1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ 28 /* All Rights Reserved */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/signal.h> 36 #include <sys/systm.h> 37 #include <sys/user.h> 38 #include <sys/mman.h> 39 #include <sys/class.h> 40 #include <sys/proc.h> 41 #include <sys/procfs.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 #include <sys/cred.h> 45 #include <sys/archsystm.h> 46 #include <sys/vmparam.h> 47 #include <sys/prsystm.h> 48 #include <sys/reboot.h> 49 #include <sys/uadmin.h> 50 #include <sys/vfs.h> 51 #include <sys/vnode.h> 52 #include <sys/file.h> 53 #include <sys/session.h> 54 #include <sys/ucontext.h> 55 #include <sys/dnlc.h> 56 #include <sys/var.h> 57 #include <sys/cmn_err.h> 58 #include <sys/debugreg.h> 59 #include <sys/thread.h> 60 #include <sys/vtrace.h> 61 #include <sys/consdev.h> 62 #include <sys/psw.h> 63 #include <sys/regset.h> 64 #include <sys/privregs.h> 65 #include <sys/cpu.h> 66 #include <sys/stack.h> 67 #include <sys/swap.h> 68 #include <vm/hat.h> 69 #include <vm/anon.h> 70 #include <vm/as.h> 71 #include <vm/page.h> 72 #include <vm/seg.h> 73 #include <vm/seg_kmem.h> 74 #include <vm/seg_map.h> 75 #include <vm/seg_vn.h> 76 #include <sys/exec.h> 77 #include <sys/acct.h> 78 #include <sys/core.h> 79 #include <sys/corectl.h> 80 #include <sys/modctl.h> 81 #include <sys/tuneable.h> 82 #include <c2/audit.h> 83 #include <sys/bootconf.h> 84 #include <sys/brand.h> 85 #include <sys/dumphdr.h> 86 #include <sys/promif.h> 87 #include <sys/systeminfo.h> 88 #include <sys/kdi.h> 89 #include <sys/contract_impl.h> 90 #include <sys/x86_archext.h> 91 #include <sys/segments.h> 92 #include <sys/ontrap.h> 93 #include <sys/cpu.h> 94 #ifdef __xpv 95 #include <sys/hypervisor.h> 96 #endif 97 98 /* 99 * Compare the version of boot that boot says it is against 100 * the version of boot the kernel expects. 101 */ 102 int 103 check_boot_version(int boots_version) 104 { 105 if (boots_version == BO_VERSION) 106 return (0); 107 108 prom_printf("Wrong boot interface - kernel needs v%d found v%d\n", 109 BO_VERSION, boots_version); 110 prom_panic("halting"); 111 /*NOTREACHED*/ 112 } 113 114 /* 115 * Process the physical installed list for boot. 116 * Finds: 117 * 1) the pfn of the highest installed physical page, 118 * 2) the number of pages installed 119 * 3) the number of distinct contiguous regions these pages fall into. 120 */ 121 void 122 installed_top_size( 123 struct memlist *list, /* pointer to start of installed list */ 124 pfn_t *high_pfn, /* return ptr for top value */ 125 pgcnt_t *pgcnt, /* return ptr for sum of installed pages */ 126 int *ranges) /* return ptr for the count of contig. ranges */ 127 { 128 pfn_t top = 0; 129 pgcnt_t sumpages = 0; 130 pfn_t highp; /* high page in a chunk */ 131 int cnt = 0; 132 133 for (; list; list = list->next) { 134 ++cnt; 135 highp = (list->address + list->size - 1) >> PAGESHIFT; 136 if (top < highp) 137 top = highp; 138 sumpages += btop(list->size); 139 } 140 141 *high_pfn = top; 142 *pgcnt = sumpages; 143 *ranges = cnt; 144 } 145 146 /* 147 * Copy in a memory list from boot to kernel, with a filter function 148 * to remove pages. The filter function can increase the address and/or 149 * decrease the size to filter out pages. It will also align addresses and 150 * sizes to PAGESIZE. 