have the as lock
7140 	 * and be waiting for io.  The io can't complete
7141 	 * because the interrupt thread is blocked trying to grab
7142 	 * the as lock.
7143 	 */
7144 
7145 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7146 
7147 	if (hat == ksfmmup) {
7148 		if (segkpm && IS_KPM_ADDR(addr))
7149 			return (sfmmu_kpm_vatopfn(addr));
7150 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7151 		    == PFN_SUSPENDED) {
7152 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7153 		}
7154 		sfmmu_check_kpfn(pfn);
7155 		return (pfn);
7156 	} else {
7157 		return (sfmmu_uvatopfn(addr, hat));
7158 	}
7159 }
7160 
7161 /*
7162  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7163  * Use hat_getpfnum(kas.a_hat, ...) instead.
7164  *
7165  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7166  * but can't right now due to the fact that some software has grown to use
7167  * this interface incorrectly. So for now when the interface is misused,
7168  * return a warning to the user that in the future it won't work in the
7169  * way they're abusing it, and carry on (after disabling page relocation).
7170  */
7171 pfn_t
7172 hat_getkpfnum(caddr_t addr)
7173 {
7174 	pfn_t pfn;
7175 	tte_t tte;
7176 	int badcaller = 0;
7177 	extern int segkmem_reloc;
7178 
7179 	if (segkpm && IS_KPM_ADDR(addr)) {
7180 		badcaller = 1;
7181 		pfn = sfmmu_kpm_vatopfn(addr);
7182 	} else {
7183 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7184 		    == PFN_SUSPENDED) {
7185 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7186 		}
7187 		badcaller = pf_is_memory(pfn);
7188 	}
7189 
7190 	if (badcaller) {
7191 		/*
7192 		 * We can't return PFN_INVALID or the caller may panic
7193 		 * or corrupt the system.  The only alternative is to
7194 		 * disable page relocation at this point for all kernel
7195 		 * memory.  This will impact any callers of page_relocate()
7196 		 * such as FMA or DR.
7197 		 *
7198 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7199 		 * can be advised that he should upgrade his device driver
7200 		 * so that this doesn't happen.
7201 		 */
7202 		hat_getkpfnum_badcall(caller());
7203 		if (hat_kpr_enabled && segkmem_reloc) {
7204 			hat_kpr_enabled = 0;
7205 			segkmem_reloc = 0;
7206 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7207 		}
7208 	}
7209 	return (pfn);
7210 }
7211 
7212 pfn_t
7213 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7214 {
7215 	struct hmehash_bucket *hmebp;
7216 	hmeblk_tag hblktag;
7217 	int hmeshift, hashno = 1;
7218 	struct hme_blk *hmeblkp = NULL;
7219 
7220 	struct sf_hment *sfhmep;
7221 	tte_t tte;
7222 	pfn_t pfn;
7223 
7224 	/* support for ISM */
7225 	ism_map_t	*ism_map;
7226 	ism_blk_t	*ism_blkp;
7227 	int		i;
7228 	sfmmu_t *ism_hatid = NULL;
7229 	sfmmu_t *locked_hatid = NULL;
7230 
7231 
7232 	ASSERT(sfmmup != ksfmmup);
7233 	SFMMU_STAT(sf_user_vtop);
7234 	/*
7235 	 * Set ism_hatid if vaddr falls in a ISM segment.
7236 	 */
7237 	ism_blkp = sfmmup->sfmmu_iblk;
7238 	if (ism_blkp) {
7239 		sfmmu_ismhat_enter(sfmmup, 0);
7240 		locked_hatid = sfmmup;
7241 	}
7242 	while (ism_blkp && ism_hatid == NULL) {
7243 		ism_map = ism_blkp->iblk_maps;
7244 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7245 			if (vaddr >= ism_start(ism_map[i]) &&
7246 			    vaddr < ism_end(ism_map[i])) {
7247 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7248 				vaddr = (caddr_t)(vaddr -
7249 					ism_start(ism_map[i]));
7250 				break;
7251 			}
7252 		}
7253 		ism_blkp = ism_blkp->iblk_next;
7254 	}
7255 	if (locked_hatid) {
7256 		sfmmu_ismhat_exit(locked_hatid, 0);
7257 	}
7258 
7259 	hblktag.htag_id = sfmmup;
7260 	do {
7261 		hmeshift = HME_HASH_SHIFT(hashno);
7262 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7263 		hblktag.htag_rehash = hashno;
7264 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7265 
7266 		SFMMU_HASH_LOCK(hmebp);
7267 
7268 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7269 		if (hmeblkp != NULL) {
7270 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7271 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7272 			if (TTE_IS_VALID(&tte)) {
7273 				pfn = TTE_TO_PFN(vaddr, &tte);
7274 			} else {
7275 				pfn = PFN_INVALID;
7276 			}
7277 			SFMMU_HASH_UNLOCK(hmebp);
7278 			return (pfn);
7279 		}
7280 		SFMMU_HASH_UNLOCK(hmebp);
7281 		hashno++;
7282 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7283 	return (PFN_INVALID);
7284 }
7285 
7286 
7287 /*
7288  * For compatability with AT&T and later optimizations
7289  */
7290 /* ARGSUSED */
7291 void
7292 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7293 {
7294 	ASSERT(hat != NULL);
7295 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7296 }
7297 
7298 /*
7299  * Return the number of mappings to a particular page.
7300  * This number is an approximation of the number of
7301  * number of people sharing the page.
7302  */
7303 ulong_t
7304 hat_page_getshare(page_t *pp)
7305 {
7306 	page_t *spp = pp;	/* start page */
7307 	kmutex_t *pml;
7308 	ulong_t	cnt;
7309 	int index, sz = TTE64K;
7310 
7311 	/*
7312 	 * We need to grab the mlist lock to make sure any outstanding
7313 	 * load/unloads complete.  Otherwise we could return zero
7314 	 * even though the unload(s) hasn't finished yet.
7315 	 */
7316 	pml = sfmmu_mlist_enter(spp);
7317 	cnt = spp->p_share;
7318 
7319 #ifdef VAC
7320 	if (kpm_enable)
7321 		cnt += spp->p_kpmref;
7322 #endif
7323 
7324 	/*
7325 	 * If we have any large mappings, we count the number of
7326 	 * mappings that this large page is part of.
7327 	 */
7328 	index = PP_MAPINDEX(spp);
7329 	index >>= 1;
7330 	while (index) {
7331 		pp = PP_GROUPLEADER(spp, sz);
7332 		if ((index & 0x1) && pp != spp) {
7333 			cnt += pp->p_share;
7334 			spp = pp;
7335 		}
7336 		index >>= 1;
7337 		sz++;
7338 	}
7339 	sfmmu_mlist_exit(pml);
7340 	return (cnt);
7341 }
7342 
7343 /*
7344  * Unload all large mappings to the pp and reset the p_szc field of every
7345  * constituent page according to the remaining mappings.
7346  *
7347  * pp must be locked SE_EXCL. Even though no other constituent pages are
7348  * locked it's legal to unload the large mappings to the pp because all
7349  * constituent pages of large locked mappings have to be locked SE_SHARED.
7350  * This means if we have SE_EXCL lock on one of constituent pages none of the
7351  * large mappings to pp are locked.
7352  *
7353  * Decrease p_szc field starting from the last constituent page and ending
7354  * with the root page. This method is used because other threads rely on the
7355  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7356  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7357  * ensures that p_szc changes of the constituent pages appears atomic for all
7358  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7359  *
7360  * This mechanism is only used for file system pages where it's not always
7361  * possible to get SE_EXCL locks on all constituent pages to demote the size
7362  * code (as is done for anonymous or kernel large pages).
7363  *
7364  * See more comments in front of sfmmu_mlspl_enter().
7365  */
7366 void
7367 hat_page_demote(page_t *pp)
7368 {
7369 	int index;
7370 	int sz;
7371 	cpuset_t cpuset;
7372 	int sync = 0;
7373 	page_t *rootpp;
7374 	struct sf_hment *sfhme;
7375 	struct sf_hment *tmphme = NULL;
7376 	struct hme_blk *hmeblkp;
7377 	uint_t pszc;
7378 	page_t *lastpp;
7379 	cpuset_t tset;
7380 	pgcnt_t npgs;
7381 	kmutex_t *pml;
7382 	kmutex_t *pmtx = NULL;
7383 
7384 	ASSERT(PAGE_EXCL(pp));
7385 	ASSERT(!PP_ISFREE(pp));
7386 	ASSERT(page_szc_lock_assert(pp));
7387 	pml = sfmmu_mlist_enter(pp);
7388 
7389 	pszc = pp->p_szc;
7390 	if (pszc == 0) {
7391 		goto out;
7392 	}
7393 
7394 	index = PP_MAPINDEX(pp) >> 1;
7395 
7396 	if (index) {
7397 		CPUSET_ZERO(cpuset);
7398 		sz = TTE64K;
7399 		sync = 1;
7400 	}
7401 
7402 	while (index) {
7403 		if (!(index & 0x1)) {
7404 			index >>= 1;
7405 			sz++;
7406 			continue;
7407 		}
7408 		ASSERT(sz <= pszc);
7409 		rootpp = PP_GROUPLEADER(pp, sz);
7410 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7411 			tmphme = sfhme->hme_next;
7412 			hmeblkp = sfmmu_hmetohblk(sfhme);
7413 			if (hme_size(sfhme) != sz) {
7414 				continue;
7415 			}
7416 			if (hmeblkp->hblk_xhat_bit) {
7417 				cmn_err(CE_PANIC,
7418 				    "hat_page_demote: xhat hmeblk");
7419 			}
7420 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7421 			CPUSET_OR(cpuset, tset);
7422 		}
7423 		if (index >>= 1) {
7424 			sz++;
7425 		}
7426 	}
7427 
7428 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7429 
7430 	if (sync) {
7431 		xt_sync(cpuset);
7432 #ifdef VAC
7433 		if (PP_ISTNC(pp)) {
7434 			conv_tnc(rootpp, sz);
7435 		}
7436 #endif	/* VAC */
7437 	}
7438 
7439 	pmtx = sfmmu_page_enter(pp);
7440 
7441 	ASSERT(pp->p_szc == pszc);
7442 	rootpp = PP_PAGEROOT(pp);
7443 	ASSERT(rootpp->p_szc == pszc);
7444 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7445 
7446 	while (lastpp != rootpp) {
7447 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7448 		ASSERT(sz < pszc);
7449 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7450 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7451 		while (--npgs > 0) {
7452 			lastpp->p_szc = (uchar_t)sz;
7453 			lastpp = PP_PAGEPREV(lastpp);
7454 		}
7455 		if (sz) {
7456 			/*
7457 			 * make sure before current root's pszc
7458 			 * is updated all updates to constituent pages pszc
7459 			 * fields are globally visible.
7460 			 */
7461 			membar_producer();
7462 		}
7463 		lastpp->p_szc = sz;
7464 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7465 		if (lastpp != rootpp) {
7466 			lastpp = PP_PAGEPREV(lastpp);
7467 		}
7468 	}
7469 	if (sz == 0) {
7470 		/* the loop above doesn't cover this case */
7471 		rootpp->p_szc = 0;
7472 	}
7473 out:
7474 	ASSERT(pp->p_szc == 0);
7475 	if (pmtx != NULL) {
7476 		sfmmu_page_exit(pmtx);
7477 	}
7478 	sfmmu_mlist_exit(pml);
7479 }
7480 
7481 /*
7482  * Refresh the HAT ismttecnt[] element for size szc.
7483  * Caller must have set ISM busy flag to prevent mapping
7484  * lists from changing while we're traversing them.
7485  */
7486 pgcnt_t
7487 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7488 {
7489 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7490 	ism_map_t	*ism_map;
7491 	pgcnt_t		npgs = 0;
7492 	int		j;
7493 
7494 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7495 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7496 		ism_map = ism_blkp->iblk_maps;
7497 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7498 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7499 	}
7500 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7501 	return (npgs);
7502 }
7503 
7504 /*
7505  * Yield the memory claim requirement for an address space.
7506  *
7507  * This is currently implemented as the number of bytes that have active
7508  * hardware translations that have page structures.  Therefore, it can
7509  * underestimate the traditional resident set size, eg, if the
7510  * physical page is present and the hardware translation is missing;
7511  * and it can overestimate the rss, eg, if there are active
7512  * translations to a frame buffer with page structs.
7513  * Also, it does not take sharing into account.
7514  *
7515  * Note that we don't acquire locks here since this function is most often
7516  * called from the clock thread.
7517  */
7518 size_t
7519 hat_get_mapped_size(struct hat *hat)
7520 {
7521 	size_t		assize = 0;
7522 	int 		i;
7523 
7524 	if (hat == NULL)
7525 		return (0);
7526 
7527 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7528 
7529 	for (i = 0; i < mmu_page_sizes; i++)
7530 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7531 
7532 	if (hat->sfmmu_iblk == NULL)
7533 		return (assize);
7534 
7535 	for (i = 0; i < mmu_page_sizes; i++)
7536 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7537 
7538 	return (assize);
7539 }
7540 
7541 int
7542 hat_stats_enable(struct hat *hat)
7543 {
7544 	hatlock_t	*hatlockp;
7545 
7546 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7547 
7548 	hatlockp = sfmmu_hat_enter(hat);
7549 	hat->sfmmu_rmstat++;
7550 	sfmmu_hat_exit(hatlockp);
7551 	return (1);
7552 }
7553 
7554 void
7555 hat_stats_disable(struct hat *hat)
7556 {
7557 	hatlock_t	*hatlockp;
7558 
7559 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7560 
7561 	hatlockp = sfmmu_hat_enter(hat);
7562 	hat->sfmmu_rmstat--;
7563 	sfmmu_hat_exit(hatlockp);
7564 }
7565 
7566 /*
7567  * Routines for entering or removing  ourselves from the
7568  * ism_hat's mapping list.
7569  */
7570 static void
7571 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7572 {
7573 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7574 
7575 	iment->iment_prev = NULL;
7576 	iment->iment_next = ism_hat->sfmmu_iment;
7577 	if (ism_hat->sfmmu_iment) {
7578 		ism_hat->sfmmu_iment->iment_prev = iment;
7579 	}
7580 	ism_hat->sfmmu_iment = iment;
7581 }
7582 
7583 static void
7584 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7585 {
7586 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7587 
7588 	if (ism_hat->sfmmu_iment == NULL) {
7589 		panic("ism map entry remove - no entries");
7590 	}
7591 
7592 	if (iment->iment_prev) {
7593 		ASSERT(ism_hat->sfmmu_iment != iment);
7594 		iment->iment_prev->iment_next = iment->iment_next;
7595 	} else {
7596 		ASSERT(ism_hat->sfmmu_iment == iment);
7597 		ism_hat->sfmmu_iment = iment->iment_next;
7598 	}
7599 
7600 	if (iment->iment_next) {
7601 		iment->iment_next->iment_prev = iment->iment_prev;
7602 	}
7603 
7604 	/*
7605 	 * zero out the entry
7606 	 */
7607 	iment->iment_next = NULL;
7608 	iment->iment_prev = NULL;
7609 	iment->iment_hat =  NULL;
7610 }
7611 
7612 /*
7613  * Hat_share()/unshare() return an (non-zero) error
7614  * when saddr and daddr are not properly aligned.
7615  *
7616  * The top level mapping element determines the alignment
7617  * requirement for saddr and daddr, depending on different
7618  * architectures.
7619  *
7620  * When hat_share()/unshare() are not supported,
7621  * HATOP_SHARE()/UNSHARE() return 0
7622  */
7623 int
7624 hat_share(struct hat *sfmmup, caddr_t addr,
7625 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7626 {
7627 	ism_blk_t	*ism_blkp;
7628 	ism_blk_t	*new_iblk;
7629 	ism_map_t 	*ism_map;
7630 	ism_ment_t	*ism_ment;
7631 	int		i, added;
7632 	hatlock_t	*hatlockp;
7633 	int		reload_mmu = 0;
7634 	uint_t		ismshift = page_get_shift(ismszc);
7635 	size_t		ismpgsz = page_get_pagesize(ismszc);
7636 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7637 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7638 	ushort_t	ismhatflag;
7639 
7640 #ifdef DEBUG
7641 	caddr_t		eaddr = addr + len;
7642 #endif /* DEBUG */
7643 
7644 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7645 	ASSERT(sptaddr == ISMID_STARTADDR);
7646 	/*
7647 	 * Check the alignment.
7648 	 */
7649 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7650 		return (EINVAL);
7651 
7652 	/*
7653 	 * Check size alignment.
7654 	 */
7655 	if (!ISM_ALIGNED(ismshift, len))
7656 		return (EINVAL);
7657 
7658 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7659 
7660 	/*
7661 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7662 	 * ism map blk in case we need one.  We must do our
7663 	 * allocations before acquiring locks to prevent a deadlock
7664 	 * in the kmem allocator on the mapping list lock.
7665 	 */
7666 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7667 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7668 
7669 	/*
7670 	 * Serialize ISM mappings with the ISM busy flag, and also the
7671 	 * trap handlers.
7672 	 */
7673 	sfmmu_ismhat_enter(sfmmup, 0);
7674 
7675 	/*
7676 	 * Allocate an ism map blk if necessary.
7677 	 */
7678 	if (sfmmup->sfmmu_iblk == NULL) {
7679 		sfmmup->sfmmu_iblk = new_iblk;
7680 		bzero(new_iblk, sizeof (*new_iblk));
7681 		new_iblk->iblk_nextpa = (uint64_t)-1;
7682 		membar_stst();	/* make sure next ptr visible to all CPUs */
7683 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7684 		reload_mmu = 1;
7685 		new_iblk = NULL;
7686 	}
7687 
7688 #ifdef DEBUG
7689 	/*
7690 	 * Make sure mapping does not already exist.
7691 	 */
7692 	ism_blkp = sfmmup->sfmmu_iblk;
7693 	while (ism_blkp) {
7694 		ism_map = ism_blkp->iblk_maps;
7695 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7696 			if ((addr >= ism_start(ism_map[i]) &&
7697 			    addr < ism_end(ism_map[i])) ||
7698 			    eaddr > ism_start(ism_map[i]) &&
7699 			    eaddr <= ism_end(ism_map[i])) {
7700 				panic("sfmmu_share: Already mapped!");
7701 			}
7702 		}
7703 		ism_blkp = ism_blkp->iblk_next;
7704 	}
7705 #endif /* DEBUG */
7706 
7707 	ASSERT(ismszc >= TTE4M);
7708 	if (ismszc == TTE4M) {
7709 		ismhatflag = HAT_4M_FLAG;
7710 	} else if (ismszc == TTE32M) {
7711 		ismhatflag = HAT_32M_FLAG;
7712 	} else if (ismszc == TTE256M) {
7713 		ismhatflag = HAT_256M_FLAG;
7714 	}
7715 	/*
7716 	 * Add mapping to first available mapping slot.
7717 	 */
7718 	ism_blkp = sfmmup->sfmmu_iblk;
7719 	added = 0;
7720 	while (!added) {
7721 		ism_map = ism_blkp->iblk_maps;
7722 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7723 			if (ism_map[i].imap_ismhat == NULL) {
7724 
7725 				ism_map[i].imap_ismhat = ism_hatid;
7726 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7727 				ism_map[i].imap_hatflags = ismhatflag;
7728 				ism_map[i].imap_sz_mask = ismmask;
7729 				/*
7730 				 * imap_seg is checked in ISM_CHECK to see if
7731 				 * non-NULL, then other info assumed valid.
7732 				 */
7733 				membar_stst();
7734 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7735 				ism_map[i].imap_ment = ism_ment;
7736 
7737 				/*
7738 				 * Now add ourselves to the ism_hat's
7739 				 * mapping list.
7740 				 */
7741 				ism_ment->iment_hat = sfmmup;
7742 				ism_ment->iment_base_va = addr;
7743 				ism_hatid->sfmmu_ismhat = 1;
7744 				ism_hatid->sfmmu_flags = 0;
7745 				mutex_enter(&ism_mlist_lock);
7746 				iment_add(ism_ment, ism_hatid);
7747 				mutex_exit(&ism_mlist_lock);
7748 				added = 1;
7749 				break;
7750 			}
7751 		}
7752 		if (!added && ism_blkp->iblk_next == NULL) {
7753 			ism_blkp->iblk_next = new_iblk;
7754 			new_iblk = NULL;
7755 			bzero(ism_blkp->iblk_next,
7756 			    sizeof (*ism_blkp->iblk_next));
7757 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7758 			membar_stst();
7759 			ism_blkp->iblk_nextpa =
7760 				va_to_pa((caddr_t)ism_blkp->iblk_next);
7761 		}
7762 		ism_blkp = ism_blkp->iblk_next;
7763 	}
7764 
7765 	/*
7766 	 * Update our counters for this sfmmup's ism mappings.
