1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* 27 * Copyright (c) 2009, Intel Corporation. 28 * All rights reserved. 29 */ 30 /* 31 * ACPI CA OSL for Solaris x86 32 */ 33 34 #include <sys/types.h> 35 #include <sys/kmem.h> 36 #include <sys/psm.h> 37 #include <sys/pci_cfgspace.h> 38 #include <sys/apic.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/sunndi.h> 42 #include <sys/pci.h> 43 #include <sys/kobj.h> 44 #include <sys/taskq.h> 45 #include <sys/strlog.h> 46 #include <sys/x86_archext.h> 47 #include <sys/note.h> 48 #include <sys/promif.h> 49 50 #include <sys/acpi/acpi.h> 51 #include <sys/acpi/accommon.h> 52 #include <sys/acpica.h> 53 54 #define MAX_DAT_FILE_SIZE (64*1024) 55 56 /* local functions */ 57 static int CompressEisaID(char *np); 58 59 static void scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus); 60 static int acpica_query_bbn_problem(void); 61 static int acpica_find_pcibus(int busno, ACPI_HANDLE *rh); 62 static int acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint); 63 static ACPI_STATUS acpica_set_devinfo(ACPI_HANDLE, dev_info_t *); 64 static ACPI_STATUS acpica_unset_devinfo(ACPI_HANDLE); 65 static void acpica_devinfo_handler(ACPI_HANDLE, UINT32, void *); 66 67 /* 68 * Event queue vars 69 */ 70 int acpica_eventq_init = 0; 71 ddi_taskq_t *osl_eventq[OSL_EC_BURST_HANDLER+1]; 72 73 /* 74 * Priorities relative to minclsyspri that each taskq 75 * run at; OSL_NOTIFY_HANDLER needs to run at a higher 76 * priority than OSL_GPE_HANDLER. There's an implicit 77 * assumption that no priority here results in exceeding 78 * maxclsyspri. 79 * Note: these initializations need to match the order of 80 * ACPI_EXECUTE_TYPE. 81 */ 82 int osl_eventq_pri_delta[OSL_EC_BURST_HANDLER+1] = { 83 0, /* OSL_GLOBAL_LOCK_HANDLER */ 84 2, /* OSL_NOTIFY_HANDLER */ 85 0, /* OSL_GPE_HANDLER */ 86 0, /* OSL_DEBUGGER_THREAD */ 87 0, /* OSL_EC_POLL_HANDLER */ 88 0 /* OSL_EC_BURST_HANDLER */ 89 }; 90 91 /* 92 * Note, if you change this path, you need to update 93 * /boot/grub/filelist.ramdisk and pkg SUNWckr/prototype_i386 94 */ 95 static char *acpi_table_path = "/boot/acpi/tables/"; 96 97 /* non-zero while scan_d2a_map() is working */ 98 static int scanning_d2a_map = 0; 99 static int d2a_done = 0; 100 101 /* features supported by ACPICA and ACPI device configuration. */ 102 uint64_t acpica_core_features = 0; 103 static uint64_t acpica_devcfg_features = 0; 104 105 /* set by acpi_poweroff() in PSMs and appm_ioctl() in acpippm for S3 */ 106 int acpica_use_safe_delay = 0; 107 108 /* CPU mapping data */ 109 struct cpu_map_item { 110 processorid_t cpu_id; 111 UINT32 proc_id; 112 UINT32 apic_id; 113 ACPI_HANDLE obj; 114 }; 115 116 static kmutex_t cpu_map_lock; 117 static struct cpu_map_item **cpu_map = NULL; 118 static int cpu_map_count_max = 0; 119 static int cpu_map_count = 0; 120 static int cpu_map_built = 0; 121 122 /* 123 * On systems with the uppc PSM only, acpica_map_cpu() won't be called at all. 124 * This flag is used to check for uppc-only systems by detecting whether 125 * acpica_map_cpu() has been called or not. 126 */ 127 static int cpu_map_called = 0; 128 129 static int acpi_has_broken_bbn = -1; 130 131 /* buffer for AcpiOsVprintf() */ 132 #define ACPI_OSL_PR_BUFLEN 1024 133 static char *acpi_osl_pr_buffer = NULL; 134 static int acpi_osl_pr_buflen; 135 136 #define D2A_DEBUG 137 138 /* 139 * 140 */ 141 static void 142 discard_event_queues() 143 { 144 int i; 145 146 /* 147 * destroy event queues 148 */ 149 for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) { 150 if (osl_eventq[i]) 151 ddi_taskq_destroy(osl_eventq[i]); 152 } 153 } 154 155 156 /* 157 * 158 */ 159 static ACPI_STATUS 160 init_event_queues() 161 { 162 char namebuf[32]; 163 int i, error = 0; 164 165 /* 166 * Initialize event queues 167 */ 168 169 /* Always allocate only 1 thread per queue to force FIFO execution */ 170 for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) { 171 snprintf(namebuf, 32, "ACPI%d", i); 172 osl_eventq[i] = ddi_taskq_create(NULL, namebuf, 1, 173 osl_eventq_pri_delta[i] + minclsyspri, 0); 174 if (osl_eventq[i] == NULL) 175 error++; 176 } 177 178 if (error != 0) { 179 discard_event_queues(); 180 #ifdef DEBUG 181 cmn_err(CE_WARN, "!acpica: could not initialize event queues"); 182 #endif 183 return (AE_ERROR); 184 } 185 186 acpica_eventq_init = 1; 187 return (AE_OK); 188 } 189 190 /* 191 * One-time initialization of OSL layer 192 */ 193 ACPI_STATUS 194 AcpiOsInitialize(void) 195 { 196 /* 197 * Allocate buffer for AcpiOsVprintf() here to avoid 198 * kmem_alloc()/kmem_free() at high PIL 199 */ 200 acpi_osl_pr_buffer = kmem_alloc(ACPI_OSL_PR_BUFLEN, KM_SLEEP); 201 if (acpi_osl_pr_buffer != NULL) 202 acpi_osl_pr_buflen = ACPI_OSL_PR_BUFLEN; 203 204 return (AE_OK); 205 } 206 207 /* 208 * One-time shut-down of OSL layer 209 */ 210 ACPI_STATUS 211 AcpiOsTerminate(void) 212 { 213 214 if (acpi_osl_pr_buffer != NULL) 215 kmem_free(acpi_osl_pr_buffer, acpi_osl_pr_buflen); 216 217 discard_event_queues(); 218 return (AE_OK); 219 } 220 221 222 ACPI_PHYSICAL_ADDRESS 223 AcpiOsGetRootPointer() 224 { 225 ACPI_PHYSICAL_ADDRESS Address; 226 227 /* 228 * For EFI firmware, the root pointer is defined in EFI systab. 229 * The boot code process the table and put the physical address 230 * in the acpi-root-tab property. 231 */ 232 Address = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 233 DDI_PROP_DONTPASS, "acpi-root-tab", NULL); 234 235 if ((Address == NULL) && ACPI_FAILURE(AcpiFindRootPointer(&Address))) 236 Address = NULL; 237 238 return (Address); 239 } 240 241 /*ARGSUSED*/ 242 ACPI_STATUS 243 AcpiOsPredefinedOverride(const ACPI_PREDEFINED_NAMES *InitVal, 244 ACPI_STRING *NewVal) 245 { 246 247 *NewVal = 0; 248 return (AE_OK); 249 } 250 251 static void 252 acpica_strncpy(char *dest, const char *src, int len) 253 { 254 255 /*LINTED*/ 256 while ((*dest++ = *src++) && (--len > 0)) 257 /* copy the string */; 258 *dest = '\0'; 259 } 260 261 ACPI_STATUS 262 AcpiOsTableOverride(ACPI_TABLE_HEADER *ExistingTable, 263 ACPI_TABLE_HEADER **NewTable) 264 { 265 char signature[5]; 266 char oemid[7]; 267 char oemtableid[9]; 268 struct _buf *file; 269 char *buf1, *buf2; 270 int count; 271 char acpi_table_loc[128]; 272 273 acpica_strncpy(signature, ExistingTable->Signature, 4); 274 acpica_strncpy(oemid, ExistingTable->OemId, 6); 275 acpica_strncpy(oemtableid, ExistingTable->OemTableId, 8); 276 277 #ifdef DEBUG 278 cmn_err(CE_NOTE, "!acpica: table [%s] v%d OEM ID [%s]" 279 " OEM TABLE ID [%s] OEM rev %x", 280 signature, ExistingTable->Revision, oemid, oemtableid, 281 ExistingTable->OemRevision); 282 #endif 283 284 /* File name format is "signature_oemid_oemtableid.dat" */ 285 (void) strcpy(acpi_table_loc, acpi_table_path); 286 (void) strcat(acpi_table_loc, signature); /* for example, DSDT */ 287 (void) strcat(acpi_table_loc, "_"); 288 (void) strcat(acpi_table_loc, oemid); /* for example, IntelR */ 289 (void) strcat(acpi_table_loc, "_"); 290 (void) strcat(acpi_table_loc, oemtableid); /* for example, AWRDACPI */ 291 (void) strcat(acpi_table_loc, ".dat"); 292 293 file = kobj_open_file(acpi_table_loc); 294 if (file == (struct _buf *)-1) { 295 *NewTable = 0; 296 return (AE_OK); 297 } else { 298 buf1 = (char *)kmem_alloc(MAX_DAT_FILE_SIZE, KM_SLEEP); 299 count = kobj_read_file(file, buf1, MAX_DAT_FILE_SIZE-1, 0); 300 if (count >= MAX_DAT_FILE_SIZE) { 301 cmn_err(CE_WARN, "!acpica: table %s file size too big", 302 acpi_table_loc); 303 *NewTable = 0; 304 } else { 305 buf2 = (char *)kmem_alloc(count, KM_SLEEP); 306 (void) memcpy(buf2, buf1, count); 307 *NewTable = (ACPI_TABLE_HEADER *)buf2; 308 cmn_err(CE_NOTE, "!acpica: replacing table: %s", 309 acpi_table_loc); 310 } 311 } 312 kobj_close_file(file); 313 kmem_free(buf1, MAX_DAT_FILE_SIZE); 314 315 return (AE_OK); 316 } 317 318 319 /* 320 * ACPI semaphore implementation 321 */ 322 typedef struct { 323 kmutex_t mutex; 324 kcondvar_t cv; 325 uint32_t available; 326 uint32_t initial; 327 uint32_t maximum; 328 } acpi_sema_t; 329 330 /* 331 * 332 */ 333 void 334 acpi_sema_init(acpi_sema_t *sp, unsigned max, unsigned count) 335 { 336 mutex_init(&sp->mutex, NULL, MUTEX_DRIVER, NULL); 337 cv_init(&sp->cv, NULL, CV_DRIVER, NULL); 338 /* no need to enter mutex here at creation */ 339 sp->available = count; 340 sp->initial = count; 341 sp->maximum = max; 342 } 343 344 /* 345 * 346 */ 347 void 348 acpi_sema_destroy(acpi_sema_t *sp) 349 { 350 351 cv_destroy(&sp->cv); 352 mutex_destroy(&sp->mutex); 353 } 354 355 /* 356 * 357 */ 358 ACPI_STATUS 359 acpi_sema_p(acpi_sema_t *sp, unsigned count, uint16_t wait_time) 360 { 361 ACPI_STATUS rv = AE_OK; 362 clock_t deadline; 363 364 mutex_enter(&sp->mutex); 365 366 if (sp->available >= count) { 367 /* 368 * Enough units available, no blocking 369 */ 370 sp->available -= count; 371 mutex_exit(&sp->mutex); 372 return (rv); 373 } else if (wait_time == 0) { 374 /* 375 * Not enough units available and timeout 376 * specifies no blocking 377 */ 378 rv = AE_TIME; 379 mutex_exit(&sp->mutex); 380 return (rv); 381 } 382 383 /* 384 * Not enough units available and timeout specifies waiting 385 */ 386 if (wait_time != ACPI_WAIT_FOREVER) 387 deadline = ddi_get_lbolt() + 388 (clock_t)drv_usectohz(wait_time * 1000); 389 390 do { 391 if (wait_time == ACPI_WAIT_FOREVER) 392 cv_wait(&sp->cv, &sp->mutex); 393 else if (cv_timedwait(&sp->cv, &sp->mutex, deadline) < 0) { 394 rv = AE_TIME; 395 break; 396 } 397 } while (sp->available < count); 398 399 /* if we dropped out of the wait with AE_OK, we got the units */ 400 if (rv == AE_OK) 401 sp->available -= count; 402 403 mutex_exit(&sp->mutex); 404 return (rv); 405 } 406 407 /* 408 * 409 */ 410 void 411 acpi_sema_v(acpi_sema_t *sp, unsigned count) 412 { 413 mutex_enter(&sp->mutex); 414 sp->available += count; 415 cv_broadcast(&sp->cv); 416 mutex_exit(&sp->mutex); 417 } 418 419 420 ACPI_STATUS 421 AcpiOsCreateSemaphore(UINT32 MaxUnits, UINT32 InitialUnits, 422 ACPI_HANDLE *OutHandle) 423 { 424 acpi_sema_t *sp; 425 426 if ((OutHandle == NULL) || (InitialUnits > MaxUnits)) 427 return (AE_BAD_PARAMETER); 428 429 sp = (acpi_sema_t *)kmem_alloc(sizeof (acpi_sema_t), KM_SLEEP); 430 acpi_sema_init(sp, MaxUnits, InitialUnits); 431 *OutHandle = (ACPI_HANDLE)sp; 432 return (AE_OK); 433 } 434 435 436 ACPI_STATUS 437 AcpiOsDeleteSemaphore(ACPI_HANDLE Handle) 438 { 439 440 if (Handle == NULL) 441 return (AE_BAD_PARAMETER); 442 443 acpi_sema_destroy((acpi_sema_t *)Handle); 444 kmem_free((void *)Handle, sizeof (acpi_sema_t)); 445 return (AE_OK); 446 } 447 448 ACPI_STATUS 449 AcpiOsWaitSemaphore(ACPI_HANDLE Handle, UINT32 Units, UINT16 Timeout) 450 { 451 452 if ((Handle == NULL) || (Units < 1)) 453 return (AE_BAD_PARAMETER); 454 455 return (acpi_sema_p((acpi_sema_t *)Handle, Units, Timeout)); 456 } 457 458 ACPI_STATUS 459 AcpiOsSignalSemaphore(ACPI_HANDLE Handle, UINT32 Units) 460 { 461 462 if ((Handle == NULL) || (Units < 1)) 463 return (AE_BAD_PARAMETER); 464 465 acpi_sema_v((acpi_sema_t *)Handle, Units); 466 return (AE_OK); 467 } 468 469 ACPI_STATUS 470 AcpiOsCreateLock(ACPI_HANDLE *OutHandle) 471 { 472 kmutex_t *mp; 473 474 if (OutHandle == NULL) 475 return (AE_BAD_PARAMETER); 476 477 mp = (kmutex_t *)kmem_alloc(sizeof (kmutex_t), KM_SLEEP); 478 mutex_init(mp, NULL, MUTEX_DRIVER, NULL); 479 *OutHandle = (ACPI_HANDLE)mp; 480 return (AE_OK); 481 } 482 483 void 484 AcpiOsDeleteLock(ACPI_HANDLE Handle) 485 { 486 487 if (Handle == NULL) 488 return; 489 490 mutex_destroy((kmutex_t *)Handle); 491 kmem_free((void *)Handle, sizeof (kmutex_t)); 492 } 493 494 ACPI_CPU_FLAGS 495 AcpiOsAcquireLock(ACPI_HANDLE Handle) 496 { 497 498 499 if (Handle == NULL) 500 return (AE_BAD_PARAMETER); 501 502 if (curthread == CPU->cpu_idle_thread) { 503 while (!mutex_tryenter((kmutex_t *)Handle)) 504 /* spin */; 505 } else 506 mutex_enter((kmutex_t *)Handle); 507 return (AE_OK); 508 } 509 510 void 511 AcpiOsReleaseLock(ACPI_HANDLE Handle, ACPI_CPU_FLAGS Flags) 512 { 513 _NOTE(ARGUNUSED(Flags)) 514 515 mutex_exit((kmutex_t *)Handle); 516 } 517 518 519 void * 520 AcpiOsAllocate(ACPI_SIZE Size) 521 { 522 ACPI_SIZE *tmp_ptr; 523 524 Size += sizeof (Size); 525 tmp_ptr = (ACPI_SIZE *)kmem_zalloc(Size, KM_SLEEP); 526 *tmp_ptr++ = Size; 527 return (tmp_ptr); 528 } 529 530 void 531 AcpiOsFree(void *Memory) 532 { 533 ACPI_SIZE size, *tmp_ptr; 534 535 tmp_ptr = (ACPI_SIZE *)Memory; 536 tmp_ptr -= 1; 537 size = *tmp_ptr; 538 kmem_free(tmp_ptr, size); 539 } 540 541 static int napics_found; /* number of ioapic addresses in array */ 542 static ACPI_PHYSICAL_ADDRESS ioapic_paddr[MAX_IO_APIC]; 543 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 544 static void *dummy_ioapicadr; 545 546 void 547 acpica_find_ioapics(void) 548 { 549 int madt_seen, madt_size; 550 ACPI_SUBTABLE_HEADER *ap; 551 ACPI_MADT_IO_APIC *mia; 552 553 if (acpi_mapic_dtp != NULL) 554 return; /* already parsed table */ 555 if (AcpiGetTable(ACPI_SIG_MADT, 1, 556 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 557 return; 558 559 napics_found = 0; 560 561 /* 562 * Search the MADT for ioapics 563 */ 564 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 565 madt_size = acpi_mapic_dtp->Header.Length; 566 madt_seen = sizeof (*acpi_mapic_dtp); 567 568 while (madt_seen < madt_size) { 569 570 switch (ap->Type) { 571 case ACPI_MADT_TYPE_IO_APIC: 572 mia = (ACPI_MADT_IO_APIC *) ap; 573 if (napics_found < MAX_IO_APIC) { 574 ioapic_paddr[napics_found++] = 575 (ACPI_PHYSICAL_ADDRESS) 576 (mia->Address & PAGEMASK); 577 } 578 break; 579 580 default: 581 break; 582 } 583 584 /* advance to next entry */ 585 madt_seen += ap->Length; 586 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 587 } 588 if (dummy_ioapicadr == NULL) 589 dummy_ioapicadr = kmem_zalloc(PAGESIZE, KM_SLEEP); 590 } 591 592 593 void * 594 AcpiOsMapMemory(ACPI_PHYSICAL_ADDRESS PhysicalAddress, ACPI_SIZE Size) 595 { 596 int i; 597 598 /* 599 * If the iopaic address table is populated, check if trying 600 * to access an ioapic. Instead, return a pointer to a dummy ioapic. 