1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/class.h> 38 #include <sys/proc.h> 39 #include <sys/procfs.h> 40 #include <sys/buf.h> 41 #include <sys/kmem.h> 42 #include <sys/cred.h> 43 #include <sys/archsystm.h> 44 #include <sys/vmparam.h> 45 #include <sys/prsystm.h> 46 #include <sys/reboot.h> 47 #include <sys/uadmin.h> 48 #include <sys/vfs.h> 49 #include <sys/vnode.h> 50 #include <sys/file.h> 51 #include <sys/session.h> 52 #include <sys/ucontext.h> 53 #include <sys/dnlc.h> 54 #include <sys/var.h> 55 #include <sys/cmn_err.h> 56 #include <sys/debugreg.h> 57 #include <sys/thread.h> 58 #include <sys/vtrace.h> 59 #include <sys/consdev.h> 60 #include <sys/psw.h> 61 #include <sys/regset.h> 62 #include <sys/privregs.h> 63 #include <sys/cpu.h> 64 #include <sys/stack.h> 65 #include <sys/swap.h> 66 #include <vm/hat.h> 67 #include <vm/anon.h> 68 #include <vm/as.h> 69 #include <vm/page.h> 70 #include <vm/seg.h> 71 #include <vm/seg_kmem.h> 72 #include <vm/seg_map.h> 73 #include <vm/seg_vn.h> 74 #include <sys/exec.h> 75 #include <sys/acct.h> 76 #include <sys/core.h> 77 #include <sys/corectl.h> 78 #include <sys/modctl.h> 79 #include <sys/tuneable.h> 80 #include <c2/audit.h> 81 #include <sys/bootconf.h> 82 #include <sys/brand.h> 83 #include <sys/dumphdr.h> 84 #include <sys/promif.h> 85 #include <sys/systeminfo.h> 86 #include <sys/kdi.h> 87 #include <sys/contract_impl.h> 88 #include <sys/x86_archext.h> 89 #include <sys/segments.h> 90 #include <sys/ontrap.h> 91 #include <sys/cpu.h> 92 #ifdef __xpv 93 #include <sys/hypervisor.h> 94 #endif 95 96 /* 97 * Compare the version of boot that boot says it is against 98 * the version of boot the kernel expects. 99 */ 100 int 101 check_boot_version(int boots_version) 102 { 103 if (boots_version == BO_VERSION) 104 return (0); 105 106 prom_printf("Wrong boot interface - kernel needs v%d found v%d\n", 107 BO_VERSION, boots_version); 108 prom_panic("halting"); 109 /*NOTREACHED*/ 110 } 111 112 /* 113 * Process the physical installed list for boot. 114 * Finds: 115 * 1) the pfn of the highest installed physical page, 116 * 2) the number of pages installed 117 * 3) the number of distinct contiguous regions these pages fall into. 118 * 4) the number of contiguous memory ranges 119 */ 120 void 121 installed_top_size_ex( 122 struct memlist *list, /* pointer to start of installed list */ 123 pfn_t *high_pfn, /* return ptr for top value */ 124 pgcnt_t *pgcnt, /* return ptr for sum of installed pages */ 125 int *ranges) /* return ptr for the count of contig. ranges */ 126 { 127 pfn_t top = 0; 128 pgcnt_t sumpages = 0; 129 pfn_t highp; /* high page in a chunk */ 130 int cnt = 0; 131 132 for (; list; list = list->ml_next) { 133 ++cnt; 134 highp = (list->ml_address + list->ml_size - 1) >> PAGESHIFT; 135 if (top < highp) 136 top = highp; 137 sumpages += btop(list->ml_size); 138 } 139 140 *high_pfn = top; 141 *pgcnt = sumpages; 142 *ranges = cnt; 143 } 144 145 void 146 installed_top_size( 147 struct memlist *list, /* pointer to start of installed list */ 148 pfn_t *high_pfn, /* return ptr for top value */ 149 pgcnt_t *pgcnt) /* return ptr for sum of installed pages */ 150 { 151 int ranges; 152 153 installed_top_size_ex(list, high_pfn, pgcnt, &ranges); 154 } 155 156 void 157 phys_install_has_changed(void) 158 {} 159 160 /* 161 * Copy in a memory list from boot to kernel, with a filter function 162 * to remove pages. The filter function can increase the address and/or 163 * decrease the size to filter out pages. It will also align addresses and 164 * sizes to PAGESIZE. 