7767 	 */
7768 	for (i = 0; i <= ismszc; i++) {
7769 		if (!(disable_ism_large_pages & (1 << i)))
7770 			(void) ism_tsb_entries(sfmmup, i);
7771 	}
7772 
7773 	hatlockp = sfmmu_hat_enter(sfmmup);
7774 
7775 	/*
7776 	 * For ISM and DISM we do not support 512K pages, so we only
7777 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7778 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7779 	 */
7780 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7781 
7782 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7783 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7784 
7785 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7786 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7787 
7788 	/*
7789 	 * If we updated the ismblkpa for this HAT or we need
7790 	 * to start searching the 256M or 32M or 4M hash, we must
7791 	 * make sure all CPUs running this process reload their
7792 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7793 	 * in the tsbmiss handler and will loop calling pagefault().
7794 	 */
7795 	switch (ismszc) {
7796 	case TTE256M:
7797 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7798 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7799 			sfmmu_sync_mmustate(sfmmup);
7800 		}
7801 		break;
7802 	case TTE32M:
7803 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7804 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7805 			sfmmu_sync_mmustate(sfmmup);
7806 		}
7807 		break;
7808 	case TTE4M:
7809 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7810 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7811 			sfmmu_sync_mmustate(sfmmup);
7812 		}
7813 		break;
7814 	default:
7815 		break;
7816 	}
7817 
7818 	/*
7819 	 * Now we can drop the locks.
7820 	 */
7821 	sfmmu_ismhat_exit(sfmmup, 1);
7822 	sfmmu_hat_exit(hatlockp);
7823 
7824 	/*
7825 	 * Free up ismblk if we didn't use it.
7826 	 */
7827 	if (new_iblk != NULL)
7828 		kmem_cache_free(ism_blk_cache, new_iblk);
7829 
7830 	/*
7831 	 * Check TSB and TLB page sizes.
7832 	 */
7833 	sfmmu_check_page_sizes(sfmmup, 1);
7834 
7835 	return (0);
7836 }
7837 
7838 /*
7839  * hat_unshare removes exactly one ism_map from
7840  * this process's as.  It expects multiple calls
7841  * to hat_unshare for multiple shm segments.
7842  */
7843 void
7844 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7845 {
7846 	ism_map_t 	*ism_map;
7847 	ism_ment_t	*free_ment = NULL;
7848 	ism_blk_t	*ism_blkp;
7849 	struct hat	*ism_hatid;
7850 	int 		found, i;
7851 	hatlock_t	*hatlockp;
7852 	struct tsb_info	*tsbinfo;
7853 	uint_t		ismshift = page_get_shift(ismszc);
7854 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7855 
7856 	ASSERT(ISM_ALIGNED(ismshift, addr));
7857 	ASSERT(ISM_ALIGNED(ismshift, len));
7858 	ASSERT(sfmmup != NULL);
7859 	ASSERT(sfmmup != ksfmmup);
7860 
7861 	if (sfmmup->sfmmu_xhat_provider) {
7862 		XHAT_UNSHARE(sfmmup, addr, len);
7863 		return;
7864 	} else {
7865 		/*
7866 		 * This must be a CPU HAT. If the address space has
7867 		 * XHATs attached, inform all XHATs that ISM segment
7868 		 * is going away
7869 		 */
7870 		ASSERT(sfmmup->sfmmu_as != NULL);
7871 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7872 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7873 	}
7874 
7875 	/*
7876 	 * Make sure that during the entire time ISM mappings are removed,
7877 	 * the trap handlers serialize behind us, and that no one else
7878 	 * can be mucking with ISM mappings.  This also lets us get away
7879 	 * with not doing expensive cross calls to flush the TLB -- we
7880 	 * just discard the context, flush the entire TSB, and call it
7881 	 * a day.
7882 	 */
7883 	sfmmu_ismhat_enter(sfmmup, 0);
7884 
7885 	/*
7886 	 * Remove the mapping.
7887 	 *
7888 	 * We can't have any holes in the ism map.
7889 	 * The tsb miss code while searching the ism map will
7890 	 * stop on an empty map slot.  So we must move
7891 	 * everyone past the hole up 1 if any.
7892 	 *
7893 	 * Also empty ism map blks are not freed until the
7894 	 * process exits. This is to prevent a MT race condition
7895 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7896 	 */
7897 	found = 0;
7898 	ism_blkp = sfmmup->sfmmu_iblk;
7899 	while (!found && ism_blkp) {
7900 		ism_map = ism_blkp->iblk_maps;
7901 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7902 			if (addr == ism_start(ism_map[i]) &&
7903 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7904 				found = 1;
7905 				break;
7906 			}
7907 		}
7908 		if (!found)
7909 			ism_blkp = ism_blkp->iblk_next;
7910 	}
7911 
7912 	if (found) {
7913 		ism_hatid = ism_map[i].imap_ismhat;
7914 		ASSERT(ism_hatid != NULL);
7915 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7916 
7917 		/*
7918 		 * First remove ourselves from the ism mapping list.
7919 		 */
7920 		mutex_enter(&ism_mlist_lock);
7921 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7922 		mutex_exit(&ism_mlist_lock);
7923 		free_ment = ism_map[i].imap_ment;
7924 
7925 		/*
7926 		 * Now gurantee that any other cpu
7927 		 * that tries to process an ISM miss
7928 		 * will go to tl=0.
7929 		 */
7930 		hatlockp = sfmmu_hat_enter(sfmmup);
7931 
7932 		sfmmu_invalidate_ctx(sfmmup);
7933 
7934 		sfmmu_hat_exit(hatlockp);
7935 
7936 		/*
7937 		 * We delete the ism map by copying
7938 		 * the next map over the current one.
7939 		 * We will take the next one in the maps
7940 		 * array or from the next ism_blk.
7941 		 */
7942 		while (ism_blkp) {
7943 			ism_map = ism_blkp->iblk_maps;
7944 			while (i < (ISM_MAP_SLOTS - 1)) {
7945 				ism_map[i] = ism_map[i + 1];
7946 				i++;
7947 			}
7948 			/* i == (ISM_MAP_SLOTS - 1) */
7949 			ism_blkp = ism_blkp->iblk_next;
7950 			if (ism_blkp) {
7951 				ism_map[i] = ism_blkp->iblk_maps[0];
7952 				i = 0;
7953 			} else {
7954 				ism_map[i].imap_seg = 0;
7955 				ism_map[i].imap_vb_shift = 0;
7956 				ism_map[i].imap_hatflags = 0;
7957 				ism_map[i].imap_sz_mask = 0;
7958 				ism_map[i].imap_ismhat = NULL;
7959 				ism_map[i].imap_ment = NULL;
7960 			}
7961 		}
7962 
7963 		/*
7964 		 * Now flush entire TSB for the process, since
7965 		 * demapping page by page can be too expensive.
7966 		 * We don't have to flush the TLB here anymore
7967 		 * since we switch to a new TLB ctx instead.
7968 		 * Also, there is no need to flush if the process
7969 		 * is exiting since the TSB will be freed later.
7970 		 */
7971 		if (!sfmmup->sfmmu_free) {
7972 			hatlockp = sfmmu_hat_enter(sfmmup);
7973 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
7974 			    tsbinfo = tsbinfo->tsb_next) {
7975 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
7976 					continue;
7977 				sfmmu_inv_tsb(tsbinfo->tsb_va,
7978 				    TSB_BYTES(tsbinfo->tsb_szc));
7979 			}
7980 			sfmmu_hat_exit(hatlockp);
7981 		}
7982 	}
7983 
7984 	/*
7985 	 * Update our counters for this sfmmup's ism mappings.
7986 	 */
7987 	for (i = 0; i <= ismszc; i++) {
7988 		if (!(disable_ism_large_pages & (1 << i)))
7989 			(void) ism_tsb_entries(sfmmup, i);
7990 	}
7991 
7992 	sfmmu_ismhat_exit(sfmmup, 0);
7993 
7994 	/*
7995 	 * We must do our freeing here after dropping locks
7996 	 * to prevent a deadlock in the kmem allocator on the
7997 	 * mapping list lock.
7998 	 */
7999 	if (free_ment != NULL)
8000 		kmem_cache_free(ism_ment_cache, free_ment);
8001 
8002 	/*
8003 	 * Check TSB and TLB page sizes if the process isn't exiting.
8004 	 */
8005 	if (!sfmmup->sfmmu_free)
8006 		sfmmu_check_page_sizes(sfmmup, 0);
8007 }
8008 
8009 /* ARGSUSED */
8010 static int
8011 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8012 {
8013 	/* void *buf is sfmmu_t pointer */
8014 	return (0);
8015 }
8016 
8017 /* ARGSUSED */
8018 static void
8019 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8020 {
8021 	/* void *buf is sfmmu_t pointer */
8022 }
8023 
8024 /*
8025  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8026  * field to be the pa of this hmeblk
8027  */
8028 /* ARGSUSED */
8029 static int
8030 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8031 {
8032 	struct hme_blk *hmeblkp;
8033 
8034 	bzero(buf, (size_t)cdrarg);
8035 	hmeblkp = (struct hme_blk *)buf;
8036 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8037 
8038 #ifdef	HBLK_TRACE
8039 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8040 #endif	/* HBLK_TRACE */
8041 
8042 	return (0);
8043 }
8044 
8045 /* ARGSUSED */
8046 static void
8047 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8048 {
8049 
8050 #ifdef	HBLK_TRACE
8051 
8052 	struct hme_blk *hmeblkp;
8053 
8054 	hmeblkp = (struct hme_blk *)buf;
8055 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8056 
8057 #endif	/* HBLK_TRACE */
8058 }
8059 
8060 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8061 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8062 /*
8063  * The kmem allocator will callback into our reclaim routine when the system
8064  * is running low in memory.  We traverse the hash and free up all unused but
8065  * still cached hme_blks.  We also traverse the free list and free them up
8066  * as well.
8067  */
8068 /*ARGSUSED*/
8069 static void
8070 sfmmu_hblkcache_reclaim(void *cdrarg)
8071 {
8072 	int i;
8073 	uint64_t hblkpa, prevpa, nx_pa;
8074 	struct hmehash_bucket *hmebp;
8075 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8076 	static struct hmehash_bucket *uhmehash_reclaim_hand;
8077 	static struct hmehash_bucket *khmehash_reclaim_hand;
8078 	struct hme_blk *list = NULL;
8079 
8080 	hmebp = uhmehash_reclaim_hand;
8081 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8082 		uhmehash_reclaim_hand = hmebp = uhme_hash;
8083 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8084 
8085 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8086 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8087 			hmeblkp = hmebp->hmeblkp;
8088 			hblkpa = hmebp->hmeh_nextpa;
8089 			prevpa = 0;
8090 			pr_hblk = NULL;
8091 			while (hmeblkp) {
8092 				nx_hblk = hmeblkp->hblk_next;
8093 				nx_pa = hmeblkp->hblk_nextpa;
8094 				if (!hmeblkp->hblk_vcnt &&
8095 				    !hmeblkp->hblk_hmecnt) {
8096 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8097 						prevpa, pr_hblk);
8098 					sfmmu_hblk_free(hmebp, hmeblkp,
8099 					    hblkpa, &list);
8100 				} else {
8101 					pr_hblk = hmeblkp;
8102 					prevpa = hblkpa;
8103 				}
8104 				hmeblkp = nx_hblk;
8105 				hblkpa = nx_pa;
8106 			}
8107 			SFMMU_HASH_UNLOCK(hmebp);
8108 		}
8109 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8110 			hmebp = uhme_hash;
8111 	}
8112 
8113 	hmebp = khmehash_reclaim_hand;
8114 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8115 		khmehash_reclaim_hand = hmebp = khme_hash;
8116 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8117 
8118 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8119 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8120 			hmeblkp = hmebp->hmeblkp;
8121 			hblkpa = hmebp->hmeh_nextpa;
8122 			prevpa = 0;
8123 			pr_hblk = NULL;
8124 			while (hmeblkp) {
8125 				nx_hblk = hmeblkp->hblk_next;
8126 				nx_pa = hmeblkp->hblk_nextpa;
8127 				if (!hmeblkp->hblk_vcnt &&
8128 				    !hmeblkp->hblk_hmecnt) {
8129 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8130 						prevpa, pr_hblk);
8131 					sfmmu_hblk_free(hmebp, hmeblkp,
8132 					    hblkpa, &list);
8133 				} else {
8134 					pr_hblk = hmeblkp;
8135 					prevpa = hblkpa;
8136 				}
8137 				hmeblkp = nx_hblk;
8138 				hblkpa = nx_pa;
8139 			}
8140 			SFMMU_HASH_UNLOCK(hmebp);
8141 		}
8142 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8143 			hmebp = khme_hash;
8144 	}
8145 	sfmmu_hblks_list_purge(&list);
8146 }
8147 
8148 /*
8149  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8150  * same goes for sfmmu_get_addrvcolor().
8151  *
8152  * This function will return the virtual color for the specified page. The
8153  * virtual color corresponds to this page current mapping or its last mapping.
8154  * It is used by memory allocators to choose addresses with the correct
8155  * alignment so vac consistency is automatically maintained.  If the page
8156  * has no color it returns -1.
8157  */
8158 /*ARGSUSED*/
8159 int
8160 sfmmu_get_ppvcolor(struct page *pp)
8161 {
8162 #ifdef VAC
8163 	int color;
8164 
8165 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8166 		return (-1);
8167 	}
8168 	color = PP_GET_VCOLOR(pp);
8169 	ASSERT(color < mmu_btop(shm_alignment));
8170 	return (color);
8171 #else
8172 	return (-1);
8173 #endif	/* VAC */
8174 }
8175 
8176 /*
8177  * This function will return the desired alignment for vac consistency
8178  * (vac color) given a virtual address.  If no vac is present it returns -1.
8179  */
8180 /*ARGSUSED*/
8181 int
8182 sfmmu_get_addrvcolor(caddr_t vaddr)
8183 {
8184 #ifdef VAC
8185 	if (cache & CACHE_VAC) {
8186 		return (addr_to_vcolor(vaddr));
8187 	} else {
8188 		return (-1);
8189 	}
8190 #else
8191 	return (-1);
8192 #endif	/* VAC */
8193 }
8194 
8195 #ifdef VAC
8196 /*
8197  * Check for conflicts.
8198  * A conflict exists if the new and existent mappings do not match in
8199  * their "shm_alignment fields. If conflicts exist, the existant mappings
8200  * are flushed unless one of them is locked. If one of them is locked, then
8201  * the mappings are flushed and converted to non-cacheable mappings.
8202  */
8203 static void
8204 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8205 {
8206 	struct hat *tmphat;
8207 	struct sf_hment *sfhmep, *tmphme = NULL;
8208 	struct hme_blk *hmeblkp;
8209 	int vcolor;
8210 	tte_t tte;
8211 
8212 	ASSERT(sfmmu_mlist_held(pp));
8213 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8214 
8215 	vcolor = addr_to_vcolor(addr);
8216 	if (PP_NEWPAGE(pp)) {
8217 		PP_SET_VCOLOR(pp, vcolor);
8218 		return;
8219 	}
8220 
8221 	if (PP_GET_VCOLOR(pp) == vcolor) {
8222 		return;
8223 	}
8224 
8225 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8226 		/*
8227 		 * Previous user of page had a different color
8228 		 * but since there are no current users
8229 		 * we just flush the cache and change the color.
8230 		 */
8231 		SFMMU_STAT(sf_pgcolor_conflict);
8232 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8233 		PP_SET_VCOLOR(pp, vcolor);
8234 		return;
8235 	}
8236 
8237 	/*
8238 	 * If we get here we have a vac conflict with a current
8239 	 * mapping.  VAC conflict policy is as follows.
8240 	 * - The default is to unload the other mappings unless:
8241 	 * - If we have a large mapping we uncache the page.
8242 	 * We need to uncache the rest of the large page too.
8243 	 * - If any of the mappings are locked we uncache the page.
8244 	 * - If the requested mapping is inconsistent
8245 	 * with another mapping and that mapping
8246 	 * is in the same address space we have to
8247 	 * make it non-cached.  The default thing
8248 	 * to do is unload the inconsistent mapping
8249 	 * but if they are in the same address space
8250 	 * we run the risk of unmapping the pc or the
8251 	 * stack which we will use as we return to the user,
8252 	 * in which case we can then fault on the thing
8253 	 * we just unloaded and get into an infinite loop.
8254 	 */
8255 	if (PP_ISMAPPED_LARGE(pp)) {
8256 		int sz;
8257 
8258 		/*
8259 		 * Existing mapping is for big pages. We don't unload
8260 		 * existing big mappings to satisfy new mappings.
8261 		 * Always convert all mappings to TNC.
8262 		 */
8263 		sz = fnd_mapping_sz(pp);
8264 		pp = PP_GROUPLEADER(pp, sz);
8265 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8266 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8267 			TTEPAGES(sz));
8268 
8269 		return;
8270 	}
8271 
8272 	/*
8273 	 * check if any mapping is in same as or if it is locked
8274 	 * since in that case we need to uncache.
8275 	 */
8276 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8277 		tmphme = sfhmep->hme_next;
8278 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8279 		if (hmeblkp->hblk_xhat_bit)
8280 			continue;
8281 		tmphat = hblktosfmmu(hmeblkp);
8282 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8283 		ASSERT(TTE_IS_VALID(&tte));
8284 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8285 			/*
8286 			 * We have an uncache conflict
8287 			 */
8288 			SFMMU_STAT(sf_uncache_conflict);
8289 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8290 			return;
8291 		}
8292 	}
8293 
8294 	/*
8295 	 * We have an unload conflict
8296 	 * We have already checked for LARGE mappings, therefore
8297 	 * the remaining mapping(s) must be TTE8K.
8298 	 */
8299 	SFMMU_STAT(sf_unload_conflict);
8300 
8301 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8302 		tmphme = sfhmep->hme_next;
8303 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8304 		if (hmeblkp->hblk_xhat_bit)
8305 			continue;
8306 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8307 	}
8308 
8309 	if (PP_ISMAPPED_KPM(pp))
8310 		sfmmu_kpm_vac_unload(pp, addr);
8311 
8312 	/*
8313 	 * Unloads only do TLB flushes so we need to flush the
8314 	 * cache here.
8315 	 */
8316 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8317 	PP_SET_VCOLOR(pp, vcolor);
8318 }
8319 
8320 /*
8321  * Whenever a mapping is unloaded and the page is in TNC state,
8322  * we see if the page can be made cacheable again. 'pp' is
8323  * the page that we just unloaded a mapping from, the size
8324  * of mapping that was unloaded is 'ottesz'.
8325  * Remark:
8326  * The recache policy for mpss pages can leave a performance problem
8327  * under the following circumstances:
8328  * . A large page in uncached mode has just been unmapped.
8329  * . All constituent pages are TNC due to a conflicting small mapping.
8330  * . There are many other, non conflicting, small mappings around for
8331  *   a lot of the constituent pages.
8332  * . We're called w/ the "old" groupleader page and the old ottesz,
8333  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8334  *   we end up w/ TTE8K or npages == 1.
8335  * . We call tst_tnc w/ the old groupleader only, and if there is no
8336  *   conflict, we re-cache only this page.
8337  * . All other small mappings are not checked and will be left in TNC mode.
8338  * The problem is not very serious because:
8339  * . mpss is actually only defined for heap and stack, so the probability
8340  *   is not very high that a large page mapping exists in parallel to a small
8341  *   one (this is possible, but seems to be bad programming style in the
8342  *   appl).
8343  * . The problem gets a little bit more serious, when those TNC pages
8344  *   have to be mapped into kernel space, e.g. for networking.
8345  * . When VAC alias conflicts occur in applications, this is regarded
8346  *   as an application bug. So if kstat's show them, the appl should
8347  *   be changed anyway.
8348  */
8349 void
8350 conv_tnc(page_t *pp, int ottesz)
8351 {
8352 	int cursz, dosz;
8353 	pgcnt_t curnpgs, dopgs;
8354 	pgcnt_t pg64k;
8355 	page_t *pp2;
8356 
8357 	/*
8358 	 * Determine how big a range we check for TNC and find
8359 	 * leader page. cursz is the size of the biggest
8360 	 * mapping that still exist on 'pp'.