601 */ 602 for (i = 0; i < napics_found; i++) { 603 if ((PhysicalAddress & PAGEMASK) == ioapic_paddr[i]) 604 return (dummy_ioapicadr); 605 } 606 /* FUTUREWORK: test PhysicalAddress for > 32 bits */ 607 return (psm_map_new((paddr_t)PhysicalAddress, 608 (size_t)Size, PSM_PROT_WRITE | PSM_PROT_READ)); 609 } 610 611 void 612 AcpiOsUnmapMemory(void *LogicalAddress, ACPI_SIZE Size) 613 { 614 /* 615 * Check if trying to unmap dummy ioapic address. 616 */ 617 if (LogicalAddress == dummy_ioapicadr) 618 return; 619 620 psm_unmap((caddr_t)LogicalAddress, (size_t)Size); 621 } 622 623 /*ARGSUSED*/ 624 ACPI_STATUS 625 AcpiOsGetPhysicalAddress(void *LogicalAddress, 626 ACPI_PHYSICAL_ADDRESS *PhysicalAddress) 627 { 628 629 /* UNIMPLEMENTED: not invoked by ACPI CA code */ 630 return (AE_NOT_IMPLEMENTED); 631 } 632 633 634 ACPI_OSD_HANDLER acpi_isr; 635 void *acpi_isr_context; 636 637 uint_t 638 acpi_wrapper_isr(char *arg) 639 { 640 _NOTE(ARGUNUSED(arg)) 641 642 int status; 643 644 status = (*acpi_isr)(acpi_isr_context); 645 646 if (status == ACPI_INTERRUPT_HANDLED) { 647 return (DDI_INTR_CLAIMED); 648 } else { 649 return (DDI_INTR_UNCLAIMED); 650 } 651 } 652 653 static int acpi_intr_hooked = 0; 654 655 ACPI_STATUS 656 AcpiOsInstallInterruptHandler(UINT32 InterruptNumber, 657 ACPI_OSD_HANDLER ServiceRoutine, 658 void *Context) 659 { 660 _NOTE(ARGUNUSED(InterruptNumber)) 661 662 int retval; 663 int sci_vect; 664 iflag_t sci_flags; 665 666 acpi_isr = ServiceRoutine; 667 acpi_isr_context = Context; 668 669 /* 670 * Get SCI (adjusted for PIC/APIC mode if necessary) 671 */ 672 if (acpica_get_sci(&sci_vect, &sci_flags) != AE_OK) { 673 return (AE_ERROR); 674 } 675 676 #ifdef DEBUG 677 cmn_err(CE_NOTE, "!acpica: attaching SCI %d", sci_vect); 678 #endif 679 680 retval = add_avintr(NULL, SCI_IPL, (avfunc)acpi_wrapper_isr, 681 "ACPI SCI", sci_vect, NULL, NULL, NULL, NULL); 682 if (retval) { 683 acpi_intr_hooked = 1; 684 return (AE_OK); 685 } else 686 return (AE_BAD_PARAMETER); 687 } 688 689 ACPI_STATUS 690 AcpiOsRemoveInterruptHandler(UINT32 InterruptNumber, 691 ACPI_OSD_HANDLER ServiceRoutine) 692 { 693 _NOTE(ARGUNUSED(ServiceRoutine)) 694 695 #ifdef DEBUG 696 cmn_err(CE_NOTE, "!acpica: detaching SCI %d", InterruptNumber); 697 #endif 698 if (acpi_intr_hooked) { 699 rem_avintr(NULL, LOCK_LEVEL - 1, (avfunc)acpi_wrapper_isr, 700 InterruptNumber); 701 acpi_intr_hooked = 0; 702 } 703 return (AE_OK); 704 } 705 706 707 ACPI_THREAD_ID 708 AcpiOsGetThreadId(void) 709 { 710 /* 711 * ACPI CA doesn't care what actual value is returned as long 712 * as it is non-zero and unique to each existing thread. 713 * ACPI CA assumes that thread ID is castable to a pointer, 714 * so we use the current thread pointer. 715 */ 716 return (curthread); 717 } 718 719 /* 720 * 721 */ 722 ACPI_STATUS 723 AcpiOsExecute(ACPI_EXECUTE_TYPE Type, ACPI_OSD_EXEC_CALLBACK Function, 724 void *Context) 725 { 726 727 if (!acpica_eventq_init) { 728 /* 729 * Create taskqs for event handling 730 */ 731 if (init_event_queues() != AE_OK) 732 return (AE_ERROR); 733 } 734 735 if (ddi_taskq_dispatch(osl_eventq[Type], Function, Context, 736 DDI_NOSLEEP) == DDI_FAILURE) { 737 #ifdef DEBUG 738 cmn_err(CE_WARN, "!acpica: unable to dispatch event"); 739 #endif 740 return (AE_ERROR); 741 } 742 return (AE_OK); 743 744 } 745 746 void 747 AcpiOsSleep(ACPI_INTEGER Milliseconds) 748 { 749 /* 750 * During kernel startup, before the first tick interrupt 751 * has taken place, we can't call delay; very late in 752 * kernel shutdown or suspend/resume, clock interrupts 753 * are blocked, so delay doesn't work then either. 754 * So we busy wait if lbolt == 0 (kernel startup) 755 * or if acpica_use_safe_delay has been set to a 756 * non-zero value. 757 */ 758 if ((ddi_get_lbolt() == 0) || acpica_use_safe_delay) 759 drv_usecwait(Milliseconds * 1000); 760 else 761 delay(drv_usectohz(Milliseconds * 1000)); 762 } 763 764 void 765 AcpiOsStall(UINT32 Microseconds) 766 { 767 drv_usecwait(Microseconds); 768 } 769 770 771 /* 772 * Implementation of "Windows 2001" compatible I/O permission map 773 * 774 */ 775 #define OSL_IO_NONE (0) 776 #define OSL_IO_READ (1<<0) 777 #define OSL_IO_WRITE (1<<1) 778 #define OSL_IO_RW (OSL_IO_READ | OSL_IO_WRITE) 779 #define OSL_IO_TERM (1<<2) 780 #define OSL_IO_DEFAULT OSL_IO_RW 781 782 static struct io_perm { 783 ACPI_IO_ADDRESS low; 784 ACPI_IO_ADDRESS high; 785 uint8_t perm; 786 } osl_io_perm[] = { 787 { 0xcf8, 0xd00, OSL_IO_TERM | OSL_IO_RW} 788 }; 789 790 791 /* 792 * 793 */ 794 static struct io_perm * 795 osl_io_find_perm(ACPI_IO_ADDRESS addr) 796 { 797 struct io_perm *p; 798 799 p = osl_io_perm; 800 while (p != NULL) { 801 if ((p->low <= addr) && (addr <= p->high)) 802 break; 803 p = (p->perm & OSL_IO_TERM) ? NULL : p+1; 804 } 805 806 return (p); 807 } 808 809 /* 810 * 811 */ 812 ACPI_STATUS 813 AcpiOsReadPort(ACPI_IO_ADDRESS Address, UINT32 *Value, UINT32 Width) 814 { 815 struct io_perm *p; 816 817 /* verify permission */ 818 p = osl_io_find_perm(Address); 819 if (p && (p->perm & OSL_IO_READ) == 0) { 820 cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u not permitted", 821 (long)Address, Width); 822 *Value = 0xffffffff; 823 return (AE_ERROR); 824 } 825 826 switch (Width) { 827 case 8: 828 *Value = inb(Address); 829 break; 830 case 16: 831 *Value = inw(Address); 832 break; 833 case 32: 834 *Value = inl(Address); 835 break; 836 default: 837 cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u failed", 838 (long)Address, Width); 839 return (AE_BAD_PARAMETER); 840 } 841 return (AE_OK); 842 } 843 844 ACPI_STATUS 845 AcpiOsWritePort(ACPI_IO_ADDRESS Address, UINT32 Value, UINT32 Width) 846 { 847 struct io_perm *p; 848 849 /* verify permission */ 850 p = osl_io_find_perm(Address); 851 if (p && (p->perm & OSL_IO_WRITE) == 0) { 852 cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u not permitted", 853 (long)Address, Width); 854 return (AE_ERROR); 855 } 856 857 switch (Width) { 858 case 8: 859 outb(Address, Value); 860 break; 861 case 16: 862 outw(Address, Value); 863 break; 864 case 32: 865 outl(Address, Value); 866 break; 867 default: 868 cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u failed", 869 (long)Address, Width); 870 return (AE_BAD_PARAMETER); 871 } 872 return (AE_OK); 873 } 874 875 876 /* 877 * 878 */ 879 880 #define OSL_RW(ptr, val, type, rw) \ 881 { if (rw) *((type *)(ptr)) = *((type *) val); \ 882 else *((type *) val) = *((type *)(ptr)); } 883 884 885 static void 886 osl_rw_memory(ACPI_PHYSICAL_ADDRESS Address, UINT32 *Value, 887 UINT32 Width, int write) 888 { 889 size_t maplen = Width / 8; 890 caddr_t ptr; 891 892 ptr = psm_map_new((paddr_t)Address, maplen, 893 PSM_PROT_WRITE | PSM_PROT_READ); 894 895 switch (maplen) { 896 case 1: 897 OSL_RW(ptr, Value, uint8_t, write); 898 break; 899 case 2: 900 OSL_RW(ptr, Value, uint16_t, write); 901 break; 902 case 4: 903 OSL_RW(ptr, Value, uint32_t, write); 904 break; 905 default: 906 cmn_err(CE_WARN, "!osl_rw_memory: invalid size %d", 907 Width); 908 break; 909 } 910 911 psm_unmap(ptr, maplen); 912 } 913 914 ACPI_STATUS 915 