165 */ 166 void 167 copy_memlist_filter( 168 struct memlist *src, 169 struct memlist **dstp, 170 void (*filter)(uint64_t *, uint64_t *)) 171 { 172 struct memlist *dst, *prev; 173 uint64_t addr; 174 uint64_t size; 175 uint64_t eaddr; 176 177 dst = *dstp; 178 prev = dst; 179 180 /* 181 * Move through the memlist applying a filter against 182 * each range of memory. Note that we may apply the 183 * filter multiple times against each memlist entry. 184 */ 185 for (; src; src = src->ml_next) { 186 addr = P2ROUNDUP(src->ml_address, PAGESIZE); 187 eaddr = P2ALIGN(src->ml_address + src->ml_size, PAGESIZE); 188 while (addr < eaddr) { 189 size = eaddr - addr; 190 if (filter != NULL) 191 filter(&addr, &size); 192 if (size == 0) 193 break; 194 dst->ml_address = addr; 195 dst->ml_size = size; 196 dst->ml_next = 0; 197 if (prev == dst) { 198 dst->ml_prev = 0; 199 dst++; 200 } else { 201 dst->ml_prev = prev; 202 prev->ml_next = dst; 203 dst++; 204 prev++; 205 } 206 addr += size; 207 } 208 } 209 210 *dstp = dst; 211 } 212 213 /* 214 * Kernel setup code, called from startup(). 215 */ 216 void 217 kern_setup1(void) 218 { 219 proc_t *pp; 220 221 pp = &p0; 222 223 proc_sched = pp; 224 225 /* 226 * Initialize process 0 data structures 227 */ 228 pp->p_stat = SRUN; 229 pp->p_flag = SSYS; 230 231 pp->p_pidp = &pid0; 232 pp->p_pgidp = &pid0; 233 pp->p_sessp = &session0; 234 pp->p_tlist = &t0; 235 pid0.pid_pglink = pp; 236 pid0.pid_pgtail = pp; 237 238 /* 239 * XXX - we asssume that the u-area is zeroed out except for 240 * ttolwp(curthread)->lwp_regs. 241 */ 242 PTOU(curproc)->u_cmask = (mode_t)CMASK; 243 244 thread_init(); /* init thread_free list */ 245 pid_init(); /* initialize pid (proc) table */ 246 contract_init(); /* initialize contracts */ 247 248 init_pages_pp_maximum(); 249 } 250 251 /* 252 * Load a procedure into a thread. 253 */ 254 void 255 thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len) 256 { 257 caddr_t sp; 258 size_t framesz; 259 caddr_t argp; 260 long *p; 261 extern void thread_start(); 262 263 /* 264 * Push a "c" call frame onto the stack to represent 265 * the caller of "start". 266 */ 267 sp = t->t_stk; 268 ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0); 269 if (len != 0) { 270 /* 271 * the object that arg points at is copied into the 272 * caller's frame. 273 */ 274 framesz = SA(len); 275 sp -= framesz; 276 ASSERT(sp > t->t_stkbase); 277 argp = sp + SA(MINFRAME); 278 bcopy(arg, argp, len); 279 arg = argp; 280 } 281 /* 282 * Set up arguments (arg and len) on the caller's stack frame. 283 */ 284 p = (long *)sp; 285 286 *--p = 0; /* fake call */ 287 *--p = 0; /* null frame pointer terminates stack trace */ 288 *--p = (long)len; 289 *--p = (intptr_t)arg; 290 *--p = (intptr_t)start; 291 292 /* 293 * initialize thread to resume at thread_start() which will 294 * turn around and invoke (*start)(arg, len). 295 */ 296 t->t_pc = (uintptr_t)thread_start; 297 t->t_sp = (uintptr_t)p; 298 299 ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0); 300 } 301 302 /* 303 * load user registers into lwp. 304 */ 305 /*ARGSUSED2*/ 306 void 307 lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr) 308 { 309 struct regs *rp = lwptoregs(lwp); 310 311 setgregs(lwp, grp); 312 rp->r_ps = PSL_USER; 313 314 /* 315 * For 64-bit lwps, we allow one magic %fs selector value, and one 316 * magic %gs selector to point anywhere in the address space using 317 * %fsbase and %gsbase behind the scenes. libc uses %fs to point 318 * at the ulwp_t structure. 