8361 	 */
8362 	if (PP_ISMAPPED_LARGE(pp)) {
8363 		cursz = fnd_mapping_sz(pp);
8364 	} else {
8365 		cursz = TTE8K;
8366 	}
8367 
8368 	if (ottesz >= cursz) {
8369 		dosz = ottesz;
8370 		pp2 = pp;
8371 	} else {
8372 		dosz = cursz;
8373 		pp2 = PP_GROUPLEADER(pp, dosz);
8374 	}
8375 
8376 	pg64k = TTEPAGES(TTE64K);
8377 	dopgs = TTEPAGES(dosz);
8378 
8379 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8380 
8381 	while (dopgs != 0) {
8382 		curnpgs = TTEPAGES(cursz);
8383 		if (tst_tnc(pp2, curnpgs)) {
8384 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8385 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8386 				curnpgs);
8387 		}
8388 
8389 		ASSERT(dopgs >= curnpgs);
8390 		dopgs -= curnpgs;
8391 
8392 		if (dopgs == 0) {
8393 			break;
8394 		}
8395 
8396 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8397 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8398 			cursz = fnd_mapping_sz(pp2);
8399 		} else {
8400 			cursz = TTE8K;
8401 		}
8402 	}
8403 }
8404 
8405 /*
8406  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8407  * returns 0 otherwise. Note that oaddr argument is valid for only
8408  * 8k pages.
8409  */
8410 int
8411 tst_tnc(page_t *pp, pgcnt_t npages)
8412 {
8413 	struct	sf_hment *sfhme;
8414 	struct	hme_blk *hmeblkp;
8415 	tte_t	tte;
8416 	caddr_t	vaddr;
8417 	int	clr_valid = 0;
8418 	int 	color, color1, bcolor;
8419 	int	i, ncolors;
8420 
8421 	ASSERT(pp != NULL);
8422 	ASSERT(!(cache & CACHE_WRITEBACK));
8423 
8424 	if (npages > 1) {
8425 		ncolors = CACHE_NUM_COLOR;
8426 	}
8427 
8428 	for (i = 0; i < npages; i++) {
8429 		ASSERT(sfmmu_mlist_held(pp));
8430 		ASSERT(PP_ISTNC(pp));
8431 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8432 
8433 		if (PP_ISPNC(pp)) {
8434 			return (0);
8435 		}
8436 
8437 		clr_valid = 0;
8438 		if (PP_ISMAPPED_KPM(pp)) {
8439 			caddr_t kpmvaddr;
8440 
8441 			ASSERT(kpm_enable);
8442 			kpmvaddr = hat_kpm_page2va(pp, 1);
8443 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8444 			color1 = addr_to_vcolor(kpmvaddr);
8445 			clr_valid = 1;
8446 		}
8447 
8448 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8449 			hmeblkp = sfmmu_hmetohblk(sfhme);
8450 			if (hmeblkp->hblk_xhat_bit)
8451 				continue;
8452 
8453 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8454 			ASSERT(TTE_IS_VALID(&tte));
8455 
8456 			vaddr = tte_to_vaddr(hmeblkp, tte);
8457 			color = addr_to_vcolor(vaddr);
8458 
8459 			if (npages > 1) {
8460 				/*
8461 				 * If there is a big mapping, make sure
8462 				 * 8K mapping is consistent with the big
8463 				 * mapping.
8464 				 */
8465 				bcolor = i % ncolors;
8466 				if (color != bcolor) {
8467 					return (0);
8468 				}
8469 			}
8470 			if (!clr_valid) {
8471 				clr_valid = 1;
8472 				color1 = color;
8473 			}
8474 
8475 			if (color1 != color) {
8476 				return (0);
8477 			}
8478 		}
8479 
8480 		pp = PP_PAGENEXT(pp);
8481 	}
8482 
8483 	return (1);
8484 }
8485 
8486 void
8487 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8488 	pgcnt_t npages)
8489 {
8490 	kmutex_t *pmtx;
8491 	int i, ncolors, bcolor;
8492 	kpm_hlk_t *kpmp;
8493 	cpuset_t cpuset;
8494 
8495 	ASSERT(pp != NULL);
8496 	ASSERT(!(cache & CACHE_WRITEBACK));
8497 
8498 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8499 	pmtx = sfmmu_page_enter(pp);
8500 
8501 	/*
8502 	 * Fast path caching single unmapped page
8503 	 */
8504 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8505 	    flags == HAT_CACHE) {
8506 		PP_CLRTNC(pp);
8507 		PP_CLRPNC(pp);
8508 		sfmmu_page_exit(pmtx);
8509 		sfmmu_kpm_kpmp_exit(kpmp);
8510 		return;
8511 	}
8512 
8513 	/*
8514 	 * We need to capture all cpus in order to change cacheability
8515 	 * because we can't allow one cpu to access the same physical
8516 	 * page using a cacheable and a non-cachebale mapping at the same
8517 	 * time. Since we may end up walking the ism mapping list
8518 	 * have to grab it's lock now since we can't after all the
8519 	 * cpus have been captured.
8520 	 */
8521 	sfmmu_hat_lock_all();
8522 	mutex_enter(&ism_mlist_lock);
8523 	kpreempt_disable();
8524 	cpuset = cpu_ready_set;
8525 	xc_attention(cpuset);
8526 
8527 	if (npages > 1) {
8528 		/*
8529 		 * Make sure all colors are flushed since the
8530 		 * sfmmu_page_cache() only flushes one color-
8531 		 * it does not know big pages.
8532 		 */
8533 		ncolors = CACHE_NUM_COLOR;
8534 		if (flags & HAT_TMPNC) {
8535 			for (i = 0; i < ncolors; i++) {
8536 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8537 			}
8538 			cache_flush_flag = CACHE_NO_FLUSH;
8539 		}
8540 	}
8541 
8542 	for (i = 0; i < npages; i++) {
8543 
8544 		ASSERT(sfmmu_mlist_held(pp));
8545 
8546 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8547 
8548 			if (npages > 1) {
8549 				bcolor = i % ncolors;
8550 			} else {
8551 				bcolor = NO_VCOLOR;
8552 			}
8553 
8554 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8555 			    bcolor);
8556 		}
8557 
8558 		pp = PP_PAGENEXT(pp);
8559 	}
8560 
8561 	xt_sync(cpuset);
8562 	xc_dismissed(cpuset);
8563 	mutex_exit(&ism_mlist_lock);
8564 	sfmmu_hat_unlock_all();
8565 	sfmmu_page_exit(pmtx);
8566 	sfmmu_kpm_kpmp_exit(kpmp);
8567 	kpreempt_enable();
8568 }
8569 
8570 /*
8571  * This function changes the virtual cacheability of all mappings to a
8572  * particular page.  When changing from uncache to cacheable the mappings will
8573  * only be changed if all of them have the same virtual color.
8574  * We need to flush the cache in all cpus.  It is possible that
8575  * a process referenced a page as cacheable but has sinced exited
8576  * and cleared the mapping list.  We still to flush it but have no
8577  * state so all cpus is the only alternative.
8578  */
8579 static void
8580 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8581 {
8582 	struct	sf_hment *sfhme;
8583 	struct	hme_blk *hmeblkp;
8584 	sfmmu_t *sfmmup;
8585 	tte_t	tte, ttemod;
8586 	caddr_t	vaddr;
8587 	int	ret, color;
8588 	pfn_t	pfn;
8589 
8590 	color = bcolor;
8591 	pfn = pp->p_pagenum;
8592 
8593 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8594 
8595 		hmeblkp = sfmmu_hmetohblk(sfhme);
8596 
8597 		if (hmeblkp->hblk_xhat_bit)
8598 			continue;
8599 
8600 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8601 		ASSERT(TTE_IS_VALID(&tte));
8602 		vaddr = tte_to_vaddr(hmeblkp, tte);
8603 		color = addr_to_vcolor(vaddr);
8604 
8605 #ifdef DEBUG
8606 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8607 			ASSERT(color == bcolor);
8608 		}
8609 #endif
8610 
8611 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8612 
8613 		ttemod = tte;
8614 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8615 			TTE_CLR_VCACHEABLE(&ttemod);
8616 		} else {	/* flags & HAT_CACHE */
8617 			TTE_SET_VCACHEABLE(&ttemod);
8618 		}
8619 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8620 		if (ret < 0) {
8621 			/*
8622 			 * Since all cpus are captured modifytte should not
8623 			 * fail.
8624 			 */
8625 			panic("sfmmu_page_cache: write to tte failed");
8626 		}
8627 
8628 		sfmmup = hblktosfmmu(hmeblkp);
8629 		if (cache_flush_flag == CACHE_FLUSH) {
8630 			/*
8631 			 * Flush TSBs, TLBs and caches
8632 			 */
8633 			if (sfmmup->sfmmu_ismhat) {
8634 				if (flags & HAT_CACHE) {
8635 					SFMMU_STAT(sf_ism_recache);
8636 				} else {
8637 					SFMMU_STAT(sf_ism_uncache);
8638 				}
8639 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8640 				    pfn, CACHE_FLUSH);
8641 			} else {
8642 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8643 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8644 			}
8645 
8646 			/*
8647 			 * all cache entries belonging to this pfn are
8648 			 * now flushed.
8649 			 */
8650 			cache_flush_flag = CACHE_NO_FLUSH;
8651 		} else {
8652 
8653 			/*
8654 			 * Flush only TSBs and TLBs.
8655 			 */
8656 			if (sfmmup->sfmmu_ismhat) {
8657 				if (flags & HAT_CACHE) {
8658 					SFMMU_STAT(sf_ism_recache);
8659 				} else {
8660 					SFMMU_STAT(sf_ism_uncache);
8661 				}
8662 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8663 				    pfn, CACHE_NO_FLUSH);
8664 			} else {
8665 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8666 			}
8667 		}
8668 	}
8669 
8670 	if (PP_ISMAPPED_KPM(pp))
8671 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8672 
8673 	switch (flags) {
8674 
8675 		default:
8676 			panic("sfmmu_pagecache: unknown flags");
8677 			break;
8678 
8679 		case HAT_CACHE:
8680 			PP_CLRTNC(pp);
8681 			PP_CLRPNC(pp);
8682 			PP_SET_VCOLOR(pp, color);
8683 			break;
8684 
8685 		case HAT_TMPNC:
8686 			PP_SETTNC(pp);
8687 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8688 			break;
8689 
8690 		case HAT_UNCACHE:
8691 			PP_SETPNC(pp);
8692 			PP_CLRTNC(pp);
8693 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8694 			break;
8695 	}
8696 }
8697 #endif	/* VAC */
8698 
8699 
8700 /*
8701  * Wrapper routine used to return a context.
8702  *
8703  * It's the responsibility of the caller to guarantee that the
8704  * process serializes on calls here by taking the HAT lock for
8705  * the hat.
8706  *
8707  */
8708 static void
8709 sfmmu_get_ctx(sfmmu_t *sfmmup)
8710 {
8711 	mmu_ctx_t *mmu_ctxp;
8712 	uint_t pstate_save;
8713 
8714 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8715 	ASSERT(sfmmup != ksfmmup);
8716 
8717 	kpreempt_disable();
8718 
8719 	mmu_ctxp = CPU_MMU_CTXP(CPU);
8720 	ASSERT(mmu_ctxp);
8721 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
8722 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
8723 
8724 	/*
8725 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
8726 	 */
8727 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
8728 		sfmmu_ctx_wrap_around(mmu_ctxp);
8729 
8730 	/*
8731 	 * Let the MMU set up the page sizes to use for
8732 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8733 	 */
8734 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
8735 		mmu_set_ctx_page_sizes(sfmmup);
8736 	}
8737 
8738 	/*
8739 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
8740 	 * interrupts disabled to prevent race condition with wrap-around
8741 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
8742 	 * a HV call to set the number of TSBs to 0. If interrupts are not
8743 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
8744 	 * become assigned to INVALID_CONTEXT. This is not allowed.
8745 	 */
8746 	pstate_save = sfmmu_disable_intrs();
8747 
8748 	sfmmu_alloc_ctx(sfmmup, 1, CPU);
8749 	sfmmu_load_mmustate(sfmmup);
8750 
8751 	sfmmu_enable_intrs(pstate_save);
8752 
8753 	kpreempt_enable();
8754 }
8755 
8756 /*
8757  * When all cnums are used up in a MMU, cnum will wrap around to the
8758  * next generation and start from 2.
8759  */
8760 static void
8761 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
8762 {
8763 
8764 	/* caller must have disabled the preemption */
8765 	ASSERT(curthread->t_preempt >= 1);
8766 	ASSERT(mmu_ctxp != NULL);
8767 
8768 	/* acquire Per-MMU (PM) spin lock */
8769 	mutex_enter(&mmu_ctxp->mmu_lock);
8770 
8771 	/* re-check to see if wrap-around is needed */
8772 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
8773 		goto done;
8774 
8775 	SFMMU_MMU_STAT(mmu_wrap_around);
8776 
8777 	/* update gnum */
8778 	ASSERT(mmu_ctxp->mmu_gnum != 0);
8779 	mmu_ctxp->mmu_gnum++;
8780 	if (mmu_ctxp->mmu_gnum == 0 ||
8781 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
8782 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
8783 		    (void *)mmu_ctxp);
8784 	}
8785 
8786 	if (mmu_ctxp->mmu_ncpus > 1) {
8787 		cpuset_t cpuset;
8788 
8789 		membar_enter(); /* make sure updated gnum visible */
8790 
8791 		SFMMU_XCALL_STATS(NULL);
8792 
8793 		/* xcall to others on the same MMU to invalidate ctx */
8794 		cpuset = mmu_ctxp->mmu_cpuset;
8795 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
8796 		CPUSET_DEL(cpuset, CPU->cpu_id);
8797 		CPUSET_AND(cpuset, cpu_ready_set);
8798 
8799 		/*
8800 		 * Pass in INVALID_CONTEXT as the first parameter to
8801 		 * sfmmu_raise_tsb_exception, which invalidates the context
8802 		 * of any process running on the CPUs in the MMU.
8803 		 */
8804 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8805 		    INVALID_CONTEXT, INVALID_CONTEXT);
8806 		xt_sync(cpuset);
8807 
8808 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
8809 	}
8810 
8811 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
8812 		sfmmu_setctx_sec(INVALID_CONTEXT);
8813 		sfmmu_clear_utsbinfo();
8814 	}
8815 
8816 	/*
8817 	 * No xcall is needed here. For sun4u systems all CPUs in context
8818 	 * domain share a single physical MMU therefore it's enough to flush
8819 	 * TLB on local CPU. On sun4v systems we use 1 global context
8820 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
8821 	 * handler. Note that vtag_flushall_uctxs() is called
8822 	 * for Ultra II machine, where the equivalent flushall functionality
8823 	 * is implemented in SW, and only user ctx TLB entries are flushed.
8824 	 */
8825 	if (&vtag_flushall_uctxs != NULL) {
8826 		vtag_flushall_uctxs();
8827 	} else {
8828 		vtag_flushall();
8829 	}
8830 
8831 	/* reset mmu cnum, skips cnum 0 and 1 */
8832 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
8833 
8834 done:
8835 	mutex_exit(&mmu_ctxp->mmu_lock);
8836 }
8837 
8838 
8839 /*
8840  * For multi-threaded process, set the process context to INVALID_CONTEXT
8841  * so that it faults and reloads the MMU state from TL=0. For single-threaded
8842  * process, we can just load the MMU state directly without having to
8843  * set context invalid. Caller must hold the hat lock since we don't
8844  * acquire it here.
8845  */
8846 static void
8847 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8848 {
8849 	uint_t cnum;
8850 	uint_t pstate_save;
8851 
8852 	ASSERT(sfmmup != ksfmmup);
8853 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8854 
8855 	kpreempt_disable();
8856 
8857 	/*
8858 	 * We check whether the pass'ed-in sfmmup is the same as the
8859 	 * current running proc. This is to makes sure the current proc
8860 	 * stays single-threaded if it already is.
8861 	 */
8862 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
8863 	    (curthread->t_procp->p_lwpcnt == 1)) {
8864 		/* single-thread */
8865 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
8866 		if (cnum != INVALID_CONTEXT) {
8867 			uint_t curcnum;
8868 			/*
8869 			 * Disable interrupts to prevent race condition
8870 			 * with sfmmu_ctx_wrap_around ctx invalidation.
8871 			 * In sun4v, ctx invalidation involves setting
8872 			 * TSB to NULL, hence, interrupts should be disabled
8873 			 * untill after sfmmu_load_mmustate is completed.
8874 			 */
8875 			pstate_save = sfmmu_disable_intrs();
8876 			curcnum = sfmmu_getctx_sec();
8877 			if (curcnum == cnum)
8878 				sfmmu_load_mmustate(sfmmup);
8879 			sfmmu_enable_intrs(pstate_save);
8880 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
8881 		}
8882 	} else {
8883 		/*
8884 		 * multi-thread
8885 		 * or when sfmmup is not the same as the curproc.
8886 		 */
8887 		sfmmu_invalidate_ctx(sfmmup);
8888 	}
8889 
8890 	kpreempt_enable();
8891 }
8892 
8893 
8894 /*
8895  * Replace the specified TSB with a new TSB.  This function gets called when
8896  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8897  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8898  * (8K).
8899  *
8900  * Caller must hold the HAT lock, but should assume any tsb_info
8901  * pointers it has are no longer valid after calling this function.
8902  *
8903  * Return values:
8904  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8905  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8906  *			something to this tsbinfo/TSB
8907  *	TSB_SUCCESS	Operation succeeded
8908  */
8909 static tsb_replace_rc_t
8910 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8911     hatlock_t *hatlockp, uint_t flags)
8912 {
8913 	struct tsb_info *new_tsbinfo = NULL;
8914 	struct tsb_info *curtsb, *prevtsb;
8915 	uint_t tte_sz_mask;
8916 	int i;
8917 
8918 	ASSERT(sfmmup != ksfmmup);
8919 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8920 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8921 	ASSERT(szc <= tsb_max_growsize);
8922 
8923 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8924 		return (TSB_LOSTRACE);
8925 
8926 	/*
8927 	 * Find the tsb_info ahead of this one in the list, and
8928 	 * also make sure that the tsb_info passed in really
8929 	 * exists!
8930 	 */
8931 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8932 	    curtsb != old_tsbinfo && curtsb != NULL;
8933 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8934 	ASSERT(curtsb != NULL);
8935 
8936 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8937 		/*
8938 		 * The process is swapped out, so just set the new size
8939 		 * code.  When it swaps back in, we'll allocate a new one
8940 		 * of the new chosen size.
8941 		 */
8942 		curtsb->tsb_szc = szc;
8943 		return (TSB_SUCCESS);
8944 	}
8945 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8946 
8947 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8948 
8949 	/*
8950 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8951 	 * If we fail to allocate a TSB, exit.
8952 	 */
8953 	sfmmu_hat_exit(hatlockp);
8954 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8955 	    flags, sfmmup)) {
8956 		(void) sfmmu_hat_enter(sfmmup);
8957 		if (!(flags & TSB_SWAPIN))
8958 			SFMMU_STAT(sf_tsb_resize_failures);
8959 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8960 		return (TSB_ALLOCFAIL);
8961 	}
8962 	(void) sfmmu_hat_enter(sfmmup);
8963 
8964 	/*
8965 	 * Re-check to make sure somebody else didn't muck with us while we
8966 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8967 	 * exit; this can happen if we try to shrink the TSB from the context
8968 	 * of another process (such as on an ISM unmap), though it is rare.
8969 	 */
8970 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8971 		SFMMU_STAT(sf_tsb_resize_failures);
8972 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8973 		sfmmu_hat_exit(hatlockp);
8974 		sfmmu_tsbinfo_free(new_tsbinfo);
8975 		(void) sfmmu_hat_enter(sfmmup);
8976 		return (TSB_LOSTRACE);
8977 	}
8978 
8979 #ifdef	DEBUG
8980 	/* Reverify that the tsb_info still exists.. for debugging only */
8981 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8982 	    curtsb != old_tsbinfo && curtsb != NULL;
8983 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8984 	ASSERT(curtsb != NULL);
8985 #endif	/* DEBUG */
8986 
8987 	/*
8988 	 * Quiesce any CPUs running this process on their next TLB miss
8989 	 * so they atomically see the new tsb_info.  We temporarily set the
8990 	 * context to invalid context so new threads that come on processor
8991 	 * after we do the xcall to cpusran will also serialize behind the
8992 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
8993 	 * race with a new thread coming on processor is relatively rare,
8994 	 * this synchronization mechanism should be cheaper than always
8995 	 * pausing all CPUs for the duration of the setup, which is what
8996 	 * the old implementation did.  This is particuarly true if we are
8997 	 * copying a huge chunk of memory around during that window.
