1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* 27 * Copyright (c) 2009, Intel Corporation. 28 * All rights reserved. 29 */ 30 /* 31 * ACPI CA OSL for Solaris x86 32 */ 33 34 #include <sys/types.h> 35 #include <sys/kmem.h> 36 #include <sys/psm.h> 37 #include <sys/pci_cfgspace.h> 38 #include <sys/apic.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/sunndi.h> 42 #include <sys/pci.h> 43 #include <sys/kobj.h> 44 #include <sys/taskq.h> 45 #include <sys/strlog.h> 46 #include <sys/x86_archext.h> 47 #include <sys/note.h> 48 #include <sys/promif.h> 49 50 #include <sys/acpi/accommon.h> 51 #include <sys/acpica.h> 52 53 #define MAX_DAT_FILE_SIZE (64*1024) 54 55 /* local functions */ 56 static int CompressEisaID(char *np); 57 58 static void scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus); 59 static int acpica_query_bbn_problem(void); 60 static int acpica_find_pcibus(int busno, ACPI_HANDLE *rh); 61 static int acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint); 62 static ACPI_STATUS acpica_set_devinfo(ACPI_HANDLE, dev_info_t *); 63 static ACPI_STATUS acpica_unset_devinfo(ACPI_HANDLE); 64 static void acpica_devinfo_handler(ACPI_HANDLE, void *); 65 66 /* 67 * Event queue vars 68 */ 69 int acpica_eventq_init = 0; 70 ddi_taskq_t *osl_eventq[OSL_EC_BURST_HANDLER+1]; 71 72 /* 73 * Priorities relative to minclsyspri that each taskq 74 * run at; OSL_NOTIFY_HANDLER needs to run at a higher 75 * priority than OSL_GPE_HANDLER. There's an implicit 76 * assumption that no priority here results in exceeding 77 * maxclsyspri. 78 * Note: these initializations need to match the order of 79 * ACPI_EXECUTE_TYPE. 80 */ 81 int osl_eventq_pri_delta[OSL_EC_BURST_HANDLER+1] = { 82 0, /* OSL_GLOBAL_LOCK_HANDLER */ 83 2, /* OSL_NOTIFY_HANDLER */ 84 0, /* OSL_GPE_HANDLER */ 85 0, /* OSL_DEBUGGER_THREAD */ 86 0, /* OSL_EC_POLL_HANDLER */ 87 0 /* OSL_EC_BURST_HANDLER */ 88 }; 89 90 /* 91 * Note, if you change this path, you need to update 92 * /boot/grub/filelist.ramdisk and pkg SUNWckr/prototype_i386 93 */ 94 static char *acpi_table_path = "/boot/acpi/tables/"; 95 96 /* non-zero while scan_d2a_map() is working */ 97 static int scanning_d2a_map = 0; 98 static int d2a_done = 0; 99 100 /* features supported by ACPICA and ACPI device configuration. */ 101 uint64_t acpica_core_features = 0; 102 static uint64_t acpica_devcfg_features = 0; 103 104 /* set by acpi_poweroff() in PSMs and appm_ioctl() in acpippm for S3 */ 105 int acpica_use_safe_delay = 0; 106 107 /* CPU mapping data */ 108 struct cpu_map_item { 109 processorid_t cpu_id; 110 UINT32 proc_id; 111 UINT32 apic_id; 112 ACPI_HANDLE obj; 113 }; 114 115 static kmutex_t cpu_map_lock; 116 static struct cpu_map_item **cpu_map = NULL; 117 static int cpu_map_count_max = 0; 118 static int cpu_map_count = 0; 119 static int cpu_map_built = 0; 120 121 /* 122 * On systems with the uppc PSM only, acpica_map_cpu() won't be called at all. 123 * This flag is used to check for uppc-only systems by detecting whether 124 * acpica_map_cpu() has been called or not. 125 */ 126 static int cpu_map_called = 0; 127 128 static int acpi_has_broken_bbn = -1; 129 130 /* buffer for AcpiOsVprintf() */ 131 #define ACPI_OSL_PR_BUFLEN 1024 132 static char *acpi_osl_pr_buffer = NULL; 133 static int acpi_osl_pr_buflen; 134 135 #define D2A_DEBUG 136 137 /* 138 * 139 */ 140 static void 141 discard_event_queues() 142 { 143 int i; 144 145 /* 146 * destroy event queues 147 */ 148 for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) { 149 if (osl_eventq[i]) 150 ddi_taskq_destroy(osl_eventq[i]); 151 } 152 } 153 154 155 /* 156 * 157 */ 158 static ACPI_STATUS 159 init_event_queues() 160 { 161 char namebuf[32]; 162 int i, error = 0; 163 164 /* 165 * Initialize event queues 166 */ 167 168 /* Always allocate only 1 thread per queue to force FIFO execution */ 169 for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) { 170 snprintf(namebuf, 32, "ACPI%d", i); 171 osl_eventq[i] = ddi_taskq_create(NULL, namebuf, 1, 172 osl_eventq_pri_delta[i] + minclsyspri, 0); 173 if (osl_eventq[i] == NULL) 174 error++; 175 } 176 177 if (error != 0) { 178 discard_event_queues(); 179 #ifdef DEBUG 180 cmn_err(CE_WARN, "!acpica: could not initialize event queues"); 181 #endif 182 return (AE_ERROR); 183 } 184 185 acpica_eventq_init = 1; 186 return (AE_OK); 187 } 188 189 /* 190 * One-time initialization of OSL layer 191 */ 192 ACPI_STATUS 193 AcpiOsInitialize(void) 194 { 195 /* 196 * Allocate buffer for AcpiOsVprintf() here to avoid 197 * kmem_alloc()/kmem_free() at high PIL 198 */ 199 acpi_osl_pr_buffer = kmem_alloc(ACPI_OSL_PR_BUFLEN, KM_SLEEP); 200 if (acpi_osl_pr_buffer != NULL) 201 acpi_osl_pr_buflen = ACPI_OSL_PR_BUFLEN; 202 203 return (AE_OK); 204 } 205 206 /* 207 * One-time shut-down of OSL layer 208 */ 209 ACPI_STATUS 210 AcpiOsTerminate(void) 211 { 212 213 if (acpi_osl_pr_buffer != NULL) 214 kmem_free(acpi_osl_pr_buffer, acpi_osl_pr_buflen); 215 216 discard_event_queues(); 217 return (AE_OK); 218 } 219 220 221 ACPI_PHYSICAL_ADDRESS 222 AcpiOsGetRootPointer() 223 { 224 ACPI_PHYSICAL_ADDRESS Address; 225 226 /* 227 * For EFI firmware, the root pointer is defined in EFI systab. 228 * The boot code process the table and put the physical address 229 * in the acpi-root-tab property. 230 */ 231 Address = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 232 DDI_PROP_DONTPASS, "acpi-root-tab", NULL); 233 234 if ((Address == NULL) && ACPI_FAILURE(AcpiFindRootPointer(&Address))) 235 Address = NULL; 236 237 return (Address); 238 } 239 240 /*ARGSUSED*/ 241 ACPI_STATUS 242 AcpiOsPredefinedOverride(const ACPI_PREDEFINED_NAMES *InitVal, 243 ACPI_STRING *NewVal) 244 { 245 246 *NewVal = 0; 247 return (AE_OK); 248 } 249 250 static void 251 acpica_strncpy(char *dest, const char *src, int len) 252 { 253 254 /*LINTED*/ 255 while ((*dest++ = *src++) && (--len > 0)) 256 /* copy the string */; 257 *dest = '\0'; 258 } 259 260 ACPI_STATUS 261 AcpiOsTableOverride(ACPI_TABLE_HEADER *ExistingTable, 262 ACPI_TABLE_HEADER **NewTable) 263 { 264 char signature[5]; 265 char oemid[7]; 266 char oemtableid[9]; 267 struct _buf *file; 268 char *buf1, *buf2; 269 int count; 270 char acpi_table_loc[128]; 271 272 acpica_strncpy(signature, ExistingTable->Signature, 4); 273 acpica_strncpy(oemid, ExistingTable->OemId, 6); 274 acpica_strncpy(oemtableid, ExistingTable->OemTableId, 8); 275 276 #ifdef DEBUG 277 cmn_err(CE_NOTE, "!acpica: table [%s] v%d OEM ID [%s]" 278 " OEM TABLE ID [%s] OEM rev %x", 279 signature, ExistingTable->Revision, oemid, oemtableid, 280 ExistingTable->OemRevision); 281 #endif 282 283 /* File name format is "signature_oemid_oemtableid.dat" */ 284 (void) strcpy(acpi_table_loc, acpi_table_path); 285 (void) strcat(acpi_table_loc, signature); /* for example, DSDT */ 286 (void) strcat(acpi_table_loc, "_"); 287 (void) strcat(acpi_table_loc, oemid); /* for example, IntelR */ 288 (void) strcat(acpi_table_loc, "_"); 289 (void) strcat(acpi_table_loc, oemtableid); /* for example, AWRDACPI */ 290 (void) strcat(acpi_table_loc, ".dat"); 291 292 file = kobj_open_file(acpi_table_loc); 293 if (file == (struct _buf *)-1) { 294 *NewTable = 0; 295 return (AE_OK); 296 } else { 297 buf1 = (char *)kmem_alloc(MAX_DAT_FILE_SIZE, KM_SLEEP); 298 count = kobj_read_file(file, buf1, MAX_DAT_FILE_SIZE-1, 0); 299 if (count >= MAX_DAT_FILE_SIZE) { 300 cmn_err(CE_WARN, "!acpica: table %s file size too big", 301 acpi_table_loc); 302 *NewTable = 0; 303 } else { 304 buf2 = (char *)kmem_alloc(count, KM_SLEEP); 305 (void) memcpy(buf2, buf1, count); 306 *NewTable = (ACPI_TABLE_HEADER *)buf2; 307 cmn_err(CE_NOTE, "!acpica: replacing table: %s", 308 acpi_table_loc); 309 } 310 } 311 kobj_close_file(file); 312 kmem_free(buf1, MAX_DAT_FILE_SIZE); 313 314 return (AE_OK); 315 } 316 317 318 /* 319 * ACPI semaphore implementation 320 */ 321 typedef struct { 322 kmutex_t mutex; 323 kcondvar_t cv; 324 uint32_t available; 325 uint32_t initial; 326 uint32_t maximum; 327 } acpi_sema_t; 328 329 /* 330 * 331 */ 332 void 333 acpi_sema_init(acpi_sema_t *sp, unsigned max, unsigned count) 334 { 335 mutex_init(&sp->mutex, NULL, MUTEX_DRIVER, NULL); 336 cv_init(&sp->cv, NULL, CV_DRIVER, NULL); 337 /* no need to enter mutex here at creation */ 338 sp->available = count; 339 sp->initial = count; 340 sp->maximum = max; 341 } 342 343 /* 344 * 345 */ 346 void 347 acpi_sema_destroy(acpi_sema_t *sp) 348 { 349 350 cv_destroy(&sp->cv); 351 mutex_destroy(&sp->mutex); 352 } 353 354 /* 355 * 356 */ 357 ACPI_STATUS 358 acpi_sema_p(acpi_sema_t *sp, unsigned count, uint16_t wait_time) 359 { 360 ACPI_STATUS rv = AE_OK; 361 clock_t deadline; 362 363 mutex_enter(&sp->mutex); 364 365 if (sp->available >= count) { 366 /* 367 * Enough units available, no blocking 368 */ 369 sp->available -= count; 370 mutex_exit(&sp->mutex); 371 return (rv); 372 } else if (wait_time == 0) { 373 /* 374 * Not enough units available and timeout 375 * specifies no blocking 376 */ 377 rv = AE_TIME; 378 mutex_exit(&sp->mutex); 379 return (rv); 380 } 381 382 /* 383 * Not enough units available and timeout specifies waiting 384 */ 385 if (wait_time != ACPI_WAIT_FOREVER) 386 deadline = ddi_get_lbolt() + 387 (clock_t)drv_usectohz(wait_time * 1000); 388 389 do { 390 if (wait_time == ACPI_WAIT_FOREVER) 391 cv_wait(&sp->cv, &sp->mutex); 392 else if (cv_timedwait(&sp->cv, &sp->mutex, deadline) < 0) { 393 rv = AE_TIME; 394 break; 395 } 396 } while (sp->available < count); 397 398 /* if we dropped out of the wait with AE_OK, we got the units */ 399 if (rv == AE_OK) 400 sp->available -= count; 401 402 mutex_exit(&sp->mutex); 403 return (rv); 404 } 405 406 /* 407 * 408 */ 409 void 410 acpi_sema_v(acpi_sema_t *sp, unsigned count) 411 { 412 mutex_enter(&sp->mutex); 413 sp->available += count; 414 cv_broadcast(&sp->cv); 415 mutex_exit(&sp->mutex); 416 } 417 418 419 ACPI_STATUS 420 AcpiOsCreateSemaphore(UINT32 MaxUnits, UINT32 InitialUnits, 421 ACPI_HANDLE *OutHandle) 422 { 423 acpi_sema_t *sp; 424 425 if ((OutHandle == NULL) || (InitialUnits > MaxUnits)) 426 return (AE_BAD_PARAMETER); 427 428 sp = (acpi_sema_t *)kmem_alloc(sizeof (acpi_sema_t), KM_SLEEP); 429 acpi_sema_init(sp, MaxUnits, InitialUnits); 430 *OutHandle = (ACPI_HANDLE)sp; 431 return (AE_OK); 432 } 433 434 435 ACPI_STATUS 436 AcpiOsDeleteSemaphore(ACPI_HANDLE Handle) 437 { 438 439 if (Handle == NULL) 440 return (AE_BAD_PARAMETER); 441 442 acpi_sema_destroy((acpi_sema_t *)Handle); 443 kmem_free((void *)Handle, sizeof (acpi_sema_t)); 444 return (AE_OK); 445 } 446 447 ACPI_STATUS 448 AcpiOsWaitSemaphore(ACPI_HANDLE Handle, UINT32 Units, UINT16 Timeout) 449 { 450 451 if ((Handle == NULL) || (Units < 1)) 452 return (AE_BAD_PARAMETER); 453 454 return (acpi_sema_p((acpi_sema_t *)Handle, Units, Timeout)); 455 } 456 457 ACPI_STATUS 458 AcpiOsSignalSemaphore(ACPI_HANDLE Handle, UINT32 Units) 459 { 460 461 if ((Handle == NULL) || (Units < 1)) 462 return (AE_BAD_PARAMETER); 463 464 acpi_sema_v((acpi_sema_t *)Handle, Units); 465 return (AE_OK); 466 } 467 468 ACPI_STATUS 469 AcpiOsCreateLock(ACPI_HANDLE *OutHandle) 470 { 471 kmutex_t *mp; 472 473 if (OutHandle == NULL) 474 return (AE_BAD_PARAMETER); 475 476 mp = (kmutex_t *)kmem_alloc(sizeof (kmutex_t), KM_SLEEP); 477 mutex_init(mp, NULL, MUTEX_DRIVER, NULL); 478 *OutHandle = (ACPI_HANDLE)mp; 479 return (AE_OK); 480 } 481 482 void 483 AcpiOsDeleteLock(ACPI_HANDLE Handle) 484 { 485 486 if (Handle == NULL) 487 return; 488 489 mutex_destroy((kmutex_t *)Handle); 490 kmem_free((void *)Handle, sizeof (kmutex_t)); 491 } 492 493 ACPI_CPU_FLAGS 494 AcpiOsAcquireLock(ACPI_HANDLE Handle) 495 { 496 497 498 if (Handle == NULL) 499 return (AE_BAD_PARAMETER); 500 501 if (curthread == CPU->cpu_idle_thread) { 502 while (!mutex_tryenter((kmutex_t *)Handle)) 503 /* spin */; 504 } else 505 mutex_enter((kmutex_t *)Handle); 506 return (AE_OK); 507 } 508 509 void 510 AcpiOsReleaseLock(ACPI_HANDLE Handle, ACPI_CPU_FLAGS Flags) 511 { 512 _NOTE(ARGUNUSED(Flags)) 513 514 mutex_exit((kmutex_t *)Handle); 515 } 516 517 518 void * 519 AcpiOsAllocate(ACPI_SIZE Size) 520 { 521 ACPI_SIZE *tmp_ptr; 522 523 Size += sizeof (Size); 524 tmp_ptr = (ACPI_SIZE *)kmem_zalloc(Size, KM_SLEEP); 525 *tmp_ptr++ = Size; 526 return (tmp_ptr); 527 } 528 529 void 530 AcpiOsFree(void *Memory) 531 { 532 ACPI_SIZE size, *tmp_ptr; 533 534 tmp_ptr = (ACPI_SIZE *)Memory; 535 tmp_ptr -= 1; 536 size = *tmp_ptr; 537 kmem_free(tmp_ptr, size); 538 } 539 540 static int napics_found; /* number of ioapic addresses in array */ 541 static ACPI_PHYSICAL_ADDRESS ioapic_paddr[MAX_IO_APIC]; 542 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 543 static void *dummy_ioapicadr; 544 545 void 546 acpica_find_ioapics(void) 547 { 548 int madt_seen, madt_size; 549 ACPI_SUBTABLE_HEADER *ap; 550 ACPI_MADT_IO_APIC *mia; 551 552 if (acpi_mapic_dtp != NULL) 553 return; /* already parsed table */ 554 if (AcpiGetTable(ACPI_SIG_MADT, 1, 555 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 556 return; 557 558 napics_found = 0; 559 560 /* 561 * Search the MADT for ioapics 562 */ 563 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 564 madt_size = acpi_mapic_dtp->Header.Length; 565 madt_seen = sizeof (*acpi_mapic_dtp); 566 567 while (madt_seen < madt_size) { 568 569 switch (ap->Type) { 570 case ACPI_MADT_TYPE_IO_APIC: 571 mia = (ACPI_MADT_IO_APIC *) ap; 572 if (napics_found < MAX_IO_APIC) { 573 ioapic_paddr[napics_found++] = 574 (ACPI_PHYSICAL_ADDRESS) 575 (mia->Address & PAGEMASK); 576 } 577 break; 578 579 default: 580 break; 581 } 582 583 /* advance to next entry */ 584 madt_seen += ap->Length; 585 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 586 } 587 if (dummy_ioapicadr == NULL) 588 dummy_ioapicadr = kmem_zalloc(PAGESIZE, KM_SLEEP); 589 } 590 591 592 void * 593 AcpiOsMapMemory(ACPI_PHYSICAL_ADDRESS PhysicalAddress, ACPI_SIZE Size) 594 { 595 int i; 596 597 /* 598 * If the iopaic address table is populated, check if trying 599 * to access an ioapic. Instead, return a pointer to a dummy ioapic. 