151 */ 152 void 153 copy_memlist_filter( 154 struct memlist *src, 155 struct memlist **dstp, 156 void (*filter)(uint64_t *, uint64_t *)) 157 { 158 struct memlist *dst, *prev; 159 uint64_t addr; 160 uint64_t size; 161 uint64_t eaddr; 162 163 dst = *dstp; 164 prev = dst; 165 166 /* 167 * Move through the memlist applying a filter against 168 * each range of memory. Note that we may apply the 169 * filter multiple times against each memlist entry. 170 */ 171 for (; src; src = src->next) { 172 addr = P2ROUNDUP(src->address, PAGESIZE); 173 eaddr = P2ALIGN(src->address + src->size, PAGESIZE); 174 while (addr < eaddr) { 175 size = eaddr - addr; 176 if (filter != NULL) 177 filter(&addr, &size); 178 if (size == 0) 179 break; 180 dst->address = addr; 181 dst->size = size; 182 dst->next = 0; 183 if (prev == dst) { 184 dst->prev = 0; 185 dst++; 186 } else { 187 dst->prev = prev; 188 prev->next = dst; 189 dst++; 190 prev++; 191 } 192 addr += size; 193 } 194 } 195 196 *dstp = dst; 197 } 198 199 /* 200 * Kernel setup code, called from startup(). 201 */ 202 void 203 kern_setup1(void) 204 { 205 proc_t *pp; 206 207 pp = &p0; 208 209 proc_sched = pp; 210 211 /* 212 * Initialize process 0 data structures 213 */ 214 pp->p_stat = SRUN; 215 pp->p_flag = SSYS; 216 217 pp->p_pidp = &pid0; 218 pp->p_pgidp = &pid0; 219 pp->p_sessp = &session0; 220 pp->p_tlist = &t0; 221 pid0.pid_pglink = pp; 222 pid0.pid_pgtail = pp; 223 224 /* 225 * XXX - we asssume that the u-area is zeroed out except for 226 * ttolwp(curthread)->lwp_regs. 227 */ 228 PTOU(curproc)->u_cmask = (mode_t)CMASK; 229 230 thread_init(); /* init thread_free list */ 231 pid_init(); /* initialize pid (proc) table */ 232 contract_init(); /* initialize contracts */ 233 234 init_pages_pp_maximum(); 235 } 236 237 /* 238 * Load a procedure into a thread. 239 */ 240 void 241 thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len) 242 { 243 caddr_t sp; 244 size_t framesz; 245 caddr_t argp; 246 long *p; 247 extern void thread_start(); 248 249 /* 250 * Push a "c" call frame onto the stack to represent 251 * the caller of "start". 252 */ 253 sp = t->t_stk; 254 ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0); 255 if (len != 0) { 256 /* 257 * the object that arg points at is copied into the 258 * caller's frame. 259 */ 260 framesz = SA(len); 261 sp -= framesz; 262 ASSERT(sp > t->t_stkbase); 263 argp = sp + SA(MINFRAME); 264 bcopy(arg, argp, len); 265 arg = argp; 266 } 267 /* 268 * Set up arguments (arg and len) on the caller's stack frame. 269 */ 270 p = (long *)sp; 271 272 *--p = 0; /* fake call */ 273 *--p = 0; /* null frame pointer terminates stack trace */ 274 *--p = (long)len; 275 *--p = (intptr_t)arg; 276 *--p = (intptr_t)start; 277 278 /* 279 * initialize thread to resume at thread_start() which will 280 * turn around and invoke (*start)(arg, len). 281 */ 282 t->t_pc = (uintptr_t)thread_start; 283 t->t_sp = (uintptr_t)p; 284 285 ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0); 286 } 287 288 /* 289 * load user registers into lwp. 290 */ 291 /*ARGSUSED2*/ 292 void 293 lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr) 294 { 295 struct regs *rp = lwptoregs(lwp); 296 297 setgregs(lwp, grp); 298 rp->r_ps = PSL_USER; 299 300 /* 301 * For 64-bit lwps, we allow one magic %fs selector value, and one 302 * magic %gs selector to point anywhere in the address space using 303 * %fsbase and %gsbase behind the scenes. libc uses %fs to point 304 * at the ulwp_t structure. 