8998 	 *
8999 	 * The memory barriers are to make sure things stay consistent
9000 	 * with resume() since it does not hold the HAT lock while
9001 	 * walking the list of tsb_info structures.
9002 	 */
9003 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9004 		/* The TSB is either growing or shrinking. */
9005 		sfmmu_invalidate_ctx(sfmmup);
9006 	} else {
9007 		/*
9008 		 * It is illegal to swap in TSBs from a process other
9009 		 * than a process being swapped in.  This in turn
9010 		 * implies we do not have a valid MMU context here
9011 		 * since a process needs one to resolve translation
9012 		 * misses.
9013 		 */
9014 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9015 	}
9016 
9017 #ifdef DEBUG
9018 	ASSERT(max_mmu_ctxdoms > 0);
9019 
9020 	/*
9021 	 * Process should have INVALID_CONTEXT on all MMUs
9022 	 */
9023 	for (i = 0; i < max_mmu_ctxdoms; i++) {
9024 
9025 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9026 	}
9027 #endif
9028 
9029 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9030 	membar_stst();	/* strict ordering required */
9031 	if (prevtsb)
9032 		prevtsb->tsb_next = new_tsbinfo;
9033 	else
9034 		sfmmup->sfmmu_tsb = new_tsbinfo;
9035 	membar_enter();	/* make sure new TSB globally visible */
9036 	sfmmu_setup_tsbinfo(sfmmup);
9037 
9038 	/*
9039 	 * We need to migrate TSB entries from the old TSB to the new TSB
9040 	 * if tsb_remap_ttes is set and the TSB is growing.
9041 	 */
9042 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9043 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9044 
9045 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9046 
9047 	/*
9048 	 * Drop the HAT lock to free our old tsb_info.
9049 	 */
9050 	sfmmu_hat_exit(hatlockp);
9051 
9052 	if ((flags & TSB_GROW) == TSB_GROW) {
9053 		SFMMU_STAT(sf_tsb_grow);
9054 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9055 		SFMMU_STAT(sf_tsb_shrink);
9056 	}
9057 
9058 	sfmmu_tsbinfo_free(old_tsbinfo);
9059 
9060 	(void) sfmmu_hat_enter(sfmmup);
9061 	return (TSB_SUCCESS);
9062 }
9063 
9064 /*
9065  * This function will re-program hat pgsz array, and invalidate the
9066  * process' context, forcing the process to switch to another
9067  * context on the next TLB miss, and therefore start using the
9068  * TLB that is reprogrammed for the new page sizes.
9069  */
9070 void
9071 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9072 {
9073 	int i;
9074 	hatlock_t *hatlockp = NULL;
9075 
9076 	hatlockp = sfmmu_hat_enter(sfmmup);
9077 	/* USIII+-IV+ optimization, requires hat lock */
9078 	if (tmp_pgsz) {
9079 		for (i = 0; i < mmu_page_sizes; i++)
9080 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9081 	}
9082 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9083 
9084 	sfmmu_invalidate_ctx(sfmmup);
9085 
9086 	sfmmu_hat_exit(hatlockp);
9087 }
9088 
9089 /*
9090  * This function assumes that there are either four or six supported page
9091  * sizes and at most two programmable TLBs, so we need to decide which
9092  * page sizes are most important and then tell the MMU layer so it
9093  * can adjust the TLB page sizes accordingly (if supported).
9094  *
9095  * If these assumptions change, this function will need to be
9096  * updated to support whatever the new limits are.
9097  *
9098  * The growing flag is nonzero if we are growing the address space,
9099  * and zero if it is shrinking.  This allows us to decide whether
9100  * to grow or shrink our TSB, depending upon available memory
9101  * conditions.
9102  */
9103 static void
9104 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9105 {
9106 	uint64_t ttecnt[MMU_PAGE_SIZES];
9107 	uint64_t tte8k_cnt, tte4m_cnt;
9108 	uint8_t i;
9109 	int sectsb_thresh;
9110 
9111 	/*
9112 	 * Kernel threads, processes with small address spaces not using
9113 	 * large pages, and dummy ISM HATs need not apply.
9114 	 */
9115 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9116 		return;
9117 
9118 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9119 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9120 		return;
9121 
9122 	for (i = 0; i < mmu_page_sizes; i++) {
9123 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9124 	}
9125 
9126 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9127 	if (&mmu_check_page_sizes)
9128 		mmu_check_page_sizes(sfmmup, ttecnt);
9129 
9130 	/*
9131 	 * Calculate the number of 8k ttes to represent the span of these
9132 	 * pages.
9133 	 */
9134 	tte8k_cnt = ttecnt[TTE8K] +
9135 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9136 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9137 	if (mmu_page_sizes == max_mmu_page_sizes) {
9138 		tte4m_cnt = ttecnt[TTE4M] +
9139 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9140 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9141 	} else {
9142 		tte4m_cnt = ttecnt[TTE4M];
9143 	}
9144 
9145 	/*
9146 	 * Inflate TSB sizes by a factor of 2 if this process
9147 	 * uses 4M text pages to minimize extra conflict misses
9148 	 * in the first TSB since without counting text pages
9149 	 * 8K TSB may become too small.
9150 	 *
9151 	 * Also double the size of the second TSB to minimize
9152 	 * extra conflict misses due to competition between 4M text pages
9153 	 * and data pages.
9154 	 *
9155 	 * We need to adjust the second TSB allocation threshold by the
9156 	 * inflation factor, since there is no point in creating a second
9157 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9158 	 */
9159 	sectsb_thresh = tsb_sectsb_threshold;
9160 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9161 		tte8k_cnt <<= 1;
9162 		tte4m_cnt <<= 1;
9163 		sectsb_thresh <<= 1;
9164 	}
9165 
9166 	/*
9167 	 * Check to see if our TSB is the right size; we may need to
9168 	 * grow or shrink it.  If the process is small, our work is
9169 	 * finished at this point.
9170 	 */
9171 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9172 		return;
9173 	}
9174 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9175 }
9176 
9177 static void
9178 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9179 	uint64_t tte4m_cnt, int sectsb_thresh)
9180 {
9181 	int tsb_bits;
9182 	uint_t tsb_szc;
9183 	struct tsb_info *tsbinfop;
9184 	hatlock_t *hatlockp = NULL;
9185 
9186 	hatlockp = sfmmu_hat_enter(sfmmup);
9187 	ASSERT(hatlockp != NULL);
9188 	tsbinfop = sfmmup->sfmmu_tsb;
9189 	ASSERT(tsbinfop != NULL);
9190 
9191 	/*
9192 	 * If we're growing, select the size based on RSS.  If we're
9193 	 * shrinking, leave some room so we don't have to turn around and
9194 	 * grow again immediately.
9195 	 */
9196 	if (growing)
9197 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9198 	else
9199 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9200 
9201 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9202 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9203 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9204 		    hatlockp, TSB_SHRINK);
9205 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9206 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9207 		    hatlockp, TSB_GROW);
9208 	}
9209 	tsbinfop = sfmmup->sfmmu_tsb;
9210 
9211 	/*
9212 	 * With the TLB and first TSB out of the way, we need to see if
9213 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9214 	 * the TLB page sizes above, the process will start using this new
9215 	 * TSB right away; otherwise, it will start using it on the next
9216 	 * context switch.  Either way, it's no big deal so there's no
9217 	 * synchronization with the trap handlers here unless we grow the
9218 	 * TSB (in which case it's required to prevent using the old one
9219 	 * after it's freed). Note: second tsb is required for 32M/256M
9220 	 * page sizes.
9221 	 */
9222 	if (tte4m_cnt > sectsb_thresh) {
9223 		/*
9224 		 * If we're growing, select the size based on RSS.  If we're
9225 		 * shrinking, leave some room so we don't have to turn
9226 		 * around and grow again immediately.
9227 		 */
9228 		if (growing)
9229 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9230 		else
9231 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9232 		if (tsbinfop->tsb_next == NULL) {
9233 			struct tsb_info *newtsb;
9234 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9235 			    0 : TSB_ALLOC;
9236 
9237 			sfmmu_hat_exit(hatlockp);
9238 
9239 			/*
9240 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9241 			 * can't get the size we want, retry w/a minimum sized
9242 			 * TSB.  If that still didn't work, give up; we can
9243 			 * still run without one.
9244 			 */
9245 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9246 			    TSB4M|TSB32M|TSB256M:TSB4M;
9247 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9248 			    allocflags, sfmmup) != 0) &&
9249 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9250 			    tsb_bits, allocflags, sfmmup) != 0)) {
9251 				return;
9252 			}
9253 
9254 			hatlockp = sfmmu_hat_enter(sfmmup);
9255 
9256 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9257 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9258 				SFMMU_STAT(sf_tsb_sectsb_create);
9259 				sfmmu_setup_tsbinfo(sfmmup);
9260 				sfmmu_hat_exit(hatlockp);
9261 				return;
9262 			} else {
9263 				/*
9264 				 * It's annoying, but possible for us
9265 				 * to get here.. we dropped the HAT lock
9266 				 * because of locking order in the kmem
9267 				 * allocator, and while we were off getting
9268 				 * our memory, some other thread decided to
9269 				 * do us a favor and won the race to get a
9270 				 * second TSB for this process.  Sigh.
9271 				 */
9272 				sfmmu_hat_exit(hatlockp);
9273 				sfmmu_tsbinfo_free(newtsb);
9274 				return;
9275 			}
9276 		}
9277 
9278 		/*
9279 		 * We have a second TSB, see if it's big enough.
9280 		 */
9281 		tsbinfop = tsbinfop->tsb_next;
9282 
9283 		/*
9284 		 * Check to see if our second TSB is the right size;
9285 		 * we may need to grow or shrink it.
9286 		 * To prevent thrashing (e.g. growing the TSB on a
9287 		 * subsequent map operation), only try to shrink if
9288 		 * the TSB reach exceeds twice the virtual address
9289 		 * space size.
9290 		 */
9291 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9292 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9293 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9294 			    tsb_szc, hatlockp, TSB_SHRINK);
9295 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9296 		    TSB_OK_GROW()) {
9297 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9298 			    tsb_szc, hatlockp, TSB_GROW);
9299 		}
9300 	}
9301 
9302 	sfmmu_hat_exit(hatlockp);
9303 }
9304 
9305 /*
9306  * Free up a sfmmu
9307  * Since the sfmmu is currently embedded in the hat struct we simply zero
9308  * out our fields and free up the ism map blk list if any.
9309  */
9310 static void
9311 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9312 {
9313 	ism_blk_t	*blkp, *nx_blkp;
9314 #ifdef	DEBUG
9315 	ism_map_t	*map;
9316 	int 		i;
9317 #endif
9318 
9319 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9320 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9321 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9322 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9323 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9324 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9325 
9326 	sfmmup->sfmmu_free = 0;
9327 	sfmmup->sfmmu_ismhat = 0;
9328 
9329 	blkp = sfmmup->sfmmu_iblk;
9330 	sfmmup->sfmmu_iblk = NULL;
9331 
9332 	while (blkp) {
9333 #ifdef	DEBUG
9334 		map = blkp->iblk_maps;
9335 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9336 			ASSERT(map[i].imap_seg == 0);
9337 			ASSERT(map[i].imap_ismhat == NULL);
9338 			ASSERT(map[i].imap_ment == NULL);
9339 		}
9340 #endif
9341 		nx_blkp = blkp->iblk_next;
9342 		blkp->iblk_next = NULL;
9343 		blkp->iblk_nextpa = (uint64_t)-1;
9344 		kmem_cache_free(ism_blk_cache, blkp);
9345 		blkp = nx_blkp;
9346 	}
9347 }
9348 
9349 /*
9350  * Locking primitves accessed by HATLOCK macros
9351  */
9352 
9353 #define	SFMMU_SPL_MTX	(0x0)
9354 #define	SFMMU_ML_MTX	(0x1)
9355 
9356 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9357 					    SPL_HASH(pg) : MLIST_HASH(pg))
9358 
9359 kmutex_t *
9360 sfmmu_page_enter(struct page *pp)
9361 {
9362 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9363 }
9364 
9365 void
9366 sfmmu_page_exit(kmutex_t *spl)
9367 {
9368 	mutex_exit(spl);
9369 }
9370 
9371 int
9372 sfmmu_page_spl_held(struct page *pp)
9373 {
9374 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9375 }
9376 
9377 kmutex_t *
9378 sfmmu_mlist_enter(struct page *pp)
9379 {
9380 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9381 }
9382 
9383 void
9384 sfmmu_mlist_exit(kmutex_t *mml)
9385 {
9386 	mutex_exit(mml);
9387 }
9388 
9389 int
9390 sfmmu_mlist_held(struct page *pp)
9391 {
9392 
9393 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9394 }
9395 
9396 /*
9397  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9398  * sfmmu_mlist_enter() case mml_table lock array is used and for
9399  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9400  *
9401  * The lock is taken on a root page so that it protects an operation on all
9402  * constituent pages of a large page pp belongs to.
9403  *
9404  * The routine takes a lock from the appropriate array. The lock is determined
9405  * by hashing the root page. After taking the lock this routine checks if the
9406  * root page has the same size code that was used to determine the root (i.e
9407  * that root hasn't changed).  If root page has the expected p_szc field we
9408  * have the right lock and it's returned to the caller. If root's p_szc
9409  * decreased we release the lock and retry from the beginning.  This case can
9410  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9411  * value and taking the lock. The number of retries due to p_szc decrease is
9412  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9413  * determined by hashing pp itself.
9414  *
9415  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9416  * possible that p_szc can increase. To increase p_szc a thread has to lock
9417  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9418  * callers that don't hold a page locked recheck if hmeblk through which pp
9419  * was found still maps this pp.  If it doesn't map it anymore returned lock
9420  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9421  * p_szc increase after taking the lock it returns this lock without further
9422  * retries because in this case the caller doesn't care about which lock was
9423  * taken. The caller will drop it right away.
9424  *
9425  * After the routine returns it's guaranteed that hat_page_demote() can't
9426  * change p_szc field of any of constituent pages of a large page pp belongs
9427  * to as long as pp was either locked at least SHARED prior to this call or
9428  * the caller finds that hment that pointed to this pp still references this
9429  * pp (this also assumes that the caller holds hme hash bucket lock so that
9430  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9431  * hat_pageunload()).
9432  */
9433 static kmutex_t *
9434 sfmmu_mlspl_enter(struct page *pp, int type)
9435 {
9436 	kmutex_t	*mtx;
9437 	uint_t		prev_rszc = UINT_MAX;
9438 	page_t		*rootpp;
9439 	uint_t		szc;
9440 	uint_t		rszc;
9441 	uint_t		pszc = pp->p_szc;
9442 
9443 	ASSERT(pp != NULL);
9444 
9445 again:
9446 	if (pszc == 0) {
9447 		mtx = SFMMU_MLSPL_MTX(type, pp);
9448 		mutex_enter(mtx);
9449 		return (mtx);
9450 	}
9451 
9452 	/* The lock lives in the root page */
9453 	rootpp = PP_GROUPLEADER(pp, pszc);
9454 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9455 	mutex_enter(mtx);
9456 
9457 	/*
9458 	 * Return mml in the following 3 cases:
9459 	 *
9460 	 * 1) If pp itself is root since if its p_szc decreased before we took
9461 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9462 	 * increased it doesn't matter what lock we return (see comment in
9463 	 * front of this routine).
9464 	 *
9465 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9466 	 * large page we have the right lock since any previous potential
9467 	 * hat_page_demote() is done demoting from greater than current root's
9468 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9469 	 * further hat_page_demote() can start or be in progress since it
9470 	 * would need the same lock we currently hold.
9471 	 *
9472 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9473 	 * matter what lock we return (see comment in front of this routine).
9474 	 */
9475 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9476 	    rszc >= prev_rszc) {
9477 		return (mtx);
9478 	}
9479 
9480 	/*
9481 	 * hat_page_demote() could have decreased root's p_szc.
9482 	 * In this case pp's p_szc must also be smaller than pszc.
9483 	 * Retry.
9484 	 */
9485 	if (rszc < pszc) {
9486 		szc = pp->p_szc;
9487 		if (szc < pszc) {
9488 			mutex_exit(mtx);
9489 			pszc = szc;
9490 			goto again;
9491 		}
9492 		/*
9493 		 * pp's p_szc increased after it was decreased.
9494 		 * page cannot be mapped. Return current lock. The caller
9495 		 * will drop it right away.
9496 		 */
9497 		return (mtx);
9498 	}
9499 
9500 	/*
9501 	 * root's p_szc is greater than pp's p_szc.
9502 	 * hat_page_demote() is not done with all pages
9503 	 * yet. Wait for it to complete.
9504 	 */
9505 	mutex_exit(mtx);
9506 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9507 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9508 	mutex_enter(mtx);
9509 	mutex_exit(mtx);
9510 	prev_rszc = rszc;
9511 	goto again;
9512 }
9513 
9514 static int
9515 sfmmu_mlspl_held(struct page *pp, int type)
9516 {
9517 	kmutex_t	*mtx;
9518 
9519 	ASSERT(pp != NULL);
9520 	/* The lock lives in the root page */
9521 	pp = PP_PAGEROOT(pp);
9522 	ASSERT(pp != NULL);
9523 
9524 	mtx = SFMMU_MLSPL_MTX(type, pp);
9525 	return (MUTEX_HELD(mtx));
9526 }
9527 
9528 static uint_t
9529 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9530 {
9531 	struct  hme_blk *hblkp;
9532 
9533 	if (freehblkp != NULL) {
9534 		mutex_enter(&freehblkp_lock);
9535 		if (freehblkp != NULL) {
9536 			/*
9537 			 * If the current thread is owning hblk_reserve,
9538 			 * let it succede even if freehblkcnt is really low.
9539 			 */
9540 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9541 				SFMMU_STAT(sf_get_free_throttle);
9542 				mutex_exit(&freehblkp_lock);
9543 				return (0);
9544 			}
9545 			freehblkcnt--;
9546 			*hmeblkpp = freehblkp;
9547 			hblkp = *hmeblkpp;
9548 			freehblkp = hblkp->hblk_next;
9549 			mutex_exit(&freehblkp_lock);
9550 			hblkp->hblk_next = NULL;
9551 			SFMMU_STAT(sf_get_free_success);
9552 			return (1);
9553 		}
9554 		mutex_exit(&freehblkp_lock);
9555 	}
9556 	SFMMU_STAT(sf_get_free_fail);
9557 	return (0);
9558 }
9559 
9560 static uint_t
9561 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9562 {
9563 	struct  hme_blk *hblkp;
9564 
9565 	/*
9566 	 * If the current thread is mapping into kernel space,
9567 	 * let it succede even if freehblkcnt is max
9568 	 * so that it will avoid freeing it to kmem.
9569 	 * This will prevent stack overflow due to
9570 	 * possible recursion since kmem_cache_free()
9571 	 * might require creation of a slab which
9572 	 * in turn needs an hmeblk to map that slab;
9573 	 * let's break this vicious chain at the first
9574 	 * opportunity.
9575 	 */
9576 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9577 		mutex_enter(&freehblkp_lock);
9578 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9579 			SFMMU_STAT(sf_put_free_success);
9580 			freehblkcnt++;
9581 			hmeblkp->hblk_next = freehblkp;
9582 			freehblkp = hmeblkp;
9583 			mutex_exit(&freehblkp_lock);
9584 			return (1);
9585 		}
9586 		mutex_exit(&freehblkp_lock);
9587 	}
9588 
9589 	/*
9590 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9591 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9592 	 * we are not in the process of mapping into kernel space.