600 */ 601 for (i = 0; i < napics_found; i++) { 602 if ((PhysicalAddress & PAGEMASK) == ioapic_paddr[i]) 603 return (dummy_ioapicadr); 604 } 605 /* FUTUREWORK: test PhysicalAddress for > 32 bits */ 606 return (psm_map_new((paddr_t)PhysicalAddress, 607 (size_t)Size, PSM_PROT_WRITE | PSM_PROT_READ)); 608 } 609 610 void 611 AcpiOsUnmapMemory(void *LogicalAddress, ACPI_SIZE Size) 612 { 613 /* 614 * Check if trying to unmap dummy ioapic address. 615 */ 616 if (LogicalAddress == dummy_ioapicadr) 617 return; 618 619 psm_unmap((caddr_t)LogicalAddress, (size_t)Size); 620 } 621 622 /*ARGSUSED*/ 623 ACPI_STATUS 624 AcpiOsGetPhysicalAddress(void *LogicalAddress, 625 ACPI_PHYSICAL_ADDRESS *PhysicalAddress) 626 { 627 628 /* UNIMPLEMENTED: not invoked by ACPI CA code */ 629 return (AE_NOT_IMPLEMENTED); 630 } 631 632 633 ACPI_OSD_HANDLER acpi_isr; 634 void *acpi_isr_context; 635 636 uint_t 637 acpi_wrapper_isr(char *arg) 638 { 639 _NOTE(ARGUNUSED(arg)) 640 641 int status; 642 643 status = (*acpi_isr)(acpi_isr_context); 644 645 if (status == ACPI_INTERRUPT_HANDLED) { 646 return (DDI_INTR_CLAIMED); 647 } else { 648 return (DDI_INTR_UNCLAIMED); 649 } 650 } 651 652 static int acpi_intr_hooked = 0; 653 654 ACPI_STATUS 655 AcpiOsInstallInterruptHandler(UINT32 InterruptNumber, 656 ACPI_OSD_HANDLER ServiceRoutine, 657 void *Context) 658 { 659 _NOTE(ARGUNUSED(InterruptNumber)) 660 661 int retval; 662 int sci_vect; 663 iflag_t sci_flags; 664 665 acpi_isr = ServiceRoutine; 666 acpi_isr_context = Context; 667 668 /* 669 * Get SCI (adjusted for PIC/APIC mode if necessary) 670 */ 671 if (acpica_get_sci(&sci_vect, &sci_flags) != AE_OK) { 672 return (AE_ERROR); 673 } 674 675 #ifdef DEBUG 676 cmn_err(CE_NOTE, "!acpica: attaching SCI %d", sci_vect); 677 #endif 678 679 retval = add_avintr(NULL, SCI_IPL, (avfunc)acpi_wrapper_isr, 680 "ACPI SCI", sci_vect, NULL, NULL, NULL, NULL); 681 if (retval) { 682 acpi_intr_hooked = 1; 683 return (AE_OK); 684 } else 685 return (AE_BAD_PARAMETER); 686 } 687 688 ACPI_STATUS 689 AcpiOsRemoveInterruptHandler(UINT32 InterruptNumber, 690 ACPI_OSD_HANDLER ServiceRoutine) 691 { 692 _NOTE(ARGUNUSED(ServiceRoutine)) 693 694 #ifdef DEBUG 695 cmn_err(CE_NOTE, "!acpica: detaching SCI %d", InterruptNumber); 696 #endif 697 if (acpi_intr_hooked) { 698 rem_avintr(NULL, LOCK_LEVEL - 1, (avfunc)acpi_wrapper_isr, 699 InterruptNumber); 700 acpi_intr_hooked = 0; 701 } 702 return (AE_OK); 703 } 704 705 706 ACPI_THREAD_ID 707 AcpiOsGetThreadId(void) 708 { 709 /* 710 * ACPI CA doesn't care what actual value is returned as long 711 * as it is non-zero and unique to each existing thread. 712 * ACPI CA assumes that thread ID is castable to a pointer, 713 * so we use the current thread pointer. 714 */ 715 return (curthread); 716 } 717 718 /* 719 * 720 */ 721 ACPI_STATUS 722 AcpiOsExecute(ACPI_EXECUTE_TYPE Type, ACPI_OSD_EXEC_CALLBACK Function, 723 void *Context) 724 { 725 726 if (!acpica_eventq_init) { 727 /* 728 * Create taskqs for event handling 729 */ 730 if (init_event_queues() != AE_OK) 731 return (AE_ERROR); 732 } 733 734 if (ddi_taskq_dispatch(osl_eventq[Type], Function, Context, 735 DDI_NOSLEEP) == DDI_FAILURE) { 736 #ifdef DEBUG 737 cmn_err(CE_WARN, "!acpica: unable to dispatch event"); 738 #endif 739 return (AE_ERROR); 740 } 741 return (AE_OK); 742 743 } 744 745 void 746 AcpiOsSleep(ACPI_INTEGER Milliseconds) 747 { 748 /* 749 * During kernel startup, before the first tick interrupt 750 * has taken place, we can't call delay; very late in 751 * kernel shutdown or suspend/resume, clock interrupts 752 * are blocked, so delay doesn't work then either. 753 * So we busy wait if lbolt == 0 (kernel startup) 754 * or if acpica_use_safe_delay has been set to a 755 * non-zero value. 756 */ 757 if ((ddi_get_lbolt() == 0) || acpica_use_safe_delay) 758 drv_usecwait(Milliseconds * 1000); 759 else 760 delay(drv_usectohz(Milliseconds * 1000)); 761 } 762 763 void 764 AcpiOsStall(UINT32 Microseconds) 765 { 766 drv_usecwait(Microseconds); 767 } 768 769 770 /* 771 * Implementation of "Windows 2001" compatible I/O permission map 772 * 773 */ 774 #define OSL_IO_NONE (0) 775 #define OSL_IO_READ (1<<0) 776 #define OSL_IO_WRITE (1<<1) 777 #define OSL_IO_RW (OSL_IO_READ | OSL_IO_WRITE) 778 #define OSL_IO_TERM (1<<2) 779 #define OSL_IO_DEFAULT OSL_IO_RW 780 781 static struct io_perm { 782 ACPI_IO_ADDRESS low; 783 ACPI_IO_ADDRESS high; 784 uint8_t perm; 785 } osl_io_perm[] = { 786 { 0xcf8, 0xd00, OSL_IO_TERM | OSL_IO_RW} 787 }; 788 789 790 /* 791 * 792 */ 793 static struct io_perm * 794 osl_io_find_perm(ACPI_IO_ADDRESS addr) 795 { 796 struct io_perm *p; 797 798 p = osl_io_perm; 799 while (p != NULL) { 800 if ((p->low <= addr) && (addr <= p->high)) 801 break; 802 p = (p->perm & OSL_IO_TERM) ? NULL : p+1; 803 } 804 805 return (p); 806 } 807 808 /* 809 * 810 */ 811 ACPI_STATUS 812 AcpiOsReadPort(ACPI_IO_ADDRESS Address, UINT32 *Value, UINT32 Width) 813 { 814 struct io_perm *p; 815 816 /* verify permission */ 817 p = osl_io_find_perm(Address); 818 if (p && (p->perm & OSL_IO_READ) == 0) { 819 cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u not permitted", 820 (long)Address, Width); 821 *Value = 0xffffffff; 822 return (AE_ERROR); 823 } 824 825 switch (Width) { 826 case 8: 827 *Value = inb(Address); 828 break; 829 case 16: 830 *Value = inw(Address); 831 break; 832 case 32: 833 *Value = inl(Address); 834 break; 835 default: 836 cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u failed", 837 (long)Address, Width); 838 return (AE_BAD_PARAMETER); 839 } 840 return (AE_OK); 841 } 842 843 ACPI_STATUS 844 AcpiOsWritePort(ACPI_IO_ADDRESS Address, UINT32 Value, UINT32 Width) 845 { 846 struct io_perm *p; 847 848 /* verify permission */ 849 p = osl_io_find_perm(Address); 850 if (p && (p->perm & OSL_IO_WRITE) == 0) { 851 cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u not permitted", 852 (long)Address, Width); 853 return (AE_ERROR); 854 } 855 856 switch (Width) { 857 case 8: 858 outb(Address, Value); 859 break; 860 case 16: 861 outw(Address, Value); 862 break; 863 case 32: 864 outl(Address, Value); 865 break; 866 default: 867 cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u failed", 868 (long)Address, Width); 869 return (AE_BAD_PARAMETER); 870 } 871 return (AE_OK); 872 } 873 874 875 /* 876 * 877 */ 878 879 #define OSL_RW(ptr, val, type, rw) \ 880 { if (rw) *((type *)(ptr)) = *((type *) val); \ 881 else *((type *) val) = *((type *)(ptr)); } 882 883 884 static void 885 osl_rw_memory(ACPI_PHYSICAL_ADDRESS Address, UINT32 *Value, 886 UINT32 Width, int write) 887 { 888 size_t maplen = Width / 8; 889 caddr_t ptr; 890 891 ptr = psm_map_new((paddr_t)Address, maplen, 892 PSM_PROT_WRITE | PSM_PROT_READ); 893 894 switch (maplen) { 895 case 1: 896 OSL_RW(ptr, Value, uint8_t, write); 897 break; 898 case 2: 899 OSL_RW(ptr, Value, uint16_t, write); 900 break; 901 case 4: 902 OSL_RW(ptr, Value, uint32_t, write); 903 break; 904 default: 905 cmn_err(CE_WARN, "!osl_rw_memory: invalid size %d", 906 Width); 907 