AcpiOsReadMemory(ACPI_PHYSICAL_ADDRESS Address, 916 UINT32 *Value, UINT32 Width) 917 { 918 osl_rw_memory(Address, Value, Width, 0); 919 return (AE_OK); 920 } 921 922 ACPI_STATUS 923 AcpiOsWriteMemory(ACPI_PHYSICAL_ADDRESS Address, 924 UINT32 Value, UINT32 Width) 925 { 926 osl_rw_memory(Address, &Value, Width, 1); 927 return (AE_OK); 928 } 929 930 931 ACPI_STATUS 932 AcpiOsReadPciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register, 933 void *Value, UINT32 Width) 934 { 935 936 switch (Width) { 937 case 8: 938 *((UINT64 *)Value) = (UINT64)(*pci_getb_func) 939 (PciId->Bus, PciId->Device, PciId->Function, Register); 940 break; 941 case 16: 942 *((UINT64 *)Value) = (UINT64)(*pci_getw_func) 943 (PciId->Bus, PciId->Device, PciId->Function, Register); 944 break; 945 case 32: 946 *((UINT64 *)Value) = (UINT64)(*pci_getl_func) 947 (PciId->Bus, PciId->Device, PciId->Function, Register); 948 break; 949 case 64: 950 default: 951 cmn_err(CE_WARN, "!AcpiOsReadPciConfiguration: %x %u failed", 952 Register, Width); 953 return (AE_BAD_PARAMETER); 954 } 955 return (AE_OK); 956 } 957 958 /* 959 * 960 */ 961 int acpica_write_pci_config_ok = 1; 962 963 ACPI_STATUS 964 AcpiOsWritePciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register, 965 ACPI_INTEGER Value, UINT32 Width) 966 { 967 968 if (!acpica_write_pci_config_ok) { 969 cmn_err(CE_NOTE, "!write to PCI cfg %x/%x/%x %x" 970 " %lx %d not permitted", PciId->Bus, PciId->Device, 971 PciId->Function, Register, (long)Value, Width); 972 return (AE_OK); 973 } 974 975 switch (Width) { 976 case 8: 977 (*pci_putb_func)(PciId->Bus, PciId->Device, PciId->Function, 978 Register, (uint8_t)Value); 979 break; 980 case 16: 981 (*pci_putw_func)(PciId->Bus, PciId->Device, PciId->Function, 982 Register, (uint16_t)Value); 983 break; 984 case 32: 985 (*pci_putl_func)(PciId->Bus, PciId->Device, PciId->Function, 986 Register, (uint32_t)Value); 987 break; 988 case 64: 989 default: 990 cmn_err(CE_WARN, "!AcpiOsWritePciConfiguration: %x %u failed", 991 Register, Width); 992 return (AE_BAD_PARAMETER); 993 } 994 return (AE_OK); 995 } 996 997 /* 998 * Called with ACPI_HANDLEs for both a PCI Config Space 999 * OpRegion and (what ACPI CA thinks is) the PCI device 1000 * to which this ConfigSpace OpRegion belongs. Since 1001 * ACPI CA depends on a valid _BBN object being present 1002 * and this is not always true (one old x86 had broken _BBN), 1003 * we go ahead and get the correct PCI bus number using the 1004 * devinfo mapping (which compensates for broken _BBN). 1005 * 1006 * Default values for bus, segment, device and function are 1007 * all 0 when ACPI CA can't figure them out. 1008 * 1009 * Some BIOSes implement _BBN() by reading PCI config space 1010 * on bus #0 - which means that we'll recurse when we attempt 1011 * to create the devinfo-to-ACPI map. If Derive is called during 1012 * scan_d2a_map, we don't translate the bus # and return. 1013 * 1014 * We get the parent of the OpRegion, which must be a PCI 1015 * node, fetch the associated devinfo node and snag the 1016 * b/d/f from it. 1017 */ 1018 void 1019 AcpiOsDerivePciId(ACPI_HANDLE rhandle, ACPI_HANDLE chandle, 1020 ACPI_PCI_ID **PciId) 1021 { 1022 ACPI_HANDLE handle; 1023 dev_info_t *dip; 1024 int bus, device, func, devfn; 1025 1026 1027 /* 1028 * See above - avoid recursing during scanning_d2a_map. 1029 */ 1030 if (scanning_d2a_map) 1031 return; 1032 1033 /* 1034 * Get the OpRegion's parent 1035 */ 1036 if (AcpiGetParent(chandle, &handle) != AE_OK) 1037 return; 1038 1039 /* 1040 * If we've mapped the ACPI node to the devinfo 1041 * tree, use the devinfo reg property 1042 */ 1043 if (acpica_get_devinfo(handle, &dip) == AE_OK) { 1044 (void) acpica_get_bdf(dip, &bus, &device, &func); 1045 (*PciId)->Bus = bus; 1046 (*PciId)->Device = device; 1047 (*PciId)->Function = func; 1048 } else if (acpica_eval_int(handle, "_ADR", &devfn) == AE_OK) { 1049 /* no devinfo node - just confirm the d/f */ 1050 (*PciId)->Device = (devfn >> 16) & 0xFFFF; 1051 (*PciId)->Function = devfn & 0xFFFF; 1052 } 1053 } 1054 1055 1056 /*ARGSUSED*/ 1057 BOOLEAN 1058 AcpiOsReadable(void *Pointer, ACPI_SIZE Length) 1059 { 1060 1061 /* Always says yes; all mapped memory assumed readable */ 1062 return (1); 1063 } 1064 1065 /*ARGSUSED*/ 1066 BOOLEAN 1067 AcpiOsWritable(void *Pointer, ACPI_SIZE Length) 1068 { 1069 1070 /* Always says yes; all mapped memory assumed writable */ 1071 return (1); 1072 } 1073 1074 UINT64 1075 AcpiOsGetTimer(void) 1076 { 1077 /* gethrtime() returns 1nS resolution; convert to 100nS granules */ 1078 return ((gethrtime() + 50) / 100); 1079 } 1080 1081 static struct AcpiOSIFeature_s { 1082 uint64_t control_flag; 1083 const char *feature_name; 1084 } AcpiOSIFeatures[] = { 1085 { ACPI_FEATURE_OSI_MODULE, "Module Device" }, 1086 { 0, "Processor Device" } 1087 }; 1088 1089 /*ARGSUSED*/ 1090 ACPI_STATUS 1091 AcpiOsValidateInterface(char *feature) 1092 { 1093 int i; 1094 1095 ASSERT(feature != NULL); 1096 for (i = 0; i < sizeof (AcpiOSIFeatures) / sizeof (AcpiOSIFeatures[0]); 1097 i++) { 1098 if (strcmp(feature, AcpiOSIFeatures[i].feature_name) != 0) { 1099 continue; 1100 } 1101 /* Check whether required core features are available. */ 1102 if (AcpiOSIFeatures[i].control_flag != 0 && 1103 acpica_get_core_feature(AcpiOSIFeatures[i].control_flag) != 1104 AcpiOSIFeatures[i].control_flag) { 1105 break; 1106 } 1107 /* Feature supported. */ 1108 return (AE_OK); 1109 } 1110 1111 return (AE_SUPPORT); 1112 } 1113 1114 /*ARGSUSED*/ 1115 ACPI_STATUS 1116 AcpiOsValidateAddress(UINT8 spaceid, ACPI_PHYSICAL_ADDRESS addr, 1117 ACPI_SIZE length) 1118 { 1119 return (AE_OK); 1120 } 1121 1122 ACPI_STATUS 1123 AcpiOsSignal(UINT32 Function, void *Info) 1124 { 1125 _NOTE(ARGUNUSED(Function, Info)) 1126 1127 /* FUTUREWORK: debugger support */ 1128 1129 cmn_err(CE_NOTE, "!OsSignal unimplemented"); 1130 return (AE_OK); 1131 } 1132 1133 void ACPI_INTERNAL_VAR_XFACE 1134 AcpiOsPrintf(const char *Format, ...) 1135 { 1136 va_list ap; 1137 1138 va_start(ap, Format); 1139 AcpiOsVprintf(Format, ap); 1140 va_end(ap); 1141 } 1142 1143 /* 1144 * When != 0, sends output to console 1145 * Patchable with kmdb or /etc/system. 1146 */ 1147 int acpica_console_out = 0; 1148 1149 #define ACPICA_OUTBUF_LEN 160 1150 char acpica_outbuf[ACPICA_OUTBUF_LEN]; 1151 int acpica_outbuf_offset; 1152 1153 /* 1154 * 1155 */ 1156 static void 1157 acpica_pr_buf(char *buf) 1158 { 1159 char c, *bufp, *outp; 1160 int out_remaining; 1161 1162 /* 1163 * copy the supplied buffer into the output buffer 1164 * when we hit a '\n' or overflow the output buffer, 1165 * output and reset the output buffer 1166 */ 1167 bufp = buf; 1168 outp = acpica_outbuf + acpica_outbuf_offset; 1169 out_remaining = ACPICA_OUTBUF_LEN - acpica_outbuf_offset - 1; 1170 while (c = *bufp++) { 1171 *outp++ = c; 1172 if (c == '\n' || --out_remaining == 0) { 1173 *outp = '\0'; 1174 switch (acpica_console_out) { 1175 case 1: 1176 printf(acpica_outbuf); 1177 break; 1178 case 2: 1179 prom_printf(acpica_outbuf); 1180 break; 1181 case 0: 1182 default: 1183 (void) strlog(0, 0, 0, 1184 SL_CONSOLE | SL_NOTE | SL_LOGONLY, 1185 acpica_outbuf); 1186 break; 1187 } 1188 acpica_outbuf_offset = 0; 1189 outp = acpica_outbuf; 1190 out_remaining = ACPICA_OUTBUF_LEN - 1; 1191 } 1192 } 1193 1194 acpica_outbuf_offset = outp - acpica_outbuf; 1195 } 1196 1197 void 1198 AcpiOsVprintf(const char *Format, va_list Args) 1199 { 1200 1201 /* 1202 * If AcpiOsInitialize() failed to allocate a string buffer, 1203 * resort to vprintf(). 