319 * 320 * For 32-bit lwps, libc wedges its lwp thread pointer into the 321 * ucontext ESP slot (which is otherwise irrelevant to setting a 322 * ucontext) and LWPGS_SEL value into gregs[REG_GS]. This is so 323 * syslwp_create() can atomically setup %gs. 324 * 325 * See setup_context() in libc. 326 */ 327 #ifdef _SYSCALL32_IMPL 328 if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) { 329 if (grp[REG_GS] == LWPGS_SEL) 330 (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); 331 } else { 332 /* 333 * See lwp_setprivate in kernel and setup_context in libc. 334 * 335 * Currently libc constructs a ucontext from whole cloth for 336 * every new (not main) lwp created. For 64 bit processes 337 * %fsbase is directly set to point to current thread pointer. 338 * In the past (solaris 10) %fs was also set LWPFS_SEL to 339 * indicate %fsbase. Now we use the null GDT selector for 340 * this purpose. LWP[FS|GS]_SEL are only intended for 32 bit 341 * processes. To ease transition we support older libcs in 342 * the newer kernel by forcing %fs or %gs selector to null 343 * by calling lwp_setprivate if LWP[FS|GS]_SEL is passed in 344 * the ucontext. This is should be ripped out at some future 345 * date. Another fix would be for libc to do a getcontext 346 * and inherit the null %fs/%gs from the current context but 347 * that means an extra system call and could hurt performance. 348 */ 349 if (grp[REG_FS] == 0x1bb) /* hard code legacy LWPFS_SEL */ 350 (void) lwp_setprivate(lwp, _LWP_FSBASE, 351 (uintptr_t)grp[REG_FSBASE]); 352 353 if (grp[REG_GS] == 0x1c3) /* hard code legacy LWPGS_SEL */ 354 (void) lwp_setprivate(lwp, _LWP_GSBASE, 355 (uintptr_t)grp[REG_GSBASE]); 356 } 357 #else 358 if (grp[GS] == LWPGS_SEL) 359 (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); 360 #endif 361 362 lwp->lwp_eosys = JUSTRETURN; 363 lwptot(lwp)->t_post_sys = 1; 364 } 365 366 /* 367 * set syscall()'s return values for a lwp. 368 */ 369 void 370 lwp_setrval(klwp_t *lwp, int v1, int v2) 371 { 372 lwptoregs(lwp)->r_ps &= ~PS_C; 373 lwptoregs(lwp)->r_r0 = v1; 374 lwptoregs(lwp)->r_r1 = v2; 375 } 376 377 /* 378 * set syscall()'s return values for a lwp. 379 */ 380 void 381 lwp_setsp(klwp_t *lwp, caddr_t sp) 382 { 383 lwptoregs(lwp)->r_sp = (intptr_t)sp; 384 } 385 386 /* 387 * Copy regs from parent to child. 388 */ 389 void 390 lwp_forkregs(klwp_t *lwp, klwp_t *clwp) 391 { 392 #if defined(__amd64) 393 struct pcb *pcb = &clwp->lwp_pcb; 394 struct regs *rp = lwptoregs(lwp); 395 396 if (pcb->pcb_rupdate == 0) { 397 pcb->pcb_ds = rp->r_ds; 398 pcb->pcb_es = rp->r_es; 399 pcb->pcb_fs = rp->r_fs; 400 pcb->pcb_gs = rp->r_gs; 401 pcb->pcb_rupdate = 1; 402 lwptot(clwp)->t_post_sys = 1; 403 } 404 ASSERT(lwptot(clwp)->t_post_sys); 405 #endif 406 407 bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs)); 408 } 409 410 /* 411 * This function is currently unused on x86. 412 */ 413 /*ARGSUSED*/ 414 void 415 lwp_freeregs(klwp_t *lwp, int isexec) 416 {} 417 418 /* 419 * This function is currently unused on x86. 420 */ 421 void 422 lwp_pcb_exit(void) 423 {} 424 425 /* 426 * Lwp context ops for segment registers. 427 */ 428 429 /* 430 * Every time we come into the kernel (syscall, interrupt or trap 431 * but not fast-traps) we capture the current values of the user's 432 * segment registers into the lwp's reg structure. This includes 433 * lcall for i386 generic system call support since it is handled 434 * as a segment-not-present trap. 435 * 436 * Here we save the current values from the lwp regs into the pcb 437 * and set pcb->pcb_rupdate to 1 to tell the rest of the kernel 438 * that the pcb copy of the segment registers is the current one. 439 * This ensures the lwp's next trip to user land via update_sregs. 