1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Management of KMDB's IDT, which is installed upon KMDB activation. 30 * 31 * Debugger activation has two flavors, which cover the cases where KMDB is 32 * loaded at boot, and when it is loaded after boot. In brief, in both cases, 33 * the KDI needs to interpose upon several handlers in the IDT. When 34 * mod-loaded KMDB is deactivated, we undo the IDT interposition, restoring the 35 * handlers to what they were before we started. 36 * 37 * We also take over the entirety of IDT (except the double-fault handler) on 38 * the active CPU when we're in kmdb so we can handle things like page faults 39 * sensibly. 40 * 41 * Boot-loaded KMDB 42 * 43 * When we're first activated, we're running on boot's IDT. We need to be able 44 * to function in this world, so we'll install our handlers into boot's IDT. 45 * This is a little complicated: we're using the fake cpu_t set up by 46 * boot_kdi_tmpinit(), so we can't access cpu_idt directly. Instead, 47 * kdi_idt_write() notices that cpu_idt is NULL, and works around this problem. 48 * 49 * Later, when we're about to switch to the kernel's IDT, it'll call us via 50 * kdi_idt_sync(), allowing us to add our handlers to the new IDT. While 51 * boot-loaded KMDB can't be unloaded, we still need to save the descriptors we 52 * replace so we can pass traps back to the kernel as necessary. 53 * 54 * The last phase of boot-loaded KMDB activation occurs at non-boot CPU 55 * startup. We will be called on each non-boot CPU, thus allowing us to set up 56 * any watchpoints that may have been configured on the boot CPU and interpose 57 * on the given CPU's IDT. We don't save the interposed descriptors in this 58 * case -- see kdi_cpu_init() for details. 59 * 60 * Mod-loaded KMDB 61 * 62 * This style of activation is much simpler, as the CPUs are already running, 63 * and are using their own copy of the kernel's IDT. We simply interpose upon 64 * each CPU's IDT. We save the handlers we replace, both for deactivation and 65 * for passing traps back to the kernel. Note that for the hypervisors' 66 * benefit, we need to xcall to the other CPUs to do this, since we need to 67 * actively set the trap entries in its virtual IDT from that vcpu's context 68 * rather than just modifying the IDT table from the CPU running kdi_activate(). 69 */ 70 71 #include <sys/types.h> 72 #include <sys/segments.h> 73 #include <sys/trap.h> 74 #include <sys/cpuvar.h> 75 #include <sys/reboot.h> 76 #include <sys/sunddi.h> 77 #include <sys/archsystm.h> 78 #include <sys/kdi_impl.h> 79 #include <sys/x_call.h> 80 #include <ia32/sys/psw.h> 81 82 #define KDI_GATE_NVECS 3 83 84 #define KDI_IDT_NOSAVE 0 85 #define KDI_IDT_SAVE 1 86 87 #define KDI_IDT_DTYPE_KERNEL 0 88 #define KDI_IDT_DTYPE_BOOT 1 89 90 kdi_cpusave_t *kdi_cpusave; 91 int kdi_ncpusave; 92 93 static kdi_main_t kdi_kmdb_main; 94 95 kdi_drreg_t kdi_drreg; 96 97 #ifndef __amd64 98 /* Used to track the current set of valid kernel selectors. */ 99 uint32_t kdi_cs; 100 uint32_t kdi_ds; 101 uint32_t kdi_fs; 