break; 908 } 909 910 psm_unmap(ptr, maplen); 911 } 912 913 ACPI_STATUS 914 AcpiOsReadMemory(ACPI_PHYSICAL_ADDRESS Address, 915 UINT32 *Value, UINT32 Width) 916 { 917 osl_rw_memory(Address, Value, Width, 0); 918 return (AE_OK); 919 } 920 921 ACPI_STATUS 922 AcpiOsWriteMemory(ACPI_PHYSICAL_ADDRESS Address, 923 UINT32 Value, UINT32 Width) 924 { 925 osl_rw_memory(Address, &Value, Width, 1); 926 return (AE_OK); 927 } 928 929 930 ACPI_STATUS 931 AcpiOsReadPciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register, 932 void *Value, UINT32 Width) 933 { 934 935 switch (Width) { 936 case 8: 937 *((UINT64 *)Value) = (UINT64)(*pci_getb_func) 938 (PciId->Bus, PciId->Device, PciId->Function, Register); 939 break; 940 case 16: 941 *((UINT64 *)Value) = (UINT64)(*pci_getw_func) 942 (PciId->Bus, PciId->Device, PciId->Function, Register); 943 break; 944 case 32: 945 *((UINT64 *)Value) = (UINT64)(*pci_getl_func) 946 (PciId->Bus, PciId->Device, PciId->Function, Register); 947 break; 948 case 64: 949 default: 950 cmn_err(CE_WARN, "!AcpiOsReadPciConfiguration: %x %u failed", 951 Register, Width); 952 return (AE_BAD_PARAMETER); 953 } 954 return (AE_OK); 955 } 956 957 /* 958 * 959 */ 960 int acpica_write_pci_config_ok = 1; 961 962 ACPI_STATUS 963 AcpiOsWritePciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register, 964 ACPI_INTEGER Value, UINT32 Width) 965 { 966 967 if (!acpica_write_pci_config_ok) { 968 cmn_err(CE_NOTE, "!write to PCI cfg %x/%x/%x %x" 969 " %lx %d not permitted", PciId->Bus, PciId->Device, 970 PciId->Function, Register, (long)Value, Width); 971 return (AE_OK); 972 } 973 974 switch (Width) { 975 case 8: 976 (*pci_putb_func)(PciId->Bus, PciId->Device, PciId->Function, 977 Register, (uint8_t)Value); 978 break; 979 case 16: 980 (*pci_putw_func)(PciId->Bus, PciId->Device, PciId->Function, 981 Register, (uint16_t)Value); 982 break; 983 case 32: 984 (*pci_putl_func)(PciId->Bus, PciId->Device, PciId->Function, 985 Register, (uint32_t)Value); 986 break; 987 case 64: 988 default: 989 cmn_err(CE_WARN, "!AcpiOsWritePciConfiguration: %x %u failed", 990 Register, Width); 991 return (AE_BAD_PARAMETER); 992 } 993 return (AE_OK); 994 } 995 996 /* 997 * Called with ACPI_HANDLEs for both a PCI Config Space 998 * OpRegion and (what ACPI CA thinks is) the PCI device 999 * to which this ConfigSpace OpRegion belongs. 1000 * 1001 * ACPI CA uses _BBN and _ADR objects to determine the default 1002 * values for bus, segment, device and function; anything ACPI CA 1003 * can't figure out from the ACPI tables will be 0. One very 1004 * old 32-bit x86 system is known to have broken _BBN; this is 1005 * not addressed here. 1006 * 1007 * Some BIOSes implement _BBN() by reading PCI config space 1008 * on bus #0 - which means that we'll recurse when we attempt 1009 * to create the devinfo-to-ACPI map. If Derive is called during 1010 * scan_d2a_map, we don't translate the bus # and return. 1011 * 1012 * We get the parent of the OpRegion, which must be a PCI 1013 * node, fetch the associated devinfo node and snag the 1014 * b/d/f from it. 1015 */ 1016 void 1017 AcpiOsDerivePciId(ACPI_HANDLE rhandle, ACPI_HANDLE chandle, 1018 ACPI_PCI_ID **PciId) 1019 { 1020 ACPI_HANDLE handle; 1021 dev_info_t *dip; 1022 int bus, device, func, devfn; 1023 1024 /* 1025 * See above - avoid recursing during scanning_d2a_map. 1026 */ 1027 if (scanning_d2a_map) 1028 return; 1029 1030 /* 1031 * Get the OpRegion's parent 1032 */ 1033 if (AcpiGetParent(chandle, &handle) != AE_OK) 1034 return; 1035 1036 /* 1037 * If we've mapped the ACPI node to the devinfo 1038 * tree, use the devinfo reg property 1039 */ 1040 if (ACPI_SUCCESS(acpica_get_devinfo(handle, &dip)) && 1041 (acpica_get_bdf(dip, &bus, &device, &func) >= 0)) { 1042 (*PciId)->Bus = bus; 1043 (*PciId)->Device = device; 1044 (*PciId)->Function = func; 1045 } 1046 } 1047 1048 1049 /*ARGSUSED*/ 1050 BOOLEAN 1051 AcpiOsReadable(void *Pointer, ACPI_SIZE Length) 1052 { 1053 1054 /* Always says yes; all mapped memory assumed readable */ 1055 return (1); 1056 } 1057 1058 /*ARGSUSED*/ 1059 BOOLEAN 1060 AcpiOsWritable(void *Pointer, ACPI_SIZE Length) 1061 { 1062 1063 /* Always says yes; all mapped memory assumed writable */ 1064 return (1); 1065 } 1066 1067 UINT64 1068 AcpiOsGetTimer(void) 1069 { 1070 /* gethrtime() returns 1nS resolution; convert to 100nS granules */ 1071 return ((gethrtime() + 50) / 100); 1072 } 1073 1074 static struct AcpiOSIFeature_s { 1075 uint64_t control_flag; 1076 const char *feature_name; 1077 } AcpiOSIFeatures[] = { 1078 { ACPI_FEATURE_OSI_MODULE, "Module Device" }, 1079 { 0, "Processor Device" } 1080 }; 1081 1082 /*ARGSUSED*/ 1083 ACPI_STATUS 1084 AcpiOsValidateInterface(char *feature) 1085 { 1086 int i; 1087 1088 ASSERT(feature != NULL); 1089 for (i = 0; i < sizeof (AcpiOSIFeatures) / sizeof (AcpiOSIFeatures[0]); 1090 i++) { 1091 if (strcmp(feature, AcpiOSIFeatures[i].feature_name) != 0) { 1092 continue; 1093 } 1094 /* Check whether required core features are available. */ 1095 if (AcpiOSIFeatures[i].control_flag != 0 && 1096 acpica_get_core_feature(AcpiOSIFeatures[i].control_flag) != 1097 AcpiOSIFeatures[i].control_flag) { 1098 break; 1099 } 1100 /* Feature supported. */ 1101 return (AE_OK); 1102 } 1103 1104 return (AE_SUPPORT); 1105 } 1106 1107 /*ARGSUSED*/ 1108 ACPI_STATUS 1109 AcpiOsValidateAddress(UINT8 spaceid, ACPI_PHYSICAL_ADDRESS addr, 1110 ACPI_SIZE length) 1111 { 1112 return (AE_OK); 1113 } 1114 1115 ACPI_STATUS 1116 AcpiOsSignal(UINT32 Function, void *Info) 1117 { 1118 _NOTE(ARGUNUSED(Function, Info)) 1119 1120 /* FUTUREWORK: debugger support */ 1121 1122 cmn_err(CE_NOTE, "!OsSignal unimplemented"); 1123 return (AE_OK); 1124 } 1125 1126 void ACPI_INTERNAL_VAR_XFACE 1127 AcpiOsPrintf(const char *Format, ...) 1128 { 1129 va_list ap; 1130 1131 va_start(ap, Format); 1132 AcpiOsVprintf(Format, ap); 1133 va_end(ap); 1134 } 1135 1136 /* 1137 * When != 0, sends output to console 1138 * Patchable with kmdb or /etc/system. 1139 */ 1140 int acpica_console_out = 0; 1141 1142 #define ACPICA_OUTBUF_LEN 160 1143 char acpica_outbuf[ACPICA_OUTBUF_LEN]; 1144 int acpica_outbuf_offset; 1145 1146 /* 1147 * 1148 */ 1149 static void 1150 acpica_pr_buf(char *buf) 1151 { 1152 char c, *bufp, *outp; 1153 int out_remaining; 1154 1155 /* 1156 * copy the supplied buffer into the output buffer 1157 * when we hit a '\n' or overflow the output buffer, 1158 * output and reset the output buffer 1159 */ 1160 bufp = buf; 1161 outp = acpica_outbuf + acpica_outbuf_offset; 1162 out_remaining = ACPICA_OUTBUF_LEN - acpica_outbuf_offset - 1; 1163 while (c = *bufp++) { 1164 *outp++ = c; 1165 if (c == '\n' || --out_remaining == 0) { 1166 *outp = '\0'; 1167 switch (acpica_console_out) { 1168 case 1: 1169 printf(acpica_outbuf); 1170 break; 1171 case 2: 1172 prom_printf(acpica_outbuf); 1173 break; 1174 case 0: 1175 default: 1176 (void) strlog(0, 0, 0, 1177 SL_CONSOLE | SL_NOTE | SL_LOGONLY, 1178 acpica_outbuf); 1179 break; 1180 } 1181 acpica_outbuf_offset = 0; 1182 outp = acpica_outbuf; 1183 out_remaining = ACPICA_OUTBUF_LEN - 1; 1184 } 1185 } 1186 1187 acpica_outbuf_offset = outp - acpica_outbuf; 1188 } 1189 1190 void 1191 AcpiOsVprintf(const char *Format, va_list Args) 1192 { 1193 1194 /* 1195 * If AcpiOsInitialize() failed to allocate a string buffer, 1196 * resort to vprintf(). 