9593 	 */
9594 	ASSERT(!critical);
9595 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9596 		mutex_enter(&freehblkp_lock);
9597 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9598 			freehblkcnt--;
9599 			hblkp = freehblkp;
9600 			freehblkp = hblkp->hblk_next;
9601 			mutex_exit(&freehblkp_lock);
9602 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9603 			kmem_cache_free(sfmmu8_cache, hblkp);
9604 			continue;
9605 		}
9606 		mutex_exit(&freehblkp_lock);
9607 	}
9608 	SFMMU_STAT(sf_put_free_fail);
9609 	return (0);
9610 }
9611 
9612 static void
9613 sfmmu_hblk_swap(struct hme_blk *new)
9614 {
9615 	struct hme_blk *old, *hblkp, *prev;
9616 	uint64_t hblkpa, prevpa, newpa;
9617 	caddr_t	base, vaddr, endaddr;
9618 	struct hmehash_bucket *hmebp;
9619 	struct sf_hment *osfhme, *nsfhme;
9620 	page_t *pp;
9621 	kmutex_t *pml;
9622 	tte_t tte;
9623 
9624 #ifdef	DEBUG
9625 	hmeblk_tag		hblktag;
9626 	struct hme_blk		*found;
9627 #endif
9628 	old = HBLK_RESERVE;
9629 
9630 	/*
9631 	 * save pa before bcopy clobbers it
9632 	 */
9633 	newpa = new->hblk_nextpa;
9634 
9635 	base = (caddr_t)get_hblk_base(old);
9636 	endaddr = base + get_hblk_span(old);
9637 
9638 	/*
9639 	 * acquire hash bucket lock.
9640 	 */
9641 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9642 
9643 	/*
9644 	 * copy contents from old to new
9645 	 */
9646 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9647 
9648 	/*
9649 	 * add new to hash chain
9650 	 */
9651 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9652 
9653 	/*
9654 	 * search hash chain for hblk_reserve; this needs to be performed
9655 	 * after adding new, otherwise prevpa and prev won't correspond
9656 	 * to the hblk which is prior to old in hash chain when we call
9657 	 * sfmmu_hblk_hash_rm to remove old later.
9658 	 */
9659 	for (prevpa = 0, prev = NULL,
9660 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9661 	    hblkp != NULL && hblkp != old;
9662 	    prevpa = hblkpa, prev = hblkp,
9663 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9664 
9665 	if (hblkp != old)
9666 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9667 
9668 	/*
9669 	 * p_mapping list is still pointing to hments in hblk_reserve;
9670 	 * fix up p_mapping list so that they point to hments in new.
9671 	 *
9672 	 * Since all these mappings are created by hblk_reserve_thread
9673 	 * on the way and it's using at least one of the buffers from each of
9674 	 * the newly minted slabs, there is no danger of any of these
9675 	 * mappings getting unloaded by another thread.
9676 	 *
9677 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9678 	 * Since all of these hments hold mappings established by segkmem
9679 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9680 	 * have no meaning for the mappings in hblk_reserve.  hments in
9681 	 * old and new are identical except for ref/mod bits.
9682 	 */
9683 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9684 
9685 		HBLKTOHME(osfhme, old, vaddr);
9686 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9687 
9688 		if (TTE_IS_VALID(&tte)) {
9689 			if ((pp = osfhme->hme_page) == NULL)
9690 				panic("sfmmu_hblk_swap: page not mapped");
9691 
9692 			pml = sfmmu_mlist_enter(pp);
9693 
9694 			if (pp != osfhme->hme_page)
9695 				panic("sfmmu_hblk_swap: mapping changed");
9696 
9697 			HBLKTOHME(nsfhme, new, vaddr);
9698 
9699 			HME_ADD(nsfhme, pp);
9700 			HME_SUB(osfhme, pp);
9701 
9702 			sfmmu_mlist_exit(pml);
9703 		}
9704 	}
9705 
9706 	/*
9707 	 * remove old from hash chain
9708 	 */
9709 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9710 
9711 #ifdef	DEBUG
9712 
9713 	hblktag.htag_id = ksfmmup;
9714 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9715 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9716 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9717 
9718 	if (found != new)
9719 		panic("sfmmu_hblk_swap: new hblk not found");
9720 #endif
9721 
9722 	SFMMU_HASH_UNLOCK(hmebp);
9723 
9724 	/*
9725 	 * Reset hblk_reserve
9726 	 */
9727 	bzero((void *)old, HME8BLK_SZ);
9728 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9729 }
9730 
9731 /*
9732  * Grab the mlist mutex for both pages passed in.
9733  *
9734  * low and high will be returned as pointers to the mutexes for these pages.
9735  * low refers to the mutex residing in the lower bin of the mlist hash, while
9736  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9737  * is due to the locking order restrictions on the same thread grabbing
9738  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9739  *
9740  * If both pages hash to the same mutex, only grab that single mutex, and
9741  * high will be returned as NULL
9742  * If the pages hash to different bins in the hash, grab the lower addressed
9743  * lock first and then the higher addressed lock in order to follow the locking
9744  * rules involved with the same thread grabbing multiple mlist mutexes.
9745  * low and high will both have non-NULL values.
9746  */
9747 static void
9748 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9749     kmutex_t **low, kmutex_t **high)
9750 {
9751 	kmutex_t	*mml_targ, *mml_repl;
9752 
9753 	/*
9754 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9755 	 * because this routine is only called by hat_page_relocate() and all
9756 	 * targ and repl pages are already locked EXCL so szc can't change.
9757 	 */
9758 
9759 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9760 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9761 
9762 	if (mml_targ == mml_repl) {
9763 		*low = mml_targ;
9764 		*high = NULL;
9765 	} else {
9766 		if (mml_targ < mml_repl) {
9767 			*low = mml_targ;
9768 			*high = mml_repl;
9769 		} else {
9770 			*low = mml_repl;
9771 			*high = mml_targ;
9772 		}
9773 	}
9774 
9775 	mutex_enter(*low);
9776 	if (*high)
9777 		mutex_enter(*high);
9778 }
9779 
9780 static void
9781 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9782 {
9783 	if (high)
9784 		mutex_exit(high);
9785 	mutex_exit(low);
9786 }
9787 
9788 static hatlock_t *
9789 sfmmu_hat_enter(sfmmu_t *sfmmup)
9790 {
9791 	hatlock_t	*hatlockp;
9792 
9793 	if (sfmmup != ksfmmup) {
9794 		hatlockp = TSB_HASH(sfmmup);
9795 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9796 		return (hatlockp);
9797 	}
9798 	return (NULL);
9799 }
9800 
9801 static hatlock_t *
9802 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9803 {
9804 	hatlock_t	*hatlockp;
9805 
9806 	if (sfmmup != ksfmmup) {
9807 		hatlockp = TSB_HASH(sfmmup);
9808 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9809 			return (NULL);
9810 		return (hatlockp);
9811 	}
9812 	return (NULL);
9813 }
9814 
9815 static void
9816 sfmmu_hat_exit(hatlock_t *hatlockp)
9817 {
9818 	if (hatlockp != NULL)
9819 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9820 }
9821 
9822 static void
9823 sfmmu_hat_lock_all(void)
9824 {
9825 	int i;
9826 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9827 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9828 }
9829 
9830 static void
9831 sfmmu_hat_unlock_all(void)
9832 {
9833 	int i;
9834 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9835 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9836 }
9837 
9838 int
9839 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9840 {
9841 	ASSERT(sfmmup != ksfmmup);
9842 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9843 }
9844 
9845 /*
9846  * Locking primitives to provide consistency between ISM unmap
9847  * and other operations.  Since ISM unmap can take a long time, we
9848  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9849  * contention on the hatlock buckets while ISM segments are being
9850  * unmapped.  The tradeoff is that the flags don't prevent priority
9851  * inversion from occurring, so we must request kernel priority in
9852  * case we have to sleep to keep from getting buried while holding
9853  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9854  * threads from running (for example, in sfmmu_uvatopfn()).
9855  */
9856 static void
9857 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9858 {
9859 	hatlock_t *hatlockp;
9860 
9861 	THREAD_KPRI_REQUEST();
9862 	if (!hatlock_held)
9863 		hatlockp = sfmmu_hat_enter(sfmmup);
9864 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9865 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9866 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9867 	if (!hatlock_held)
9868 		sfmmu_hat_exit(hatlockp);
9869 }
9870 
9871 static void
9872 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9873 {
9874 	hatlock_t *hatlockp;
9875 
9876 	if (!hatlock_held)
9877 		hatlockp = sfmmu_hat_enter(sfmmup);
9878 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9879 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9880 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9881 	if (!hatlock_held)
9882 		sfmmu_hat_exit(hatlockp);
9883 	THREAD_KPRI_RELEASE();
9884 }
9885 
9886 /*
9887  *
9888  * Algorithm:
9889  *
9890  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9891  *	hblks.
9892  *
9893  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9894  *
9895  * 		(a) try to return an hblk from reserve pool of free hblks;
9896  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9897  *		    and return hblk_reserve.
9898  *
9899  * (3) call kmem_cache_alloc() to allocate hblk;
9900  *
9901  *		(a) if hblk_reserve_lock is held by the current thread,
9902  *		    atomically replace hblk_reserve by the hblk that is
9903  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9904  *		    and call kmem_cache_alloc() again.
9905  *		(b) if reserve pool is not full, add the hblk that is
9906  *		    returned by kmem_cache_alloc to reserve pool and
9907  *		    call kmem_cache_alloc again.
9908  *
9909  */
9910 static struct hme_blk *
9911 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9912 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9913 	uint_t flags)
9914 {
9915 	struct hme_blk *hmeblkp = NULL;
9916 	struct hme_blk *newhblkp;
9917 	struct hme_blk *shw_hblkp = NULL;
9918 	struct kmem_cache *sfmmu_cache = NULL;
9919 	uint64_t hblkpa;
9920 	ulong_t index;
9921 	uint_t owner;		/* set to 1 if using hblk_reserve */
9922 	uint_t forcefree;
9923 	int sleep;
9924 
9925 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9926 
9927 	/*
9928 	 * If segkmem is not created yet, allocate from static hmeblks
9929 	 * created at the end of startup_modules().  See the block comment
9930 	 * in startup_modules() describing how we estimate the number of
9931 	 * static hmeblks that will be needed during re-map.
9932 	 */
9933 	if (!hblk_alloc_dynamic) {
9934 
9935 		if (size == TTE8K) {
9936 			index = nucleus_hblk8.index;
9937 			if (index >= nucleus_hblk8.len) {
9938 				/*
9939 				 * If we panic here, see startup_modules() to
9940 				 * make sure that we are calculating the
9941 				 * number of hblk8's that we need correctly.
9942 				 */
9943 				panic("no nucleus hblk8 to allocate");
9944 			}
9945 			hmeblkp =
9946 			    (struct hme_blk *)&nucleus_hblk8.list[index];
9947 			nucleus_hblk8.index++;
9948 			SFMMU_STAT(sf_hblk8_nalloc);
9949 		} else {
9950 			index = nucleus_hblk1.index;
9951 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
9952 				/*
9953 				 * If we panic here, see startup_modules()
9954 				 * and H8TOH1; most likely you need to
9955 				 * update the calculation of the number
9956 				 * of hblk1's the kernel needs to boot.
9957 				 */
9958 				panic("no nucleus hblk1 to allocate");
9959 			}
9960 			hmeblkp =
9961 			    (struct hme_blk *)&nucleus_hblk1.list[index];
9962 			nucleus_hblk1.index++;
9963 			SFMMU_STAT(sf_hblk1_nalloc);
9964 		}
9965 
9966 		goto hblk_init;
9967 	}
9968 
9969 	SFMMU_HASH_UNLOCK(hmebp);
9970 
9971 	if (sfmmup != KHATID) {
9972 		if (mmu_page_sizes == max_mmu_page_sizes) {
9973 			if (size < TTE256M)
9974 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
9975 				    size, flags);
9976 		} else {
9977 			if (size < TTE4M)
9978 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
9979 				    size, flags);
9980 		}
9981 	}
9982 
9983 fill_hblk:
9984 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
9985 
9986 	if (owner && size == TTE8K) {
9987 
9988 		/*
9989 		 * We are really in a tight spot. We already own
9990 		 * hblk_reserve and we need another hblk.  In anticipation
9991 		 * of this kind of scenario, we specifically set aside
9992 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
9993 		 * by owner of hblk_reserve.
9994 		 */
9995 		SFMMU_STAT(sf_hblk_recurse_cnt);
9996 
9997 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
9998 			panic("sfmmu_hblk_alloc: reserve list is empty");
9999 
10000 		goto hblk_verify;
10001 	}
10002 
10003 	ASSERT(!owner);
10004 
10005 	if ((flags & HAT_NO_KALLOC) == 0) {
10006 
10007 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10008 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10009 
10010 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10011 			hmeblkp = sfmmu_hblk_steal(size);
10012 		} else {
10013 			/*
10014 			 * if we are the owner of hblk_reserve,
10015 			 * swap hblk_reserve with hmeblkp and
10016 			 * start a fresh life.  Hope things go
10017 			 * better this time.
10018 			 */
10019 			if (hblk_reserve_thread == curthread) {
10020 				ASSERT(sfmmu_cache == sfmmu8_cache);
10021 				sfmmu_hblk_swap(hmeblkp);
10022 				hblk_reserve_thread = NULL;
10023 				mutex_exit(&hblk_reserve_lock);
10024 				goto fill_hblk;
10025 			}
10026 			/*
10027 			 * let's donate this hblk to our reserve list if
10028 			 * we are not mapping kernel range
10029 			 */
10030 			if (size == TTE8K && sfmmup != KHATID)
10031 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10032 					goto fill_hblk;
10033 		}
10034 	} else {
10035 		/*
10036 		 * We are here to map the slab in sfmmu8_cache; let's
10037 		 * check if we could tap our reserve list; if successful,
10038 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10039 		 */
10040 		SFMMU_STAT(sf_hblk_slab_cnt);
10041 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10042 			/*
10043 			 * let's start hblk_reserve dance
10044 			 */
10045 			SFMMU_STAT(sf_hblk_reserve_cnt);
10046 			owner = 1;
10047 			mutex_enter(&hblk_reserve_lock);
10048 			hmeblkp = HBLK_RESERVE;
10049 			hblk_reserve_thread = curthread;
10050 		}
10051 	}
10052 
10053 hblk_verify:
10054 	ASSERT(hmeblkp != NULL);
10055 	set_hblk_sz(hmeblkp, size);
10056 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10057 	SFMMU_HASH_LOCK(hmebp);
10058 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10059 	if (newhblkp != NULL) {
10060 		SFMMU_HASH_UNLOCK(hmebp);
10061 		if (hmeblkp != HBLK_RESERVE) {
10062 			/*
10063 			 * This is really tricky!
10064 			 *
10065 			 * vmem_alloc(vmem_seg_arena)
10066 			 *  vmem_alloc(vmem_internal_arena)
10067 			 *   segkmem_alloc(heap_arena)
10068 			 *    vmem_alloc(heap_arena)
10069 			 *    page_create()
10070 			 *    hat_memload()
10071 			 *	kmem_cache_free()
10072 			 *	 kmem_cache_alloc()
10073 			 *	  kmem_slab_create()
10074 			 *	   vmem_alloc(kmem_internal_arena)
10075 			 *	    segkmem_alloc(heap_arena)
10076 			 *		vmem_alloc(heap_arena)
10077 			 *		page_create()
10078 			 *		hat_memload()
10079 			 *		  kmem_cache_free()
10080 			 *		...
10081 			 *
10082 			 * Thus, hat_memload() could call kmem_cache_free
10083 			 * for enough number of times that we could easily
10084 			 * hit the bottom of the stack or run out of reserve
10085 			 * list of vmem_seg structs.  So, we must donate
10086 			 * this hblk to reserve list if it's allocated
10087 			 * from sfmmu8_cache *and* mapping kernel range.
10088 			 * We don't need to worry about freeing hmeblk1's
10089 			 * to kmem since they don't map any kmem slabs.
10090 			 *
10091 			 * Note: When segkmem supports largepages, we must
10092 			 * free hmeblk1's to reserve list as well.
10093 			 */
10094 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10095 			if (size == TTE8K &&
10096 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10097 				goto re_verify;
10098 			}
10099 			ASSERT(sfmmup != KHATID);
10100 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10101 		} else {
10102 			/*
10103 			 * Hey! we don't need hblk_reserve any more.
10104 			 */
10105 			ASSERT(owner);
10106 			hblk_reserve_thread = NULL;
10107 			mutex_exit(&hblk_reserve_lock);
10108 			owner = 0;
10109 		}
10110 re_verify:
10111 		/*
10112 		 * let's check if the goodies are still present
10113 		 */
10114 		SFMMU_HASH_LOCK(hmebp);
10115 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10116 		if (newhblkp != NULL) {
10117 			/*
10118 			 * return newhblkp if it's not hblk_reserve;
10119 			 * if newhblkp is hblk_reserve, return it
10120 			 * _only if_ we are the owner of hblk_reserve.
10121 			 */
10122 			if (newhblkp != HBLK_RESERVE || owner) {
10123 				return (newhblkp);
10124 			} else {
10125 				/*
10126 				 * we just hit hblk_reserve in the hash and
10127 				 * we are not the owner of that;
10128 				 *
10129 				 * block until hblk_reserve_thread completes
10130 				 * swapping hblk_reserve and try the dance
10131 				 * once again.
10132 				 */
10133 				SFMMU_HASH_UNLOCK(hmebp);
10134 				mutex_enter(&hblk_reserve_lock);
10135 				mutex_exit(&hblk_reserve_lock);
10136 				SFMMU_STAT(sf_hblk_reserve_hit);
10137 				goto fill_hblk;
10138 			}
10139 		} else {
10140 			/*
10141 			 * it's no more! try the dance once again.
10142 			 */
10143 			SFMMU_HASH_UNLOCK(hmebp);
10144 			goto fill_hblk;
10145 		}
10146 	}
10147 
10148 hblk_init:
10149 	set_hblk_sz(hmeblkp, size);
10150 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10151 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10152 	hmeblkp->hblk_tag = hblktag;
10153 	hmeblkp->hblk_shadow = shw_hblkp;
10154 	hblkpa = hmeblkp->hblk_nextpa;
10155 	hmeblkp->hblk_nextpa = 0;
10156 
10157 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10158 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10159 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10160 	ASSERT(hmeblkp->hblk_vcnt == 0);
10161 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10162 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10163 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10164 	return (hmeblkp);
10165 }
10166 
10167 /*
10168  * This function performs any cleanup required on the hme_blk
10169  * and returns it to the free list.
10170  */
10171 /* ARGSUSED */
10172 static void
10173 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10174 	uint64_t hblkpa, struct hme_blk **listp)
10175 {
10176 	int shw_size, vshift;
10177 	struct hme_blk *shw_hblkp;
10178 	uint_t		shw_mask, newshw_mask;
10179 	uintptr_t	vaddr;
10180 	int		size;
10181 	uint_t		critical;
10182 
10183 	ASSERT(hmeblkp);
10184 	ASSERT(!hmeblkp->hblk_hmecnt);
10185 	ASSERT(!hmeblkp->hblk_vcnt);
10186 	ASSERT(!hmeblkp->hblk_lckcnt);
10187 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10188 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10189 
10190 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10191 
10192 	size = get_hblk_ttesz(hmeblkp);
10193 	shw_hblkp = hmeblkp->hblk_shadow;
10194 	if (shw_hblkp) {
10195 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10196 		if (mmu_page_sizes == max_mmu_page_sizes) {
10197 			ASSERT(size < TTE256M);
10198 		} else {
10199 			ASSERT(size < TTE4M);
10200 		}
10201 
10202 		shw_size = get_hblk_ttesz(shw_hblkp);
10203 		vaddr = get_hblk_base(hmeblkp);
10204 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10205 		ASSERT(vshift < 8);
10206 		/*
10207 		 * Atomically clear shadow mask bit
10208 		 */
10209 		do {
10210 			shw_mask = shw_hblkp->hblk_shw_mask;
10211 			ASSERT(shw_mask & (1 << vshift));
10212 			newshw_mask = shw_mask & ~(1 << vshift);
10213 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10214 				shw_mask, newshw_mask);
10215 		} while (newshw_mask != shw_mask);
10216 		hmeblkp->hblk_shadow = NULL;
10217 	}
10218 	hmeblkp->hblk_next = NULL;
10219 	hmeblkp->hblk_nextpa = hblkpa;
10220 	hmeblkp->hblk_shw_bit = 0;
10221 
10222 	if (hmeblkp->hblk_nuc_bit == 0) {
10223 
10224 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10225 			return;
10226 
10227 		hmeblkp->hblk_next = *listp;
10228 		*listp = hmeblkp;
10229 	}
10230 }
10231 
10232 static void
10233 sfmmu_hblks_list_purge(struct hme_blk **listp)
10234 {
10235 	struct hme_blk	*hmeblkp;
10236 
10237 	while ((hmeblkp = *listp) != NULL) {
10238 		*listp = hmeblkp->hblk_next;
10239 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10240 	}
10241 }
10242 
10243 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10244 
10245 static uint_t sfmmu_hblk_steal_twice;
10246 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10247 
10248 /*
10249  * Steal a hmeblk
10250  * Enough hmeblks were allocated at startup (nucleus hmeblks) and also
10251  * hmeblks were added dynamically. We should never ever not be able to
10252  * find one. Look for an unused/unlocked hmeblk in user hash table.