102 uint32_t kdi_gs; 103 #endif 104 105 uint_t kdi_msr_wrexit_msr; 106 uint64_t *kdi_msr_wrexit_valp; 107 108 uintptr_t kdi_kernel_handler; 109 110 int kdi_trap_switch; 111 112 #define KDI_MEMRANGES_MAX 2 113 114 kdi_memrange_t kdi_memranges[KDI_MEMRANGES_MAX]; 115 int kdi_nmemranges; 116 117 typedef void idt_hdlr_f(void); 118 119 extern idt_hdlr_f kdi_trap0, kdi_trap1, kdi_int2, kdi_trap3, kdi_trap4; 120 extern idt_hdlr_f kdi_trap5, kdi_trap6, kdi_trap7, kdi_trap9; 121 extern idt_hdlr_f kdi_traperr10, kdi_traperr11, kdi_traperr12; 122 extern idt_hdlr_f kdi_traperr13, kdi_traperr14, kdi_trap16, kdi_trap17; 123 extern idt_hdlr_f kdi_trap18, kdi_trap19, kdi_trap20, kdi_ivct32; 124 extern idt_hdlr_f kdi_invaltrap; 125 extern size_t kdi_ivct_size; 126 extern char kdi_slave_entry_patch; 127 128 typedef struct kdi_gate_spec { 129 uint_t kgs_vec; 130 uint_t kgs_dpl; 131 } kdi_gate_spec_t; 132 133 /* 134 * Beware: kdi_pass_to_kernel() has unpleasant knowledge of this list. 135 */ 136 static const kdi_gate_spec_t kdi_gate_specs[KDI_GATE_NVECS] = { 137 { T_SGLSTP, TRP_KPL }, 138 { T_BPTFLT, TRP_UPL }, 139 { T_DBGENTR, TRP_KPL } 140 }; 141 142 static gate_desc_t kdi_kgates[KDI_GATE_NVECS]; 143 144 gate_desc_t kdi_idt[NIDT]; 145 146 struct idt_description { 147 uint_t id_low; 148 uint_t id_high; 149 idt_hdlr_f *id_basehdlr; 150 size_t *id_incrp; 151 } idt_description[] = { 152 { T_ZERODIV, 0, kdi_trap0, NULL }, 153 { T_SGLSTP, 0, kdi_trap1, NULL }, 154 { T_NMIFLT, 0, kdi_int2, NULL }, 155 { T_BPTFLT, 0, kdi_trap3, NULL }, 156 { T_OVFLW, 0, kdi_trap4, NULL }, 157 { T_BOUNDFLT, 0, kdi_trap5, NULL }, 158 { T_ILLINST, 0, kdi_trap6, NULL }, 159 { T_NOEXTFLT, 0, kdi_trap7, NULL }, 160 #if !defined(__xpv) 161 { T_DBLFLT, 0, syserrtrap, NULL }, 162 #endif 163 { T_EXTOVRFLT, 0, kdi_trap9, NULL }, 164 { T_TSSFLT, 0, kdi_traperr10, NULL }, 165 { T_SEGFLT, 0, kdi_traperr11, NULL }, 166 { T_STKFLT, 0, kdi_traperr12, NULL }, 167 { T_GPFLT, 0, kdi_traperr13, NULL }, 168 { T_PGFLT, 0, kdi_traperr14, NULL }, 169 { 15, 0, kdi_invaltrap, NULL }, 170 { T_EXTERRFLT, 0, kdi_trap16, NULL }, 171 { T_ALIGNMENT, 0, kdi_trap17, NULL }, 172 { T_MCE, 0, kdi_trap18, NULL }, 173 { T_SIMDFPE, 0, kdi_trap19, NULL }, 174 { T_DBGENTR, 0, kdi_trap20, NULL }, 175 { 21, 31, kdi_invaltrap, NULL }, 176 { 32, 255, kdi_ivct32, &kdi_ivct_size }, 177 { 0, 0, NULL }, 178 }; 179 180 void 181 kdi_idt_init(selector_t sel) 182 { 183 struct idt_description *id; 184 int i; 185 186 for (id = idt_description; id->id_basehdlr != NULL; id++) { 187 uint_t high = id->id_high != 0 ? id->id_high : id->id_low; 188 size_t incr = id->id_incrp != NULL ? *id->id_incrp : 0; 189 190 for (i = id->id_low; i <= high; i++) { 191 caddr_t hdlr = (caddr_t)id->id_basehdlr + 192 incr * (i - id->id_low); 193 set_gatesegd(&kdi_idt[i], (void (*)())hdlr, sel, 194 SDT_SYSIGT, TRP_KPL); 195 } 196 } 197 } 198 199 /* 200 * Patch caller-provided code into the debugger's IDT handlers. This code is 201 * used to save MSRs that must be saved before the first branch. All handlers 202 * are