440 * Finally we set t_post_sys to ensure that no system call fast-path's 441 * its way out of the kernel via sysret. 442 * 443 * (This means that we need to have interrupts disabled when we test 444 * t->t_post_sys in the syscall handlers; if the test fails, we need 445 * to keep interrupts disabled until we return to userland so we can't 446 * be switched away.) 447 * 448 * As a result of all this, we don't really have to do a whole lot if 449 * the thread is just mucking about in the kernel, switching on and 450 * off the cpu for whatever reason it feels like. And yet we still 451 * preserve fast syscalls, cause if we -don't- get descheduled, 452 * we never come here either. 453 */ 454 455 #define VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \ 456 (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL) 457 458 /*ARGSUSED*/ 459 void 460 lwp_segregs_save(klwp_t *lwp) 461 { 462 #if defined(__amd64) 463 pcb_t *pcb = &lwp->lwp_pcb; 464 struct regs *rp; 465 466 ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); 467 ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); 468 469 if (pcb->pcb_rupdate == 0) { 470 rp = lwptoregs(lwp); 471 472 /* 473 * If there's no update already pending, capture the current 474 * %ds/%es/%fs/%gs values from lwp's regs in case the user 475 * changed them; %fsbase and %gsbase are privileged so the 476 * kernel versions of these registers in pcb_fsbase and 477 * pcb_gsbase are always up-to-date. 478 */ 479 pcb->pcb_ds = rp->r_ds; 480 pcb->pcb_es = rp->r_es; 481 pcb->pcb_fs = rp->r_fs; 482 pcb->pcb_gs = rp->r_gs; 483 pcb->pcb_rupdate = 1; 484 lwp->lwp_thread->t_post_sys = 1; 485 } 486 #endif /* __amd64 */ 487 488 #if !defined(__xpv) /* XXPV not sure if we can re-read gdt? */ 489 ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc, 490 sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0); 491 ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc, 492 sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0); 493 #endif 494 } 495 496 #if defined(__amd64) 497 498 /* 499 * Update the segment registers with new values from the pcb. 500 * 501 * We have to do this carefully, and in the following order, 502 * in case any of the selectors points at a bogus descriptor. 503 * If they do, we'll catch trap with on_trap and return 1. 504 * returns 0 on success. 505 * 506 * This is particularly tricky for %gs. 507 * This routine must be executed under a cli. 508 */ 509 int 510 update_sregs(struct regs *rp, klwp_t *lwp) 511 { 512 pcb_t *pcb = &lwp->lwp_pcb; 513 ulong_t kgsbase; 514 on_trap_data_t otd; 515 int rc = 0; 516 517 if (!on_trap(&otd, OT_SEGMENT_ACCESS)) { 518 519 #if defined(__xpv) 520 /* 521 * On the hyervisor this is easy. The hypercall below will 522 * swapgs and load %gs with the user selector. If the user 523 * selector is bad the hypervisor will catch the fault and 524 * load %gs with the null selector instead. Either way the 525 * kernel's gsbase is not damaged. 526 */ 527 kgsbase = (ulong_t)CPU; 528 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, 529 pcb->pcb_gs) != 0) { 530 no_trap(); 531 return (1); 532 } 533 534 rp->r_gs = pcb->pcb_gs; 535 ASSERT((cpu_t *)kgsbase == CPU); 536 537 #else /* __xpv */ 538 539 /* 540 * A little more complicated running native. 