305 * 306 * For 32-bit lwps, libc wedges its lwp thread pointer into the 307 * ucontext ESP slot (which is otherwise irrelevant to setting a 308 * ucontext) and LWPGS_SEL value into gregs[REG_GS]. This is so 309 * syslwp_create() can atomically setup %gs. 310 * 311 * See setup_context() in libc. 312 */ 313 #ifdef _SYSCALL32_IMPL 314 if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) { 315 if (grp[REG_GS] == LWPGS_SEL) 316 (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); 317 } else { 318 /* 319 * See lwp_setprivate in kernel and setup_context in libc. 320 * 321 * Currently libc constructs a ucontext from whole cloth for 322 * every new (not main) lwp created. For 64 bit processes 323 * %fsbase is directly set to point to current thread pointer. 324 * In the past (solaris 10) %fs was also set LWPFS_SEL to 325 * indicate %fsbase. Now we use the null GDT selector for 326 * this purpose. LWP[FS|GS]_SEL are only intended for 32 bit 327 * processes. To ease transition we support older libcs in 328 * the newer kernel by forcing %fs or %gs selector to null 329 * by calling lwp_setprivate if LWP[FS|GS]_SEL is passed in 330 * the ucontext. This is should be ripped out at some future 331 * date. Another fix would be for libc to do a getcontext 332 * and inherit the null %fs/%gs from the current context but 333 * that means an extra system call and could hurt performance. 334 */ 335 if (grp[REG_FS] == 0x1bb) /* hard code legacy LWPFS_SEL */ 336 (void) lwp_setprivate(lwp, _LWP_FSBASE, 337 (uintptr_t)grp[REG_FSBASE]); 338 339 if (grp[REG_GS] == 0x1c3) /* hard code legacy LWPGS_SEL */ 340 (void) lwp_setprivate(lwp, _LWP_GSBASE, 341 (uintptr_t)grp[REG_GSBASE]); 342 } 343 #else 344 if (grp[GS] == LWPGS_SEL) 345 (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); 346 #endif 347 348 lwp->lwp_eosys = JUSTRETURN; 349 lwptot(lwp)->t_post_sys = 1; 350 } 351 352 /* 353 * set syscall()'s return values for a lwp. 354 */ 355 void 356 lwp_setrval(klwp_t *lwp, int v1, int v2) 357 { 358 lwptoregs(lwp)->r_ps &= ~PS_C; 359 lwptoregs(lwp)->r_r0 = v1; 360 lwptoregs(lwp)->r_r1 = v2; 361 } 362 363 /* 364 * set syscall()'s return values for a lwp. 365 */ 366 void 367 lwp_setsp(klwp_t *lwp, caddr_t sp) 368 { 369 lwptoregs(lwp)->r_sp = (intptr_t)sp; 370 } 371 372 /* 373 * Copy regs from parent to child. 374 */ 375 void 376 lwp_forkregs(klwp_t *lwp, klwp_t *clwp) 377 { 378 #if defined(__amd64) 379 struct pcb *pcb = &clwp->lwp_pcb; 380 struct regs *rp = lwptoregs(lwp); 381 382 if (pcb->pcb_rupdate == 0) { 383 pcb->pcb_ds = rp->r_ds; 384 pcb->pcb_es = rp->r_es; 385 pcb->pcb_fs = rp->r_fs; 386 pcb->pcb_gs = rp->r_gs; 387 pcb->pcb_rupdate = 1; 388 lwptot(clwp)->t_post_sys = 1; 389 } 390 ASSERT(lwptot(clwp)->t_post_sys); 391 #endif 392 393 bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs)); 394 } 395 396 /* 397 * This function is currently unused on x86. 398 */ 399 /*ARGSUSED*/ 400 void 401 lwp_freeregs(klwp_t *lwp, int isexec) 402 {} 403 404 /* 405 * This function is currently unused on x86. 406 */ 407 void 408 lwp_pcb_exit(void) 409 {} 410 411 /* 412 * Lwp context ops for segment registers. 