essentially the same, and end with a branch to kdi_cmnint. To save the 203 * MSR, we need to patch in before the branch. The handlers have the following 204 * structure: KDI_MSR_PATCHOFF bytes of code, KDI_MSR_PATCHSZ bytes of 205 * patchable space, followed by more code. 206 */ 207 void 208 kdi_idt_patch(caddr_t code, size_t sz) 209 { 210 int i; 211 212 ASSERT(sz <= KDI_MSR_PATCHSZ); 213 214 for (i = 0; i < sizeof (kdi_idt) / sizeof (struct gate_desc); i++) { 215 gate_desc_t *gd; 216 uchar_t *patch; 217 218 if (i == T_DBLFLT) 219 continue; /* uses kernel's handler */ 220 221 gd = &kdi_idt[i]; 222 patch = (uchar_t *)GATESEG_GETOFFSET(gd) + KDI_MSR_PATCHOFF; 223 224 /* 225 * We can't ASSERT that there's a nop here, because this may be 226 * a debugger restart. In that case, we're copying the new 227 * patch point over the old one. 228 */ 229 /* FIXME: dtrace fbt ... */ 230 bcopy(code, patch, sz); 231 232 /* Fill the rest with nops to be sure */ 233 while (sz < KDI_MSR_PATCHSZ) 234 patch[sz++] = 0x90; /* nop */ 235 } 236 } 237 238 static void 239 kdi_idt_gates_install(selector_t sel, int saveold) 240 { 241 gate_desc_t gates[KDI_GATE_NVECS]; 242 int i; 243 244 bzero(gates, sizeof (*gates)); 245 246 for (i = 0; i < KDI_GATE_NVECS; i++) { 247 const kdi_gate_spec_t *gs = &kdi_gate_specs[i]; 248 uintptr_t func = GATESEG_GETOFFSET(&kdi_idt[gs->kgs_vec]); 249 set_gatesegd(&gates[i], (void (*)())func, sel, SDT_SYSIGT, 250 gs->kgs_dpl); 251 } 252 253 for (i = 0; i < KDI_GATE_NVECS; i++) { 254 uint_t vec = kdi_gate_specs[i].kgs_vec; 255 256 if (saveold) 257 kdi_kgates[i] = CPU->cpu_m.mcpu_idt[vec]; 258 259 kdi_idt_write(&gates[i], vec); 260 } 261 } 262 263 static void 264 kdi_idt_gates_restore(void) 265 { 266 int i; 267 268 for (i = 0; i < KDI_GATE_NVECS; i++) 269 kdi_idt_write(&kdi_kgates[i], kdi_gate_specs[i].kgs_vec); 270 } 271 272 /* 273 * Called when we switch to the kernel's IDT. We need to interpose on the 274 * kernel's IDT entries and stop using KMDBCODE_SEL. 275 */ 276 void 277 kdi_idt_sync(void) 278 { 279 kdi_idt_init(KCS_SEL); 280 kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE); 281 } 282 283 /* 284 * On some processors, we'll need to clear a certain MSR before proceeding into 285 * the debugger. Complicating matters, this MSR must be cleared before we take 286 * any branches. We have patch points in every trap handler, which will cover 287 * all entry paths for master CPUs. We also have a patch point in the slave 288 * entry code. 289 */ 290 static void 291 kdi_msr_add_clrentry(uint_t msr) 292 { 293 #ifdef __amd64 294 uchar_t code[] = { 295 0x51, 0x50, 0x52, /* pushq %rcx, %rax, %rdx */ 296 0xb9, 0x00, 0x00, 0x00, 0x00, /* movl $MSRNUM, %ecx */ 297 0x31, 0xc0, /* clr %eax */ 298 0x31, 0xd2, /* clr %edx */ 299 0x0f, 0x30, /* wrmsr */ 300 0x5a, 0x58, 0x59 /* popq %rdx, %rax, %rcx */ 301 }; 302 uchar_t *patch = &code[4]; 303 #else 304 uchar_t code[] = { 305 0x60, /* pushal */ 306 0xb9, 0x00, 0x00, 0x00, 0x00, /* movl $MSRNUM, %ecx */ 307 0x31, 0xc0, /* clr %eax */ 308 0x31, 0xd2, /* clr %edx */ 