541 */ 542 kgsbase = (ulong_t)CPU; 543 __set_gs(pcb->pcb_gs); 544 545 /* 546 * If __set_gs fails it's because the new %gs is a bad %gs, 547 * we'll be taking a trap but with the original %gs and %gsbase 548 * undamaged (i.e. pointing at curcpu). 549 * 550 * We've just mucked up the kernel's gsbase. Oops. In 551 * particular we can't take any traps at all. Make the newly 552 * computed gsbase be the hidden gs via __swapgs, and fix 553 * the kernel's gsbase back again. Later, when we return to 554 * userland we'll swapgs again restoring gsbase just loaded 555 * above. 556 */ 557 __swapgs(); 558 rp->r_gs = pcb->pcb_gs; 559 560 /* 561 * restore kernel's gsbase 562 */ 563 wrmsr(MSR_AMD_GSBASE, kgsbase); 564 565 #endif /* __xpv */ 566 567 /* 568 * Only override the descriptor base address if 569 * r_gs == LWPGS_SEL or if r_gs == NULL. A note on 570 * NULL descriptors -- 32-bit programs take faults 571 * if they deference NULL descriptors; however, 572 * when 64-bit programs load them into %fs or %gs, 573 * they DONT fault -- only the base address remains 574 * whatever it was from the last load. Urk. 575 * 576 * XXX - note that lwp_setprivate now sets %fs/%gs to the 577 * null selector for 64 bit processes. Whereas before 578 * %fs/%gs were set to LWP(FS|GS)_SEL regardless of 579 * the process's data model. For now we check for both 580 * values so that the kernel can also support the older 581 * libc. This should be ripped out at some point in the 582 * future. 583 */ 584 if (pcb->pcb_gs == LWPGS_SEL || pcb->pcb_gs == 0) { 585 #if defined(__xpv) 586 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 587 pcb->pcb_gsbase)) { 588 no_trap(); 589 return (1); 590 } 591 #else 592 wrmsr(MSR_AMD_KGSBASE, pcb->pcb_gsbase); 593 #endif 594 } 595 596 __set_ds(pcb->pcb_ds); 597 rp->r_ds = pcb->pcb_ds; 598 599 __set_es(pcb->pcb_es); 600 rp->r_es = pcb->pcb_es; 601 602 __set_fs(pcb->pcb_fs); 603 rp->r_fs = pcb->pcb_fs; 604 605 /* 606 * Same as for %gs 607 */ 608 if (pcb->pcb_fs == LWPFS_SEL || pcb->pcb_fs == 0) { 609 #if defined(__xpv) 610 if (HYPERVISOR_set_segment_base(SEGBASE_FS, 611 pcb->pcb_fsbase)) { 612 no_trap(); 613 return (1); 614 } 615 #else 616 wrmsr(MSR_AMD_FSBASE, pcb->pcb_fsbase); 617 #endif 618 } 619 620 } else { 621 cli(); 622 rc = 1; 623 } 624 no_trap(); 625 return (rc); 626 } 627 628 /* 629 * Make sure any stale selectors are cleared from the segment registers 630 * by putting KDS_SEL (the kernel's default %ds gdt selector) into them. 631 * This is necessary because the kernel itself does not use %es, %fs, nor 632 * %ds. (%cs and %ss are necessary, and are set up by the kernel - along with 633 * %gs - to point to the current cpu struct.) If we enter kmdb while in the 634 * kernel and resume with a stale ldt or brandz selector sitting there in a 635 * segment register, kmdb will #gp fault if the stale selector points to, 636 * for example, an ldt in the context of another process. 637 * 638 * WARNING: Intel and AMD chips behave differently when storing 639 * the null selector into %fs and %gs while in long mode. On AMD 640 * chips fsbase and gsbase are not cleared. But on Intel chips, storing 641 * a null selector into %fs or %gs has the side effect of clearing 642 * fsbase or gsbase. For that reason we use KDS_SEL, which has 643 * consistent behavor between AMD and Intel. 644 * 645 * Caller responsible for preventing cpu migration. 