1204 */ 1205 if (acpi_osl_pr_buffer == NULL) { 1206 vprintf(Format, Args); 1207 return; 1208 } 1209 1210 /* 1211 * It is possible that a very long debug output statement will 1212 * be truncated; this is silently ignored. 1213 */ 1214 (void) vsnprintf(acpi_osl_pr_buffer, acpi_osl_pr_buflen, Format, Args); 1215 acpica_pr_buf(acpi_osl_pr_buffer); 1216 } 1217 1218 void 1219 AcpiOsRedirectOutput(void *Destination) 1220 { 1221 _NOTE(ARGUNUSED(Destination)) 1222 1223 /* FUTUREWORK: debugger support */ 1224 1225 #ifdef DEBUG 1226 cmn_err(CE_WARN, "!acpica: AcpiOsRedirectOutput called"); 1227 #endif 1228 } 1229 1230 1231 UINT32 1232 AcpiOsGetLine(char *Buffer) 1233 { 1234 _NOTE(ARGUNUSED(Buffer)) 1235 1236 /* FUTUREWORK: debugger support */ 1237 1238 return (0); 1239 } 1240 1241 /* 1242 * Device tree binding 1243 */ 1244 static ACPI_STATUS 1245 acpica_find_pcibus_walker(ACPI_HANDLE hdl, UINT32 lvl, void *ctxp, void **rvpp) 1246 { 1247 _NOTE(ARGUNUSED(lvl)); 1248 1249 int sta, hid, bbn; 1250 int busno = (intptr_t)ctxp; 1251 ACPI_HANDLE *hdlp = (ACPI_HANDLE *)rvpp; 1252 1253 /* Check whether device exists. */ 1254 if (ACPI_SUCCESS(acpica_eval_int(hdl, "_STA", &sta)) && 1255 !(sta & (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_FUNCTIONING))) { 1256 /* 1257 * Skip object if device doesn't exist. 1258 * According to ACPI Spec, 1259 * 1) setting either bit 0 or bit 3 means that device exists. 1260 * 2) Absence of _STA method means all status bits set. 1261 */ 1262 return (AE_CTRL_DEPTH); 1263 } 1264 1265 if (ACPI_FAILURE(acpica_eval_hid(hdl, "_HID", &hid)) || 1266 (hid != HID_PCI_BUS && hid != HID_PCI_EXPRESS_BUS)) { 1267 /* Non PCI/PCIe host bridge. */ 1268 return (AE_OK); 1269 } 1270 1271 if (acpi_has_broken_bbn) { 1272 ACPI_BUFFER rb; 1273 rb.Pointer = NULL; 1274 rb.Length = ACPI_ALLOCATE_BUFFER; 1275 1276 /* Decree _BBN == n from PCI<n> */ 1277 if (AcpiGetName(hdl, ACPI_SINGLE_NAME, &rb) != AE_OK) { 1278 return (AE_CTRL_TERMINATE); 1279 } 1280 bbn = ((char *)rb.Pointer)[3] - '0'; 1281 AcpiOsFree(rb.Pointer); 1282 if (bbn == busno || busno == 0) { 1283 *hdlp = hdl; 1284 return (AE_CTRL_TERMINATE); 1285 } 1286 } else if (ACPI_SUCCESS(acpica_eval_int(hdl, "_BBN", &bbn))) { 1287 if (bbn == busno) { 1288 *hdlp = hdl; 1289 return (AE_CTRL_TERMINATE); 1290 } 1291 } else if (busno == 0) { 1292 *hdlp = hdl; 1293 return (AE_CTRL_TERMINATE); 1294 } 1295 1296 return (AE_CTRL_DEPTH); 1297 } 1298 1299 static int 1300 acpica_find_pcibus(int busno, ACPI_HANDLE *rh) 1301 { 1302 ACPI_HANDLE sbobj, busobj; 1303 1304 /* initialize static flag by querying ACPI namespace for bug */ 1305 if (acpi_has_broken_bbn == -1) 1306 acpi_has_broken_bbn = acpica_query_bbn_problem(); 1307 1308 if (ACPI_SUCCESS(AcpiGetHandle(NULL, "\\_SB", &sbobj))) { 1309 busobj = NULL; 1310 (void) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sbobj, UINT32_MAX, 1311 acpica_find_pcibus_walker, (void *)(intptr_t)busno, 1312 (void **)&busobj); 1313 if (busobj != NULL) { 1314 *rh = busobj; 1315 return (AE_OK); 1316 } 1317 } 1318 1319 return (AE_ERROR); 1320 } 1321 1322 static ACPI_STATUS 1323 acpica_query_bbn_walker(ACPI_HANDLE hdl, UINT32 lvl, void *ctxp, void **rvpp) 1324 { 1325 _NOTE(ARGUNUSED(lvl)); 1326 _NOTE(ARGUNUSED(rvpp)); 1327 1328 int sta, hid, bbn; 1329 int *cntp = (int *)ctxp; 1330 1331 /* Check whether device exists. */ 1332 if (ACPI_SUCCESS(acpica_eval_int(hdl, "_STA", &sta)) && 1333 !(sta & (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_FUNCTIONING))) { 1334 /* 1335 * Skip object if device doesn't exist. 1336 * According to ACPI Spec, 1337 * 1) setting either bit 0 or bit 3 means that device exists. 1338 * 2) Absence of _STA method means all status bits set. 1339 */ 1340 return (AE_CTRL_DEPTH); 1341 } 1342 1343 if (ACPI_FAILURE(acpica_eval_hid(hdl, "_HID", &hid)) || 1344 (hid != HID_PCI_BUS && hid != HID_PCI_EXPRESS_BUS)) { 1345 /* Non PCI/PCIe host bridge. */ 1346 return (AE_OK); 1347 } else if (ACPI_SUCCESS(acpica_eval_int(hdl, "_BBN", &bbn)) && 1348 bbn == 0 && ++(*cntp) > 1) { 1349 /* 1350 * If we find more than one bus with a 0 _BBN 1351 * we have the problem that BigBear's BIOS shows 1352 */ 1353 return (AE_CTRL_TERMINATE); 1354 } else { 1355 /* 1356 * Skip children of PCI/PCIe host bridge. 1357 */ 1358 return (AE_CTRL_DEPTH); 1359 } 1360 } 1361 1362 /* 1363 * Look for ACPI problem where _BBN is zero for multiple PCI buses 1364 * This is a clear ACPI bug, but we have a workaround in acpica_find_pcibus() 1365 * below if it exists. 1366 */ 1367 static int 1368 acpica_query_bbn_problem(void) 1369 { 1370 ACPI_HANDLE sbobj; 1371 int zerobbncnt; 1372 void *rv; 1373 1374 zerobbncnt = 0; 1375 if (ACPI_SUCCESS(AcpiGetHandle(NULL, "\\_SB", &sbobj))) { 1376 (void) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sbobj, UINT32_MAX, 1377 acpica_query_bbn_walker, &zerobbncnt, &rv); 1378 } 1379 1380 return (zerobbncnt > 1 ? 1 : 0); 1381 } 1382 1383 static const char hextab[] = "0123456789ABCDEF"; 1384 1385 static int 1386 hexdig(int c) 1387 { 1388 /* 1389 * Get hex digit: 1390 * 1391 * Returns the 4-bit hex digit named by the input character. Returns 1392 * zero if the input character is not valid hex! 1393 */ 1394 1395 int x = ((c < 'a') || (c > 'z')) ? c : (c - ' '); 1396 int j = sizeof (hextab); 1397 1398 while (--j && (x != hextab[j])) { 1399 } 1400 return (j); 1401 } 1402 1403 static int 1404 CompressEisaID(char *np) 1405 { 1406 /* 1407 * Compress an EISA device name: 1408 * 1409 * This routine converts a 7-byte ASCII device name into the 4-byte 1410 * compressed form used by EISA (50 bytes of ROM to save 1 byte of 1411 * NV-RAM!) 1412 */ 1413 1414 union { char octets[4]; int retval; } myu; 1415 1416 myu.octets[0] = ((np[0] & 0x1F) << 2) + ((np[1] >> 3) & 0x03); 1417 myu.octets[1] = ((np[1] & 0x07) << 5) + (np[2] & 0x1F); 1418 myu.octets[2] = (hexdig(np[3]) << 4) + hexdig(np[4]); 1419 myu.octets[3] = (hexdig(np[5]) << 4) + hexdig(np[6]); 1420 1421 return (myu.retval); 1422 } 1423 1424 ACPI_STATUS 1425 acpica_eval_int(ACPI_HANDLE dev, char *method, int *rint) 1426 { 1427 ACPI_STATUS status; 1428 ACPI_BUFFER rb; 1429 ACPI_OBJECT ro; 1430 1431 rb.Pointer = &ro; 1432 rb.Length = sizeof (ro); 1433 if ((status = AcpiEvaluateObjectTyped(dev, method, NULL, &rb, 1434 ACPI_TYPE_INTEGER)) == AE_OK) 1435 *rint = ro.Integer.Value; 1436 1437 return (status); 1438 } 1439 1440 static int 1441 acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint) 1442 { 1443 ACPI_BUFFER rb; 1444 ACPI_OBJECT *rv; 1445 1446 rb.Pointer = NULL; 1447 rb.Length = ACPI_ALLOCATE_BUFFER; 1448 if (AcpiEvaluateObject(dev, method, NULL, &rb) == AE_OK && 1449 rb.Length != 0) { 1450 rv = rb.Pointer; 1451 if (rv->Type == ACPI_TYPE_INTEGER) { 1452 *rint = rv->Integer.Value; 1453 AcpiOsFree(rv); 1454 return (AE_OK); 1455 } else if (rv->Type == ACPI_TYPE_STRING) { 1456 char *stringData; 1457 1458 /* Convert the string into an EISA ID */ 1459 if (rv->String.Pointer == NULL) { 1460 AcpiOsFree(rv); 1461 return (AE_ERROR); 1462 } 1463 1464 stringData = rv->String.Pointer; 1465 1466 /* 1467 * If the string is an EisaID, it must be 7 1468 * characters; if it's an ACPI ID, it will be 8 1469 * (and we don't care about ACPI ids here). 