309 0x0f, 0x30, /* wrmsr */ 310 0x61 /* popal */ 311 }; 312 uchar_t *patch = &code[2]; 313 #endif 314 315 bcopy(&msr, patch, sizeof (uint32_t)); 316 317 kdi_idt_patch((caddr_t)code, sizeof (code)); 318 319 bcopy(code, &kdi_slave_entry_patch, sizeof (code)); 320 } 321 322 static void 323 kdi_msr_add_wrexit(uint_t msr, uint64_t *valp) 324 { 325 kdi_msr_wrexit_msr = msr; 326 kdi_msr_wrexit_valp = valp; 327 } 328 329 void 330 kdi_set_debug_msrs(kdi_msr_t *msrs) 331 { 332 int nmsrs, i; 333 334 ASSERT(kdi_cpusave[0].krs_msr == NULL); 335 336 /* Look in CPU0's MSRs for any special MSRs. */ 337 for (nmsrs = 0; msrs[nmsrs].msr_num != 0; nmsrs++) { 338 switch (msrs[nmsrs].msr_type) { 339 case KDI_MSR_CLEARENTRY: 340 kdi_msr_add_clrentry(msrs[nmsrs].msr_num); 341 break; 342 343 case KDI_MSR_WRITEDELAY: 344 kdi_msr_add_wrexit(msrs[nmsrs].msr_num, 345 msrs[nmsrs].kdi_msr_valp); 346 break; 347 } 348 } 349 350 nmsrs++; 351 352 for (i = 0; i < kdi_ncpusave; i++) 353 kdi_cpusave[i].krs_msr = &msrs[nmsrs * i]; 354 } 355 356 void 357 kdi_update_drreg(kdi_drreg_t *drreg) 358 { 359 kdi_drreg = *drreg; 360 } 361 362 void 363 kdi_memrange_add(caddr_t base, size_t len) 364 { 365 kdi_memrange_t *mr = &kdi_memranges[kdi_nmemranges]; 366 367 ASSERT(kdi_nmemranges != KDI_MEMRANGES_MAX); 368 369 mr->mr_base = base; 370 mr->mr_lim = base + len - 1; 371 kdi_nmemranges++; 372 } 373 374 void 375 kdi_idt_switch(kdi_cpusave_t *cpusave) 376 { 377 if (cpusave == NULL) 378 kdi_idtr_set(kdi_idt, sizeof (kdi_idt) - 1); 379 else 380 kdi_idtr_set(cpusave->krs_idt, (sizeof (*idt0) * NIDT) - 1); 381 } 382 383 /* 384 * Activation for CPUs other than the boot CPU, called from that CPU's 385 * mp_startup(). We saved the kernel's descriptors when we initialized the 386 * boot CPU, so we don't want to do it again. Saving the handlers from this 387 * CPU's IDT would actually be dangerous with the CPU initialization method in 388 * use at the time of this writing. With that method, the startup code creates 389 * the IDTs for slave CPUs by copying the one used by the boot CPU, which has 390 * already been interposed upon by KMDB. Were we to interpose again, we'd 391 * replace the kernel's descriptors with our own in the save area. By not 392 * saving, but still overwriting, we'll work in the current world, and in any 393 * future world where the IDT is generated from scratch. 394 */ 395 void 396 kdi_cpu_init(void) 397 { 398 kdi_idt_gates_install(KCS_SEL, KDI_IDT_NOSAVE); 399 /* Load the debug registers and MSRs */ 400 kdi_cpu_debug_init(&kdi_cpusave[CPU->cpu_id]); 401 } 402 403 /* 404 * Activation for all CPUs for mod-loaded kmdb, i.e. a kmdb that wasn't 405 * loaded at boot. 406 */ 407 static int 408 kdi_cpu_activate(void) 409 { 410 kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE); 411 return (0); 412 } 413 414 void 415 kdi_activate(kdi_main_t main, kdi_cpusave_t *cpusave, uint_t ncpusave) 416 { 417 int i; 418 cpuset_t cpuset; 419 420 CPUSET_ALL(cpuset); 421 422 kdi_cpusave = cpusave; 423 kdi_ncpusave = ncpusave; 424 425 kdi_kmdb_main = main; 