646 */ 647 void 648 reset_sregs(void) 649 { 650 ulong_t kgsbase = (ulong_t)CPU; 651 652 ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL); 653 654 cli(); 655 __set_gs(KGS_SEL); 656 657 /* 658 * restore kernel gsbase 659 */ 660 #if defined(__xpv) 661 xen_set_segment_base(SEGBASE_GS_KERNEL, kgsbase); 662 #else 663 wrmsr(MSR_AMD_GSBASE, kgsbase); 664 #endif 665 666 sti(); 667 668 __set_ds(KDS_SEL); 669 __set_es(0 | SEL_KPL); /* selector RPL not ring 0 on hypervisor */ 670 __set_fs(KFS_SEL); 671 } 672 673 #endif /* __amd64 */ 674 675 #ifdef _SYSCALL32_IMPL 676 677 /* 678 * Make it impossible for a process to change its data model. 679 * We do this by toggling the present bits for the 32 and 680 * 64-bit user code descriptors. That way if a user lwp attempts 681 * to change its data model (by using the wrong code descriptor in 682 * %cs) it will fault immediately. This also allows us to simplify 683 * assertions and checks in the kernel. 684 */ 685 686 static void 687 gdt_ucode_model(model_t model) 688 { 689 kpreempt_disable(); 690 if (model == DATAMODEL_NATIVE) { 691 gdt_update_usegd(GDT_UCODE, &ucs_on); 692 gdt_update_usegd(GDT_U32CODE, &ucs32_off); 693 } else { 694 gdt_update_usegd(GDT_U32CODE, &ucs32_on); 695 gdt_update_usegd(GDT_UCODE, &ucs_off); 696 } 697 kpreempt_enable(); 698 } 699 700 #endif /* _SYSCALL32_IMPL */ 701 702 /* 703 * Restore lwp private fs and gs segment descriptors 704 * on current cpu's GDT. 705 */ 706 static void 707 lwp_segregs_restore(klwp_t *lwp) 708 { 709 pcb_t *pcb = &lwp->lwp_pcb; 710 711 ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); 712 ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); 713 714 #ifdef _SYSCALL32_IMPL 715 gdt_ucode_model(DATAMODEL_NATIVE); 716 #endif 717 718 gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc); 719 gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc); 720 721 } 722 723 #ifdef _SYSCALL32_IMPL 724 725 static void 726 lwp_segregs_restore32(klwp_t *lwp) 727 { 728 /*LINTED*/ 729 cpu_t *cpu = CPU; 730 pcb_t *pcb = &lwp->lwp_pcb; 731 732 ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_fsdesc)); 733 ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_gsdesc)); 734 735 gdt_ucode_model(DATAMODEL_ILP32); 736 gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc); 737 gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc); 738 } 739 740 #endif /* _SYSCALL32_IMPL */ 741 742 /* 743 * If this is a process in a branded zone, then we want it to use the brand 744 * syscall entry points instead of the standard Solaris entry points. This 745 * routine must be called when a new lwp is created within a branded zone 746 * or when an existing lwp moves into a branded zone via a zone_enter() 747 * operation. 748 */ 749 void 750 lwp_attach_brand_hdlrs(klwp_t *lwp) 751 { 752 kthread_t *t = lwptot(lwp); 753 754 ASSERT(PROC_IS_BRANDED(lwptoproc(lwp))); 755 756 ASSERT(removectx(t, NULL, brand_interpositioning_disable, 757 brand_interpositioning_enable, NULL, NULL, 758 brand_interpositioning_disable, NULL) == 0); 759 installctx(t, NULL, brand_interpositioning_disable, 760 brand_interpositioning_enable, NULL, NULL, 761 brand_interpositioning_disable, NULL); 762 763 if (t == curthread) { 764 kpreempt_disable(); 765 brand_interpositioning_enable(); 766 kpreempt_enable(); 767 } 768 } 769 770 /* 771 * If this is a process in a branded zone, then we want it to disable the 772 * brand syscall entry points. This routine must be called when the last 773 * lwp in a process is exiting in proc_exit(). 