413 */ 414 415 /* 416 * Every time we come into the kernel (syscall, interrupt or trap 417 * but not fast-traps) we capture the current values of the user's 418 * segment registers into the lwp's reg structure. This includes 419 * lcall for i386 generic system call support since it is handled 420 * as a segment-not-present trap. 421 * 422 * Here we save the current values from the lwp regs into the pcb 423 * and set pcb->pcb_rupdate to 1 to tell the rest of the kernel 424 * that the pcb copy of the segment registers is the current one. 425 * This ensures the lwp's next trip to user land via update_sregs. 426 * Finally we set t_post_sys to ensure that no system call fast-path's 427 * its way out of the kernel via sysret. 428 * 429 * (This means that we need to have interrupts disabled when we test 430 * t->t_post_sys in the syscall handlers; if the test fails, we need 431 * to keep interrupts disabled until we return to userland so we can't 432 * be switched away.) 433 * 434 * As a result of all this, we don't really have to do a whole lot if 435 * the thread is just mucking about in the kernel, switching on and 436 * off the cpu for whatever reason it feels like. And yet we still 437 * preserve fast syscalls, cause if we -don't- get descheduled, 438 * we never come here either. 439 */ 440 441 #define VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \ 442 (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL) 443 444 /*ARGSUSED*/ 445 void 446 lwp_segregs_save(klwp_t *lwp) 447 { 448 #if defined(__amd64) 449 pcb_t *pcb = &lwp->lwp_pcb; 450 struct regs *rp; 451 452 ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); 453 ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); 454 455 if (pcb->pcb_rupdate == 0) { 456 rp = lwptoregs(lwp); 457 458 /* 459 * If there's no update already pending, capture the current 460 * %ds/%es/%fs/%gs values from lwp's regs in case the user 461 * changed them; %fsbase and %gsbase are privileged so the 462 * kernel versions of these registers in pcb_fsbase and 463 * pcb_gsbase are always up-to-date. 464 */ 465 pcb->pcb_ds = rp->r_ds; 466 pcb->pcb_es = rp->r_es; 467 pcb->pcb_fs = rp->r_fs; 468 pcb->pcb_gs = rp->r_gs; 469 pcb->pcb_rupdate = 1; 470 lwp->lwp_thread->t_post_sys = 1; 471 } 472 #endif /* __amd64 */ 473 474 #if !defined(__xpv) /* XXPV not sure if we can re-read gdt? */ 475 ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc, 476 sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0); 477 ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc, 478 sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0); 479 #endif 480 } 481 482 #if defined(__amd64) 483 484 /* 485 * Update the segment registers with new values from the pcb. 486 * 487 * We have to do this carefully, and in the following order, 488 * in case any of the selectors points at a bogus descriptor. 489 * If they do, we'll catch trap with on_trap and return 1. 490 * returns 0 on success. 491 * 492 * This is particularly tricky for %gs. 493 * This routine must be executed under a cli. 494 */ 495 int 496 update_sregs(struct regs *rp, klwp_t *lwp) 497 { 498 pcb_t *pcb = &lwp->lwp_pcb; 499 ulong_t kgsbase; 500 on_trap_data_t otd; 501 int rc = 0; 502 503 if (!on_trap(&otd, OT_SEGMENT_ACCESS)) { 504 505 #if defined(__xpv) 506 /* 507 * On the hyervisor this is easy. The hypercall below will 508 * swapgs and load %gs with the user selector. If the user 509 * selector is bad the hypervisor will catch the fault and 510 * load %gs with the null selector instead. Either way the 511 * kernel's gsbase is not damaged. 