10253  */
10254 static struct hme_blk *
10255 sfmmu_hblk_steal(int size)
10256 {
10257 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10258 	struct hmehash_bucket *hmebp;
10259 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10260 	uint64_t hblkpa, prevpa;
10261 	int i;
10262 
10263 	for (;;) {
10264 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10265 			uhmehash_steal_hand;
10266 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10267 
10268 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10269 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10270 			SFMMU_HASH_LOCK(hmebp);
10271 			hmeblkp = hmebp->hmeblkp;
10272 			hblkpa = hmebp->hmeh_nextpa;
10273 			prevpa = 0;
10274 			pr_hblk = NULL;
10275 			while (hmeblkp) {
10276 				/*
10277 				 * check if it is a hmeblk that is not locked
10278 				 * and not shared. skip shadow hmeblks with
10279 				 * shadow_mask set i.e valid count non zero.
10280 				 */
10281 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10282 				    (hmeblkp->hblk_shw_bit == 0 ||
10283 					hmeblkp->hblk_vcnt == 0) &&
10284 				    (hmeblkp->hblk_lckcnt == 0)) {
10285 					/*
10286 					 * there is a high probability that we
10287 					 * will find a free one. search some
10288 					 * buckets for a free hmeblk initially
10289 					 * before unloading a valid hmeblk.
10290 					 */
10291 					if ((hmeblkp->hblk_vcnt == 0 &&
10292 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10293 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10294 						if (sfmmu_steal_this_hblk(hmebp,
10295 						    hmeblkp, hblkpa, prevpa,
10296 						    pr_hblk)) {
10297 							/*
10298 							 * Hblk is unloaded
10299 							 * successfully
10300 							 */
10301 							break;
10302 						}
10303 					}
10304 				}
10305 				pr_hblk = hmeblkp;
10306 				prevpa = hblkpa;
10307 				hblkpa = hmeblkp->hblk_nextpa;
10308 				hmeblkp = hmeblkp->hblk_next;
10309 			}
10310 
10311 			SFMMU_HASH_UNLOCK(hmebp);
10312 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10313 				hmebp = uhme_hash;
10314 		}
10315 		uhmehash_steal_hand = hmebp;
10316 
10317 		if (hmeblkp != NULL)
10318 			break;
10319 
10320 		/*
10321 		 * in the worst case, look for a free one in the kernel
10322 		 * hash table.
10323 		 */
10324 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10325 			SFMMU_HASH_LOCK(hmebp);
10326 			hmeblkp = hmebp->hmeblkp;
10327 			hblkpa = hmebp->hmeh_nextpa;
10328 			prevpa = 0;
10329 			pr_hblk = NULL;
10330 			while (hmeblkp) {
10331 				/*
10332 				 * check if it is free hmeblk
10333 				 */
10334 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10335 				    (hmeblkp->hblk_lckcnt == 0) &&
10336 				    (hmeblkp->hblk_vcnt == 0) &&
10337 				    (hmeblkp->hblk_hmecnt == 0)) {
10338 					if (sfmmu_steal_this_hblk(hmebp,
10339 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10340 						break;
10341 					} else {
10342 						/*
10343 						 * Cannot fail since we have
10344 						 * hash lock.
10345 						 */
10346 						panic("fail to steal?");
10347 					}
10348 				}
10349 
10350 				pr_hblk = hmeblkp;
10351 				prevpa = hblkpa;
10352 				hblkpa = hmeblkp->hblk_nextpa;
10353 				hmeblkp = hmeblkp->hblk_next;
10354 			}
10355 
10356 			SFMMU_HASH_UNLOCK(hmebp);
10357 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10358 				hmebp = khme_hash;
10359 		}
10360 
10361 		if (hmeblkp != NULL)
10362 			break;
10363 		sfmmu_hblk_steal_twice++;
10364 	}
10365 	return (hmeblkp);
10366 }
10367 
10368 /*
10369  * This routine does real work to prepare a hblk to be "stolen" by
10370  * unloading the mappings, updating shadow counts ....
10371  * It returns 1 if the block is ready to be reused (stolen), or 0
10372  * means the block cannot be stolen yet- pageunload is still working
10373  * on this hblk.
10374  */
10375 static int
10376 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10377 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10378 {
10379 	int shw_size, vshift;
10380 	struct hme_blk *shw_hblkp;
10381 	uintptr_t vaddr;
10382 	uint_t shw_mask, newshw_mask;
10383 
10384 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10385 
10386 	/*
10387 	 * check if the hmeblk is free, unload if necessary
10388 	 */
10389 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10390 		sfmmu_t *sfmmup;
10391 		demap_range_t dmr;
10392 
10393 		sfmmup = hblktosfmmu(hmeblkp);
10394 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10395 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10396 		    (caddr_t)get_hblk_base(hmeblkp),
10397 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10398 		DEMAP_RANGE_FLUSH(&dmr);
10399 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10400 			/*
10401 			 * Pageunload is working on the same hblk.
10402 			 */
10403 			return (0);
10404 		}
10405 
10406 		sfmmu_hblk_steal_unload_count++;
10407 	}
10408 
10409 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10410 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10411 
10412 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10413 	hmeblkp->hblk_nextpa = hblkpa;
10414 
10415 	shw_hblkp = hmeblkp->hblk_shadow;
10416 	if (shw_hblkp) {
10417 		shw_size = get_hblk_ttesz(shw_hblkp);
10418 		vaddr = get_hblk_base(hmeblkp);
10419 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10420 		ASSERT(vshift < 8);
10421 		/*
10422 		 * Atomically clear shadow mask bit
10423 		 */
10424 		do {
10425 			shw_mask = shw_hblkp->hblk_shw_mask;
10426 			ASSERT(shw_mask & (1 << vshift));
10427 			newshw_mask = shw_mask & ~(1 << vshift);
10428 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10429 				shw_mask, newshw_mask);
10430 		} while (newshw_mask != shw_mask);
10431 		hmeblkp->hblk_shadow = NULL;
10432 	}
10433 
10434 	/*
10435 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10436 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10437 	 * we are indeed allocating a shadow hmeblk.
10438 	 */
10439 	hmeblkp->hblk_shw_bit = 0;
10440 
10441 	sfmmu_hblk_steal_count++;
10442 	SFMMU_STAT(sf_steal_count);
10443 
10444 	return (1);
10445 }
10446 
10447 struct hme_blk *
10448 sfmmu_hmetohblk(struct sf_hment *sfhme)
10449 {
10450 	struct hme_blk *hmeblkp;
10451 	struct sf_hment *sfhme0;
10452 	struct hme_blk *hblk_dummy = 0;
10453 
10454 	/*
10455 	 * No dummy sf_hments, please.
10456 	 */
10457 	ASSERT(sfhme->hme_tte.ll != 0);
10458 
10459 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10460 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10461 		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10462 
10463 	return (hmeblkp);
10464 }
10465 
10466 /*
10467  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10468  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10469  * KM_SLEEP allocation.
10470  *
10471  * Return 0 on success, -1 otherwise.
10472  */
10473 static void
10474 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10475 {
10476 	struct tsb_info *tsbinfop, *next;
10477 	tsb_replace_rc_t rc;
10478 	boolean_t gotfirst = B_FALSE;
10479 
10480 	ASSERT(sfmmup != ksfmmup);
10481 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10482 
10483 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10484 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10485 	}
10486 
10487 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10488 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10489 	} else {
10490 		return;
10491 	}
10492 
10493 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10494 
10495 	/*
10496 	 * Loop over all tsbinfo's replacing them with ones that actually have
10497 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10498 	 */
10499 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10500 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10501 		next = tsbinfop->tsb_next;
10502 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10503 		    hatlockp, TSB_SWAPIN);
10504 		if (rc != TSB_SUCCESS) {
10505 			break;
10506 		}
10507 		gotfirst = B_TRUE;
10508 	}
10509 
10510 	switch (rc) {
10511 	case TSB_SUCCESS:
10512 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10513 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10514 		return;
10515 	case TSB_ALLOCFAIL:
10516 		break;
10517 	default:
10518 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10519 		    "%d", rc);
10520 	}
10521 
10522 	/*
10523 	 * In this case, we failed to get one of our TSBs.  If we failed to
10524 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10525 	 * and throw away the tsbinfos, starting where the allocation failed;
10526 	 * we can get by with just one TSB as long as we don't leave the
10527 	 * SWAPPED tsbinfo structures lying around.
10528 	 */
10529 	tsbinfop = sfmmup->sfmmu_tsb;
10530 	next = tsbinfop->tsb_next;
10531 	tsbinfop->tsb_next = NULL;
10532 
10533 	sfmmu_hat_exit(hatlockp);
10534 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10535 		next = tsbinfop->tsb_next;
10536 		sfmmu_tsbinfo_free(tsbinfop);
10537 	}
10538 	hatlockp = sfmmu_hat_enter(sfmmup);
10539 
10540 	/*
10541 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10542 	 * pages.
10543 	 */
10544 	if (!gotfirst) {
10545 		tsbinfop = sfmmup->sfmmu_tsb;
10546 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10547 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10548 		ASSERT(rc == TSB_SUCCESS);
10549 	} else {
10550 		/* update machine specific tsbinfo */
10551 		sfmmu_setup_tsbinfo(sfmmup);
10552 	}
10553 
10554 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10555 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10556 }
10557 
10558 /*
10559  * Handle exceptions for low level tsb_handler.
10560  *
10561  * There are many scenarios that could land us here:
10562  *
10563  * If the context is invalid we land here. The context can be invalid
10564  * for 3 reasons: 1) we couldn't allocate a new context and now need to
10565  * perform a wrap around operation in order to allocate a new context.
10566  * 2) Context was invalidated to change pagesize programming 3) ISMs or
10567  * TSBs configuration is changeing for this process and we are forced into
10568  * here to do a syncronization operation. If the context is valid we can
10569  * be here from window trap hanlder. In this case just call trap to handle
10570  * the fault.
10571  *
10572  * Note that the process will run in INVALID_CONTEXT before
10573  * faulting into here and subsequently loading the MMU registers
10574  * (including the TSB base register) associated with this process.
10575  * For this reason, the trap handlers must all test for
10576  * INVALID_CONTEXT before attempting to access any registers other
10577  * than the context registers.
10578  */
10579 void
10580 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10581 {
10582 	sfmmu_t *sfmmup;
10583 	uint_t ctxnum;
10584 	klwp_id_t lwp;
10585 	char lwp_save_state;
10586 	hatlock_t *hatlockp;
10587 	struct tsb_info *tsbinfop;
10588 
10589 	SFMMU_STAT(sf_tsb_exceptions);
10590 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
10591 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10592 	ctxnum = tagaccess & TAGACC_CTX_MASK;
10593 
10594 	ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT);
10595 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10596 	/*
10597 	 * First, make sure we come out of here with a valid ctx,
10598 	 * since if we don't get one we'll simply loop on the
10599 	 * faulting instruction.
10600 	 *
10601 	 * If the ISM mappings are changing, the TSB is being relocated, or
10602 	 * the process is swapped out we serialize behind the controlling
10603 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10604 	 * Otherwise we synchronize with the context stealer or the thread
10605 	 * that required us to change out our MMU registers (such
10606 	 * as a thread changing out our TSB while we were running) by
10607 	 * locking the HAT and grabbing the rwlock on the context as a
10608 	 * reader temporarily.
10609 	 */
10610 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
10611 	    ctxnum == INVALID_CONTEXT);
10612 
10613 	if (ctxnum == INVALID_CONTEXT) {
10614 		/*
10615 		 * Must set lwp state to LWP_SYS before
10616 		 * trying to acquire any adaptive lock
10617 		 */
10618 		lwp = ttolwp(curthread);
10619 		ASSERT(lwp);
10620 		lwp_save_state = lwp->lwp_state;
10621 		lwp->lwp_state = LWP_SYS;
10622 
10623 		hatlockp = sfmmu_hat_enter(sfmmup);
10624 retry:
10625 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10626 		    tsbinfop = tsbinfop->tsb_next) {
10627 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10628 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10629 				    HATLOCK_MUTEXP(hatlockp));
10630 				goto retry;
10631 			}
10632 		}
10633 
10634 		/*
10635 		 * Wait for ISM maps to be updated.
10636 		 */
10637 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10638 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10639 			    HATLOCK_MUTEXP(hatlockp));
10640 			goto retry;
10641 		}
10642 
10643 		/*
10644 		 * If we're swapping in, get TSB(s).  Note that we must do
10645 		 * this before we get a ctx or load the MMU state.  Once
10646 		 * we swap in we have to recheck to make sure the TSB(s) and
10647 		 * ISM mappings didn't change while we slept.
10648 		 */
10649 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10650 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10651 			goto retry;
10652 		}
10653 
10654 		sfmmu_get_ctx(sfmmup);
10655 
10656 		sfmmu_hat_exit(hatlockp);
10657 		/*
10658 		 * Must restore lwp_state if not calling
10659 		 * trap() for further processing. Restore
10660 		 * it anyway.
10661 		 */
10662 		lwp->lwp_state = lwp_save_state;
10663 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10664 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10665 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10666 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10667 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10668 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10669 			return;
10670 		}
10671 		if (traptype == T_DATA_PROT) {
10672 			traptype = T_DATA_MMU_MISS;
10673 		}
10674 	}
10675 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10676 }
10677 
10678 /*
10679  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10680  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10681  * rather than spinning to avoid send mondo timeouts with
10682  * interrupts enabled. When the lock is acquired it is immediately
10683  * released and we return back to sfmmu_vatopfn just after
10684  * the GET_TTE call.
10685  */
10686 void
10687 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10688 {
10689 	struct page	**pp;
10690 
10691 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10692 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10693 }
10694 
10695 /*
10696  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10697  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10698  * cross traps which cannot be handled while spinning in the
10699  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10700  * mutex, which is held by the holder of the suspend bit, and then
10701  * retry the trapped instruction after unwinding.
10702  */
10703 /*ARGSUSED*/
10704 void
10705 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10706 {
10707 	ASSERT(curthread != kreloc_thread);
10708 	mutex_enter(&kpr_suspendlock);
10709 	mutex_exit(&kpr_suspendlock);
10710 }
10711 
10712 /*
10713  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10714  * This routine may be called with all cpu's captured. Therefore, the
10715  * caller is responsible for holding all locks and disabling kernel
10716  * preemption.
10717  */
10718 /* ARGSUSED */
10719 static void
10720 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10721 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10722 {
10723 	cpuset_t 	cpuset;
10724 	caddr_t 	va;
10725 	ism_ment_t	*ment;
10726 	sfmmu_t		*sfmmup;
10727 #ifdef VAC
10728 	int 		vcolor;
10729 #endif
10730 	int		ttesz;
10731 
10732 	/*
10733 	 * Walk the ism_hat's mapping list and flush the page
10734 	 * from every hat sharing this ism_hat. This routine
10735 	 * may be called while all cpu's have been captured.
10736 	 * Therefore we can't attempt to grab any locks. For now
10737 	 * this means we will protect the ism mapping list under
10738 	 * a single lock which will be grabbed by the caller.
10739 	 * If hat_share/unshare scalibility becomes a performance
10740 	 * problem then we may need to re-think ism mapping list locking.
10741 	 */
10742 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10743 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10744 	addr = addr - ISMID_STARTADDR;
10745 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10746 
10747 		sfmmup = ment->iment_hat;
10748 
10749 		va = ment->iment_base_va;
10750 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10751 
10752 		/*
10753 		 * Flush TSB of ISM mappings.
10754 		 */
10755 		ttesz = get_hblk_ttesz(hmeblkp);
10756 		if (ttesz == TTE8K || ttesz == TTE4M) {
10757 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10758 		} else {
10759 			caddr_t sva = va;
10760 			caddr_t eva;
10761 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10762 			eva = sva + get_hblk_span(hmeblkp);
10763 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10764 		}
10765 
10766 		cpuset = sfmmup->sfmmu_cpusran;
10767 		CPUSET_AND(cpuset, cpu_ready_set);
10768 		CPUSET_DEL(cpuset, CPU->cpu_id);
10769 
10770 		SFMMU_XCALL_STATS(sfmmup);
10771 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10772 		    (uint64_t)sfmmup);
10773 
10774 		vtag_flushpage(va, (uint64_t)sfmmup);
10775 
10776 #ifdef VAC
10777 		/*
10778 		 * Flush D$
10779 		 * When flushing D$ we must flush all
10780 		 * cpu's. See sfmmu_cache_flush().
10781 		 */
10782 		if (cache_flush_flag == CACHE_FLUSH) {
10783 			cpuset = cpu_ready_set;
10784 			CPUSET_DEL(cpuset, CPU->cpu_id);
10785 
10786 			SFMMU_XCALL_STATS(sfmmup);
10787 			vcolor = addr_to_vcolor(va);
10788 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10789 			vac_flushpage(pfnum, vcolor);
10790 		}
10791 #endif	/* VAC */
10792 	}
10793 }
10794 
10795 /*
10796  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10797  * a particular virtual address and ctx.  If noflush is set we do not
10798  * flush the TLB/TSB.  This function may or may not be called with the
10799  * HAT lock held.
10800  */
10801 static void
10802 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10803 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10804 	int hat_lock_held)
10805 {
10806 #ifdef VAC
10807 	int vcolor;
10808 #endif
10809 	cpuset_t cpuset;
10810 	hatlock_t *hatlockp;
10811 
10812 #if defined(lint) && !defined(VAC)
10813 	pfnum = pfnum;
10814 	cpu_flag = cpu_flag;
10815 	cache_flush_flag = cache_flush_flag;
10816 #endif
10817 	/*
10818 	 * There is no longer a need to protect against ctx being
10819 	 * stolen here since we don't store the ctx in the TSB anymore.
10820 	 */
10821 #ifdef VAC
10822 	vcolor = addr_to_vcolor(addr);
10823 #endif
10824 
10825 	/*
10826 	 * We must hold the hat lock during the flush of TLB,
10827 	 * to avoid a race with sfmmu_invalidate_ctx(), where
10828 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10829 	 * causing TLB demap routine to skip flush on that MMU.
10830 	 * If the context on a MMU has already been set to
10831 	 * INVALID_CONTEXT, we just get an extra flush on
10832 	 * that MMU.
10833 	 */
10834 	if (!hat_lock_held && !tlb_noflush)
10835 		hatlockp = sfmmu_hat_enter(sfmmup);
10836 
10837 	kpreempt_disable();
10838 	if (!tlb_noflush) {
10839 		/*
10840 		 * Flush the TSB and TLB.
10841 		 */
10842 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10843 
10844 		cpuset = sfmmup->sfmmu_cpusran;
10845 		CPUSET_AND(cpuset, cpu_ready_set);
10846 		CPUSET_DEL(cpuset, CPU->cpu_id);
10847 
10848 		SFMMU_XCALL_STATS(sfmmup);
10849 
10850 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10851 		    (uint64_t)sfmmup);
10852 
10853 		vtag_flushpage(addr, (uint64_t)sfmmup);
10854 	}
10855 
10856 	if (!hat_lock_held && !tlb_noflush)
10857 		sfmmu_hat_exit(hatlockp);
10858 
10859 #ifdef VAC
10860 	/*
10861 	 * Flush the D$
10862 	 *
10863 	 * Even if the ctx is stolen, we need to flush the
10864 	 * cache. Our ctx stealer only flushes the TLBs.
10865 	 */
10866 	if (cache_flush_flag == CACHE_FLUSH) {
10867 		if (cpu_flag & FLUSH_ALL_CPUS) {
10868 			cpuset = cpu_ready_set;
10869 		} else {
10870 			cpuset = sfmmup->sfmmu_cpusran;
10871 			CPUSET_AND(cpuset, cpu_ready_set);
10872 		}
10873 		CPUSET_DEL(cpuset, CPU->cpu_id);
10874 		SFMMU_XCALL_STATS(sfmmup);
10875 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10876 		vac_flushpage(pfnum, vcolor);
10877 	}
10878 #endif	/* VAC */
10879 	kpreempt_enable();
10880 }
10881 
10882 /*
10883  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
10884  * address and ctx.  If noflush is set we do not currently do anything.