774 */ 775 void 776 lwp_detach_brand_hdlrs(klwp_t *lwp) 777 { 778 kthread_t *t = lwptot(lwp); 779 780 ASSERT(PROC_IS_BRANDED(lwptoproc(lwp))); 781 if (t == curthread) 782 kpreempt_disable(); 783 784 /* Remove the original context handlers */ 785 VERIFY(removectx(t, NULL, brand_interpositioning_disable, 786 brand_interpositioning_enable, NULL, NULL, 787 brand_interpositioning_disable, NULL) != 0); 788 789 if (t == curthread) { 790 /* Cleanup our MSR and IDT entries. */ 791 brand_interpositioning_disable(); 792 kpreempt_enable(); 793 } 794 } 795 796 /* 797 * Add any lwp-associated context handlers to the lwp at the beginning 798 * of the lwp's useful life. 799 * 800 * All paths which create lwp's invoke lwp_create(); lwp_create() 801 * invokes lwp_stk_init() which initializes the stack, sets up 802 * lwp_regs, and invokes this routine. 803 * 804 * All paths which destroy lwp's invoke lwp_exit() to rip the lwp 805 * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it 806 * ends up in thread_free() which invokes freectx(t, 0) before 807 * invoking lwp_stk_fini(). When the lwp is recycled from death 808 * row, lwp_stk_fini() is invoked, then thread_free(), and thus 809 * freectx(t, 0) as before. 810 * 811 * In the case of exec, the surviving lwp is thoroughly scrubbed 812 * clean; exec invokes freectx(t, 1) to destroy associated contexts. 813 * On the way back to the new image, it invokes setregs() which 814 * in turn invokes this routine. 815 */ 816 void 817 lwp_installctx(klwp_t *lwp) 818 { 819 kthread_t *t = lwptot(lwp); 820 int thisthread = t == curthread; 821 #ifdef _SYSCALL32_IMPL 822 void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ? 823 lwp_segregs_restore : lwp_segregs_restore32; 824 #else 825 void (*restop)(klwp_t *) = lwp_segregs_restore; 826 #endif 827 828 /* 829 * Install the basic lwp context handlers on each lwp. 830 * 831 * On the amd64 kernel, the context handlers are responsible for 832 * virtualizing %ds, %es, %fs, and %gs to the lwp. The register 833 * values are only ever changed via sys_rtt when the 834 * pcb->pcb_rupdate == 1. Only sys_rtt gets to clear the bit. 835 * 836 * On the i386 kernel, the context handlers are responsible for 837 * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs 838 */ 839 ASSERT(removectx(t, lwp, lwp_segregs_save, restop, 840 NULL, NULL, NULL, NULL) == 0); 841 if (thisthread) 842 kpreempt_disable(); 843 installctx(t, lwp, lwp_segregs_save, restop, 844 NULL, NULL, NULL, NULL); 845 if (thisthread) { 846 /* 847 * Since we're the right thread, set the values in the GDT 848 */ 849 restop(lwp); 850 kpreempt_enable(); 851 } 852 853 /* 854 * If we have sysenter/sysexit instructions enabled, we need 855 * to ensure that the hardware mechanism is kept up-to-date with the 856 * lwp's kernel stack pointer across context switches. 857 * 858 * sep_save zeros the sysenter stack pointer msr; sep_restore sets 859 * it to the lwp's kernel stack pointer (kstktop). 860 */ 861 if (x86_feature & X86_SEP) { 862 #if defined(__amd64) 863 caddr_t kstktop = (caddr_t)lwp->lwp_regs; 864 #elif defined(__i386) 865 caddr_t kstktop = ((caddr_t)lwp->lwp_regs - MINFRAME) + 866 SA(sizeof (struct regs) + MINFRAME); 867 #endif 868 ASSERT(removectx(t, kstktop, 869 sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0); 870 871 if (thisthread) 872 kpreempt_disable(); 873 installctx(t, kstktop, 874 sep_save, sep_restore, NULL, NULL, NULL, NULL); 875 if (thisthread) { 876 /* 877 * We're the right thread, so set the stack pointer 878 * for the first sysenter instruction to use 879 */ 880 sep_restore(kstktop); 881 kpreempt_enable(); 882 } 883 } 884 885 if (PROC_IS_BRANDED(ttoproc(t))) 886 lwp_attach_brand_hdlrs(lwp); 887 } 888 889 /* 890 * Clear registers on exec(2). 