512 */ 513 kgsbase = (ulong_t)CPU; 514 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, 515 pcb->pcb_gs) != 0) { 516 no_trap(); 517 return (1); 518 } 519 520 rp->r_gs = pcb->pcb_gs; 521 ASSERT((cpu_t *)kgsbase == CPU); 522 523 #else /* __xpv */ 524 525 /* 526 * A little more complicated running native. 527 */ 528 kgsbase = (ulong_t)CPU; 529 __set_gs(pcb->pcb_gs); 530 531 /* 532 * If __set_gs fails it's because the new %gs is a bad %gs, 533 * we'll be taking a trap but with the original %gs and %gsbase 534 * undamaged (i.e. pointing at curcpu). 535 * 536 * We've just mucked up the kernel's gsbase. Oops. In 537 * particular we can't take any traps at all. Make the newly 538 * computed gsbase be the hidden gs via __swapgs, and fix 539 * the kernel's gsbase back again. Later, when we return to 540 * userland we'll swapgs again restoring gsbase just loaded 541 * above. 542 */ 543 __swapgs(); 544 rp->r_gs = pcb->pcb_gs; 545 546 /* 547 * restore kernel's gsbase 548 */ 549 wrmsr(MSR_AMD_GSBASE, kgsbase); 550 551 #endif /* __xpv */ 552 553 /* 554 * Only override the descriptor base address if 555 * r_gs == LWPGS_SEL or if r_gs == NULL. A note on 556 * NULL descriptors -- 32-bit programs take faults 557 * if they deference NULL descriptors; however, 558 * when 64-bit programs load them into %fs or %gs, 559 * they DONT fault -- only the base address remains 560 * whatever it was from the last load. Urk. 561 * 562 * XXX - note that lwp_setprivate now sets %fs/%gs to the 563 * null selector for 64 bit processes. Whereas before 564 * %fs/%gs were set to LWP(FS|GS)_SEL regardless of 565 * the process's data model. For now we check for both 566 * values so that the kernel can also support the older 567 * libc. This should be ripped out at some point in the 568 * future. 569 */ 570 if (pcb->pcb_gs == LWPGS_SEL || pcb->pcb_gs == 0) { 571 #if defined(__xpv) 572 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 573 pcb->pcb_gsbase)) { 574 no_trap(); 575 return (1); 576 } 577 #else 578 wrmsr(MSR_AMD_KGSBASE, pcb->pcb_gsbase); 579 #endif 580 } 581 582 __set_ds(pcb->pcb_ds); 583 rp->r_ds = pcb->pcb_ds; 584 585 __set_es(pcb->pcb_es); 586 rp->r_es = pcb->pcb_es; 587 588 __set_fs(pcb->pcb_fs); 589 rp->r_fs = pcb->pcb_fs; 590 591 /* 592 * Same as for %gs 593 */ 594 if (pcb->pcb_fs == LWPFS_SEL || pcb->pcb_fs == 0) { 595 #if defined(__xpv) 596 if (HYPERVISOR_set_segment_base(SEGBASE_FS, 597 pcb->pcb_fsbase)) { 598 no_trap(); 599 return (1); 600 } 601 #else 602 wrmsr(MSR_AMD_FSBASE, pcb->pcb_fsbase); 603 #endif 604 } 605 606 } else { 607 cli(); 608 rc = 1; 609 } 610 no_trap(); 611 return (rc); 612 } 613 614 /* 615 * Make sure any stale selectors are cleared from the segment registers 616 * by putting KDS_SEL (the kernel's default %ds gdt selector) into them. 617 * This is necessary because the kernel itself does not use %es, %fs, nor 618 * %ds. (%cs and %ss are necessary, and are set up by the kernel - along with 619 * %gs - to point to the current cpu struct.) If we enter kmdb while in the 620 * kernel and resume with a stale ldt or brandz selector sitting there in a 621 * segment register, kmdb will #gp fault if the stale selector points to, 622 * for example, an ldt in the context of another process. 