1470 */ 1471 if (strlen(stringData) != 7) { 1472 AcpiOsFree(rv); 1473 return (AE_ERROR); 1474 } 1475 1476 *rint = CompressEisaID(stringData); 1477 AcpiOsFree(rv); 1478 return (AE_OK); 1479 } else 1480 AcpiOsFree(rv); 1481 } 1482 return (AE_ERROR); 1483 } 1484 1485 /* 1486 * Create linkage between devinfo nodes and ACPI nodes 1487 */ 1488 ACPI_STATUS 1489 acpica_tag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj) 1490 { 1491 ACPI_STATUS status; 1492 ACPI_BUFFER rb; 1493 1494 /* 1495 * Tag the devinfo node with the ACPI name 1496 */ 1497 rb.Pointer = NULL; 1498 rb.Length = ACPI_ALLOCATE_BUFFER; 1499 status = AcpiGetName(acpiobj, ACPI_FULL_PATHNAME, &rb); 1500 if (ACPI_FAILURE(status)) { 1501 cmn_err(CE_WARN, "acpica: could not get ACPI path!"); 1502 } else { 1503 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1504 "acpi-namespace", (char *)rb.Pointer); 1505 AcpiOsFree(rb.Pointer); 1506 1507 /* 1508 * Tag the ACPI node with the dip 1509 */ 1510 status = acpica_set_devinfo(acpiobj, dip); 1511 ASSERT(ACPI_SUCCESS(status)); 1512 } 1513 1514 return (status); 1515 } 1516 1517 /* 1518 * Destroy linkage between devinfo nodes and ACPI nodes 1519 */ 1520 ACPI_STATUS 1521 acpica_untag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj) 1522 { 1523 (void) acpica_unset_devinfo(acpiobj); 1524 (void) ndi_prop_remove(DDI_DEV_T_NONE, dip, "acpi-namespace"); 1525 1526 return (AE_OK); 1527 } 1528 1529 /* 1530 * Return the ACPI device node matching the CPU dev_info node. 1531 */ 1532 ACPI_STATUS 1533 acpica_get_handle_cpu(int cpu_id, ACPI_HANDLE *rh) 1534 { 1535 int i; 1536 1537 /* 1538 * if cpu_map itself is NULL, we're a uppc system and 1539 * acpica_build_processor_map() hasn't been called yet. 1540 * So call it here 1541 */ 1542 if (cpu_map == NULL) { 1543 (void) acpica_build_processor_map(); 1544 if (cpu_map == NULL) 1545 return (AE_ERROR); 1546 } 1547 1548 if (cpu_id < 0) { 1549 return (AE_ERROR); 1550 } 1551 1552 /* 1553 * search object with cpuid in cpu_map 1554 */ 1555 mutex_enter(&cpu_map_lock); 1556 for (i = 0; i < cpu_map_count; i++) { 1557 if (cpu_map[i]->cpu_id == cpu_id) { 1558 break; 1559 } 1560 } 1561 if (i < cpu_map_count && (cpu_map[i]->obj != NULL)) { 1562 *rh = cpu_map[cpu_id]->obj; 1563 mutex_exit(&cpu_map_lock); 1564 return (AE_OK); 1565 } 1566 1567 /* Handle special case for uppc-only systems. */ 1568 if (cpu_map_called == 0) { 1569 uint32_t apicid = cpuid_get_apicid(CPU); 1570 if (apicid != UINT32_MAX) { 1571 for (i = 0; i < cpu_map_count; i++) { 1572 if (cpu_map[i]->apic_id == apicid) { 1573 break; 1574 } 1575 } 1576 if (i < cpu_map_count && (cpu_map[i]->obj != NULL)) { 1577 *rh = cpu_map[cpu_id]->obj; 1578 mutex_exit(&cpu_map_lock); 1579 return (AE_OK); 1580 } 1581 } 1582 } 1583 mutex_exit(&cpu_map_lock); 1584 1585 return (AE_ERROR); 1586 } 1587 1588 /* 1589 * Determine if this object is a processor 1590 */ 1591 static ACPI_STATUS 1592 acpica_probe_processor(ACPI_HANDLE obj, UINT32 level, void *ctx, void **rv) 1593 { 1594 ACPI_STATUS status; 1595 ACPI_OBJECT_TYPE objtype; 1596 unsigned long acpi_id; 1597 ACPI_BUFFER rb; 1598 1599 if (AcpiGetType(obj, &objtype) != AE_OK) 1600 return (AE_OK); 1601 1602 if (objtype == ACPI_TYPE_PROCESSOR) { 1603 /* process a Processor */ 1604 rb.Pointer = NULL; 1605 rb.Length = ACPI_ALLOCATE_BUFFER; 1606 status = AcpiEvaluateObjectTyped(obj, NULL, NULL, &rb, 1607 ACPI_TYPE_PROCESSOR); 1608 if (status != AE_OK) { 1609 cmn_err(CE_WARN, "!acpica: error probing Processor"); 1610 return (status); 1611 } 1612 acpi_id = ((ACPI_OBJECT *)rb.Pointer)->Processor.ProcId; 1613 AcpiOsFree(rb.Pointer); 1614 } else if (objtype == ACPI_TYPE_DEVICE) { 1615 /* process a processor Device */ 1616 rb.Pointer = NULL; 1617 rb.Length = ACPI_ALLOCATE_BUFFER; 1618 status = AcpiGetObjectInfo(obj, &rb); 1619 if (status != AE_OK) { 1620 cmn_err(CE_WARN, 1621 "!acpica: error probing Processor Device\n"); 1622 return (status); 1623 } 1624 ASSERT(((ACPI_OBJECT *)rb.Pointer)->Type == 1625 ACPI_TYPE_DEVICE); 1626 1627 if (ddi_strtoul( 1628 ((ACPI_DEVICE_INFO *)rb.Pointer)->UniqueId.Value, 1629 NULL, 10, &acpi_id) != 0) { 1630 AcpiOsFree(rb.Pointer); 1631 cmn_err(CE_WARN, 1632 "!acpica: error probing Processor Device _UID\n"); 1633 return (AE_ERROR); 1634 } 1635 AcpiOsFree(rb.Pointer); 1636 } 1637 (void) acpica_add_processor_to_map(acpi_id, obj, UINT32_MAX); 1638 1639 return (AE_OK); 1640 } 1641 1642 void 1643 scan_d2a_map(void) 1644 { 1645 dev_info_t *dip, *cdip; 1646 ACPI_HANDLE acpiobj; 1647 char *device_type_prop; 1648 int bus; 1649 static int map_error = 0; 1650 1651 if (map_error || (d2a_done != 0)) 1652 return; 1653 1654 scanning_d2a_map = 1; 1655 1656 /* 1657 * Find all child-of-root PCI buses, and find their corresponding 1658 * ACPI child-of-root PCI nodes. For each one, add to the 1659 * d2a table. 1660 */ 1661 1662 for (dip = ddi_get_child(ddi_root_node()); 1663 dip != NULL; 1664 dip = ddi_get_next_sibling(dip)) { 1665 1666 /* prune non-PCI nodes */ 1667 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 1668 DDI_PROP_DONTPASS, 1669 "device_type", &device_type_prop) != DDI_PROP_SUCCESS) 1670 continue; 1671 1672 if ((strcmp("pci", device_type_prop) != 0) && 1673 (strcmp("pciex", device_type_prop) != 0)) { 1674 ddi_prop_free(device_type_prop); 1675 continue; 1676 } 1677 1678 ddi_prop_free(device_type_prop); 1679 1680 /* 1681 * To get bus number of dip, get first child and get its 1682 * bus number. If NULL, just continue, because we don't 1683 * care about bus nodes with no children anyway. 1684 */ 1685 if ((cdip = ddi_get_child(dip)) == NULL) 1686 continue; 1687 1688 if (acpica_get_bdf(cdip, &bus, NULL, NULL) < 0) { 1689 #ifdef D2ADEBUG 1690 cmn_err(CE_WARN, "Can't get bus number of PCI child?"); 1691 #endif 1692 map_error = 1; 1693 scanning_d2a_map = 0; 1694 d2a_done = 1; 1695 return; 1696 } 1697 1698 if (acpica_find_pcibus(bus, &acpiobj) == AE_ERROR) { 1699 #ifdef D2ADEBUG 1700 cmn_err(CE_WARN, "No ACPI bus obj for bus %d?\n", bus); 1701 #endif 1702 map_error = 1; 1703 continue; 1704 } 1705 1706 acpica_tag_devinfo(dip, acpiobj); 1707 1708 /* call recursively to enumerate subtrees */ 1709 scan_d2a_subtree(dip, acpiobj, bus); 1710 } 1711 1712 scanning_d2a_map = 0; 1713 d2a_done = 1; 1714 } 1715 1716 /* 1717 * For all acpi child devices of acpiobj, find their matching 1718 * dip under "dip" argument. (matching means "matches dev/fn"). 