1197 */ 1198 if (acpi_osl_pr_buffer == NULL) { 1199 vprintf(Format, Args); 1200 return; 1201 } 1202 1203 /* 1204 * It is possible that a very long debug output statement will 1205 * be truncated; this is silently ignored. 1206 */ 1207 (void) vsnprintf(acpi_osl_pr_buffer, acpi_osl_pr_buflen, Format, Args); 1208 acpica_pr_buf(acpi_osl_pr_buffer); 1209 } 1210 1211 void 1212 AcpiOsRedirectOutput(void *Destination) 1213 { 1214 _NOTE(ARGUNUSED(Destination)) 1215 1216 /* FUTUREWORK: debugger support */ 1217 1218 #ifdef DEBUG 1219 cmn_err(CE_WARN, "!acpica: AcpiOsRedirectOutput called"); 1220 #endif 1221 } 1222 1223 1224 UINT32 1225 AcpiOsGetLine(char *Buffer) 1226 { 1227 _NOTE(ARGUNUSED(Buffer)) 1228 1229 /* FUTUREWORK: debugger support */ 1230 1231 return (0); 1232 } 1233 1234 /* 1235 * Device tree binding 1236 */ 1237 static ACPI_STATUS 1238 acpica_find_pcibus_walker(ACPI_HANDLE hdl, UINT32 lvl, void *ctxp, void **rvpp) 1239 { 1240 _NOTE(ARGUNUSED(lvl)); 1241 1242 int sta, hid, bbn; 1243 int busno = (intptr_t)ctxp; 1244 ACPI_HANDLE *hdlp = (ACPI_HANDLE *)rvpp; 1245 1246 /* Check whether device exists. */ 1247 if (ACPI_SUCCESS(acpica_eval_int(hdl, "_STA", &sta)) && 1248 !(sta & (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_FUNCTIONING))) { 1249 /* 1250 * Skip object if device doesn't exist. 1251 * According to ACPI Spec, 1252 * 1) setting either bit 0 or bit 3 means that device exists. 1253 * 2) Absence of _STA method means all status bits set. 1254 */ 1255 return (AE_CTRL_DEPTH); 1256 } 1257 1258 if (ACPI_FAILURE(acpica_eval_hid(hdl, "_HID", &hid)) || 1259 (hid != HID_PCI_BUS && hid != HID_PCI_EXPRESS_BUS)) { 1260 /* Non PCI/PCIe host bridge. */ 1261 return (AE_OK); 1262 } 1263 1264 if (acpi_has_broken_bbn) { 1265 ACPI_BUFFER rb; 1266 rb.Pointer = NULL; 1267 rb.Length = ACPI_ALLOCATE_BUFFER; 1268 1269 /* Decree _BBN == n from PCI<n> */ 1270 if (AcpiGetName(hdl, ACPI_SINGLE_NAME, &rb) != AE_OK) { 1271 return (AE_CTRL_TERMINATE); 1272 } 1273 bbn = ((char *)rb.Pointer)[3] - '0'; 1274 AcpiOsFree(rb.Pointer); 1275 if (bbn == busno || busno == 0) { 1276 *hdlp = hdl; 1277 return (AE_CTRL_TERMINATE); 1278 } 1279 } else if (ACPI_SUCCESS(acpica_eval_int(hdl, "_BBN", &bbn))) { 1280 if (bbn == busno) { 1281 *hdlp = hdl; 1282 return (AE_CTRL_TERMINATE); 1283 } 1284 } else if (busno == 0) { 1285 *hdlp = hdl; 1286 return (AE_CTRL_TERMINATE); 1287 } 1288 1289 return (AE_CTRL_DEPTH); 1290 } 1291 1292 static int 1293 acpica_find_pcibus(int busno, ACPI_HANDLE *rh) 1294 { 1295 ACPI_HANDLE sbobj, busobj; 1296 1297 /* initialize static flag by querying ACPI namespace for bug */ 1298 if (acpi_has_broken_bbn == -1) 1299 acpi_has_broken_bbn = acpica_query_bbn_problem(); 1300 1301 if (ACPI_SUCCESS(AcpiGetHandle(NULL, "\\_SB", &sbobj))) { 1302 busobj = NULL; 1303 (void) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sbobj, UINT32_MAX, 1304 acpica_find_pcibus_walker, NULL, (void *)(intptr_t)busno, 1305 (void **)&busobj); 1306 if (busobj != NULL) { 1307 *rh = busobj; 1308 return (AE_OK); 1309 } 1310 } 1311 1312 return (AE_ERROR); 1313 } 1314 1315 static ACPI_STATUS 1316 acpica_query_bbn_walker(ACPI_HANDLE hdl, UINT32 lvl, void *ctxp, void **rvpp) 1317 { 1318 _NOTE(ARGUNUSED(lvl)); 1319 _NOTE(ARGUNUSED(rvpp)); 1320 1321 int sta, hid, bbn; 1322 int *cntp = (int *)ctxp; 1323 1324 /* Check whether device exists. */ 1325 if (ACPI_SUCCESS(acpica_eval_int(hdl, "_STA", &sta)) && 1326 !(sta & (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_FUNCTIONING))) { 1327 /* 1328 * Skip object if device doesn't exist. 1329 * According to ACPI Spec, 1330 * 1) setting either bit 0 or bit 3 means that device exists. 1331 * 2) Absence of _STA method means all status bits set. 1332 */ 1333 return (AE_CTRL_DEPTH); 1334 } 1335 1336 if (ACPI_FAILURE(acpica_eval_hid(hdl, "_HID", &hid)) || 1337 (hid != HID_PCI_BUS && hid != HID_PCI_EXPRESS_BUS)) { 1338 /* Non PCI/PCIe host bridge. */ 1339 return (AE_OK); 1340 } else if (ACPI_SUCCESS(acpica_eval_int(hdl, "_BBN", &bbn)) && 1341 bbn == 0 && ++(*cntp) > 1) { 1342 /* 1343 * If we find more than one bus with a 0 _BBN 1344 * we have the problem that BigBear's BIOS shows 1345 */ 1346 return (AE_CTRL_TERMINATE); 1347 } else { 1348 /* 1349 * Skip children of PCI/PCIe host bridge. 1350 */ 1351 return (AE_CTRL_DEPTH); 1352 } 1353 } 1354 1355 /* 1356 * Look for ACPI problem where _BBN is zero for multiple PCI buses 1357 * This is a clear ACPI bug, but we have a workaround in acpica_find_pcibus() 1358 * below if it exists. 1359 */ 1360 static int 1361 acpica_query_bbn_problem(void) 1362 { 1363 ACPI_HANDLE sbobj; 1364 int zerobbncnt; 1365 void *rv; 1366 1367 zerobbncnt = 0; 1368 if (ACPI_SUCCESS(AcpiGetHandle(NULL, "\\_SB", &sbobj))) { 1369 (void) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sbobj, UINT32_MAX, 1370 acpica_query_bbn_walker, NULL, &zerobbncnt, &rv); 1371 } 1372 1373 return (zerobbncnt > 1 ? 1 : 0); 1374 } 1375 1376 static const char hextab[] = "0123456789ABCDEF"; 1377 1378 static int 1379 hexdig(int c) 1380 { 1381 /* 1382 * Get hex digit: 1383 * 1384 * Returns the 4-bit hex digit named by the input character. Returns 1385 * zero if the input character is not valid hex! 1386 */ 1387 1388 int x = ((c < 'a') || (c > 'z')) ? c : (c - ' '); 1389 int j = sizeof (hextab); 1390 1391 while (--j && (x != hextab[j])) { 1392 } 1393 return (j); 1394 } 1395 1396 static int 1397 CompressEisaID(char *np) 1398 { 1399 /* 1400 * Compress an EISA device name: 1401 * 1402 * This routine converts a 7-byte ASCII device name into the 4-byte 1403 * compressed form used by EISA (50 bytes of ROM to save 1 byte of 1404 * NV-RAM!) 1405 */ 1406 1407 union { char octets[4]; int retval; } myu; 1408 1409 myu.octets[0] = ((np[0] & 0x1F) << 2) + ((np[1] >> 3) & 0x03); 1410 myu.octets[1] = ((np[1] & 0x07) << 5) + (np[2] & 0x1F); 1411 myu.octets[2] = (hexdig(np[3]) << 4) + hexdig(np[4]); 1412 myu.octets[3] = (hexdig(np[5]) << 4) + hexdig(np[6]); 1413 1414 return (myu.retval); 1415 } 1416 1417 ACPI_STATUS 1418 acpica_eval_int(ACPI_HANDLE dev, char *method, int *rint) 1419 { 1420 ACPI_STATUS status; 1421 ACPI_BUFFER rb; 1422 ACPI_OBJECT ro; 1423 1424 rb.Pointer = &ro; 1425 rb.Length = sizeof (ro); 1426 if ((status = AcpiEvaluateObjectTyped(dev, method, NULL, &rb, 1427 ACPI_TYPE_INTEGER)) == AE_OK) 1428 *rint = ro.Integer.Value; 1429 1430 return (status); 1431 } 1432 1433 static int 1434 acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint) 1435 { 1436 ACPI_BUFFER rb; 1437 ACPI_OBJECT *rv; 1438 1439 rb.Pointer = NULL; 1440 rb.Length = ACPI_ALLOCATE_BUFFER; 1441 if (AcpiEvaluateObject(dev, method, NULL, &rb) == AE_OK && 1442 rb.Length != 0) { 1443 rv = rb.Pointer; 1444 if (rv->Type == ACPI_TYPE_INTEGER) { 1445 *rint = rv->Integer.Value; 1446 AcpiOsFree(rv); 1447 return (AE_OK); 1448 } else if (rv->Type == ACPI_TYPE_STRING) { 1449 char *stringData; 1450 1451 /* Convert the string into an EISA ID */ 1452 if (rv->String.Pointer == NULL) { 1453 AcpiOsFree(rv); 1454 return (AE_ERROR); 1455 } 1456 1457 stringData = rv->String.Pointer; 1458 1459 /* 1460 * If the string is an EisaID, it must be 7 1461 * characters; if it's an ACPI ID, it will be 8 1462 * (and we don't care about ACPI ids here). 