623 * 624 * WARNING: Intel and AMD chips behave differently when storing 625 * the null selector into %fs and %gs while in long mode. On AMD 626 * chips fsbase and gsbase are not cleared. But on Intel chips, storing 627 * a null selector into %fs or %gs has the side effect of clearing 628 * fsbase or gsbase. For that reason we use KDS_SEL, which has 629 * consistent behavor between AMD and Intel. 630 * 631 * Caller responsible for preventing cpu migration. 632 */ 633 void 634 reset_sregs(void) 635 { 636 ulong_t kgsbase = (ulong_t)CPU; 637 638 ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL); 639 640 cli(); 641 __set_gs(KGS_SEL); 642 643 /* 644 * restore kernel gsbase 645 */ 646 #if defined(__xpv) 647 xen_set_segment_base(SEGBASE_GS_KERNEL, kgsbase); 648 #else 649 wrmsr(MSR_AMD_GSBASE, kgsbase); 650 #endif 651 652 sti(); 653 654 __set_ds(KDS_SEL); 655 __set_es(0 | SEL_KPL); /* selector RPL not ring 0 on hypervisor */ 656 __set_fs(KFS_SEL); 657 } 658 659 #endif /* __amd64 */ 660 661 #ifdef _SYSCALL32_IMPL 662 663 /* 664 * Make it impossible for a process to change its data model. 665 * We do this by toggling the present bits for the 32 and 666 * 64-bit user code descriptors. That way if a user lwp attempts 667 * to change its data model (by using the wrong code descriptor in 668 * %cs) it will fault immediately. This also allows us to simplify 669 * assertions and checks in the kernel. 670 */ 671 672 static void 673 gdt_ucode_model(model_t model) 674 { 675 kpreempt_disable(); 676 if (model == DATAMODEL_NATIVE) { 677 gdt_update_usegd(GDT_UCODE, &ucs_on); 678 gdt_update_usegd(GDT_U32CODE, &ucs32_off); 679 } else { 680 gdt_update_usegd(GDT_U32CODE, &ucs32_on); 681 gdt_update_usegd(GDT_UCODE, &ucs_off); 682 } 683 kpreempt_enable(); 684 } 685 686 #endif /* _SYSCALL32_IMPL */ 687 688 /* 689 * Restore lwp private fs and gs segment descriptors 690 * on current cpu's GDT. 691 */ 692 static void 693 lwp_segregs_restore(klwp_t *lwp) 694 { 695 pcb_t *pcb = &lwp->lwp_pcb; 696 697 ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); 698 ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); 699 700 #ifdef _SYSCALL32_IMPL 701 gdt_ucode_model(DATAMODEL_NATIVE); 702 #endif 703 704 gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc); 705 gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc); 706 707 } 708 709 #ifdef _SYSCALL32_IMPL 710 711 static void 712 lwp_segregs_restore32(klwp_t *lwp) 713 { 714 /*LINTED*/ 715 cpu_t *cpu = CPU; 716 pcb_t *pcb = &lwp->lwp_pcb; 717 718 ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_fsdesc)); 719 ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_gsdesc)); 720 721 gdt_ucode_model(DATAMODEL_ILP32); 722 gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc); 723 gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc); 724 } 725 726 #endif /* _SYSCALL32_IMPL */ 727 728 /* 729 * If this is a process in a branded zone, then we want it to use the brand 730 * syscall entry points instead of the standard Solaris entry points. This 731 * routine must be called when a new lwp is created within a branded zone 732 * or when an existing lwp moves into a branded zone via a zone_enter() 733 * operation. 