1719 * bus is assumed to already be a match from caller, and is 1720 * used here only to record in the d2a entry. Recurse if necessary. 1721 */ 1722 static void 1723 scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus) 1724 { 1725 int acpi_devfn, hid; 1726 ACPI_HANDLE acld; 1727 dev_info_t *dcld; 1728 int dcld_b, dcld_d, dcld_f; 1729 int dev, func; 1730 char *device_type_prop; 1731 1732 acld = NULL; 1733 while (AcpiGetNextObject(ACPI_TYPE_DEVICE, acpiobj, acld, &acld) 1734 == AE_OK) { 1735 /* get the dev/func we're looking for in the devinfo tree */ 1736 if (acpica_eval_int(acld, "_ADR", &acpi_devfn) != AE_OK) 1737 continue; 1738 dev = (acpi_devfn >> 16) & 0xFFFF; 1739 func = acpi_devfn & 0xFFFF; 1740 1741 /* look through all the immediate children of dip */ 1742 for (dcld = ddi_get_child(dip); dcld != NULL; 1743 dcld = ddi_get_next_sibling(dcld)) { 1744 if (acpica_get_bdf(dcld, &dcld_b, &dcld_d, &dcld_f) < 0) 1745 continue; 1746 1747 /* dev must match; function must match or wildcard */ 1748 if (dcld_d != dev || 1749 (func != 0xFFFF && func != dcld_f)) 1750 continue; 1751 bus = dcld_b; 1752 1753 /* found a match, record it */ 1754 acpica_tag_devinfo(dcld, acld); 1755 1756 /* if we find a bridge, recurse from here */ 1757 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dcld, 1758 DDI_PROP_DONTPASS, "device_type", 1759 &device_type_prop) == DDI_PROP_SUCCESS) { 1760 if ((strcmp("pci", device_type_prop) == 0) || 1761 (strcmp("pciex", device_type_prop) == 0)) 1762 scan_d2a_subtree(dcld, acld, bus); 1763 ddi_prop_free(device_type_prop); 1764 } 1765 1766 /* done finding a match, so break now */ 1767 break; 1768 } 1769 } 1770 } 1771 1772 /* 1773 * Return bus/dev/fn for PCI dip (note: not the parent "pci" node). 1774 */ 1775 int 1776 acpica_get_bdf(dev_info_t *dip, int *bus, int *device, int *func) 1777 { 1778 pci_regspec_t *pci_rp; 1779 int len; 1780 1781 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 1782 "reg", (int **)&pci_rp, (uint_t *)&len) != DDI_SUCCESS) 1783 return (-1); 1784 1785 if (len < (sizeof (pci_regspec_t) / sizeof (int))) { 1786 ddi_prop_free(pci_rp); 1787 return (-1); 1788 } 1789 if (bus != NULL) 1790 *bus = (int)PCI_REG_BUS_G(pci_rp->pci_phys_hi); 1791 if (device != NULL) 1792 *device = (int)PCI_REG_DEV_G(pci_rp->pci_phys_hi); 1793 if (func != NULL) 1794 *func = (int)PCI_REG_FUNC_G(pci_rp->pci_phys_hi); 1795 ddi_prop_free(pci_rp); 1796 return (0); 1797 } 1798 1799 /* 1800 * Return the ACPI device node matching this dev_info node, if it 1801 * exists in the ACPI tree. 1802 */ 1803 ACPI_STATUS 1804 acpica_get_handle(dev_info_t *dip, ACPI_HANDLE *rh) 1805 { 1806 ACPI_STATUS status; 1807 char *acpiname; 1808 1809 ASSERT(d2a_done != 0); 1810 1811 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 1812 "acpi-namespace", &acpiname) != DDI_PROP_SUCCESS) { 1813 return (AE_ERROR); 1814 } 1815 1816 status = AcpiGetHandle(NULL, acpiname, rh); 1817 ddi_prop_free((void *)acpiname); 1818 return (status); 1819 } 1820 1821 1822 1823 /* 1824 * Manage OS data attachment to ACPI nodes 1825 */ 1826 1827 /* 1828 * Return the (dev_info_t *) associated with the ACPI node. 1829 */ 1830 ACPI_STATUS 1831 acpica_get_devinfo(ACPI_HANDLE obj, dev_info_t **dipp) 1832 { 1833 ACPI_STATUS status; 1834 void *ptr; 1835 1836 status = AcpiGetData(obj, acpica_devinfo_handler, &ptr); 1837 if (status == AE_OK) 1838 *dipp = (dev_info_t *)ptr; 1839 1840 return (status); 1841 } 1842 1843 /* 1844 * Set the dev_info_t associated with the ACPI node. 1845 */ 1846 static ACPI_STATUS 1847 acpica_set_devinfo(ACPI_HANDLE obj, dev_info_t *dip) 1848 { 1849 ACPI_STATUS status; 1850 1851 status = AcpiAttachData(obj, acpica_devinfo_handler, (void *)dip); 1852 return (status); 1853 } 1854 1855 /* 1856 * Unset the dev_info_t associated with the ACPI node. 1857 */ 1858 static ACPI_STATUS 1859 acpica_unset_devinfo(ACPI_HANDLE obj) 1860 { 1861 return (AcpiDetachData(obj, acpica_devinfo_handler)); 1862 } 1863 1864 /* 1865 * 1866 */ 1867 void 1868 acpica_devinfo_handler(ACPI_HANDLE obj, UINT32 func, void *data) 1869 { 1870 /* noop */ 1871 } 1872 1873 ACPI_STATUS 1874 acpica_build_processor_map(void) 1875 { 1876 ACPI_STATUS status; 1877 void *rv; 1878 1879 /* 1880 * shouldn't be called more than once anyway 1881 */ 1882 if (cpu_map_built) 1883 return (AE_OK); 1884 1885 /* 1886 * ACPI device configuration driver has built mapping information 1887 * among processor id and object handle, no need to probe again. 1888 */ 1889 if (acpica_get_devcfg_feature(ACPI_DEVCFG_CPU)) { 1890 cpu_map_built = 1; 1891 return (AE_OK); 1892 } 1893 1894 /* 1895 * Look for Processor objects 1896 */ 1897 status = AcpiWalkNamespace(ACPI_TYPE_PROCESSOR, 1898 ACPI_ROOT_OBJECT, 1899 4, 1900 acpica_probe_processor, 1901 NULL, 1902 &rv); 1903 ASSERT(status == AE_OK); 1904 1905 /* 1906 * Look for processor Device objects 1907 */ 1908 status = AcpiGetDevices("ACPI0007", 1909 acpica_probe_processor, 1910 NULL, 1911 &rv); 1912 ASSERT(status == AE_OK); 1913 cpu_map_built = 1; 1914 1915 return (status); 1916 } 1917 1918 /* 1919 * Grow cpu map table on demand. 1920 */ 1921 static void 1922 acpica_grow_cpu_map(void) 1923 { 1924 if (cpu_map_count == cpu_map_count_max) { 1925 size_t sz; 1926 struct cpu_map_item **new_map; 1927 1928 ASSERT(cpu_map_count_max < INT_MAX / 2); 1929 cpu_map_count_max += max_ncpus; 1930 new_map = kmem_zalloc(sizeof (cpu_map[0]) * cpu_map_count_max, 1931 KM_SLEEP); 1932 if (cpu_map_count != 0) { 1933 ASSERT(cpu_map != NULL); 1934 sz = sizeof (cpu_map[0]) * cpu_map_count; 1935 kcopy(cpu_map, new_map, sz); 1936 kmem_free(cpu_map, sz); 1937 } 1938 cpu_map = new_map; 1939 } 1940 } 1941 1942 /* 1943 * Maintain mapping information among (cpu id, ACPI processor id, APIC id, 1944 * ACPI handle). The mapping table will be setup in two steps: 1945 * 1) acpica_add_processor_to_map() builds mapping among APIC id, ACPI 1946 * processor id and ACPI object handle. 1947 * 2) acpica_map_cpu() builds mapping among cpu id and ACPI processor id. 1948 * On systems with which have ACPI device configuration for CPUs enabled, 1949 * acpica_map_cpu() will be called after acpica_add_processor_to_map(), 1950 * otherwise acpica_map_cpu() will be called before 1951 * acpica_add_processor_to_map(). 