1463 */ 1464 if (strlen(stringData) != 7) { 1465 AcpiOsFree(rv); 1466 return (AE_ERROR); 1467 } 1468 1469 *rint = CompressEisaID(stringData); 1470 AcpiOsFree(rv); 1471 return (AE_OK); 1472 } else 1473 AcpiOsFree(rv); 1474 } 1475 return (AE_ERROR); 1476 } 1477 1478 /* 1479 * Create linkage between devinfo nodes and ACPI nodes 1480 */ 1481 ACPI_STATUS 1482 acpica_tag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj) 1483 { 1484 ACPI_STATUS status; 1485 ACPI_BUFFER rb; 1486 1487 /* 1488 * Tag the devinfo node with the ACPI name 1489 */ 1490 rb.Pointer = NULL; 1491 rb.Length = ACPI_ALLOCATE_BUFFER; 1492 status = AcpiGetName(acpiobj, ACPI_FULL_PATHNAME, &rb); 1493 if (ACPI_FAILURE(status)) { 1494 cmn_err(CE_WARN, "acpica: could not get ACPI path!"); 1495 } else { 1496 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1497 "acpi-namespace", (char *)rb.Pointer); 1498 AcpiOsFree(rb.Pointer); 1499 1500 /* 1501 * Tag the ACPI node with the dip 1502 */ 1503 status = acpica_set_devinfo(acpiobj, dip); 1504 ASSERT(ACPI_SUCCESS(status)); 1505 } 1506 1507 return (status); 1508 } 1509 1510 /* 1511 * Destroy linkage between devinfo nodes and ACPI nodes 1512 */ 1513 ACPI_STATUS 1514 acpica_untag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj) 1515 { 1516 (void) acpica_unset_devinfo(acpiobj); 1517 (void) ndi_prop_remove(DDI_DEV_T_NONE, dip, "acpi-namespace"); 1518 1519 return (AE_OK); 1520 } 1521 1522 /* 1523 * Return the ACPI device node matching the CPU dev_info node. 1524 */ 1525 ACPI_STATUS 1526 acpica_get_handle_cpu(int cpu_id, ACPI_HANDLE *rh) 1527 { 1528 int i; 1529 1530 /* 1531 * if cpu_map itself is NULL, we're a uppc system and 1532 * acpica_build_processor_map() hasn't been called yet. 1533 * So call it here 1534 */ 1535 if (cpu_map == NULL) { 1536 (void) acpica_build_processor_map(); 1537 if (cpu_map == NULL) 1538 return (AE_ERROR); 1539 } 1540 1541 if (cpu_id < 0) { 1542 return (AE_ERROR); 1543 } 1544 1545 /* 1546 * search object with cpuid in cpu_map 1547 */ 1548 mutex_enter(&cpu_map_lock); 1549 for (i = 0; i < cpu_map_count; i++) { 1550 if (cpu_map[i]->cpu_id == cpu_id) { 1551 break; 1552 } 1553 } 1554 if (i < cpu_map_count && (cpu_map[i]->obj != NULL)) { 1555 *rh = cpu_map[cpu_id]->obj; 1556 mutex_exit(&cpu_map_lock); 1557 return (AE_OK); 1558 } 1559 1560 /* Handle special case for uppc-only systems. */ 1561 if (cpu_map_called == 0) { 1562 uint32_t apicid = cpuid_get_apicid(CPU); 1563 if (apicid != UINT32_MAX) { 1564 for (i = 0; i < cpu_map_count; i++) { 1565 if (cpu_map[i]->apic_id == apicid) { 1566 break; 1567 } 1568 } 1569 if (i < cpu_map_count && (cpu_map[i]->obj != NULL)) { 1570 *rh = cpu_map[cpu_id]->obj; 1571 mutex_exit(&cpu_map_lock); 1572 return (AE_OK); 1573 } 1574 } 1575 } 1576 mutex_exit(&cpu_map_lock); 1577 1578 return (AE_ERROR); 1579 } 1580 1581 /* 1582 * Determine if this object is a processor 1583 */ 1584 static ACPI_STATUS 1585 acpica_probe_processor(ACPI_HANDLE obj, UINT32 level, void *ctx, void **rv) 1586 { 1587 ACPI_STATUS status; 1588 ACPI_OBJECT_TYPE objtype; 1589 unsigned long acpi_id; 1590 ACPI_BUFFER rb; 1591 ACPI_DEVICE_INFO *di; 1592 1593 if (AcpiGetType(obj, &objtype) != AE_OK) 1594 return (AE_OK); 1595 1596 if (objtype == ACPI_TYPE_PROCESSOR) { 1597 /* process a Processor */ 1598 rb.Pointer = NULL; 1599 rb.Length = ACPI_ALLOCATE_BUFFER; 1600 status = AcpiEvaluateObjectTyped(obj, NULL, NULL, &rb, 1601 ACPI_TYPE_PROCESSOR); 1602 if (status != AE_OK) { 1603 cmn_err(CE_WARN, "!acpica: error probing Processor"); 1604 return (status); 1605 } 1606 acpi_id = ((ACPI_OBJECT *)rb.Pointer)->Processor.ProcId; 1607 AcpiOsFree(rb.Pointer); 1608 } else if (objtype == ACPI_TYPE_DEVICE) { 1609 /* process a processor Device */ 1610 status = AcpiGetObjectInfo(obj, &di); 1611 if (status != AE_OK) { 1612 cmn_err(CE_WARN, 1613 "!acpica: error probing Processor Device\n"); 1614 return (status); 1615 } 1616 1617 if (!(di->Valid & ACPI_VALID_UID) || 1618 ddi_strtoul(di->UniqueId.String, NULL, 10, &acpi_id) != 0) { 1619 ACPI_FREE(di); 1620 cmn_err(CE_WARN, 1621 "!acpica: error probing Processor Device _UID\n"); 1622 return (AE_ERROR); 1623 } 1624 ACPI_FREE(di); 1625 } 1626 (void) acpica_add_processor_to_map(acpi_id, obj, UINT32_MAX); 1627 1628 return (AE_OK); 1629 } 1630 1631 void 1632 scan_d2a_map(void) 1633 { 1634 dev_info_t *dip, *cdip; 1635 ACPI_HANDLE acpiobj; 1636 char *device_type_prop; 1637 int bus; 1638 static int map_error = 0; 1639 1640 if (map_error || (d2a_done != 0)) 1641 return; 1642 1643 scanning_d2a_map = 1; 1644 1645 /* 1646 * Find all child-of-root PCI buses, and find their corresponding 1647 * ACPI child-of-root PCI nodes. For each one, add to the 1648 * d2a table. 1649 */ 1650 1651 for (dip = ddi_get_child(ddi_root_node()); 1652 dip != NULL; 1653 dip = ddi_get_next_sibling(dip)) { 1654 1655 /* prune non-PCI nodes */ 1656 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 1657 DDI_PROP_DONTPASS, 1658 "device_type", &device_type_prop) != DDI_PROP_SUCCESS) 1659 continue; 1660 1661 if ((strcmp("pci", device_type_prop) != 0) && 1662 (strcmp("pciex", device_type_prop) != 0)) { 1663 ddi_prop_free(device_type_prop); 1664 continue; 1665 } 1666 1667 ddi_prop_free(device_type_prop); 1668 1669 /* 1670 * To get bus number of dip, get first child and get its 1671 * bus number. If NULL, just continue, because we don't 1672 * care about bus nodes with no children anyway. 1673 */ 1674 if ((cdip = ddi_get_child(dip)) == NULL) 1675 continue; 1676 1677 if (acpica_get_bdf(cdip, &bus, NULL, NULL) < 0) { 1678 #ifdef D2ADEBUG 1679 cmn_err(CE_WARN, "Can't get bus number of PCI child?"); 1680 #endif 1681 map_error = 1; 1682 scanning_d2a_map = 0; 1683 d2a_done = 1; 1684 return; 1685 } 1686 1687 if (acpica_find_pcibus(bus, &acpiobj) == AE_ERROR) { 1688 #ifdef D2ADEBUG 1689 cmn_err(CE_WARN, "No ACPI bus obj for bus %d?\n", bus); 1690 #endif 1691 map_error = 1; 1692 continue; 1693 } 1694 1695 acpica_tag_devinfo(dip, acpiobj); 1696 1697 /* call recursively to enumerate subtrees */ 1698 scan_d2a_subtree(dip, acpiobj, bus); 1699 } 1700 1701 scanning_d2a_map = 0; 1702 d2a_done = 1; 1703 } 1704 1705 /* 1706 * For all acpi child devices of acpiobj, find their matching 1707 * dip under "dip" argument. (matching means "matches dev/fn"). 1708 * bus is assumed to already be a match from caller, and is 1709 * used here only to record in the d2a entry. Recurse if necessary. 