891 */ 892 void 893 setregs(uarg_t *args) 894 { 895 struct regs *rp; 896 kthread_t *t = curthread; 897 klwp_t *lwp = ttolwp(t); 898 pcb_t *pcb = &lwp->lwp_pcb; 899 greg_t sp; 900 901 /* 902 * Initialize user registers 903 */ 904 (void) save_syscall_args(); /* copy args from registers first */ 905 rp = lwptoregs(lwp); 906 sp = rp->r_sp; 907 bzero(rp, sizeof (*rp)); 908 909 rp->r_ss = UDS_SEL; 910 rp->r_sp = sp; 911 rp->r_pc = args->entry; 912 rp->r_ps = PSL_USER; 913 914 #if defined(__amd64) 915 916 pcb->pcb_fs = pcb->pcb_gs = 0; 917 pcb->pcb_fsbase = pcb->pcb_gsbase = 0; 918 919 if (ttoproc(t)->p_model == DATAMODEL_NATIVE) { 920 921 rp->r_cs = UCS_SEL; 922 923 /* 924 * Only allow 64-bit user code descriptor to be present. 925 */ 926 gdt_ucode_model(DATAMODEL_NATIVE); 927 928 /* 929 * Arrange that the virtualized %fs and %gs GDT descriptors 930 * have a well-defined initial state (present, ring 3 931 * and of type data). 932 */ 933 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 934 935 /* 936 * thrptr is either NULL or a value used by DTrace. 937 * 64-bit processes use %fs as their "thread" register. 938 */ 939 if (args->thrptr) 940 (void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr); 941 942 } else { 943 944 rp->r_cs = U32CS_SEL; 945 rp->r_ds = rp->r_es = UDS_SEL; 946 947 /* 948 * only allow 32-bit user code selector to be present. 949 */ 950 gdt_ucode_model(DATAMODEL_ILP32); 951 952 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 953 954 /* 955 * thrptr is either NULL or a value used by DTrace. 956 * 32-bit processes use %gs as their "thread" register. 957 */ 958 if (args->thrptr) 959 (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr); 960 961 } 962 963 pcb->pcb_ds = rp->r_ds; 964 pcb->pcb_es = rp->r_es; 965 pcb->pcb_rupdate = 1; 966 967 #elif defined(__i386) 968 969 rp->r_cs = UCS_SEL; 970 rp->r_ds = rp->r_es = UDS_SEL; 971 972 /* 973 * Arrange that the virtualized %fs and %gs GDT descriptors 974 * have a well-defined initial state (present, ring 3 975 * and of type data). 976 */ 977 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 978 979 /* 980 * For %gs we need to reset LWP_GSBASE in pcb and the 981 * per-cpu GDT descriptor. thrptr is either NULL 982 * or a value used by DTrace. 983 */ 984 if (args->thrptr) 985 (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr); 986 #endif 987 988 lwp->lwp_eosys = JUSTRETURN; 989 t->t_post_sys = 1; 990 991 /* 992 * Here we initialize minimal fpu state. 993 * The rest is done at the first floating 994 * point instruction that a process executes. 995 */ 996 pcb->pcb_fpu.fpu_flags = 0; 997 998 /* 999 * Add the lwp context handlers that virtualize segment registers, 1000 * and/or system call stacks etc. 1001 */ 1002 lwp_installctx(lwp); 1003 } 1004 1005 user_desc_t * 1006 cpu_get_gdt(void) 1007 { 1008 return (CPU->cpu_gdt); 1009 } 1010 1011 1012 #if !defined(lwp_getdatamodel) 1013 1014 /* 1015 * Return the datamodel of the given lwp. 1016 */ 1017 /*ARGSUSED*/ 1018 model_t 1019 lwp_getdatamodel(klwp_t *lwp) 1020 { 1021 return (lwp->lwp_procp->p_model); 1022 } 1023 1024 #endif /* !lwp_getdatamodel */ 1025 1026 #if !defined(get_udatamodel) 1027 1028 model_t 1029 get_udatamodel(void) 1030 { 1031 return (curproc->p_model); 1032 } 1033 1034 #endif /* !get_udatamodel */ 1035