426 427 for (i = 0; i < kdi_ncpusave; i++) { 428 kdi_cpusave[i].krs_cpu_id = i; 429 430 kdi_cpusave[i].krs_curcrumb = 431 &kdi_cpusave[i].krs_crumbs[KDI_NCRUMBS - 1]; 432 kdi_cpusave[i].krs_curcrumbidx = KDI_NCRUMBS - 1; 433 } 434 435 if (boothowto & RB_KMDB) 436 kdi_idt_init(KMDBCODE_SEL); 437 else 438 kdi_idt_init(KCS_SEL); 439 440 /* The initial selector set. Updated by the debugger-entry code */ 441 #ifndef __amd64 442 kdi_cs = B32CODE_SEL; 443 kdi_ds = kdi_fs = kdi_gs = B32DATA_SEL; 444 #endif 445 446 kdi_memranges[0].mr_base = kdi_segdebugbase; 447 kdi_memranges[0].mr_lim = kdi_segdebugbase + kdi_segdebugsize - 1; 448 kdi_nmemranges = 1; 449 450 kdi_drreg.dr_ctl = KDIREG_DRCTL_RESERVED; 451 kdi_drreg.dr_stat = KDIREG_DRSTAT_RESERVED; 452 453 kdi_msr_wrexit_msr = 0; 454 kdi_msr_wrexit_valp = NULL; 455 456 if (boothowto & RB_KMDB) { 457 kdi_idt_gates_install(KMDBCODE_SEL, KDI_IDT_NOSAVE); 458 } else { 459 xc_call(0, 0, 0, X_CALL_HIPRI, cpuset, 460 (xc_func_t)kdi_cpu_activate); 461 } 462 } 463 464 static int 465 kdi_cpu_deactivate(void) 466 { 467 kdi_idt_gates_restore(); 468 return (0); 469 } 470 471 void 472 kdi_deactivate(void) 473 { 474 cpuset_t cpuset; 475 CPUSET_ALL(cpuset); 476 477 xc_call(0, 0, 0, X_CALL_HIPRI, cpuset, (xc_func_t)kdi_cpu_deactivate); 478 kdi_nmemranges = 0; 479 } 480 481 /* 482 * We receive all breakpoints and single step traps. Some of them, 483 * including those from userland and those induced by DTrace providers, 484 * are intended for the kernel, and must be processed there. We adopt 485 * this ours-until-proven-otherwise position due to the painful 486 * consequences of sending the kernel an unexpected breakpoint or 487 * single step. Unless someone can prove to us that the kernel is 488 * prepared to handle the trap, we'll assume there's a problem and will 489 * give the user a chance to debug it. 490 */ 491 int 492 kdi_trap_pass(kdi_cpusave_t *cpusave) 493 { 494 greg_t tt = cpusave->krs_gregs[KDIREG_TRAPNO]; 495 greg_t pc = cpusave->krs_gregs[KDIREG_PC]; 496 greg_t cs = cpusave->krs_gregs[KDIREG_CS]; 497 498 if (USERMODE(cs)) 499 return (1); 500 501 if (tt != T_BPTFLT && tt != T_SGLSTP) 502 return (0); 503 504 if (tt == T_BPTFLT && kdi_dtrace_get_state() == 505 KDI_DTSTATE_DTRACE_ACTIVE) 506 return (1); 507 508 /* 509 * See the comments in the kernel's T_SGLSTP handler for why we need to 510 * do this. 511 */ 512 if (tt == T_SGLSTP && 513 (pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter)) 514 return (1); 515 516 return (0); 517 } 518 519 /* 520 * State has been saved, and all CPUs are on the CPU-specific stacks. All 521 * CPUs enter here, and head off into the debugger proper. 522 */ 523 void 524 kdi_debugger_entry(kdi_cpusave_t *cpusave) 525 { 526 /* 527 * BPTFLT gives us control with %eip set to the instruction *after* 528 * the int 3. Back it off, so we're looking at the instruction that 529 * triggered the fault. 530 */ 531 if (cpusave->krs_gregs[KDIREG_TRAPNO] == T_BPTFLT) 532 cpusave->krs_gregs[KDIREG_PC]--; 533 534 kdi_kmdb_main(cpusave); 535 } 536