1710 */ 1711 static void 1712 scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus) 1713 { 1714 int acpi_devfn, hid; 1715 ACPI_HANDLE acld; 1716 dev_info_t *dcld; 1717 int dcld_b, dcld_d, dcld_f; 1718 int dev, func; 1719 char *device_type_prop; 1720 1721 acld = NULL; 1722 while (AcpiGetNextObject(ACPI_TYPE_DEVICE, acpiobj, acld, &acld) 1723 == AE_OK) { 1724 /* get the dev/func we're looking for in the devinfo tree */ 1725 if (acpica_eval_int(acld, "_ADR", &acpi_devfn) != AE_OK) 1726 continue; 1727 dev = (acpi_devfn >> 16) & 0xFFFF; 1728 func = acpi_devfn & 0xFFFF; 1729 1730 /* look through all the immediate children of dip */ 1731 for (dcld = ddi_get_child(dip); dcld != NULL; 1732 dcld = ddi_get_next_sibling(dcld)) { 1733 if (acpica_get_bdf(dcld, &dcld_b, &dcld_d, &dcld_f) < 0) 1734 continue; 1735 1736 /* dev must match; function must match or wildcard */ 1737 if (dcld_d != dev || 1738 (func != 0xFFFF && func != dcld_f)) 1739 continue; 1740 bus = dcld_b; 1741 1742 /* found a match, record it */ 1743 acpica_tag_devinfo(dcld, acld); 1744 1745 /* if we find a bridge, recurse from here */ 1746 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dcld, 1747 DDI_PROP_DONTPASS, "device_type", 1748 &device_type_prop) == DDI_PROP_SUCCESS) { 1749 if ((strcmp("pci", device_type_prop) == 0) || 1750 (strcmp("pciex", device_type_prop) == 0)) 1751 scan_d2a_subtree(dcld, acld, bus); 1752 ddi_prop_free(device_type_prop); 1753 } 1754 1755 /* done finding a match, so break now */ 1756 break; 1757 } 1758 } 1759 } 1760 1761 /* 1762 * Return bus/dev/fn for PCI dip (note: not the parent "pci" node). 1763 */ 1764 int 1765 acpica_get_bdf(dev_info_t *dip, int *bus, int *device, int *func) 1766 { 1767 pci_regspec_t *pci_rp; 1768 int len; 1769 1770 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 1771 "reg", (int **)&pci_rp, (uint_t *)&len) != DDI_SUCCESS) 1772 return (-1); 1773 1774 if (len < (sizeof (pci_regspec_t) / sizeof (int))) { 1775 ddi_prop_free(pci_rp); 1776 return (-1); 1777 } 1778 if (bus != NULL) 1779 *bus = (int)PCI_REG_BUS_G(pci_rp->pci_phys_hi); 1780 if (device != NULL) 1781 *device = (int)PCI_REG_DEV_G(pci_rp->pci_phys_hi); 1782 if (func != NULL) 1783 *func = (int)PCI_REG_FUNC_G(pci_rp->pci_phys_hi); 1784 ddi_prop_free(pci_rp); 1785 return (0); 1786 } 1787 1788 /* 1789 * Return the ACPI device node matching this dev_info node, if it 1790 * exists in the ACPI tree. 1791 */ 1792 ACPI_STATUS 1793 acpica_get_handle(dev_info_t *dip, ACPI_HANDLE *rh) 1794 { 1795 ACPI_STATUS status; 1796 char *acpiname; 1797 1798 #ifdef DEBUG 1799 if (d2a_done == 0) 1800 cmn_err(CE_WARN, "!acpica_get_handle:" 1801 " no ACPI mapping for %s", ddi_node_name(dip)); 1802 #endif 1803 1804 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 1805 "acpi-namespace", &acpiname) != DDI_PROP_SUCCESS) { 1806 return (AE_ERROR); 1807 } 1808 1809 status = AcpiGetHandle(NULL, acpiname, rh); 1810 ddi_prop_free((void *)acpiname); 1811 return (status); 1812 } 1813 1814 1815 1816 /* 1817 * Manage OS data attachment to ACPI nodes 1818 */ 1819 1820 /* 1821 * Return the (dev_info_t *) associated with the ACPI node. 1822 */ 1823 ACPI_STATUS 1824 acpica_get_devinfo(ACPI_HANDLE obj, dev_info_t **dipp) 1825 { 1826 ACPI_STATUS status; 1827 void *ptr; 1828 1829 status = AcpiGetData(obj, acpica_devinfo_handler, &ptr); 1830 if (status == AE_OK) 1831 *dipp = (dev_info_t *)ptr; 1832 1833 return (status); 1834 } 1835 1836 /* 1837 * Set the dev_info_t associated with the ACPI node. 1838 */ 1839 static ACPI_STATUS 1840 acpica_set_devinfo(ACPI_HANDLE obj, dev_info_t *dip) 1841 { 1842 ACPI_STATUS status; 1843 1844 status = AcpiAttachData(obj, acpica_devinfo_handler, (void *)dip); 1845 return (status); 1846 } 1847 1848 /* 1849 * Unset the dev_info_t associated with the ACPI node. 1850 */ 1851 static ACPI_STATUS 1852 acpica_unset_devinfo(ACPI_HANDLE obj) 1853 { 1854 return (AcpiDetachData(obj, acpica_devinfo_handler)); 1855 } 1856 1857 /* 1858 * 1859 */ 1860 void 1861 acpica_devinfo_handler(ACPI_HANDLE obj, void *data) 1862 { 1863 /* no-op */ 1864 } 1865 1866 ACPI_STATUS 1867 acpica_build_processor_map(void) 1868 { 1869 ACPI_STATUS status; 1870 void *rv; 1871 1872 /* 1873 * shouldn't be called more than once anyway 1874 */ 1875 if (cpu_map_built) 1876 return (AE_OK); 1877 1878 /* 1879 * ACPI device configuration driver has built mapping information 1880 * among processor id and object handle, no need to probe again. 1881 */ 1882 if (acpica_get_devcfg_feature(ACPI_DEVCFG_CPU)) { 1883 cpu_map_built = 1; 1884 return (AE_OK); 1885 } 1886 1887 /* 1888 * Look for Processor objects 1889 */ 1890 status = AcpiWalkNamespace(ACPI_TYPE_PROCESSOR, 1891 ACPI_ROOT_OBJECT, 1892 4, 1893 acpica_probe_processor, 1894 NULL, 1895 NULL, 1896 &rv); 1897 ASSERT(status == AE_OK); 1898 1899 /* 1900 * Look for processor Device objects 1901 */ 1902 status = AcpiGetDevices("ACPI0007", 1903 acpica_probe_processor, 1904 NULL, 1905 &rv); 1906 ASSERT(status == AE_OK); 1907 cpu_map_built = 1; 1908 1909 return (status); 1910 } 1911 1912 /* 1913 * Grow cpu map table on demand. 1914 */ 1915 static void 1916 acpica_grow_cpu_map(void) 1917 { 1918 if (cpu_map_count == cpu_map_count_max) { 1919 size_t sz; 1920 struct cpu_map_item **new_map; 1921 1922 ASSERT(cpu_map_count_max < INT_MAX / 2); 1923 cpu_map_count_max += max_ncpus; 1924 new_map = kmem_zalloc(sizeof (cpu_map[0]) * cpu_map_count_max, 1925 KM_SLEEP); 1926 if (cpu_map_count != 0) { 1927 ASSERT(cpu_map != NULL); 1928 sz = sizeof (cpu_map[0]) * cpu_map_count; 1929 kcopy(cpu_map, new_map, sz); 1930 kmem_free(cpu_map, sz); 1931 } 1932 cpu_map = new_map; 1933 } 1934 } 1935 1936 /* 1937 * Maintain mapping information among (cpu id, ACPI processor id, APIC id, 1938 * ACPI handle). The mapping table will be setup in two steps: 1939 * 1) acpica_add_processor_to_map() builds mapping among APIC id, ACPI 1940 * processor id and ACPI object handle. 1941 * 2) acpica_map_cpu() builds mapping among cpu id and ACPI processor id. 1942 * On systems with which have ACPI device configuration for CPUs enabled, 1943 * acpica_map_cpu() will be called after acpica_add_processor_to_map(), 1944 * otherwise acpica_map_cpu() will be called before 1945 * acpica_add_processor_to_map(). 