10885  * This function may or may not be called with the HAT lock held.
10886  */
10887 static void
10888 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10889 	int tlb_noflush, int hat_lock_held)
10890 {
10891 	cpuset_t cpuset;
10892 	hatlock_t *hatlockp;
10893 
10894 	/*
10895 	 * If the process is exiting we have nothing to do.
10896 	 */
10897 	if (tlb_noflush)
10898 		return;
10899 
10900 	/*
10901 	 * Flush TSB.
10902 	 */
10903 	if (!hat_lock_held)
10904 		hatlockp = sfmmu_hat_enter(sfmmup);
10905 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10906 
10907 	kpreempt_disable();
10908 
10909 	cpuset = sfmmup->sfmmu_cpusran;
10910 	CPUSET_AND(cpuset, cpu_ready_set);
10911 	CPUSET_DEL(cpuset, CPU->cpu_id);
10912 
10913 	SFMMU_XCALL_STATS(sfmmup);
10914 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
10915 
10916 	vtag_flushpage(addr, (uint64_t)sfmmup);
10917 
10918 	if (!hat_lock_held)
10919 		sfmmu_hat_exit(hatlockp);
10920 
10921 	kpreempt_enable();
10922 
10923 }
10924 
10925 /*
10926  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
10927  * call handler that can flush a range of pages to save on xcalls.
10928  */
10929 static int sfmmu_xcall_save;
10930 
10931 static void
10932 sfmmu_tlb_range_demap(demap_range_t *dmrp)
10933 {
10934 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
10935 	hatlock_t *hatlockp;
10936 	cpuset_t cpuset;
10937 	uint64_t sfmmu_pgcnt;
10938 	pgcnt_t pgcnt = 0;
10939 	int pgunload = 0;
10940 	int dirtypg = 0;
10941 	caddr_t addr = dmrp->dmr_addr;
10942 	caddr_t eaddr;
10943 	uint64_t bitvec = dmrp->dmr_bitvec;
10944 
10945 	ASSERT(bitvec & 1);
10946 
10947 	/*
10948 	 * Flush TSB and calculate number of pages to flush.
10949 	 */
10950 	while (bitvec != 0) {
10951 		dirtypg = 0;
10952 		/*
10953 		 * Find the first page to flush and then count how many
10954 		 * pages there are after it that also need to be flushed.
10955 		 * This way the number of TSB flushes is minimized.
10956 		 */
10957 		while ((bitvec & 1) == 0) {
10958 			pgcnt++;
10959 			addr += MMU_PAGESIZE;
10960 			bitvec >>= 1;
10961 		}
10962 		while (bitvec & 1) {
10963 			dirtypg++;
10964 			bitvec >>= 1;
10965 		}
10966 		eaddr = addr + ptob(dirtypg);
10967 		hatlockp = sfmmu_hat_enter(sfmmup);
10968 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
10969 		sfmmu_hat_exit(hatlockp);
10970 		pgunload += dirtypg;
10971 		addr = eaddr;
10972 		pgcnt += dirtypg;
10973 	}
10974 
10975 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
10976 	if (sfmmup->sfmmu_free == 0) {
10977 		addr = dmrp->dmr_addr;
10978 		bitvec = dmrp->dmr_bitvec;
10979 
10980 		/*
10981 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
10982 		 * as it will be used to pack argument for xt_some
10983 		 */
10984 		ASSERT((pgcnt > 0) &&
10985 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
10986 
10987 		/*
10988 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
10989 		 * the low 6 bits of sfmmup. This is doable since pgcnt
10990 		 * always >= 1.
10991 		 */
10992 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
10993 		sfmmu_pgcnt = (uint64_t)sfmmup |
10994 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
10995 
10996 		/*
10997 		 * We must hold the hat lock during the flush of TLB,
10998 		 * to avoid a race with sfmmu_invalidate_ctx(), where
10999 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
11000 		 * causing TLB demap routine to skip flush on that MMU.
11001 		 * If the context on a MMU has already been set to
11002 		 * INVALID_CONTEXT, we just get an extra flush on
11003 		 * that MMU.
11004 		 */
11005 		hatlockp = sfmmu_hat_enter(sfmmup);
11006 		kpreempt_disable();
11007 
11008 		cpuset = sfmmup->sfmmu_cpusran;
11009 		CPUSET_AND(cpuset, cpu_ready_set);
11010 		CPUSET_DEL(cpuset, CPU->cpu_id);
11011 
11012 		SFMMU_XCALL_STATS(sfmmup);
11013 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11014 		    sfmmu_pgcnt);
11015 
11016 		for (; bitvec != 0; bitvec >>= 1) {
11017 			if (bitvec & 1)
11018 				vtag_flushpage(addr, (uint64_t)sfmmup);
11019 			addr += MMU_PAGESIZE;
11020 		}
11021 		kpreempt_enable();
11022 		sfmmu_hat_exit(hatlockp);
11023 
11024 		sfmmu_xcall_save += (pgunload-1);
11025 	}
11026 	dmrp->dmr_bitvec = 0;
11027 }
11028 
11029 /*
11030  * In cases where we need to synchronize with TLB/TSB miss trap
11031  * handlers, _and_ need to flush the TLB, it's a lot easier to
11032  * throw away the context from the process than to do a
11033  * special song and dance to keep things consistent for the
11034  * handlers.
11035  *
11036  * Since the process suddenly ends up without a context and our caller
11037  * holds the hat lock, threads that fault after this function is called
11038  * will pile up on the lock.  We can then do whatever we need to
11039  * atomically from the context of the caller.  The first blocked thread
11040  * to resume executing will get the process a new context, and the
11041  * process will resume executing.
11042  *
11043  * One added advantage of this approach is that on MMUs that
11044  * support a "flush all" operation, we will delay the flush until
11045  * cnum wrap-around, and then flush the TLB one time.  This
11046  * is rather rare, so it's a lot less expensive than making 8000
11047  * x-calls to flush the TLB 8000 times.
11048  *
11049  * A per-process (PP) lock is used to synchronize ctx allocations in
11050  * resume() and ctx invalidations here.
11051  */
11052 static void
11053 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
11054 {
11055 	cpuset_t cpuset;
11056 	int cnum, currcnum;
11057 	mmu_ctx_t *mmu_ctxp;
11058 	int i;
11059 	uint_t pstate_save;
11060 
11061 	SFMMU_STAT(sf_ctx_inv);
11062 
11063 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11064 	ASSERT(sfmmup != ksfmmup);
11065 
11066 	kpreempt_disable();
11067 
11068 	mmu_ctxp = CPU_MMU_CTXP(CPU);
11069 	ASSERT(mmu_ctxp);
11070 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
11071 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
11072 
11073 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
11074 
11075 	pstate_save = sfmmu_disable_intrs();
11076 
11077 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
11078 	/* set HAT cnum invalid across all context domains. */
11079 	for (i = 0; i < max_mmu_ctxdoms; i++) {
11080 
11081 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
11082 		if (cnum == INVALID_CONTEXT) {
11083 			continue;
11084 		}
11085 
11086 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
11087 	}
11088 	membar_enter();	/* make sure globally visible to all CPUs */
11089 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
11090 
11091 	sfmmu_enable_intrs(pstate_save);
11092 
11093 	cpuset = sfmmup->sfmmu_cpusran;
11094 	CPUSET_DEL(cpuset, CPU->cpu_id);
11095 	CPUSET_AND(cpuset, cpu_ready_set);
11096 	if (!CPUSET_ISNULL(cpuset)) {
11097 		SFMMU_XCALL_STATS(sfmmup);
11098 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11099 		    (uint64_t)sfmmup, INVALID_CONTEXT);
11100 		xt_sync(cpuset);
11101 		SFMMU_STAT(sf_tsb_raise_exception);
11102 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
11103 	}
11104 
11105 	/*
11106 	 * If the hat to-be-invalidated is the same as the current
11107 	 * process on local CPU we need to invalidate
11108 	 * this CPU context as well.
11109 	 */
11110 	if ((sfmmu_getctx_sec() == currcnum) &&
11111 	    (currcnum != INVALID_CONTEXT)) {
11112 		sfmmu_setctx_sec(INVALID_CONTEXT);
11113 		sfmmu_clear_utsbinfo();
11114 	}
11115 
11116 	kpreempt_enable();
11117 
11118 	/*
11119 	 * we hold the hat lock, so nobody should allocate a context
11120 	 * for us yet
11121 	 */
11122 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
11123 }
11124 
11125 #ifdef VAC
11126 /*
11127  * We need to flush the cache in all cpus.  It is possible that
11128  * a process referenced a page as cacheable but has sinced exited
11129  * and cleared the mapping list.  We still to flush it but have no
11130  * state so all cpus is the only alternative.
11131  */
11132 void
11133 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11134 {
11135 	cpuset_t cpuset;
11136 
11137 	kpreempt_disable();
11138 	cpuset = cpu_ready_set;
11139 	CPUSET_DEL(cpuset, CPU->cpu_id);
11140 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11141 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11142 	xt_sync(cpuset);
11143 	vac_flushpage(pfnum, vcolor);
11144 	kpreempt_enable();
11145 }
11146 
11147 void
11148 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11149 {
11150 	cpuset_t cpuset;
11151 
11152 	ASSERT(vcolor >= 0);
11153 
11154 	kpreempt_disable();
11155 	cpuset = cpu_ready_set;
11156 	CPUSET_DEL(cpuset, CPU->cpu_id);
11157 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11158 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11159 	xt_sync(cpuset);
11160 	vac_flushcolor(vcolor, pfnum);
11161 	kpreempt_enable();
11162 }
11163 #endif	/* VAC */
11164 
11165 /*
11166  * We need to prevent processes from accessing the TSB using a cached physical
11167  * address.  It's alright if they try to access the TSB via virtual address
11168  * since they will just fault on that virtual address once the mapping has
11169  * been suspended.
11170  */
11171 #pragma weak sendmondo_in_recover
11172 
11173 /* ARGSUSED */
11174 static int
11175 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11176 {
11177 	hatlock_t *hatlockp;
11178 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11179 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11180 	extern uint32_t sendmondo_in_recover;
11181 
11182 	if (flags != HAT_PRESUSPEND)
11183 		return (0);
11184 
11185 	hatlockp = sfmmu_hat_enter(sfmmup);
11186 
11187 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11188 
11189 	/*
11190 	 * For Cheetah+ Erratum 25:
11191 	 * Wait for any active recovery to finish.  We can't risk
11192 	 * relocating the TSB of the thread running mondo_recover_proc()
11193 	 * since, if we did that, we would deadlock.  The scenario we are
11194 	 * trying to avoid is as follows:
11195 	 *
11196 	 * THIS CPU			RECOVER CPU
11197 	 * --------			-----------
11198 	 *				Begins recovery, walking through TSB
11199 	 * hat_pagesuspend() TSB TTE
11200 	 *				TLB miss on TSB TTE, spins at TL1
11201 	 * xt_sync()
11202 	 *	send_mondo_timeout()
11203 	 *	mondo_recover_proc()
11204 	 *	((deadlocked))
11205 	 *
11206 	 * The second half of the workaround is that mondo_recover_proc()
11207 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11208 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11209 	 * and hence avoiding the TLB miss that could result in a deadlock.
11210 	 */
11211 	if (&sendmondo_in_recover) {
11212 		membar_enter();	/* make sure RELOC flag visible */
11213 		while (sendmondo_in_recover) {
11214 			drv_usecwait(1);
11215 			membar_consumer();
11216 		}
11217 	}
11218 
11219 	sfmmu_invalidate_ctx(sfmmup);
11220 	sfmmu_hat_exit(hatlockp);
11221 
11222 	return (0);
11223 }
11224 
11225 /* ARGSUSED */
11226 static int
11227 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11228 	void *tsbinfo, pfn_t newpfn)
11229 {
11230 	hatlock_t *hatlockp;
11231 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11232 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11233 
11234 	if (flags != HAT_POSTUNSUSPEND)
11235 		return (0);
11236 
11237 	hatlockp = sfmmu_hat_enter(sfmmup);
11238 
11239 	SFMMU_STAT(sf_tsb_reloc);
11240 
11241 	/*
11242 	 * The process may have swapped out while we were relocating one
11243 	 * of its TSBs.  If so, don't bother doing the setup since the
11244 	 * process can't be using the memory anymore.
11245 	 */
11246 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11247 		ASSERT(va == tsbinfop->tsb_va);
11248 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11249 		sfmmu_setup_tsbinfo(sfmmup);
11250 
11251 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11252 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11253 			    TSB_BYTES(tsbinfop->tsb_szc));
11254 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11255 		}
11256 	}
11257 
11258 	membar_exit();
11259 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11260 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11261 
11262 	sfmmu_hat_exit(hatlockp);
11263 
11264 	return (0);
11265 }
11266 
11267 /*
11268  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11269  * allocate a TSB here, depending on the flags passed in.
11270  */
11271 static int
11272 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11273 	uint_t flags, sfmmu_t *sfmmup)
11274 {
11275 	int err;
11276 
11277 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11278 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11279 
11280 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11281 	    tsb_szc, flags, sfmmup)) != 0) {
11282 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11283 		SFMMU_STAT(sf_tsb_allocfail);
11284 		*tsbinfopp = NULL;
11285 		return (err);
11286 	}
11287 	SFMMU_STAT(sf_tsb_alloc);
11288 
11289 	/*
11290 	 * Bump the TSB size counters for this TSB size.
11291 	 */
11292 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11293 	return (0);
11294 }
11295 
11296 static void
11297 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11298 {
11299 	caddr_t tsbva = tsbinfo->tsb_va;
11300 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11301 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11302 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11303 
11304 	/*
11305 	 * If we allocated this TSB from relocatable kernel memory, then we
11306 	 * need to uninstall the callback handler.
11307 	 */
11308 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11309 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11310 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11311 		page_t **ppl;
11312 		int ret;
11313 
11314 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11315 		ASSERT(ret == 0);
11316 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11317 		    0, NULL);
11318 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11319 	}
11320 
11321 	if (kmem_cachep != NULL) {
11322 		kmem_cache_free(kmem_cachep, tsbva);
11323 	} else {
11324 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11325 	}
11326 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11327 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11328 }
11329 
11330 static void
11331 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11332 {
11333 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11334 		sfmmu_tsb_free(tsbinfo);
11335 	}
11336 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11337 
11338 }
11339 
11340 /*
11341  * Setup all the references to physical memory for this tsbinfo.
11342  * The underlying page(s) must be locked.
11343  */
11344 static void
11345 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11346 {
11347 	ASSERT(pfn != PFN_INVALID);
11348 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11349 
11350 #ifndef sun4v
11351 	if (tsbinfo->tsb_szc == 0) {
11352 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11353 		    PROT_WRITE|PROT_READ, TTE8K);
11354 	} else {
11355 		/*
11356 		 * Round down PA and use a large mapping; the handlers will
11357 		 * compute the TSB pointer at the correct offset into the
11358 		 * big virtual page.  NOTE: this assumes all TSBs larger
11359 		 * than 8K must come from physically contiguous slabs of
11360 		 * size tsb_slab_size.
11361 		 */
11362 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11363 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11364 	}
11365 	tsbinfo->tsb_pa = ptob(pfn);
11366 
11367 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11368 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11369 
11370 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11371 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11372 #else /* sun4v */
11373 	tsbinfo->tsb_pa = ptob(pfn);
11374 #endif /* sun4v */
11375 }
11376 
11377 
11378 /*
11379  * Returns zero on success, ENOMEM if over the high water mark,
11380  * or EAGAIN if the caller needs to retry with a smaller TSB
11381  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11382  *
11383  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11384  * is specified and the TSB requested is PAGESIZE, though it
11385  * may sleep waiting for memory if sufficient memory is not
11386  * available.
11387  */
11388 static int
11389 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11390     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11391 {
11392 	caddr_t vaddr = NULL;
11393 	caddr_t slab_vaddr;
11394 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11395 	int tsbbytes = TSB_BYTES(tsbcode);
11396 	int lowmem = 0;
11397 	struct kmem_cache *kmem_cachep = NULL;
11398 	vmem_t *vmp = NULL;
11399 	lgrp_id_t lgrpid = LGRP_NONE;
11400 	pfn_t pfn;
11401 	uint_t cbflags = HAC_SLEEP;
11402 	page_t **pplist;
11403 	int ret;
11404 
11405 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11406 		flags |= TSB_ALLOC;
11407 
11408 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11409 
11410 	tsbinfo->tsb_sfmmu = sfmmup;
11411 
11412 	/*
11413 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11414 	 * return.
11415 	 */
11416 	if ((flags & TSB_ALLOC) == 0) {
11417 		tsbinfo->tsb_szc = tsbcode;
11418 		tsbinfo->tsb_ttesz_mask = tteszmask;
11419 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11420 		tsbinfo->tsb_pa = -1;
11421 		tsbinfo->tsb_tte.ll = 0;
11422 		tsbinfo->tsb_next = NULL;
11423 		tsbinfo->tsb_flags = TSB_SWAPPED;
11424 		tsbinfo->tsb_cache = NULL;
11425 		tsbinfo->tsb_vmp = NULL;
11426 		return (0);
11427 	}
11428 
11429 #ifdef DEBUG
11430 	/*
11431 	 * For debugging:
11432 	 * Randomly force allocation failures every tsb_alloc_mtbf
11433 	 * tries if TSB_FORCEALLOC is not specified.  This will
11434 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11435 	 * it is even, to allow testing of both failure paths...
11436 	 */
11437 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11438 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11439 		tsb_alloc_count = 0;
11440 		tsb_alloc_fail_mtbf++;
11441 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11442 	}
11443 #endif	/* DEBUG */
11444 
11445 	/*
11446 	 * Enforce high water mark if we are not doing a forced allocation
11447 	 * and are not shrinking a process' TSB.
11448 	 */
11449 	if ((flags & TSB_SHRINK) == 0 &&
11450 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11451 		if ((flags & TSB_FORCEALLOC) == 0)
11452 			return (ENOMEM);
11453 		lowmem = 1;
11454 	}
11455 
11456 	/*
11457 	 * Allocate from the correct location based upon the size of the TSB
11458 	 * compared to the base page size, and what memory conditions dictate.
11459 	 * Note we always do nonblocking allocations from the TSB arena since
11460 	 * we don't want memory fragmentation to cause processes to block
11461 	 * indefinitely waiting for memory; until the kernel algorithms that
11462 	 * coalesce large pages are improved this is our best option.
11463 	 *
11464 	 * Algorithm:
11465 	 *	If allocating a "large" TSB (>8K), allocate from the
11466 	 *		appropriate kmem_tsb_default_arena vmem arena
11467 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11468 	 *	tsb_forceheap is set
11469 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11470 	 *		KM_SLEEP (never fails)
11471 	 *	else
11472 	 *		Allocate from appropriate sfmmu_tsb_cache with
11473 	 *		KM_NOSLEEP
11474 	 *	endif
11475 	 */
11476 	if (tsb_lgrp_affinity)
11477 		lgrpid = lgrp_home_id(curthread);
11478 	if (lgrpid == LGRP_NONE)
11479 		lgrpid = 0;	/* use lgrp of boot CPU */
11480 
11481 	if (tsbbytes > MMU_PAGESIZE) {
11482 		vmp = kmem_tsb_default_arena[lgrpid];
11483 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11484 		    NULL, NULL, VM_NOSLEEP);
11485 #ifdef	DEBUG
11486 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11487 #else	/* !DEBUG */
11488 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11489 #endif	/* DEBUG */
11490 		kmem_cachep = sfmmu_tsb8k_cache;
11491 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11492 		ASSERT(vaddr != NULL);
11493 	} else {
11494 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11495 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11496 	}
11497 
11498 	tsbinfo->tsb_cache = kmem_cachep;
11499 	tsbinfo->tsb_vmp = vmp;
11500 
11501 	if (vaddr == NULL) {
11502 		return (EAGAIN);
11503 	}
11504 
11505 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11506 	kmem_cachep = tsbinfo->tsb_cache;
11507 
11508 	/*
11509 	 * If we are allocating from outside the cage, then we need to
11510 	 * register a relocation callback handler.  Note that for now
11511 	 * since pseudo mappings always hang off of the slab's root page,
11512 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11513 	 * hacky but it is good for performance.