734 */ 735 void 736 lwp_attach_brand_hdlrs(klwp_t *lwp) 737 { 738 kthread_t *t = lwptot(lwp); 739 740 ASSERT(PROC_IS_BRANDED(lwptoproc(lwp))); 741 ASSERT(removectx(t, NULL, brand_interpositioning_disable, 742 brand_interpositioning_enable, NULL, NULL, 743 brand_interpositioning_disable, NULL) == 0); 744 745 installctx(t, NULL, brand_interpositioning_disable, 746 brand_interpositioning_enable, NULL, NULL, 747 brand_interpositioning_disable, NULL); 748 749 if (t == curthread) { 750 kpreempt_disable(); 751 brand_interpositioning_enable(); 752 kpreempt_enable(); 753 } 754 } 755 756 /* 757 * Add any lwp-associated context handlers to the lwp at the beginning 758 * of the lwp's useful life. 759 * 760 * All paths which create lwp's invoke lwp_create(); lwp_create() 761 * invokes lwp_stk_init() which initializes the stack, sets up 762 * lwp_regs, and invokes this routine. 763 * 764 * All paths which destroy lwp's invoke lwp_exit() to rip the lwp 765 * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it 766 * ends up in thread_free() which invokes freectx(t, 0) before 767 * invoking lwp_stk_fini(). When the lwp is recycled from death 768 * row, lwp_stk_fini() is invoked, then thread_free(), and thus 769 * freectx(t, 0) as before. 770 * 771 * In the case of exec, the surviving lwp is thoroughly scrubbed 772 * clean; exec invokes freectx(t, 1) to destroy associated contexts. 773 * On the way back to the new image, it invokes setregs() which 774 * in turn invokes this routine. 775 */ 776 void 777 lwp_installctx(klwp_t *lwp) 778 { 779 kthread_t *t = lwptot(lwp); 780 int thisthread = t == curthread; 781 #ifdef _SYSCALL32_IMPL 782 void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ? 783 lwp_segregs_restore : lwp_segregs_restore32; 784 #else 785 void (*restop)(klwp_t *) = lwp_segregs_restore; 786 #endif 787 788 /* 789 * Install the basic lwp context handlers on each lwp. 790 * 791 * On the amd64 kernel, the context handlers are responsible for 792 * virtualizing %ds, %es, %fs, and %gs to the lwp. The register 793 * values are only ever changed via sys_rtt when the 794 * pcb->pcb_rupdate == 1. Only sys_rtt gets to clear the bit. 795 * 796 * On the i386 kernel, the context handlers are responsible for 797 * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs 798 */ 799 ASSERT(removectx(t, lwp, lwp_segregs_save, restop, 800 NULL, NULL, NULL, NULL) == 0); 801 if (thisthread) 802 kpreempt_disable(); 803 installctx(t, lwp, lwp_segregs_save, restop, 804 NULL, NULL, NULL, NULL); 805 if (thisthread) { 806 /* 807 * Since we're the right thread, set the values in the GDT 808 */ 809 restop(lwp); 810 kpreempt_enable(); 811 } 812 813 /* 814 * If we have sysenter/sysexit instructions enabled, we need 815 * to ensure that the hardware mechanism is kept up-to-date with the 816 * lwp's kernel stack pointer across context switches. 817 * 818 * sep_save zeros the sysenter stack pointer msr; sep_restore sets 819 * it to the lwp's kernel stack pointer (kstktop). 820 */ 821 if (x86_feature & X86_SEP) { 822 #if defined(__amd64) 823 caddr_t kstktop = (caddr_t)lwp->lwp_regs; 824 #elif defined(__i386) 825 caddr_t kstktop = ((caddr_t)lwp->lwp_regs - MINFRAME) + 826 SA(sizeof (struct regs) + MINFRAME); 827 #endif 828 ASSERT(removectx(t, kstktop, 829 sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0); 830 831 if (thisthread) 832 kpreempt_disable(); 833 installctx(t, kstktop, 834 sep_save, sep_restore, NULL, NULL, NULL, NULL); 835 if (thisthread) { 836 /* 837 * We're the right thread, so set the stack pointer 838 * for the first sysenter instruction to use 839 */ 840 sep_restore(kstktop); 841 kpreempt_enable(); 842 } 843 } 844 845 if (PROC_IS_BRANDED(ttoproc(t))) 846 lwp_attach_brand_hdlrs(lwp); 847 } 848 849 /* 850 * Clear registers on exec(2). 