1946 */ 1947 ACPI_STATUS 1948 acpica_add_processor_to_map(UINT32 acpi_id, ACPI_HANDLE obj, UINT32 apic_id) 1949 { 1950 int i; 1951 ACPI_STATUS rc = AE_OK; 1952 struct cpu_map_item *item = NULL; 1953 1954 ASSERT(obj != NULL); 1955 if (obj == NULL) { 1956 return (AE_ERROR); 1957 } 1958 1959 mutex_enter(&cpu_map_lock); 1960 1961 /* 1962 * Special case for uppc 1963 * If we're a uppc system and ACPI device configuration for CPU has 1964 * been disabled, there won't be a CPU map yet because uppc psm doesn't 1965 * call acpica_map_cpu(). So create one and use the passed-in processor 1966 * as CPU 0 1967 * Assumption: the first CPU returned by 1968 * AcpiGetDevices/AcpiWalkNamespace will be the BSP. 1969 * Unfortunately there appears to be no good way to ASSERT this. 1970 */ 1971 if (cpu_map == NULL && 1972 !acpica_get_devcfg_feature(ACPI_DEVCFG_CPU)) { 1973 acpica_grow_cpu_map(); 1974 ASSERT(cpu_map != NULL); 1975 item = kmem_zalloc(sizeof (*item), KM_SLEEP); 1976 item->cpu_id = 0; 1977 item->proc_id = acpi_id; 1978 item->apic_id = apic_id; 1979 item->obj = obj; 1980 cpu_map[0] = item; 1981 cpu_map_count = 1; 1982 mutex_exit(&cpu_map_lock); 1983 return (AE_OK); 1984 } 1985 1986 for (i = 0; i < cpu_map_count; i++) { 1987 if (cpu_map[i]->obj == obj) { 1988 rc = AE_ALREADY_EXISTS; 1989 break; 1990 } else if (cpu_map[i]->proc_id == acpi_id) { 1991 ASSERT(item == NULL); 1992 item = cpu_map[i]; 1993 } 1994 } 1995 1996 if (rc == AE_OK) { 1997 if (item != NULL) { 1998 /* 1999 * ACPI alias objects may cause more than one objects 2000 * with the same ACPI processor id, only remember the 2001 * the first object encountered. 2002 */ 2003 if (item->obj == NULL) { 2004 item->obj = obj; 2005 item->apic_id = apic_id; 2006 } else { 2007 rc = AE_ALREADY_EXISTS; 2008 } 2009 } else if (cpu_map_count >= INT_MAX / 2) { 2010 rc = AE_NO_MEMORY; 2011 } else { 2012 acpica_grow_cpu_map(); 2013 ASSERT(cpu_map != NULL); 2014 ASSERT(cpu_map_count < cpu_map_count_max); 2015 item = kmem_zalloc(sizeof (*item), KM_SLEEP); 2016 item->cpu_id = -1; 2017 item->proc_id = acpi_id; 2018 item->apic_id = apic_id; 2019 item->obj = obj; 2020 cpu_map[cpu_map_count] = item; 2021 cpu_map_count++; 2022 } 2023 } 2024 2025 mutex_exit(&cpu_map_lock); 2026 2027 return (rc); 2028 } 2029 2030 ACPI_STATUS 2031 acpica_remove_processor_from_map(UINT32 acpi_id) 2032 { 2033 int i; 2034 ACPI_STATUS rc = AE_NOT_EXIST; 2035 2036 mutex_enter(&cpu_map_lock); 2037 for (i = 0; i < cpu_map_count; i++) { 2038 if (cpu_map[i]->proc_id != acpi_id) { 2039 continue; 2040 } 2041 cpu_map[i]->obj = NULL; 2042 /* Free item if no more reference to it. */ 2043 if (cpu_map[i]->cpu_id == -1) { 2044 kmem_free(cpu_map[i], sizeof (struct cpu_map_item)); 2045 cpu_map[i] = NULL; 2046 cpu_map_count--; 2047 if (i != cpu_map_count) { 2048 cpu_map[i] = cpu_map[cpu_map_count]; 2049 cpu_map[cpu_map_count] = NULL; 2050 } 2051 } 2052 rc = AE_OK; 2053 break; 2054 } 2055 mutex_exit(&cpu_map_lock); 2056 2057 return (rc); 2058 } 2059 2060 ACPI_STATUS 2061 acpica_map_cpu(processorid_t cpuid, UINT32 acpi_id) 2062 { 2063 int i; 2064 ACPI_STATUS rc = AE_OK; 2065 struct cpu_map_item *item = NULL; 2066 2067 ASSERT(cpuid != -1); 2068 if (cpuid == -1) { 2069 return (AE_ERROR); 2070 } 2071 2072 mutex_enter(&cpu_map_lock); 2073 cpu_map_called = 1; 2074 for (i = 0; i < cpu_map_count; i++) { 2075 if (cpu_map[i]->cpu_id == cpuid) { 2076 rc = AE_ALREADY_EXISTS; 2077 break; 2078 } else if (cpu_map[i]->proc_id == acpi_id) { 2079 ASSERT(item == NULL); 2080 item = cpu_map[i]; 2081 } 2082 } 2083 if (rc == AE_OK) { 2084 if (item != NULL) { 2085 if (item->cpu_id == -1) { 2086 item->cpu_id = cpuid; 2087 } else { 2088 rc = AE_ALREADY_EXISTS; 2089 } 2090 } else if (cpu_map_count >= INT_MAX / 2) { 2091 rc = AE_NO_MEMORY; 2092 } else { 2093 acpica_grow_cpu_map(); 2094 ASSERT(cpu_map != NULL); 2095 ASSERT(cpu_map_count < cpu_map_count_max); 2096 item = kmem_zalloc(sizeof (*item), KM_SLEEP); 2097 item->cpu_id = cpuid; 2098 item->proc_id = acpi_id; 2099 item->apic_id = UINT32_MAX; 2100 item->obj = NULL; 2101 cpu_map[cpu_map_count] = item; 2102 cpu_map_count++; 2103 } 2104 } 2105 mutex_exit(&cpu_map_lock); 2106 2107 return (rc); 2108 } 2109 2110 ACPI_STATUS 2111 acpica_unmap_cpu(processorid_t cpuid) 2112 { 2113 int i; 2114 ACPI_STATUS rc = AE_NOT_EXIST; 2115 2116 ASSERT(cpuid != -1); 2117 if (cpuid == -1) { 2118 return (rc); 2119 } 2120 2121 mutex_enter(&cpu_map_lock); 2122 for (i = 0; i < cpu_map_count; i++) { 2123 if (cpu_map[i]->cpu_id != cpuid) { 2124 continue; 2125 } 2126 cpu_map[i]->cpu_id = -1; 2127 /* Free item if no more reference. */ 2128 if (cpu_map[i]->obj == NULL) { 2129 kmem_free(cpu_map[i], sizeof (struct cpu_map_item)); 2130 cpu_map[i] = NULL; 2131 cpu_map_count--; 2132 if (i != cpu_map_count) { 2133 cpu_map[i] = cpu_map[cpu_map_count]; 2134 cpu_map[cpu_map_count] = NULL; 2135 } 2136 } 2137 rc = AE_OK; 2138 break; 2139 } 2140 mutex_exit(&cpu_map_lock); 2141 2142 return (rc); 2143 } 2144 2145 ACPI_STATUS 2146 acpica_get_cpu_object_by_cpuid(processorid_t cpuid, ACPI_HANDLE *hdlp) 2147 { 2148 int i; 2149 ACPI_STATUS rc = AE_NOT_EXIST; 2150 2151 ASSERT(cpuid != -1); 2152 if (cpuid == -1) { 2153 return (rc); 2154 } 2155 2156 mutex_enter(&cpu_map_lock); 2157 for (i = 0; i < cpu_map_count; i++) { 2158 if (cpu_map[i]->cpu_id == cpuid && cpu_map[i]->obj != NULL) { 2159 *hdlp = cpu_map[i]->obj; 2160 rc = AE_OK; 2161 break; 2162 } 2163 } 2164 mutex_exit(&cpu_map_lock); 2165 2166 return (rc); 2167 } 2168 2169 ACPI_STATUS 2170 acpica_get_cpu_object_by_procid(UINT32 procid, ACPI_HANDLE *hdlp) 2171 { 2172 int i; 2173 ACPI_STATUS rc = AE_NOT_EXIST; 2174 2175 mutex_enter(&cpu_map_lock); 2176 for (i = 0; i < cpu_map_count; i++) { 2177 if (cpu_map[i]->proc_id == procid && cpu_map[i]->obj != NULL) { 2178 *hdlp = cpu_map[i]->obj; 2179 rc = AE_OK; 2180 break; 2181 } 2182 } 2183 mutex_exit(&cpu_map_lock); 2184 2185 return (rc); 2186 } 2187 2188 ACPI_STATUS 2189 acpica_get_cpu_object_by_apicid(UINT32 apicid, ACPI_HANDLE *hdlp) 2190 { 2191 int i; 2192 ACPI_STATUS rc = AE_NOT_EXIST; 2193 2194 ASSERT(apicid != UINT32_MAX); 2195 if (apicid == UINT32_MAX) { 2196 return (rc); 2197 } 2198 2199 mutex_enter(&cpu_map_lock); 2200 for (i = 0; i < cpu_map_count; i++) { 2201 if (cpu_map[i]->apic_id == apicid && cpu_map[i]->obj != NULL) { 2202 *hdlp = cpu_map[i]->obj; 2203 rc = AE_OK; 2204 break; 2205 } 2206 } 2207 mutex_exit(&cpu_map_lock); 2208 2209 return (rc); 2210 } 2211 2212 void 2213 acpica_set_core_feature(uint64_t features) 2214 { 2215 atomic_or_64(&acpica_core_features, features); 2216 } 2217 2218 void 2219 acpica_clear_core_feature(uint64_t features) 2220 { 2221 atomic_and_64(&acpica_core_features, ~features); 2222 } 2223 2224 uint64_t 2225 acpica_get_core_feature(uint64_t features) 2226 { 2227 return (acpica_core_features & features); 2228 } 2229 2230 void 2231 acpica_set_devcfg_feature(uint64_t features) 2232 { 2233 atomic_or_64(&acpica_devcfg_features, features); 2234 } 2235 2236 void 2237 acpica_clear_devcfg_feature(uint64_t features) 2238 { 2239 atomic_and_64(&acpica_devcfg_features, ~features); 2240 } 2241 2242 uint64_t 2243 acpica_get_devcfg_feature(uint64_t features) 2244 { 2245 return (acpica_devcfg_features & features); 2246 } 2247 2248 void 2249 acpica_get_global_FADT(ACPI_TABLE_FADT **gbl_FADT) 2250 { 2251 *gbl_FADT = &AcpiGbl_FADT; 2252 } 2253 2254 void 2255 acpica_write_cpupm_capabilities(boolean_t pstates, boolean_t cstates) 2256 { 2257 if (pstates && AcpiGbl_FADT.PstateControl != 0) 2258 (void) AcpiHwRegisterWrite(ACPI_REGISTER_SMI_COMMAND_BLOCK, 2259 AcpiGbl_FADT.PstateControl); 2260 2261 if (cstates && AcpiGbl_FADT.CstControl != 0) 2262 (void) AcpiHwRegisterWrite(ACPI_REGISTER_SMI_COMMAND_BLOCK, 2263 AcpiGbl_FADT.CstControl); 2264 } 2265