11514 	 */
11515 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11516 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11517 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11518 		ASSERT(ret == 0);
11519 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11520 		    cbflags, (void *)tsbinfo, &pfn, NULL);
11521 
11522 		/*
11523 		 * Need to free up resources if we could not successfully
11524 		 * add the callback function and return an error condition.
11525 		 */
11526 		if (ret != 0) {
11527 			if (kmem_cachep) {
11528 				kmem_cache_free(kmem_cachep, vaddr);
11529 			} else {
11530 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11531 			}
11532 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11533 			    S_WRITE);
11534 			return (EAGAIN);
11535 		}
11536 	} else {
11537 		/*
11538 		 * Since allocation of 8K TSBs from heap is rare and occurs
11539 		 * during memory pressure we allocate them from permanent
11540 		 * memory rather than using callbacks to get the PFN.
11541 		 */
11542 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11543 	}
11544 
11545 	tsbinfo->tsb_va = vaddr;
11546 	tsbinfo->tsb_szc = tsbcode;
11547 	tsbinfo->tsb_ttesz_mask = tteszmask;
11548 	tsbinfo->tsb_next = NULL;
11549 	tsbinfo->tsb_flags = 0;
11550 
11551 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11552 
11553 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11554 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11555 	}
11556 
11557 	sfmmu_inv_tsb(vaddr, tsbbytes);
11558 	return (0);
11559 }
11560 
11561 /*
11562  * Initialize per cpu tsb and per cpu tsbmiss_area
11563  */
11564 void
11565 sfmmu_init_tsbs(void)
11566 {
11567 	int i;
11568 	struct tsbmiss	*tsbmissp;
11569 	struct kpmtsbm	*kpmtsbmp;
11570 #ifndef sun4v
11571 	extern int	dcache_line_mask;
11572 #endif /* sun4v */
11573 	extern uint_t	vac_colors;
11574 
11575 	/*
11576 	 * Init. tsb miss area.
11577 	 */
11578 	tsbmissp = tsbmiss_area;
11579 
11580 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11581 		/*
11582 		 * initialize the tsbmiss area.
11583 		 * Do this for all possible CPUs as some may be added
11584 		 * while the system is running. There is no cost to this.
11585 		 */
11586 		tsbmissp->ksfmmup = ksfmmup;
11587 #ifndef sun4v
11588 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11589 #endif /* sun4v */
11590 		tsbmissp->khashstart =
11591 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11592 		tsbmissp->uhashstart =
11593 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11594 		tsbmissp->khashsz = khmehash_num;
11595 		tsbmissp->uhashsz = uhmehash_num;
11596 	}
11597 
11598 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11599 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11600 
11601 	if (kpm_enable == 0)
11602 		return;
11603 
11604 	/* -- Begin KPM specific init -- */
11605 
11606 	if (kpm_smallpages) {
11607 		/*
11608 		 * If we're using base pagesize pages for seg_kpm
11609 		 * mappings, we use the kernel TSB since we can't afford
11610 		 * to allocate a second huge TSB for these mappings.
11611 		 */
11612 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11613 		kpm_tsbsz = ktsb_szcode;
11614 		kpmsm_tsbbase = kpm_tsbbase;
11615 		kpmsm_tsbsz = kpm_tsbsz;
11616 	} else {
11617 		/*
11618 		 * In VAC conflict case, just put the entries in the
11619 		 * kernel 8K indexed TSB for now so we can find them.
11620 		 * This could really be changed in the future if we feel
11621 		 * the need...
11622 		 */
11623 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11624 		kpmsm_tsbsz = ktsb_szcode;
11625 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11626 		kpm_tsbsz = ktsb4m_szcode;
11627 	}
11628 
11629 	kpmtsbmp = kpmtsbm_area;
11630 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11631 		/*
11632 		 * Initialize the kpmtsbm area.
11633 		 * Do this for all possible CPUs as some may be added
11634 		 * while the system is running. There is no cost to this.
11635 		 */
11636 		kpmtsbmp->vbase = kpm_vbase;
11637 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11638 		kpmtsbmp->sz_shift = kpm_size_shift;
11639 		kpmtsbmp->kpmp_shift = kpmp_shift;
11640 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11641 		if (kpm_smallpages == 0) {
11642 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11643 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11644 		} else {
11645 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11646 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11647 		}
11648 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11649 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11650 #ifdef	DEBUG
11651 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11652 #endif	/* DEBUG */
11653 		if (ktsb_phys)
11654 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11655 	}
11656 
11657 	/* -- End KPM specific init -- */
11658 }
11659 
11660 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11661 struct tsb_info ktsb_info[2];
11662 
11663 /*
11664  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11665  */
11666 void
11667 sfmmu_init_ktsbinfo()
11668 {
11669 	ASSERT(ksfmmup != NULL);
11670 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11671 	/*
11672 	 * Allocate tsbinfos for kernel and copy in data
11673 	 * to make debug easier and sun4v setup easier.
11674 	 */
11675 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11676 	ktsb_info[0].tsb_szc = ktsb_szcode;
11677 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11678 	ktsb_info[0].tsb_va = ktsb_base;
11679 	ktsb_info[0].tsb_pa = ktsb_pbase;
11680 	ktsb_info[0].tsb_flags = 0;
11681 	ktsb_info[0].tsb_tte.ll = 0;
11682 	ktsb_info[0].tsb_cache = NULL;
11683 
11684 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11685 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11686 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11687 	ktsb_info[1].tsb_va = ktsb4m_base;
11688 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11689 	ktsb_info[1].tsb_flags = 0;
11690 	ktsb_info[1].tsb_tte.ll = 0;
11691 	ktsb_info[1].tsb_cache = NULL;
11692 
11693 	/* Link them into ksfmmup. */
11694 	ktsb_info[0].tsb_next = &ktsb_info[1];
11695 	ktsb_info[1].tsb_next = NULL;
11696 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11697 
11698 	sfmmu_setup_tsbinfo(ksfmmup);
11699 }
11700 
11701 /*
11702  * Cache the last value returned from va_to_pa().  If the VA specified
11703  * in the current call to cached_va_to_pa() maps to the same Page (as the
11704  * previous call to cached_va_to_pa()), then compute the PA using
11705  * cached info, else call va_to_pa().
11706  *
11707  * Note: this function is neither MT-safe nor consistent in the presence
11708  * of multiple, interleaved threads.  This function was created to enable
11709  * an optimization used during boot (at a point when there's only one thread
11710  * executing on the "boot CPU", and before startup_vm() has been called).
11711  */
11712 static uint64_t
11713 cached_va_to_pa(void *vaddr)
11714 {
11715 	static uint64_t prev_vaddr_base = 0;
11716 	static uint64_t prev_pfn = 0;
11717 
11718 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11719 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11720 	} else {
11721 		uint64_t pa = va_to_pa(vaddr);
11722 
11723 		if (pa != ((uint64_t)-1)) {
11724 			/*
11725 			 * Computed physical address is valid.  Cache its
11726 			 * related info for the next cached_va_to_pa() call.
11727 			 */
11728 			prev_pfn = pa & MMU_PAGEMASK;
11729 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11730 		}
11731 
11732 		return (pa);
11733 	}
11734 }
11735 
11736 /*
11737  * Carve up our nucleus hblk region.  We may allocate more hblks than
11738  * asked due to rounding errors but we are guaranteed to have at least
11739  * enough space to allocate the requested number of hblk8's and hblk1's.
11740  */
11741 void
11742 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11743 {
11744 	struct hme_blk *hmeblkp;
11745 	size_t hme8blk_sz, hme1blk_sz;
11746 	size_t i;
11747 	size_t hblk8_bound;
11748 	ulong_t j = 0, k = 0;
11749 
11750 	ASSERT(addr != NULL && size != 0);
11751 
11752 	/* Need to use proper structure alignment */
11753 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11754 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11755 
11756 	nucleus_hblk8.list = (void *)addr;
11757 	nucleus_hblk8.index = 0;
11758 
11759 	/*
11760 	 * Use as much memory as possible for hblk8's since we
11761 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11762 	 * We need to hold back enough space for the hblk1's which
11763 	 * we'll allocate next.
11764 	 */
11765 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11766 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11767 		hmeblkp = (struct hme_blk *)addr;
11768 		addr += hme8blk_sz;
11769 		hmeblkp->hblk_nuc_bit = 1;
11770 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11771 	}
11772 	nucleus_hblk8.len = j;
11773 	ASSERT(j >= nhblk8);
11774 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11775 
11776 	nucleus_hblk1.list = (void *)addr;
11777 	nucleus_hblk1.index = 0;
11778 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11779 		hmeblkp = (struct hme_blk *)addr;
11780 		addr += hme1blk_sz;
11781 		hmeblkp->hblk_nuc_bit = 1;
11782 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11783 	}
11784 	ASSERT(k >= nhblk1);
11785 	nucleus_hblk1.len = k;
11786 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11787 }
11788 
11789 /*
11790  * This function is currently not supported on this platform. For what
11791  * it's supposed to do, see hat.c and hat_srmmu.c
11792  */
11793 /* ARGSUSED */
11794 faultcode_t
11795 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11796     uint_t flags)
11797 {
11798 	ASSERT(hat->sfmmu_xhat_provider == NULL);
11799 	return (FC_NOSUPPORT);
11800 }
11801 
11802 /*
11803  * Searchs the mapping list of the page for a mapping of the same size. If not
11804  * found the corresponding bit is cleared in the p_index field. When large
11805  * pages are more prevalent in the system, we can maintain the mapping list
11806  * in order and we don't have to traverse the list each time. Just check the
11807  * next and prev entries, and if both are of different size, we clear the bit.
11808  */
11809 static void
11810 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
11811 {
11812 	struct sf_hment *sfhmep;
11813 	struct hme_blk *hmeblkp;
11814 	int	index;
11815 	pgcnt_t	npgs;
11816 
11817 	ASSERT(ttesz > TTE8K);
11818 
11819 	ASSERT(sfmmu_mlist_held(pp));
11820 
11821 	ASSERT(PP_ISMAPPED_LARGE(pp));
11822 
11823 	/*
11824 	 * Traverse mapping list looking for another mapping of same size.
11825 	 * since we only want to clear index field if all mappings of
11826 	 * that size are gone.
11827 	 */
11828 
11829 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
11830 		hmeblkp = sfmmu_hmetohblk(sfhmep);
11831 		if (hmeblkp->hblk_xhat_bit)
11832 			continue;
11833 		if (hme_size(sfhmep) == ttesz) {
11834 			/*
11835 			 * another mapping of the same size. don't clear index.
11836 			 */
11837 			return;
11838 		}
11839 	}
11840 
11841 	/*
11842 	 * Clear the p_index bit for large page.
11843 	 */
11844 	index = PAGESZ_TO_INDEX(ttesz);
11845 	npgs = TTEPAGES(ttesz);
11846 	while (npgs-- > 0) {
11847 		ASSERT(pp->p_index & index);
11848 		pp->p_index &= ~index;
11849 		pp = PP_PAGENEXT(pp);
11850 	}
11851 }
11852 
11853 /*
11854  * return supported features
11855  */
11856 /* ARGSUSED */
11857 int
11858 hat_supported(enum hat_features feature, void *arg)
11859 {
11860 	switch (feature) {
11861 	case    HAT_SHARED_PT:
11862 	case	HAT_DYNAMIC_ISM_UNMAP:
11863 	case	HAT_VMODSORT:
11864 		return (1);
11865 	default:
11866 		return (0);
11867 	}
11868 }
11869 
11870 void
11871 hat_enter(struct hat *hat)
11872 {
11873 	hatlock_t	*hatlockp;
11874 
11875 	if (hat != ksfmmup) {
11876 		hatlockp = TSB_HASH(hat);
11877 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11878 	}
11879 }
11880 
11881 void
11882 hat_exit(struct hat *hat)
11883 {
11884 	hatlock_t	*hatlockp;
11885 
11886 	if (hat != ksfmmup) {
11887 		hatlockp = TSB_HASH(hat);
11888 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11889 	}
11890 }
11891 
11892 /*ARGSUSED*/
11893 void
11894 hat_reserve(struct as *as, caddr_t addr, size_t len)
11895 {
11896 }
11897 
11898 static void
11899 hat_kstat_init(void)
11900 {
11901 	kstat_t *ksp;
11902 
11903 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
11904 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
11905 		KSTAT_FLAG_VIRTUAL);
11906 	if (ksp) {
11907 		ksp->ks_data = (void *) &sfmmu_global_stat;
11908 		kstat_install(ksp);
11909 	}
11910 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
11911 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
11912 		KSTAT_FLAG_VIRTUAL);
11913 	if (ksp) {
11914 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
11915 		kstat_install(ksp);
11916 	}
11917 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
11918 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
11919 		KSTAT_FLAG_WRITABLE);
11920 	if (ksp) {
11921 		ksp->ks_update = sfmmu_kstat_percpu_update;
11922 		kstat_install(ksp);
11923 	}
11924 }
11925 
11926 /* ARGSUSED */
11927 static int
11928 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
11929 {
11930 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
11931 	struct tsbmiss *tsbm = tsbmiss_area;
11932 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
11933 	int i;
11934 
11935 	ASSERT(cpu_kstat);
11936 	if (rw == KSTAT_READ) {
11937 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
11938 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
11939 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
11940 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
11941 				tsbm->uprot_traps;
11942 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
11943 				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
11944 
11945 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
11946 				cpu_kstat->sf_tsb_hits =
11947 				(tsbm->itlb_misses + tsbm->dtlb_misses) -
11948 				(tsbm->utsb_misses + tsbm->ktsb_misses +
11949 				kpmtsbm->kpm_tsb_misses);
11950 			} else {
11951 				cpu_kstat->sf_tsb_hits = 0;
11952 			}
11953 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
11954 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
11955 		}
11956 	} else {
11957 		/* KSTAT_WRITE is used to clear stats */
11958 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
11959 			tsbm->itlb_misses = 0;
11960 			tsbm->dtlb_misses = 0;
11961 			tsbm->utsb_misses = 0;
11962 			tsbm->ktsb_misses = 0;
11963 			tsbm->uprot_traps = 0;
11964 			tsbm->kprot_traps = 0;
11965 			kpmtsbm->kpm_dtlb_misses = 0;
11966 			kpmtsbm->kpm_tsb_misses = 0;
11967 		}
11968 	}
11969 	return (0);
11970 }
11971 
11972 #ifdef	DEBUG
11973 
11974 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
11975 
11976 /*
11977  * A tte checker. *orig_old is the value we read before cas.
11978  *	*cur is the value returned by cas.
11979  *	*new is the desired value when we do the cas.
11980  *
11981  *	*hmeblkp is currently unused.
11982  */
11983 
11984 /* ARGSUSED */
11985 void
11986 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
11987 {
11988 	pfn_t i, j, k;
11989 	int cpuid = CPU->cpu_id;
11990 
11991 	gorig[cpuid] = orig_old;
11992 	gcur[cpuid] = cur;
11993 	gnew[cpuid] = new;
11994 
11995 #ifdef lint
11996 	hmeblkp = hmeblkp;
11997 #endif
11998 
11999 	if (TTE_IS_VALID(orig_old)) {
12000 		if (TTE_IS_VALID(cur)) {
12001 			i = TTE_TO_TTEPFN(orig_old);
12002 			j = TTE_TO_TTEPFN(cur);
12003 			k = TTE_TO_TTEPFN(new);
12004 			if (i != j) {
12005 				/* remap error? */
12006 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
12007 			}
12008 
12009 			if (i != k) {
12010 				/* remap error? */
12011 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
12012 			}
12013 		} else {
12014 			if (TTE_IS_VALID(new)) {
12015 				panic("chk_tte: invalid cur? ");
12016 			}
12017 
12018 			i = TTE_TO_TTEPFN(orig_old);
12019 			k = TTE_TO_TTEPFN(new);
12020 			if (i != k) {
12021 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
12022 			}
12023 		}
12024 	} else {
12025 		if (TTE_IS_VALID(cur)) {
12026 			j = TTE_TO_TTEPFN(cur);
12027 			if (TTE_IS_VALID(new)) {
12028 				k = TTE_TO_TTEPFN(new);
12029 				if (j != k) {
12030 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
12031 					    j, k);
12032 				}
12033 			} else {
12034 				panic("chk_tte: why here?");
12035 			}
12036 		} else {
12037 			if (!TTE_IS_VALID(new)) {
12038 				panic("chk_tte: why here2 ?");
12039 			}
12040 		}
12041 	}
12042 }
12043 
12044 #endif /* DEBUG */
12045 
12046 extern void prefetch_tsbe_read(struct tsbe *);
12047 extern void prefetch_tsbe_write(struct tsbe *);
12048 
12049 
12050 /*
12051  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12052  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12053  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12054  * prefetch to make the most utilization of the prefetch capability.
12055  */
12056 #define	TSBE_PREFETCH_STRIDE (7)
12057 
12058 void
12059 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12060 {
12061 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12062 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12063 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12064 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12065 	struct tsbe *old;
12066 	struct tsbe *new;
12067 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12068 	uint64_t va;
12069 	int new_offset;
12070 	int i;
12071 	int vpshift;
12072 	int last_prefetch;
12073 
12074 	if (old_bytes == new_bytes) {
12075 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12076 	} else {
12077 
12078 		/*
12079 		 * A TSBE is 16 bytes which means there are four TSBE's per
12080 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12081 		 */
12082 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12083 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12084 		for (i = 0; i < old_entries; i++, old++) {
12085 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12086 				prefetch_tsbe_read(old);
12087 			if (!old->tte_tag.tag_invalid) {
12088 				/*
12089 				 * We have a valid TTE to remap.  Check the
12090 				 * size.  We won't remap 64K or 512K TTEs
12091 				 * because they span more than one TSB entry
12092 				 * and are indexed using an 8K virt. page.
12093 				 * Ditto for 32M and 256M TTEs.
12094 				 */
12095 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12096 				    TTE_CSZ(&old->tte_data) == TTE512K)
12097 					continue;
12098 				if (mmu_page_sizes == max_mmu_page_sizes) {
12099 				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12100 					TTE_CSZ(&old->tte_data) == TTE256M)
12101 					    continue;
12102 				}
12103 
12104 				/* clear the lower 22 bits of the va */
12105 				va = *(uint64_t *)old << 22;
12106 				/* turn va into a virtual pfn */
12107 				va >>= 22 - TSB_START_SIZE;
12108 				/*
12109 				 * or in bits from the offset in the tsb
12110 				 * to get the real virtual pfn. These
12111 				 * correspond to bits [21:13] in the va
12112 				 */
12113 				vpshift =
12114 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12115 				    0x1ff;
12116 				va |= (i << vpshift);
12117 				va >>= vpshift;
12118 				new_offset = va & (new_entries - 1);
12119 				new = new_base + new_offset;
12120 				prefetch_tsbe_write(new);
12121 				*new = *old;
12122 			}
12123 		}
12124 	}
12125 }
12126 
12127 /*
12128  * unused in sfmmu
12129  */
12130 void
12131 hat_dump(void)
12132 {
12133 }
12134 
12135 /*
12136  * Called when a thread is exiting and we have switched to the kernel address
12137  * space.  Perform the same VM initialization resume() uses when switching
12138  * processes.
12139  *
12140  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
12141  * we call it anyway in case the semantics change in the future.
12142  */
12143 /*ARGSUSED*/
12144 void
12145 hat_thread_exit(kthread_t *thd)
12146 {
12147 	uint64_t pgsz_cnum;
12148 	uint_t pstate_save;
12149 
12150 	ASSERT(thd->t_procp->p_as == &kas);
12151 
12152 	pgsz_cnum = KCONTEXT;
12153 #ifdef sun4u
12154 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
12155 #endif
12156 	/*
12157 	 * Note that sfmmu_load_mmustate() is currently a no-op for
12158 	 * kernel threads. We need to disable interrupts here,
12159 	 * simply because otherwise sfmmu_load_mmustate() would panic
12160 	 * if the caller does not disable interrupts.
12161 	 */
12162 	pstate_save = sfmmu_disable_intrs();
12163 	sfmmu_setctx_sec(pgsz_cnum);
12164 	sfmmu_load_mmustate(ksfmmup);
12165 	sfmmu_enable_intrs(pstate_save);
12166 }
12167