851 */ 852 void 853 setregs(uarg_t *args) 854 { 855 struct regs *rp; 856 kthread_t *t = curthread; 857 klwp_t *lwp = ttolwp(t); 858 pcb_t *pcb = &lwp->lwp_pcb; 859 greg_t sp; 860 861 /* 862 * Initialize user registers 863 */ 864 (void) save_syscall_args(); /* copy args from registers first */ 865 rp = lwptoregs(lwp); 866 sp = rp->r_sp; 867 bzero(rp, sizeof (*rp)); 868 869 rp->r_ss = UDS_SEL; 870 rp->r_sp = sp; 871 rp->r_pc = args->entry; 872 rp->r_ps = PSL_USER; 873 874 #if defined(__amd64) 875 876 pcb->pcb_fs = pcb->pcb_gs = 0; 877 pcb->pcb_fsbase = pcb->pcb_gsbase = 0; 878 879 if (ttoproc(t)->p_model == DATAMODEL_NATIVE) { 880 881 rp->r_cs = UCS_SEL; 882 883 /* 884 * Only allow 64-bit user code descriptor to be present. 885 */ 886 gdt_ucode_model(DATAMODEL_NATIVE); 887 888 /* 889 * Arrange that the virtualized %fs and %gs GDT descriptors 890 * have a well-defined initial state (present, ring 3 891 * and of type data). 892 */ 893 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 894 895 /* 896 * thrptr is either NULL or a value used by DTrace. 897 * 64-bit processes use %fs as their "thread" register. 898 */ 899 if (args->thrptr) 900 (void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr); 901 902 } else { 903 904 rp->r_cs = U32CS_SEL; 905 rp->r_ds = rp->r_es = UDS_SEL; 906 907 /* 908 * only allow 32-bit user code selector to be present. 909 */ 910 gdt_ucode_model(DATAMODEL_ILP32); 911 912 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 913 914 /* 915 * thrptr is either NULL or a value used by DTrace. 916 * 32-bit processes use %gs as their "thread" register. 917 */ 918 if (args->thrptr) 919 (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr); 920 921 } 922 923 pcb->pcb_ds = rp->r_ds; 924 pcb->pcb_es = rp->r_es; 925 pcb->pcb_rupdate = 1; 926 927 #elif defined(__i386) 928 929 rp->r_cs = UCS_SEL; 930 rp->r_ds = rp->r_es = UDS_SEL; 931 932 /* 933 * Arrange that the virtualized %fs and %gs GDT descriptors 934 * have a well-defined initial state (present, ring 3 935 * and of type data). 936 */ 937 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 938 939 /* 940 * For %gs we need to reset LWP_GSBASE in pcb and the 941 * per-cpu GDT descriptor. thrptr is either NULL 942 * or a value used by DTrace. 943 */ 944 if (args->thrptr) 945 (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr); 946 #endif 947 948 lwp->lwp_eosys = JUSTRETURN; 949 t->t_post_sys = 1; 950 951 /* 952 * Here we initialize minimal fpu state. 953 * The rest is done at the first floating 954 * point instruction that a process executes. 955 */ 956 pcb->pcb_fpu.fpu_flags = 0; 957 958 /* 959 * Add the lwp context handlers that virtualize segment registers, 960 * and/or system call stacks etc. 961 */ 962 lwp_installctx(lwp); 963 } 964 965 user_desc_t * 966 cpu_get_gdt(void) 967 { 968 return (CPU->cpu_gdt); 969 } 970 971 972 #if !defined(lwp_getdatamodel) 973 974 /* 975 * Return the datamodel of the given lwp. 976 */ 977 /*ARGSUSED*/ 978 model_t 979 lwp_getdatamodel(klwp_t *lwp) 980 { 981 return (lwp->lwp_procp->p_model); 982 } 983 984 #endif /* !lwp_getdatamodel */ 985 986 #if !defined(get_udatamodel) 987 988 model_t 989 get_udatamodel(void) 990 { 991 return (curproc->p_model); 992 } 993 994 #endif /* !get_udatamodel */ 995