1952 */ 1953 ACPI_STATUS 1954 acpica_add_processor_to_map(UINT32 acpi_id, ACPI_HANDLE obj, UINT32 apic_id) 1955 { 1956 int i; 1957 ACPI_STATUS rc = AE_OK; 1958 struct cpu_map_item *item = NULL; 1959 1960 ASSERT(obj != NULL); 1961 if (obj == NULL) { 1962 return (AE_ERROR); 1963 } 1964 1965 mutex_enter(&cpu_map_lock); 1966 1967 /* 1968 * Special case for uppc 1969 * If we're a uppc system and ACPI device configuration for CPU has 1970 * been disabled, there won't be a CPU map yet because uppc psm doesn't 1971 * call acpica_map_cpu(). So create one and use the passed-in processor 1972 * as CPU 0 1973 * Assumption: the first CPU returned by 1974 * AcpiGetDevices/AcpiWalkNamespace will be the BSP. 1975 * Unfortunately there appears to be no good way to ASSERT this. 1976 */ 1977 if (cpu_map == NULL && 1978 !acpica_get_devcfg_feature(ACPI_DEVCFG_CPU)) { 1979 acpica_grow_cpu_map(); 1980 ASSERT(cpu_map != NULL); 1981 item = kmem_zalloc(sizeof (*item), KM_SLEEP); 1982 item->cpu_id = 0; 1983 item->proc_id = acpi_id; 1984 item->apic_id = apic_id; 1985 item->obj = obj; 1986 cpu_map[0] = item; 1987 cpu_map_count = 1; 1988 mutex_exit(&cpu_map_lock); 1989 return (AE_OK); 1990 } 1991 1992 for (i = 0; i < cpu_map_count; i++) { 1993 if (cpu_map[i]->obj == obj) { 1994 rc = AE_ALREADY_EXISTS; 1995 break; 1996 } else if (cpu_map[i]->proc_id == acpi_id) { 1997 ASSERT(item == NULL); 1998 item = cpu_map[i]; 1999 } 2000 } 2001 2002 if (rc == AE_OK) { 2003 if (item != NULL) { 2004 /* 2005 * ACPI alias objects may cause more than one objects 2006 * with the same ACPI processor id, only remember the 2007 * the first object encountered. 2008 */ 2009 if (item->obj == NULL) { 2010 item->obj = obj; 2011 item->apic_id = apic_id; 2012 } else { 2013 rc = AE_ALREADY_EXISTS; 2014 } 2015 } else if (cpu_map_count >= INT_MAX / 2) { 2016 rc = AE_NO_MEMORY; 2017 } else { 2018 acpica_grow_cpu_map(); 2019 ASSERT(cpu_map != NULL); 2020 ASSERT(cpu_map_count < cpu_map_count_max); 2021 item = kmem_zalloc(sizeof (*item), KM_SLEEP); 2022 item->cpu_id = -1; 2023 item->proc_id = acpi_id; 2024 item->apic_id = apic_id; 2025 item->obj = obj; 2026 cpu_map[cpu_map_count] = item; 2027 cpu_map_count++; 2028 } 2029 } 2030 2031 mutex_exit(&cpu_map_lock); 2032 2033 return (rc); 2034 } 2035 2036 ACPI_STATUS 2037 acpica_remove_processor_from_map(UINT32 acpi_id) 2038 { 2039 int i; 2040 ACPI_STATUS rc = AE_NOT_EXIST; 2041 2042 mutex_enter(&cpu_map_lock); 2043 for (i = 0; i < cpu_map_count; i++) { 2044 if (cpu_map[i]->proc_id != acpi_id) { 2045 continue; 2046 } 2047 cpu_map[i]->obj = NULL; 2048 /* Free item if no more reference to it. */ 2049 if (cpu_map[i]->cpu_id == -1) { 2050 kmem_free(cpu_map[i], sizeof (struct cpu_map_item)); 2051 cpu_map[i] = NULL; 2052 cpu_map_count--; 2053 if (i != cpu_map_count) { 2054 cpu_map[i] = cpu_map[cpu_map_count]; 2055 cpu_map[cpu_map_count] = NULL; 2056 } 2057 } 2058 rc = AE_OK; 2059 break; 2060 } 2061 mutex_exit(&cpu_map_lock); 2062 2063 return (rc); 2064 } 2065 2066 ACPI_STATUS 2067 acpica_map_cpu(processorid_t cpuid, UINT32 acpi_id) 2068 { 2069 int i; 2070 ACPI_STATUS rc = AE_OK; 2071 struct cpu_map_item *item = NULL; 2072 2073 ASSERT(cpuid != -1); 2074 if (cpuid == -1) { 2075 return (AE_ERROR); 2076 } 2077 2078 mutex_enter(&cpu_map_lock); 2079 cpu_map_called = 1; 2080 for (i = 0; i < cpu_map_count; i++) { 2081 if (cpu_map[i]->cpu_id == cpuid) { 2082 rc = AE_ALREADY_EXISTS; 2083 break; 2084 } else if (cpu_map[i]->proc_id == acpi_id) { 2085 ASSERT(item == NULL); 2086 item = cpu_map[i]; 2087 } 2088 } 2089 if (rc == AE_OK) { 2090 if (item != NULL) { 2091 if (item->cpu_id == -1) { 2092 item->cpu_id = cpuid; 2093 } else { 2094 rc = AE_ALREADY_EXISTS; 2095 } 2096 } else if (cpu_map_count >= INT_MAX / 2) { 2097 rc = AE_NO_MEMORY; 2098 } else { 2099 acpica_grow_cpu_map(); 2100 ASSERT(cpu_map != NULL); 2101 ASSERT(cpu_map_count < cpu_map_count_max); 2102 item = kmem_zalloc(sizeof (*item), KM_SLEEP); 2103 item->cpu_id = cpuid; 2104 item->proc_id = acpi_id; 2105 item->apic_id = UINT32_MAX; 2106 item->obj = NULL; 2107 cpu_map[cpu_map_count] = item; 2108 cpu_map_count++; 2109 } 2110 } 2111 mutex_exit(&cpu_map_lock); 2112 2113 return (rc); 2114 } 2115 2116 ACPI_STATUS 2117 acpica_unmap_cpu(processorid_t cpuid) 2118 { 2119 int i; 2120 ACPI_STATUS rc = AE_NOT_EXIST; 2121 2122 ASSERT(cpuid != -1); 2123 if (cpuid == -1) { 2124 return (rc); 2125 } 2126 2127 mutex_enter(&cpu_map_lock); 2128 for (i = 0; i < cpu_map_count; i++) { 2129 if (cpu_map[i]->cpu_id != cpuid) { 2130 continue; 2131 } 2132 cpu_map[i]->cpu_id = -1; 2133 /* Free item if no more reference. */ 2134 if (cpu_map[i]->obj == NULL) { 2135 kmem_free(cpu_map[i], sizeof (struct cpu_map_item)); 2136 cpu_map[i] = NULL; 2137 cpu_map_count--; 2138 if (i != cpu_map_count) { 2139 cpu_map[i] = cpu_map[cpu_map_count]; 2140 cpu_map[cpu_map_count] = NULL; 2141 } 2142 } 2143 rc = AE_OK; 2144 break; 2145 } 2146 mutex_exit(&cpu_map_lock); 2147 2148 return (rc); 2149 } 2150 2151 ACPI_STATUS 2152 acpica_get_cpu_object_by_cpuid(processorid_t cpuid, ACPI_HANDLE *hdlp) 2153 { 2154 int i; 2155 ACPI_STATUS rc = AE_NOT_EXIST; 2156 2157 ASSERT(cpuid != -1); 2158 if (cpuid == -1) { 2159 return (rc); 2160 } 2161 2162 mutex_enter(&cpu_map_lock); 2163 for (i = 0; i < cpu_map_count; i++) { 2164 if (cpu_map[i]->cpu_id == cpuid && cpu_map[i]->obj != NULL) { 2165 *hdlp = cpu_map[i]->obj; 2166 rc = AE_OK; 2167 break; 2168 } 2169 } 2170 mutex_exit(&cpu_map_lock); 2171 2172 return (rc); 2173 } 2174 2175 ACPI_STATUS 2176 acpica_get_cpu_object_by_procid(UINT32 procid, ACPI_HANDLE *hdlp) 2177 { 2178 int i; 2179 ACPI_STATUS rc = AE_NOT_EXIST; 2180 2181 mutex_enter(&cpu_map_lock); 2182 for (i = 0; i < cpu_map_count; i++) { 2183 if (cpu_map[i]->proc_id == procid && cpu_map[i]->obj != NULL) { 2184 *hdlp = cpu_map[i]->obj; 2185 rc = AE_OK; 2186 break; 2187 } 2188 } 2189 mutex_exit(&cpu_map_lock); 2190 2191 return (rc); 2192 } 2193 2194 ACPI_STATUS 2195 acpica_get_cpu_object_by_apicid(UINT32 apicid, ACPI_HANDLE *hdlp) 2196 { 2197 int i; 2198 ACPI_STATUS rc = AE_NOT_EXIST; 2199 2200 ASSERT(apicid != UINT32_MAX); 2201 if (apicid == UINT32_MAX) { 2202 return (rc); 2203 } 2204 2205 mutex_enter(&cpu_map_lock); 2206 for (i = 0; i < cpu_map_count; i++) { 2207 if (cpu_map[i]->apic_id == apicid && cpu_map[i]->obj != NULL) { 2208 *hdlp = cpu_map[i]->obj; 2209 rc = AE_OK; 2210 break; 2211 } 2212 } 2213 mutex_exit(&cpu_map_lock); 2214 2215 return (rc); 2216 } 2217 2218 void 2219 acpica_set_core_feature(uint64_t features) 2220 { 2221 atomic_or_64(&acpica_core_features, features); 2222 } 2223 2224 void 2225 acpica_clear_core_feature(uint64_t features) 2226 { 2227 atomic_and_64(&acpica_core_features, ~features); 2228 } 2229 2230 uint64_t 2231 acpica_get_core_feature(uint64_t features) 2232 { 2233 return (acpica_core_features & features); 2234 } 2235 2236 void 2237 acpica_set_devcfg_feature(uint64_t features) 2238 { 2239 atomic_or_64(&acpica_devcfg_features, features); 2240 } 2241 2242 void 2243 acpica_clear_devcfg_feature(uint64_t features) 2244 { 2245 atomic_and_64(&acpica_devcfg_features, ~features); 2246 } 2247 2248 uint64_t 2249 acpica_get_devcfg_feature(uint64_t features) 2250 { 2251 return (acpica_devcfg_features & features); 2252 } 2253 2254 void 2255 acpica_get_global_FADT(ACPI_TABLE_FADT **gbl_FADT) 2256 { 2257 *gbl_FADT = &AcpiGbl_FADT; 2258 } 2259 2260 void 2261 acpica_write_cpupm_capabilities(boolean_t pstates, boolean_t cstates) 2262 { 2263 if (pstates && AcpiGbl_FADT.PstateControl != 0) 2264 (void) AcpiHwRegisterWrite(ACPI_REGISTER_SMI_COMMAND_BLOCK, 2265 AcpiGbl_FADT.PstateControl); 2266 2267 if (cstates && AcpiGbl_FADT.CstControl != 0) 2268 (void) AcpiHwRegisterWrite(ACPI_REGISTER_SMI_COMMAND_BLOCK, 2269 AcpiGbl_FADT.CstControl); 2270 } 2271